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Abstract

In numerical linear algebra, considerable effort has been devoted to obtaining faster algorithms
for linear systems whose underlying matrices exhibit structural properties. A prominent success
story is the method of generalized nested dissection [Lipton-Rose-Tarjan’79] for separable matrices.
On the other hand, the majority of recent developments in the design of efficient linear program
(LP) solves do not leverage the ideas underlying these faster linear system solvers nor consider
the separable structure of the constraint matrix.

We give a faster algorithm for separable linear programs. Specifically, we consider LPs of
the form minAx=b,ℓ≤x≤u c⊤x, where the graphical support of the constraint matrix A ∈ Rn×m

is O(nα)-separable. These include flow problems on planar graphs and low treewidth matrices
among others. We present an Õ((m+m1/2+2α) log(1/ϵ)) time algorithm for these LPs, where ϵ
is the relative accuracy of the solution.

Our new solver has two important implications: for the k-multicommodity flow problem
on planar graphs, we obtain an algorithm running in Õ(k5/2m3/2) time in the high accuracy
regime; and when the support of A is O(nα)-separable with α ≤ 1/4, our algorithm runs in Õ(m)
time, which is nearly optimal. The latter significantly improves upon the natural approach of
combining interior point methods and nested dissection, whose time complexity is lower bounded
by Ω(

√
m(m+mαω)) = Ω(m3/2), where ω is the matrix multiplication constant. Lastly, in the

setting of low-treewidth LPs, we recover the results of [DLY21a] and [GS22] with significantly
simpler data structure machinery.
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1 Introduction

Linear programming (LP) is a widely used technique for solving a broad range of problems that
emerge in optimization, operations research, and computer science, among others. LP solvers have
been a subject of research for many years, both from theoretical as well as practical perspectives.
This has led to the development of several algorithmic gems such as the Simplex algorithm [Dan51],
ellipsoid algorithm [Kha80] and interior point method [Kar84], to name a few.

Fast solvers for LPs via interior point methods have received considerable attention recently,
especially in the theoretical computer science community. A series of improvements culminated in
the recent breakthrough work of Cohen, Lee and Song [CLS21], which shows that any linear program
minAx=b,l≤x≤u c⊤x with n constraints and m variables can be solved in Õ(mω log(1/ε)) time, where
ε is the accuracy parameter and ω ≈ 2.3715 is the matrix multiplication exponent [DWZ22, WXXZ23].
When A is a dense matrix, their running time is almost optimal as it nearly matches the O(mω)
algorithm for solving a linear system Ax = b, which is a sub-problem of linear programming.
However, the case when A is a sparse matrix is equally important, since the constraint matrices of
many LP instances that arise in practical applications happen to be sparse.

A widely-used method for identifying structures in a sparse matrix A involves associating a
graph with its non-zero pattern, which captures the interactions between the equations in the system.
In this paper, we are interested in when said graph is separable; we use a weighted-version of the
definition as is common in literature, such as [HKRS97]:

Definition 1.1 (Separable graphs). A (hyper-)graph G = (V, E) is nα-separable for some α ∈ [0, 1]
if there exists constants b ∈ (0, 1) and c > 0, such that for any vertex weight assignment w, the
vertices of G can be partitioned into S, A and B such that |S| ≤ c · |V |α, there are no edges between
A and B, and max{w(A), w(B)} ≤ b ·w(V ). We call S the (b-)balanced vertex separator of H (with
respect to w).

A notable case is α = 1/2, which includes the family of planar and bounded-genus graphs [LT79].
It has also been empirically observed that road networks have separators of size n1/3[DSW14, SS15].

Building upon the seminal work of George [Geo73], Lipton Tarjan and Rose [LRT79] introduced
the generalized nested dissection algorithm, which solves the linear system Ax = b in O(m+mαω)
time when A is a symmetric-positive definite matrix and the associated graph is O(nα)-separable.
When α < 1, this algorithm outperforms the canonical O(mω)-time algorithm for general linear
systems. Motivated by this, we ask the natural question of how to leverage the structures in the
constraints to speed up linear programming:

Are there faster LP solvers for the class of problems where the constraint matrix A can be
represented by an O(nα)-separable graph?

Given the constraint matrix A, [LRT79] associates with it the unique graph whose adjacency
matrix has the same non-zero pattern as A. In the context of linear programs, we define the
dual graph GA of a constraint matrix A ∈ Rn×m to be the hypergraph with vertex set {1, . . . , n}
corresponding to the rows of A and hyper-edges {e1, . . . , em}, such that vertex i is in hyperedge ej
if Ai,j ̸= 0.

In this paper, we present a faster solver for LPs whose dual graph is separable.

Theorem 1.2. Given a linear program min {c⊤x : Ax = b, l ≤ x ≤ u}, where A ∈ Rn×m is a
full-rank matrix with n ≤ m, suppose the dual graph GA is O(nα)-separable with α ∈ [0, 1], and a
balanced separator is computable in T (n) time.
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Suppose that r is the inner radius of the polytope, namely, there is x such that Ax = b and
l + r ≤ x ≤ u − r. Let L = ∥c∥2 and R = ∥u− l∥2. Then, for any 0 < ε ≤ 1/2, we can find a
feasible x with high probability such that

c⊤x ≤ min
Ax=b, l≤x≤u

c⊤x+ ε · LR,

in time
Õ
(
(m+m1/2+2α) · log(R/(rε)) + T (n)

)
.

Our result should be compared against the natural Õ(m1/2(m+mαω)) runtime, which directly
follows from the fact that IPM-based methods require Õ(

√
m) iterations, each of which can be

implemented in O(m+mαω) time using the nested dissection [LRT79, AY10] algorithm. For linear
programs whose dual graph are O(nα)-separable with α ≤ 1/4, our algorithm achieves Õ(m log(1/ε))
time, which is optimal up to poly-logarithmic factors.

We would like to emphasize that Õ(m+m1/2+2α) represents a natural barrier for the (robust)
IPM-based approaches. At a high level, each iteration of IPM involves performing matrix operations
using the inverse of an O(mα)×O(mα) matrix1. Even if one is given access to said inverse, multiplying
a vector against it takes at least Ω(m2α), showing that improving upon the m2α factor will require
significantly new ideas in the design and analysis of robust Interior Point Methods. Obtaining
an LP solver whose time complexity is Õ(m+mαω), which would in turn nearly match the time
complexity for solving linear systems with recursively separable structure, remains an outstanding
open problem [GKK86].

An immediate application of Theorem 1.2 is a faster algorithm for solving the (fractional) k-
commodity flow problem on planar graphs to high accuracy. For general sparse graphs, an Õ((km)ω)
time algorithm for this problem follows by the recent linear program solvers that run in matrix
multiplication time [CLS21, vdB20]. It is known that solving the k-commodity flow problem is as
hard as linear programming [Ita78, DKZ22], suggesting that additional structural assumptions on
the input graph are necessary to obtain faster algorithms. As shown in the theorem below, our result
achieves a polynomial speed-up when the input graph is planar.

Theorem 1.3. Given a minimum-cost k-multicommodity flow problem on a planar graph G = (V,E)
on n vertices and m edges, with edge-vertex incidence matrix B, integer edge capacities u ∈ RE

≥0,
integer costs c1, . . . , ck ∈ RE and integer demands d1, . . . ,dk ∈ RE for each commodity, we can solve
the LP

min
k∑

i=1

c⊤i fi

s.t B⊤fi = di ∀i ∈ [k]

k∑
i=1

fi ≤ u

fi ≥ 0 ∀i ∈ [k]

(1.1)

to ϵ accuracy in Õ(k2.5m1.5 log(M/ε)) time, where M is an upper on the absolute values of u, c,d.

Our main result also has the important advantage of recovering and simplifying the recent work
by Dong, Lee and Ye [DLY21a] and Gu and Song [GS22] who obtain fast solvers for LPs whose
constraint matrix has bounded treewidth.

1For O(nα)-separable graph, where α < 1, it is known that m = O(n), see e.g., [LRT79].
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Theorem 1.4. Suppose we have a linear program with the same setup as Theorem 1.2, and we are
given a tree-decomposition of the dual graph GA

2 of width τ . Then we can solve the linear program
in time

Õ(mτ2 log(R/(εr))) or Õ(mτ (ω+1)/2 log(R/(εr))).

1.1 Previous work

It is known that 2-commodity flow is as hard as linear programming [Ita78]. Recently, [DKZ22]
showed a linear-time reduction from linear programs to sparse k-commodity flow instance, indicating
that sparse k-commodity flow instances are hard to solve. This has led to renewed interest in solving
k-commodity flow in restricted settings, with the authors of [vdBZ23] making progress on dense
graphs.

Linear programming solvers. The quest for understanding the computational complexity of
linear programming has a long and rich history in computer science and mathematics. Since the
seminal works of Khachiyan [Kha80] and later Karmarkar [Kar84], who were the first to prove
that LPs can be solved in polynomial time, the interior point method and its subsequent variants
have become the central methods for efficiently solving linear programs with provable guarantees.
This has led to a series of refined and more efficient IPM-based solvers [Ren88, Vai96, NN91, LS19,
LSZ19, CLS21, JSWZ21], which culminated in the recent breakthrough work of Cohen, Lee, and
Song [CLS21] who showed that an LP solver whose running time essentially matches the matrix
multiplication cost, up to small low-order terms. In a follow-up work, Brand [vdB20] managed to
derandomize their algorithm while retaining the same time complexity.

A problem closely related to this paper is solving LPs when the support of the constraint matrix
has bounded treewidth τ . Dong, Lee and Ye [DLY21a] showed that such structured LPs can be
solved in Õ(mτ2), which is near-linear when τ is poly-logarithmic in the parameters of the input.

High-accuracy and approximate multi-commodity flow. As mentioned above, it is known
that we can solve multicommodity flow in the high-accuracy regime using linear programming.
For a graph with n nodes, m edges, and k commodities, the underlying constraint matrix has km
variables and kn+m equality constraints. Thus, using the best-known algorithms for solving linear
programs [CLS21, vdB20], one can achieve a runtime time complexity of Õ((km)ω) for solving
multi-commodity flow. In the special case of dense graphs, Brand and Zhang [vdBZ23] recently
showed an improved algorithm achieving Õ(k2.5

√
mnω−1/2) runtime.

In the approximate regime, Leighton et al. [LSM+91] show that (1 + ϵ) multi-commodity flow on
undirected graphs can be solved in Õ(kmn), albeit with a rather poor dependency on ϵ. This result
led to several follow-up improvements in the low-accuracy regime [GK07, Fle00, Mad10]. Later
on, breakthrough works in approximating single commodity max flow in nearly-linear time were
also extended to the k-commodity flow problem on undirected graphs [KLOS14, She13, Pen16],
culminating in the work of Sherman [She17] who achieved an Õ(mkϵ−1) time algorithm for the
problem.

Multi-commodity flow on planar graphs. The multi-commodity flow problem on planar graphs
was studied in the 1980s, but there has not been much interest in it until most recently. Results in the
past focused on finding conditions under which solutions existed [OS81], or finding simple algorithms

2We can view the hypergraph GA as a graph, where we interpret each hyper-edge as a clique, and consider its
treewidth as usual.
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in even more restricted settings, with the authors of [MNS85] demonstrating that the problem could
be solved in O(kn + n2(log n)1/2) time if the sources and sinks were all on the outer face of the
graph. More recently, [KK13] studied the all-or-nothing version of planar multi-commodity flow,
where flows have to be integral, and demonstrate that an O(1)-approximation could be achieved in
polynomial time.

Max flow and min-cost flow on general graphs. In what follows, we will focus on surveying
only exact algorithms for max-flow and min-cost flow on general graphs. For earlier developments
on these problems, including fast approximation algorithms, we refer the reader to the following
works [KRT94, AMO88, CKM+11, She13, KLOS14, Pen16, ST18, BGS21], and the references
therein.

An important view, unifying almost all recent max-flow or min-cost flow developments, is
interpreting max-flow as the problem of finding one unit of s-t flow that minimizes the ℓ∞ congestion
of the flow vector. Motivated by the near-linear Laplacian solver of Spielman and Teng [ST04]
(which in turn can be used to solve the problem of finding one unit of s-t flow that minimizes
the ℓ2 congestion), and the fact that the gap between ℓ∞ and ℓ2 is roughly O(

√
m), Daitch and

Spielman [DS08] showed how to implement the IPM for solving min-cost flows in Õ(m3/2) time.
Follow-up works initially made progress on the case of unit capacitated graphs, with the work of

Madry [Mad13] achieving an Õ(m10/7) time algorithm for max flow and thus being the first to break
the 3/2-exponent barrier in the runtime. The running time was later improved to O(m4/3+o(1)) and
it was generalized to the min-cost flow problem [AMV22, KLS20].

For general, polynomially bounded capacities, Brand et al. [vdBLL+21] gave an improved
algorithm for dense graphs that runs in Õ(m + n3/2). In the sparse graph regime, Gao, Liu and
Peng [GLP21] were the first to break the 3/2-exponent barrier by giving an Õ(m3/2−1/128) time
algorithm, which was later improved to Õ(m3/2−1/58) [vdBGJ+21]. Very recently, the breakthrough
work of Chen et al. [CKL+22] shows that the min-cost flow problem can be solved in Õ(m1+o(1)),
which is optimal up to the subpolynomial term.

Max flow and min-cost flow on planar graphs. The study of flows on planar graphs dates
back to the celebrated work of Ford and Fulkerson [FF56] who showed that for the case of s, t-planar
graphs3, there is an O(n2) time algorithm for max flow. This was subsequently improved to O(n log n)
by Itai and Shiloach [IS79] and finally to O(n) by Henzinger et al [HKRS97], the latter building
upon a prior work of Hassin [Has81].

For general planar graphs, there have been two lines of work focusing on the undirected and
the directed version of the problem respectively. In the first setting, Reif [Rei83] (and later Hassin
and Johnson [HJ85]) gave an O(n log2 n) time algorithm. The state-of-the-art algorithm is due to
Italiano et al. [INSW11] and achieves O(n log logn) runtime. Weihe [Wei97] gave the first speed-up
for directed planar max flow running in O(n log n) time. However, his algorithm required some
assumptions on the connectivity of the input graph. Later on, Borradaile and Klein [Bor08] gave
an O(n log n) algorithm for general planar directed graphs. Generalization of planar graphs, e.g.,
graphs of bounded genus have also been studied in the context of the max flow problem. The
work of Chambers et al. [CEFN23] showed that these graphs also admit near-linear time max flow
algorithms.

Imai and Iwano [II90] obtained an O(n1.594 logM) min-cost flow algorithm for graphs that are
O(
√
n) recursively separable. For the min-cost flow problem on planar graphs with unit capacities,

Karczmarz and Sankowski [KS19] gave an O(n4/3) algorithm. Very recently, Dong et al. [DGG+22]
3planar graphs where s and t lie on the same face
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showed that the min-cost flow on planar directed graphs with polynomially bounded capacities
admits an Õ(n) time algorithm, which is optimal up to polylogarithmic factors.

1.2 Technical overview

Our algorithm framework builds on the work of Dong-Gao-Goranci-Lee-Peng-Sachdeva-Ye on planar
min-cost flow [DGG+22]. We solve our linear program using the robust interior point method used
in [DLY21a, DGG+22], where we maintain feasible primal and dual solutions x and s to the linear
program that converge to the optimal solution over Õ(

√
m)-many steps of IPM. At every step, we

want to move our solutions in the direction of steepest descent of the objective function. To stay
close to the central path and avoid violating the capacity lower and upper bounds, the IPM controls
the weights W on the variables and the step direction v, in order to limit the magnitude of the
update to a variable as it approach its bounds. Both W and v are defined to be entry-wise dependent
on the current solution x and s. To maintain feasibility of the solutions, we apply the weighted
projection Pw

def
= W1/2A⊤(AWA⊤)−1AW1/2 matrix to the desired step direction v, which ensures

the resulting x and s after a step remain in their respective feasible subspaces. In robust IPMs, we
also maintain entry-wise approximations x, s to x and s, and use these approximations to compute
w,v, and Pw at every step. By limiting the updates to x, s, robust IPMs achieve efficient runtimes.

The key challenge in the RIPM framework is to implement each step efficiently, specifically,
computing the projection Pwv, as well as updating x, s. Similar to [DGG+22], we use a separator tree
to recursively factor the term AWA⊤ in Pw via nested dissection and recursive Schur complements.
However, there are several challenges in applying the framework from [DGG+22] to general linear
programs: In flow problems, the constraint matrix A is the vertex-edge incidence matrix of the
underlying graph, and therefore AWA⊤, as well as all recursive Schur complements along the
separator tree, are weighted Laplacian matrices, for which we have efficient nearly-linear-time
solvers [ST04] and sparse approximations to Schur complements [KS16, GHP18]. This allows
[DGG+22] to work with an approximate P̃w ≈ Pw efficiently, with implicit access via a collection of
approximate Schur complements that can be viewed as sparse Laplacians.

