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Abstract. The best techniques for the constrained maximum-entropy sampling problem, a discrete-
optimization problem arising in the design of experiments, are via a variety of concave continuous
relaxations of the objective function. A standard bound-enhancement technique in this context is scal-
ing. We extend this technique to generalized scaling, we give mathematical results aimed at supporting
algorithmic methods for computing optimal generalized scalings, and we give computational results
demonstrating the usefulness of generalized scaling on benchmark problem instances.
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1 Introduction

Let C be a symmetric positive semidefinite matrix with rows/columns indexed fromN := {1, 2, . . . , n},
with n > 1. Let A ∈ Rm×n and b ∈ Rm. For 0 < s < n, we define the constrained maximum-entropy
sampling problem

z := max
{
ldetC[S(x), S(x)] : e>x = s, x ∈ {0, 1}n, Ax ≤ b

}
, (CMESP)

where S(x) is the support of x ∈ {0, 1}n, C[S, S] is the principal submatrix of C indexed by S, and
ldet is the natural logarithm of the determinant.

We refer to MESP when there are no constraints Ax ≤ b, which was introduced in the “design
of experiments” literature by [17]. MESP corresponds to the fundamental problem of choosing an
s-subvector of a Gaussian random n-vector, so as to maximize the “differential entropy” (see [16]).
MESP has been applied extensively in the field of environmental monitoring; see [11, Chapter 4],
and the many references therein. Important for applications, the constraints Ax ≤ b of CMESP can
model budget limitations, geographical considerations, and logical dependencies, for example. We
assume r := rank(C) ≥ s, so that MESP always has a feasible solution with finite objective value.

CMESP serves as a nice example of a “non-factorable” mixed-integer nonlinear program. When
C is a diagonal matrix, CMESP reduces to a general cardinality-constrained binary linear program.
[1,2] established that when C is tridiagonal (or even when the support graph of C is a spider with
a bounded number of legs), MESP is then polynomially solvable by dynamic programming.

[12] established that MESP is NP-hard and introduced a novel B&B (branch-and-bound) ap-
proach based on a spectral bound. [13] extended the spectral approach to CMESP. [5] and [6]
developed a bound employing a novel convex relaxation. [3] developed the “BQP bound”, using an
extended formulation based on the Boolean quadric polytope. [4] introduced the “linx bound”, based
on a clever convex relaxation. [15] gave a novel “factorization bound” based on a somewhat myste-
rious convex relaxation. This was further developed by [14] and then [10]. [9] gave a methodology
for combining multiple convex-optimization bounds to give improved bounds. All of these convex-
optimization based bounds admit variable fixing methodology based on convex duality (see [11], for
example). Another key idea for deriving bounds is “complementation”. If C is invertible, we have

z = z(C−1, n− s,−A, b−Ae) + ldetC,
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where z(C−1, n − s,−A, b − Ae) denotes the optimal value of CMESP with C, s,A, b replaced by
C−1, n−s,−A, b−Ae, respectively. So we have a complementary CMESP problem and complemen-
tary bounds (i.e., bounds for the complementary problem plus ldetC) immediately give us bounds
on z. Some upper bounds on z also shift by ldetC under complementing, in which case there is no
additional value in computing the complementary bound. Details on all of this can be found in [11].

Terminology. Throughout, we let Υ := (γ1, γ2, . . . , γn)
> ∈ Rn++ be a “scaling vector”. We refer

to our bounds as g-scaled (i.e., generalized scaled), and when all elements of Υ are equal, we say
o-scaled (i.e., ordinary scaled). If all elements of Υ are equal to 1, we say un-scaled.

Organization and contributions. In §2, we introduce the g-scaled BQP bound and establish its
convexity in the log of the scaling vector, generalizing an important and practically-useful result
(see [9, Thm. 11]). In §3, we introduce the g-scaled linx bound and establish its convexity in the log
of the scaling vector, generalizing another very important and practically-useful result for o-scaling
(see [9, Thm. 18]). These convexity results are key for the tractability of globally optimizing the
scaling, something that we do not have for more general bound “masking” (see [7,8]). In §4, we
introduce the g-scaled factorization bound, and we establish that g-scaling can significantly improve
the factorization bound for CMESP, while the o-scaling cannot help it (see [10, Thm. 2.1]). We
are also able to prove that for MESP, the all-ones vector is a stationary point for the bound as a
function of the scaling vector. Therefore, g-scaling is unlikely to be helpful for MESP, similar to
o-scaling. In §5, we present results of computational experiments, demonstrating the improvements
on upper bounds and on the number of variables that can be fixed (using convex duality) due to
g-scaling. In §6, we make some brief concluding remarks. In §7, we provide some proof sketches.

