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Abstract

An ε-approximate quantile sketch over a stream of n inputs

approximates the rank of any query point q—that is, the

number of input points less than q—up to an additive error of

εn, generally with some probability of at least 1−1/ poly(n),

while consuming o(n) space. While the celebrated KLL

sketch of Karnin, Lang, and Liberty achieves a provably

optimal quantile approximation algorithm over worst-case

streams, the approximations it achieves in practice are

often far from optimal. Indeed, the most commonly used

technique in practice is Dunning’s t-digest, which often

achieves much better approximations than KLL on real-

world data but is known to have arbitrarily large errors in

the worst case. We apply interpolation techniques to the

streaming quantiles problem to attempt to achieve better

approximations on real-world data sets than KLL while

maintaining similar guarantees in the worst case.

1 Introduction

The quantile approximation problem is one of the most
fundamental problems in the streaming computational
model, and also one of the most important streaming
problems in practice. Given a set of items x1, x2, . . . , xn
and a query point q, the rank of q, denoted R(q),
is the number of items in {xi}ni=1 such that xi ≤ q.
An ε-approximate quantile sketch is a data structure
that, given access to a single pass over the stream
elements, can approximate the rank of all query points
simultaneously with additive error at most εn.

Given its central importance, the streaming quan-
tiles problem has been studied extensively by both the-
oreticians and practitioners. Early work by Manku, Ra-
jagopalan, and Lindsay [10] gave a randomized solution
that used O((1/ε) log2(nε)) space; their technique can
also be straightforwardly adapted to a deterministic so-
lution that achieves the same bound [14]. Later, Green-
wald and Khanna [4] developed a deterministic algo-
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rithm that requires only O((1/ε) log(nε)) space. More
recently, Karnin, Lang, and Liberty (KLL) [7] developed
the randomized KLL sketch that succeeds at all points
with probability 1 − δ and uses O((1/ε) log log(1/δ))
space and gave a matching lower bound.

Meanwhile, streaming quantile estimation is of sig-
nificant interest to practitioners in databases, computer
systems, and data science who have studied the prob-
lem as well. Most notably, Dunning [3] introduced the
celebrated t-digest, a heuristic quantile estimation tech-
nique based on 1-dimensional k-means clustering that
has seen adoption in numerous systems, including In-
flux, Apache Arrow, and Apache Spark. Although t-
digest achieves remarkable accuracy on many real-world
data sets, it is known to have arbitrarily bad error in
the worst case [2].

To illustrate this core tradeoff, Figure 1 shows the
rank function of the books dataset from the SOSD
benchmark [8, 11], along with KLL and t-digest approx-
imations that use the same amount of space when the
data set is randomly shuffled, and when the same data
set is streamed in an adversarial order that we found to
induce especially bad performance in t-digest.

Recent advances in machine learning have led to the
development of learning-augmented algorithms which
seek to improve solutions to classical algorithms prob-
lems by exploiting empirical properties of the input dis-
tribution [12]. Typically, a learning-augmented algo-
rithm retains worst-case guarantees similar to those of
classical algorithms while performing better on nicely
structured inputs that appear in practical applications.
We might hope that a similar technique could be used
for quantile estimation.

In fact, one of the seminal results in the field studied
the related problem of learned index structures. An
index is a data structure that maps a query point to
its rank. Several model families have been tried for
this learning problem, including neural networks and
the successful recursive model index (RMI) that define
a piecewise-linear approximation [9].

Although learned indexes aim to answer rank
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Figure 1: Ground-truth and approximate rank functions for the SOSD books data set, with approximation by
both the KLL and t-digest sketches. For the approximations, the data were presented in both randomly shuffled
(top) and adversarial (bottom) order. In the adversarial case that we discovered, t-digest does much worse than
KLL, demonstrating the value of worst-case correctness.

queries, they do not solve the streaming quantiles esti-
mation problem because they do not operate on the data
in a stream. For example, training a neural network or
fitting an RMI model require O(n) of the elements in
the stream to be present in memory simultaneously, or
require multiple passes over the stream.

