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Abstract

We provide an algorithm which, with high probability, maintains a (1 − ǫ)-approximate
maximum flow on an undirected graph undergoing m-edge additions in amortized mo(1)ǫ−3

time per update. To obtain this result, we provide a more general algorithm that solves what
we call the incremental, thresholded, p-norm flow problem that asks to determine the first edge-
insertion in an undirected graph that causes the minimum ℓp-norm flow to decrease below a
given threshold in value. Since we solve this thresholded problem, our data structure succeeds
against an adaptive adversary that can only see the data structure’s output. Furthermore, since
our algorithm holds for p = 2, we obtain improved algorithms for dynamically maintaining the
effective resistance between a pair of vertices in an undirected graph undergoing edge insertions.

Our algorithm builds upon previous dynamic algorithms for approximately solving the
minimum-ratio cycle problem that underlie previous advances on the maximum flow prob-
lem [Chen-Kyng-Liu-Peng-Probst Gutenberg-Sachdeva, FOCS ’22] as well as recent dynamic
maximum flow algorithms [v.d.Brand-Liu-Sidford, STOC ’23]. Instead of using interior point
methods, which were a key component of these recent advances, our algorithm uses an opti-
mization method based on ℓp-norm iterative refinement and the multiplicative weight update
method. This ensures a monotonicity property in the minimum-ratio cycle subproblems that
allows us to apply known data structures and bypass issues arising from adaptive queries.
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1 Introduction

The design and analysis of dynamic graph algorithms is a rich, well-studied research area. Re-
searchers have studied dynamic variations of fundamental graph problems such as minimum span-
ning tree, shortest path, and bipartite matching. Recent progress on dynamic matching has been
widely celebrated [Beh23; BKSW23], and dynamic graph algorithms play a key role in recent
advances in static graph algorithms, yielding the first nearly-linear time algorithms for bipartite
matching and maximum flow (maxflow) in dense graphs [BLNPSSSW20; BLLSSSW21] and almost-
linear time algorithm for maxflow [CKLPPS22]. (See Section 1.2, for additional related work.)

Despite the many successes of dynamic graph algorithms, dynamic maxflow, another class of
core problems, has seen relatively little progress. This is perhaps due in part to strong conditional
hardness results. In the incremental and decremental settings, where, respectively, edges are only
added or only removed, exactly maintaining the s-t flow value requires Ω(n) time per update, even
in directed unit capacity graphs, assuming the Online-Matrix-vector (OMv)-conjecture. This was
shown by [Dah16], building on earlier work by [HKNS15] that introduced the OMv-conjecture and
showed a O(

√
m) time per update lower bound for the same problems.

Moving to approximate solutions opens the possibility of faster algorithms. Recently, [GH23]
gave an (1 − ǫ)-approximation algorithm for incremental unit capacity maxflow with amortized
update time Ô(ǫ−1/2√m)1, an improvement for sparse graphs in the low accuracy regime. Addi-
tionally, [BLS23] recently gave an (1 − ǫ)-approximation algorithm for incremental maxflow and
minimum-cost flow2 with amortized update time Ô(ǫ−1√n) by dynamizing and building upon the
recent almost-linear time algorithm for maxflow of [CKLPPS22]. For constant ǫ, this runtime is
faster than the conditional lower bound for exact incremental maxflow.

In this work, we ask whether we can build upon this recent progress and give a subpolyno-
mial amortized update time algorithm for the dynamic maxflow problem? We answer this in the
affirmative by developing such an algorithm for approximate incremental undirected maxflow.

Dynamizing Static Maxflow. To obtain our result, we build upon the recent advance of [BLS23]
and the work that underlies it, as well as distinct lines of research related to approximate undirected
maxflow. [BLS23] essentially dynamizes the almost linear-time algorithm for maxflow [CKLPPS22].
[CKLPPS22] came at the end of a long line of research that focused on solving flow problems
by combining graph theoretic tools with interior point methods (IPMs), a class of continuous
optimization methods which obtain high-accuracy solutions to convex optimization problems [DS08;
Mąd13; LS14; Mąd16; CMSV17; AMV20; BLNPSSSW20; KLS20; LS20; AMV21; BLLSSSW21;
GLP21; BGJLLPS22; CKLPPS22; DGGLPSY22]. The [CKLPPS22] IPM relies on solving an ℓ1

flow update problem known as “(undirected) min-ratio cycle.”3 This problem is solved m1+o(1) times
using a data structure with amortized mo(1) time per update. [BLS23], showed how to dynamize
this IPM, but obtained an n1/2+o(1) amortized time per update due to the cost of adapting the
min-ratio cycle data structures to this setting.

There are two key ideas in [BLS23]. The first is that the ℓ1-IPM of [CKLPPS22] can be
naturally extended to the incremental setting. In particular, they showed how the IPM can be
used to solve a threshold variant of the incremental maximum flow problem, i.e., detecting the first
update that causes the maximum flow value to increase above a threshold. However, this extension
creates a challenge: The [CKLPPS22] data structure for min-ratio cycle does not work against an
adaptive adversary. Instead, [CKLPPS22] crucially leverages stability properties of their ℓ1 IPM

1In this paper, we use Ô(·) to suppress subpolynomial n
o(1) factors.

2In both cases, this is assuming polynomially bounded capacities; we make this assumption throughout the paper.
3In this paper we refer to this problem as min-ratio cycle, omitting the term “undirected.” Elsewhere in the

literature, but never in this paper, min-ratio cycle may refer to a variant with edge-direction constraints.
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that ultimately determines the update problems, and uses these stability properties to guarantee
that while their data structure may occasionally fail, this will occur infrequently. In the incremental
setting, [BLS23] cannot leverage this guarantee to ensure their data structure works. This leads to
the second central idea of [BLS23]. They develop a new version of the [CKLPPS22] data structure
that works against adaptive adversaries, at the expense of increasing the amortized time per update
from mo(1) to n1/2+o(1).

At a high level, our approach is motivated by [BLS23], but ultimately we develop a funda-
mentally different optimization approach, which yields more tractable update problems. A key
observation enabling our algorithms, is that the min-ratio cycle problem succeeds against adaptive
adversaries provided that there is a particular monotonicity in the updates. We change the opti-
mization framework to yield subproblems which can be solved by such monotonic updates. Because
of this, we manage to show that in our setting, the data structure of [CKLPPS22] can directly solve
the update problems in the incremental setting, with only mo(1) amortized time per update.

It is worth mentioning that the authors of this work recently gave a deterministic min-cost
flow algorithm [BCKLPGSS23]. However, [BCKLPGSS23] still uses a version of the data structure
of [CKLPPS22] that does not work against adaptive adversaries, and critically still uses stability
properties of the update sequence to argue correctness.

ℓp-norm Flow and Approximate Undirected Maxflow. To leverage that the min-ratio cy-
cle data structure succeeds against monotonic adversaries, we turn to an approach motivated by
lines of research on algorithms for (static) ℓp-norm flow and approximate undirected maxflow. One
important line of research yielded undirected approximate maxflow in Õ(ǫ−1m) time [CKMST11;
She13; KLOS14; Pen16; She17]. This sequence of works combined first-order continuous optimiza-
tion methods with graph theoretic tools. A second line of work focused on a broader class of flow
problems, namely ℓp-norm flows [AKPS19; APS19; KPSW19; AS20; ABKS21], and developed iter-
ative optimization methods tailored to ℓp-norm objectives. The problem of ℓp-norm flows asks for
a flow f that routes a given demand and minimizes its ℓp-norm, ‖f‖p. This problem is maxflow for
p =∞ and setting p = O(ǫ−1 log m) yields (1− ǫ)-approximate undirected maxflow.

Our Approach to Incremental Flow Problems. We show that the desired monotonicity
properties for the subproblems can be achieved in the setting of ℓp-norm flows by adapting the
optimization framework. Even though ℓp-norm flow is less general than directed maxflow, it has
interesting consequences including approximate undirected maxflow and effective resistances [SS08;
CKMST11].

Switching to ℓp-norm flows allows us to use the ℓp iterative refinement framework developed
in [AKPS19; APS19; AS20], and study the smoothed ℓp-norm flow problems of [KPSW19]. The
iterative refinement framework shows that smoothed ℓp-norm flow computation can be accomplished
by a small number of iterations of a refinement step. In our context Ô(p) steps suffice.