Notation. Diag(x) ∈ Rn×n makes a diagonal matrix from x ∈ Rn. diag(X) ∈ Rn extracts the
diagonal of X ∈ Rn×n. We let Sn+ (resp., Sn++) be the set of positive semidefinite (resp., definite)
symmetric matrices of order n. We let λ`(M) be the `-th greatest eigenvalue ofM ∈ Sn+ . We denote
by e an all-ones vector. For matrices A and B with the same shape, A ◦ B is the Hadamard (i.e.,
element-wise) product. We denote natural logarithm by log, and apply it component-wise to vectors.

2 BQP bound

We define the convex set

P (n, s) :=
{
(x,X) ∈ Rn × Sn : X − xx> � 0, diag(X) = x, e>x = s, Xe = sx

}
.

For Υ ∈ Rn++, x ∈ [0, 1]n and X ∈ Sn+, we define

fBQP(x,X;Υ ) := ldet ((Diag(Υ )C Diag(Υ )) ◦X +Diag(e− x))− 2
∑n

i=1 xi log γi

and the g-scaled BQP bound

zBQP(Υ ) := max {fBQP(x,X;Υ ) : (x,X) ∈ P (n, S), Ax ≤ b} . (BQP)

Note that we can interpret this bound as applying the un-scaled BQP bound to the symmetrically-
scaled matrix Diag(Υ )C Diag(Υ ), and then correcting by −2

∑n
i=1 xi log γi .

Theorem 1
1.i. z ≤ zBQP ;



Generalized Scaling for MESP 3

1.ii. For all Υ ∈ Rn++, fBQP(x,X;Υ ) is concave on the feasible region of BQP;
1.iii. zBQP(Υ ) is convex in log Υ .

The BQP bound was first analyzed and developed in [3], establishing Thm. 1.i for Υ = e. Thm.
1.ii is a result of [3], with details filled in by [11]. Thm. 1.iii significantly generalizes a result of [9],
where it is established only for o-scaling: i.e., on {Υ = γe : γ ∈ R++}. The proof of Thm. 1.iii
requires new ideas (see the proof sketch in the Appendix). Additionally, the result is quite important
as it enables the use of readily available quasi-newton methods (like BFGS) for finding the globally
optimal g-scaling for the BQP bound.

3 linx bound

For Υ ∈ Rn++ and x ∈ [0, 1]n, we define

flinx(x;Υ ) :=
1
2 (ldet (Diag(Υ )C Diag(x)C Diag(Υ ) + Diag(e− x)))−

∑n
i=1 xi log γi

and the g-scaled linx bound

zlinx(Υ ) := max
{
flinx(x;Υ ) : e>x = s, 0 ≤ x ≤ e, Ax ≤ b

}
. (linx)

Note that we cannot interpret this bound as applying the un-scaled linx bound to the row-scaled
matrix Diag(Υ )C, because we would lose symmetry.

Theorem 2
2.i. z ≤ zlinx ;
2.ii. For all Υ ∈ Rn++, flinx(x;Υ ) is concave on the feasible region of linx;
2.iii. zlinx(Υ ) is convex in log Υ .

The linx bound was first analyzed and developed in [4], establishing Thm. 2.i for Υ = e. Thm.
2.ii is a result of [4], with details filled in by [11]. Thm. 2.iii generalizes a result of [9], where it
is established only for o-scaling: i.e., on {Υ = γe : γ ∈ R++}. The proof of Thm. 2.iii requires
new ideas (see the proof sketch in the Appendix). Additionally, the result is quite important as
it enables the use of readily available quasi-newton methods (like BFGS) for finding the globally
optimal g-scaling for the linx bound.