1.1 Our contributions. We present an algorithm
for the streaming quantiles problem that achieves much
lower error on real-world data sets than the KLL sketch
while retaining similar worst case guarantees. This
algorithm, which we call the linear compactor sketch,
uses linear interpolation in place of parts of the KLL
sketch. Intuitively, this linear interpolation provides
a better approximation to the true cumulative density
function when that function is relatively smooth, a
common property of CDFs of many real world datasets.

On the theoretical side, we prove that the linear
compactor sketch achieves similar worst case error to the
KLL sketch. That is, the linear compactor sketch com-
putes an ε-approximation for the rank of a single item
with probability 1− δ and space O((1/ε) log2 log(1/δ)).
This is within a factor that is poly-log-logarithmic (in
1/δ) of the known lower bounds and the (rather com-

plex) version of the KLL sketch that matches it [7]. Our
proof is a relatively straightforward modification of the
analysis of the original KLL sketch, due to the general
similarity of the algorithms. In fact, we can view our al-
gorithm as exploiting a place in the KLL sketch analysis
that left some “slack” in the algorithm design.

In our experiments, we demonstrate that the linear
compactor sketch achieves significantly lower error than
the KLL sketch on a variety of benchmark data sets
from the SOSD benchmark library [8, 11] and for a
wide variety of input orders that induce bad behaviour
in other algorithms like t-digest. In many cases, the
linear compactor sketch achieves a space-error tradeoff
that is competitive with t-digest, while also retaining
worst-case guarantees.

2 Understanding the KLL sketch

The complete KLL sketch that achieves optimal space
complexity is complex: it involves several different
data structures, including a Greenwald-Khanna (GK)
sketch that replaces the top O(log log(1/δ)) compactors.
Here, we present a simpler version of the KLL sketch
that uses O((1/ε) log2 log(1/δ)) space—just a factor of
O(log log(1/δ)) away from optimal—and is commonly
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implemented in practice [5], presented in Theorem 4
of [7]. In the remainder of this paper, we refer to this
sketch as the non-GK KLL sketch.

2.1 The non-GK KLL sketch. The basic KLL
sketch is composed of a hierarchy of compactors. Each
of the H compactors has a capacity k, which defines
the number of items that it can store. Each item is
also associated with a (possibly implicit) weight which
represents the number of points from the input stream
that it represents in the sketch. All points in the same
compactor have the same weight.

When a compactor reaches its capacity, it is com-
pacted. A compaction begins by sorting the items.
Then, either the even or odd elements in the compactor
are chosen, and the unchosen items are discarded. The
choice to discard the even or odd items is made with
equal probability. The chosen items are then placed into
the next compactor in the hierarchy and the points are
all assigned a weight twice what they began with. This
general setup is common to many streaming quantiles
sketches [10, 7].

To predict the rank of a query point q, we return
the sum of the weights of all points, in all compactors,
that are at most q.

A key contribution of the KLL sketch is to use
different capacities for different compactors. We say
that the first compactor where points arrive from the
stream has a height of 0, and each successive compactor
has a height one higher than the compactor below
it, so that the top compactor has height H − 1. In
KLL, the compactor at height h has capacity kh =
max(kcH−h, 2), where k is a space parameter that
defines the capacity of the highest compactor and c is a
scale parameter that is generally set as c = 2/3.

2.2 Analysis of the non-GK KLL sketch. Here,
we give a somewhat simplified—to focus on the essential
details—version of the analysis of the non-GK KLL
sketch. Consider the non-GK KLL sketch described
above that terminates with H different compactors.
The weight of the items at height h is wh = 2h. Let
mh be the number of compaction operations in the
compactor at height h.