In the context of general separable linear programs, we do not have fast solvers or sparse
approximate Schur complements, so instead, we must maintain the collection of Schur complements
and their inverses explicitly, by computing them in a bottom-up fashion using the separator tree.
To bound the update time, we show that a rank-k update to AWA⊤ induced by changes in W
corresponds to rank-k updates to all the recursive Schur complements.

Our second contribution is the dynamic data structures to maintain the implicit representations
of x, s, which can be viewed as a significant refinement of those from [DGG+22]. We recall the
notion of tree operators introduced in [DGG+22] and define an analogous inverse tree operator, and
give simplified modular data structures to maintain x, s using the tree and inverse tree operator.
Specifically, we demonstrate more cleanly the power of nested dissection and the recursive subgraph
structure in supporting efficient lazy updates to the IPM solutions.

Our third technical contribution is the definition of a fine-grained separator tree which we call
the (a, b, λ)-separator tree. The parameters are defined based on the parameters of separable graphs,
but they also capture important characteristics of other classes such as low-treewidth graphs. These
trees guarantee that at any node, we are able to separate not only the associated graph region, but
also the boundary of the region. We use them to maintain the tree operators from the implicit
representations, and a careful analysis of node and boundary sizes allows us to conclude that the
maintenance can be performed efficiently.

Finally, we note that this work recovers the treewidth LP result of [DLY21a] and [GS22] with
significantly lower technical complexity. Whereas [DLY21a] constructs an elimination tree to directly
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compute the Cholesky factorization of AWA⊤ = LL⊤, we use a separator tree to recursively factor
AWA⊤. There is a key difference in the two tree constructions, which we believe this paper is correct
in: To construct an elimination tree, [DLY21a] finds a balanced vertex separator S of GA, remove S
from GA yielding two disconnected subgraphs H1, H2, recursively construct the elimination tree for
H1 and H2, and attach them as children to a vertical path of length |S| corresponding to the vertices
of S. When the treewidth of A ∈ Rn×m is t, this process results in an elimination tree of height
Õ(t) where each node corresponds to a vertex of GA, which can then be used to identify explicit
coordinates in the Cholesky factor L to update when W changes. Next, an extremely involved
transformation using heavy-light decomposition is needed to turn the elimination tree into a sampling
tree of height O(log n), in order to facilitate the sampling of entries from some implicit vector of
the form A⊤L−⊤z (required for maintaining x, s). In contrast, to construct our separator tree, we
find a balanced vertex separator S of GA, but include S in both subgraphs that are recursed on, and
partition the hyperedges in E(S) arbitrarily between the two subgraphs. The resulting separator
tree has height O(log n), where each node corresponds to a subgraph of GA, and each level of the
tree gives a partition of the columns of A. This recursive partitioning gives a cleaner, recursive
rather than brute-force factorization of AWA⊤, and leads to a significant difference in the data
structures. When W changes at a step, [DLY21a] updates the Cholesky factorization by processing
one changed coordinate at a time ([GS22] processes one block at a time), so that the data structure
update time is linear in the number of new coordinates. On the other hand, our separator tree allows
us to update W in one pass through the tree and yields a sublinear dependence on the number of
new coordinates. Moreover, as each node in our separator tree naturally corresponds to a subset
of columns of A, we can use it in a much more straight-forward manner to sample coordinates of
A⊤L−⊤z.

2 Preliminaries

General Notations. We assume all matrices and vectors in an expression have matching dimen-
sions. That is, we will trivially pad matrices and vectors with zeros when necessary. This abuse of
notation is unfortunately unavoidable as we will be considering lots of submatrices and subvectors.

An event holds with high probability if it holds with probability at least 1− nc for arbitrarily
large constant c. The choice of c affects guarantees by constant factors.

We use boldface lowercase variables to denote vectors, and boldface uppercase variables to denote
matrices. We use ∥v∥2 to denote the 2-norm of vector v and ∥v∥M to denote

√
v⊤Mv. We use

nnz(v) to denote the number of non-zero entries in the vector v, equivalently, it is the zero-norm. For
any vector v and scalar x, we define v + x to be the vector obtained by adding x to each coordinate
of v and similarly v − x to be the vector obtained by subtracting x from each coordinate of v. We
use 0 for all-zero vectors and matrices where dimensions are determined by context.

For an index set A, we use 1A for the vector with value 1 on coordinates in A and 0 everywhere
else. We use I for the identity matrix and IS for the identity matrix in RS×S . For any vector x ∈ RS ,
x|C denotes the sub-vector of x supported on C ⊆ S; more specifically, x|C ∈ RS, where xi = 0 for
all i /∈ C.

For any matrix M ∈ RA×B, we use the convention that MC,D denotes the sub-matrix of M
supported on C ×D where C ⊆ A and D ⊆ B. When M is not symmetric and only one subscript is
specified, as in MD, this denotes the sub-matrix of M supported on A×D. To keep notations simple,
M−1 will denote the inverse of M if it is an invertible matrix and the Moore-Penrose pseudo-inverse
otherwise.

For any vector v, we use the corresponding capitalized letter V to denote the diagonal matrix
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with v on the diagonal.
For two positive semi-definite matrices L1 and L2, we write L1 ≈t L2 if e−tL1 ⪯ L2 ⪯ etL1,

where A ⪯ B means B−A is positive semi-definite. Similarly we define ≥t and ≤t for scalars, that
is, x ≤t y if e−tx ≤ y ≤ etx.

When multiplying two matrices of differing sizes, say an m × n matrix with an n × k matrix,
we decompose both matrices into blocks of size min{m,n, k}. We then perform block matrix
multiplication, with fast matrix multiplication used for the multiplication of two blocks. For example,
multiplying a m× n matrix with an n× n matrix, with m ≥ n, takes (m/n)(nω) time.

Trees. For a tree T , we write H ∈ T to mean H is a node in T . We write TH to mean the
complete subtree of T rooted at H. We say a node A is an ancestor of H and H is a descendant of
A if H is in the subtree rooted at A, and H ̸= A. Given a set of nodes H, we use PT (H) to denote
the set of all nodes in T that are ancestors of some node in H unioned with H.

The level of a node in a tree has the following properties: the root is at level 0; the maximum
level is one less than the height of the tree; and the level of a node must be at least one greater than
the level of its parent, but this difference does not have to be equal to one. We may assign levels to
nodes arbitrarily as long as the above is satisfied. We use T (i) to denote the collection of all nodes
at level i in tree T .

IPM data structures. When we discuss data structures in the context of the IPM, step 0 means
the initialization step. For k > 0, step k means the k-th iteration of the while-loop in Solve
(Algorithm 2); that is, it is the k-th time we update the current solutions. For any vector or matrix
x used in the IPM, we use x(k) to denote the value of x at the end of the k-th step.

In all procedures in these data structures, we assume inputs are given by the set of changed
coordinates and their values, compared to the previous input. Similarly, we output a vector by the set
of changed coordinates and their values, compared to the previous output. This can be implemented
by checking memory for changes.

3 Overview of RIPM framework

In this section, we set up the general framework for solving a linear program using a robust IPM.
We show that if the projection matrix from the IPM can be maintained efficiently based on the
structure of its sparsity pattern, then the overall IPM can be implemented efficiently.

3.1 Robust interior point method

Theorem 3.1 (RIPM). Consider the linear program

min
Ax=b, l≤x≤u

c⊤x

with A ∈ Rn×m. We are given a scalar r > 0 such that there exists some interior point x◦ satisfying
Ax◦ = b and l + r ≤ x◦ ≤ u − r. Let L = ∥c∥2 and R = ∥u − l∥2. For any 0 < ε ≤ 1/2, the
algorithm RIPM (Algorithm 2) finds x such that Ax = b, l ≤ x ≤ u and

c⊤x ≤ min
Ax=b, l≤x≤u

c⊤x+ εLR.

Furthermore, the algorithm has the following properties:
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• Each call of Solve involves O(
√
m logm log(mR

ϵr ))-many steps, and t is only updated O(logm log(mR
ϵr ))-

many times.

• In each step of Solve, the coordinate i in w,v changes only if xi or si changes.

• In each step of Solve, h∥v∥2 = O( 1
logm).

• Line 19 to Line 21 takes O(K) time in total, where K is the total number of coordinate changes
in x, s.

We note that this algorithm only requires access to (x, s), but not (x, s) during the main while
loop. Hence, (x, s) can be implicitly maintained via any data structure. We only require (x, s)
explicitly when returning the approximately optimal solution at the end of the algorithm Line 26.

3.2 Projection operators

At step k of Solve with step direction v(k) and weights w (we drop its superscript (k) for convenience),
recall we define the projection matrix

Pw
def
= W1/2A⊤(AWA⊤)−1AW1/2.

We want to make the primal and dual updates

x← x+ h(k)W1/2v(k) − h(k)W1/2Pwv
(k),

s← s+ th(k)W−1/2Pwv
(k).

The first term for the primal update is straightforward to maintain, so we may ignore it without
loss of generality. After this reduction, we see that the primal and dual updates are analogous. In
the remainder of this section, we show how to maintain x undergoing the update

x← x+ h(k)W1/2Pwv
(k).

First, observe that W1/2Pw is an operator dependent on the dynamic weights w, which motivates
us to formalize this problem setting:

Definition 3.2 (Dynamic linear operator, update complexity). Let w be a dynamic vector. We say
M is a dynamic linear operator dependent on w if M is a function of w. Let w(k) be the value of w
at step k, then we use M(k) to denote the corresponding value of M at step k.

Suppose exists a data structure that dynamically maintains M and w, such that at every step k,
if w(k−1) and w(k) differ on K coordinates, then the data structure can update M(k−1) to M(k) in
f(K) time. Then we say M has update complexity f .

Next, we define two types of dynamic operators dependent on the weights w from the IPM: the
inverse tree operator ∇ and the tree operator ∆. For linear programs with separable structures, they
should crucially combine so that throughout algorithm, we have

W1/2Pw = ∆∇. (3.1)

8



3.2.1 Operators on a tree

In this section, we fix T to be a constant-degree rooted tree with root node G, called the operator tree.
Let each node H ∈ T be associated with a set FH , where the FH ’s are pairwise disjoint. Let each leaf
node L ∈ T be further associated with a non-empty set E(L), where the E(L)’s are pairwise disjoint.
For a non-leaf node H, define E(H)

def
=
⋃

leaf L∈TH E(L). Finally, define E
def
= E(G) =

⋃
leaf L∈T E(L)

and V
def
=
⋃

H∈T FH .
We define two special classes of linear operators that build on the structure of T . The advantage

of these operators lie in their decomposability, which allows them to be efficiently maintained.

Definition 3.3 (Inverse tree operator). Let T be an operator tree with the associated sets as above.
We say a linear operator ∇ : RE 7→ RV is an inverse tree operator supported on T if there exists a
linear edge operator ∇H for each non-root node H in T , corresponding to the edge from H to its
parent, such that ∇ can be decomposed as

∇ =
∑

leaf L, node H : L∈TH

IFH
∇H←L,

where ∇H←L is defined as follows: If L = H, then ∇H←L
def
= I; otherwise, suppose the path in T

from leaf L to node H is given by (Ht
def
= L,Ht−1, . . . ,H1, H0

def
= H), then

∇H←L
def
= ∇H1 · · · ∇Ht−1∇Ht .

To maintain ∇, it will suffice to maintain ∇H at each non-root node H in T .

Intuitively, when applying an inverse tree operator to a vector v ∈ RE , v is partitioned according
to the leaves of T , and then the edge operators are applied sequentially along the tree edges in a
bottom-up fashion. It is natural to then also define the opposite process, where edge operators are
applied along the tree edges in a top-down fashion.

Definition 3.4 (Tree operator). Let T be an operator tree with the associated sets as above. We
say a linear operator ∇ : RV 7→ RE is tree operator supported on T if there exists a linear edge
operator ∇H for each non-root node H in T , corresponding to the edge from H to its parent, such
that ∇ can be decomposed as

∆
def
=

∑
leaf L, node H : L∈TH

∆L←HIFH
.

where ∆H←L is defined as follows: If L = H, then ∆L←H
def
= I. Otherwise, suppose the path in T

from node H to leaf L is given by (Ht
def
= L,Ht−1, . . . ,H0

def
= H), then

∆L←H
def
= ∆Ht · · ·∆H2∆H1 .

We define the complexity of a tree (and inverse tree) operator to be parameterized by the number
of edge operators applied.

Definition 3.5 (Query complexity). Let ∆ def
= {∆H : H ∈ T } be a tree (or inverse tree) operator on

tree T . Suppose for any set H of K distinct non-root nodes in T , and any two families of K vectors
indexed by H, {uH : H ∈ H} and {vH : H ∈ H}, the total time to compute {u⊤H∆H : H ∈ H} and
{∆HvH : H ∈ H} is bounded by f(K). Then we say ∆ has query complexity f for some function f .

Without loss of generality, we may assume f(0) = 0, f(k) ≥ k, and f is concave.
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By examining the definition of the inverse tree and tree operator, we see they are related.

Lemma 3.6. If ∆ is a tree operator on T , then ∆⊤ is an inverse tree operator on T , where its
edge operators are obtained from ∆’s edge operators by taking a transpose. Furthermore, ∆ and ∇
have the same query and update complexity.

3.3 Implicit representations of the solution

Assuming we have dynamic inverse tree and tree operators ∇ and ∆ on tree T dependent on w
such that W1/2Pw = ∆∇, we can now state how to abstractly maintain the implicit representation
of the solutions throughout Solve (Algorithm 2). Specifically, we want to maintain the solution x,
and at every step k, carry out an update of the form

x← x+ h(k)W1/2Pwv
(k). (3.2)

We design a data structure MaintainRep to accomplish this, by:

• At the start of Solve, initializing the data structure using the procedure Initialize with
x = x(init),

• At each step k, updating the weights w in the data structure using the procedure Reweight,
followed by updating x according to Eq. (3.2) using the procedure Move,

• At the end of Solve, outputing the final x using the procedure Exact.

The key to designing an efficient data structure is to make use of the structure of the operators.
Due to their decomposition along T , we can update the operators and apply them to vectors without
exploring all of T every time.

Theorem 3.7 (Implicit representation maintenance). Let w be the weights changing at every step
of Solve (Algorithm 2). Suppose there exists dynamic inverse tree and tree operators ∇ and ∆ on
tree T both dependent on w such that W1/2Pw = ∆∇ throughout the IPM. Let Q be the max of the
query complexity of the tree and inverse tree operator, and let U be the max of the update complexity
of the two operators. Suppose T has constant degree and height η. Then there is a data structure
MaintainRep that satisfies the following invariants at the end of step k:

• It explicitly maintains the dynamic weights w and step direction v from the current step.

• It explicitly maintains scalar c and vectors z(step), z(sum), which together represent the implicitly-
maintained vector z

def
= cz(step) + z(sum). At the end of step k, z(step) = ∇(k)v(k), and

z =

k∑
i=1

h(i)∇(i)v(i).

• It implicitly maintains x so that at the end of step k,

x = x(init) +

k∑
i=1

h(i)∆(i)∇(i)v(i),

where x(init) is some initial value set at the start of Solve.

The data structure supports the following procedures and runtimes:
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• Initialize(∆,∇,v(init) ∈ Rm,w(init) ∈ Rm
>0,x

(init) ∈ Rm): Preprocess and set x← x(init).

The procedure runs in O(U(m) +Q(m)) time.

• Reweight(δw ∈ Rm
>0): Update the weights to w ← w + δw.

The procedure runs in O(U(ηK) +Q(ηK)) total time, where K = nnz(δw).

• Move(h ∈ R, δv ∈ Rm): Update the current step direction to v ← v + δv. Update the implicit
representation of x to reflect the following change in value:

x← x+ h∆∇v.

The procedure runs in O(Q(ηK)) time, where K = nnz(δv).

• Exact: Output the current exact value of x in O(Q(m)) time.

3.4 Solution approximation

In the IPM, one key operation is to maintain the solution vector x that is close to x throughout the
algorithm. (Analogously for the slack s close to s.) Since we have implicit representations of the
solution x from MaintainRep, we now show how to maintain x close to x. To accomplish this, we
use a meta data structure that solves this in a more general setting introduced in [DGG+22].

