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Abstract

We study the design of prior-independent auctions in a setting with heterogeneous bidders.
In particular, we consider the setting of selling to n bidders whose values are drawn from n
independent but not necessarily identical distributions. We work in the robust auction design
regime, where we assume the seller has no knowledge of the bidders’ value distributions and must
design a mechanism that is prior-independent. While there have been many strong results on
prior-independent auction design in the i.i.d. setting, not much is known for the heterogeneous
setting, even though the latter is of significant practical importance. Unfortunately, no prior-
independent mechanism can hope to always guarantee any approximation to Myerson’s revenue
in the heterogeneous setting; similarly, no prior-independent mechanism can consistently do
better than the second-price auction. In light of this, we design a family of (parametrized)
randomized auctions which approximates at least one of these benchmarks: For heterogeneous
bidders with regular value distributions, our mechanisms either achieve a good approximation
of the expected revenue of an optimal mechanism (which knows the bidders’ distributions) or
exceeds that of the second-price auction by a certain multiplicative factor. The factor in the
latter case naturally trades off with the approximation ratio of the former case. We show that
our mechanism is optimal for such a trade-off between the two cases by establishing a matching
lower bound. Our result extends to selling k identical items to heterogeneous bidders with an
additional O

(

ln2 k
)

-factor in our trade-off between the two cases.
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1 Introduction

Auctions are a fundamental component of online commerce and are a suitable mechanism for many
different applications. The classic study of auctions focuses on two fundamental objectives: revenue
maximization and welfare maximization. In the latter case, there is a long established theory
starting with the seminal work of [Vic61] which established the optimal auction for maximizing
the welfare of the agents. The auction is relatively simple when we are selling a single item as it
coincides with the second-price auction. It is desirable as it is very easy to implement in practice
and it requires no assumption on the value distributions of the buyers.

The main drawback of the classical second-price auction is that it achieves no guarantees in
general with respect to the optimal revenue that a seller can gain. The optimal revenue is obtained
by the celebrated Myerson’s auction [Mye81] which uses a more intricate mechanism that utilizes
knowledge of a prior distribution on the private values of the buyers. However, such distributional
information is often hard to come by and therefore not always practically justified. While one could
argue that the seller can learn the distribution over repeated auctions, in practice, distributions need
not remain static over time. Furthermore, any such learning mechanism introduces new incentives
for the bidders to manipulate the learning itself, making such mechanisms hard to analyze. All
this makes the use of Myerson’s auction impractical and the second-price auction more appealing
despite its poor guarantees on revenue. The need to find mechanisms that do not rely on priors is
often referred to as the “Wilson doctrine” or the “Wilson critique” [Wil89] and has been discussed
in several works related to ours, e.g., [AB20, DRY15].

A long line of work has tried to bridge the gap between these two different goals of maximizing
revenue and not relying on prior information. Towards this, a canonical definition is that of prior-
independent auctions first introduced by [DRY15]. Here, the goal is to find a mechanism – typically
dominant-strategy incentive-compatible (DSIC) – that has no prior information but, no matter what
the underlying value distribution is, has revenue competitive with the revenue-optimal auction tai-
lored for that distribution. Specifically, in an i.i.d. setting, once the auction is chosen, an adversary
may choose any distribution (from a restricted class) and give each of the buyers a value drawn
from this distribution. The mechanism is evaluated in expectation against the revenue achievable
by the optimal mechanism that knows the distribution beforehand. In a series of results, beginning
with the early work of [Nee03], it is shown that if the distribution comes from a well-formed family
such as a monotone-hazard-rate (MHR) or regular distribution, then it is possible to design such
prior-independent auctions in the i.i.d. setting. (We give a more detailed survey in Section 1.2.)
The work of [AB20] provided a characterization of optimal prior-independent mechanisms in the
i.i.d. setting, gave close upper and lower bounds for two-bidder regular distributions, and proved
optimality of the second-price auction for two-bidder MHR distributions. [HJL20] finally closed
the gap by giving the tight bounds for two-bidder i.i.d. regular distributions.

While the i.i.d. model for the priors is amenable to clean results and provides nice mathemat-
ical intuition, in many practical applications, we do not expect to see identical bidders. In this
paper, we investigate the potential of prior-independent auction design for revenue maximization
for independent but non-identical (i.e. heterogeneous) bidders. This is especially important in
online ad auctions where in the same auction we see advertisers of different scales, or with differ-
ent goals such as brand advertising, targeted advertising and performance-driven advertising (see,
e.g., [GLMN21]). It is therefore imperative to examine what kind of results are achievable in the
prior-independent setting with non-identical bidders.
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1.1 Our Results and Techniques

Metric and Benchmarks

Extending these results to the heterogeneous1 setting immediately runs into a challenge: the lack
of an existing benchmark that is effective at distinguishing the performance of mechanisms in our
context. Indeed, as long as the family of distributions being considered is reasonably general (e.g.
MHR or regular distributions), no prior-independent mechanism can achieve anything non-trivial
with respect to the canonical benchmarks.

• No mechanism can guarantee any ε > 0 approximation of the Myerson revenue.
Consider a simple example of two buyers with deterministic (but unknown) values v1 = 1 and
v2 = x > 1, where the Myerson revenue is x. Informally speaking,2 if for any ε > 0 a DSIC
prior-independent mechanism M can guarantee at least ε · x for all x’s, then the probability
of allocating to buyer 2 must strictly increase with x (by DSIC) and eventually has to go
above 1, which gives a contradiction.

Noting that revenue maximization is trivial for multiple i.i.d. point distributions (via e.g.
a second-price auction), we can see that this example already highlights the comparative
difficulty in the non-i.i.d. setting. This emphasizes that the prior-independent results in the
i.i.d. setting cited above heavily leverage the identical nature of the distributions, originating
from the intuition from the work of [BK96] that an additional i.i.d. bidder’s random value
draw serves as a reasonably good reserve price (see also [DRY15]).

• No mechanism can guarantee at least 1 + ε times the second-price for any ε > 0.
With the above observation, it is natural to turn to the canonical benchmark in the prior-free
setting, and ask if we can always beat the expected revenue of the second-price auction, say
by a (1+ε) factor for some ε > 0. However, this is not possible even over MHR distributions,
since it is shown in [AB20] that the second-price auction is the optimal prior-independent
mechanism for i.i.d. MHR distributions with two bidders.3

This suggests that in the heterogeneous context, any non-trivial guarantee w.r.t. either bench-
mark would be infeasible, and thus we need to find a new benchmark to tell apart good and bad
mechanisms (in terms of revenue guarantees). For this purpose, it is illustrative to revisit our earlier
two-buyer example with the family of point distributions where v1 = 1 and v2 = x for all x ≥ 1.
Consider any DSIC prior-independent mechanism M , and denote M(x) as the expected revenue of
M when v2 = x. Myerson knows the distributions and thus always gets revenue x; the second-price
always gets revenue 1; and intuitively M(x) should look like Fig. 1.4 Firstly, as discussed earlier,

1We use the term “heterogeneous” to stand for independent but not necessarily identical distributions.
2Theorem 4.5 with τ → +∞ gives a rigorous proof. Also note one can turn any deterministic value in our

examples into a uniform distribution over a tiny range around that value to have continuous and regular bidder value
distribution.

3Our impossibility results (Theorem 4.7) also rule out mechanisms with “beating second-price” type guarantees
such as getting at least (1 + ε) of the second-price revenue whenever possible, and otherwise (i.e. on distributions
where Myerson gets less than (1 + ε) times the second-price revenue) getting the same as second-price revenue.

4The figure is only for illustration purposes and not meant to be rigorous. Note that x exactly captures the how
non-identical the bidders are in this example, and intuitively one can imagine a similar figure in general where the
x-axis captures the level of heterogeneity of the bidders, although coming up with a formal metric of it is beyond the
scope of our study.
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we know for larger x’s eventually we won’t be able to compare with x, so we can only look at how
much better we do compared to 1, which is the only other quantity in the system. In addition, to
achieve higher revenue than SPA for larger x’s, a DSIC mechanism must reduce the probability of
allocating to buyer 2 for smaller x’s, which means larger gap compared to the optimal revenue x
for smaller x’s (as the price for buyer 1 is at most 1 ≤ x).

0

1

1 x

Revenue

SPA

Myerson

M(x)

Figure 1: revenue curves for different point distributions in the illustrative example

It is thus clear in this example that when considering worst-case guarantees (i.e. hold for all
x), it is a necessary trade-off for any prior-independent mechanism between how much advantage
compared to 1 for larger x’s and how much loss compared to x for smaller x’s. A meaningful
benchmark in more general cases must also capture this similar phenomenon, i.e. achieving higher
revenue (compared to second-price) in high heterogeneity cases must sacrifice revenue (compared
to Myerson) when heterogeneity is low (e.g., i.i.d. case). This motivates a natural either-or type
benchmark which integrates the two canonical benchmarks: on any bidder distributions (from
some family of distributions) the expected revenue of the mechanism can either beat the second-
price auction by some multiplicative factor α, or is a β-approximation of the Myerson revenue.
Our benchmark takes the either-or form because we do not have a good metric to capture the
heterogeneity level in general (and not aim to come up with one in this work), and want a worst-
case benchmark (i.e. holds for any level of heterogeneity). Informally α captures the revenue
guarantee for higher heterogeneity (i.e. larger x’s in our example) and β captures the revenue
guarantee on the other end (i.e. smaller x’s).

Main results

Our main result (Section 4) is that one can design mechanisms that achieve either a constant
fraction of the optimal Myerson’s revenue or beat the revenue of the second-price auction by a
constant factor.

Theorem (Informal). For any parameter τ > e there exists a prior-independent randomized mech-
anism such that for n buyers with private values drawn from any independent (but not necessarily
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identical) regular distributions, the expected revenue of the mechanism is at least

min

(

Ω
( 1

ln τ

)

·Myerson, τ · SPA
)

,

where Myerson is the expected revenue of Myerson’s auction for the given distributions, and SPA

is that of the second-price auction.

We emphasize that the auctioneer can choose the value of the mechanism’s parameter τ , and
the resulting revenue guarantee will hold all distributions no matter the level of heterogeneity. One
can interpret our benchmark as a robustness guarantee in the sense that when SPA is guaranteed
to be at least a (good) constant fraction of Myerson (e.g., in the i.i.d. or nearly-i.i.d. cases), the
τ · SPA part in the benchmark is a good approximation of Myerson, so a guarantee against the
min still approximates the optimal revenue well. On the other hand, the benchmark still recovers
elegantly in the cases when approximating Myerson is not possible: the expected revenue in such
cases is not only bounded from below, but is in fact a τ -factor better than that of SPA.

