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Abstract

The accumulation of time-series data and the absence of
labels make time-series Anomaly Detection (AD) a self-
supervised deep learning task. Single-normality-assumption-
based methods, which reveal only a certain aspect of the
whole normality, are incapable of tasks involved with a
large number of anomalies. Specifically, Contrastive Learn-
ing (CL) methods distance negative pairs, many of which
consist of both normal samples, thus reducing the AD
performance. Existing multi-normality-assumption-based
methods are usually two-staged, firstly pre-training through
certain tasks whose target may differ from AD, limiting
their performance. To overcome the shortcomings, a deep
Contrastive One-Class Anomaly detection method of time
series (COCA) is proposed by authors, following the nor-
mality assumptions of CL and one-class classification. It
treats the original and reconstructed representations as the
positive pair of negative-sample-free CL, namely “sequence
contrast”. Next, invariance terms and variance terms com-
pose a contrastive one-class loss function in which the loss of
the assumptions is optimized by invariance terms simultane-
ously and the “hypersphere collapse” is prevented by vari-
ance terms. In addition, extensive experiments on two real-
world time-series datasets show the superior performance of
the proposed method achieves state-of-the-art.

1 Introduction

Within cyber-physical systems, sensor-equipped devices
generate time-series data that contains massive status
information, making it possible to detect unexpected er-
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rors and reduce maintenance costs in data-driven ways.
Anomaly Detection (AD) plays an increasingly impor-
tant role in this context, which refers to detecting in-
stances that are significantly dissimilar to the majority
[13]. Though the performance of deep learning methods
is superior to shallow ones [21], labeling the outlier from
quantities of temporal data could be costly and tricky.
So, AD is usually considered an unsupervised learning
problem in which learning representation for discern-
ing anomalies relies on some normality assumptions.
For example, autoencoder-based [19] methods assume
normal samples are better restructured from the latent
space than abnormal ones. Similarly, one-class classi-
fication methods [24] assume that the normal samples
come from a single (abstract) class that could accurately
describe the so-called “normality”. However, these nor-
mality assumptions may be one-sided, some of which
are just inspired by the pretext task of self-supervised
representation learning. Meanwhile, there are various
time-series anomalies including point anomalies (global
or local), subsequence anomalies, and anomaly time se-
ries [4] (Fig. ), thus it is not sufficient to detect all
based on one normality assumption alone.

In particular, contrastive learning-based AD meth-
ods are emerging. [10] directly treats the InfoNCE loss
of CPC |20] as the anomaly score for image AD, con-
trasting the context vector with the future represen-
tation vector. NeuTraL. AD [22] devises a contrastive
loss specific to a fixed set of learnable transformations
and regards the training loss as the anomaly score,
contrasting the transformed samples (views) with the
original ones in the representation space. The single-
assumption-based CL AD methods above assume that
more mutual information exists between normal com-
parison objects than anomalous ones. However, pairs
transformed from different normal samples are treated
as negative ones, pushing away many normal samples in-
side and not capturing shared information in the same
class, similar to [5]. It goes against the very nature of
AD, i.e., extracting features common to the vast major-
ity of normal samples, thus leading to a decline in AD
performance.

Indeed some scholars combine these normality as-
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sumptions into some compound ones to learn more ex-
pressive representations for downstream AD tasks. For
instance, Deep SVDD [24] realizes a deep one-class clas-
sification framework for AD with deep features or rep-
resentations learned by a pre-trained autoencoder. |27]
presents the two-stage one-class classifier on contrastive
representations and points out a subtle but important
observation, i.e., the uniformity property of contrastive
representation may hurt the one-class AD performance.
Even though, we argue that learning representation is
distinct from capturing the normality and anomalies’
underlying data regularities, formally they are two dis-
crepant optimization objectives. Therefore, with repre-
sentation learning and outlier discriminating separated,
the two-stage AD methods’ performance is limited. In
addition, these AD methods are originally proposed in
the computer vision domain, lacking temporal depen-
dencies, thus generalizing them simply into time-series
AD tasks is meaningless.

To address the above issues, we propose a one-
stage negative-sample-free deep Contrastive One-Class
Anomaly (COCA) detection model for time-series data.
As shown in Fig. first, the original training data
is augmented, making it easier to isolate anomalies
from normal samples. Next, the augmented time series
is encoded through a multi-layer temporal convolution
neural network and then put into a Seq2Seq model in
the latent space to learn the critical characteristics of
time series, i.e., temporal dependencies. The key to CL
is to pull contrasting objects (positive pairs) closer in
the representation space, and researchers use a variety
of positive pairs, such as context/future [20|, different
augmentations [6], and context/mask [1]. Here, we
regard the representation in the latent space and the
representation reconstructed by the Seq2Seq model as
positive pairs and name it “sequence contrast”. Note
that it’s different from an autoencoder, as the latter is a
generative method, which performs the reconstruction
of original data or so-called pixel-level generation [6],
carrying massive unnecessary details to downstream
tasks. Finally, the positive pairs are fed to a learnable
nonlinear projection layer to obtain their projections
respectively.