Theorem 3.8 (Approximate vector maintenance with tree operator [DGG+22]). Let 0 < ρ < 1
be a failure probability. Suppose ∆ ∈ Rm×n is a tree operator with query complexity Q and
supported on a constant-degree tree T with height η. There is a randomized data structure Main-
tainApprox that takes as input the dynamic weights w and the dynamic x implicitly maintained
according to Theorem 3.7 at every step, and explicitly maintains the approximation x to x satisfying∥∥W−1/2(x− x)

∥∥
∞ ≤ δ at every step with probability 1− ρ.

Suppose ∥W(k)−1/2(x(k) − x(k−1))∥2 ≤ β for all steps k. Furthermore, suppose w is a function
of x coordinate-wise. Then, for each ℓ ≥ 0, x admits 22ℓ coordinate changes every 2ℓ steps. Over N
total steps, the total cost of the data structure is

Õ(η3(β/δ)2 log3(mN/ρ))

(
Q(m) +

N∑
k=1

Q(S(k)) +

logN∑
ℓ=0

N

2ℓ
·Q(22ℓ)

)
, (3.3)

where S(k) is the number of nodes H where ∆H or uH in the implicit representation of x changed
at step k.

3.5 Main theorem for the RIPM framework

We are now ready to state and prove the main result in this framework.

Theorem 3.9 (RIPM framework). Consider an LP of the form

min
x∈P

c⊤x where P = {Ax = b, l ≤ x ≤ u} (3.4)

where A ∈ Rn×m. For any vector w, let Pw
def
= W1/2A⊤(AWA⊤)−1AW1/2, and suppose there exists

dynamic tree and inverse tree operators ∆ and ∇ dependent on w, such that W1/2Pw = ∆∇. Let U
be the update complexity of ∆ and ∇, and let Q be their query complexity. Let r and R = ∥u− l∥2 be
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the inner and outer radius of P, and let L = ∥c∥2. Then, there is a data structure to solve Eq. (3.4)
to εLR accuracy with probability 1− 2−m in time

Õ

η4
√
m log(

R

εr
) ·

1
2
logm∑
ℓ=0

U(22ℓ) +Q(22ℓ)

2ℓ

 .

Proof of Theorem 3.9. We implement the IPM algorithm using the data structures from Sections 3.3
and 3.4, and bound the cost of each operations of the data structures. For simplicity, we only
discuss the primal variables in this proof, but the slack variables are analogous. We use one copy of
MaintainRep to maintain x, and one copy of MaintainApprox to maintain x. At each step, we
perform the implicit update of x using Move and update w using Reweight in MaintainRep.
We construct the explicit approximations x using Approximate in MaintainApprox.

Theorem 3.8 shows that throughout the IPM, for each ℓ ≥ 0, there are 22ℓ coordinate changes to
x every 2ℓ steps. Since w is a function of x coordinate-wise, there are also 22ℓ coordinate changes in
w every 2ℓ steps. Similarly, we observe that v is defined as a function of x and s coordinate-wise, so
there are O(22ℓ) coordinate changes to v every 2ℓ steps. Then Theorem 3.7 shows that the total
runtime over N steps for the MaintainRep data structure is

Õ(U(m) +Q(m)) + Õ

(
logN∑
ℓ=0

N

2ℓ
·
(
U(η · 22ℓ) +Q(η · 22ℓ)

))
. (3.5)

Theorem 3.8 shows that the total runtime over N steps for MaintainApprox is

Õ(η3(β/δ)2 log3(mN/ρ))

(
Q(m) +

N∑
k=1

Q(S(k)) +

logN∑
ℓ=0

N

2ℓ
·Q(22ℓ)

)
, (3.6)

where the variables are defined as in the theorem statement. By examining Theorem 3.7, we see that
when a coordinate of w or v changes, the implicit representation of x admits updates at O(η)-many
nodes. Combined with the concavity of Q, we can bound

N∑
k=1

Q(S(k)) ≤ O(η) ·
logN∑
ℓ=0

N

2ℓ
·Q(22ℓ).

Theorem 3.1 guarantees that there are N =
√
m logm log(mR

εr ) total IPM steps, and at each

step k, we have h(k)
∥∥∥W(k)−1/2(x(k) − x(k−1))

∥∥∥
2
= h(k)

∥∥v(k) −Pwv
(k)
∥∥
2
≤ O( 1

logm), so we can set

β = O( 1
logm). By examining Algorithm 2, we see it suffices to set δ = O( 1

logm). We choose the failure
probability ρ to be appropriately small, e.g. 2−m. Finally, we conclude that the overall runtime of
the IPM framework is

Õ

η4
√
m log(

R

εr
) ·

1
2
logm∑
ℓ=0

U(22ℓ) +Q(22ℓ)

2ℓ

 ,

where the terms for intialization times have been absorbed.
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4 From separator tree to projection operators

In this section, we explore the separable structure of the dual graph GA of the LP constraint matrix
A, and use these properties to help define and maintain the tree operator and inverse tree operator
as needed for the IPM framework from Section 3.

Throughout this section, we fix A ∈ Rn×m, so that the dual graph GA = (V,E) has n vertices, m
hyperedges. Additionally, let ρ denote the max hyperedge size in GA; equivalently, ρ is the column
sparsity of A.

4.1 Separator tree

The notion of using a separator tree to represent the recursive decomposition of a separable graph is
well-established in literature, c.f [EGIS96, HKRS97]. In our work, we use the following definition:

Definition 4.1 (Separator tree). Let G be a hypergraph with n vertices, m hyperedges, and max
hyperedge size ρ. A separator tree S for G is a constant-degree tree whose nodes represent a recursive
decomposition of G based on balanced separators.

Formally, each node of S is a region (edge-induced subgraph) H of G; we denote this by H ∈ S.
At a node H, we define subsets of vertices ∂H, S(H), FH , where ∂H is the set of boundary vertices
of H, i.e. vertices with neighbours outside H in G; S(H) is a balanced vertex separator of H; and
FH is the set of eliminated vertices at H. Furthermore, let E(H) denote the edges contained in H.

The nodes and associated vertex sets are defined in a top-down manner as follows:

1. The root of S is the node H = G, with ∂H = ∅ and FH = S(H).

2. A non-leaf node H ∈ S has a constant number of children whose union is H. The children
form a edge-disjoint partition of H, and the intersection of their vertex sets is a balanced
separator S(H) of H. Define the set of eliminated vertices at H to be FH

def
= S(H) \ ∂H.

The set FH ∪∂H consists of all vertices in the boundary and separator, which can intuitively be
interpreted as the skeleton of H. In later sections, we recursively construct graphs (matrices)
on FH ∪ ∂H which capture compressed information about all of H.

By definition of boundary vertices, for a child D of H, we have ∂D
def
= (∂H ∪ S(H)) ∩ V (D).

3. At a leaf node H, we define S(H) = ∅ and FH = V (H) \ ∂H. (This convention allows leaf
nodes to exist at different levels in S.) The leaf nodes of S partition the edges of G.

We use η to denote the height of S.

For a separator tree to be meaningful, the leaf node regions should be sufficiently small, to
indicate that we have a good overall decomposition of the graph. Additionally, for our work, we want
a more careful bound on the sizes of the skeleton of regions. This motivates the following refined
definition:

Definition 4.2 ((a, b, λ)-separator tree). Let G be a graph with n vertices, m edges, and max
hyperedge size ρ. Let a ∈ [0, 1] and b ∈ (0, 1) be constants, and λ ≥ 1 be an expression in terms
of m,n, ρ. An (a, b, λ)-separator tree S for G is a separator tree satisfying the following additional
properties:

1. There are at most O(b−i) nodes at level i in S,
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Figure 4.1: An example of a separator tree. The bold edges denote the boundary of each component,
∂H while the dotted lines denote the separators S(H). Note that FH = S(H) \ ∂H is defined
differently on the leaves.

2. any node H at level i satisfies |FH ∪ ∂H| ≤ O(λ · bai),

3. a node H at level i is a leaf node if and only if |V (H)| ≤ O(ρ).

Intuitively, a and b come from the separability parameters of G, and λ is a scaling factor for node
sizes in S. Since there could be hyperedges of size ρ, regions of size ρ are not necessarily separable,
so we set the region as a leaf.

We make extensive use of these properties in subsequent sections when computing runtimes.

4.2 Nested dissection using a separator tree

Let S be any separator tree for GA. In this section, we show how to use S to factor the matrix
L−1

def
= (AWA⊤)−1 recursively:

Definition 4.3 (Block Cholesky decomposition). The block Cholesky decomposition of a symmetric
matrix L with blocks indexed by F and C is:

L =

[
I 0

LC,F (LF,F )
−1 I

] [
LF,F 0
0 Sc(L, C)

] [
I (LF,F )

−1LF,C

0 I

]
, (4.1)

where the middle matrix in the decomposition is a block-diagonal matrix with blocks indexed by F
and C, with the lower-right block being the Schur complement Sc(L, C) of L onto C:

Sc(L, C)
def
= LC,C − LC,FL

−1
F,FLF,C . (4.2)

Since Sc(L, C) is a symmetric matrix, we can recursively apply the decomposition Eq. (4.1)
to it. By choosing the index sets F,C for each recursive step according to S, we get a recursive
decomposition of L−1:
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Theorem 4.4 (L−1 factorization, c.f. [DGG+22] Theorem 33). Let S be the separator tree of GA

with height η. For each node H ∈ S with hyperedges E(H), let AH ∈ Rn×m denote the matrix A
restricted to columns indexed by E(H). Define

L[H]
def
= AHWAH

⊤, and (4.3)

L(H) def
= Sc(L[H], FH ∪ ∂H). (4.4)

Then, we have
L−1 = Π(η)⊤ · · ·Π(1)⊤ΓΠ(1) · · ·Π(η), (4.5)

where4

Γ
def
=



(∑
H∈T (η)

(
L
(H)
FH ,FH

)−1)
0 0

0
. . . 0

0 0

(∑
H∈T (0)

(
L
(H)
FH ,FH

)−1)
 , (4.6)

and for i = 1, . . . , η,
Π(i) def

= I−
∑

H∈T (i)

X(H), (4.7)

where T (i) is the set of nodes at level i in T , the matrix Π(i) is supported on
⋃

H∈T (i) FH ∪ ∂H and
padded with zeros to n-dimensions, and for each H ∈ S,

X(H) def
= L

(H)
∂H,FH

(
L
(H)
FH ,FH

)−1
. (4.8)

4.3 Projection operators definition

Suppose S is a separator tree for GA. In this subsection, we define the operator tree T based on S,
followed by the tree operator ∆ and inverse tree operator ∇ which will be supported on T . Finally,
we will show that our definitions indeed satisfy

W1/2Pw = ∆∇.

Recall that S is a constant-degree tree. The leaf nodes of S partition the hyperedges of GA,
however, we do not have a bound on the number of hyperedges in a leaf node. In constructing T , we
simply want to modify S so that each leaf contains exactly one hyperedge. Specifically, for each leaf
node H ∈ S containing |E(H)| hyperedges, we construct a complete binary tree T +

H rooted at H
with |E(H)| leaves, assign one hyperedge from E(H) to one new leaf, and attach T +

H at the node H.
This construction yields the desired operator tree T whose height is within a log |E| factor of S.

We define the tree operator ∆ on T follows: For non-root node H in T , let

∆H
def
=


IFH∪∂H −X(H)⊤ if H exists in S
WE(H)

1/2AH
⊤ if H is a leaf node in T

I else.
(4.9)

Note that the first two cases are indeed disjoint by construction. We pad zeros to all matrices in
order to arrive at the correct overall dimensions.

4We use a different definition of level compared to [DGG+22]. In [DGG+22], the root has level η in and leaf
nodes have level 0, and in this paper, the root has level 0 and leaf nodes have level η. This is purely for notational
convenience in later calculations, so this theorem is otherwise unaffected.
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Lemma 4.5 (c.f. [DGG+22], Lemma 59). Let ∆ be the tree operator as defined above. Then

∆ = W1/2A⊤Π(η)⊤ · · ·Π(1)⊤. (4.10)

Next, we establish the query complexity of the tree operator:

Lemma 4.6. Suppose L is the total number of leaf nodes in S. The query complexity of ∆ is

Q(K) = O

ρK + max
H:set of K leaves in S

∑
H∈PS(H)

|FH ∪ ∂H|2


for K ≤ L, where PS(H) is the set of all nodes in S that are ancestors of some node in H unioned
with H. When K > L, then we define Q(K) = Q(L).

Proof. First, we consider the query time Q(1) for a single edge. Let u be any vector, and let H be a
non-root node in T . If H is a leaf node, then computing ∆Hu and u⊤∆H both take O(ρ) time. If H
exists in S, then computing ∆Hu takes O

(
|FH |2 + |∂H||FH |

)
≤ O

(
|FH ∪ ∂H|2

)
time, since the bot-

tleneck is naively computing L
(H)
∂H,FH

(
L
(H)
FH ,FH

)−1
u. Therefore, Q(1) = O

(
ρ+maxH∈S |FH ∪ ∂H|2

)
.

For K > 1, we can simply bound the query time for K distinct edges by

Q(K) = O

(
ρK + max

H:set of K nodes in S

∑
H∈H

|FH ∪ ∂H|2
)
.

Finally, note that we can take the summation over H ∈ PS(H) instead of H ∈ H for an upper bound.
In this case, it suffices to take the max over sets of leaf nodes.

By taking the transpose of ∆, we get an inverse tree operator, and together, they give the
projection matrix using Eq. (4.5).

Corollary 4.7. Let ∇ def
= ∆⊤ be the inverse tree operator obtained from ∆ by transposing the edge

and leaf operators. Then

W1/2Pw
def
= W1/2W1/2A⊤L−1AW1/2 = (W1/2∆)Γ∇. (4.11)

Remark 4.8. Without loss of generality, we have chosen to simplify our presentation and consider
∆∇ in place of W1/2∆Γ∇.

This is possible for two reasons: One, W1/2∆ is a tree operator, which we can in fact maintain
in the same time complexity as ∆. Two, Γ is a block-diagonal matrix, with a block for each H ∈ T
that is indexed by FH . It is straightforward to show we can maintain and apply Γ∇ in the same
time complexity as ∇.
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4.4 Maintenance of projection operators

So far, we have defined the separator tree S for the graph GA, which we then used to define
the operator tree T , which supports the tree operator ∆ needed for the IPM framework. In this
subsection, we discuss how to maintain L(H),Sc(L(H), ∂H), and (L

(H)
FH ,FH

)−1 at each node H ∈ S
using the data structure DynamicSC (Algorithm 1), as the weight vector w undergoes changes
throughout the IPM. This will in turn allow us to maintain the tree operator ∆.

We begin with a lemma showing that given a symmetric matrix and a low-rank update, we can
compute its new inverse and Schur complement quickly.

Lemma 4.9. Let L′ = L+UV ∈ Rn×n be a symmetric matrix plus a rank-K update, where U and
V⊤ both have dimensions n×K. Given L′,U,V, we can compute L′−1 in O(n2Kω−2) time.

Additionally, suppose we are also given L−1 and Sc(L, S) for an index set S. Then we can
compute Sc(L′, S), U′,V′ in O(n2Kω−2) time, so that Sc(L, S) +U′V′ = Sc(L′, S), and U′,V′⊤

both have K columns.

Proof. The Sherman-Morrison formula states

L′
−1

= L−1 − L−1U(IK +VL−1U)−1VL−1.

The time to compute this update is dominated by the time required to multiply an n× n matrix
with an n×K matrix, which is O(n2Kω−2).

For the second part of the lemma, recall that the Schur complement is defined to be:

Sc(L, C)
def
= LC,C − LC,FL

−1
F,FLF,C . (4.12)

If we were to naively use this definition of the Schur complement to perform the updates and
construct U′ and V′⊤, we will run into an issue where the rank of the new update blows up by a
factor of 8, leading to an exponential blowup in the rank as we go up the levels recursively. Instead,
we make use of the fact that the inverse of the Schur complement, Sc(L, S)−1 is exactly the S, S
submatrix of L−1 to control the rank of the updates.

We first apply the definition of Schur complement and then use the Sherman-Morrison formula
to get

Sc(L′, S)−1 = L′−1S,S

= L−1S,S −
(
L−1U(IK +VL−1U)−1VL−1

)
S,S

= Sc(L, S)−1 − ISL
−1U(IK +VL−1U)−1VL−1IS .

This gives us the new rank-K update Sc(L′, S)−1 = Sc(L, S)−1 +U∗V∗ with

U∗ = −ISL−1U
V∗ = (IK +VL−1U)−1VL−1IS .