4 Factorization bound

Lemma 3 (see [15, Lem. 14]) Let λ ∈ Rk+ with λ1 ≥ λ2 ≥ · · · ≥ λk , and let 0 < s ≤ k. There
exists a unique integer ι, with 0 ≤ ι < s, such that λι > 1

s−ι
∑k

`=ι+1 λ` ≥ λι+1 , with the convention
λ0 = +∞.

Now, suppose that λ ∈ Rk+ with λ1 ≥ λ2 ≥ · · · ≥ λk. Given an integer s with 0 < s ≤ k, let ι be
the unique integer defined by Lem. 3. We define φs(λ) :=

∑ι
`=1 log λ`+(s− ι) log

(
1
s−ι
∑k

`=ι+1 λ`

)
.

Next, for X ∈ Sk+ , we define Γs(X) := φs(λ1(X), . . . , λk(X)).
Suppose that the rank of C is r ≥ s. Then we factorize C = FF>, with F ∈ Rn×k, for some k

satisfying r ≤ k ≤ n. Now, for Υ ∈ Rn++ and x ∈ [0, 1]n, we define FDDFact(x;Υ ) :=
∑n

i=1 γixiF
>
i· Fi· .

Finally, we define fDDFact(x;Υ ) := Γs(FDDFact(x;Υ )) −
∑n

i=1 xi log γi and the g-scaled factorization
bound

zDDFact(Υ ) := max
{
fDDFact(x;Υ ) : e>x = s, 0 ≤ x ≤ e, Ax ≤ b

}
. (DDFact)
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Noticing that FDDFact(x;Υ ) := F>Diag
(√

Υ
)
Diag(x)Diag

(√
Υ
)
F , we can interpret this bound as

applying the un-scaled DDFact bound to the symmetrically-scaled matrix Diag
(√

Υ
)
C Diag

(√
Υ
)
,

and then correcting by −
∑n

i=1 xi log γi .

Definition 4 For any x feasible to DDFact, suppose the eigenvalues of FDDFact(x;Υ ) are λ1 ≥ · · · ≥
λr > λr+1 = · · · = λk = 0 , where r ∈ [s, k] and FDDFact(x;Υ ) = QDiag(λ)Q with an orthonormal
matrix Q. Define β(λ) := (β1, β2, . . . , βk)

> such that

βi :=
1

λi
, ∀ i ∈ [1, ι], βi :=

s− ι∑
i∈[ι+1,k] λi

, ∀ i ∈ [ι+ 1, k],

where ι is the unique integer in Lemma 3.

Theorem 5
5.i. z ≤ zDDFact ;
5.ii. For all Υ ∈ Rn++, fDDFact(x;Υ ) is concave on the feasible region of DDFact;
5.iii. For all Υ ∈ Rn++ and x ≥ 0 in the domain of fDDFact(x;Υ ), let T (x;Υ ) :=

diag
(
FDDFact(x;Υ )QDiag (β(λ))Q>FDDFact(x;Υ )

>)− log Υ where Q, β(λ) are defined in 4, then

lim
‖x̂−x‖→0 :

x̂≥0 is in the domain
of fDDFact(x;Υ )

∣∣fDDFact(x̂;Υ )− fDDFact(x;Υ )− T (x;Υ )>(x̂− x)
∣∣

‖x̂− x‖
= 0.

5.iv. For all x feasible in the domain of fDDFact(x;Υ ), fDDFact(x;Υ ) is differentiable in Υ at all Υ ∈
Rn++. In particular, for MESP, let x∗ to be one optimal solution to DDFact, then we have

∂fDDFact(x
∗;Υ )

∂Υ

∣∣∣∣
Υ=e

= 0.

The DDFact bound was first analyzed and developed in [15], establishing Thm. 5.i for Υ = e, and
developed further in [14]. We note that the o-scaled factorization bound for CMESP is invariant
under the scale factor (see [10]), so the use of any type of scaling in the context of the DDFact bound
is completely new. Thms. 5.iii-iv are the first differentiablity results of any type for the DDFact
bound. The proof methods (sketched in the Appendix) are quite technical and novel. Furthermore,
they explain the success of our quasi-newton based methods for calculating optimal g-scalings for
the DDFact bound, not anticipated by previous works which exposed only subgradients connected
to DDFact. As we will see in §5, g-scaling can improve the DDFact bound for CMESP. These
observations and Thm. 5.iv leave open the interesting question of whether g-scaling can help the
DDFact bound for MESP; we can interpret Thm. 5.iv as a partial result toward a negative answer.