The model is trained via a contrastive one-class loss
function with two terms: invariance and variance. The
invariance term is to maximize the cosine similarity
between the one-class center, latent representations,
and seq2seq outputs, instead of adjusting the hyper-
parameters to balance the loss contribution of one-
class and contrastive learning as in most multi-task
learning. The variance term is borrowed from |[2],
and the variance of the within-batch representations is
maintained above a given threshold by a hinge loss to

avoid “hypersphere collapse” without negative sample
pairs, which also solves the difficulty of identifying
negative pairs in AD. In practice, the invariance term
is treated as the anomaly score for AD. In conclusion,
COCA combines the two normality assumptions that
latent and reconstructed representations 1) have greater
mutual information and 2) belong to a single class,
without pre-training. We summarize our contributions
as follows:

e A novel normality assumption that combines CL
and one-class classification for time-series AD.

e A new time-series CL paradigm namely “sequence
contrast”. By analyzing the problems solved with
CL, we clarify that its essence is the representation,
rather than the compared pairs or the negative
examples.

e A novel contrastive one-class loss function to opti-
mize both contrastive learning and one-class clas-
sification, and avoid “hypersphere collapse” at the
same time.

e Extensive experiments performed on two datasets
show that the proposed COCA leads to a new state-
of-the-art in time-series AD.

2 Related Work

This section contains a brief introduction of recent
works in contrastive learning and deep anomaly detec-
tion.

Contrastive Learning. The recent renaissance
of contrastive learning began with CPC [20] proposed
InfoNCE, which pulls positive samples closer and dis-
tances negative samples, though relying on a large num-
ber of negative samples to learn a good representa-
tion. [28] summarizes two key properties of contrastive
learning: 1) alignment: similar samples have similar
representations (pull positive pair) and 2) uniformity:
representations follow a uniform distribution on the
hypersphere (push negative pair). On the one hand,
BYOL [12], SwAV [5], and SimSiam [7] achieve unifor-
mity in contrastive learning without using negative sam-
ples. On the other hand, SimCLR [6] and TS-TCC [11]
align augmented data representations to learn invari-
ant representations for visual data and time series, re-
spectively. Also, TS-TCC uses a temporal contrasting
module to address the temporal dependencies of time se-
ries. Although all these contrastive learning approaches
have successfully improved representation learning for
visual data and time series, they could be inapplica-
ble to time-series AD. For example, contradictions exist
between the uniformity of contrastive learning and the
class imbalance of anomaly detection.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited



Deep Anomaly Detection. Recently, deep learn-
ing for anomaly detection has been regarded as a new
research frontier of the AD field. Deep anomaly de-
tection methods can roughly be divided into two cate-
gories: deep learning for feature extraction and learn-
ing feature representations of normality [21]. Deep
learning for feature extraction is a two-staged learning
method that uses deep methods to learn representa-
tions for downstream anomaly detection. However, it
does not directly address the anomaly detection task,
so the representations learned in the pre-training may
be detrimental to anomaly detection. Learning fea-
ture representations of normality couples representa-
tions learning with anomaly scoring in some way, such
as GANs-based [25], autoencoder-based [19], one-class
classification-based [24], clustering-based [30], saliency
map-based [24], and contrastive learning-based [10}/22]
methods. The key to these methods lies in the as-
sumption of normality /anomaly, and some assumptions
of normality are inspired by the pretext task of self-
supervised learning. For instance, GANs-based meth-
ods assume normal samples are better generated from
the latent space of the generative network than anoma-
lies. However, the normal sample assumption of these
methods may explain only one aspect of overall nor-
mality, respectively. Uniquely, COCA does not resort
to pre-training and organically integrates the normal-
ity assumption of one-class classification and contrastive
learning to detect anomalies for time-series data.

3 Methodology

This section describes the proposed COCA in detail,
including the structure, objective, and its relation to
contrastive learning.

3.1 Problem Definition. Given a set of time series
D= {X17X2, . 7XN}7 Xz = {.Tl,xz, NN 71‘T} is a time
series of length T, where z; € R? is a d-dimensional
vector. Since sliding windows are generally used to
divide time series into length-T" sequences, T has been
called the sliding window length, as well. d = 1
means that the time series is univariate, and d > 1 for
multivariate. In time-series AD, the anomaly score S; of
X; is calculated by the AD model such that the higher
S, is, the more likely it is an anomalous time series.