We complement our main result with an almost matching upper bound.

Theorem (Informal). For 2 bidders and any τ ≥ 3, there is no prior-independent mechanism with
expected revenue greater than

min

(

2.5

ln τ
·Myerson, τ · SPA

)

,

for all pairs of independent value distributions.

The upper bound above holds even over a very restricted class of distributions – point distri-
butions, i.e., when the two bidders values are deterministic.5 Note that these distributions are also
MHR, thus showing that the main result above cannot be improved significantly for the class of
MHR distributions.

To complete the picture, we show (in Section 3) that the main result is tight along different
dimensions: One cannot achieve even a minor approximation of this form if either (a) the distri-
butions are allowed to be general (non-regular) independent ones, or (b) the class of distributions
is regular, but the mechanism is deterministic. Specifically, in these settings one cannot have a
mechanism that achieves either a (1 + ε)-multiple of the revenue of the second-price auction or an
ε-factor of the revenue of Myerson’s auction, for any constant ε > 0.

In Section 5, we extend our main result to the multiple-identical-item case. When we have k
identical items to sell and the buyers are unit-demand, we extend our mechanism and achieve a
very similar trade-off between the two sides of the revenue objective, losing a factor of O(ln2 k) in
the trade-off.6 We prove:

Theorem (Informal). For n buyers and k items, there exists a prior-independent randomized
mechanism achieving a revenue of at least

min

(

Ω
( 1

ln(kτ)
· 1

ln k

)

·Myerson, τ · VCG
)

.

5This is in stark contrast to the case of point distributions in the i.i.d. setting, where getting Myerson’s revenue
is easy by using e.g. a second-price auction.

6This loss is O(ln k) when τ is large.
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Finally, in Appendix B we provide a characterization of optimal prior-independent mechanisms
in our heterogeneous setting for 2 buyers (similar to the characterization for the i.i.d. setting
in [AB20]).

Techniques

Our main result uses a simple class of randomized Threshold Mechanisms (see Section 2.2 for
definition). Informally, our threshold mechanism chooses a threshold from a carefully constructed
distribution over thresholds and only allocate the item if the winner’s bid is higher than the next
highest bid by a factor of this threshold. It is not hard to see intuitively why one turns to this
class of mechanisms in the prior-independent setting: Since a mechanism should be scale-free (see
Appendix B), we exclude mechanisms such as posted-price or using reserve prices. Moreover, the
mechanism has to be randomized, again by considering the simple two-bidder point distributions
example from before. Our idea of randomizing from a set of geometrically separated thresholds can
be found in many works in the field of approximation algorithms.

Our novel benchmark poses interesting new mathematical challenges: We emphasize that our
benchmark is the minimum (which is a non-linear operator) over the expected revenues of the
two canonical auctions over the distributions – it is a much stronger requirement than beating
the minimum of the two auctions in each realization of values. There have been related work on
prior-free auctions (discussed in Section 1.2) – they can been seen as prior-independent auctions
used on point value distributions (i.e. the much weaker requirement mentioned in the preceding
sentence) and hence are very special cases of our setting of regular value distributions. (Recall that
we made the regularity assumption since a similar result is impossible without any distributional
assumption, according to Theorem 3.1.) To achieve our results, we first use the median of the
highest order statistic as an upper bound on the potential revenue achieved by Myerson’s auction.
We next show that the second-price auction’s revenue is related to lower order statistics. We then
argue that, depending on the gap between the order statistics, our threshold mechanism can either
approximate the highest order statistic or beat the lower order statistics by a suitable margin. This
relies on the randomness in our mechanism as it is oblivious to the order-statistics information.
The main challenge and novelty in the proof is the distributional analysis for arbitrary regular
distributions – existing works on prior-free auctions, as the name suggests, do not share with our
work this challenge. We believe our techniques have potential applications in other settings related
to regular distributions.

As we extend the result to the multi-item setting, these techniques do not suffice. We need to
be competitive over a larger set of possibilities depending on the particular decomposition of the
distributions. A simple extension would lose a factor of k (the number of items) in the trade-off.
To hedge against all these instances, we introduce the technique of randomly limiting the number
of items sold, in a manner that does not lose too much in expected revenue. On the one hand, we
could sell a large number of items at a small price or sell a few items for a large price. By randomly
choosing the number, we hope to set the correct price more often. One particular challenge that
arises is that to bound expected revenue of the optimal Myerson auction is non-trivial here. We
use a subtle definition of the appropriate order statistics of a carefully chosen subset of the bidders
to argue that we can still achieve a constant fraction of Myerson or beat the Vickrey Auction
appropriately. This helps us reduce the loss in the trade-off to only O(ln2 k). Whether this can be
reduced to a constant is an intriguing open question.
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1.2 Related Work

There is a lot of related work in the area related to revenue maximization starting with the work of
[Mye81]. Due to the practical and technical difficulty of dealing with priors as mentioned earlier,
there has been a great deal of work in coming up with prior-independent mechanisms. These works
can be classified into a few major related strands.

The first major strand is when the auction is standard and simple, e.g. Vickrey, but the mecha-
nism tries to recruit additional bidders to ensure that the new instance can compete with respect to
the optimal revenue. This line of work was initiated by [BK96]. This work gained a great deal of in-
terest in the algorithmic game theory community through the result of [HR09] who showed revenue
guarantees for the Vickrey Auction with additional bidders. In particular, they showed that in quite
general settings, a VCG Auction with n additional bidders can compete with the optimal revenue
when the bidders are drawn from heterogeneous regular distributions. This was extended to a more
general class of distributions in the work of [SS13]. The best results along these lines were obtained
by [FLR19] who showed that by carefully choosing the extra bidders, one needs only one extra bid-
der for the single-item case. A number of recent works (see e.g. [FFR18, EFF+17, BW19, CS21])
showed that recruiting additional bidders provides a simple set of mechanisms that achieve near
optimal mechanisms even with multiple items and multi-dimensional valuations. Note that in the
latter case, the optimal mechanisms are known to be extremely complex. All of the above results
argue that a certain level of additional bidders allows a simple mechanism such as the Vickery Auc-
tion to compete with the revenue-optimal mechanism. However, it may not be possible to recruit
additional bidders because they may not exist or may come at a great cost. Furthermore, these
results offer no guarantees with respect to the instance with those additional bidders.

Another line of work attempts to produce bounds on the approximation factor of the revenue
of certain simple mechanisms, potentially with knowledge of the prior, compared to the optimal
revenue on the same instance. Notably, the bidder-augmentation result of [BK96] can be reinter-
preted ([DRY15]) to show that the expected revenue of the Vickrey Auction is at least (n−1)/n ≥ 1/2
of the expected revenue of Myerson’s auction for i.i.d. distributions. A series of works, starting
with [HR09], study simple auctions which are competitive to the optimal auction even in het-
erogeneous settings. These results, including [AHN+19, JLQ+19], consider the competitiveness of
simple auctions such as the second-price auction with an anonymous reserve. Note that these latter
auctions, although simple, still depend on the knowledge of the prior.

Recently, there has been a third line of research building on and improving the result that
Vickrey is a 1/2-approximation in the i.i.d. setting, via new prior-independent auctions in two
papers highly relevant to our work. Firstly, [FILS15] showed that in the case of a single-item and
i.i.d. bidders with a regular distribution, one can beat the revenue approximation guarantees of
the Vickrey Auction through the use of randomization. [FILS15] introduced a randomized prior-
independent auction called (ε, δ)-inflated second-price auction: with probability ε it runs a second-
price auction, and with the rest of the probability the highest bidder wins only if its bid is greater
than the next highest bid by a factor of α ≥ 1; otherwise the item is unallocated. They proved
that this auction achieves a fraction of the optimal revenue strictly larger than n−1

n fraction (for
n ≥ 2 bidders), and an improved factor of 0.512 for two bidders, thus beating the approximation
guarantee of the second-price auction. This result was further greatly generalized in [AB20] which
introduced a family of prior-independent auctions called threshold-auctions, and proved stronger
results for revenue in the prior-independent two bidder setting. They show an approximation factor
of 0.715 for i.i.d. MHR and 0.519 for i.i.d. regular distributions. The factor for MHR distributions
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is achieved by the second-price auction and is shown to be optimal, while the factor for regular
distributions is achieved by a new auction in the class of threshold mechanisms; an upper bound
of 0.556 is also shown (under a technical assumption of finite Arzelà variation). This gap between
0.519 and 0.556 was finally closed (under the same technical assumption) by the work of [HJL20],
who showed that the optimal prior-independent auction gives an approximation factor of 0.524
for two bidders with i.i.d. regular distributions. Our paper lies in this thread of research and
studies the non-identical setting which is arguably more relevant practically as discussed earlier.
We note that while some prior work, e.g., [DRY15], does consider prior-independent approximation
in a heterogeneous setting, such results still need to assume the existence of multiple bidders with
the same attribute, i.e., distribution, which can essentially serve as i.i.d. replacements for each
other. We note that our auction GTM also lies in the family of threshold-auctions introduced in
[AB20]. This family has been further studied (see e.g. [Meh22, LMP23]) to show stronger welfare
guarantees beyond VCG in the auto-bidding setting, which is an increasingly important area in the
online advertising industry. This suggests our results on revenue guarantees may be of significant
practical interest.

Another way to deal with the distributional assumption is to understand the cost of learning
the prior distribution from repeated auctions. [KL03] considered the case where one must learn the
value of the buyers’ distributions using posted-price mechanisms. [CR14, GHZ19] considered the
question of determining how many samples one needs from a distribution to compute the optimal
mechanism for revenue maximization. There is a line of work on approximately revenue-optimal
auctions with access of 1 sample (see e.g. [DRY15, AKW14, CDFS19]).