Consider a single compaction operation in the com-
pactor at height h and a point x in that compactor at
that time. If x was one of the even elements in the com-
pactor, the total weight to the left of it, which defines
its rank, is unchanged by the compaction. If x is one
of the odd elements in the compactor, the total weight
either increases by wh (if the odd items are chosen) or
decreases by wh (if the even items are chosen). For the
ith compaction operation at level h, let Xi,h be 1 if the

odd items were chosen and −1 if the even items were
chosen. Observe that E[Xi,h] = 0 and |Xi,h| ≤ 1. Then
the total error introduced by all compactions at level
h is

∑mh

i=1 whXi,h. Consider any point x in the stream.
The error in R(x) introduced by compaction at all levels

up to a fixed level H ′ is therefore
∑H′−1

i=0

∑mh

i=1 whXi,h.
Applying a two-tailed Hoeffding bound to this error,

we obtain that

Pr[error is > εn]

= Pr

∣∣∣∣∣∣
H′−1∑
i=0

mh∑
i=1

whXi,h

∣∣∣∣∣∣ > εn


≤ 2 exp

(
− ε2n2

2
∑H′−1

i=0

∑mh

i=1 w
2
h

)
.

This addresses the error introduced by all layers
up to H ′. Notice that if we set H ′ = H, then the
error bound is dominated by the weight terms from
the highest compactors. To get around this, the non-
GK KLL sketch sets the capacity of the final s =
O(log log(1/δ)) compactors to a fixed constant k and
analyzes them separately: it is assumed to contribute its
worst possible error of wh for reach compaction. This
is the key lemma in the KLL analysis and the point of
departure for the linear compactor sketch.

3 The linear compactor sketch

We propose a streaming quantile approximation algo-
rithm that combines our empirical and theoretical ob-
servations about how KLL might be improved. We leave
the basic architecture of the non-GK KLL sketch un-
changed. Like the optimal KLL sketch, which replaces
the top O(log log(1/δ)) compactors with a Greenwald-
Khanna sketch, we replace some of these top compactors
with another data structure. In our case, we replace the
top t = O(1) compactors with a structure that we call
a linear compactor.

Linear compactors. A linear compactor is a
sorted list of elements, each of which is a pair of an item
from the stream and a weight. As in KLL, the weight
represents the number of stream items that the item
represents; unlike in KLL, this weight varies between el-
ements in the list and may be an arbitrary floating point
number, rather than a power of two. Like a KLL com-
pactor, a linear compactor has a capacity which we fix
to tk, the total capacity of the (fixed-size) compactors it
replaces. When that capacity is exceeded, it undergoes
compaction and only half of its elements are retained.

A KLL compactor Ch at height h implicitly repre-
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sents a piecewise-constant function f : specifically,

f(q) =
∑

x∈Ch:x≤q

wh.

This function is the contribution of this compactor
to the approximated rank of a query point q. A
linear compactor implicitly represents a piecewise-linear
function which also contributes to the rank of q. Given
a linear compactor L = {(y1, w1), (y2, w2), . . . , (yk, wk)}
with y1 ≤ y2 ≤ · · · ≤ yk, the contribution of L to the
the rank of q is

(3.1) fL(q) =

i∗−1∑
i=1

wi︸ ︷︷ ︸
KLL-style term

+ wi∗
q − yi∗−1
yi∗ − yi∗−1︸ ︷︷ ︸

interpolation term

where i∗ is the smallest index such that yi∗ > q. In
effect, we spread the weight of yi∗ over the entire interval
between yi∗−1 and yi∗ , with uniform density, rather
than treating it as a point mass at yi∗ exactly. The
resulting contribution fL(q) is a monotone, piecewise-
linear function, as desired.

Adding points to a linear compactor. Our
linear compactor receives points from the last of the
KLL-style compactors, each with a fixed weight of
wH−t−1. These points and weights cannot be merged by
merely concatenating the arrays. To see this, consider
adding a single point b with unit weight to a compactor
with two points a and c with a < b < c, and where c has
weight w. The weight of c after the compaction should
not be w since the weight of c before the addition should
be spread uniformly over the entire interval [a, c].