3.2 Architecture. Fig. [I] shows the architecture
of the COCA model. The time series X; from an
augmented training set of the raw dataset is passed
to a multi-layer temporal convolution feature encoder
fo : X — Z which takes as input time series X; of length
T and outputs latent representations zi,...,z for L
time-steps, potentially with a lower temporal resolution,

T T
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Reconstruction / !
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Figure 1: The overall architecture of the proposed

COCA model.

iie. T > L. They are then fed to a Seq2Seq encoder
go : Z — C to summarize all z<j as context vectors
cr, and then a Seq2Seq decoder hy : C — Z produces
reconstruction representations zi,...,z7 for L time-
steps to learn temporal dependencies. Furthermore,
latent representations z;, and seq2seq outputs zj, are fed
to a learnable nonlinear projector pg : Z +— Q to output
projections ¢ and ¢’. The output of the projector is
used to calculate the loss (see next sub-section [3.3]) to
maximize the similarity between ¢ and ¢’ concerning the
one-class center C'e € Q to combine the two normality
assumptions: contrastive learning-based and one-class
classification-based.

Time-Series Augmentation. Data augmenta-
tion helps improve the performance of AD methods be-
cause it not only increases the volume of train data but
also makes it easier to isolate anomalies [27]. In this pa-
per, jittering (noise addition) and scaling (pattern-wise
magnitude change) are applied to expand the training
set. Notably, the jittering and scaling hyper-parameters
should be carefully chosen according to the nature of the
time-series anomalies.

Feature encoder. The encoder network has a 2-
block temporal convolutional architecture, each block
comprising a Conv1D layer, a BatchNormalization (BN)
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layer, a ReLLU activation function, and a MaxPoollD
layer, where the first block also contains a Dropout
layer. The time series input to the encoder should be
normalized to zero mean and unit variance.

Seq2Seq. The Seq2Seq consists of an encoder and
a decoder. The encoder is a 3-layer Long Short-Term
Memory (LSTM) and the decoder is a 3-layer LSTM
followed by a fully-connected (FC) layer. In this pa-
per, the hidden space representation length L < 20,
therefore LSTM can meet the needs of the context rep-
resentation, while for long sequences, more recent ad-
vancements in Seq2Seq modeling such as self-attention
networks or the Transformer model could help improve
results further.

Projector. The projector uses an MLP with one
hidden layer applied BN and ReLU to map represen-
tations to the space where contrastive one-class loss is
calculated.

3.3 The COCA Objective. The COCA objective
consists of invariance and variance terms. The invari-
ance term is to maximize the cosine similarity between
the one-class center Ce, representations ¢;, and seq2seq
outputs ¢} in the projection space Q, and the variance
term avoids “hypersphere collapse” without negative
sample pairs.

Before explaining the invariance term of the COCA
objective, it is necessary to state the optimization
objectives of one-class classification and contrastive
learning without negative pairs.

One-class classification. The optimization ob-
jective of Deep SVDD |[24], a representative method for
one-class classification, is defined as:

N
1 2
(31) Esvdd = N ; ||¢(I’La 8) - C” )

where ¢ € Z is the one-class center, © is the set of
parameters of a representation network ¢. Deep SVDD
obtains the sphere of the smallest volume by minimizing
the Lgyqq in the representation space Z C R¥.
Negative-sample-free contrastive learning.
BYOL [12], SimSiam [7], and Vicreg [2] are represen-
tatives of contrastive learning without negative pairs.
The optimization objective of SimSiam is simplified as:

N
E,:izf LA
R [P P P P

where z; and z, are the representations of contrasting
objects (positive pairs) in the latent space Z. Equation
is essentially pulling the positive pair close using
cosine similarity. As for the “hypersphere collapse”

(3.2)

caused by no negative pairs, BYOL and SimSiam solve
it by bootstrap and asymmetric networks, and Vicreg
by variance.

Invariance term of COCA objective. A crude
way to integrate one-class classification and contrastive
learning is treating it as multi-task learning with two
adjustable hyper-parameters a and 3 as follows:

(3'3) o Leydgd + B+ Lsim-

Therefore, the main intuition behind our model is
that a positive correlation exists between one-class
classification and contrastive learning, so their objec-
tives can be achieved simultaneously by a loss func-
tion without hyper-parameters o and . Considering
sim(u, v) = uTv/||ul|2||v]|2 denotes cosine similarity be-
tween u and v, we define the invariance term d be-

tween fo-normalized @ = {q1,¢2,...,qn} and Q' =
{¢1,¢5, ..., d} as:
(3.4)
N
/ 1 . . /
4Q. Q) = > 1L~ sim(gs, Ce)] + [1 —sim(g!, Ce)]}
i=1

where Ce is the fy-normalized one-class center defined
by:

N

Ce(@.Q) = 5o (i + ).