Early works on the closely related direction of prior-free auctions include [GHW01, GHK+06,
CGL14], where the guarantees are worst-case and valuations are not even drawn from prior distri-
butions. From another point of view, prior-free settings are prior-independent settings limited to
(heterogeneous) point distributions. There are other algorithms that study the prior-free setting
with additional assumptions such as the buyers having a specific form as such following a low-
regret algorithm or participating in a dynamic auction where the state changes as the auctioneer
must have limited liability (see e.g. [DSS19, BSW21]). Another approach towards robust auction
design is that of distributionally-robust auctions which assumes that the auctioneer has knowl-
edge of some summary statistics of the distribution such as the mean and the upper limit of the
support, and characterizes the max-min performance, i.e., under the worst case distribution (see
[BTC22, Che22]. A recent work of [ABB22] also tackles the question of designing optimal mech-
anisms for prior-independent distributions but considers the benchmark of regret. Their results
focus on categorizing additive loss between the best mechanism and the optimal welfare that can
be achieved and do not translate to giving multiplicative approximations as in our work. Recently,
there is another line of work on “revelation gaps” that studies non-truthful auctions in the prior-
independent framework [FH18, FHL21]. [HJ21] give lower bounds on prior-independent auctions
in the i.i.d. setting.

2 Preliminaries

We consider the setting of selling one indivisible item to n buyers. Buyer i has valuation vi for
the item. vi is drawn from a distribution Vi, and they are mutually independent. Different from
a classical setting where Vi’s are public information, we assume the seller and the buyers do not
have access to these distributions. The seller, therefore, must use a prior-independent auction to
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sell the item. Her goal is to maximize her expected revenue, using a direct, dominant-strategy
incentive-compatible (DSIC) mechanism (meaning that the mechanism asks each buyer for their
valuation, and for each buyer, reporting their true valuation is a dominant strategy).

We use Myerson to denote the revenue-optimal auction characterized by the seminal work
of [Mye81], and use SPA to denote the second-price auction. Notice that Myerson is not prior-
independent while SPA is. If the context is clear, we also use Myerson and SPA to denote their
respective expected revenue on some given instance.

We use v(k) to denote the k-th maximum value in {v1, v2, . . . , vn}. In particular, v(1) is the
maximum value and SPA = E(v1,...,vn)∼(V1,...,Vn)

[

v(2)
]

. Moreover, we use sk to denote the median of

the distribution of v(k).

2.1 Regularity

Many of our results use the notion of regularity on the value distributions. The regularity as-
sumption is frequently imposed in the literature of auction design, ever since the seminal work of
[Mye81].

In the proof of our positive results, we restrict regular distributions to be continuous (which is
commonly assumed). This allows us to define the median s of the distribution for some random
value v to satisfy Pr[v ≥ s] = 1/2, and similarly for other quantiles, to simplify the exposition. The
proofs directly generalize to point distributions (i.e. deterministic values; they can be considered
as more broadly construed “regular distributions”). However, in our negative results, we consider
point distributions (i.e. deterministic values) to be regular.7

Formally, regular distributions are the distributions where the virtual value function ϕ(v) :=

v − 1−F (v)
f(v) is nondecreasing in v, where f(·) and F (·) are the corresponding probability density

function (PDF) and cumulative distribution function (CDF). Special cases of regular distributions

include all monotone-hazard-rate (MHR) distributions – the distributions with hazard rate f(v)
1−F (v)

nondecreasing in v.
Lemma 2.1 states a property of a regular distribution, which we will use later.

Lemma 2.1. For v drawn from a regular distribution V , let r be its Myerson’s reserve (i.e.,
r ∈ argmaxp p · Pr[v ≥ p]), and s be its median (i.e. Pr[v ≥ s] = 1

2). We have

1. r · Pr[v ≥ r] ≤ s. In other words, Myerson’s revenue is at most s, and thus at most twice the
revenue of selling at s.

2. If s ≤ ℓ ≤ r for some ℓ, then r · Pr[v ≥ r] ≤ 2 · ℓ · Pr[v ≥ ℓ].

Proof. If r ≤ s, then clearly r · Pr[v ≥ r] ≤ r ≤ s. Otherwise, let q(p) = Pr[v ≥ p] and consider
any ℓ ∈ [s, r]. For a regular distribution, the revenue is concave in the quantile space, i.e., v · q(v)
is concave in q(v). Therefore,

ℓ · q(ℓ) ≥ 0 · q(0) · q(ℓ)− q(r)

q(0)− q(r)
+ r · q(r) · q(0)− q(ℓ)

q(0)− q(r)
= r · q(r) · 1− q(ℓ)

1− q(r)
≥ 1

2
· r · q(r)

and therefore proves Statement 2.
Noticing that q(s) = 1

2 , we have s ≥ r · q(r) if we set ℓ = s, which proves Statement 1.
7In the negative results of Theorem 3.1, Theorem 4.5, Theorem 4.6 and Theorem 4.7, we can slightly perturb the

distributions to make them continuous regular, without changing the message of the proof. Theorem 3.2 does utilize
the fact that there can be a probability mass.
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2.2 The Threshold Mechanisms

We will use a class of prior-independent mechanisms: the threshold mechanisms. A threshold
mechanism uses a finite number of thresholds {λ1, λ2, . . . , λm}, where λi happens with probability
wi, with

∑m
i=1 wi = 1. For a value profile (v1, v2, . . . , vn), the mechanism generates a random

threshold λi according to the probabilities (w1, w2, . . . , wm). It then looks at the top two values,
v(1) and v(2). If v(1) ≥ λi · v(2), the item is allocated to the buyer with the highest value for a price
of λi ·v(2). Otherwise, the item is not allocated. (Since we are considering continuous distributions,
ties happen with probability 0, and we omit the mechanism’s behavior to resolve ties. Ties can be
broken in any consistent way without affecting our results.) Note that the threshold mechanisms
are dominant-strategy incentive-compatible (DSIC).

We also generalize this definition to the multi-item case, which can be found in Section 5.

3 Impossibility Results

As we noted in the introduction, our goal is to obtain a mechanism that is competitive with Myerson

or significantly beats SPA in a prior-independent setting. However, if distributions can be different
across all the bidders, we will need to make some assumptions on the class of distributions of the
buyers. As we show in Theorem 3.1, no such mechanism can achieve the desired form of guarantees
for all general distributions. (Following the convention of this line of work on prior-independent
auctions, we limit our attention to DSIC mechanisms.)

Theorem 3.1. For any constant ε > 0, no DSIC mechanism can guarantee a revenue of min(ε ·
Myerson, (1 + ε) · SPA) for general valuation distributions, even when there are only two buyers.

Proof. Fix an integer k > 1, and define for j = 1, . . . , k, the instance Ij to be the following:

• v1 =
√
k · 2j with probability 2−j ; and v1 = 1 with probability 1− 2−j .

• v2 = 1 with probability 1.

We have SPA(Ij) = 1, since v(2) = 1; and Myerson(Ij) ≥
√
k, since selling to Buyer 1 at price√

k · 2j already gives revenue of
√
k. Imagine an adversary who picks instance Ij with probability

1
k for each j = 1, 2, . . . , k. A prior-independent mechanism cannot distinguish which instance the
adversary is picking, and it is essentially run on the mixed instance I∗ where

• v1 =
√
k · 2j with probability 2−j · 1

k , for each j = 1, 2, . . . , k; and v1 = 1 with the rest
probability.

• v2 = 1 with probability 1.

However, even the optimal auction hasMyerson(I∗) = maxp (p · Pr[v1 ≥ p] + v2 · (1− Pr[v1 ≥ p])) ≤
1+ 2√

k
. Therefore, the revenue of any prior-independent mechanism on this mixed instance I∗ is at

most 1 + 2√
k
too. This means for any prior-independent mechanism, its revenue is at most 1 + 2√

k

for some Ij where j ∈ {1, 2, . . . , n}. This is only O
(

1√
k

)

· Myerson or
(

1 +O
(

1√
k

))

· SPA when

k → +∞.

9



This motivates us to limit the class of value distributions. We find that regularity, which is a
widely imposed assumption in auction theory, suffices for us to show the positive results. Some
common examples of regular distributions are uniform, exponential, equal-revenue, and MHR ones.

Now we move on to show that having randomness in our mechanism is also mandatory for a
non-trivial guarantee. We state this result in Theorem 3.2.

Theorem 3.2. For any constant ε > 0, no deterministic DSIC mechanism can guarantee a revenue
of min(ε ·Myerson, (1 + ε) · SPA) for single-point valuation distributions, even when there are only
two buyers.

Proof. Suppose for the purpose of contradiction that such a deterministic truthful auction exists.
It has to always allocate the item to someone, otherwise it gets 0 revenue on that value pair and
thus does not meet the theorem condition there.

For M > 1 + 1
ε , it has to allocate to Buyer 2 on value pair (v1, v2) = (1,M), and the payment

has to be at least (1 + ε).
Therefore, on value pair (1, 1 + 0.5ε), it has to allocate to Buyer 1. Otherwise Buyer 2 will

deviate to report v̂2 = (1 + 0.5ε) on value pair (1,M), to still get the item with less payment.

By the same logic, it has to allocate to Buyer 2 on value pair
(

1, 1
1+0.5ε

)

. Therefore the

allocation rule is not monotone – Buyer 2 loses the allocation when his value increases – and thus
cannot be truthful.

4 Main Result: the Single-Item Case

We discuss our main result in this section. We give a family of parameterized prior-independent
mechanisms that, informally speaking, always achieve a revenue (in expectation) either at least a
certain fraction of the optimal prior-dependent expected revenue of Myerson, or much better than
the expected revenue of SPA. Our result holds for any set of buyers whose values are drawn from
independent, but not necessarily identical, regular distributions.

We first define our geometric-threshold mechanisms, and then present our main result in
Theorem 4.2.

Definition 4.1 (Geometric-Threshold Mechanisms). Given parameters α ≥ 1 and k ∈ Z+, we
denote GTM(α, k) as the threshold mechanism with the following k + 1 thresholds: λ1 = 1 and

w1 = 1
2 ; λi = α

i−1
k and wi =

1
2k for i = 2, . . . , k + 1. Moreover, given a set of distributions on the

private values of buyers, we abuse the notation to denote GTM(α, k) also as the expected revenue
of the seller using the corresponding mechanism.

Theorem 4.2. For any parameter τ > e, there exists some α = O(τ ln2 τ) and k = lnα ∈ Z+ such
that for n buyers with private values drawn from independent (but not necessarily identical) regular
distributions,

GTM(α, k) ≥ min

(

Ω
( 1

ln τ

)

·Myerson, τ · SPA
)

.