To solve each refinement step problem, we use a ℓ1 multiplicative weight update method (MWU).
Our method lets us solve smoothed ℓp-norm flow to mo(1) accuracy by solving a min-ratio cycle
problem roughly m1+o(1) times. Crucially, we show that our MWU induces a monotonicity property
in our min-ratio cycle problems. Concretely, our sequence of approximate min-ratio cycle problems
only change by (1) edge insertions and (2) edge lengths increases (see Problem 5.1). In this way,
we create a more tractable data structure problem than those in [BLS23], and we show that this
problem can be solved using data structures from [CKLPPS22] with mo(1) amortized update time.

Finally, combining our monotonic ℓ1-MWU for computing refinement steps with iterative refine-
ment, we obtain an incremental algorithm for (a decision version of) smoothed ℓp-norm flows. From
this, we derive an algorithm for approximate incremental undirected maxflow and for incremental
electrical flow. Using the incremental electrical flow algorithm, for a fixed pair of vertices s, t, we
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can detect in an incremental graph the first time the effective resistance between s and t drops
below a given threshold.

If we were only focusing on approximate incremental maxflow instead of the more general ℓp-
norm flows, a similar monotonic data structure problem could also be obtained by using an ℓ1-oracle
MWU to compute each update step of a first-order optimization method such as one used by [She13;
KLOS14; Pen16; She17]. Wrapping this inside a first-order ℓ∞ optimization approach would then
yield a similar algorithm for approximate incremental maxflow.

1.1 Results

Here we present the main results of the paper. This section leverages a variety of notation, in
particular graph theory conventions, all provided later in Section 2.

A central result of this paper is an algorithm with subpolynomial update time for the following
undirected incremental approximate maxflow problem (which we abbreviate as incremental maxflow
in the remainder of the paper). Incremental maxflow is the dynamic data structure problem of
maintaining a (1+ǫ)-(multiplicative) approximate maximum flow in an undirected graph undergoing
edge additions (hence the term incremental).

Problem 1.1 (Undirected Incremental Approximate Maxflow Problem). In the undirected incre-
mental approximate maxflow problem (incremental maxflow) we are given a finite set of n vertices
V , a distinct pair of elements s and t, and a parameter ǫ > 0. There are then a sequence of
m ≤ poly(n) edge insertions where starting from E = ∅ an undirected edge e is added to E with
integral capacity ue ∈ [1, U ]. The algorithm must maintain a (1 + ǫ)-approximate maximum flow
in the capacitated graph G = (V, E, u) before and after each edge addition.

The main result of this paper is a randomized algorithm for the incremental maxflow problem
that succeeds with high probability in n (whp.) and implements each update in amortized no(1)ǫ−3

time. This is the first subpolynomial update time for an incremental maxflow problem which
achieves even constant approximation.

Before stating our result, we comment on the adversary model. In our algorithms, we assume
that the adversary can see the output flow, but not the internal randomness or information stored
in the data structure. We call this an adaptive adversary. We refer to the stronger adversary which
can also see the internal randomness as a non-oblivious adversary.

Theorem 1.2 (Incremental Maxflow). There is an algorithm which solves incremental maxflow
(Problem 1.1) whp. in amortized no(1)ǫ−3 time per update against adaptive adversaries.

To obtain this result, we develop dynamic algorithms for the problem of computing smoothed
ℓp-norm flows [KPSW19] for p ≥ 2. The smoothed ℓp-norm flow problem asks to find a flow routing
given vertex demands while minimizing a linear plus quadratic plus pth power objective on the flow.
This problem generalizes both the popular and prevalent problems of computing electric flows (and
therefore solving Laplacian systems) [ST04; KMP11; CKMPPRX14; JS21a] as well as computing
approximate maximum flows on undirected graphs [CKMST11; She13; KLOS14; Pen16; She17].

Problem 1.3 (Smoothed ℓp-norm flow). Given an undirected graph G = (V, E), gradient vector
gG ∈ R

E, edge resistances and weights rG, wG ∈ R
E
+, and demand vector d ∈ R

V the smoothed
ℓp-norm flow problem asks to solve the following optimization problem

OPT = min
B⊤f=d

E(f) for E(f)
def
= 〈gG, f〉+

∥∥∥RGf
∥∥∥

2

2
+

∥∥∥WGf
∥∥∥

p

p
. (1)
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f ∈ R
E is said to be feasible or routes the demands if B⊤f = d, E(f) is called the energy or

smoothed objective value of f , and a solution to (1) is called a smoothed ℓp-norm flow.

For short, we refer to smoothed ℓp-norm flows as simply ℓp-norm flows throughout. Throughout
we also assume that there is a feasible flow f (0) on the initial graph. This can be ensured by
determining the first instance that d is feasible using a simple union-data data structure. This
incurs only an additive Õ(1) cost in our data structures.

Our main technical result is a high-accuracy algorithm with subpolynomial update time for the
following incremental thresholded ℓp-norm flow problem, or incremental ℓp-norm flow for short.
The incremental ℓp-norm flow data structure detects the earliest moment when the optimal value
to (1) drops below a given threshold F.

Problem 1.4 (Incremental Thresholded ℓp-Norm Flow). Consider a dynamic instance of a ℓp-
Norm Flow (G, gG, rG, wG, d) that is subject to edge insertion. Let m be the final number of edges
in G. Given an objective threshold F ∈ R, and an error parameter ǫ > 0, the problem of Incremental
Threshold ℓp-Norm Flow asks, after the initialization or each edge insertion, to either

1. correctly certify that OPT > F , or

2. output a feasible flow f with E(f) ≤ F + ǫ.

Combining an ℓ1-MWU with the dynamic min-ratio data structure of [CKLPPS22], we can
solve Problem 1.4 in almost linear time whp. against an adaptive adversary.

Theorem 1.5. There is a randomized algorithm for Problem 1.4 that given an initial flow f (0)

and inputs ǫ, gG, rG, wG and d with sizes bounded by Õ(1) in fixed point arithmetic., runs in

p2m1+o(1) log(E(f (0))−F
ǫ ) time and succeeds whp. against adaptive adversaries.

As a result, taking p = 2 yields an algorithm for (1 + ǫ)-approximate incremental electrical
flow with subpolynomial update time. This is the first subpolynomial time algorithm for constant
accuracy incremental electrical flows.

We show how Theorem 1.5 leads to the incremental maxflow algorithm.

Proof of Theorem 1.2. The algorithm proceeds in about Õ(ǫ−1) phases. In each phase, we deter-
mine when the congestion of the optimal flow has decreased by at least a (1−ǫ) factor. At the start of
such a phase, we find the optimal maxflow f using the almost-linear time algorithm of [CKLPPS22].
Let C be the congestion of f . We wish to determine when the optimal congestion is smaller than
e−ǫC. From the previous discussion, any flow of congestion less than e−ǫC must have its ℓp-norm at
most m(e−ǫC)p. Our flow f , on the other hand, has p-norm at most mCp. So we apply Theorem 1.5
with threshold F = m(e−ǫC)p and error m(e−ǫC)p as well. When the data structure certifies that
every flow has ℓp-norm at least m(e−ǫC)p, we know that f is still a (1− ǫ)-approximate maxflow.
When the data structure outputs a new feasible flow f ′ s.t. E(f ′) ≤ F + m(e−ǫC)p = 2m(e−ǫC)p,
we know the congestion of f ′ is at most (2m(e−ǫC)p)1/p ≤ e−ǫ/2C. This means that the optimal
congestion drops at least by a factor of (1 + ǫ/2) and we restart the whole algorithm with a newly
computed maximum flow. It restarts at most Õ(1/ǫ) times because the congestion is between
[exp(−Õ(1)), exp(Õ(1))].

Bit Complexity. The number of exact arithmetic operations performed in the algorithm for

Theorem 1.5 is only pm1+o(1) log(E(f (0))−F
ǫ ). The additional p dependency arises as our algorithms

manipulate numbers of size Õ(p) due to the p-th power taken in the objective (1) and we are
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using fixed point arithmetic. A potential way to improve the dependency on p is via floating point
arithmetic and crude approximations. That is, during the course of the algorithm for Theorem 1.5,
we only use (1 + exp(−Õ(1)))-multiplicative approximation to the numbers we encountered and
use an additional Õ(p) bits to represent their scales. This way, the numbers encountered would be
of size Õ(1) and we could shave one factor of p from the runtime in Theorem 1.5. This could also
improve the amortized update time for incremental approximate maximum flow to no(1)ǫ−2.