5 Numerical results

We experimented on benchmark instances of MESP, using three covariance matrices that have been
extensively used in the literature, with n = 63, 90, 124 (see, e.g., [12,13,6,3,4]). For testing CMESP,
we included five side constraints a>i x ≤ bi, for i = 1, . . . , 5, in MESP. As there is no benchmark
data for the side constraints, we have generated them randomly. For each n, the left-hand side of
constraint i is given by a uniformly-distributed random vector ai with integer components between
−2 and 2. The right-hand side of the constraints was selected so that, for every s considered in the
experiment, the best known solution of the instance of MESP is violated by at least one constraint.
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For each n, we considered instances of MESP and CMESP with a wide range of s. We ran our
experiments under Windows, on an Intel Xeon E5-2667 v4 @ 3.20 GHz processor equipped with 8
physical cores (16 virtual cores) and 128 GB of RAM. We implemented our code in Matlab using
the solvers SDPT3 v. 4.0 for BQP, and Knitro v. 12.4 for linx and DDFact, and optimizing scaling
vectors Υ using a BFGS algorithm, and the o-scaling parameters γ using the Newton’s method.
Besides solving the relaxations to get upper bounds for our test instances of MESP and CMESP,
we compute lower bounds with a heuristic of [13, Sec. 4] and then a local search (see [12, Sec. 4]).

In Fig. 1, we show the impact of g-scaling on the linx bound for MESP on the three benchmark
covariance matrices. For the n = 63 matrix, we also show the impact of g-scaling on the BQP
bound. The DDFact and complementary DDFact bounds are only considered in the experiments for
CMESP, as the g-scaling methodology was only able to improve these bounds when side constraints
were added to MESP. The plots on the left in Fig. 1 present the “integrality gap decrease ratios”,
given by the difference between the integrality gaps using o-scaling and the integrality gaps using
g-scaling, divided by the integrality gaps using o-scaling. The integrality gaps are given by the
difference between the upper bounds computed with the relaxations and lower bounds given by
heuristic solutions. We see that larger n leads to larger maximum ratios. We also see that the g-
scaling methodology is effective in reducing all bounds evaluated, especially the linx bound. Even
for the most difficult instances, with intermediate values of s, we have some improvement on the
bounds, which can be effective in the branch-and-bound context where the bounds would ultimately
be applied. The plots on the right in Fig. 1 present the integrality gaps, and we see that even when
the integrality gaps given by the o-scaling are less than 1, g-scaling can reduce them.

In Fig. 2, we show for CMESP, similar results to the ones shown in Fig. 1, except that now
we also present the effect of g-scaling on the DDFact and the complementary DDFact bounds. We
see from the integrality gap decrease ratios that when side constraints are added to MESP, the
g-scaling is, in general, more effective in reducing the gaps given by o-scaling. We also see that, it
is particularly effective in reducing the DDFact and complementary DDFact bounds. Especially for
the n = 124 matrix, we see a significant reduction on the gaps given by complementary DDFact
and DDFact, for s smaller and greater than 50, respectively.

We also investigated how the improvement of g-scaling over o-scaling for the linx bound can in-
crease the possibility of fixing variables in MESP and CMESP. The methodology for fixing variables
is based on convex duality and has been applied since the first convex relaxation was proposed for
these problems in [5]. When a lower bound for each problem is available, the dual solution of the
relaxation can potentially be used to fix variables at 0/1 values (see [11], for example). This is an
important feature in the B&B context. The methodology may be able to fix a number of variables
when the relaxation generates a strong bound, and in doing so, it reduces the size of the successive
subproblems and improves the bounds computed for them.