Recall GTM(α, k), Myerson and SPA denote the expected revenue achieved by the respective mecha-
nisms from selling one item to the n buyers.

Corollary 4.3 is immediately implied by Theorem 4.2, and captures our main message in a
simpler form – for any constant τ , there is a prior-independent mechanism that either beats SPA

by a factor of τ , or constant-approximates Myerson.
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Corollary 4.3. For any parameter τ = O(1), there exists some α and k such that for n buyers
with private values drawn from independent (but not necessarily identical) regular distributions,

GTM(α, k) ≥ min (Ω(1) ·Myerson, τ · SPA) .

Before proving Theorem 4.2, we first present a lemma which bounds the revenue of Myerson in
our setting.

Lemma 4.4. For n buyers with values v1, . . . , vn drawn from independent regular distributions
V1, . . . , Vn, recall that s1 is the median of the distribution of v(1) = maxni=1 vi. The expected revenue
of Myerson for selling one item to the n buyers satisfies

1

2
s1 ≤ Myerson ≤ (1 + 2 ln 2)s1.

Proof. For the first inequality, notice that sequentially posting a price of s1 for every buyer sells the
item with probability 1

2 . Therefore, Myerson ≥ 1
2s1, since the revenue-optimal mechanism Myerson

gets revenue at least that of the sequential posted-price mechanism.
For the second inequality, consider the virtual welfare (which equals the revenue) achieved by

the optimal mechanism. Let pi be the probability that buyer i wins in the optimal mechanism and
zi be the (1 − pi)-th quantile of Vi, i.e., Pr[vi ≥ zi] = pi. Then using the ex-ante relaxation, the
virtual welfare from buyer i is at most pi · zi. If zi ≤ s1, then pi · zi ≤ pi · s1. Otherwise (i.e. if
zi > s1), then pi · zi ≤ 2 · Pr[vi ≥ s1] · s1 by regularity of Vi and Lemma 2.1. Therefore,

Myerson ≤ s1 ·
n
∑

i=1

(pi + 2Pr[vi > s1]) ≤ s1 ·
(

1 + 2

n
∑

i=1

Pr[vi > s1]

)

≤ (1 + 2 ln 2)s1.

The last step uses the fact that
∑n

i=1 Pr[vi > s1] > ln 2 would imply

Pr

[

n
max
i=1

vi > s1

]

= 1−
n
∏

i=1

(1− Pr[vi > s1]) ≥ 1− exp

(

−
n
∑

i=1

Pr[vi > s1]

)

>
1

2
,

which contradicts with the definition of s1 as the median of the distribution of maxni=1 vi.

We note that there is a line of work on approximating revenue using simple mechanisms such as
anonymous pricing (i.e., sequential posted pricing with the same price); see e.g. [AHN+19, JLQ+19].
Lemma 4.4 gives a simple bound using s1, where the constant factor should be improvable with
techniques from aforementioned work. We now proceed to the proof of our main theorem of this
section.

Proof of Theorem 4.2. Again we let s1 be the median of the distribution of maxni=1 Vi. Without
loss of generality, we assume V1 is the distribution that maximizes Prvi∼Vi

[vi ≥ s1] over i ∈ [n].
Furthermore, we define u2 to be the median of the distribution of maxni=2 Vi. It is straightforward
from the definitions that s1 ≥ u2. Most of our proof works with a generic α ≥ e that gives
k = lnα ∈ Z+, and we pick the appropriate α to get the guarantees in terms of τ in the theorem
statement at the end of our proof.
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We consider the following three cases: (1) When no single value distribution frequently exceeds
s1; (2) When some value distribution frequently exceeds s1, and s1 and u2 are relatively close; (3)
When some value distribution frequently exceeds s1, and s1 ≫ u2.

Case (1): If Pr[v1 ≥ s1] ≤ 1
4 , we will show GTM(α, k) is a constant approximation to Myerson.

The intuition is that the second highest value is at least s1 with constant probability; and if there
are at least two values exceeding s1, we will gain a revenue of at least s1

2 , since our mechanism uses
a threshold λ1 = 1 with probability w1 =

1
2 . Formally, we know

GTM(α, k) ≥ s1
2

· Pr
[

v(2) ≥ s1

]

.

We will show that Pr
[

v(2) ≥ s1
]

is at least a constant in this case. Enumerating which two values
are at least s1, we have

Pr
[

v(2) ≥ s1

]

≥
∑

1≤i<j≤n

Pr[vi ≥ s1] · Pr[vj ≥ s1] · Pr
[

max
t6=i,j

vt < s1

]

≥
∑

1≤i<j≤n

Pr[vi ≥ s1] · Pr[vj ≥ s1] · Pr
[

max
1≤t≤n

vt < s1

]

=
1

2
·
∑

1≤i<j≤n

Pr[vi ≥ s1] · Pr[vj ≥ s1]

=
1

4
·
∑

1≤i≤n

Pr[vi ≥ s1] ·
∑

j 6=i

Pr[vj ≥ s1],

where the second last step uses the definition of s1 being the median of the (continuous) distribution
of v(1). Further, since

∑

1≤j≤n Pr[vj ≥ s1] ≥ Pr[v(1) ≥ s1] ≥ 1
2 and Pr[vi ≥ s1] ≤ Pr[v1 ≥ s1] ≤ 1

4

by our assumption in this case, we have
∑

j 6=i Pr[vj ≥ s1] ≥ 1
2 − 1

4 = 1
4 . Therefore,

Pr
[

v(2) ≥ s1

]

≥ 1

4
· 1
2
· 1
4
=

1

32
,

and thus

GTM(α, k) ≥ s1
64

≥ 1

64(1 + 2 ln 2)
·Myerson.

Case (2): If Pr[v1 ≥ s1] >
1
4 and s1 ≤ 12αu2, we will show GTM(α, k) is an Ω

(

1
k

)

-approximation
to Myerson. Note that by our choice of k = lnα, the consecutive thresholds in our mechanism are
separated by a constant factor of α1/k = e.

Observe that if v1 ≥ s1 and maxni=2 vi ≥ u2, then v(2) (i.e. the second highest value) is at least
u2 and v(1) ≥ s1. In this case, the thresholds in our mechanisms are v(2), e · v(2), e2 · v(2), . . . , αv(2).
When v(1)

v(2)
≤ α, there exists a threshold setting the price to be at least v(1)

e ≥ s1
e , and when v(1)

v(2)
> α,

the largest threshold will set the price to be αv(2) ≥ αu2 ≥ s1/12. The mechanism will pick each
threshold with probability (at least) 1

2k , and thus GTM(α, k) gets at least a revenue of 1
2k · s1

12 by
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just looking at when v1 ≥ s1 and maxni=2 vi ≥ u2. This allows us to show

GTM(α, k) ≥ 1

2k
· s1
12

· Pr
[

v1 ≥ s1 ∧
n

max
i=2

vi ≥ u2

]

=
1

2k
· s1
12

· Pr [v1 ≥ s1] · Pr
[

n
max
i=2

vi ≥ u2

]

≥ 1

2k
· s1
12

· 1
4
· 1
2
=

s1
192k

≥ 1

192(1 + 2 ln 2)k
·Myerson.

Case (3): Otherwise (i.e., Pr[v1 ≥ s1] >
1
4 and s1 > 12αu2), we will show GTM(α, k) = Ω( α

k lnα) ·
SPA. Notice that if v1 ≥ s1 and u2 ≤ max2≤i≤n vi ≤ s1

α , then v(1) = v1 and v(2) = max2≤i≤n vi ≤
v(1)

α , which means our mechanism will have revenue at least 1
2k ·α·max2≤i≤n vi by using the threshold

α · v(2) with probability 1
2k . Therefore,

GTM(α, k) ≥ E

[

1

2k
· α · n

max
i=2

vi

∣

∣

∣

∣

v1 ≥ s1 ∧ u2 ≤
n

max
i=2

vi ≤
s1
α

]

· Pr
[

v1 ≥ s1 ∧ u2 ≤
n

max
i=2

vi ≤
s1
α

]

=
α

2k
· E
[

n
max
i=2

vi

∣

∣

∣

∣

u2 ≤
n

max
i=2

vi ≤
s1
α

]

· Pr [v1 ≥ s1] · Pr
[

u2 ≤
n

max
i=2

vi ≤
s1
α

]

≥ α

2k
· E
[

n
max
i=2

vi

∣

∣

∣

∣

u2 ≤
n

max
i=2

vi ≤
s1
α

]

· 1
4
·
(

Pr

[

n
max
i=2

vi ≥ u2

]

− Pr

[

n
max
i=2

vi >
s1
α

])

≥ α

2k
· E
[

n
max
i=2

vi

∣

∣

∣

∣

u2 ≤
n

max
i=2

vi ≤
s1
α

]

· 1
4
·
(

1

2
− 1 + 2 ln 2

12

)

=
(5− 2 ln 2)α

96k
· E
[

n
max
i=2

vi

∣

∣

∣

∣

u2 ≤
n

max
i=2

vi ≤
s1
α

]

.

The second-last step uses the fact that Pr [maxni=2 vi ≥ 12u2] ≤ 1+2 ln 2
12 ; If that doesn’t hold, se-

quential posted pricing at 12u2 on buyers 2, 3, . . . , n would give revenue more than (1 + 2 ln 2)u2,
which contradicts Lemma 4.4.

Next, we give an upper bound of similar form for SPA. Let secni=j vi denote the second largest
value from the set {vj , vj+1, . . . , vn}. We have

SPA = E

[

n
sec
i=1

vi

]

=

∫ +∞

0
Pr

[

n
sec
i=1

vi ≥ t

]

dt.

Evaluating the integral separately at t ∈ [0, u2), t ∈ [u2, s1/α), t ∈ [s1/α, s1), and t ∈ [s1,+∞), we
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get

SPA ≤
∫ u2

0
dt+

∫ s1/α

u2

Pr

[

n
max
i=2

vi ≥ t

]

dt+

∫ s1

s1/α
Pr

[

n
max
i=2

vi ≥ t

]

dt+

∫ +∞

s1

(

Pr

[

v1 ≥ t ∧ n
max
i=2

vi ≥ t

]

+ Pr

[

n
sec
i=2

vi ≥ t

])

dt

= u2 +

∫ s1/α

u2

(

Pr

[

t ≤ n
max
i=2

vi ≤ s1/α

]

+ Pr

[

n
max
i=2

vi > s1/α

])

dt+

∫ s1

s1/α
Pr

[

n
max
i=2

vi ≥ t

]

dt+

∫ +∞

s1

(

Pr

[

v1 ≥ t ∧ n
max
i=2

vi ≥ t

]

+ Pr

[

n
sec
i=2

vi ≥ t

])

dt

≤ u2 +

∫ s1/α

u2

(

Pr

[

t ≤ n
max
i=2

vi ≤ s1/α

]

+
(1 + 2 ln 2)u2α

s1

)

dt+

∫ s1

s1/α

(1 + 2 ln 2)u2
t

dt+

∫ +∞

s1

(

s1
t
· (1 + 2 ln 2)u2

t
+ Pr

[

n
sec
i=2

vi ≥ t

])

dt.