We can now determine the Schur complement update by applying Sherman-Morrison again:

Sc(L′, S) = Sc(L, S)− Sc(L, S)U∗(IK +V∗Sc(L, S)U∗)−1V∗Sc(L, S).

This is a rank-K update Sc(L′, S) = Sc(L, S) +U′V′ with

U′ = −Sc(L, S)U∗

V′ = (IK +V∗Sc(L, S)U∗)−1V∗Sc(L, S).

The time to compute U∗,V∗,U′,V′ are all dominated by the time to multiply an n× n matrix with
an n×K matrix, which is O(n2Kω−2).
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Now, we are ready to present the data structure for maintaining the Schur complement matrices
along a separator tree.

Lemma 4.10. Let w be the weights changing at every step of the IPM. Let S be any separator tree
for GA. Recall GA has n vertices, m hyperedges, and max hyperedge size ρ. Then the data structure
DynamicSC (Algorithm 1) correctly maintains the matrices L(H), (L

(H)
FH ,FH

)−1,Sc(L(H), ∂H) at
every node H ∈ S dependent on w throughout the IPM. The data structure supports the following
procedures and runtimes:

• Initialize(S,w(init) ∈ Rm): Set w ← w(init), and compute all matrices with respect to w, in
time

O

 ∑
leaf H∈S

|E(H)| · |FH ∪ ∂H|ω−1 +
∑
H∈S
|FH ∪ ∂H|ω

 .

• Reweight(δw ∈ Rm): Update the weight vector to w ← w+δw, and update all the maintained
matrices with respect to the new weights, in time

O

 ∑
leaf H∈H

nnz(δw|E(H)) · |FH ∪ ∂H|ω−1 +
∑
H∈H

|FH ∪ ∂H|2 ·Kω−2
H

 .

where H is the set of nodes H with δw|E(H) ̸= 0, KH
def
= min{nnz(δw|E(H)), |FH ∪ ∂H|}.

Proof. Initialize is a special case of Reweight, where the change in the weight vector is from 0
to w(init), so we focus on a single call of Reweight.

It suffices for Reweight visits only nodes in H, since if none of the edges in a region admits a
weight update, then the matrices stored at the node remain the same by definition. Also note that
H ∈ H implies all ancestors of H are also in H.

Correctness. We use the superscript (new) on L(H) to indicate that it is computed with respect to
the new weights, and (old) otherwise. Recall that L(H) is supported on FH ∪ ∂H.

We maintain some additional matrices at each node, in order to efficiently compute low-
rank updates. Specifically, we use helper matrices UH ,VH at H, and guarantee that during
a single Reweight(δw) call, after SchurNode(H, δw) is run, they satisfy Sc(L(H)(old), ∂H) =

Sc(L(H)(new)
, ∂H) +UHVH , and UH ,VH

⊤ both have at most KH -many columns.
Now, we show inductively that after SchurNode(H, δw) is run, all matrices at H, as well as all

matrices at all descendants of H, are updated correctly: When H is leaf node, recall L(H) is defined
to be L[H]

def
= AHWE(H)AH

⊤, so clearly SchurNode updates L(H) correctly, and the rank of the
update is at most KH . The remaining matrices at H are computed correctly by Lemma 4.9.

Inductively, when H is a non-leaf node, the recursive property of Schur complements (c.f.
[DGG+22, Lemma 18]) allows us to write L(H)(new)

=
∑

child D of H Sc(L(D)(new)
, ∂D) at every node

H ∈ S. This formula trivially shows that the update L(H)(new) − L(H)(old) has rank |FH ∪ ∂H|
(ie. full-rank). Alternatively, if nnz(δw|E(H)) ≤ |FH ∪ ∂H|, then by the guarantees on the helper
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Algorithm 1 Data structure to maintain dynamic Schur complements
1: data structure DynamicSC
2: private: member
3: Hypergraph GA with incidence matrix A
4: w ∈ Rm: Dynamic weight vector
5: S: Separator tree of height η. Every node H of S stores:
6: FH , ∂H: Sets of eliminated vertices and boundary vertices of region H
7: E(H): Set of hyperedges of region H

8: L(H), (L
(H)
FH ,FH

)−1,Sc(L(H), ∂H),: Matrices to maintain as a function of w

9: L(H)−1: Additional inverse matrix to maintain as a function of w
10: UH ,VH : Low-rank update at H, used in Reweight
11:
12: procedure Initialize(S, w(init) ∈ Rm)
13: S ← S,w ← w(init)

14: for level i = η to 0 do
15: for each node H at level i do
16: L(H), (L

(H)
FH ,FH

)−1,Sc(L(H), ∂H)← 0,0,0
17: SchurNode(H,w)
18: end for
19: end for
20: end procedure
21:
22: procedure Reweight(δw ∈ Rm)
23: H ← set of nodes H in S where δw|E(H) ̸= 0
24: for level i = η to 0 do
25: for each node H ∈ H at level i do
26: SchurNode(H, δw)
27: end for
28: end for
29: w ← w + δw
30: end procedure
31:
32: procedure SchurNode(H ∈ S, δw ∈ Rm)
33: if H is a leaf node then ▷ rank of update ≤ min{nnz(δw|E(H)), |FH ∪ ∂H|}
34: L(H) ← L(H) +AHdiag(δw|E(H))A

⊤
H

35: else if nnz(δw|E(H)) ≤ |FH ∪ ∂H| then ▷ rank of update ≤
∑

child D KD ≤ nnz(δw|E(H))

36: L(H) ← L(H) +
∑

child D of H UDVD

37: else ▷ rank of update ≤ |FH ∪ ∂H|
38: L(H) ←

∑
child D of H Sc(L(D), ∂D)

39: end if
40: Let KH

def
= min{nnz(δw|E(H)), |FH ∪ ∂H|} ▷ upper bound on the rank of update to L(H)

41: Compute (L
(H)
FH ,FH

)−1 and L(H)−1 by Lemma 4.9
42: Compute Sc(L(H), ∂H) and its rank-KH update factorization UH ,VH by Lemma 4.9
43: end procedure
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matrices, we have

L(H)(new)
=

∑
child D of H

Sc(L(D)(new)
, ∂D)

=
∑

child D of H

Sc(L(D)(old), ∂D) +UDVD

= L(H)(old) +
∑

child D of H

UDVD.

This gives a low-rank factorization of the update L(H)(new)−L(H)(old) with rank at most
∑

child D KD,
which we can show by induction is at most nnz(δw|E(H)). Since we have the correct low-rank update
to L(H), the remaining matrices at H again are computed correctly by Lemma 4.9.

This completes the correctness proof.

Runtime. Consider the runtime of the procedure SchurNode(H, δw) at a node H: If H is a
leaf node, then computing the update to L(H) involves multiplying a |FH ∪ ∂H| × nnz(δw|E(H))-
sized matrix with its transpose (Line 33). Note that if |FH ∪ ∂H| > nnz(δw|E(H)), then this
runtime can be absorbed into the runtime expression for the remaining steps of the procedure, since
KH = nnz(δw|E(H)). Otherwise, we use fast matrix multiplication which takes O(nnz(δw|E(H)) ·
|FH ∪ ∂H|ω−1) time. If H is a non-leaf node, there are two cases for the update to L(H) in the
algorithm. The first case (Line 35) takes O (|FH ∪ ∂H| · (

∑
KD)) ≤ O(|FH ∪ ∂H| ·KH) time, and

the second case (Line 37) takes O(|FH ∪ ∂H|2) time. Computing the other matrices at any node H
takes O

(
|FH ∪ ∂H|2 ·KH

ω−2) time by Lemma 4.9.
The runtime of Reweight(δw) is therefore given by∑

H∈H
SchurNode(H, δw) time

= O

( ∑
leaf H∈H

nnz(δw|E(H)) · |FH ∪ ∂H|ω−1 +
∑
H∈H

|FH ∪ ∂H|2 ·Kω−2
H

)
.

For Initialize, we further simplify the expression using nnz(δw|E(H)) = |E(H)| and KH ≤ |FH ∪
∂H|.

4.5 Projection operator complexities

In this subsection, we summarize the runtime complexities for the tree operator, in the special case
when S is a (a, b, λ)-separator tree for GA. Parametrizing the separator tree this way allows us to
write the runtime expressions using geometric series. For non-negative x, we use the standard bound∑u

i=ℓ x
i ≤ O(xℓ + xu). When it is clear x < 1, we bound

∑u
i=ℓ x

i ≤ O(xℓ).

Lemma 4.11. Suppose S is an (a, b, λ)-separator tree for GA on n vertices, m edges, with max
hyperedge size ρ, where a ∈ [0, 1] and b ∈ (0, 1). Let η denote the height of S, and let L denote the
number of leaf nodes. Let ∆ be the tree operator on T as defined in Section 4.3. Then there is a
data structure to maintain ∆ as a function of the weights w throughout Solve, so that:

• The data structure can be initialize in time

O
(
ρω−1m+ λω ·

(
1 + (baω−1)η

))
. (4.13)
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• The query complexity of ∆ is

Q(K) = O
(
ρK + λ2

(
1 + (min{K,L})1−2a

))
(4.14)

• When a < 1, the update complexity of ∆ is U(K) =

ρω−1K + λ2min{K,λ}ω−2 +


λ2K1−2a if K ≤ λ

λ2K1−2a + λ
ω−1
1−αK

1−αω
1−α if λ < K ≤ λ · b(a−1)η

λω · b(aω−1)η if K > λ · b(a−1)η.
(4.15)

When a = 1, the update complexity is U(K) = ρω−1K + λ2min{K,λ}ω−2.

Proof. The data structure we use to maintain ∆ is precisely the data structure DynamicSC with
respect to S.

Initialization time. We use the runtime expression for Initialize in DynamicSC (Lemma 4.10)
combined with the parameters of the (a, b, λ)-separator tree. For any H, we have |FH ∪ ∂H| ≤ ρ, so∑

leaf H∈S |E(H)| · |FH ∪ ∂H|ω−1 ≤ ρω−1m. Moreover,

∑
H∈S
|FH ∪ ∂H|ω ≤

η∑
i=0

b−i
(
λ · bai

)ω ≤ O(λω) ·
[
1 + (baω−1)η

]
.

Query complexity. We substitute the (a, b, λ)-separator tree bounds in Lemma 4.6, to conclude
that the query complexity of ∆ is

Q(K) = O

ρK +
∑

H∈PS(H)

(λ · bai)2
 ,

where H is any set of K leaf nodes in S. We group terms according to their node level, and note
that there are min{K, b−i}-many terms at any level i, so

= O

(
ρK +

η∑
i=0

min{K, b−i} · (λ · bai)2
)

= O(ρK) +O(λ2) ·

− logb K∑
i=0

b−i · b2ai +K ·
η∑

i=− logb K

b2ai


Note that K can be at most L in the summation, so we have

= O
(
ρK + λ2(1 + (min{K,L})1−2a)

)
.

Update complexity. When w changes, we update ∆ by invoking Reweight(δw) in DynamicSC,
where δw denotes the change in w. By Lemma 4.10, the runtime for the fixed δw is∑

leaf H: δw|E(H) ̸=0

nnz(δw|E(H)) · |FH ∪ ∂H|ω−1 +
∑

node H: δw|E(H) ̸=0

|FH ∪ ∂H|2 ·KH
ω−2. (4.16)
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Hence, the update complexity of ∆ is the max of the above expression taken over all choices of δw.
For any leaf node H, we upper bound |FH ∪ ∂H|ω−1 ≤ ρω−1, and therefore the first summation is at
most ρω−1K.

For the second summation, we substitute in the (a, b, λ)-separator tree bounds, and group terms
according to their node level. Let S(i) denotes all nodes at level i in S. Then for any δw, we have

∑
node H: δw|E(H) ̸=0

|FH ∪ ∂H|2 ·KH
ω−2 ≤

η∑
i=0

(λ · bai)2 ·
∑

H∈S(i)

KH
ω−2

 , (4.17)

where the KH ’s are non-negative integers satisfying
∑

H∈S(i)KH ≤ K and KH ≤ |FH ∪∂H| ≤ λ · bai

for H ∈ S(i). We are interested in upper bounding Eq. (4.17). At any level i, there are b−i nodes,
and the sum is maximized when all the KH ’s are equal. Depending on the relationship between K
and the level i, we have the following three cases:

• If K ≤ b−i, that is, the total update rank is less than the number of nodes at the level, then
the sum is maximized if KH = 1 for K-many nodes, and KH = 0 for the rest.

• If b−i < K ≤ b−i · (λ · bai), the sum is upper bounded by setting KH = K/b−i.

• If K > O(b−i) · (λ · bai), the sum is upper bounded by setting KH = λ · bai.

Then, we can bound the summation term in Eq. (4.17) by∑
0≤i≤η
K≤b−i

K(λ · bai)2 +
∑

0≤i≤η:
b−i<K≤λ·b(a−1)i

(λ · bai)2 · b−i · (Kbi)ω−2 +
∑

0≤i≤η:
K>λ·b(a−1)i

b−i · (λ · bai)ω

≤ λ2K

η∑
i=− logb K

b2ai + λ2Kω−2
− logb K∑

i=
logb(K/λ)

a−1

b(2a+ω−3)i + λω

logb(K/λ)

a−1∑
i=0

b(aω−1)i.

We need to further consider different cases for the possible values of K, which affects the summation
indices. If logb(K/λ) < 0, i.e. K < λ, the expression simplifies to

λ2K1−2a + λ2Kω−2.

If 0 ≤ logb(K/λ)/(a− 1) ≤ η, i.e. λ ≤ K ≤ λ · b(a−1)η, the expression simplifies to

λ2K1−2a + λ
ω−1
1−αK

1−αω
1−α + λω.

And lastly, if logb(K/λ)/(a− 1) > η, i.e K > λ · b(a−1)η, the expression simplifies to

λω + λω · b(aω−1)η.

We combine the cases to arrive at the overall update complexity, having implicitly assumed that
α < 1. When α = 1, the summation in Eq. (4.17) is maximized when KH = min{K,λ} · bi for H at
level i. Then we can upper bound the summation term by

η∑
i=0

(λ · bi)2 · b−i · (min{K,λ} · bi)ω−2 ≤ O(λ2min{K,λ}ω−2).
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5 Proofs of main theorems

For our main theorems, it remains to show that we can construct an appropriate (a, b, λ)-separator
tree for GA in each of the scenarios: when GA is nα-separable; when A is the constraint matrix
for a planar k-multicommodity flow instance; and when GA has a tree decomposition of width τ .
Then, we apply Lemma 4.11 to the separator tree get the complexity of the tree operator, which we
combine with Theorem 3.9 to conclude the overall IPM running times.

5.1 Proof of Theorem 1.2

First, we show how to construct a separator tree for an nα-separable graph, by modifying the proof
from [Fed87].

Lemma 5.1. Suppose GA is a graph on n vertices and m edges. If GA is nα-separable for α < 1, then
GA admits an (α, b, cnα)-separator tree, where b ∈ (0, 1) and c > 0 are some constants. Furthermore,
if a balanced vertex separator for GA can be computed in T (n) time, then the separator tree can be
computed in Õ(T (n)) time.

Proof. Let b′ ∈ (0, 1) and c′ = 1 (without loss of generality) be the parameters for GA being
nα-separable. In the separator tree construction process, assume inductively that we have constants
b ∈ (0, 1) and c > 0, both to be chosen later, such that for any node H at level i, we have |V (H)| ≤ bin
and |∂H| ≤ cnα · bαi. In the base case at the root node, we have i = 0, and |V (GA)| ≤ n and
|∂GA| = 0 ≤ cnα.

We show how to construct the nodes at level i+ 1. Let H be an already-constructed node at
level i. There are three cases:

1. If H satisfies |V (H)| ≤ bi+1n and |∂H| ≤ cnα · bα(i+1), put a copy of H as its only child at
level i+ 1.

2. If |V (H)| ≥ bi+1n, then assign a weight of 1 to all vertices, find a balanced vertex separator
S(H), and partition H accordingly into H1 and H2. Let us consider H1; the analogous holds
for H2.

By definition of separability, we know |V (H1)| ≤ b′ · |V (H)|+ |V (H)|α ≤ b · |V (H)| ≤ bi+1n
as long as b ∈ (b′, 1). If |∂H1| ≤ c · |V (H1)|α, then we can upper bound this expression by
cnα · bα(i+1), and we are done.