Instead, we add a set of new points y1 < y2 < · · · <
ym to an existing set of points x1 < x2 < · · · < xn by
merging the two lists of points into one list and sorting
them into the list z1 < z2 < · · · < zm+n. Next, we set
w(z1) equal to the weight of z1 in the original list and
compute the new weights recursively. Assuming that
zi = xi without loss of generality, we set

w(zi) = w(xi)
xi − zi−1
xi − xi−1

+ w(y∗)
xi − zi−1
y∗ − y∗−1

where y∗ is the first yi such that yi > zi.
Equivalently, we convert each of the weight func-

tions into a rank function using Equation 3.1, sum those,
and then compute the finite differences to obtain the fi-
nal weight function.

Compacting a linear compactor. Lastly, we de-
scribe the process for compacting a linear compactor.
Given a parameter α ∈ [0, 1] and a linear compactor C
containing n points, we wish to obtain a new linear com-
pactor C ′ with αn points with the following properties:

• The points in C ′ are subset of the points in C.

• The total weight of the points in both compactors
is the same, so that

∑
x∈C w(x) =

∑
x∈C′ w(x′).

• For every point x ∈ C ′, the rank fC(x) = fC′(x).

• The “error” introduced by the compaction is as
small as possible. That is, for some loss function L,
we would like

∑
x∈C L(fC′(x), fC(x)) to be as small

as possible.

In this paper, we use α = 1/2, although in principle
other values could be used.

It is important that this procedure can be com-
pleted efficiently. In our experiments, we primarily use
supremum (`∞) loss L(x, x′) = supx |x − x′|. This can
be minimized using a dynamic programming technique
introduced by [6].

4 Analysis

We give a worst-case analysis of our algorithm that
matches the worst-case analysis for the version of the
non-GK KLL sketch:

Theorem 4.1. The linear compactor sketch described
in Section 3 computes an ε-approximation for the rank
of a single item with probability 1 − δ with space com-
plexity O((1/ε) log2 log(1/δ)).

Our technique analyzes the error introduced by each
compactor, using two techniques. To analyze the error
of the KLL-style compactors of the linear compactor
sketch, we prove that they introduce precisely the same
error as they would in a non-GK KLL sketch run on
the same stream. We then apply the two-part analysis
of the non-GK KLL sketch, analyzing the first H − s
compactors and the (H − s)th through (H − s + t)th
compactors separately. To analyze the error of the linear
compactor at the top, we analyze the error introduced
per compaction. We then analyze the number of
compactions of the linear compactor and therefore the
total error introduced by the linear compactor.

Consider a stream X = x1, x2, . . . , xn. Let S(X)
be a non-GK KLL sketch computed on this stream
that terminates with H compactors and let Sb(X) be
the bth compactor of S(x). Similarly, let S′(X) be a
linear compactor sketch computed on this stream with
H − t levels of KLL-style compactors and one linear
compactor at level H − t + 1. Let S′b(X) be the bth
compactor S′(X).

Following [7], let R(S, x, h) be the rank of item x
among all points in compactors in the sketch S at
heights at most h′ ≤ h at the end of the stream. For
convenience, we set R(x, 0) to be the true rank of x
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in the input stream. Let err(S, x, h) = R(S, x, h) −
R(S, x, h − 1) be the total change in the approximate
rank of x due to the compactor at level h. The
total error decomposes into this error per compactor
as supx |R(x, 0)− S′(x)| =

∑H
h=1 err(S′, x, h).

Analyzing the KLL compactors. In both S and
S′, stream elements only move from lower compactors to
higher ones, and the compactor at level b at any point
while processing the stream is defined entirely by the
compactors at lower levels up to that point. Therefore,
for all b < H − t, S′b(X) = S(X).

In a KLL sketch, the lowest compactors all have a
capacity of exactly 2. As the authors note, a sequence
of H ′′ compactors that all have capacity 2 is essentially
a sampler: out of every 2H

′′
elements they select

one uniformly and output it with weight 2H
′′
. This

means that these compactors—in both KLL and linear
compactor sketch—can be implemented in O(1) space.