In the last step we used the fact that Pr[v1 ≥ t] ≤ s1
t , since pricing at t for Buyer 1 should not give

revenue more than s1 by Lemma 2.1; and Pr [maxni=2 vi ≥ t] ≤ (1+2 ln 2)u2

t , since sequential posted
pricing at t for Buyer 2, 3, . . . , n should not give revenue more than (1+2 ln 2)u2, which is an upper
bound for the optimal revenue given by Lemma 4.4 applied to (only) buyers 2, . . . , n. To continue
with our derivation, we have

SPA ≤ u2 +

∫ s1/α

u2

(

Pr

[

t ≤ n
max
i=2

vi ≤ s1/α

]

+
(1 + 2 ln 2)u2α

s1

)

dt+

∫ s1

s1/α

(1 + 2 ln 2)u2
t

dt+

∫ +∞

s1

(

(1 + 2 ln 2)s1u2
t2

+ Pr

[

n
sec
i=2

vi ≥ t

])

dt

≤ u2 +

∫ s1/α

u2

(

Pr

[

t ≤ n
max
i=2

vi ≤ s1/α

∣

∣

∣

∣

u2 ≤
n

max
i=2

vi ≤ s1/α

])

dt+ (1 + 2 ln 2)u2 + (1 + 2 ln 2)u2 lnα+

(1 + 2 ln 2)s1u2
s1

+

∫ +∞

s1

Pr

[

n
sec
i=2

vi ≥ t

]

dt

≤ u2 +

∫ s1/α

u2

(

Pr

[

t ≤ n
max
i=2

vi ≤ s1/α

∣

∣

∣

∣

u2 ≤
n

max
i=2

vi ≤ s1/α

])

dt+

∫ +∞

s1

Pr

[

n
sec
i=2

vi ≥ t

]

dt+ (1 + 2 ln 2)(2 + lnα)u2

= E

[

n
max
i=2

vi

∣

∣

∣

∣

u2 ≤
n

max
i=2

vi ≤ s1/α

]

+

∫ +∞

s1

Pr

[

n
sec
i=2

vi ≥ t

]

dt+ ((3 + 4 ln 2) + (1 + 2 ln 2) lnα)u2.
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Finally, notice that

∫ +∞

s1

Pr

[

n
sec
i=2

vi ≥ t

]

dt ≤
∫ +∞

s1

Pr

[

n
max
i=2

vi ≥ t

]2

dt

≤
∫ +∞

s1

((1 + 2 ln 2)u2)
2

t2
dt

=
((1 + 2 ln 2)u2)

2

s1
<

(1 + 2 ln 2)2

12
· u2,

where we once again used Lemma 4.4. Therefore,

SPA ≤ E

[

n
max
i=2

vi

∣

∣

∣

∣

u2 ≤
n

max
i=2

vi ≤ s1/α

]

+
(1 + 2 ln 2)2

12
· u2 + ((3 + 4 ln 2) + (1 + 2 ln 2) lnα)u2

≤ E

[

n
max
i=2

vi

∣

∣

∣

∣

u2 ≤
n

max
i=2

vi ≤ s1/α

]

·
(

1 +
(1 + 2 ln 2)2

12
+ (3 + 4 ln 2) + (1 + 2 ln 2) lnα

)

.

Thus,

GTM(α, k)

SPA
≥

(5−2 ln 2)α
96k

(

1 + (1+2 ln 2)2

12 + (3 + 4 ln 2) + (1 + 2 ln 2) lnα
) ≥ 1

256
· α

k lnα
,

when α ≥ e.
Taking k = lnα and thus α1/k = e, we get that in all cases, GTM is either at least α

256 ln2 α
·SPA

(i.e. Case (3)) or Ω(1/ lnα) ·Myerson (i.e. Cases (1),(2)).
To get the guarantees in the theorem and corollary statements, when τ ∈ (1, e], it suffices to

take α = e12 to get α
256 ln2 α

> e ≥ τ on the SPA side, and Ω(1/ lnα) is Ω(1) on the Myerson side.

When τ > e, it suffices to take α ∈ [e11, e12] · τ ln2 τ (with k ∈ Z+). It is easy to check α
256 ln2 α

≥ τ
on the SPA side, and Ω(1/ lnα) is Ω(1/ ln τ) on the Myerson side.

4.1 Lower Bounds

We complement our positive result with Theorem 4.5, which states that the guarantee in Theorem 4.2
is tight up to constants, even for 2 buyers with deterministic value distributions.

Theorem 4.5. For 2 buyers with deterministic values and any τ ≥ 3, there is no prior-independent
DSIC mechanism Mec with revenue satisfying

Mec ≥ min

(

2.5

ln τ
·Myerson, τ · SPA

)

.

Proof. Suppose for the purpose of contradiction that such a mechanism Mec exists. Fix a parameter
m ∈ Z+ to be decided later based on τ , and consider the family of m examples each with two buyers
whose values are v1 = 1 and v2(k) = 2k for k ∈ {1, 2, . . . ,m}. Let Meck, Myersonk and SPAk be
the respective revenues from the point-distribution instance (v1, v2(k)). Treating each example as
its own point-distribution, we need to satisfy the guarantee Meck ≥ min

(

2.5
ln τ ·Myersonk, τ · SPAk

)

for (v1, v2(k)) for all k ∈ {1, 2, . . . ,m} simultaneously. Note that Myersonk = 2k and SPAk = 1 for
all k.
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We argue that Mec cannot achieve this guarantee, by first proving
∑m

k=1 pk · Meck ≤ 3 where
pk := 1

2k
· 2m

2m−1 gives a probability distribution over k. To show this we consider a single instance with
distribution over a support on the aforementioned m examples. Suppose the instance (v1, v2(k))
appears with probability pk for each k, then Mec can get a revenue of at most 3 (at most 1 from
Buyer 1 and at most 2 from Buyer 2 at any price) on this randomized instance. Choose m so that
2m + 1 ≤ τ < 2m+1 + 1, and thus Meck ≤ 2m < τ · SPAk. This means for Mec to exist we must
have Meck ≥ 2.5

ln τ ·Myersonk = 2.5
ln τ · 2k for all k, then

m
∑

k=1

pk ·Meck ≥ 2.5

ln τ
·

m
∑

k=1

pk ·Myersonk

=
2.5

ln τ
·

m
∑

k=1

1

2k
· 2m

2m − 1
· 2k

=
2.5m

ln τ
· 2m

2m − 1
> 3.

The contradiction implies the theorem statement.

We note that constructions in the work of [AB20] can give lower bounds when τ is close to 1.
We present Theorem 4.6 and Theorem 4.7 in addition to our lower bound of Theorem 4.5.

Theorem 4.6 follows from the same instance as in [AB20], where SPA is the optimal prior-
independent auction there. Therefore, their lower bound that no prior-independent mechanism
(with a technical assumption) can beat 0.715 ·Myerson in the instance implies Theorem 4.6.

Theorem 4.6 ([AB20]). Even for two i.i.d. MHR distributions, for any ε > 0, no prior-independent
DSIC mechanism Mec with finite Arzelà variation (see [AB20, Section 8]) can always satisfy Mec ≥
min(0.715 ·Myerson, (1 + ε) · SPA) .

For Theorem 4.7, we again look at the same family of instances as in [AB20]. However, here
we need to take into account the performance of SPA and balance the parameters. They show no
prior-independent mechanism can beat 0.556 · Myerson, and later [HJL20] give a stronger, tight
impossibility result that no prior-independent mechanism can beat 0.524 · Myerson. We show no
prior-independent mechanism can beat min(0.572 ·Myerson, (1 + ε) · SPA).

Theorem 4.7. Even for two i.i.d. regular distributions, for any ε > 0, no prior-independent DSIC
mechanism Mec with finite Arzelà variation can always satisfy Mec ≥ min((47 + ε) ·Myerson, (1 +
ε) · SPA).

Proof. Following the work of [AB20], we look at the regular distribution:

Fa(v) =

{

1− 1
v+1 if v < a

1 if v ≥ a
.

On a pair of these distributions, SPA =
∫ a
0 (Prv∼Fa [v ≥ t])2 dt =

∫ a
0

(

1
t+1

)2
dt = a

a+1 , andMyerson =

a · (1 − ( a
a+1 )

2) = a(2a+1)
(a+1)2

. [AB20] show that for any ε > 0, no prior-independent mechanism Mec
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can guarantee

Mec

Myerson
≥ (1 + ε) ·max

(

1

2− q
,

max
γ>1

(

q

2− q
+ 2 · γ

γ − 1
· 1

1− q
· 1

2− q
·
(

1− q

1− q + γq
− 1

γ − 1
ln

γ

1− q + γq

)))

where q = 1
1+a .

Let a = 3. We have q = 1
4 , and it is impossible to beat 4

7Myerson = SPA.

5 Selling Multiple Identical Items

In this section, we consider a generalization where the seller is selling k identical items. The
buyers are unit-demand, meaning each of them can only receive at most one copy. Without loss of
generality, we assume log2 k is an integer to simply our exposition. (In general, we can reduce k to
the nearest power of 2, and the loss of constant factors are absorbed in the theorem statements in
this section.)

Multi-Item Threshold Mechanisms We generalize the threshold mechanisms in Section 2.2
to the multi-item case. Such a mechanism with capacity parameter t still uses a finite number
of thresholds {λ1, λ2, . . . , λm}, where λi happens with probability wi with

∑m
i=1 wi = 1. For a

value profile (v1, v2, . . . , vn), the mechanism generates a random threshold λi according to the
probabilities (w1, w2, . . . , wm). It then looks at values v(j) and v(t+1), separately for each j ∈ [t].
If v(j) ≥ λi · v(t+1), one item is allocated to buyer j for a price of λi · v(t+1). Otherwise, no item is
allocated to buyer j.