1.2 Additional Related Work

Dynamic Flows and Matching. Exact dynamic maxflow on unit capacity graphs can be main-
tained in O(m) time per update by performing one augmentation per update, or in O(n) amortized
time in the incremental setting [KG03; GK21]. On planar graphs, it can be maintained in the
fully dynamic setting in Õ(n2/3) update and query time [INSW11] and in the incremental set-
ting with Õ(

√
n) update and query time [DGW22]. Beyond that, there is more recent work on

the approximate setting, with (1 − ǫ)-approximate incremental algorithms [BLS23; GH23], as dis-
cussed earlier. Finally, in the fully dynamic setting, algorithms with super-constant (i.e. polylog
or subpolynomial) approximation ratios and sublinear amortized update time [CGHPS20] and for
uncapacitated graphs with subpolynomial worst-case update time [GRST21] are known.

Dynamic bipartite matching (which is a special case of directed maxflow) has also received sig-
nificant attention in the approximate setting [GP13; BLSZ14; Gup14; BGS15; BS15; BS16; BHN16;
PS16; Sol16; ACCSW18; CS18; BDHSS19; BHR19; BK19; CZ19; BLM20; BGS20; Waj20; BFH21;
BK21; ABKL22; BK22; GSSU22; Kis22; LMSW22; RSW22; BKS23a; BKSW23; BK23]. In the
(1− ǫ)-approximate regime, the current state-of-the-art is poly(1/ǫ) update time for the incremen-

tal setting [BK23], poly(log(n)/ǫ) for the decremental setting [BKS23b], and O(
√

m
1−Ωǫ(1)

) for the
fully dynamic setting [BKS23a]. For fully dynamic exact bipartite matching, the fastest update
time is O(n1.406) [San07; BNS19].

Finally, it is worth mentioning that recent works have leveraged numerical optimization meth-
ods based on entropy-regularized optimal transport and MWU to design dynamic algorithms for
partially dynamic bipartite matching and positive linear programs [JJST22; BKS23b].

Edge Connectivity. The k-edge connectivity between two vertices s, t can be seen as a maxflow
of value up to k. Dynamic k-edge st-connectivity has been studied for small constant values
of k ≤ 5 [Fre91; GI91a; GI91b; WT92; DV94; DV95; EGIN97; HK97; DW98; Tho00; HLT01;
HRT18]. For super-constant k, [JS21b] presents a fully dynamic algorithm with no(1) update time
for k = (log n)o(1). [CDKLLPSV21] give an offline fully dynamic algorithm with Ô(kO(k)) query
time. These results all require small k to be efficient, whereas our result has no such restrictions.
We also point out the work in [Tho07] which gives an algorithm to dynamically maintain the (value
of) the global min-cut with Õ(

√
n) worst-case update time.

Dynamic Electric Flows. For p = 2, our incremental ℓp-norm flow algorithm can maintain a
(1 − ǫ)-approximate electric flow between two fixed vertices s, t ∈ V subject to edge insertions.
Dynamic electric flows have previously been studied in [GHP17; DGGP19]. Such dynamic electric
flow algorithms were also studied for the purpose of accelerating static maxflow and mincost flow
algorithms [GLP21; BGJLLPS22]. The closely related concept of dynamic effective resistances has
also been studied in the online dynamic [CGHPS20] and offline dynamic setting [LPYZ20].

1.3 Paper Organization

In the remainder of the paper, we provide preliminaries in Section 2 and then give a more technical
overview of our approach in Section 3. We then we prove our main result, Theorem 1.5, via
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iterative refinement in Section 4. The incremental algorithm for the ℓp-norm residual problem is
then presented in Section 5. Finally, we argue that the approximate data structure [CKLPPS22]
can be used to implement the incremental multiplicative weight method in Section 6.

2 Preliminaries

In this section, we introduce notations we use throughout the paper.

General notation. We denote vectors by boldface lowercase letters. We use uppercase boldface to
denote matrices. Often, we use uppercase matrices to denote the diagonal matrices corresponding
to lowercase vectors, such as L = diag(ℓ). For vectors x, y we define the vector x ◦ y as the
entrywise product, i.e., (x ◦ y)i = xiyi. We also define the entrywise absolute value of a vector |x|
as |x|i = |xi|. We use 〈·, ·〉 as the vector inner product: 〈x, y〉 = x⊤y =

∑
i xiyi. We elect to use

this notation when x, y have superscripts (such as time indices) to avoid cluttering. For positive

real numbers a, b we write a ≈α b for some α > 1 if α−1b ≤ a ≤ αb. For positive vectors x, y ∈ R
[n]
+ ,

we say x ≈α y if xi ≈α yi for all i ∈ [n].

Graphs. In this paper, we consider multi-graphs G with edge set E(G) and vertex set V (G).
When the graph is clear from context, we use the shorthands E for E(G), V for V (G), m = |E|,
and n = |V |. We assume that each edge e ∈ E has an implicit direction, used to define its edge-
vertex incidence matrix B ∈ R

E×V , i.e., Be,u = −1, Be,v = +1, and zero elsewhere for the row
corresponding to the edge e = (u, v). Abusing notation slightly, we often write e = (u, v) ∈ E
where e is an edge in E and u and v are the tail and head of e respectively (note that technically
multi-graphs do not allow for edges to be specified by their endpoints).

A vector d ∈ R
V is a demand vector if it is orthogonal to the all-ones vector, i.e.,

∑
v∈V dv = 0.

We say a flow f ∈ R
E routes a demand d ∈ R

V if B⊤f = d. We say a flow f is a circulation if it
routes an all-zeros demand, i.e., each vertex has zero net flow. For an edge e = (u, v) ∈ G we let
be ∈ R

V denote the demand vector of routing one unit from u to v.

Dynamic Algorithms. We say G is a dynamic graph, if it undergoes batches U (1), U (2), . . . of
updates consisting of edge insertions/deletions that are applied to G. We use |U (t)| to denote the
number of updates contained in the batch U (t). The results on dynamic graphs in this article often
only consider a subset of the update types and we therefore often state for each dynamic graph
which updates are allowed. We say that a dynamic graph G is incremental (and decremental) if
it only undergoes edge insertions (and edge deletions respectively). Additionally, we say that the
graph G, after applying the first t update batches U (1), U (2), . . . , U (t), is at stage t and denote the
graph at this stage by G(t). Additionally, when G is clear, we often denote the value of a variable
x at the end of stage t of G by x(t), or a vector x at the end of stage t of G by x(t).

3 Technical Overview

Here we provide a technical overview of the approach we take to obtain the results outlined in
Section 1.1. In Section 3.1, we briefly review a variety of previous tools which we leverage and
obstacles that we overcome to obtain our results. In Section 3.2, we then elaborate on our central
insight about dynamic data structures for the minimum ratio cycle problem that fuels our results.
In Section 3.3, we then discuss the dynamic optimization frameworks we use to leverage this data
structure. Finally, in Section 3.4, we discuss how we put these pieces together to obtain our results.
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3.1 Previous Tools and Obstacles.

We begin by describing the key tools of [CKLPPS22] and [BLS23] which solved maximum flow in
almost linear time and obtained an Ô(ǫ−1√n) time incremental algorithm for directed maximum
flow. We elaborate on these tools and the obstacles for using them to achieve no(1)ǫ−O(1) update
time for undirected maximum flow.

Minimum Ratio Cycle. Both [CKLPPS22] and [BLS23] are built upon efficient data structures
for approximately solving the min-ratio cycle problem on a fully-dynamic graph, i.e., finding a cycle
that approximately minimizes

min
c∈RE is a cycle

〈g, c〉
‖Lc‖1

(2)

where g ∈ R
E and ℓ ∈ R

E
+ are called edge gradients and lengths respectively.

Both data structures are based on similar ideas. They maintain a d-level hierarchy of vertex
and edge sparsification data structures. For vertex sparsification, they use dynamic low stretch
decompositions which is studied in the context of dynamic shortest paths [CGHPS20]. For edge
sparsification, [CKLPPS22] proposed a data structure that maintains graph spanners, which are
sparse graphs that preserves all-pairs distances, under edge updates as well as vertex splits. The
original min-ratio cycle data structure has mo(1) update time and outputs mo(1)-approximate so-
lutions against oblivious adversaries. Additionally, the data structure succeeds against adaptive
adversaries, as long as the inputs satisfy some additional “stability properties”. We elaborate on
this later in Section 6. In [BLS23], they make the data structure adaptive at a higher update time
of n1/2+o(1).