In Table 1, we show the impact of using g-scaled linx, compared to o-scaled linx, on an iterative
procedure where we solve linx, DDFact, and complementary DDFact, fixing variables at 0/1 when-
ever possible. In both cases, we update the scaling parameter every time we solve linx. For o-scaling,
we optimize the scalar γ by applying Newton steps until the absolute value of the derivative is less
than 10−10. For g-scaling, we optimize the vector Υ by applying up to 10 BFGS steps, taking γe
as a starting point. We limit the number of BFGS steps in this experiment to get closer to what
might be practical within B&B. We present in the columns of Table 1, the following information
from left to right: The problem considered, n, the range of s considered, the scaling, the number of
instances solved (one for each s considered), the number of instances on which we could fix at least
one variable (“inst fix”), the total number of variables fixed on all instances solved (“var fix”), the
%-improvement of g-scaling over o-scaling for the two last statistics. Additionally, to better under-
stand how well our methods works for MESP as n grows, we also experimented with a covariance
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matrix of order n = 300, which is a principal submatrix of the covariance matrix of order n = 2000
used as a benchmark in the literature (see [14,10]). First, we see that, except for the number of
instances of MESP with n = 124 and n = 300 on which we could fix variables, there is always an
improvement. The improvement becomes very significant when side constraints are considered. We
note that the number of variables fixed, reported on Table 1, refers only to the root nodes of the
B&B algorithm and indicates a promising approach to reduce the B&B enumeration.

Number of Improvement
n s scaling s inst fix var fix inst fix var fix

MESP 63 [2,62] o 61 41 1123
g 61 42 1140 2.44% 1.51%

90 [2,89] o 88 41 1741
g 88 42 1790 2.44% 2.81%

124 [2,123] o 122 35 3322
g 122 35 3353 0.00% 0.93%

300 [80,120] o 41 41 8382
g 41 41 10753 0.00% 28.3%

CMESP 63 [3, 52] o 50 22 371
g 50 28 537 27.27% 44.74%

90 [4, 87] o 84 26 606
g 84 37 1048 42.31% 72.94%

124 [11, 110] o 100 9 197
g 100 33 1120 266.67% 468.53%

Table 1: Impact of g-scaling on variable fixing

The experiments with the fixing methodology show that g-scaling can effectively lead to a positive
impact on the solution of MESP and CMESP, especially of the latter.

6 Conclusion

We have seen that g-scaling can lead to improvements in upper bounds and variable fixing for
MESP and very good improvements for CMESP. In future work, we will implement this in an
efficient manner, within a B&B algorithm. In that context, it is important to efficiently use parent
scaling vectors to warm-start the optimization of scaling vectors for children (see [4]). An open
question is whether g-scaling can help the DDFact bound for MESP. Thm. 5.iv is a partial result
toward a negative answer. Finally, there is another convex-optimization bound, the so-called “NLP
bound” (see [6]), and it appears to be more difficult to get mathematical results on optimizing a
g-scaling version of that bound; but this is a good direction to explore.

7 Appendix: Proof sketches

Proof sketch [Thm. 1]

1.i: Suppose that the optimal solution to CMESP is x∗, letX∗ := x∗ (x∗)>. Then (x∗, X∗) ∈ P (n, S),
and fBQP (x

∗, X∗;Υ ) = ldetC [S(x∗), S(x∗)]. Thus zBQP(Υ ) ≥ fBQP (x
∗, X∗;Υ ) = z.

1.ii: This is essentially a result of [3], with details filled in by [11].
1.iii: Let FBQP(x,X;Υ ) := (Diag(Υ )C Diag(Υ )) ◦ X + Diag(e − x) and ABQP(X;Υ ) :=

(Diag(Υ )C Diag(Υ )) ◦ X. Then given (x,X) in the domain of fBQP(x,X;Υ ) and feasible to
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BQP, we have

∂f2BQP (x,X;Υ )

∂ (log Υ )2

= 4Diag(x− e)Diag
(
diag

(
FBQP(x,X;Υ )−1

))
− 4Diag(x− e)

(
FBQP(x,X;Υ )−1 ◦ FBQP(x,X;Υ )−1

)
Diag(x− e).