Definition 5.1 (Multi-Item Geometric-Threshold Mechanisms). The mechanism MGTM(τ) runs
GTM2j (α, c) for j ∈ {0, 1, . . . , log2 k} each with probability 1

1+log2 k
, where α = O

(

k2τ ln2(kτ)
)

and

c = lnα ∈ Z+. GTM2j (α, c) is the multi-item threshold mechanism with capacity parameter t = 2j

and m+ 1 thresholds: λ1 = 1 and w1 =
1
2 ; λi = α

i−1
k and wi =

1
2m for i = 2, . . . ,m+ 1.

Theorem 5.2. For n buyers and k items, the mechanism MGTM(τ) satisfies

MGTM(τ) ≥ min

(

Ω
( 1

ln(kτ)
· 1

ln k

)

·Myerson, τ · VCG
)

.

5.1 An Upper Bound for Myerson

To prove Theorem 5.2, we first give an upper bound for Myerson. Recall we denote si as the median
of the distribution of v(i).

Lemma 5.3. Myerson ≤ 12 ·∑log2 k
j=0 2j · s2j .

Proof. The statement clearly follows from Lemma 4.4 when k = 1, and thus we assume k ≥ 2 in
the rest of the proof.
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Suppose we have the following (log2 k) + 1 buckets [0, s2log2 k ], (s2log2 k , s2(log2 k)−1 ], . . . , (s2, s1].
Bucket j is the one whose largest value is s2j , where j ∈ {0, 1, . . . , log2 k}. Put each value distri-
bution Vi into one of the buckets depending on which range the median of Vi is in. (Note that the
median of Vi cannot exceed s1, since s1 is the median of the distribution of v(1).) Let Bj be the set
of indices of distributions in Bucket j, and let nj := |Bj |.

Now we describe a relaxation of the allocation constraint. Instead of allocating to at most k
buyers, we allow allocation to any buyer in B0∪B1∪· · ·∪B(log2 k)−1 arbitrarily, and require that we
allocate to at most k buyers in Blog2 k. The maximum revenue under these new relaxed constraints
is an upper bound for Myerson.

The revenue we can get from buyers in B0 ∪B1 ∪ · · · ∪B(log2 k)−1 is at most

(log2 k)−1
∑

j=0

nj · s2j

by Lemma 2.1.
The virtual welfare, which is equal to the revenue, that we can get from buyers in Blog2 k can

be upper-bounded similar to the proof of Lemma 4.4. Let pi be the allocation probability to buyer
i, and let wi be the (1− pi)-th quantile of Vi, i.e., Pr[vi ≥ wi] = pi. The virtual welfare from buyer
i is at most pi · wi. If wi ≤ sk, then pi · wi ≤ pi · sk. Otherwise, pi · wi ≤ 2 · Pr[vi ≥ sk] · sk by
Lemma 2.1. To summarize, we have

Myerson ≤





(log2 k)−1
∑

j=0

nj · s2j



+





∑

i∈Blog2 k

pi · sk



+





∑

i∈Blog2 k

2 · Pr[vi ≥ sk] · sk





≤





(log2 k)−1
∑

j=0

nj · s2j



+ k · sk +





∑

i∈Blog2 k

2 · Pr[vi ≥ sk] · sk



 .

Further, using Lemma 5.4 and Lemma 5.5 that we are about to prove, we get

Myerson ≤





(log2 k)−1
∑

j=0

12 · 2j · s2j



+ k · sk + 6 · k · sk

≤ 12 ·
log2 k
∑

j=0

2j · s2j ,

and thus finishes the proof.

Lemma 5.4. For j < log2 k, we have nj ≤ 12 · 2j .

Proof. Let Xi = 1 denote the event of vi ≥ s2j+1 and Xi = 0 otherwise. Xi’s are mutually

independent for i ∈ Bj. Let µ := E
[

∑

i∈Bj
Xi

]

. Using the Chernoff bound, we have

Pr





∑

i∈Bj

Xi ≥
µ

2



 ≥ 1− e−
µ/8.
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Note that for each i ∈ Bj, Pr[vi ≥ s2j+1 ] ≥ 1
2 . Therefore, µ ≥ nj

2 and thus

Pr





∑

i∈Bj

Xi ≥
nj

4



 ≥ 1− e−
nj/16.

If nj > 12 · 2j , then

Pr





∑

i∈Bj

Xi ≥ 2j+1



 ≥ 1− e−
12/16 >

1

2
,

contradicting with the definition of s2j+1 , as too frequently 2j+1 values exceed s2j+1 .

Lemma 5.5. If k ≥ 2, then
∑

i∈Blog2 k
Pr[vi ≥ sk] ≤ 3k.

Proof. Let Xi = 1 denote the event of vi ≥ sk and Xi = 0 otherwise. Xi’s are mutually independent

for i ∈ Blog2 k. Let µ := E
[

∑

i∈Blog2 k
Xi

]

. Using the Chernoff bound, we have

Pr





∑

i∈Blog2 k

Xi ≥
µ

2



 ≥ 1− e−
µ/8.

If µ > 3k, then

Pr





∑

i∈Blog2 k

Xi ≥ k



 ≥ 1− e−
3k/8 >

1

2
,

contradicting with the definition of sk, which is the median of the distribution of the k-th maximum
value.

5.2 Extending the Single-Item Case

Lemma 5.6. For n buyers, k items and parameter τ ′, there exists some α = O(τ ′ ln2 τ ′) and
c = lnα ∈ Z+ such that for each t ∈ [k],

GTMt(α, c) ≥ min

(

Ω
( 1

ln τ ′

)

· t · st, τ ′ · t · E[v(t+1)]

)

.

The proof of Lemma 5.6 is conceptually similar to that of Theorem 4.2, and therefore we post-
pone it to the appendix. That said, the generalization does require new technical insights. In
particular, we prove new technical steps in the form of Lemma A.1 and Lemma A.2.

Lemma A.1 is the core lemma to generalize Case (1) of Theorem 4.2. By definition of st, the
number of values above st is at least t with probability 1

2 . What Lemma A.1 states is under the
case condition, the number of values above st is at least t+ 1 with constant probability as well, in
the style of an “anti-concentration” bound. Lemma A.2 is a major step towards generalizing Case
(3) of Theorem 4.2. It is a tail upper bound for the minimum of multiple regular distributions, a
counterpart of Lemma 2.1 in the single-item case.
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5.3 Completing the Proof

Proof of Theorem 5.2. Notice that MGTM(τ) uses the mechanism GTMt(α, c) with probability
Ω
(

1
ln k

)

for each t = 2j where j ∈ {0, 1, . . . , log2 k}. For any t, we can use Lemma 5.6 with
τ ′ = k2τ to get

GTMt(α, c) ≥ min

(

Ω
( 1

ln τ ′

)

· t · st, τ ′ · t · E[v(t+1)]

)

≥ min

(

Ω
( 1

ln(k2τ)

)

· t · st, k2τ · t · E[v(k+1)]

)

≥ min

(

Ω
( 1

ln(kτ)

)

· t · st, kτ · VCG
)

.

The last step above uses VCG = k · E[v(k+1)].
Now we break into two cases:

Case (1): Suppose for some j ∈ {0, 1, . . . , log2 k}, GTM2j (α, c) ≥ kτ · VCG. Since MGTM(τ) uses
GTM2j (α, c) with probability 1

1+log2 k
, we know MGTM(τ) gets revenue at least τ · VCG.

Case (2): Otherwise, we know for every j ∈ {0, 1, . . . , log2 k}, GTM2j (α, c) ≥ Ω
(

1
ln(kτ)

)

· 2j · s2j .
Additionally, Lemma 5.3 states that

log2 k
∑

j=0

2j · s2j ≥
1

12
·Myerson.

Therefore,

MGTM(τ) ≥ Ω
( 1

ln(kτ)

)

· 1

1 + log2 k

log2 k
∑

j=0

2j · s2j

≥ Ω
( 1

ln(kτ)
· 1

ln k

)

·Myerson.

Combining the two cases gives the theorem statement.

6 Conclusions

In this work, we studied the design of prior-independent auctions for bidders with heterogeneous
value distributions. We showed a mechanism that can either achieve a constant fraction of the
optimal revenue of any mechanism that knows the value distributions, or beat the revenue of the
second-price auction by an arbitrarily large constant factor. Our mechanism has asymptotically
optimal trade-off between the constants. We generalized our result to selling multiple identical
items and gave a similar message. A possible future direction is to give better bounds and to
consider further generalizations.

As another intriguing future direction, one can consider other ways to measure the effectiveness
of prior-independent auctions for heterogeneous bidders. What does “approximately optimal” mean
and how can we “rank” different mechanisms? We leave alternative answers to these questions for
future work.
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A Missing Proofs in Section 5

Lemma A.1 (Anti-Concentration). Let X1, . . . ,Xn be mutually independent Bernoulli random
variables. k < n is a positive integer. Suppose we have all three conditions below:

1. E[X1] ≥ E[X2] ≥ · · · ≥ E[Xn].

2. Pr [
∑n

i=1 Xi ≥ k] = 1
2 .

3. Pr [X1 = X2 = · · · = Xk = 1] ≤ 1
4 .
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Then,

Pr

[

n
∑

i=1

Xi ≥ k + 1

]

> 0.01.

Proof. We divide our proof into two cases:
Case (1): Suppose E[Xk] ≤ 1

4 . Define Qj = 1 if
∑j

i=1Xi ≥ k and Qj = 0 otherwise. We notice
that

1. E[Qk] ≤ 1
4 .

2. E[Qn] =
1
2 .

3. 0 ≤ E[Qj+1]− E[Qj] ≤ E[Xj+1] ≤ 1
4 , for each j ∈ {k, k + 1, . . . , n− 1}.

In other words, the sequence E[Qj ] is increasing in j but cannot have a jump over 1
4 in a single

step. Therefore, there is some j∗ ∈ {k, k + 1, . . . , n− 1}, so that E[Qj∗] ∈ [18 ,
3
8 ].

Since Pr [
∑n

i=1 Xi ≥ k] = 1
2 and Pr

[

∑j∗

i=1 Xi ≥ k
]

≤ 3
8 , we know

Pr





n
∑

i=j∗+1

Xi ≥ 1



 ≥ 1

2
− 3

8
=

1

8
.