(3.5)

Here, Ce, ¢;, and ¢} are distributed on the unit hy-
persphere after normalization. According to Equation
Lsvdd, minimizing d(Q, Q") brings ¢; and ¢} closer
to Ce, which achieves the one-class classification-based
normality assumption. Meanwhile, on the unit hyper-
sphere, d(Q, Q') and Lg;,, are related as follows:

d(Q7 Ql) Z 1 + E%m(@a Ql)a

which becomes tighter as d(Q,Q’) decreases. Also,
observe that minimizing the d(Q, Q') shrinks an upper
bound of contrastive errors Lg;,(Q,Q’), and achieves
the contrastive learning-based normality assumption.
For more details see sub-section [3.41

For the case where a little bit of training data is
anomalous, which is very common in AD tasks, the soft-
boundary invariance of the COCA objective employing
the hinge loss function is defined as:

(3.6)

1 N
BT dun(@Q) =L+ 1 3 max (0.5 - 1),

where L is the (1 — v)-quantile of S = {51, 53,...,5n},
hyper-parameter v € (0,1] controls the trade-off be-
tween L and violations of the boundary, i.e. the amount
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of time series allowed to be mapped outside the bound-
ary. S; is the anomaly score of a time series X;, which
is defined as:

(3.8) Si(X;) = 2 — sim(g;, Ce) — sim(q;, Ce),
where, 0 < S;(X;) < 2.

Variance term of COCA objective. In AD,
COCA removes negative pairs to avoid performance
degradation caused by pushing away negative pairs that
are both normal. However, both negative-sample-free
contrastive learning and Deep SVDD are likely to give
an undesired trivial solution that all outputs “collapse”
to a constant, i.e. “hypersphere collapse”. Inspired
by [2l8], COCA can then define the variance v as a hinge
function on the standard deviation of the projected
vectors ¢;:

N
(3.9 v(Q) = %Zmax {0,7 —+/Var(q;) + 5} )
i=1

where v is a constant target value of the standard
deviation, and ¢ is a small scalar to prevent instabilities.
In our experiments, v is set to 1, and € is set to
10~%. On the other hand, according to the research in
Deep SVDD, selecting an appropriate one-class center
can alleviate the problem of hypersphere collapse. In
COCA, the one-class center Ce is ensured to be non-
zero in any dimension and only updated in the first
few epochs, because experiments show that an unfixed
Ce would make the network easily converge to a trivial
solution.

The overall loss function of COCA is a weighted
average of the invariance and variance terms:

(310)  £=MQ.Q)+L0(Q +v(@),

where A and p are hyper-parameters controlling the
contribution of each term in the loss. So similarly, the
soft-boundary loss function of COCA is defined as:

(811)  Loot = Muops(@, Q') + S (0(Q) +0(Q)):

L applies to the training set without anomalies, while
Lgopt is for those containing a few anomalies. Con-
trastive learning has two key properties: alignment and
uniformity (detail in . There is an inverse rela-
tionship between uniformity and hypersphere collapse,
the better the uniformity the less likely the collapse will
occur, and vice versa. Nevertheless, uniformity some-
what contradicts the aim of one-class classification [27],
because the latter is to bring representations closer to
the center on the unit hypersphere, while some represen-
tations may be instead pulled far away by uniformity.

Therefore, in our experiments, A is fixed to 1, and u
is determined by a grid search with the base condition
w<l1

Anomaly Detection. In the test phase, an
anomaly score S; will be generated for the time series
X;. Then, the following formula is applied to determine
whether X; can be classified as an anomaly:

|

where 7 is a predefined threshold. The overall algorithm
is summarized in supplementary material A.2.

S; > T
SigT 9

anomaly,

(312) normal,

Figure 2: Invariance term schematic. O is the center of
the unit hypersphere, Ce is the ¢5-normalized one-class
center, ¢; and ¢} are ¢y-normalized projected vectors, 0
is the dihedral angle between plane CeOg; and CeOd},
« and 3 are one-class errors, and <y is the contrastive
error.

3.4 Relation to Contrastive Learning. COCA
treats representations ¢; and reconstructed representa-
tions ¢, as positive pairs to learn shared information
between different time steps of time series, discarding
low-level information that is computationally expensive
and unnecessary. Along with CPC , SimCLR @,
and wav2vec , though different in the types of pos-
itive pairs, COCA is essentially computing loss in the
representation space. Therefore, maximizing the cosine
similarity of ¢; and ¢} in COCA is a type of negative-
sample-free contrastive learning, and we name it “se-
quence contrast”. For time-series AD, COCA outper-
forms SimCLR-similar contrast methods that regard
various augmentations as positive pairs (see sub-section
13).