When x < e and X � 0, let DBQP(x) := (Diag(e− x))1/2 � 0 and further, EBQP(x,X;Υ ) :=
(DBQP(x))

−1ABQP(X;Υ ) (DBQP(x))
−1 � 0. It can be shown that

∂f2BQP (x,X;Υ )

∂ (log Υ )2
= 4 (EBQP(x,X;Υ ) + I)−1 ◦

(
(EBQP(x,X;Υ ))−1 + I

)−1
� 0.

On the one hand, given Υ > 0,
∂f2BQP(x,X;Υ )

∂(log Υ )2
is analytical on (x,X) in the domain of fBQP (x,X;Υ ).

On the other hand, the feasible set of BQP is compact. Therefore, given (x,X) in the domain of
fBQP (x,X;Υ ) and feasible to BQP, there exists ε > 0 such thatN(x,X) := {(x′, X ′) : ‖x− x′‖ ≤ ε}

∩{domain of fBQP (x,X;Υ )}∩{feasible set to BQP} is compact. This implies that if
∂f2BQP(x,X;Υ )

∂(log Υ )2

≺ 0, then ∃ (x′, X ′) ∈ N(x,X) such that x′ < e and
∂f2BQP(x

′,X′;Υ )

∂(log Υ )2
≺ 0, a contradiction. So, for

each fixed (x,X) such above, fBQP (x,X;Υ ) is convex in log Υ . Because zBQP(Υ ) is the pointwise
maximum over all (x,X) ∈ P (n, x), it is convex in log Υ . ut

Proof sketch [Thm. 2]

2.i: Suppose that the optimal solution to CMESP is x∗; then we can show flinx(x
∗;Υ ) =

ldetC [S(x∗), S(x∗)]. Thus zlinx(Υ ) ≥ flinx(x
∗;Υ ) = z.

2.ii: This is essentially a result of [4], with details filled in by [11].
2.iii: Let Flinx(x;Υ ) := Diag(Υ )C Diag(x)C Diag(Υ ) + Diag(e − x) and Alinx(x;Υ ) :=

Diag(Υ )C Diag(x)C Diag(Υ ). Let Dlinx(x) := (Diag(e− x))1/2 and Elinx(x;Υ )
:= (Dlinx(x))

−1Alinx(x;Υ ) (Dlinx(x))
−1 when x < e. Then similar to 1.iii. ut

Proof sketch [Thm. 5]

5.i: This is essentially a result of [10].
5.ii: This is essentially a result of [15], with details filled in by [11].
5.iii: Based on [14, Proposition 2] and [18, Theorem 2.4.18], we can show that for x, x̂ in the domain of

fDDFact(x;Υ ), the directional derivative of fDDFact(x;Υ ) at x in direction x̂−x
‖x̂−x‖ is T (x;Υ )

>
(

x̂−x
‖x̂−x‖

)
where

T (x;Υ ) := diag
(
FDDFact(x;Υ )QDiag (β(λ))Q>FDDFact(x;Υ )

>
)
− log Υ.

We first show two preliminary results:
(a) It can be shown that fDDFact(x;Υ ) is continuous on its domain. Then, because the feasible

region of DDFact is compact, given x, ∃r̃ > 0 such that ∀r ≤ r̃, Br(x) := {y : ‖y−x‖ ≤ r} is
included in the domain of fDDFact(x;Υ ). Furthermore, the intersection of the feasible region
of DDFact and Br(x) is compact and included in the domain of fDDFact(x;Υ ), denoted as
N r
x , which implies uniform continuity of fDDFact(x;Υ ) on N r

x .
(b) Let C(x) := {y : ‖y − x‖ = 1}. ∀ε > 0, by the Heine-Borel Theorem, ∃ a finite set F ⊂ C(x)

such that ∀y ∈ C(x), ∃u ∈ F such that ‖y − u‖ < ε.
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Now we are ready to prove Thm. 5.iii. We will assume that T (x;Υ ) 6= 0 for simplicity. First,
by the uniform continuity in (a), given ε > 0 and r ≤ r̃, ∃δ ∈ (0, ε) such that ∀x1, x2 ∈ N r

x

with ‖x1 − x2‖ ≤ δ
‖T (x;Υ )‖ , we have |fDDFact(x1;Υ ) − fDDFact(x2;Υ )| < ε. Second, by (b), ∃Fε