Interior Point Methods. The static algorithm of [CKLPPS22] uses an IPM potential Φ(f)
to find the maximum flow. It starts at some initial flow where Φ(f) = Õ(m) and iteratively
makes progress until the potential is Φ(f) < −Õ(m). At that point, an optimal flow is obtained by
standard rounding techniques. When the current flow is f , the algorithm finds a mo(1)-approximate
cycle c to an instance of min-ratio cycle (2) with g ≈ ∇Φ(f) and ℓ ≈

√
∇2Φ(f). One can show

that augmenting f with a multiple of c decreases the potential by at least m−o(1). After m1+o(1)

iterations, the algorithm reaches a flow f whose potential value is at most −Õ(m).
The incremental maximum flow algorithm of [BLS23] dynamizes the potential reduction pro-

cedure of [CKLPPS22]. To handle an edge insertions, [BLS23] keeps augmenting the current flow
with an mo(1)-approximate min-ratio cycle until the output cycle cannot make enough, m−o(1),
progress. The analysis of this leverages that adding an edge does not affect the feasibility of the
current flow and only increases the potential by a constant amount. Additionally, once a flow of cost
at most the given threshold appears in the graph, any mo(1)-approximate min-ratio cycle decreases
the potential by at least m−o(1) as long as our current flow has its cost larger than the threshold by
exp(−Õ(1)). Since the potential value starts at Õ(m), over the course of the incremental algorithm,
there are at most m1+o(1) approximate min-ratio cycle queries. This yields a n1/2+o(1)-update time
using their adaptive data structure for answering min-ratio cycle queries.

Obstacles. In the static case, [CKLPPS22] manages to apply an oblivious data structure for
iteratively minimizing the IPM potential due to (a) the existance an optimal flow before initializing
the data structure and (b) the stability of the gradient and Hessian of the IPM potential (which
are the inputs to the min-ratio cycle data structure). Consequently, whenever the data structure
fails to find a cycle good enough to make progress, it must be the case that some part of the data
structure is broken, and we need to fix it actively. However, (a) does not hold in the incremental
case. That is, whenever the oblivious data structure fails, we cannot distinguish between the case
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that (1) the data structure fails due to the obliviousness, or (2) the graph does not support the
optimal flow because every feasible flow has a large cost. The issue occurs even when all incremental
updates come from an oblivious adversary.

Our Approach. To obtain our results we depart from prior work in both how we reason about
adaptive adversaries in the minimum ratio cycle problem and in what optimization method we
use for this dynamic data structure. We elaborate on each of these in the next Section 3.2 and
Section 3.3 and then discuss how they are put together to obtain our results in Section 3.4.

3.2 Adaptive Adversaries and Monotonic Dynamic Min-Ratio Cycle.

We manage to use the oblivious min-ratio cycle data structure by ensuring that edge lengths are
mostly increasing. That is, with a different numerical method, we can divide the entire incremental
algorithm into mo(1) phases and within each phase, we solve a sequence of slowly changing min-
ratio cycle problems with the same gradient g and monotonically increasing lengths ℓ. In Section 6
which presents the min-ratio cycle data structure, we work with an adversary where we can assume
that all incremental updates are determined before the initialization. That is, the adversary does
not have access to the internal state of our algorithm when deciding which edges to insert next.
Using these facts, we show, in Section 6, that the updates to the dynamic min-ratio cycle data
structure satisfy a weaker form of the hidden stable-flow chasing property, which was the critical
property that [CKLPPS22] leveraged to show correctness of their min-ratio cycle data structure.
While [CKLPPS22] had to periodically rebuild layers of their data structure when the “lengths"
of flows at those layers may have decreased, and this prevented its application to incremental
directed maxflow in [BLS23], our monotonicity property allows us to avoid this issue. In particular,
whenever the data structure fails to output a good cycle, we know for certain that every feasible
flow has large congestion.

3.3 From IPMs to Iterative Refinement and MWU

This paper focuses on solving incremental thresholded ℓp-norm flow for p ≥ 2. This immediately
gives an incremental (1 + ǫ)-approximate maximum flow due to the choice of p. Unlike IPM-based
maxflow algorithms, ℓp-norm flows can be reduced to approximately solving mo(1) smoothed ℓp-
norm flow residual problems to mo(1)-approximation factors. To approximately solve each residual
problem, we use a multiplicative weight update method (MWU) to reduce the problem to a sequence
of m1+o(1) slowly changing ℓ1-regression sub-problems, which are equivalent to min-ratio cycles in
our case. The nature of MWU ensures that the ℓ1 weights are non-decreasing. These constraints
on how the sequence of min-ratio cycle instances change enable us to use the data structure of
[CKLPPS22] to achieve the almost-linear runtime.

The reduction to residual problem is achieved via the iterative refinement framework of [AKPS19].
Each residual problem asks to find a circulation ∆ such that

‖R∆‖2 ≤ mo(1), ‖W∆‖p ≤ mo(1), and 〈g, ∆〉 = −1 (3)

where r, w ∈ R
E
+ are edge weights derived from the current solution to Problem 1.3, and we are

guaranteed the existence of a circulation whose both norms are at most 1.
To find a feasible residual solution to Problem (3), we use a MWU to reduce the problem to a

sequence of m1+o(1) ℓ1 sub-problems of finding a circulation c such that

‖Lc‖1 ≤ mo(1) ‖ℓ‖1 and 〈g, c〉 = −1 . (4)
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This is equivalent to finding a min-ratio cycle (2) up to scaling the solution so that 〈g, c〉 = −1.
If we can solve each ℓ1 sub-problem to mo(1)-approximation, we obtain a feasible residual solution.
Furthermore, MWU ensures that the ℓ1 weights are non-decreasing across all m1+o(1) instances.

3.4 Putting it Altogether

To dynamize the approach mentioned in Section 3.3, we make the following observation:

If OPT ≤ F , there is a feasible solution ∆∗ to (3) with ‖R∆‖2, ‖W∆‖p ≤ 1 that
satisfies (4), i.e., ‖L∆∗‖1 ≤ ‖ℓ‖1 for any ℓ encountered in the algorithm.

We leverage that ∆∗ is fixed with respect to r, w and g. Thus, whenever the mo(1)-approximate
min-ratio cycle data structure cannot find a solution to (4), we certify that OPT > F. Otherwise,
if OPT ≤ F , the MWU method, as well as the iterative refinement procedure, would proceed as
desired and output a flow f of ℓp-norm energy at most E(f) ≤ F + ǫ in p2m1+o(1) log(1/ǫ)-time.

4 Incremental p-Norm Iterative Refinement

In this section, we discuss the iterative refinement approach to solving p-norm flows and how reduce
them to incremental MWUs. The iterative refinement framework of [AKPS19] reduces p-norm flows
to approximately solving a small number of residual problems. The original framework requires an
estimate on the optimal residual value, which is obtained via binary search. In our setting, a target
objective value is given and we can directly use it to estimate the residual value. This requires a
slight modification to the convergence analysis via measuring the progress towards the target value.

The goal of this section is to prove the following theorem:

Theorem 1.5. There is a randomized algorithm for Problem 1.4 that given an initial flow f (0)

and inputs ǫ, gG, rG, wG and d with sizes bounded by Õ(1) in fixed point arithmetic., runs in

p2m1+o(1) log(E(f (0))−F
ǫ ) time and succeeds whp. against adaptive adversaries.

We first define the residual problem, Rf (x), that we consider to approximate E(f + x)− E(f)
(Problem 4.1) and provide a known lemma about its approximation quality (Lemma 4.2).

Problem 4.1 (Residual Problem). For feasible flow f in p-Norm flow instance (G, gG, rG, wG, d),
we define its residual problem, Rf (x), (that approximates ) as follows:

Rf (x)
def
= 〈g, x〉+ ‖Rx‖2

2 + ‖Wx‖pp ,

where g
def
= gG + 2(RG)2f + p(WG)p|f |p−2f , r

def
=

√
(rG)2 + 2p2(WG)p|f |p−2, w

def
= pwG.

We often ignore the subscript f when it is clear from the context.

Lemma 4.2 (Iterative Refinement, [AKPS19; APS19; AS20]). For any f and x, we have

E(f + x)− E(f) ≤ Rf (x), and

E(f + λx)− E(f) ≥ λRf (x), for some λ = O(p)

Using Lemma 4.2, we can relate the optimal residual objective value to the gap between the
current feasible flow f and the target threshold F.