To handle the other KLL compactors, we use a
theorem from [7] as a key lemma:

Theorem 4.2. (Theorem 3 in [7]) Consider the
non-GK KLL sketch S(X) with height H, and where
the compactor at level h has capacity kh ≥ kcH−h. Let
H ′′ be the height at which the compactors have size
greater than 2 (i.e., where the compactors do not just
perform sampling). For any H ′ > H ′′, we have

Pr

[
H∑

h=1

err(S, x, h) > 2εn

]
≤ 2 exp

(
−cε2k2H−H

′′
/32
)

+ 2 exp
(
−Cε2k222(H−H

′)
)
.

Analyzing the linear compactor. As men-
tioned, we will analyze the error introduced by the linear
compactor compaction-by-compaction. Specifically, we
analyze the linear compactor sketch between the end
of one compaction and the end of the following com-
paction. During this interval, a total of d items of weight
2H−t are added to the linear compactor, where either
d = tk if the linear compactor has never compacted or
d = tk/2 if it has.

Let f be the piecewise linear rank function of the
full linear compactor right before the compaction with
endpoint set Z comprising z1 < z2 < · · · < ztk and
weight function w. Let f ′ be the piecewise linear rank
function of the linear compactor immediately after the
compaction, with endpoint set Z ′ ⊂ Z, weight function
w′, and |Z ′| = |Z|/2.

The linear compactor compaction procedure re-
moves some of the items in the linear compactor. A
run is a sequence of removed elements that are adja-
cent in sorted order. We show that the error introduced

by a linear compactor is bounded by the greatest run of
displaced weight.

Lemma 4.1. Organize Z \ Z ′ into continuous runs of
adjacent removed elements, and let Fi be the total weight
of the ith run. Then supz∈Z |f(z)− f ′(z)| ≤ maxi Fi.

Proof. Fix a run with endpoints a and b and let its
total weight be F =

∑b−1
i=a+1 w(zi). Consider any point

zj in that run, so that a < j < b. Its original rank

was f(zj) =
∑j

i=1 w(zi) while its new rank is, by

construction, f ′(zj) =
∑a

i=1 w(zi) + F+w(zb)
zb−za (zj − za).

Therefore,

|f(zj)− f ′(zj)| =

∣∣∣∣∣
j∑

i=a+1

w(zi)−
F + w(zb)

zb − za
(zj − za)

∣∣∣∣∣
=

∣∣∣∣∣
j∑

i=a+1

w(zi)−
b∑

i=a+1

w(zi)
zj − za
zb − za

∣∣∣∣∣
≤

b−1∑
i=a+1

w(zi)

= F.

Next, we show that the greater error introduced by
a linear compaction step occurs at one of the discarded
endpoints:

Lemma 4.2. There is some zi ∈ Z \ Z ′ such that
supx∈[z1,ztk] |f(x)− f ′(x)| = |f(zi)− f ′(zi)|.

Proof. Consider any point x ∈ [z1, zd]. If x is one of
the endpoints retained after compaction zj ∈ Z ′, then
by construction f(x) =

∑
i≤j w(zi) = f ′(x). Our claim

does not depend on the error if x is one of the endpoints
in Z \ Z ′.

Suppose then that x is not in the original endpoint
set Z. Let za and zb be the left and right neighbours of
x in Z. By the definition of the linear compactor,

f(za) =

a∑
i=1

w(zi),

f(x) =

a∑
i=1

w(zi) +
w(zb)

zb − za
(x− za),

f(zb) =

b∑
i=1

w(zb).

Let za′ and zb′ be the left and right neighbours of x in Z ′.

By definition, the weight W := w′(zb′) =
∑b′

i=a′+1 w(zi)
and so we have

f ′(x) =

a′∑
i=1

w(zi) +
W

zb′ − za′
(x− za′).
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Therefore,

f(x)− f(x′) =

a∑
i=a′+1

w(zi)+(
w(zb)

zb − za
− W

zb′ − za′

)
(x− za′).