such that ∀y ∈ C(x), ∃u ∈ C(x) such that ‖y − u‖ < δ
‖T (x;Υ )‖·r̃ . Third, by the existence of

directional derivatives of fDDFact(x;Υ ) at x, ∀r ≤ r̃ small enough, we have ∀u ∈ Fε, t ≤ r,∣∣fDDFact(x+ tu;Υ )− fDDFact(x;Υ )− tT (x;Υ )>u
∣∣ < ε. Fourth, ∀x̂ ∈ N r

x ,
x̂
‖x̂‖ ∈ C(x) and ‖x̂‖ ≤

r ≤ r̃, and by the second argument, ∃u ∈ Fε such that ‖x̂ − ‖x̂‖ · u‖ = ‖x̂‖ · ‖x̂/‖x̂‖ − u‖ <
‖x̂‖ · δ1

‖T (x;Υ )‖·r̃ ≤
δ

‖T (x;Υ )‖ .
In all, given ε > 0, ∃r ≤ r̃ and Fε such that ∀x̂ ∈ N r

x , ∃u ∈ Fε such that∣∣∣fDDFact(x̂;Υ )− fDDFact(x;Υ )− T (x;Υ )>(x̂− x)
∣∣∣

= |fDDFact(x̂;Υ )− fDDFact(‖x̂‖ · u;Υ )|

+
∣∣∣fDDFact(‖x̂‖ · u;Υ )− fDDFact(x;Υ )− T (x;Υ )>(‖x̂‖ · u− x)

∣∣∣
+
∣∣∣T (x;Υ )>(‖x̂‖ · u− x̂)∣∣∣

< ε+ ε+
δ

‖T (x;Υ )‖
· ‖T (x;Υ )‖ < 3ε,

which implies the result.
5.iv: By switching the role of x and Υ , we can show that for any x in the domain of fDDFact(x;Υ ),

there is a vector T̃ (x;Υ ) ∈ Rn such that

lim
‖h‖→0 :
Υ+h>0

|fDDFact(x;Υ + h)− fDDFact(x;Υ )− T̃ (x;Υ )>h|
‖h‖

= 0.

When Υ > 0 falls into the interior of the positive cone, the above result is equivalent to
fDDFact(x; e) being differentiable in Υ .
Letting T (x∗;Υ ) be as defined in the proof of Thm. 5.iii, the remaining result is equivalent to
x∗ ◦ (T (x∗; e)− e) = 0, which is further equivalent to

(T (x∗; e))i = 1, ∀x∗i > 0.

Suppose that σ is a permutation of 1, · · · , n such that (T (x∗; e))σ(1) ≥ · · · ≥ (T (x∗; e))σ(n). By
[14] and KKT conditions for DDFact, we have∑

i∈{1,2,...,n}

x∗σ(i) (T (x
∗; e))σ(i) =

∑
i∈{1,2,...,s}

(T (x∗; e))σ(i) = s.

On the other hand, if x∗σ(i) = 1, we have

(T (x∗; e))σ(i) = Fσ(i)·QDiag (β(λ))Q>F>σ(i)· ≤ Fσ(i)· (FDDFact(x; e))
† F>σ(i)·

= Fσ(i)·

(
F>σ(i)·Fσ(i)· +

∑
j 6=σ(i) x

∗
jF
>
j· Fj·

)†
F>σ(i)·

≤ Fσ(i)·

(
F>σ(i)·Fσ(i)·

)†
F>σ(i)· = 1

where the first inequality is due to QDiag (β(λ))Q>FDDFact(x;Υ ) � I and that the two matrices
can be simultaneously diagonalized by Q, and the second inequality is by the Sherman–Morrison
formula for the pseudo-inverse.
The above two formulae, together with the KKT conditions and

∑
i∈[n] x

∗
σ(i) = s, imply that

(T (x∗; e))σ(1) = · · · = (T (x∗; e))σ(s) = 1, and ∀i > s such that x∗σ(i) > 0, (T (x∗; e))σ(i) =

(T (x∗; e))σ(s) = 1, which finishes the proof. ut
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