On the other hand, if |∂H1| > c · |V (H1)|α, then by definition of boundary, we have |∂H1| ≤
|∂H|+ |S(H)| ≤ (c+ 1)nα · bαi using the guarantees at H. Next, we assign a weight of 1 to
vertices in ∂H1 and 0 to all other vertices, find a balanced separator S(H1) of H1 with respect
to these weights, and create two children D1, D2 of H1 accordingly. Then, for j = 1, 2, we have

|∂Dj | ≤ b · |∂H1|+ |V (H1)|α

≤ b(c+ 1)nα · bαi + nα · bα(i+1)

≤
(
b1−α · c+ 1

c
+

1

c

)
· cnα · bα(i+1),

As long as c is large enough so the expression in the parentheses to be less than 1. In this case,
observe that we can add S(H1) to the balanced separator S(H), and set D1 and D2 directly
as the children of H.

3. If |V (H)| ≤ b(i+1)n and |∂H| ≥ cnα · bα(i+1), then we apply case 2 with H1 being H.
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So we have shown inductively that at the end of this construction, any node H at level i satisfies
|V (H)| ≤ bin and |∂H| ≤ cnα · bαi. It follows that |FH ∪ ∂H| ≤ |S(H)|+ |∂H| = O(cnα · bαi).

Next, we show that there are only O(b−i) nodes at level i. Let Li(n) denote the total number of
boundary vertices with multiplicities, when carrying out the construction starting on a graph of size
n and ending when each leaf node H satisfies the level-i assumptions. We can recursively write

Li(k) =
4∑

j=1

Li(bjk + 3ckα), if k > Cbin

Bi(k) = 1 else.

where
∑

bj = 1, each bj ≤ b′, and C is a positive constant we choose. To see this, note that a node
of size k has at most four children in the construction; the separator is of size 3ckα since we may
need to compute up to three separators each of size ckα and take their union; and child j has at most
bjk vertices that are not from the separator. Solving the recursion yields Li(k) ≤ k/(Cbin)− γkα

for some constant γ > 0. Therefore, there are at most Li(n) ≤ O(b−i) nodes at level i.
Finally, it is straightforward to see that the separator tree can be computed in Õ(T (n)) time, since

the node sizes decrease by a geometric factor as we proceed down the tree during construction.

Proof of Theorem 1.2. We consider the cases when α = 1 and α < 1 separately.
All hypergraphs are trivially n-separable with max hyperedge size ρ = n. In this case, let S be

the separator tree consisting of simply one node representing GA, which is a (1, 1/2, n)-separator
tree. By Lemma 4.11, the tree operator data structure can be initialized in O(mω) time; the query
complexity is Q(K) = O(nK + n2), and the update complexity is U(K) = O(nω−1K + n2Kω−2).

We apply Theorem 3.9 to get the overall runtime:

Õ

√m log(
R

εr
) ·

1
2
logm∑
ℓ=0

n22ℓ + n2 + n222ℓ(ω−2)

2ℓ

 = Õ

(√
mn2 log(

R

εr
)

)
.

If GA is nα-separable for α < 1, then by Lemma 5.1, GA admits a (α, b, cnα)-separator tree
computable in Õ(n) time. In this case, ρ = O(1), and η = O(log1/b n). Plugging the parameters
into Lemma 4.11, we get the following tree operator runtimes:

• The data structure can be initialize in O
(
m+ nαω(1 + n1−αω)

)
≤ O(m+mαω) time.

• The query complexity is Q(K) ≤ O(K + n2α(1 +K1−2α)).

• The update complexity is

U(K) ≤ O

(
K + n2αmin{K,nα}ω−2 + n2αK1−2α + n

α(ω−1)
1−α K

1−αω
1−α · 1K≥nα

)
.

We apply Theorem 3.9 to get the overall runtime.

Õ

(√
m log(

R

εr
)

)
·

1
2
logm∑
ℓ=0

22ℓ + n2α + nαω · 122ℓ>nα + n2α2(1−2α)2ℓ + n
α(ω−1)
1−α 2

1−αω
1−α

2ℓ · 122ℓ>nα

2ℓ

= Õ

(√
m log(

R

εr
)

)
·
(√

m+ n2α + nαω−α
2 + n2αm1−2α− 1

2 + n
α(ω−1)
1−α

(
n

α(1−αω)
1−α

−α
2 +m

1−αω
1−α

− 1
2

))
= Õ

((
m+m

1
2
+2α
)
· log(R

εr
)

)
,

where in the last step, we used the fact αω − α
2 ≤ 2α.
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5.2 Proof of Theorem 1.3

Let G = (V,E) denote the planar graph for the original problem, with V = {v1, . . . , vn} and
E = {e1, . . . , em}. First, we write the LP in Eq. (1.1) in standard form by adding slack variables
s ∈ RE :

min

k∑
i=1

c⊤i fi

s.t B⊤fi = di ∀i ∈ [k]

k∑
i=1

fi + s = u

fi ≥ 0 ∀i ∈ [k]

s ≥ 0

(P ′)

Let A denote the full constraint matrix of P ′. Then

A =


B⊤ 0 · · · 0 0

0 B⊤
...

...
. . .

0 0 · · · B⊤ 0

I I · · · I I

 ∈ R(kn+m)×(k+1)m (5.1)

where the top left part of A contains k copies of B⊤ in block-diagonal fashion, and all the identity
matrices are of dimension m×m. The dual graph of B⊤ is precisely G. Let GA be the dual graph
of A.

First, we describe GA: It contains k independent copies of the vertices V , which we label with
V i = (vi1, . . . , v

i
n), so that vij is a copy of vj ∈ V . Additionally, GA contains m vertices u1, . . . , um,

where the vertex ui is identified with edge ei ∈ E. For each edge ei ∈ E with endpoints vi1 , vi2 ,
there are k hyper-edges in GA of the form {vℓi1 , v

ℓ
i2
, ui} for ℓ = 1, . . . , k. Additionally, there are m

hyper-edges f1, . . . , fm where fi contains only the vertex ui.
Next, we show how to construct an appropriate separator tree efficiently.

Claim 5.2. GA admits a (12 , b, kn
1/2)-separator tree that can be computed in O(kn log n) time.

Proof. Let G be the original planar graph which is
√
n-separable, and let S̃ be the (12 , b, n

1/2)-
separator tree for G constructed using Lemma 5.1 in O(n log n) time by [LRT79]. We show how to
construct a (12 , b, kn

1/2)-separator tree S for GA based on S̃. Without loss of generality, we ignore
the hyper-edges f1, . . . fm in this construction.

Intuitively, S will have the same tree structure as S̃, but each node will be larger by a factor
of O(k) due to the k copies of G in GA. For each H̃ ∈ S̃, we construct a corresponding H ∈ S as
follows: if vj ∈ H̃, then vij ∈ H for all i ∈ [k]; if ej ∈ E(H̃), i.e. both endpoints of ej are in H̃, add
uj to H. Since the k copies v1j , . . . , v

k
j are always grouped together, we will refer to them together

as vj in GA as well.
Let us show that this is indeed a (12 , b, kn

1/2)-separator tree. Suppose H is a node with children D1

and D2 in S, corresponding to nodes H̃, D̃1, D̃2 in S̃. Let S(H)
def
= V (D1) ∩ V (D2), then vj ∈ S(H)

iff vj ∈ S(H̃), and uj ∈ S(H) iff ej ∈ E(S(H̃)) for all values of j. It is straightforward to see that
S(H) is indeed a separator of H. When it comes to the set of boundary vertices, we see vj ∈ ∂H iff
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vj ∈ ∂H̃, and if uj ∈ ∂H with vj1 , vj2 being the two endpoints of ej , then vj1 , vj2 are both in ∂H.
Since G is a planar graph, the number of edges in H̃ is on the same order as the number of vertices,
so we conclude that |V (H)| ≤ O(k) · |V (H̃)|, and similarly, |FH ∪∂H| ≤ O(k) · |FH̃ ∪∂H̃|. Since node
sizes in S have increased by a factor of O(k) compared to S̃, we conclude S is a (12 , b, kn

1/2)-separator
tree.

Finally, we can compute S̃ for G in O(n log n) time, so we can compute S in O(kn log n) time.

We reduce our problem to minimum cost multi-commodity circulation problem in order to
establish the existence of an interior point in the polytope, before invoking the RIPM in Theorem 3.1.
For each commodity i ∈ [k], we add extra vertices si and ti. Let di be the demand vector of the
i-th commodity. For every vertex v with di,v < 0, we add a directed edge from si to v with capacity
−di,v and cost 0. For every vertex v with di,v > 0, we add a directed edge from v to ti with capacity
di,v and cost 0. Then, we add a directed edge from ti to si with capacity 4kmM and cost −4kmM .
The modified graph G′ has only 2k extra vertices of the form si and ti compared to GA, so we can
construct a (12 , b, kn

1/2 + 2k)-separator tree for G′ based on the (12 , kn
1/2)-separator tree for GA,

where we include the extra vertices at every node of the tree.
To show the existence of the interior point, we remove all the directed edges that no single

commodity flow from si to ti can pass for any i ∈ [k]. This can be done by run BFS for k times
which takes O(km) time. For the interior point f , we construct this finding a circulation f (e) that
passing through e and si, ti for some i with flow value 1/(10km) for all the remaining edge e. Then,
since the capacities are integers, we find a feasible f , s with value at least 1/(10km). This shows the
inner radius r of the polytope is at least 1/(10km). For the L and R, we note we can bound it by
O(kmM).

Let A′ be the constraint matrix of the reduced problem with dual graph G′. The RIPM in
Theorem 3.1 invokes the subroutine Solve twice. In the first run, we make a new constraint matrix
by concatenating A′ three times. One can check that the dual graph is G′ with each edge duplicated
three times, so the corresponding separator tree is straightforward to construct.

Now, we bounding the running time. The tree operator complexities are similar to the analysis
in the previous section with an additional factor of k in the expression for λ. The initialization time
is O(km+ (kn1/2)ω). The query complexity is Q(K) = O(K + k2n). After simplifying, the update
complexity is

U(K) = K +

{
k2nKω−2 if K ≤ kn1/2

(kn1/2)ω else.

Note that the number of variables is km. Plugging our choice of L, R, and r, by Theorem 3.9, the
total runtime simplifies to

Õ
(
k2.5m1.5 log(M/ε)

)
.

5.3 Proof of Theorem 1.4

First, we show how to construct a (0, 1/2, O(τ log n))-separator tree S for GA when we have a tree
decomposition of GA of width τ . At the root of S, we can use the tree decomposition to compute
a balanced separator S of GA of size O(τ) in Õ(nτ) time (c.f. [DLY21a, Theorem 4.17]), so that
the two parts A and B of GA \ S each have size at most 2

3n. We construct two children of the root
node on the vertex sets A ∪ S and B ∪ S respectively, and apply this procedure recursively until the
nodes are of size at most 9τ .

Claim 5.3. There are O(n/τ)-many leaves at the end of this construction.
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Proof. Let L(k) denote the number of leaves when starting the construction with a size k subgraph.
We know L(k) = 1 if k ≤ 9τ , and L(k) = L(k1 + τ) + L(k2 + τ) if k > 9τ , where k1 + k2 + τ =
k and k1, k2 ≤ 2/3k. By induction, we can show that L(k) ≤ 2(k/τ − 1) when k > 2τ , where the
balanced separator crucially ensures that the recursion does not reach the base case of k ≤ 2τ .

The resulting separator tree is binary, so there are at most 2i nodes at level i. Since there are
L = O(n/τ)-many leaves, the height η is at most η ≤ log2(n/τ). The boundary of a node H is
contained in the union of balanced separators over its ancestors, so |FH ∪ ∂H| ≤ τη ≤ O(τ log n).
The max hyperedge size of GA is ρ = τ .

Using these values, we simplify the complexities in Lemma 4.11: The initialization time for the
tree operator data structure is Õ

(
τω−1m+ τω (1 + n/τ)

)
= Õ(τω−1m). The query complexity of ∆

is Q(K) = Õ
(
τK + τ2min{K,L}

)
. The update complexity of ∆ is

U(K) ≤ τω−1K +

{
τ2K if K ≤ n

τω if K > n

Finally, we apply Theorem 3.9 to get the overall runtime, which is clearly bounded by

Õ

(√
m log(

R

εr
)

)
·

1
2
logm∑
ℓ=0

τ222ℓ

2ℓ
= Õ

(
mτ2 log(R/(εr))

)
.

To obtain the faster runtime given in [GS22], we use the data structure restarting trick: Recall
MaintainApprox guarantees there are 22ℓ-many coordinate updates to x and s every 2ℓ steps,
i.e. the number of coordinate updates grows superlinearly with respect to the total number of steps
taken. By reinitializing MaintainApprox with the exact solution once in a while, we limit the
total number of coordinate updates. In the proof of Theorem 3.9, we showed that running M steps
of the RIPM takes

Õ

(
U(m) +Q(m) + η4M log(

R

εr
) ·

logM∑
ℓ=0

U(22ℓ) +Q(22ℓ)

2ℓ

)
time, where U(m) +Q(m) is the time to initialize the data structures and obtain the final exact
solutions. There are N =

√
m logm log(mR

εr )-many total IPM steps, and we reinitialize the data
structures every M steps. Then the total running time is (ignoring the big-O notation and log
factors)

N

M

(
U(m) +Q(m) +M

logM∑
ℓ=0

U(22ℓ) +Q(22ℓ)

2ℓ

)

=

√
m

M

(
τω−1m+ τ2M2

)
.

The expression is minimized by taking M =
√
mτ

ω−3
2 , which gives an overall runtime of

Õ
(
mτ (ω+1)/2 log(R/(εr))

)
.
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A Robust interior point method

For completeness, we include the robust interior point method from [DGG+22], developed in
[DLY21b], which is a refinement of the methods in [CLS21, vdB20]. Although there are many other
robust interior point methods, we simply refer to this method as RIPM. Consider a linear program
of the form

min
x∈P

c⊤x where P = {Ax = b, l ≤ x ≤ u} (A.1)

for some matrix A ∈ Rn×m. As with many other IPMs, RIPM follows the central path x(t) from an
interior point (t≫ 0) to the optimal solution (t = 0):

x(t)
def
= argmin

x∈P
c⊤x− tϕ(x) where ϕ(x)

def
= −

∑
i

log(xi − li)−
∑
i

log(ui − xi),

where the term ϕ controls how close the solution xi can be to the constraints ui and li. Following
the central path exactly is expensive. Instead, RIPM maintains feasible primal and dual solution
(x, s) ∈ P × S, where S is the dual space given by S = {s : A⊤y + s = c for some y}, and ensures
x(t) is an approximate minimizer. Specifically, the optimality condition for x(t) is given by

µt(x, s)
def
= s/t+∇ϕ(x) = 0 (A.2)

(x, s) ∈ P × S

where µt(x, s) measures how close x is to the minimizer x(t). RIPM maintains (x, s) such that

∥γt(x, s)∥∞ ≤
1

C logm
where γt(x, s)i =

µt(x, s)i

(∇2ϕ(x))
1/2
ii

, (A.3)

for some universal constant C. The normalization term (∇2ϕ)
1/2
ii makes the centrality measure

∥γt(x, s)∥∞ scale-invariant in l and u.
The key subroutine Solve takes as input a point close to the central path (x(tstart), s(tstart)), and

outputs another point on the central path (x(tend), s(tend)). Each step of the subroutine decreases t
by a multiplicative factor of (1− 1√

m logm
) and moves (x, s) within P × S such that s/t+∇ϕ(x) is

smaller for the current t. [DLY21b] proved that even if each step is computed approximately, IPM
still outputs a point close to (x(tend), s(tend)) using Õ(

√
m log(tend/tstart)) steps. See Algorithm 2

for a simplified version.
RIPM calls Solve twice. The first call to Solve finds a feasible point by following the central

path of the following modified linear program

min
A(x(1)+x(2)−x(3))=b

l≤x(1)≤u, x(2)≥0, x(3)≥0

c(1)⊤x(1) + c(2)⊤x(3) + c(2)⊤x(3)

where c(1) = c, and c(2), c(3) are some positive large vectors. The above modified linear program
is chosen so that we know an explicit point on its central path, and any approximate minimizer
to this new linear program gives an approximate central path point for the original problem. The
second call to Solve finds an approximate solution by following the central path of the original
linear program.
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Algorithm 2 Robust Primal-Dual Interior Point Method from [DLY21b]
1: procedure RIPM(A ∈ Rn×m, b, c, l,u, ϵ)
2: Define L

def
= ∥c∥2 and R

def
= ∥u− l∥2

3: Define ϕi(x)
def
= − log(ui − x)− log(x− li)

4: Define µt
i(x, s)

def
= si/t+∇ϕi(xi)

▷ Modify the linear program and obtain an initial (x, s) for modified linear program
5: Let t = 221m5 · LR128 ·

R
r

6: Compute xc = argminl≤x≤u c⊤x+ tϕ(x) and x◦ = argminAx=b ∥x− xc∥2
7: Let x = (xc, 3R+ x◦ − xc, 3R) and s = (−t∇ϕ(xc),

t
3R+x◦−xc

, t
3R)

8: Let the new matrix Anew def
= [A;A;−A], the new barrier

ϕnew
i (x) =

{
ϕi(x) if i ∈ [m],

− log x else.