Observe that this expression obtains its extremum
on the interval [za, zb] ⊂ [za′ , zb′ ] at either za or zb,

depending on the sign of D = w(zb)
zb−za −

W
zb′−za′

. In either

case, |f(x) − f(x′)| achieve its maximum at one of the
endpoints za or zb, completing the proof.

We use a simple counting argument to bound the
size of the majority of the weights in a linear compactor:

Lemma 4.3. Consider a linear compactor that has just
completed its cth compaction. At least half of the
endpoints Z in the linear compactor have weight at most
(2c+ 3)2H−t.

Proof. Every point enters the linear compactor with
weight 2H−t. After c compactions, a total of (2+c)tk/2
such points have entered the compactor. A compaction
operation conserves the total weight of points so the
total weight of the compactor is (2 + c)2H−ttk/2.

Suppose that more than half of the tk points
currently in the compactor have weight at most T .
These points have a total weight greater than Ttk/4
while the remaining point s each have weight at least
2H−t and so have total weight at least 2H−ttk/4.
The total weight is therefore (T + 2H−t)tk/4. This
weight must not exceed the total conserved weight
(2 + c)2H−ttk/2, and so we have

(T + 2H−t)tk

4
≤ (2 + c)2H−ttk

2
.

Rearranging, we obtain that our result holds for any
T ≤ (2c+ 3)2H−t.

Combining these lemmas, we obtain a bound on the
error introduced during a single compaction step.

Theorem 4.3. Suppose that the compaction being stud-
ied is the (c + 1)th compaction. The error introduced
during this compaction step is supx |f(x) − f ′(x)| ≤
(c+ 2)2H−t+1.

Proof. We construct a particular post-compaction dis-
tribution of weights as follows. Let f ′′ be the rank func-
tion for that post-compaction state. During this inter-
val, there were tk/2 points with weight 2H−t that we
added to the linear compactor for the first time.

In addition, there were tk/2 points remaining from
a previous linear compaction. We sort the tk/2 new
points and keep every fourth point, discarding the rest
and reallocting their weight to the next highest retained
point (of either type). By Lemma 4.3, there exists at
least tk/4 of the existing points in the linear compactor
with weight at most 2H−t+c. We sort these points and
discard every other point. In total, we discard the
required tk/2 points.

Observe that the longest possible run in this com-
paction consists of one of the existing points and three
(out of a sequence of four) of the new points that were
discarded. By Lemma 4.1, the error introduced on any
of the original endpoints by this compaction is bounded
by the sum of the weights of the points in the run: in this
case, that sum is 2H−t+3·(2c+3)2H−t ≤ (c+2)2H−t+1.
By Lemma 4.2, we find that the error introduced by f ′′

is supx |f(x)− f ′′(x)| ≤ (c+ 2)2H−t+1.
We have exhibited a particular feasible solution to

the optimization problem in the linear compaction. Our
actual algorithm finds, among all such feasible solutions,
the one that minimizes this error function; it follows
that

sup
x
|f(x)− f ′(x)| ≤ sup

x
|f(x)− f ′′(x)|

≤ (c+ 2)2H−t+1.

Combining KLL and linear compactors.
Lastly, we combine our analysis of the KLL and linear
compactor to obtain an overall error bound and prove
Theorem 4.1. Our analysis closely follows the form of
the proof of Theorem 4 in [7].

Proof. [Proof of Theorem 4.1] First, we analyze the
compactors with height at most H − t, including the
sampling compactors. These are all KLL-style com-
pactors; by Theorem 4.2 these compactors will con-
tribute error at most εn with probability 1−δ so long as
εk2s ≥ c′

√
log(2/δ) for a sufficiently small c′. Second,

we analyze the top s − t compactors. The error intro-
duced by these compactors is bounded by the error of
the equivalent non-GK KLL sketch where we have a full
s equal-size compactors at the top. This error is in turn
bounded by

∑h
h=H−s+1mhwh =

∑H
h=H−s+1 n/k =

sn/k, where mh is the number of times that the KLL
compactor at level h is compacted and wh = 2h is the
weight associated with that compactor; this is at most
εn so long as s ≤ kε. Taking k = O((1/ε) log log(1/δ))
and s = O(log log(1/δ)) as in KLL, we satisfy both of
these conditions.