Lemma 4.3 (Threshold Certification by Residual Value). If feasible flow f in a p-Norm flow
instance (G, gG, rG, wG, d) satisfies OPT ≤ F , then there is a circulation c∗ with R(c∗) ≤ (F −
E(f))/λ.
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Proof. Let f∗ be any feasible flow such that E(f∗) ≤ F. Lemma 4.2 yields that

F − E(f) ≥ E(f∗)− E(f) ≥ λR
(

f∗ − f

λ

)
.

The conclusion follows because f∗ − f is a circulation.

Let R
def
= (E(f) − F )/λ > 0 be the residual threshold. Our goal now is to find a circulation c

such that R(c) ≤ −R/K for some K = mo(1). We show that we can compute this by solving the
following incremental residual problem.

Problem 4.4 (Incremental K-Approximate Residual Problem). Consider an incremental graph
G = (V, E) with at most m edges, a gradient vector g ∈ R

E, ℓ2 and ℓp edge weights r, w ∈ R
E
+ and

a approximation factor K > 0. The Incremental K-Approximate Residual Problem asks, after the
initialization or each edge insertion, to either

1. certify that there is no circulation c∗ with 〈g, c∗〉 = −1, ‖Rc∗‖2 ≤ 1, and ‖Wc∗‖p ≤ 1, or

2. output a circulation c such that 〈g, c〉 = −1, ‖Rc‖2 ≤ K, and ‖Wc‖p ≤ K.

In Section 5, we will present an almost-linear time algorithm for Problem 4.4.

Lemma 4.5. For some K = mo(1), there is a randomized algorithm for Problem 4.4, denoted as
A(4.5), that runs in m1+o(1)-time and succeeds with high probability against an adaptive adversary.

Here, recall that the adversary is only adaptive against the yes/no output of the algorithm, and
cannot see the internal randomness, including the flow that is being stored internally. Obviously,
our algorithm can output a flow when we get a “no" output, by computing a high-accuracy p-norm
minimizing flow, but this is different from the flow being stored internally.

At first glance, the solution guarantee of Problem 4.4 has nothing to do with the residual
problem (Problem 4.1) and R. However, since we only need a solution whose objective is better
than m−o(1)(F −E(f))/λ, we can reduce incremental p-norm regression to the form of Problem 4.4
using the following pair of lemmas. The first is a straightforward scaling argument.

Lemma 4.6. If there’s some c∗ such that R(c∗) ≤ −R for some threshold R > 0 then,

〈g, c∗〉
‖Rc∗‖2

≤ −2
√

R and
〈g, c∗〉
‖Wc∗‖p

≤ −R(p−1)/p

Proof. From the bound that R(c∗) ≤ −R, we know

〈g, c∗〉+ ‖Rc∗‖2
2 ≤ −R

Thus we know that
〈g, c∗〉
‖Rc∗‖2

≤ − R

‖Rc∗‖2
− ‖Rc∗‖2 ≤ −2

√
R,

by the AM-GM inequality. Similarly,

〈g, c∗〉+ ‖Wc∗‖pp ≤ −R,

and hence
〈g, c∗〉
‖Wc∗‖p

≤ − R

‖Wc∗‖p
− ‖Wc∗‖p−1

p ≤ −R
p−1

p ,

where we used the (weighted) AM-GM inequality again.
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The second, given below, is used to argue that the solution quality of Problem 4.4 translates to
a bound on the residual objective value.

Lemma 4.7. Given a residual threshold R > 0 and the current residual problem R(c) with gradient
g and ℓ2 and ℓp edge weights r and w, consider a circulation c such that 〈g, c〉 = −1, ‖2

√
RRc‖2 ≤

K, and ‖R(p−1)/pWc‖p ≤ K for some K ≥ 1. We have R((R/(2K2))c) ≤ −R/(6K2).

Proof. From the assumptions of the lemma, we know that

〈g, c〉 = −1, ‖Rc‖2 ≤
K

2
√

R
, and ‖Wc‖p ≤ KR−(p−1)/p

Plugging these into the definition of the residual problem yields

R
(

R

2K2
c

)
=

R

2K2
〈g, c〉+

R2

4K4
‖Rc‖2

2 +
Rp

2pK2p
‖Wc‖pp

≤ − R

2K2
+

R2

4K4

K2

4R
+

Rp

2pK2p
KpR−(p−1)

= − R

2K2
+

R

16K2
+

R

2pKp
≤ −R

5K2
.

Now, we are ready to state Algorithm 1 which we use to prove Theorem 1.5.
To show correctness, we first prove that each step makes an exponential progress. Leveraging

this lemma we then prove Theorem 1.5.

Lemma 4.8 (Iterative Refinement Convergence Rate). At the end of any step t in Algorithm 1,

E(f (t+1))− F ≤
(

1− 1

6K2λ

) (
E(f (t))− F

)

Proof. At the end of step t, Lemma 4.7 ensures that R( R
2K2 c) ≤ − R

6K2 . Lemma 4.2 then yields

E(f (t+1))− E(f (t)) ≤ R
(

R

2K2
c

)
≤ −1

6K2λ

(
E(f (t))− F

)

Thus, we have

E(f (t+1))− F = E(f (t+1))− E(f (t)) + E(f (t))− F

≤
(

1− 1

6K2λ

) (
E(f (t))− F

)

Proof of Theorem 1.5. We first show that whenever the algorithm outputs that OPT > F , this is
indeed the case. Let t be an arbitrary step in which the algorithm outputs that OPT > F , let f (t)

be the flow maintained at that step, and let R(x) be the corresponding residual problem instance
(Problem 4.1). Correctness of Lemma 4.5 ensures that no circulation c∗ satisfies

〈g(t), c∗〉 = −1, ‖2
√

RR(t)c∗‖2 ≤ 1, ‖R(p−1)/pW(t)c∗‖p ≤ 1
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Algorithm 1: Incremental Thresholded p-Norm Flow

1 global variables

2 p: the norm considered in Problem 1.4.
3 λ← O(p): the scaling factor in Lemma 4.2.

4 K ← mo(1): the approximation factor in Lemma 4.5.

5 procedure IncrementalPNorm(G, d, gG, rG, wG, F, ǫ)

6 Initialize f (0) to be the optimal p-norm flow on G.

7 S
def
= O(pK2 log(E(f (0))−F

ǫ ))
8 for step t = 0, 1, . . . , S do

9 Construct residual problem (g(t), r(t), w(t)) with respect to f (t).

10 Define residual threshold R
def
= (E(f (t))− F )/λ.

11 Initialize and run the incremental approximate residual algorithm

12 while A(4.5) cannot find a circulation satisfying Lemma 4.5 item 2 do

13 Claim that OPT > F.
14 Wait for a new edge e.

15 Insert the new edge e to A(4.5) with

g(t)
e

def
= gG

e , r(t)
e

def
= 2
√

RrG
e , and w(t)

e
def
= R(p−1)/pwG

e

16 A(4.5) finds a circulation c such that

〈g(t) , c〉 = −1, ‖2
√

RR(t)c‖2 ≤ K, and ‖R(p−1)/pW(t)c‖p ≤ K .

17 Set f (t+1) ← f (t) + R
2K2 c

18 return f (S)

This fact and Lemma 4.6 then implies that every circulation c∗ must have R(c∗) > −R = (F −
E(f (t)))/λ. Lemma 4.3 implies that OPT > F.

Now, we analyze the quality of the output, f (S). Applying Lemma 4.8 inductively on steps t
yields that

E(f (S))− F ≤
(

1− 1

6K2λ

)S (
E(f (0))− F

)
≤ ǫ

by definitions of S and λ (Lemma 4.2).
Finally, the runtime comes directly from S = mo(1)p log(1

ǫ ) applications of Lemma 4.5. (Recall
that there is an extra factor of p due to bit complexity.)

5 Incremental Multiplicative Weight Updates

In this section, we present a MWU-based algorithm that solves Problem 4.4 and proves Lemma 4.5.
We use Algorithm 2 to prove Lemma 4.5. At a high level, the algorithm outputs the final circulation
as an average of T = Õ(m) circulations. At each iteration i, we compute a set of ℓ1 edge weights
ℓ ∈ R

E
+ and compute an approximate min ratio cycle that minimizes 〈g, c〉/‖Lc‖1. As is too costly
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to compute each cycle from scratc, we instead apply a dynamic data structure simplified from
[CKLPPS22] to compute such cycle efficiently.