▷ Find an initial (x, s) for the original linear program
9: ((x(1),x(2),x(3)), (s(1), s(2), s(3)))← Solve(Anew, ϕnew,x, s, t, LR)

10: (x, s)← (x(1) + x(2) − x(3), s(1))

▷ Optimize the original linear program
11: (x, s)← Solve(A, ϕ,x, s, LR, ϵ

4m)
12: return x
13: end procedure

14: procedure Solve(A, ϕ,x, s, tstart, tend)
15: Define α

def
= 1

220λ
and λ

def
= 64 log(256m2)

16: Let t← tstart, x← x, s← s, t← t
17: while t ≥ tend do
18: t← max((1− α√

m
)t, tend)

19: Update step size h = −α/∥ cosh(λγt(x, s))∥2 where γ is defined in Eq. (A.3)
20: Update diagonal weight matrix W = ∇2ϕ(x)−1

21: Update step direction v where vi = sinh(λγt(x, s)i) · µt(x, s)i
22: Implicitly update x, s, with Pw

def
= W1/2A⊤(AWA⊤)−1AW1/2

x← x+ hW1/2(v −Pwv),

s← s+ thW−1/2Pwv

23: Explicitly update x, s such that

∥W−1/2(x− x)∥∞ ≤ α,

∥W1/2(s− s)∥∞ ≤ tα

24: If |t− t| ≥ αt, update t← t
25: end while
26: return (x, s)
27: end procedure
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Theorem 3.1 (RIPM). Consider the linear program

min
Ax=b, l≤x≤u

c⊤x

with A ∈ Rn×m. We are given a scalar r > 0 such that there exists some interior point x◦ satisfying
Ax◦ = b and l + r ≤ x◦ ≤ u − r. Let L = ∥c∥2 and R = ∥u − l∥2. For any 0 < ε ≤ 1/2, the
algorithm RIPM (Algorithm 2) finds x such that Ax = b, l ≤ x ≤ u and

c⊤x ≤ min
Ax=b, l≤x≤u

c⊤x+ εLR.

Furthermore, the algorithm has the following properties:

• Each call of Solve involves O(
√
m logm log(mR

ϵr ))-many steps, and t is only updated O(logm log(mR
ϵr ))-

many times.

• In each step of Solve, the coordinate i in w,v changes only if xi or si changes.

• In each step of Solve, h∥v∥2 = O( 1
logm).

• Line 19 to Line 21 takes O(K) time in total, where K is the total number of coordinate changes
in x, s.

Proof. The number of steps follows from Theorem A.1 in [DLY21b], with the parameter wi = νi = 1
for all i. The number of coordinate changes in W,v and the runtime of Line 19 to Line 21 follows
directly from the formula of µt(x, s)i and γt(x, s)i. For the bound for h∥v∥2, it follows from

h∥v∥2 ≤ α
∥ sinh(λγt(x, s))∥2
∥ cosh(λγt(x, s))∥2

≤ α = O

(
1

logm

)
.

B Maintaining the implicit representation

In this section, we give the general data structure MaintainRep, which implicitly maintains a
vector x throughout a call of Solve of Algorithm 2. We break up the representation into two parts,
the first using the inverse tree operator, and the second using the tree operator.

First, we present some of the alternative decomposition properties of the tree operator.

Definition B.1 (Subtree operator). Let ∆ be a tree operator on T . Recall TH is the complete
subtree of T rooted at H. We define the subtree operator ∆(H) at each node H to be

∆(H) def
=

∑
leaf L∈TH

∆L←H . (B.1)

Corollary B.2. Based on the above definitions, we have

∆ =
∑
H∈T

∆(H)IFH
. (B.2)

Furthermore, if H has children H1, H2, then

∆(H) = ∆(H1)∆H1 +∆(H2)∆H2 . (B.3)
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The output of ∆ when restricted to E(H) for a node H ∈ T can be written in two parts, which is
useful for our data structures. The first part involves summing over all nodes in TH , ie. descendants
of H and H itself, and the second part involves a sum over all ancestors of H.

Lemma B.3. At any node H ∈ T , we have

IE(H)∆ =
∑

D∈TH

∆(D)IFD
+∆(H)

∑
ancestor A of H

∆H←AIFA
.

Proof. We consider the terms in the sum for ∆ that map into to E(H), which is precisely the set of
leaf nodes in the subtree rooted at H.

IE(H)∆ =
∑

leaf L∈TH

∑
A:L∈TA

∆L←AIFA
.

The right hand side involves a sum over the set {(L,A) : leaf L ∈ TH , L ∈ TA}. Observe that (L,A)
is in this set if and only if A is a descendant of H, or A = H, or A is an ancestor of H. Hence, the
summation can be written as∑

leaf L ∈ TH

∑
node A ∈ TH

∆L←AIFA
+

∑
leaf L ∈ TH

∑
ancestor A of H

∆L←AIFA
.

The first term is precisely the first term in the lemma statement. For the second term, we can use
the fact that A is an ancestor of H to expand ∆L←A = ∆L←H∆H←A. Then, the second term is∑

leaf L ∈ TH

∑
ancestor A of H

∆L←H∆H←AIFA

=
∑

leaf L ∈ TH

∆L←H

( ∑
ancestor A of H

∆H←AIFA

)

= ∆(H)

( ∑
ancestor A of H

∆H←AIFA

)
,

by definition of ∆(H).

Now, we consider the cost of applying the inverse tree operator and the tree operator.

Lemma B.4. Let ∇ : RE 7→ RV be an inverse tree operator on T with query complexity Q. Given
v ∈ RE, we can compute ∇v as well as yH

def
=
∑

leaf L∈TH ∇H←Lv for all H ∈ T in O(Q(ηK)) time,
where K = nnz(v) and η is the height of T .

Proof. Recall the definition

∇v def
=
∑

leaf L

 ∑
H: L∈TH

IFH
∇H←L

v.

At a leaf node L, if we have ve = 0 for all e ∈ E(L), then we can ignore the term for L in the
outer sum. So we can reduce ∇v to consist of at most K terms in the outer sum. We can further
rearrange the order of applying the edge operators so that each edge operator is applied at most
once, and this naturally gives the values for all non-zero yH ’s. We bound the overall runtime loosely
by O(Q(ηK)).

36



Unlike the inverse tree operator, the tree operator is applied downwards along a tree, and
therefore we do not have non-trivial bounds on total number of edge operators applied. Instead, we
have a more general bound:

Lemma B.5. Let ∆ : RV 7→ RE be a tree operator on T with query complexity Q. Given z ∈ RV ,
we can compute ∆v in O(Q(|E|)) time.

Proof. We simply observe that we can compute ∆v by applying each edge operator at most once.
Since the leaf nodes partition the set E, we know in T , there are O(|E|) edge operators in total, so
the overall time is at most O(Q(|E|)).

With the appropriate partial computations taking advantage of the decomposition of ∇, we can
maintain ∇v efficiently for dynamic ∇ and v. Specifically, we use the following property:

Lemma B.6. Given a vector v ∈ RE, let yH
def
=
∑

leaf L∈TH ∇H←Lv for each H ∈ T . If H has
children H1, H2, then

yH = ∇H1yH1 +∇H2yH2 . (B.4)

Furthermore, ∑
H∈T

IFH
yH = ∇v. (B.5)

Lemma B.7. Let ∇ : RE 7→ RV be an inverse tree operator with query complexity Q. Let ∇(new) be
∇ with K updated edge operators. Suppose we know ∇v, and we know yH

def
=
∑

leaf L∈TH ∇H←Lv at

all nodes H, then we can compute (∇(new) −∇)v and the y
(new)
H ’s in O(Q(ηK)) time.

Proof. Observe that for a node H ∈ T , if no edge operator in TH was updated, then yH remains
the same. We use Eq. (B.4) to compute y

(new)
H up the tree for the O(ηK)-many nodes that admit

changes, and then Eq. (B.5) to extract the change (∇(new) −∇)v.

Now we are ready for the complete data structure involving the inverse tree operator.

Theorem B.8 (Inverse tree operator data structure). Let w ∈ Rm be the weights changing at every
step of Solve, and let v ∈ Rn be a dynamic vector. Suppose ∇ : Rm 7→ Rn is an inverse tree operator
dependent on w supported on T with query complexity Q and update complexity U . Let η be the height
of T . Then the data structure InverseTreeOp (Algorithm 3) maintains z(k) def

=
∑k

i=1 h
(i)∇(i)v(i)

so that at the end of each step k, the variables in the algorithm satisfy

• z = cz(step) + z(sum),

• z(step) = ∇v, and

• yH =
∑

leaf L∈TH ∇H←Lv for all nodes H.

The data structure is initialized via Initialize in O(U(m) +Q(m)) time. At step k, there is one
call Reweight(δw) taking O(U(K) +Q(ηK)) time, where K = nnz(δw), followed by one call of
Move(h, δv) taking O(Q(η · nnz(δv))) time.
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Algorithm 3 Dynamic data structure to maintain cumulative ∇v
1: dynamic data structure InverseTreeOp
2: member:
3: T : tree supporting ∇ with edge operators on the edges
4: w ∈ Rm: dynamic weight vector
5: v ∈ Rn: dynamic vector
6: c, z(step), z(sum) ∈ Rn: coefficient, result vectors
7: yH ∈ Rn for each H ∈ T : sparse partial computations
8:
9: procedure Initialize(T ,w(init),v(init))

10: w ← w(init),v ← v(init), c← 0, z(sum) ← 0
11: Initialize ∇ on T based on w
12: Compute ∇v and yH ’s, set z(step) ← ∇v
13: end procedure
14:
15: procedure Reweight(δw)
16: w(new) ← w + δw
17: Let ∇(new) be the new tree operator using w(new)

18: z′ ← (∇(new) −∇)v, and update yH ’s ▷ Lemma B.7
19: z(step) ← z(step) + z′

20: z(sum) ← z(sum) − c · z′
21: w ← w(new),∇ ← ∇(new)

22: end procedure
23:
24: procedure Move(h, δv)
25: Compute z′

def
= ∇δv and the y′H

def
=
∑

leaf L ∈ TH ∇H←Lδv for each node H ▷ Lemma B.4
26: z(step) ← z(step) + z′, and yH ← yH + y′H for each node H
27: z(sum) ← z(sum) − cz′

28: c← c+ h
29: v ← v + δv
30: end procedure
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Proof. In the data structure, we always maintain z(step) and the yH ’s together. Specifically, at every
step, we update the yH ’s up the tree using the recursive property Eq. (B.4) only at the necessary
nodes, and from the yH ’s, we get z(step) =

∑
H IFH

yH .
Consider Initialize. At the end of the function, the variables satisfy

z
def
= cz(step) + z(sum) = 0 · ∇v + 0 = 0,

and z(step) = ∇v, as required.
Let us consider Reweight. Let the superscript (new) denote the value of an algorithm variable

at the end of the function, and let no superscript denote the value at the start.

z(new) = c(new)z(step)(new)
+ z(sum)(new)

= c(z(step) + z′) + z(sum) − cz′

= cz(step) + z(sum),

and z(step)(new)
= z(step) + (∇(new) −∇)v
= ∇(new)v,

as required. Similarly, let us consider Move:

z(new) = c(new)z(step)(new)
+ z(sum)(new)

= (c+ h)(z(step) + z′) + z(sum) − cz′

= cz(step) + z(sum) + hz(step),

and z(step)(new)
= z(step) +∇(v(new) − v)

= ∇v +∇(v(new) − v)

= ∇v(new),

which is exactly the update we want to make to z, and the invariant we want to maintain.
The runtimes follow directly from Lemmas B.4 and B.7.

Next, we present the tree operator data structure, which is significantly more involved compared
to the inverse tree operator. Applying the tree operator involves going down the tree to the leaves,
which is too costly to do at every step. To circumvent the issue, we use lazy computations.

Theorem B.9 (Tree operator data structure). Let w ∈ Rm be the weights changing at every step
of Solve. Suppose ∆ : Rn 7→ Rm is a tree operator dependent on w supported on T with query
complexity Q and update complexity U . Let z ∈ Rn be the vector maintained by Algorithm 3, so
that at the end of step k, z =

∑k
i=1 h

(i)∇(i)v(i). Then the data structure TreeOp (Algorithm 4)
implicitly maintains x so that at the end of step k,

x(k) = x(init) +
k∑

i=1

∆(i)∇(i)v(i).

The data structure is initialized via Initialize in O(U(m)) time. At step k, there is one call
to Reweight(δw) taking O(U(K) + Q(ηK)) time, where K = nnz(δw), followed by one call to
Move(δz) taking O(nnz(δz)) time. At the end of Solve, x is returned via Exact in O(Q(m))
time.
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Algorithm 4 Dynamic data structure to maintain cumulative ∆z

1: dynamic data structure TreeOp
2: member:
3: T : tree supporting ∆
4: w ∈ Rm: dynamic weight vector
5: z ∈ Rn: dynamic vector
6: uH for each H ∈ T : lazy pushdown computation vectors
7:
8: procedure Initialize(T ,w(init), z(init),x(init))
9: w ← w(init), z ← z(init)

10: Initialize ∆ on T based on w
11: uH ← 0 for each non-leaf H ∈ T
12: uH ← x(init)|E(H) for each leaf H ∈ T
13: end procedure
14:
15: procedure Reweight(δw)
16: w ← w + δw
17: Let ∆(new) be the new tree operator wrt the new weights
18: Let H be all nodes H where ∆H changed
19: for H ∈ PT (H) going down the tree level by level do
20: Pushdown(H)
21: end for
22: for H ∈ PT (H) going down the tree level by level do
23: uH ← cz|FH

24: Pushdown(H)
25: end for
26: ∆←∆(new)

27: for H ∈ PT (H) going down the tree level by level do
28: uH ← −cz|FH

29: Pushdown(H)
30: end for
31: end procedure
32:
33: procedure Move(δz)
34: z ← z + δz
35: end procedure
36:
37: procedure Exact
38: for H ∈ T going down the tree level by level do
39: uH ← uH + z|FH

40: Pushdown(H)
41: end for
42: return x defined by x|E(H)

def
= uH at each leaf H ∈ T

43: end procedure
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Algorithm 5 Dynamic data structure to maintain cumulative ∆z, con’t
1: dynamic data structure TreeOp
2: procedure Pushdown(H ∈ T )
3: for each child D of H do
4: uD ← uD +∆DuH

5: end for
6: uH ← 0
7: end procedure

Proof. We will show that the data structure maintains the implicit representation via the identity

x = c∆z +
∑
H∈T

∆(H)uH , (B.6)

where the RHS expression refers to the state of the variables at the end of step k during the algorithm.
At a high level, the variables ∆ and z in the data structure at step k represent the latest ∆(k)

and z(k). We need to introduce additional vectors uH at every node H which intuitively stores
lazy computations at node H, in order to take advantage of the tree structure of ∆. The function
Pushdown performs the accumulated computation at H, and moves the result to its children nodes
to be computed lazily at a later point. The next claim describes this process formally.

Claim B.10. Let H ∈ T be a non-leaf node. Pushdown(H) does not change the value of the
implicit representation in Eq. (B.6). Also, at the end of the procedure, uH = 0.

Proof. For any variable in the algorithm, we add the superscript (new) to mean its state at the end
of Pushdown; if there is no superscript, then it refers to the state at the start.

We show the claim for when H has two children H1, H2. Note that ∆ and z are not touched by
Pushdown, so we may ignore the term c∆z in Eq. (B.6). Then,∑

H′∈T
∆(H′)u

(new)
H′

= ∆(H)u
(new)
H +

∑
i=1,2

∆(Hi)u
(new)
Hi

+
∑

H′∈T ,H′ ̸=H,H1,H2

∆(H′)uH′ (expand terms)

=
∑
i=1,2

∆(Hi)(uHi +∆HiuH) +
∑

H′∈T ,H′ ̸=H,H1,H2

∆(H′)uH′ (substitute values)

=
∑
i=1,2

∆(Hi)∆HiuH +
∑

H∈T ,H′ ̸=H

∆(H′)uH′

= ∆(H)uH +
∑

H∈T ,H′ ̸=H

∆(H′)uH′ (by Eq. (B.3))

=
∑
H′∈T

∆(H′)uH′ ,

so the implicit representation of x has not changed in value.