Further,

Pr

[

n
∑

i=1

Xi ≥ k + 1

]

≥ Pr





j∗
∑

i=1

Xi ≥ k



 · Pr





n
∑

i=j∗+1

Xi ≥ 1



 ≥ 1

64
.

Case (2): Suppose E[Xk] >
1
4 . Define Rj = 1 if

∑j
i=1Xi = j and Rj = 0 otherwise. Notice that

1. E[R0] = 1.

2. E[Rk] ≤ 1
4 .

3. 1
4 < E[Xj+1] =

E[Rj+1]
E[Rj ]

≤ 1, for each j ∈ {0, 1, . . . , k − 1}.

In other words, the sequence E[Rj] is decreasing in j but cannot decrease by a factor more than 1
4

in a single step. Therefore, there is some j∗ ∈ {1, 2, . . . , k}, so that E[Rj∗ ] ∈ [0.1, 0.4].

Since Pr [
∑n

i=1 Xi ≥ k] = 1
2 and Pr

[

∑j∗

i=1 Xi ≥ j∗
]

≤ 0.4, we know

Pr





n
∑

i=j∗+1

Xi ≥ k − j∗ + 1



 ≥ 1

2
− 0.4 = 0.1.

Therefore,

Pr

[

n
∑

i=1

Xi ≥ k + 1

]

≥ Pr





j∗
∑

i=1

Xi ≥ j∗



 · Pr





n
∑

i=j∗+1

Xi ≥ k − j∗ + 1



 ≥ 0.01.
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Proof of Lemma 5.6. Similar to the proof of Theorem 4.2, we denote v(t) as the t-th largest value
among v1, . . . , vn, and let st be the median of the distribution of v(t). Without loss of generality,
we index the bidders in non-increasing order according to Prvi∼Vi

[vi ≥ st] for i ∈ [n]. Furthermore,
we define ut+1 to be the median of the distribution of maxni=t+1 vi. Again we work with a generic
α ≥ e that gives c = lnα ∈ Z+, and we pick the appropriate α to get the guarantees in terms of τ ′′

in the theorem statement at the end of our proof.
We can naturally extend the three cases considered in the proof of Theorem 4.2 to multiple

items as follows.
Case (1): When Pr [vi ≥ st∀i ∈ [1, t]] ≤ 1

4 , we will show GTM(α, k) is at least a constant
factor of st. Define Xi as the indicator of event vi ≥ st for i = 1, . . . , n. Note our ordering of
bidders, together with the definition of st and the assumption of this specific case, allows us to use
Lemma A.1, which gives

Pr
[

v(t+1) ≥ st

]

≥ 0.01,

so with at least a constant probability, we will have at least t+1 values that are at least st. When
this happens, we will gain a revenue of at least t·st

2 , since our mechanism uses a threshold λ1 = 1
with probability w1 =

1
2 . Consequently, we know

GTMt(α, c) ≥
t · st
2

· Pr
[

v(t+1) ≥ st

]

≥ 0.005 · t · st.

Case (2): If Pr [vi ≥ st∀i ∈ [1, t]] > 1
4 and st ≤ 12αut+1, we will show GTMt(α, c) is at least an

Ω
(

1
k

)

factor of st. Note that by our choice of c = lnα, the consecutive thresholds in our mechanism

are separated by a constant factor of α1/k = e.
Observe that when vi ≥ st for all i ∈ [1, t] and maxnj=t+1 vj ≥ ut+1, then v(t+1) is at least

min(st, ut+1), and thus at least st
12α from the assumption in this case. When this happens, the

thresholds in our mechanisms are v(t+1), e · v(t+1), e2 · v(t+1), . . . , αv(t+1). When v(t)

v(t+1) ≤ α, there

exists a threshold setting the price to be at least v(t)

e ≥ st
e , and when v(t)

v(t+1) > α, the largest

threshold will set the price to be αv(t+1) ≥ st/12. The mechanism will pick each threshold with
probability (at least) 1

2k , and thus GTMt(α, c) gets at least a revenue of t
2k · st12 (since we sell t items)

by just looking at when vi ≥ st for all i ∈ [1, t] and maxnj=t+1 vj ≥ ut+1. This allows us to show

GTMt(α, c) ≥
t

2k
· st
12

· Pr
[

vi ≥ st∀i ∈ [1, t] ∧ n
max
j=t+1

vj ≥ ut+1

]

=
t

2k
· st
12

· Pr [vi ≥ st∀i ∈ [1, t]] · Pr
[

n
max
j=t+1

vj ≥ ut+1

]

≥ t

2k
· st
12

· 1
4
· 1
2
=

st
192k

,

where in the last step we used the assumption of this case and the definition of ut+1 as the median
of maxnj=t+1 vj .

Case (3): Otherwise (i.e., Pr [vi ≥ st∀i ∈ [1, t]] > 1
4 and st > 12αut+1) . Notice that if vi ≥

st∀i ∈ [1, t] and ut+1 ≤ maxt+1≤j≤n vj ≤ st
α , then v(t) ≥ st and v(t+1) = maxt+1≤j≤n vj ≤ v(t)

α ,
which means our mechanism will have revenue at least t

2k ·α ·maxt+1≤j≤n vj by using the threshold
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α · v(t+1) with probability 1
2k . Therefore,

GTMt(α, c) ≥E

[

t

2k
· α · n

max
j=t+1

vj

∣

∣

∣

∣

vi ≥ st∀i ∈ [1, t] ∧ ut+1 ≤ n
max
j=t+1

vj ≤
st
α

]

· Pr
[

vi ≥ st∀i ∈ [1, t] ∧ ut+1 ≤
n

max
j=t+1

vj ≤
st
α

]

=
αt

2k
· E
[

n
max
j=t+1

vj

∣

∣

∣

∣

ut+1 ≤
n

max
j=t+1

vj ≤
st
α

]

· Pr [vi ≥ st∀i ∈ [1, t]] · Pr
[

ut+1 ≤
n

max
j=t+1

vj ≤
st
α

]

≥αt

2k
· E
[

n
max
j=t+1

vj

∣

∣

∣

∣

ut+1 ≤
n

max
j=t+1

vj ≤
st
α

]

· 1
4
·
(

Pr

[

n
max
j=t+1

vj ≥ ut+1

]

− Pr

[

n
max
j=t+1

vj >
st
α

])

≥αt

2k
· E
[

n
max
j=t+1

vj

∣

∣

∣

∣

ut+1 ≤
n

max
j=t+1

vj ≤
st
α

]

· 1
4
·
(

1

2
− 1 + 2 ln 2

12

)

=
(5− 2 ln 2)αt

96k
· E
[

n
max
j=t+1

vj

∣

∣

∣

∣

n
max
j=t+1

vj ∈ [ut+1,
st
α
]

]

.

The third-last step uses the assumption of this case, and the second-last step uses the definition of

ut+1 as the median, and also fact that Pr
[

maxnj=t+1 vj ≥ 12ut+1

]

≤ 1+2 ln 2
12 ; If that doesn’t hold,

in the case of selling a single item to buyers t + 1, . . . , n, the sequential posted pricing at 12ut+1

would give revenue more than (1 + 2 ln 2)ut+1, which contradicts Lemma 4.4.
Next, we give an upper bound of similar form for E

[

v(t+1)
]

. Again, we use secni=j vi to denote
the second largest value from the set {vj , vj+1, . . . , vn}. We have

E
[

v(t+1)
]

=

∫ +∞

0
Pr
[

v(t+1) ≥ x
]

dx.

Evaluating the integral separately at x ∈ [0, ut+1), x ∈ [ut+1, st/α), x ∈ [st/α, st), and x ∈ [st,+∞),
we get

E
[

v(t+1)
]

≤
∫ ut+1

0
dx+

∫ st/α

ut+1

Pr

[

n
max
j=t+1

vj ≥ x

]

dx+

∫ st

st/α
Pr

[

n
max
j=t+1

vj ≥ x

]

dx+

∫ +∞

st

Pr
[

v(t+1) ≥ x
]

dx

≤ ut+1 +

∫ st/α

ut+1

(

Pr

[

n
max
j=t+1

vj ∈ [x, st/α]

]

+ Pr

[

n
max
j=t+1

vj > st/α

])

dx+

∫ st

st/α
Pr

[

n
max
j=t+1

vj ≥ x

]

dx+

∫ +∞

st

(

Pr

[

vi ≥ x∀i ∈ [1, t] ∧ n
max
j=t+1

vj ≥ x

]

+ Pr

[

n
sec

j=t+1
vj ≥ x

])

dx

≤ ut+1 +

∫ st/α

ut+1

(

Pr

[

n
max
j=t+1

vj ∈ [x, st/α]

]

+
(1 + 2 ln 2)ut+1α

st

)

dx+

∫ st

st/α

(1 + 2 ln 2)ut+1

x
dx+

∫ +∞

st

(

3st
x

· (1 + 2 ln 2)ut+1

x
+ Pr

[

n
sec

j=t+1
vj ≥ x

])

dx.

The first step uses the fact that we always have v(t+1) ≤ maxnj=t+1 vj . In the last step we used

Lemma A.2 and 8
e ≤ 3; and Pr

[

maxnj=t+1 vj ≥ x
]

≤ (1+2 ln 2)ut+1

x , since sequential posted pricing at

x for Buyer t+1, . . . , n should not give revenue more than (1+2 ln 2)ut+1, which is an upper bound
for the optimal revenue given by Lemma 4.4 applied to selling one item to buyers t+ 1, . . . , n. To
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continue with our derivation, we have

E
[

v(t+1)
]

≤ ut+1 +

∫ st/α

ut+1

(

Pr

[

n
max
j=t+1

vj ∈ [x, st/α]

]

+
(1 + 2 ln 2)ut+1α

st

)

dx+

∫ st

st/α

(1 + 2 ln 2)ut+1

x
dx

+

∫ +∞

st

(

3(1 + 2 ln 2)stut+1

x2
+ Pr

[

n
sec

j=t+1
vj ≥ x

])

dx.