Next, we will explain the mechanism of the invari-
ance term to achieve the contrastive learning-based nor-
mality assumption. As shown in Fig. on the unit
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hypersphere, the angle «/8/v is proportional to the
Euclidean distance ly,ce/lqce/lq.q; between two points.
According to the triangle inequality, the relationship be-
tween the three Euclidean distances is l4,ce + lq;c‘e >
lg;q;- Therefore we are minimizing the cosine similarity
between ¢;, ¢, and Ce in Equation , which is an
upper bound on the sequence contrastive learning errors
between ¢; and ¢}. a, 5 and ~y are related as follows:

(3.13) cosy = cosacos3 + sinasinScost,

where 0 is the dihedral angle. According to Equation
, when o — 0 and 8 — 0, cosy — 1. Therefore,
Equation becomes tighter as d(Q,Q’) becomes
smaller, which was also verified in our experiments. For

more formal proof details see supplementary material
Al

4 Experiments

This section presents the experimental setup, baselines,
COCA variants, main results, and hyper-parameter
analysis. The code is available at https://github.
com/ruiking04/COCA.

4.1 Experimental Setup. Datasets. Given the
findings in [29], this paper abandons the flawed time-
series AD datasets, such as Yahoo, Numenta, and
NASA, and employs AIOps and UCR to evaluate the
proposed model. The datasets considered are as follows.

e AlOps challenge (AIOps) E This consists of
well-maintained business cloud KPIs from some
large Internet companies and contains 29 univariate
time-series sub-datasets.

e UCR time series anomaly detection (UCR)E|
[9]. This contains 250 univariate time-series sub-
datasets from various fields.

Table [I] summarizes these datasets. The time
series are partitioned into length-T" sequences by a
sliding window with time-step T's < T. The two
datasets both have a large number of samples and few
anomalies, which is a challenge for some AD mod-
els. This table shows the number of sequences in
the training/validation/testing set, and the percent-
age of anomalous samples in the training/testing set.
The training sets of UCR don’t contain anomalies, so
the models are trained using Equation (3.10]), while
soft-boundary loss function Equation Sed for

AlOps.

Thttps://github.com/NetManAIOps/KPI-Anomaly-Detection
%https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Table 1: Summary of time-series anomaly detection
datasets
AlIOps UCR
Number of sub-datasets 29 250
Variables 1 1
Domain Cloud KPIs Various
Length T 16 64
Time step T's 2 4
Total samples 2961039 4830858
Training/validation/testing  40%/10%/50%  24%/6%/70%
Training/testing anomaly 2.98%/1.92% 0%/0.71%

Evaluation Metrics. In most cases, time-series
anomalies occur as continuous-time intervals rather
than isolated points, leading to difficulty in quantifying
the predicted anomaly label sequence. In recent years,
many evaluation metrics for time-series AD have been
proposed, such as NAB Score, Point-Adjusted (PA),
Revised Point-Adjusted (RPA) metrics, etc., but these
metrics may overestimate the performance of the AD
algorithm [16]. To achieve a rigorous evaluation of
time-series AD, this paper uses two metrics: accuracy
metric [18] and affiliation metrics |15]. The accuracy =
n/250 is a metric specifically for the UCR dataset,
where mn is the number of correctly predicted sub-
datasets. Each sub-dataset in UCR contains only
one anomaly segment, so as long as the predicted
anomaly is within the correct region, this sub-dataset
is considered correctly predicted. Affiliation metrics
calculate precision/recall/F1-score metrics based on the
concept of “affiliation” between the ground truth and
the prediction sets. Note that affiliation metrics on
the entire dataset are weighted averages of affiliation
metrics for each sub-dataset:

Flentire = Z }lFlia

i=1

where M is the number of sub-datasets, K is the total
number of anomaly segments for the entire dataset, and
k; is the number of anomaly segments of the i-th sub-
dataset.

4.2 Baselines and COCA Variants. The pro-
posed approach is compared against the following un-
supervised and self-supervised anomaly detection meth-
ods.

Traditional Anomaly Detection Baselines. Three
commonly used traditional anomaly detection baselines
are adopted: One-class SVM (OC-SVM) [26], Isolation
Forest (IF) [17], and Random Cut Forest (RCF) [14].

Deep Anomaly Detection Baselines. Then, four
deep anomaly detection methods: Deep one-class
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(Deep SVDD) [24], Spectral Residual CNN (SR-CNN)
[23], Deep Autoencoding Gaussian Mixture Model
(DAGMM) [30], and LSTM Encoder-decoder (LSTM-
ED) [19].

Contrastive Learning Anomaly Detection Baselines.
Finally, two contrastive learning baselines are set: Con-
trastive Predictive Coding Anomaly Detection (CPC-
AD) [10,20] and Time Series Temporal and Contextual
Contrasting Anomaly Detection (T'S-TCC-AD) [11L[27].

For Deep SVDD, we use ConvlD and LSTM to
implement its autoencoder architecture to process time-
series data. Although DAGMM is initially designed for
tabular data, in [3] it is used for time-series data. CPC is
originally a method for sequential data, treating images
as a sequence of pixels, so the network structure does
not need to be changed significantly when processing
time-series data. For TS-TCC-AD based on [27], TS-
TCC [11] is used to learn the representation of time
series in the pre-training phase, and Deep SVDD is used
for AD in the fine-tuning phase.