Lastly, we analyze the single linear compactor with
size tk that replaces the top t < s KLL compactors.
Let M be the number of compactions of the linear
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Figure 2: The rank functions for the three SOSD data sets used in our experiments. The three data sets have
rank functions with distinctive shapes, allowing us to compare the algorithms in a variety of settings.

compactor. Observe that since between each com-
paction of the linear compactor we add tk/2 entries,
each with weight 2H−t to the compactor, and so M ≤
2n/(tk2H−t). Applying Theorem 4.3, and summing the
error introduced per compaction, the total error is

M∑
c=1

(c+ 2)2H−t+1 = M2H−t + 2H−tM(M + 1)

≤ 2H−t+1M2

≤ 8n2

t2k22H−t
.

Our compactors are sized at each level in the same
way as a non-GK KLL-sketch. As in the KLL analysis,
we have H ≤ log(n/ck) + 2 for a constant 0 < c < 1.
Therefore, our error is bounded by

8n2

t2k22log(n/ck)+2−t ≤
8ckn2

t2k2n22−t
=
cn2t+1

t2k
.

For constant t and any k = O((1/ε) log log(1/δ)) as in
KLL, this is at most εn. Therefore, the total error of
the sketch is O(εn) as required.

Each part of the sketch contributes some space.
The KLL compactors increase geometrically in size, so
the space used by the KLL portion of the sketch is
dominated by the top s−t compactors and uses O(sk) =
O((1/ε) log2 log(1/δ)) space. The linear compactor
sketch uses twice as much space per element as a KLL
compactor, for a total of O(tk) = O(k) space, so the
total space usage is O((1/ε) log2 log(1/δ)).

5 Experiments

We wrote a performant implementation of our algorithm
and evaluated its empirical error over a wide range
of space parameters k and several linear compactor
heights t. Our experiments were conducted on the
recent SOSD benchmarking suite [8, 11] for learned
index structures. Each SOSD benchmark consists of

a large number (generally 200 to 800 million) of 64-bit
unsigned integer values. Of particular interest were the
books, osm cellid, and wiki ts data sets, since the
rank functions of these three data sets have distinctly
different shapes, as shown in Figure 2.

Parameterization. The algorithm is parameter-
ized by the KLL space parameter k, which determines
the size of the largest compactors and the linear com-
pactor, and t, the number of KLL compactors that are
replaced by the linear compactor. Our worst-case bound
holds for any constant t but this bound is exponential
in t. In practice, we experimented with a variety of
small but non-zero values (t = 1, 2, 3). We see t as
a parameter that is tunable based on the desired em-
pirical performance and desired worst-case guarantees
and expect that it will be selected appropriately on an
application-by-application basis.

Implementation details. We implemented our
algorithms in C++ with Python bindings for experi-
ment management and data analysis. Our implementa-
tion is reasonably performant: in informal experiments,
it achieves a throughput that is only about three times
less than that of highly-optimized, production-quality
KLL implementations. This performant implementa-
tion allowed us to work with the entirety of the SOSD
data sets; in our preliminary work, we found that many
promising algorithms would only show improvements
over KLL on moderately-sized data sets of less than a
million points. Our implementation supports any inte-
ger t ≥ 0: when t = 0, our implementation is identical
to the commonly implement variant of KLL without the
Greenwald-Khanna sketch.

Baselines. Our algorithm is most naturally com-
pared to KLL since the KLL sketch can be seen as an
instance of the linear compactor sketch with no linear
compactor. We ran our experiments on our implemen-
tation of (non-GK) KLL (by setting t = 0) and val-
idated those results with an open-source implementa-
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tion from Facebook’s Folly library [1]. Like most im-
plemented version of the KLL sketch, neither of these
include the final Greenwald-Khanna sketch that is re-
quired to achieve space-optimality.