This claim can be generalized from H ∈ T to H ⊆ T ; we omit the full details. Next, we show
that the implicit representation of x by Eq. (B.6) is correctly maintained after reweight.

Claim B.11. After the k-th call Reweight, the value of x is unchanged, while the value of ∆ is
updated to ∆(k) which is a function of w(k).
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Proof. We begin by observing that if H /∈ PT (H), then ∆(H)(new) = ∆(H) by definition, as there
are no edges in TH with updated operators.

At a high level, we traverse the subtree PT (H) three rounds and perform Pushdown at every
node. During the first round, we simply push down the current uH values at each node H. By
Claim B.10, we know this does not change the value of the implicit representation.

During the second round, we first initialize uH ← cz|FH
at each node H ∈ PT (H), and then

perform Pushdown. Since Pushdown does not affect the value of the implicit representation,
we can use the initial change in uH to determine the overall change in the implicit representation.
Crucially, note that we perform Pushdown using the old tree operator. So, the change in value of
the implicit representation is given by

+c
∑

H∈PT (H)

∆(H)z|FH
.

After the second round of Pushdown, we update the tree operator ∆ to ∆(new). Note that
∆(H) changes if and only if H ∈ PT (H), and in this case, uH = 0. So, updating the tree operator at
this point induces a change in the value of the implicit representation of

c∆(new)z − c∆z = c
∑
H∈T

(
∆(H)(new) −∆(H)

)
z|FH

= c
∑

H∈PT (H)

(
∆(H)(new) −∆(H)

)
z|FH

.

During the third round, we initialize uH ← −cz|FH
at each node H ∈ PT (H) and perform

Pushdown. Similar to the first round, the change to the value of the implicit representation induced
by this round is given by

−c
∑

H∈PT (H)

∆(H)(new)z|FH
.

The sum of the changes from each of the three rounds is exactly 0, so we conclude the value of the
implicit representation did not change.

Finally, we consider the other functions.
For Initialize, we see that by substituting the values assigned during Initialize and applying

the definition from Eq. (B.2), we have

c∆z +
∑
H∈T

∆(H)uH = x(init) +∆z,

where ∆ is the initial ∆(init) and z is the initial z(init), which is exactly how we want to initialize x.
For Move, we see the value of x is incremented by ∆(k)(z(k) − z(k−1)) after the step k. By

definition of z, we know z(k) − z(k−1) = h(k)∇(k)v(k), so we conclude Move correctly makes the
update h(k)∆(k)∇(k)v(k).

For Exact, we calculate the value of x explicitly by performing the computation
∑

H∈T ∆(H)(uH+
z|FH

) using a sequence of Pushdown’s down the tree. The final answer x is stored in parts in the
uH ’s along the leaf nodes.

Note that by definition of the query complexity of ∆, Pushdown uses O(Q(1)) time. The
remaining runtimes are straightforward.

Finally, we combine Algorithm 3 and Algorithm 4 to get the overall data structure MaintainRep
for maintaining x throughout Solve as given by Eq. (3.2). We omit the pseudocode implementation.
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Proof of Theorem 3.7. We use one copy of InverseTreeOp, which maintains z def
= cz(step)+z(sum).

We want to use TreeOp to maintain z which is given in two terms by InverseTreeOp. To resolve
this, we can simply use two copies of the data structure and track the two terms in z separately;
then we correctly maintain x. During Solve, at step k, we first call Reweight and Move in
InverseTreeOp, followed by Reweight and Move in each copy of TreeOp. The runtimes follow
in a straightforward manner.

C Maintaining vector approximation

We include this section for completeness; all techniques are from [DGG+22].
Recall at every step of the IPM, we want to maintain approximate vectors x, s so that∥∥∥W−1/2(x− x)

∥∥∥
∞
≤ δ and

∥∥∥W1/2(s− s)
∥∥∥
∞
≤ δ′

for some error tolerances δ and δ′.
In the previous section, we showed how to use MaintainRep to maintain x implicitly throughout

Solve in the IPM. In this section, we give a data structure to efficiently maintain an approximate
vector x to the x from MaintainRep, so that at every step,∥∥∥W−1/2 (x− x)

∥∥∥
∞
≤ δ.

In the remainder of this section, we crucially assume that w is a function of x coordinate-wise, which
is indeed satisfied by the RIPM framework.
Remark C.1. In our problem setting, we do not have full access to the exact vector x. The algorithms
in the next two subsections however will refer to x for readability and modularity. We observe that
access to x is limited to two types: accessing the JL-sketches of specific subvectors, and accessing
exact coordinates and other specific subvectors of sufficiently small size.

In Appendix C.1, we reduce the problem of maintaining x to detecting coordinates of x with
large changes. In Appendix C.2, we detect coordinates of x with large changes using a sampling
technique on a constant-degree tree, where Johnson-Lindenstrauss sketches of subvectors of x are
maintained at each node the tree. In Appendix C.3, we show how to compute and maintain the
necessary collection of JL-sketches on the operator tree T ; in particular, we do this efficiently with
only an implicit representation of x. Finally, we put the three parts together to prove Theorem 3.8.

For notational simplicity, we use D
def
= W−1/2. Recall we use the superscript (k) to denote the

variable at the end of step k; that is, D(k) and x(k) are the values of D and x at the end of step k.
Step 0 is the initialization step.

C.1 Reduction to change detection

In this section, we show that in order to maintain an approximation x to some vector x, it suffices
to detect coordinates of x that change a lot.

We make use of dyadic intervals. At step k, for each ℓ such that k ≡ 0 mod 2ℓ, we find the index
set I(k)ℓ that contains all coordinates i of x such that x(k)

i changed significantly compared to x
(k−2ℓ)
i ,

that is, compared to 2ℓ steps ago. Formally:

Definition C.2. At step k of the IPM, for each ℓ such that k ≡ 0 mod 2ℓ, we define

I
(k)
ℓ

def
= {i ∈ [n] : D

(k)
ii · |x

(k)
i − x

(k−2ℓ)
i | ≥ δ

2 ⌈logm⌉
,

and xi has not been updated after the (k − 2ℓ)-th step}.
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We show how to find the sets I(k)ℓ with high probability in the next section. Assuming the correct
implementation, we have the following data structure for maintaining the desired approximation x:

Algorithm 6 Data structure AbstractMaintainApprox, Part 1
1: data structure AbstractMaintainApprox
2: private : member
3: T : constant-degree rooted tree with height η and m leaves ▷ leaf i corresponds to xi

4: w
def
= Θ(η2 log(mρ )): sketch dimension

5: Φ ∼ N(0, 1
w )

w×m: JL-sketch matrix
6: δ > 0: additive approximation error
7: k: current step
8: x ∈ Rm: current valid approximate vector
9: {x(j) ∈ Rm}kj=0: list of previous inputs

10: {D(j) ∈ Rm×m}kj=0: list of previous diagonal scaling matrices
11:
12: procedure Initialize(T ,x ∈ Rm,D ∈ Rm×m

>0 , ρ > 0, δ > 0)
13: T ← T , δ ← δ, k ← 0
14: x← x,x(0) ← x,D(0) ← D
15: sample Φ ∼ N(0, 1

w )
w×m

16: end procedure
17:
18: procedure Update(x(new) ∈ Rm,D(new) ∈ Rm×m

>0 )
19: k ← k + 1, x(k) ← x(new), D(k) ← D(new)

20: end procedure
21:
22: procedure Approximate
23: I ← ∅
24: for all 0 ≤ ℓ < ⌈logm⌉ such that k ≡ 0 mod 2ℓ do
25: I

(k)
ℓ ← FindLargeCoordinates(ℓ)

26: I ← I ∪ I
(k)
ℓ

27: end for
28: if k ≡ 0 mod 2⌈logm⌉ then
29: I ← [m] ▷ Update x in full every 2⌈logm⌉ steps
30: end if
31: xi ← x

(k)
i for all i ∈ I

32: return x
33: end procedure

Lemma C.3 (Approximate vector maintenance). Suppose FindLargeCoordinates(ℓ) is a proce-
dure in AbstractMaintainApprox that correctly computes the set I(k)ℓ at the k-th step. Then the
deterministic data structure AbstractMaintainApprox in Algorithm 6 maintains an approxima-
tion x of x with the following procedures:

• Initialize(T ,x, D, ρ > 0, δ > 0): Initialize the data structure at step 0 with tree T , initial
vector x, initial diagonal scaling matrix D, target additive approximation error δ, and success
probability 1− ρ.

44



• Update(x(new), D(new)): Increment the step counter and update vector x and diagonal scaling
matrix D.

• Approximate: Output a vector x such that ∥D(x− x)∥∞ ≤ δ for the latest x and D with
probability at least 1− ρ.

At step k, the procedure Update is called, followed by Approximate. Suppose ∥D(k)(x(k) −
x(k−1))∥2 ≤ β for all steps k, and D is a function of x coordinate-wise. Then, for each ℓ ≥ 0, the
data structure updates O(22ℓ(β/δ)2 log2m) coordinates of x every 2ℓ steps.

Proof of Lemma C.3. The failure case arises from FindLargeCoordinates. Assuming Find-
LargeCoordinates returns the correct set of coordinates, we prove the correctness of Approxi-
mate.

Fix some coordinate i ∈ [m] and fix some step k. Suppose the latest update to xi is xi ← x
(k′)
i

at step k′. So D
(d)
ii is the same for all k ≥ d > k′, and i is not in the set I

(d)
ℓ returned by

FindLargeCoordinates for all k ≥ d > k′. Since we set x← x every 2⌈logm⌉ steps by Line 29,
we know k − 2⌈logm⌉ ≤ k′ < k. Using dyadic intervals, we can define a sequence k0, k1, . . . , ks with
s ≤ 2 ⌈logm⌉, where k′ = k0 < k1 < k2 < · · · < ks = k, each kj+1 − kj is a power of 2, and
(kj+1 − kj) | kj+1. Hence, we have

x
(k)
i − x

(k)
i = x

(ks)
i − x

(k0)
i = x

(ks)
i − x

(k0)
i =

s−1∑
j=0

(
x
(kj+1)
i − x

(kj)
i

)
.

We know that D
(d)
ii is the same for all k ≥ d > k′. By the guarantees of FindLargeCoordinates,

we have
D

(k)
ii · |x

(kj+1)
i − x

(kj)
i | = D

(kj+1)
ii · |x(kj+1)

i − x
(kj)
i | ≤ δ

2 ⌈logm⌉
for all 0 ≤ j < s. Summing over all j = 0, 1, . . . , s− 1 gives

D
(k)
ii · |x

(k)
i − x

(k)
i | ≤ δ.

Hence, we have ∥D(x− x)∥∞ ≤ δ.
Fix some ℓ with k ≡ 0 mod 2ℓ. We bound the number of coordinates in I

(k)
ℓ . For any i ∈ I

(k)
ℓ ,

we know D
(j)
ii = D

(k)
ii for all j > k− 2ℓ because xi did not change in the meanwhile. By definition of

I
(k)
ℓ , we have

D
(k)
ii ·

k−1∑
j=k−2ℓ

|x(j+1)
i − x

(j)
i | ≥ D

(k)
ii · |x

(k)
i − x

(k−2ℓ)
i | ≥ δ

2 ⌈logm⌉
.

Using D
(j)
ii = D

(k)
ii for all j > k − 2ℓ again, the above inequality yields

δ

2 ⌈logm⌉
≤

k−1∑
j=k−2ℓ

D
(j+1)
ii |x(j+1)

i − x
(j)
i |

≤

√√√√2ℓ
k−1∑

j=k−2ℓ
D

(j+1)2
ii |x(j+1)

i − x
(j)
i |2. (by Cauchy-Schwarz)
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Squaring and summing over all i ∈ I
(k)
ℓ gives

Ω

(
2−ℓδ2

log2m

)
|I(k)ℓ | ≤

∑
i∈I(k)ℓ

k−1∑
j=k−2ℓ

D
(j+1)2
ii |x(j+1)

i − x
(j)
i |

2

≤
m∑
i=1

k−1∑
j=k−2ℓ

D
(j+1)2
ii |x(j+1)

i − x
(j)
i |

2

≤ 2ℓβ2,

where we use ∥D(j+1)(x(j+1) − x(j))∥2 ≤ β at the end. Hence, we have

|I(k)ℓ | = O(22ℓ(β/δ)2 log2m).

In other words, for each ℓ ≥ 0, we update |I(k)ℓ |-many coordinates of x at step k when k ≡ 0 mod 2ℓ.
So we conclude that for each ℓ ≥ 0, we update O(22ℓ(β/δ)2 log2m)-many coordinates of x every 2ℓ

steps.

C.2 From change detection to sketch maintenance

Now we discuss the implementation of FindLargeCoordinates(ℓ) to find the set I(k)ℓ in Line 25 of
Algorithm 6. We accomplish this by repeatedly sampling a coordinate i with probability proportional

to
(
D

(k)
ii (x

(k)
i − x

(k−2ℓ)
i )

)2
, among all coordinates i where xi has not been updated since 2ℓ steps

ago. With high probability, we can find all indices in I
(k)
ℓ in this way efficiently. To implement the

sampling procedure, we make use of a data structure based on segment trees [CLRS09] along with
sketching based on the Johnson-Lindenstrauss lemma.

Formally, we define the vector q ∈ Rm where qi
def
= D

(k)
ii (x

(k)
i − x

(k−2ℓ)
i ) if xi has not been

updated after the (k − 2ℓ)-th step, and qi = 0 otherwise. Our goal is precisely to find all large
coordinates of q.

Let T be a constant-degree rooted tree with m leaves, where leaf i represents coordinate qi,
which we call a sampling tree. For each node u ∈ T , we define E(u) ⊆ [m] to be the set of indices
of leaves in the subtree rooted at u. We make a random descent down T , in order to sample a
coordinate i with probability proportional to q2i . At a node u, for each child u′ of u, the total
probability of the leaves under u′ is given precisely by

∥∥q|E(u′)

∥∥2
2
. We can estimate this by the

Johnson-Lindenstrauss lemma using a sketching matrix Φ. Then we randomly move from u down to
child u′ with probability proportional to the estimated value. To tolerate the estimation error, when
reaching some leaf node representing coordinate i, we accept with probability proportional to the
ratio between the exact probability of i and the estimated probability of i. If i is rejected, we repeat
the process from the root again independently.

Lemma C.4. Assume that ∥D(k+1)(x(k+1)−x(k))∥2 ≤ β for all IPM steps k. Let ρ < 1 be any given
failure probability, and let Mℓ

def
= Θ(22ℓ(β/δ)2 log2m log(m/ρ)) be the number of samples Algorithm 6

takes. Then with probability ≥ 1− ρ, during the k-th call of Approximate, Algorithm 6 finds the
set I(k)ℓ correctly. Furthermore, the while-loop in Line 41 happens only O(1) times in expectation per
sample.
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Algorithm 6 Data structure AbstractMaintainApprox, Part 2
34: procedure FindLargeCoordinates(ℓ)
35: ▷ D: diagonal matrix such that

Dii =

{
D

(k)
ii if xi has not been updated after the (k − 2ℓ)-th step

0 otherwise.

36: ▷ q
def
= D(x(k) − x(k−2ℓ)) ▷ vector to sample coordinates from

37:
38: I ← ∅ ▷ set of candidate coordinates
39: for Mℓ

def
= Θ(22ℓ(β/δ)2 log2m log(m/ρ)) iterations do

40: ▷ Sample coordinate i of q w.p. proportional to q2i by random descent down T to a leaf
41: while true do
42: u← root(T ), pu ← 1
43: while u is not a leaf node do
44: Sample a child u′ of u with probability

P(u→ u′)
def
=

∥ΦE(u′)q∥22∑
child u′′ of u ∥ΦE(u′′)q∥22

▷ let ΦE(u)
def
= ΦIE(u) for each node u

45: pu ← pu ·P(u→ u′)
46: u← u′

47: end while
48: break with probability paccept

def
=
∥∥q|E(u)

∥∥2 /(2 · pu · ∥Φq∥22)
49: end while
50: I ← I ∪ E(u)
51: end for
52: return {i ∈ I : qi ≥ δ

2⌈logm⌉}.
53: end procedure
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Proof. The proof is similar to Lemma 6.17 in [DLY21b]. We include it for completeness. For a set S
of indices, let IS be the m×m diagonal matrix that is one on S and zero otherwise.