COCA Variants. Moreover, we include the fol-
lowing five COCA variants as baselines to demon-
strate the effectiveness of individual components in
COCA. NoAug removes the time-series augmentations
of COCA. NoOC removes the one-class classification of
COCA to optimize the similarity of representations g;
and reconstructed representations ¢;. NoCL removes
the contrastive learning of COCA to optimize the sim-
ilarity of representations and one-class center. The dif-
ference between the variant NoCL and Deep SVDD is
that the former contains a learnable nonlinear projec-
tor pyp network and no pre-training. No Var removes the
variance term of COCA to optimize the similarity of
representations and one-class center. COCA-vi treats
different augmentations (jittering and scaling) as posi-
tive pairs for contrast learning, similar to SimCLR [6].

Implementation Details. The network structure
of our proposed COCA consists of two parts: encoder
and Seq2Seq. The encoder comprises 2-block temporal
convolutional modules that each are followed by batch
normalization, ReLU activation, and 2 x 2 max-pooling.
For the Seq2Seq, two identical three-layer LSTMs are
employed with the same dropout rate at 0.45 as 1D-
CNNS. As for optimizer, an Adam optimizer with a
learning rate from le—4 to 5e—4, weight decay of be—4,
B1 = 0.9, and By = 0.99 is adopted. On the AIOps
dataset, after calculating the anomaly scores, COCA
searches on anomaly sample rate p from 0.01% to 0.30%
with step 0.01% to determine the optimal anomaly
threshold 7. The UCR sub-datasets each have only one
anomaly segment, so COCA directly takes the largest
anomaly score as an anomaly. In addition, for UCR we
use the early stopping strategy, as the sub-datasets from

Table 2: Average affiliation Fl-score(%) and accuracy
(%) with standard deviation for anomaly detection on
time-series datasets. The best results are in bold.

Datasets ‘ AlIOps ‘ UCR
Metric ‘ Affiliation F1 ‘ Affiliation F1 Accuracy
0OC-SVM 25.36 60.26 8.80
IF 33.24 59.40 37.60
RCF 34.48+0.30 58.36£0.59 38.67£0.68
Deep SVDD | 38.234+0.65 37.19£1.35 7.60£1.73
SR-CNN 31.54+1.03 51.72+0.83 30.40£0.91
DAGMM 36.15+0.95 66.93+£0.47 6.13£0.50
LSTM-ED 34.12+0.54 66.87+£1.07 51.02+2.05
CPC-AD 35.36£1.87 48.65+1.92 6.37£0.53
TS-TCC-AD| 31.91£2.05 44.27+1.38 0.56+0.27
COCA 66.78+2.91 79.16+1.27 66.12+2.62
NoAug 65.74+4.61 57.24+1.35 26.64+£2.35
NoOC 51.49+5.96 62.33£2.05 33.96+£2.61
NoCL 63.80£3.29 77.80£1.82 63.84+3.65
NoVar 65.90+2.45 78.82+1.60 65.16+2.81
COCA-vi 65.86+3.07 75.48+1.20 60.36£2.25

different domains vary in epochs to convergence. Each
method is run 10 times to obtain the mean and standard
deviation. Lastly, all the models are built with PyTorch
1.7 and Merlion 1.1.1 E| [3], and trained on an NVIDIA
Tesla V100 GPU. See more details about augmentation
and hyper-parameters in supplementary material B.2.

4.3 Main Results. We report affiliation Fl-score
and accuracy in Table 2l From the vertical view of the
table, some methods perform poorly on AIOps because
there are anomalous samples in the training set, which
leads to high false negative rates. On the other hand,
for the UCR dataset, methods such as OC-SVM, Deep
SVDD, and TS-TCC-AD have higher F1-score but lower
accuracy. That’s because the accuracy metric is binary
(anomaly found or not), and it indicates these methods’
results are close to the correct range of ground-truth
anomaly but do not fall within it.

From the horizontal view of the table, four conclu-
sions can be drawn. First, in shallow methods, RCF
with Fl-score over 34% performs well and even outper-
forms some deep methods, showing that RCF methods
are good baselines in time-series AD. Second, TS-TCC-
AD and Deep SVDD each have a performance gap of
over 7% on the two datasets, indicating that regardless
of pre-training methods, the pre-training process itself
limits the performance. It also further confirms that
the pre-trained deep model limits the performance of
two-staged AD methods. Third, DAGMM and LSTM-

Shttps://github.com/salesforce/merlion
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ED perform better than other deep baselines, indicat-
ing the normality assumptions of clustering and recon-
struction are more relevant to the nature of AD. Last,
the proposed COCA outperforms all baselines on both
datasets, demonstrating the effectiveness and robust-
ness of ensemble multiple normality assumptions.