Problem 5.1 (Approximate Monotonic Min Ratio Cycle (MRC)). Consider a target ratio α >
0 and a dynamic graph G = (V, E) with edge gradients g ∈ R

E, and lengths ℓ ∈ R
E
+ under

edge insertions and length increases. In addition, there is a hidden circulation c∗ not necessarily
supported on G, i.e., there is possibly some edge not in G with c∗

e 6= 0. The problem of κ-approximate
monotonic min ratio cycle asks, after the initialization and each edge update,

1. If c∗ is not supported on G: output any circulation.

2. If c∗ is supported on G: output a circulation c such that

〈g, c〉
‖Lc‖1

≤ −α

κ
,

given that 〈g,c∗〉
‖Lc∗‖1

≤ −α.

We can solve Problem 5.1 in almost-linear time by using a data structure from [CKLPPS22].
The guarantee of this data structure is stated below and the lemma is proved in Section 6.

Lemma 5.2 (Approximate Monotonic MRC Data Structure). For some κ = mo(1), there is a
randomized algorithm, denoted A(5.2), that maintains a collection of s = mo(1) spanning trees
T1, T2, . . . , Ts and solves the κ-approximate monotonic MRC problem (Problem 5.1) in (m+Q)mo(1)-
time where Q is the total number of updates. In particular, it always output a cycle ∆ represented
by mo(1) off-tree edges and paths on a spanning tree Ti for some i ∈ [s].

We now state Algorithm 2 which shows Lemma 4.5. The algorithm runs a MWU algorithm
with ℓ1-norm subproblems for Õ(m) iterations. This is motivated by the ℓ1-IPM of [CKLPPS22] for
solving min-cost flow, and contrasts with ℓ2-norm MWUs of [CKMST11; AKPS19] for approximate
maxflow and p-norm regression. These ℓ1-norm subproblems are min-ratio cycle problems, which
we solve by calling a min-ratio cycle data structure. If the output has sufficiently good ratio, the
algorithm proceeds to the next iteration. Otherwise, we conclude that G does not support a valid
circulation yet, and ask for the next edge insertion.

To analyze Algorithm 2, we keep track of the following two potentials:

Φ(i) def
=

∥∥∥Ra(i)
∥∥∥

2

2
(5)

Ψ(i) def
=

∥∥∥Wb(i)
∥∥∥

q

q
(6)

where a and b are defined as

a(i) def
=

K√
m

r−1 +
1

T

i−1∑

j=0

|∆(j)| (7)

b(i) def
=

K

m1/q
w−1 +

1

T

i−1∑

j=0

|∆(j)| (8)

Because of the definition of a(i) and b(i), we know a(i), b(i) ≥ |c(i)| after any iteration i and thus
both Φ(i) ≤ ‖Rc(i)‖22 and Ψ(i) ≤ ‖Wc(i)‖qq.
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Algorithm 2: Incremental K-Approximate Residual Algorithm

1 global variables

2 p: the norm considered in Problem 4.4.
3 q ← min{log2 m, p}: the norm which the algorithm handles.

4 κ← mo(1): the approximation factor in Lemma 5.2.
5 K ← 100qκ: the approximation factor of this algorithm.
6 α← K1−q/(10q): the target ratio given in Lemma 5.7.

7 procedure IncrementalMWU(G, g, r, w)

8 Initialize c(0) = 0, a(0) = Km−1/2r−1, and b(0) = Km−1/qw−1.

9 Initialize edge lengths ℓ(0) def
= Kq−2r2a(0) + wq(b(0))q−1.

10 Initialize a κ-approximate MRC algorithm A(5.2) on (G, g, ℓ) and target ratio α.
11 Set T ← 100qm
12 for iteration i = 0, 1, . . . , T do

13 Define the edge length ℓ(i) def
= Kq−2r2a(i) + wq(b(i))q−1.

14 Maintain an estimation ℓ̃ ∈ [ℓ(i), 2ℓ(i)].

15 Feed updates to the estimation ℓ̃ to A(5.2).

16 while A(5.2) outputs a cycle of ratio > −α/κ do

17 Claim that there’s no circulation c∗ s.t.

〈g, c∗〉 = −1, ‖Rc∗‖2 ≤ 1, and ‖Wc∗‖p ≤ 1

18 Wait for a new edge e.

19 Set a
(i)
e = Km−1/2r−1

e and b
(i)
e = Km−1/qw−1

e .

20 Insert the new edge e to A(5.2) with gradient ge and length

ℓ̃e = ℓ
(i)
e = Kq−2r2

ea
(i)
e + wq

e(b
(i)
e )q−1.

21 A(5.2) outputs a cycle ∆(i) s.t. 〈g, ∆(i)〉/‖L̃∆(i)‖1 ≤ −α/κ.

22 Scale ∆(i) such that 〈g, ∆(i)〉 = −1 and ‖L̃∆(i)‖1 ≤ κ/α ≤ Kq.

23 Update c(i+1) def
= c(i) + 1

T ∆(i), a(i+1) def
= a(i) + 1

T |∆(i)|, and b(i+1) def
= b(i) + 1

T |∆(i)|
24 return c(T )

Lemma 5.3 (Initial Potential). Initially, Φ(0) = K2 and Ψ(0) = Kq.

Lemma 5.4 (Increase in Φ). At any iteration i, we have Φ(i+1) ≤ Φ(i) + 3K2/T.

Proof. For simplicity in the presentation, we ignore superscripts (i) in the proof. Let ∆ be the
cycle output in Line 21 such that ‖L̃∆‖1 ≤ Kq and Φ′ be the new potential values after updating

a′ def
= a + 1

T |∆|. For any edge e, we know

Kq−2r2
eae|∆e| ≤ ℓe|∆e| ≤ ‖L∆‖1 ≤ ‖L̃∆‖1 ≤ Kq

Rearrangement and the monotonicity of a yields

K2

m

|∆e|
ae
≤ r2

ea2
e
|∆e|
ae

= r2
eae|∆e| ≤ K2
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and therefore |∆e| ≤ mae ≤ T ae/3. Applying the definition of Φ′ yields

Φ′ =
∑

e

r2
e(ae +

1

T
|∆e|)2

≤
∑

e

r2
e(a2

e +
3

T
ae|∆e|) = Φ +

3

T

∑

e

r2
eae|∆e|

≤ Φ +
3

T
K2−q ‖L∆‖1 ≤ Φ +

3K2

T

where we use (1 + x)2 ≤ 1 + 3x for x ∈ [0, 1].

Lemma 5.5 (Increase in Ψ). At any iteration i, we have Ψ(i+1) ≤ Ψ(i) + 4qKq/T.

Proof. For simplicity in the presentation, we ignore superscripts (i) in the proof. Let ∆ be the
cycle output in Line 21 such that ‖L̃∆‖1 ≤ Kq and Ψ′ be the new potential values after updating

b′ def
= b + 1

T |∆|. For any edge e, we know

wq
ebq−1

e |∆e| ≤ ℓe|∆e| ≤ ‖L∆‖1 ≤ ‖L̃∆‖1 ≤ Kq

Rearrangement and the monotonicity of b yields

Kq

m

|∆e|
be
≤ wq

ebq
e

|∆e|
be

= wq
ebq−1

e |∆e| ≤ Kq

and therefore |∆e| ≤ mbe ≤ T be

100q . Applying the definition of Ψ′ yields

Ψ′ =
∑

e

wq
e(be +

1

T
|∆e|)q

≤
∑

e

wq
e(bq

e +
4q

T
bq−1

e |∆e|) = Ψ +
4q

T

∑

e

wq
ebq−1

e |∆e|

≤ Ψ +
4q

T
‖L∆‖1 ≤ Ψ +

4qKq

T

where we use (1 + x)q ≤ 1 + 4qx for x ∈ [0, 1/100q].

Lemma 5.6 (Final Potential). When Algorithm 2 returns c(T ), we have Φ(T ) ≤ 4K2 and Ψ(T ) ≤
5qKq. Therefore, we have ‖Rc(T )‖2 ≤ 2K and ‖Wc(T )‖p ≤ ‖Wc(T )‖q ≤ 2K.

Proof. This follows directly from Lemma 5.3, Lemma 5.4, and Lemma 5.5.

Lemma 5.7 (Existence of a good ℓ1 solution). If there is a circulation c∗ such that 〈g, c∗〉 =
−1, ‖Rc∗‖2 ≤ 1, and ‖Wc∗‖p ≤ 1, we have ‖L(i)c∗‖1 ≤ 20qKq−1 at any iteration i.