≤ ut+1 +

∫ st/α

ut+1

(

Pr

[

n
max
j=t+1

vj ∈ [x, st/α]

∣

∣

∣

∣

n
max
j=t+1

vj ∈ [ut+1, st/α]

])

dx+ (1 + 2 ln 2)ut+1

+ (1 + 2 ln 2)ut+1 lnα+
3(1 + 2 ln 2)stut+1

st
+

∫ +∞

st

Pr

[

n
sec

j=t+1
vj ≥ x

]

dx

≤ ut+1 +

∫ st/α

ut+1

(

Pr

[

n
max
j=t+1

vj ∈ [x, st/α]

∣

∣

∣

∣

n
max
j=t+1

vj ∈ [ut+1, st/α]

])

dx

+

∫ +∞

st

Pr

[

n
sec

j=t+1
vj ≥ x

]

dx+ (1 + 2 ln 2)(4 + lnα)ut+1

= E

[

n
max
j=t+1

vj

∣

∣

∣

∣

n
max
j=t+1

vj ∈ [ut+1, st/α]

]

+

∫ +∞

st

Pr

[

n
sec

j=t+1
vj ≥ x

]

dx

+ ((5 + 8 ln 2) + (1 + 2 ln 2) lnα)ut+1.

Finally, notice that

∫ +∞

st

Pr

[

n
sec

j=t+1
vj ≥ x

]

dx ≤
∫ +∞

st

Pr

[

n
max
j=t+1

vj ≥ x

]2

dx

≤
∫ +∞

st

((1 + 2 ln 2)ut+1)
2

x2
dx

=
((1 + 2 ln 2)ut+1)

2

st
<

(1 + 2 ln 2)2

12
· ut+1,

where we once again used Lemma 4.4 in the second step, and our assumption st > 12αut+1 with
α ≥ e in the last step.

Therefore,

E
[

v(t+1)
]

≤E

[

n
max
j=t+1

vj

∣

∣

∣

∣

n
max
j=t+1

vj ∈ [ut+1, st/α]

]

+
(1 + 2 ln 2)2

12
· ut+1 + ((5 + 8 ln 2) + (1 + 2 ln 2) lnα)ut+1

≤E

[

n
max
j=t+1

vj

∣

∣

∣

∣

n
max
j=t+1

vj ∈ [ut+1, st/α]

]

·
(

1 +
(1 + 2 ln 2)2

12
+ (5 + 8 ln 2) + (1 + 2 ln 2) lnα

)

,

where the last step is because the expectation is always at least ut+1. Thus,

GTMt(α, c)

E
[

v(t+1)
] ≥

(5−2 ln 2)αt
96k

(

1 + (1+2 ln 2)2

12 + (5 + 8 ln 2) + (1 + 2 ln 2) lnα
) ≥ 1

512
· αt

k lnα
,

when α ≥ e.
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Taking c = lnα and thus α1/c = e, we get that in all cases, GTMt(α, c) is either at least
α

512 ln2 αt
· E
[

v(t+1)
]

(i.e. Case (3)) or Ω(t/ lnα) · st (i.e. Cases (1),(2)).
To get the guarantees in the theorem and corollary statements, when τ ′ ∈ (1, e], it suffices to

take α = e20 to get α
512 ln2 α

> e >= τ ′ on the E
[

v(t+1)
]

side, and Ω(1/ lnα) is Ω(1) on the st side.

When τ ′ > e, it suffices to take α ∈ [e19, e20] ·τ ′ ln2 τ ′ (with c ∈ Z+). It is easy to check α
512 ln2 α

≥ τ ′

on the E
[

v(t+1)
]

side, and Ω(1/ lnα) is Ω(1/ ln τ ′) on the st side.

Now we prove the lemma used in the above proof.

Lemma A.2. Pr[vi ≥ x∀i ∈ [1, t]] ≤ 8
e · st

x for x > st.

Proof. For a regular distribution Vi, the revenue is concave in probability of selling. Taking the
probability of selling as 1, Pr[vi ≥ st], and Pr[vi ≥ x], we have

st · Pr[vi ≥ st] ≥ x · Pr[vi ≥ x] · 1− Pr[vi ≥ st]

1− Pr[vi ≥ x]
+ 0.

Rearranging and using Pr[vi ≥ st] ≤ 1, we have

Pr[vi < x] ≥ x

st
· Pr[vi ≥ x] · Pr[vi < st].

Define y so that minti=1 Pr[vi ≥ y] = 1
2 . Now we consider the following two cases:

Case (1): We have x ≤ y. In this case,

Pr[vi < x] ≥ x

2st
· Pr[vi < st].

Therefore,

Pr[vi ≥ x∀i ∈ [1, t]] =
∏

i

Pr[vi ≥ x]

= exp

(

∑

i

ln(1− Pr[vi < x])

)

≤ exp

(

−
∑

i

Pr[vi < x]

)

≤ exp

(

−
∑

i

x

2st
· Pr[vi < st]

)

.

Note that
∑

i Pr[vi < st] ≥ Pr[minti=1 vi < st] ≥ 1
2 . We get

Pr[vi ≥ x∀i ∈ [1, t]] ≤ exp

(

− x

4st

)

≤ 4st
ex

.

Case (2): Now consider the case where x > y. Let i∗ be the buyer with Pr[vi∗ ≥ y] = 1
2 . We have

Pr[vi∗ ≥ x] ≤ y

x
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by Lemma 2.1. Therefore,

Pr[vi ≥ x∀i ∈ [1, t]] ≤ Pr[vi ≥ y∀i ∈ [1, t]] · Pr[vi∗ ≥ x | vi∗ ≥ y]

≤ 4st
ey

· 2y
x

<
8st
ex

.

Combining the two cases gives the lemma statement.

B Characterizations of Optimal Prior-Independent Mechanisms

In this section, we give characterizations for the optimal prior-independent mechanisms for 2 buyers.
Our proofs are inspired by and generalize those of [AB20] for i.i.d. distributions.

Definition B.1 (Scale-Free Mechanisms [AB20]). A mechanism Mec is scale-free if

xi(θvi, θv−i) = xi(vi, v−i)

for any θ > 0, vi, v−i ≥ 0, i = 1, 2.

Lemma B.2. If the guarantee Mec ≥ min(α ·Myerson, β · SPA) is satisfied by a prior-independent
mechanism Mec with finite Arzelà variation, then the same guarantee can be satisfied by a scale-free
prior-independent mechanism.

Lemma B.2 intuitively makes sense: If the mechanism does not know the prior distributions,
then after any scaling, the instance should be essentially the same. The proof of the i.i.d. case in
[AB20] directly extends to this heterogeneous case.

Definition B.3 (Symmetric Mechanisms). A mechanism Mec is symmetric if

x1(v1 = v, v2 = v′) = x2(v1 = v′, v2 = v)

for any v, v′ ≥ 0.

Lemma B.4. If the guarantee Mec ≥ min(α · Myerson, β · SPA) is satisfied by a scale-free prior-
independent mechanism Mec, then the same guarantee can be satisfied by a scale-free symmetric
prior-independent mechanism.

Proof. If a scale-free prior-independent mechanism Mec satisfies the lemma condition, then another
mechanism Mec′ constructed by switching the roles of Buyer 1 and Buyer 2 also satisfies the lemma
condition. Randomizing between Mec and Mec′ with equal probability is a scale-free symmetric
prior-independent mechanism, and it also guarantees a revenue of min(α ·Myerson, β · SPA).

Lemma B.5 (Myerson’s Lemma [Mye81]). pi(vi, v−i) = vi ·xi(vi, v−i)−
∫ vi
0 xi(t, v−i) dt+pi(0, v−i),

where xi is the allocation function and pi is the payment function.

Without loss of generality, a revenue-maximizing auction should set pi(0, v−i) to be 0, as it
cannot be positive by the individual rationality (IR) constraint. This allows us to derive the
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revenue for any mechanism using only the allocation functions. Let Rev1(F, v2) be the expected
revenue from Buyer 1 when v1 is drawn from F and v2 is fixed. We have

Rev1(F, v2) =

∫ M

0
p1(v1, v2) dF (v1)

=

∫ M

0

[

v1 · x1(v1, v2)−
∫ v1

0
x1(t, v2) dt

]

dF (v1)

=

∫ M

0

[

v1 · x1(v1/v2, 1)−
∫ v1

0
x1(t/v2, 1) dt

]

dF (v1)

where the last step above uses Lemma B.2.
Similarly, let Rev2(v1, G) be the expected revenue from Buyer 2 when v1 is fixed and v2 is drawn

from G. We have

Rev2(v1, G) =

∫ M

0

[

v2 · x2(1, v2/v1)−
∫ v2

0
x2(1, t/v1) dt

]

dG(v2).

Using the symmetry condition of Lemma B.4, we get

Rev2(v1, G) =

∫ M

0

[

v2 · x1(v2/v1, 1) −
∫ v2

0
x1(t/v1, 1) dt

]

dG(v2).

Abbreviating x1(v, 1) as x1(v), we have

Rev =

∫ M

0
Rev1(F, v2) dG(v2) +

∫ M

0
Rev2(v1, G) dF (v1)

=

∫ M

0

∫ M

0

[

v1 · x1(v1/v2)−
∫ v1

0
x1(t/v2) dt

]

dF (v1) dG(v2)+

∫ M

0

∫ M

0

[

v2 · x1(v2/v1)−
∫ v2

0
x1(t/v1) dt

]

dG(v2) dF (v1)

=

∫ M

0

∫ M

0

[

v1 · x1(v1/v2) + v2 · x1(v2/v1)−
∫ v1

0
x1(t/v2) dt−

∫ v2

0
x1(t/v1) dt

]

dF (v1) dG(v2).

Let x1(r) =
∑n

k=1
1
n · 1[r ≥ γk] with an even n, as an approximation to the possibly continuous

increasing function of x1(r).
8 Assume the γk’s are decreasing. The constraint on x1(r) is: x1(r) +

x1(1/r) ≤ 1, ∀r, which is equivalent to γk · γn+1−k > 1,∀k.
We rewrite Rev as:

Rev =

n
∑

k=1

1

n
·
∫ M

0

∫ M

0

[

v1 · 1[v1/v2 ≥ γk] + v2 · 1[v2/v1 ≥ γk]−
∫ v1

0
1[t/v2 ≥ γk] dt−

∫ v2

0
1[t/v1 ≥ γk] dt

]

dF (v1) dG(v2).

Note that one pair of (γk, γn+1−k) suffices to give optimal revenue (within the class of scale-free
symmetric mechanisms) against any fixed instance.

8This approximation can be arbitrarily close similar to the proof in [AB20].
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