Also, Table [2] shows the effectiveness of each com-
ponent in our proposed COCA model. To be more spe-
cific, by analyzing the AD performance of the NoAug,
augmentations improve the performance of AD on the
two datasets, especially on UCR. The results of COCA,
NoOC, and NoCL show that the combination of mul-
tiple normality assumptions can improve the perfor-
mance of AD effectively. Meanwhile, the NoVar per-
forms poorly compared to COCA, which makes it clear
that the variance term of the COCA objective is im-
portant. The COCA-vi is 2% averagely lower than the
COCA on the two datasets because it treats different
augmentations as positive pairs and ignores temporal
dependencies. Overall, the results of COCA are better
than the five variants, indicating the effectiveness and
necessity of each component in our model.

AIOps-00-dal0a69f UCR-10-DISTORTEDCIMIS44AirTemperature6

0.200
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— value
—— anomaly score

— value
—— anomaly score | 1.
0150
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0.025

0.000

0.0
0 2000 4000 6000 8000 10000 0

(a) AIOps (b) UCR

Figure 3: AD results of COCA on AIOps and UCR
datasets. The blue curves are the original data value.
The pink areas represent the ground-truth anomalies
including point and subsequence anomalies. The red
curves are the anomaly scores predicted by COCA.

4.4 Visualization. To provide a more intuitive eval-
uation, visualizations of AD on AIOps and UCR are
conducted, in Fig. [3| It can be seen that AIOps contains
many point anomalies, which are suitable for some AD
methods that are specialized in learning global features.
In contrast, UCR contains both point and sequence
anomalies. COCA performs better on UCR compared
to on AIOps, further illustrating that AD methods com-
bining multiple normality assumptions can be applied to
complex anomalous situations.

4.5 Hyper-parameters Analysis. In this section,
sensitivity analysis is performed on the AIOps and UCR,
to study two main parameters: v € (0,1] in Equation
and the epoch e before stopping updating the

anomaly score

center Ce. Fig. shows the effect of v on the overall
performance, where the y-axis is the affiliation F1-score
metric. For AIOps, we observe that v = 0.001 is the
best. Apparently, appropriate anomaly proportions v
should be selected according to the anomaly proportion
of datasets. Fig. shows the results of varying epoch
e of stopping update center C'e in a range between 1
and 50. The model is shown to perform best on UCR
when e = 10, which suggests that the center Ce should
be frozen early since updating the center Ce frequently
increases the likelihood of hypersphere collapse.
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(a) v (AIOps) (b) e (UCR)
Figure 4: Two sensitivity analysis experiments on
AIOps and UCR datasets. The left is the hyper-
parameter v € (0,1] of soft-boundary invariance and
the right is training epoch e before stopping updating
the center Ce.

5 Conclusion

We propose a novel deep framework called COCA for
unsupervised time-series anomaly detection. It com-
bines the normality assumptions of contrastive learning
and one-class classification, clarifies the essence of con-
trastive learning, and presents a new negative-sample-
free type named “sequence contrast”. Specially, we
present a novel contrastive one-class loss function op-
timizing the loss of both assumptions simultaneously in
one stage without tuning hyper-parameters as in most
multi-task learning, as well as preventing “hypersphere
collapse”. Experiments on various datasets demonstrate
that the performance of COCA achieves state-of-the-
art. We hope our work can help deepen the under-
standing of contrastive learning and offer more possi-
bilities for fusion studies of various anomaly detection
methods.
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A Methodology Detalils

This section provides the details and hyper-parameters
for COCA time-series AD.

A.1 Estimating the Invariance Term. As shown
in Fig. on the unit hypersphere, the formal proof is
as follows:

d(gi,q;) = [1 — sim(g;, Ce)] + [1 — sim(g;, Ce)]
xa+pf

o8 lque + quLCe

= Vllai — Cel]> + y/ll¢; = Ce]]?
(A1)
>/l — ¢l?

oy
o 1 —sim(q;, q})
=1+ ['sim(Qv Q/)v

here, [, are the Euclidean distances. Lg;n(Q,Q’) is
the contrastive error expressing the agreement between
positive pairs.

A.2 Detailed algorithms of COCA. First, a
pseudo-code for COCA in Pytorch style is provided in
Algorithm

A.3 COCA Variants Loss Function. Moreover,
we include the following five COCA variants as base-
lines to demonstrate the effectiveness of individual com-
ponents in COCA.

NoAug. The Variant NoAug removes the time-
series augmentations of COCA.