Proof. In this proof, we consider an arbitrary iteration i and ignore the superscripts (i) for sim-
plicity. By definition and the bounds on Φ and Ψ (Lemma 5.6), we have by the Cauchy-Schwarz
inequality and Hölder inquality that,

‖Lc∗‖1 = Kq−2
∑

e

r2
eae|c∗

e|+
∑

e

wq
ebq−1

e |c∗
e|

≤ Kq−2 ‖Ra‖2 ‖Rc∗‖2 +
∥∥∥Wq−1bq−1

∥∥∥
q/(q−1)

‖Wc∗‖q
= Kq−2 ‖Ra‖2 ‖Rc∗‖2 + ‖Wb‖q−1

q ‖Wc∗‖q
≤ Kq−2(2K) + (5qKq)(q−1)/q · 2
≤ 2Kq−1 + 10qKq−1 ≤ 20qKq−1

where the second inequality comes from ‖Wc∗‖q ≤ m1/q−1/p‖Wc∗‖p ≤ m1/ log2 m = 2.
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Proof of Lemma 4.5. We first show that if line 16 of Algorithm 1 occurs, then the claim about c∗

in the following line 17 is true. The correctness of Lemma 5.2 says that there’s no circulation c∗

such that 〈g, c∗〉 = −1 and ‖L̃c∗‖1 ≤ 1/α = 20qKq−1. Correctness then follows from Lemma 5.7.
Next, the quality of the output c(T ) is established by Lemma 5.6.
Finally, the runtime follows from Lemma 5.2 and the standard technique of maintaining a, b

and ℓ̃ using dynamic tree data structures such as link-cut trees. In particular, ℓ is monotone and
bounded by mO(p) on each edge, so we can maintain a ℓ̃ ≈2 ℓ with Õ(p) changes per change.

6 Dynamic Min-Ratio Cycle Data Structures

In this section, we prove Lemma 5.2. We use the oblivious min-ratio cycle data structure from
[CKLPPS22]. In particular, the data structure can handle adversaries stronger than oblivious ones
as long as the update sequence satisfies what is called the hidden stable-flow chasing property. In
the problem of approximate monotonic min-ratio cycles, we show that the update sequences satisfy
this property and the monotonicity in edge lengths allows us to use a special case of the data
structure in [CKLPPS22].

Definition 6.1 (Hidden Stable-Flow Chasing Updates, Definition 6.1 [CKLPPS22]). Consider a
dynamic graph G(t) undergoing batches of updates U (1), . . . , U (t), . . . consisting of edge insertions
and deletions. We say the sequences g(t), ℓ(t), and U (t) satisfy the hidden stable-flow chasing prop-
erty if there are hidden dynamic circulations c(t) and hidden dynamic upper bounds w(t) such that
the following holds at all stages t:

1. c(t) is a circulation: B⊤
G(t)c

(t) = 0.

2. w(t) upper bounds the length of c(t): |ℓ(t)
e c

(t)
e | ≤ w

(t)
e for all e ∈ E(G(t)).

3. For any edge e in the current graph G(t), and any stage t′ ≤ t, if the edge e was already

present in G(t′), i.e. e ∈ G(t) \⋃t
s=t′+1 U (s), then w

(t)
e ≤ 2w

(t′)
e .

Theorem 6.2 (Simpler version of [CKLPPS22, Theorem 7.1]). Let G = (V, E) be a dynamic
graph undergoing τ batches of updates U (1), . . . , U (τ) containing only edge insertions and deletions
with edge gradient g(t) and length ℓ(t) such that the update sequence satisfies the hidden stable-flow
chasing property (Definition 6.1) with hidden dynamic circulation c(t) and width w(t). In addition,
‖w(t)‖1 is non-decreasing in t, i.e., ‖w(t)‖1 ≤ ‖w(t+1)‖1 for all steps t.

There is an algorithm on G that for d = (log m)1/8 maintains a collection of s = O(log m)d

spanning trees T1, T2, . . . , Ts and after each update outputs a circulation ∆ represented by
exp(O(log7/8 m log log m)) off-tree edges and paths on some Ti, i ∈ [s]. The output circulation ∆

satisfies B⊤∆ = 0 and for some κ = exp(−O(log7/8 m log log m))

〈g(t), ∆〉∥∥L(t)∆
∥∥

1

≤ κ
〈g(t), c(t)〉

(d + 1)‖w(t)‖1

The algorithm succeeds whp. with total runtime (m + Q)mo(1) for Q
def
=

∑τ
t=1

∣∣∣U (t)
∣∣∣ ≤ poly(n).

This follows from [CKLPPS22, Theorem 7.1] because the terms ‖w(prev
(t)
i

)‖1 ≤ ‖w(t)‖1 by the

increasing property, and prev
(t)
i ≤ t.
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Proof of Lemma 5.2. We apply the dynamic algorithm of Theorem 6.2 to prove the lemma. In
order to do so, we need to show that there is a hidden circulation c(t) and width w(t) that satisfies
the hidden stable-flow chasing property (Definition 6.1). At any stage t, if the monotonic MRC
problem instance (Problem 5.1) inserts a new edge e with gradient ge and length ℓe, we create an
update batch U (t) consists of a single edge insertion (e, ge, ℓe). Otherwise, if the problem instance
increases the length of an edge from ℓe to ℓ′

e, we create an update batch U (t) consists of an edge
deletion e followed by an edge insertion (e, ge, ℓ′

e).
At any stage t (including stage 0, the moment after the initialization), we define the hidden

circulation c(t) to be c∗ if every edge in the circulation c∗ appears in G(t). Otherwise, we set c(t)

to be the all zero circulation. We also define the hidden width w(t) on each edge e as

w(t)
e

def
=





∣∣∣ℓ(t)
e c∗

e

∣∣∣ , if e ∈ supp(c∗)

0 , otherwise.

Now, we verify each condition of Definition 6.1 one at a time. Item 1 holds at any stage t

because both c∗ and 0 are circulations. For any edge e ∈ supp(c∗), c
(t)
e is either 0 or c∗

e and

w
(t)
e ≥ |ℓ(t)c

(t)
e | holds. For any other edge e 6∈ supp(c∗), both c

(t)
e and w

(t)
e are always 0 and Item 2

follows. Item 3 follows from the fact that c∗ is fixed beforehand and that an edge is updated when
its length doubles. Also, ‖w(t)‖1 is non-decreasing in t because edge lengths are non-decreasing.

Finally, we need to show that the output after each update is always valid. At stage t, if
supp(c∗) 6⊆ G(t), Problem 5.1 does not care what we output. If supp(c∗) ⊆ G(t), we know g(t) = g,
c(t) = c∗ and ‖w(t)‖1 = ‖L(t)c∗‖1, and the output circulation ∆ satisfies

〈g, ∆〉∥∥L(t)∆
∥∥

1

≤ κ
〈g, c(t)〉

(d + 1)‖w(t)‖1
=

κ

d + 1

〈g, c∗〉
‖L(t)c∗‖1

from Theorem 6.2. The conclusion follows because d = (log m)1/8.

Acknowledgements

We thank the anonymous reviewers for their feedback and suggestions.

References

[ABKS21] Deeksha Adil, Brian Bullins, Rasmus Kyng, and Sushant Sachdeva. “Almost-linear-time
Weighted ℓp-norm Solvers in Slightly Dense Graphs via Sparsification”. In: arXiv preprint
arXiv:2102.06977 (2021) (cit. on p. 2).

[AKPS19] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. “Iterative refinement
for ℓp-norm regression”. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms. SIAM. 2019, pp. 1405–1424 (cit. on pp. 2, 8, 9, 13).

[APS19] Deeksha Adil, Richard Peng, and Sushant Sachdeva. “Fast, provably convergent irls
algorithm for p-norm linear regression”. In: Advances in Neural Information Processing
Systems 32 (2019) (cit. on pp. 2, 9).

[AS20] Deeksha Adil and Sushant Sachdeva. “Faster p-norm minimizing flows, via smoothed
q-norm problems”. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM. 2020, pp. 892–910 (cit. on pp. 2, 9).

[ACCSW18] Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. “Dynamic Match-
ing: Reducing Integral Algorithms to Approximately-Maximal Fractional Algorithms”.
In: ICALP. Vol. 107. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,
7:1–7:16 (cit. on p. 5).

17



[ABKL22] Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. “On Regularity Lemma
and Barriers in Streaming and Dynamic Matching”. In: CoRR abs/2207.09354 (2022)
(cit. on p. 5).

[AMV21] Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. “Faster Sparse Minimum Cost
Flow by Electrical Flow Localization”. In: FOCS. IEEE, 2021, pp. 528–539 (cit. on p. 1).