In addition to the non-GK KLL sketch, which offers
worst-case guarantees, we ran experiments on the t-
digest [3], which is commonly used in practice but is
known to have arbitrarily bad worst-case performance
[2]. We used the C++ implementation of t-digest in the
digestible library [13].

Stream order. We found that many streaming
quantile approximation algorithms without worst-case
guarantees achieve very low error compared to the
KLL sketch if they are given an input stream in a
particular order but high error on other input orders.
For example, Figure 1 shows that, even for a fixed
set of inputs with a smooth rank function (books),
there exists an adversarial order that makes the t-digest
approximation have high error. This observation might
be of independent interest.

We evaluated the linear compactor sketch and the
baselines on a variety of input orders for each data set:

• Random: the data are shuffled with a fixed seed.

• Sorted: the data are presented in a sorted order.

• First half sorted, second half reverse-sorted: the
first half of the stream has the first half of the sorted
data, in that order. The second half of the stream
has the second half of the sorted data presented in
reverse-sorted order.

• Flip flop: the stream has the smallest element,
then the largest element, then the second-smallest
element, then the second-largest element, and so
on. This is the adversarial order from Figure 1.

5.1 Experiment results and discussion. Our pri-
mary tool for insight into our experiments is the space-
error tradeoff curve that shows how the total space
needed for the sketch compares to the empirical error
between the exact rank function and the approxima-
tion defined by the sketch. We obtain these curves for
three different data sets from SOSD, four different sort
orders, and four different algorithms; these curves are
shown in Figure 4. We use average L1 error, defined
for a data set X as

∑
x∈X |f(x)− f ′(x)|. Qualitatively,

the linear compactor sketch is never significantly worse
than KLL, even on our adversarial input orders like
flip flop, and is often competitive with—or even better
than—t-digest. The differences are most pronounced
on the books dataset, which has a smooth CDF that
is extremely well-approximated by the linear compactor
sketch’s piecewise linear representation.

Figure 3: An example of the “envelope” or hull of the
space-error data points for the linear compactor sketch
with t = 2 (books dataset, random order). It shows the
range of errors that a user can expect from the linear
compactor sketch given a certain amount of space.

For a more quantitative understanding of the per-
formance of the linear compactor sketch compared to
KLL and t-digest, we produced diagrams of the “pos-
sible error ratio hulls”, shown in Figure 5. To obtain
such a hull, we first determined the upper and lower
frontiers for the data points (in Figure 4) for each algo-
rithm. These frontiers form an “envelope” or hull that
encompasses all of the points for each dataset: an ex-
ample of such a hull is shown in Figure 3. We then
interpolate the envelope to obtain smooth curves (as
in Figure 3) and compute the ratios with respect to a
another algorithm’s envelope (between the upper/lower
and lower/upper pairs), producing a hull that shows the
range of behaviour between the “worst case” and “best
case” performance of the two algorithms. We see that
the linear compactor sketch achieves an error that is be-
tween 3× worse and 10× better than KLL and between
10× worse and 20× better than t-digest.
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Figure 4: Space-error tradeoff curves for the baselines and linear compactor sketch on three different data sets
from SOSD and four different sort order, described above. Markers indicate individual sketches, while curves
indicate the lower frontier of possibilities observed (that is, the lower envelope described above) to highlight the
general capabilities of each algorithm. A better algorithm has a curve that is further down and to the left,
indicating lower error at a given amount of space.
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Figure 5: Hulls representing the possible ratios of the error achieved by a reference algorithm (either KLL or
t-digest) to the error achieved by the linear compactor sketch with t = 2. The filled-in area represents the area
ratios consistent with the experiments in Figure 4. We see that the linear compactor sketch always achieve error
no worse than 3× that of KLL, while often achieving and error that is competitive with—and sometimes much
lower than—that achieved by the t-digest.
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