NoOC. The Variant NoOC removes the one-class
classification of COCA to optimize the similarity of
representations ¢; and reconstructed representations qg.
Its invariance term of the loss function is defined as:

1 N

_ _ qj . q
(A.2) N;l sim(g;, q;)-

NoCL. The Variant NoCL removes the contrastive
learning of COCA to optimize the similarity of repre-
sentations and one-class center. Its invariance term of
the loss function is defined as:

| X
(A.3) i Z 1 —sim(g;, Ce).

i=1

The difference between the variant NoCL and Deep
SVDD is that the former contains a learnable nonlinear
projector py network and no pre-training.

Algorithm 1 COCA'‘s main training algorithm.

Input: a set of augmented time series (jittering and
scaling) {Xi}fil, batch size N, structure of f, g, h, p,
constant nu,v,vy, &, A, l.

Output: Parameters of the network f, g, h, and p.
for sampled batch {Xl}f\il do

forallie {1,...,N} do

# representations

Z; = f(X;)

¢ = p(Z;)

# reconstruction representations

Z; = h(g(Z;))

q; = p(Z;)
Ce = 3 Soil (4 +4)
define sim(u, v) as sim(u,v) = uTv/|ul2|v|2
for allie {1,...,N} do

# anomaly score

define S;(X;) as 2 —sim(g;, Ce) — sim(q}, Ce)
if soft-boundary then

L = quantile(S(X),1 —n)

d(Q.Q) =L+ g XLy max {0,8; — L},
else

dQ.Q) =% YL, 8i(Xs)
v(Q) = + SN max {O, v —+/Var(g) + E}

v(Q') = % vazl max {O, v —+/Var(q) + 5}
L=XM(Q,Q)+ 5vQ)+v(Q))

update networks f, g, h, and p to minimize £
return network f, g, h, and p

NoVar. The Variant NoVar removes the variance
term of COCA to optimize the similarity of representa-
tions and one-class center. Its loss function is defined
as:

(A4) d(Q,Q").
COCA-vi. The variant COCA-vi treats different
augmentations (jittering and scaling) as positive pairs

for contrast learning, similar to SimCLR [6]. Its
invariance term of the loss function is defined as:

(A.5) d(Z*, 7%,

where Z! and Z? are the representations of the time-
series data after jittering and scaling, respectively.

B Experiments.

B.1 Baseline Details. For these deep baselines,
Table [3| shows the normality assumptions, study do-
mains, and whether two-staged.
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Table 3: Summary of deep baselines.

Assumption

Two-staged  Original domain

Deep SVDD  Autoencoder&One-class Vv Image

SR-CNN Saliency map X Time series
DAGMM Clustering X Tabular data
LSTM-ED Autoencoder X Time series
CPC-AD Contrast X Time series
TS-TCC-AD Contrast&One-class Vv Time series

B.2 Hyper-parameters Details. COCA is im-
plemented in PyTorch, and some important parameter
values used in the model are listed here, see Table[d In
this table, repre_channels is the dimension of the final
representations Z, hidden_size is the dimension of the
Seq2Seq in the model, and project_channels is the di-
mension of the projector. window_size is the size of time
window, the same as the length of time series T, and
time_step is the step while sliding. stop_change_center
is the training epoch e before stopping updating the
center Ce. p is the weight of the variance term of
COCA objective. Ir is the learning rate and nu is the
hyper-parameter v € (0, 1] of soft-boundary invariance.
scale_ratio and jitter_ratio are the rate of scaling and jit-
tering while applying data augmentation, respectively.

1.75 A 10
1.50 - 09
>
1.25 - 0.8 &
! o
2 1.00 1 07 &
o . n
i —— train loss L 0.6 ©
0.75 1 test loss e
0.50 — q & Cesim ' 058
— g' & Cesim
0.4
0.25 A — q & q' sim
0.00 1= : . ; : 0.3
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Epoch

Figure 5: Loss and cosine similarity results for COCA
and COCA-NoVar on UCR. Blue: train loss, Orange:
test loss, Green: sim(g;, Ce), Brown: sim(g,,Ce), Red:
sim(g;, q}).

B.3 Relation to Contrastive Learning. To verify
the validity of the invariance terms in the loss function
of COCA, Fig. [9]illustrates loss and cosine similarity
results for COCA on UCR. As can be seen from Fig.
[l the process of optimizing the loss function £ makes
sim(g;, Ce) — 1, sim(g},Ce) — 1 and sim(q;, q;) — 1,
which indicates that the loss we design not only makes
¢; and ¢ closer to Ce, but also minimizes the sequence

comparison error sim(g;, q}).

Table 4: The values of hyper-parameters used in COCA

AlOps UCR
repre_channels 32 64
hidden_size 64 128
project_channels 16 32
window_size 16 64
time_step 2 4
stop_change_center 1 10
o 0.1 0.1
Ir 0.0001  0.0003
nu 0.001 -
scale_ratio 1.1 0.8
jitter_ratio 0.1 0.2
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