[AMV20] Kyriakos Axiotis, Aleksander Mądry, and Adrian Vladu. “Circulation control for faster
minimum cost flow in unit-capacity graphs”. In: 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS). IEEE. 2020, pp. 93–104 (cit. on p. 1).

[BGS15] Surender Baswana, Manoj Gupta, and Sandeep Sen. “Fully Dynamic Maximal Matching
in O(log n) Update Time”. In: SIAM J. Comput. 44.1 (2015), pp. 88–113 (cit. on p. 5).

[Beh23] Soheil Behnezhad. “Dynamic Algorithms for Maximum Matching Size”. In: Proceedings
of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM,
2023, pp. 129–162 (cit. on p. 1).

[BDHSS19] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and
Madhu Sudan. “Fully Dynamic Maximal Independent Set with Polylogarithmic Update
Time”. In: FOCS. IEEE Computer Society, 2019, pp. 382–405 (cit. on p. 5).

[BK22] Soheil Behnezhad and Sanjeev Khanna. “New Trade-Offs for Fully Dynamic Matching
via Hierarchical EDCS”. In: SODA. SIAM, 2022, pp. 3529–3566 (cit. on p. 5).

[BLM20] Soheil Behnezhad, Jakub Lacki, and Vahab S. Mirrokni. “Fully Dynamic Matching:
Beating 2-Approximation in ∆ǫ Update Time”. In: SODA. SIAM, 2020, pp. 2492–2508
(cit. on p. 5).

[BFH21] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. “A Deamortization Ap-
proach for Dynamic Spanner and Dynamic Maximal Matching”. In: ACM Trans. Algo-
rithms 17.4 (2021), 29:1–29:51 (cit. on p. 5).

[BGS20] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. “Deter-
ministic decremental reachability, SCC, and shortest paths via directed expanders and
congestion balancing”. In: 2020 IEEE 61st Annual Symposium on Foundations of Com-
puter Science (FOCS). IEEE. 2020, pp. 1123–1134 (cit. on p. 5).

[BHR19] Aaron Bernstein, Jacob Holm, and Eva Rotenberg. “Online Bipartite Matching with

Amortized O(log 2 n) Replacements”. In: J. ACM 66.5 (2019), 37:1–37:23 (cit. on p. 5).

[BS15] Aaron Bernstein and Cliff Stein. “Fully Dynamic Matching in Bipartite Graphs”. In:
ICALP (1). Vol. 9134. Lecture Notes in Computer Science. Springer, 2015, pp. 167–179
(cit. on p. 5).

[BS16] Aaron Bernstein and Cliff Stein. “Faster Fully Dynamic Matchings with Small Approx-
imation Ratios”. In: SODA. SIAM, 2016, pp. 692–711 (cit. on p. 5).

[BHN16] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. “New deterministic
approximation algorithms for fully dynamic matching”. In: STOC. ACM, 2016, pp. 398–
411 (cit. on p. 5).

[BK21] Sayan Bhattacharya and Peter Kiss. “Deterministic Rounding of Dynamic Fractional
Matchings”. In: ICALP. Vol. 198. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2021, 27:1–27:14 (cit. on p. 5).

[BKS23a] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. “Dynamic (1+ǫ)-Approximate
Matching Size in Truly Sublinear Update Time”. In: arXiv preprint arXiv:2302.05030
(2023) (cit. on p. 5).

[BKS23b] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. “Dynamic algorithms for
packing-covering lPS via multiplicative weight updates”. In: Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM. 2023, pp. 1–47
(cit. on p. 5).

18



[BKSW23] Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc. “Dynamic
Matching with Better-than-2 Approximation in Polylogarithmic Update Time”. In: Pro-
ceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM, 2023, pp. 100–128 (cit. on pp. 1, 5).

[BK19] Sayan Bhattacharya and Janardhan Kulkarni. “Deterministically Maintaining a (2 + ǫ)-
Approximate Minimum Vertex Cover in O(1/ǫ2) Amortized Update Time”. In: SODA.
SIAM, 2019, pp. 1872–1885 (cit. on p. 5).

[BK23] Joakim Blikstad and Peter Kiss. “Incremental (1-ǫ)-approximate dynamic matching in
O(poly(1/ǫ)) update time”. In: CoRR abs/2302.08432 (2023) (cit. on p. 5).

[BLSZ14] Bartlomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych. “Online Bipar-
tite Matching in Offline Time”. In: FOCS. IEEE Computer Society, 2014, pp. 384–393
(cit. on p. 5).

[BLS23] Jan van den Brand, Yang P Liu, and Aaron Sidford. “Dynamic Maxflow via Dynamic
Interior Point Methods”. In: Proceedings of the 55th Annual ACM Symposium on Theory
of Computing. 2023, pp. 1215–1228 (cit. on pp. 1, 2, 5, 7, 8).

[BCKLPGSS23] Jan van den Brand, Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian
Probst Gutenberg, Sushant Sachdeva, and Aaron Sidford. “A Deterministic Almost-
Linear Time Algorithm for Minimum-Cost Flow”. In: 2022 IEEE 64rd Annual Sympo-
sium on Foundations of Computer Science (FOCS). IEEE. 2023 (cit. on p. 2).

[BGJLLPS22] Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P. Liu, Richard Peng,
and Aaron Sidford. “Faster maxflow via improved dynamic spectral vertex sparsifiers”.
In: STOC. ACM, 2022, pp. 543–556 (cit. on pp. 1, 5).

[BLLSSSW21] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. “Minimum cost flows, MDPs, and ℓ1-regression in nearly linear
time for dense instances”. In: STOC. ACM, 2021, pp. 859–869 (cit. on p. 1).

[BLNPSSSW20] Jan van den Brand, Yin-Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. “Bipartite matching in nearly-
linear time on moderately dense graphs”. In: 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS). IEEE. 2020, pp. 919–930 (cit. on p. 1).

[BNS19] Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. “Dynamic Matrix
Inverse: Improved Algorithms and Matching Conditional Lower Bounds”. In: FOCS.
IEEE Computer Society, 2019, pp. 456–480 (cit. on p. 5).

[CDKLLPSV21] Parinya Chalermsook, Syamantak Das, Yunbum Kook, Bundit Laekhanukit, Yang P Liu,
Richard Peng, Mark Sellke, and Daniel Vaz. “Vertex sparsification for edge connectivity”.
In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM. 2021, pp. 1206–1225 (cit. on p. 5).

[CS18] Moses Charikar and Shay Solomon. “Fully Dynamic Almost-Maximal Matching: Break-
ing the Polynomial Worst-Case Time Barrier”. In: ICALP. Vol. 107. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 33:1–33:14 (cit. on p. 5).

[CZ19] Shiri Chechik and Tianyi Zhang. “Fully Dynamic Maximal Independent Set in Expected
Poly-Log Update Time”. In: FOCS. IEEE Computer Society, 2019, pp. 370–381 (cit. on
p. 5).

[CGHPS20] Li Chen, Gramoz Goranci, Monika Henzinger, Richard Peng, and Thatchaphol Sara-
nurak. “Fast dynamic cuts, distances and effective resistances via vertex sparsifiers”.
In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).
IEEE. 2020, pp. 1135–1146 (cit. on pp. 5, 7).

19



[CKLPPS22] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. “Maximum flow and minimum-cost flow in almost-linear time”.
In: 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS).
https://arxiv.org/abs/2203.00671. IEEE. 2022, pp. 612–623 (cit. on pp. 1, 2, 4, 6–8,
13, 16).

[CKMST11] Paul Christiano, Jonathan A. Kelner, Aleksander Mądry, Daniel A. Spielman, and
Shang-Hua Teng. “Electrical flows, Laplacian systems, and faster approximation of
maximum flow in undirected graphs”. In: Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC 2011, San Jose, CA, USA, June 6-8 2011. Available at
https://arxiv.org/abs/1010.2921. ACM, 2011, pp. 273–282 (cit. on pp. 2, 3, 13).

[CKMPPRX14] Michael B Cohen, Rasmus Kyng, Gary L Miller, Jakub W Pachocki, Richard Peng, Anup
B Rao, and Shen Chen Xu. “Solving SDD linear systems in nearly m log1/2 n time”. In:
Proceedings of the forty-sixth annual ACM symposium on Theory of computing. 2014,
pp. 343–352 (cit. on p. 3).

[CMSV17] Michael B. Cohen, Aleksander Mądry, Piotr Sankowski, and Adrian Vladu. “Negative-

Weight Shortest Paths and Unit Capacity Minimum Cost Flow in Õ(m10/7) Time (Ex-
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