We first prove that Line 48 breaks with probability at least 1
4 . By the choice of w, Johnson–

Lindenstrauss lemma shows that ∥ΦE(u)q∥22 = (1± 1
9η )∥IE(u)q∥22 for all u ∈ T with probability at

least 1− ρ. Therefore, the probability we move from a node u to its child node u′ is given by

P(u→ u′) =

(
1± 1

3η

) ∥IE(u′)q∥22∑
u′′ is a child of u ∥IE(u′′)q∥22

=

(
1± 1

3η

) ∥IE(u′)q∥22
∥IE(u)q∥22

.

Hence, the probability the walk ends at a leaf u ∈ T is given by

pu =

(
1± 1

3η

)η ∥Iuq∥22
∥q∥22

= (1± 1

3η
)η
∥∥q|E(u)

∥∥2
∥q∥22

.

Now, paccept on Line 48 is at least

paccept =

∥∥q|E(u)

∥∥2
2 · pu · ∥Φq∥22

≥
∥∥q|E(u)

∥∥2
2 · (1 + 1

3η )
η ∥q|E(u)∥2
∥q∥22

· ∥Φq∥22
≥ ∥q∥22

2 · (1 + 1
3η )

η∥Φq∥22
≥ 1

4
.

On the other hand, we have that paccept ≤
∥q∥22

2(1− 1
3η

)η∥Φq∥22
< 1 and hence this is a valid probability.

Next, we note that u is accepted on Line 48 with probability

pacceptpu =

∥∥q|E(u)

∥∥2
2 · ∥Φq∥22

.

Since ∥Φq∥22 remains the same in all iterations, this probability is proportional to
∥∥q|E(u)

∥∥2. Since the
algorithm repeats when u is rejected, on Line 50, u is chosen with probability exactly

∥∥q|E(u)

∥∥2 /∥q∥2.
Now, we want to show the output set is exactly {i ∈ [n] : |qi| ≥ δ

2⌈logm⌉}. Let S denote the set
of indices where x did not update between the (k − 2ℓ)-th step and the current k-th step. Then

∥q∥2 = ∥ISD(k)(x(k) − x(k−2ℓ))∥2

≤
k−1∑

i=k−2ℓ
∥ISD(k)(x(i+1) − x(i))∥2

=

k−1∑
i=k−2ℓ

∥ISD(i+1)(x(i+1) − x(i))∥2

≤
k−1∑

i=k−2ℓ
∥D(i+1)(x(i+1) − x(i))∥2

≤ 2ℓβ,

where we used ISD
(i+1) = ISD

(k), because xi changes whenever Dii changes at a step. Hence, each
leaf u is sampled with probability at least

∥∥q|E(u)

∥∥2 /(2ℓβ)2. If |qi| ≥ δ
2⌈logm⌉ , and i ∈ E(u) for a

leaf node u, then the coordinate i is not in I with probability at most(
1−

∥∥q|E(u)

∥∥2
(2ℓβ)2

)Mℓ

≤
(
1− 1

22ℓ+2(β/δ)2 ⌈logm⌉2

)Mℓ

≤ ρ

m
,
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by our choice of Mℓ. Hence, all i with |qi| ≥ δ
2⌈logm⌉ lies in I with probability at least 1− ρ. This

proves that the output set is exactly I
(k)
ℓ with probability at least 1− ρ.

Remark C.5. In Algorithm 6, we only need to compute ∥ΦE(u)q∥22 for O(Mℓ) many nodes u ∈ T .
Furthermore, the randomness of the sketch is not leaked and we can use the same random sketch Φ
throughout the algorithm. This allows us to efficiently maintain ΦE(u)q for each u ∈ T throughout
the IPM.

C.3 Sketch maintenance

In FindLargeCoordinates in the previous subsection, we assumed the existence of a constant
degree sampling tree T , and for the dynamic vector q, the ability to access ΦE(u)q at each node
u ∈ T and q|E(u) at each leaf node u.

In this section, we consider when the required sampling tree is the operator tree T supporting a
tree operator ∆, and the vector q is x

def
= ∆z +

∑
H∈T ∆(H)uH , where each of ∆, z and the uH ’s

undergo changes at every IPM step. We present a data structure that implements two features
efficiently on T :

• access x|E(H) at every leaf node H,

• access ΦE(H)x at every node H, where ΦE(H) is Φ restricted to columns given by E(H).

Lemma C.6. Let T be a constant degree rooted tree with height η supporting tree operator ∆ with
query complexity Q. Let w = Θ(η2 log(mρ )) be as defined in Algorithm 6, and let Φ ∈ Rw×m be a
JL-sketch matrix. Then MaintainSketch (Algorithm 7) is a data structure that maintains Φx,
where x is implicitly represented by

x
def
= ∆z +

∑
H∈T

∆(H)uH .

The data structure supports the following procedures:

• Initialize(operator tree T , implicit x): Initialize the data structure and compute the initial
sketches in O(Q(wm)) time.

• Update(H ⊆ T ): Update all the necessary sketches in O(w ·Q(η|H|)) time, where H is the
set of all nodes H where uH or ∆H changed.

• Estimate(H ∈ T ): Return ΦE(H)x.

• Query(H ∈ T ): Return x|E(H).

If we call Query on N nodes, the total runtime is O(Q(wηN)).
If we call Estimate along a sampling path (by which we mean starting at the root, calling

estimate at both children of a node, and then recursively descending to one child until reaching a
leaf), and then we call Query on the resulting leaf, and we repeat this N times with no updates
during the process, then the total runtime of these calls is O(Q(wηN)).

We note that ∆z =
∑

H∈T ∆
(H)z|FH

. For simplicity, it suffices to give the algorithm for
sketching the simpler x

def
=
∑

H∈T ∆(H)uH .
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Algorithm 7 Data structure for maintaining Φx, Part 1
1: data structure MaintainSketch
2: private : member
3: T : rooted constant degree tree, where at every node H, there is
4: S(H) ∈ Rw×|FH∪∂H| : sketched subtree operator Φ∆(H)

5: t(H) ∈ Rw : sketched vector Φ
∑

H′∈TH ∆(H′)uH′

6: Φ ∈ Rw×m : JL-sketch matrix
7: ∆ ∈ Rm×n : dynamic tree operator on T
8: uH at every H ∈ T : dynamic vectors
9:

10: procedure Initialize(tree T , Φ ∈ Rw×m, tree operator ∆, uH for each H ∈ T )
11: Φ← Φ, T ← T ,∆←∆,uH ← uH for each H ∈ T
12: S(H) ← 0, t(H) ← 0 for each H ∈ T
13: Update(V (T ))
14: end procedure
15:
16: procedure Update(H def

= set of nodes admitting implicit representation changes)
17: for H ∈ PT (H) going up the tree level by level do
18: S(H) ←

∑
child D of H S(D)∆D

19: t(H) ← S(H)uH +
∑

child D of H t(D)

20: end for
21: end procedure
22:
23: procedure SumAncestors(H ∈ T )
24: if Update has not been called since the last call to SumAncestors(H) then
25: return the result of the last SumAncestors(H)
26: end if
27: if H is the root then return 0
28: end if
29: return ∆H(uP + SumAncestors(P )) ▷ P is the parent of H
30: end procedure
31:
32: procedure Estimate(H ∈ T )
33: Let y be the result of SumAncestors(H)
34: return S(H)y + t(H)

35: end procedure
36:
37: procedure Query(leaf H ∈ T )
38: return uH + SumAncestors(H)
39: end procedure
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Proof. Let us consider the correctness of the data structure, starting with the helper function
SumAncestors. We implement it using recursion and memoization as it is crucial for bounding
subsequent runtimes.

Claim C.7. SumAncestors(H ∈ T ) returns
∑

ancestor A of H ∆H←AuA.

Proof. At the root, there are no ancestors, hence we return the zero matrix. When H is not the
root, suppose P is the parent of H. Then we can recursively write∑

ancestor A of H

∆H←AuA = ∆H

(
uP +

∑
ancestor A of P

∆P←AuA

)
.

The procedure implements the right hand side, and is therefore correct.

Assuming we correctly maintain S(H) def
= Φ∆(H) and t(H) def

= Φ
∑

H′∈TH ∆(H′)uH′ at every node
H, Estimate and Query return the correct answers by the tree operator decomposition given in
Lemma B.3.

For Update, note that if a node H is not in H and it has no descendants in H, then by definition,
the sketches at H are not changed. Hence, it suffices to update the sketches only at all nodes in
PT (H). We update the nodes from the bottom of T upwards, so that when we are at a node H, all
the sketches at its descendant nodes are correct. Therefore, by definition, the sketches at H is also
correct.

Now we consider the runtimes:

Initialize: It sets the sketches to 0 in O(wm) time, and then calls Update to update the
sketches everywhere on T . By the correctness runtime of Update, this step is correct and runs in
Õ(Q(wm)) time.

Update(set of nodes H admitting implicit representation changes): First note that
|PT (H)| ≤ η|H|. For each node H ∈ H with children D1, D2, Line 18 multiplies each row of S(D1)

with ∆(D1,H), each row of S(D2) with ∆D2 , and sums the results. Summing over w-many rows and
over all nodes in PT (H), we see the total runtime of Line 18 is O(Q(wη|H|)).

Line 19 multiply each row of S(H) with a vector and then performs a constant number of additions
of w-length vectors. Since S(H) is computed for all H ∈ PT (H) in O(Q(wη|H|)) total time, this
must also be a bound on their number of total non-zero entries. Since each S(H) is used once in
Line 19 for a matrix-vector multiplication, the total runtime of Line 19 is O(Q(wη|H|)).

All other lines are not bottlenecks.

Overall Estimate and Query time along N sampling paths: We show that if we call
Estimate along N sampling paths each from the root to a leaf, and we call Query on the leaves,
the total cost is O(Q(wηN)):

Suppose the set of nodes visited is given by H, then |H| ≤ ηN . Since there is no update, and
Estimate is called for a node only after it is called for its parent, we know that SumAncestors(H)
is called exactly once for each H ∈ H. Each SumAncestor(H) multiplies a unique edge operator
∆(H,P ) with a vector. Hence, the total runtime of SumAncestors is Q(|H|).

Finally, each Query applies a leaf operator to the output of a unique SumAncestors call, so
the overall runtime is certainly bounded by O(Q(|H|)). Similarly, each Estimate multiplies S(H)

with the output of a unique SumAncestors call. This can be computed as w-many vectors each
multiplied with the SumAncestors output. Then two vectors of length w are added. Summing
over all nodes in H, the overall runtime is O(Q(w|H|)) = O(Q(wηN)).
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Query time on N leaves: Since this is a subset of the work described above, the runtime must
also be bounded by O(Q(wηN)).

C.4 Proof of Theorem 3.8

We combine the previous three subsections for the overall approximation procedure. It is essentially
AbstractMaintainApprox in Algorithm 6, with the abstractions replaced by a data structure
implementation. We omit the pseudocode and simply describe the functions.

Theorem 3.8 (Approximate vector maintenance with tree operator [DGG+22]). Let 0 < ρ < 1
be a failure probability. Suppose ∆ ∈ Rm×n is a tree operator with query complexity Q and
supported on a constant-degree tree T with height η. There is a randomized data structure Main-
tainApprox that takes as input the dynamic weights w and the dynamic x implicitly maintained
according to Theorem 3.7 at every step, and explicitly maintains the approximation x to x satisfying∥∥W−1/2(x− x)

∥∥
∞ ≤ δ at every step with probability 1− ρ.

Suppose ∥W(k)−1/2(x(k) − x(k−1))∥2 ≤ β for all steps k. Furthermore, suppose w is a function
of x coordinate-wise. Then, for each ℓ ≥ 0, x admits 22ℓ coordinate changes every 2ℓ steps. Over N
total steps, the total cost of the data structure is

Õ(η3(β/δ)2 log3(mN/ρ))

(
Q(m) +

N∑
k=1

Q(S(k)) +

logN∑
ℓ=0

N

2ℓ
·Q(22ℓ)

)
, (3.3)

where S(k) is the number of nodes H where ∆H or uH in the implicit representation of x changed
at step k.

Proof. We apply Lemma C.3 using x maintained by MaintainRep and D
def
= W−1/2 from Solve.

We create O(logm) copies of MaintainSketch (Lemma C.6), so that for each 0 ≤ ℓ ≤ O(logm),
we have one copy sketchℓ,x which maintains sketches of ΦDx(k) at step k, and one copy sketchℓ
which maintains sketches of ΦDx(k−2ℓ) at step k ≥ 2ℓ, where D is defined so Di,i = Di,i if xi has
not been updated after the k − 2ℓ-th step, and Di,i = 0 otherwise (as needed in Algorithm 6). Note
that D can be absorbed into the tree operator in the implicit representation of x, so Lemma C.6
does indeed apply.

To access skeches of the vector q
def
= D(x(k) − x(k−2ℓ)) as needed in FindLargeCoordinates

in Algorithm 6, we can simply access the corresponding sketch in sketchℓ,x and sketchℓ, and then
take the difference.

We now describe each procedure in words, and then prove their correctness and runtime.

Initialize(T ,x,D, ρ, δ): This procedure implements the initialization of AbstractMaintainAp-
prox to approximate the dynamic vector x which is given implicitly. The initialization steps described
in Algorithm 6 takes O(wm) time. Then, we initialize the O(logm) copies of MaintainSketch in
O(Q(wm) logm) time by Lemma C.6.

Update(x(new),D(new)): To implement Update, it suffices to update all the sketching data
structures. Let us fix ℓ, and consider the update time for sketchℓ,x and sketchℓ.

Lemma C.3 shows that throughout Solve, there are O(22ℓ(β/δ)2 log2m)-many coordinate
updates to x every 2ℓ steps. Since D is a function of x coordinate-wise, xi = x

(k−1)
i for all i where

D
(k)
ii ≠ D

(k−1)
ii by Line 31. The diagonal matrix D is the same as D, except Dii is temporarily
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zeroed out for 2ℓ steps after xi changes at a step. So, the overall number of coordinate changes to D
is O(22ℓ)-many every 2ℓ steps.

Let S(k) denote the number of nodes H where ∆H or uH in the implicit representation of x
changed at step k. Additionally, since the sketching data structures maintain some variant of Dx
(where D is viewed as absorbed in the tree operator), every coordinate change in D implies an edge
operator update. Now we apply Lemma C.6 to conclude that the total time for all Update calls for
sketchℓ,x and sketchℓ over N steps is:

O(1) ·

(
N∑
k=1

Q
(
wηS(k)

)
+

N

2ℓ
·Q(wη · 22ℓ)

)
≤ O(wη) ·

(
N∑
k=1

Q(S(k)) +
N

2ℓ
·Q(22ℓ)

)
.

We then sum this over all ℓ to get the total update time for the sketching data structures.

Approximate: There are two operations to be implemented in the subroutine FindLargeCo-
ordinates(ℓ): Accessing ΦE(u)q at a node u, and accessing q|E(u) at a leaf node u. For the first, we
call sketchℓ,x.Estimate(u)−sketchℓ.Estimate(u). For the second, we call sketchℓ,x.Query(u)−
sketchℓ.Query(u).

To set xi as x
(k)
i for a single coordinate at step k as needed in Line 31, we find the leaf node H

containing the edge e, and call sketch0,x.Query(H). This returns the sub-vector x(k)|E(H), from
which we can extract x

(k)
i and set xi to be the value. This line is not a bottleneck in the runtime.

We compute the total runtime over N Approximate calls. For every ℓ ≥ 0, we call Find-
LargeCoordinates(ℓ) once every 2ℓ steps, for a total of N/2ℓ calls. In a single call, Mℓ

def
=

Θ(22ℓ(β/δ)2 log2m log(mN/ρ)) sampling paths are explored in the sketchℓ and sketchℓ,x data
structures by Lemma C.4, where a sampling path correspond to one iteration of the while-loop. This
takes a total of O(Q(wηMℓ)) time by Lemma C.6. Therefore, for every fixed ℓ, the total time for all
FindLargeCoordinates(ℓ) calls is

N

2ℓ
·O (Q(wηMℓ)) .

The total time for all LargeCoordinates calls is obtained by summing over all values of ℓ =
0, . . . , logN . To achieve overall failure probability at most ρ, it suffices to set the failure probability
of each call to be O(ρ/N).

We sum up the initialization time, update and approximate time for all values of ℓ = 0, . . . , logN
and over N total steps of Solve, to get the overall runtime of the data structure:

Õ(Q(wm)) +O(wη)
N∑
k=1

Q(S(k)) +O(wη)

logN∑
ℓ=0

N

2ℓ

(
Q(22ℓ) +Q(Mℓ)

)

= Õ(η3(β/δ)2 log3(mN/ρ))

(
Q(m) +

N∑
k=1

Q(S(k)) +

logN∑
ℓ=0

N

2ℓ
·Q(22ℓ)

)
.
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