
Optimally Repurposing Existing Algorithms to

Obtain Exponential-Time Approximations

Barış Can Esmer∗1, Ariel Kulik1, Dániel Marx†1, Daniel Neuen2, and Roohani Sharma3

1CISPA Helmholtz Center for Information Security, Saarbrücken, Germany.
{baris-can.esmer|ariel.kulik|marx}@cispa.de

2University of Bremen, Bremen, Germany. dneuen@uni-bremen.de
3Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.

rsharma@mpi-inf.mpg.de

June 28, 2023

Abstract

The goal of this paper is to understand how exponential-time approximation algorithms can be
obtained from existing polynomial-time approximation algorithms, existing parameterized exact
algorithms, and existing parameterized approximation algorithms. More formally, we consider a
monotone subset minimization problem over a universe of size n (e.g., Vertex Cover or Feed-
back Vertex Set). We have access to an algorithm that finds an α-approximate solution in time
ck ·nO(1) if a solution of size k exists (and more generally, an extension algorithm that can approx-
imate in a similar way if a set can be extended to a solution with k further elements). Our goal is
to obtain a dn · nO(1) time β-approximation algorithm for the problem with d as small as possible.
That is, for every fixed α, c, β ≥ 1, we would like to determine the smallest possible d that can be
achieved in a model where our problem-specific knowledge is limited to checking the feasibility of a
solution and invoking the α-approximate extension algorithm. Our results completely resolve this
question:

1. For every fixed α, c, β ≥ 1, a simple algorithm (“approximate monotone local search”) achieves
the optimum value of d.

2. Given α, c, β ≥ 1, we can efficiently compute the optimum d up to any precision ε > 0.

Earlier work presented algorithms (but no lower bounds) for the special case α = β = 1 [Fomin
et al., J. ACM 2019] and for the special case α = β > 1 [Esmer et al., ESA 2022]. Our work
generalizes these results and in particular confirms that the earlier algorithms are optimal in these
special cases.

We compare the performance of the resulting algorithms to what is obtainable by brute force,
that is, in a setting where we have no problem-specific knowledge beyond checking the feasibility
of a solution. We show that, except in the case α > β = 1, the resulting d is strictly better than
what can be obtained by brute force. For example, somewhat counterintuitively, given access to a
1000-approximate extension algorithm running in time 1000k · nO(1) allows us to obtain a 1.001-
approximation algorithm with running time dn ·nO(1) strictly better than what is possible by brute
force. Our technique gives novel results for a wide range of problems including Feedback Ver-
tex Set, Directed Feedback Vertex Set, Odd Cycle Traversal and Partial Vertex
Cover.

∗The author is part of Saarbrücken Graduate School of Computer Science, Germany.
†Research supported by the European Research Council (ERC) consolidator grant No. 725978 SYSTEMATICGRAPH.

ar
X

iv
:2

30
6.

15
33

1v
1

 [
cs

.D
S]

 2
7

Ju
n

20
23

Contents

1 Introduction 1

2 Our Results 5
2.1 Computation Model . 5
2.2 Approximate Monotone Local Search . 6
2.3 Optimality of the Algorithm . 8
2.4 Evaluating the Running Time of Approximate Monotone Local Search 9
2.5 Comparisons . 11

3 Applications 11
3.1 Combining Exact FPT and Polynomial-Time Approximation Algorithms 11
3.2 Exploiting Parameterized Approximation Algorithms 14
3.3 Vertex Cover and 3-Hitting Set . 15

4 Approximate Monotone Local Search 16
4.1 Correctness and Basic Analysis . 16
4.2 Derandomization . 18

5 Lower Bounds 19

6 From Discrete to Continuous Optimization 27

7 Evaluating the Running Time: Convexity and Concavity 35
7.1 Basic Properties . 35
7.2 Convexity . 37
7.3 Concavity . 40
7.4 The Determinant of the Hessian is Negative . 45
7.5 Partial Derivatives . 50
7.6 A Formula for the Determinant of the Hessian . 55

8 Better than Brute Force 58

9 Monotonicity Properties 61

10 Conclusion 66

A Problem Definitions 72

B Running Times of Exponential Approximation Algorithms 74

1 Introduction

It is widely believed that NP-hard problems cannot be solved in polynomial time and any algorithm
solving them has some form of exponential running time. During the past decades, there has been
a great deal of interest in trying to obtain improved exponential-time algorithms for basic NP-hard
problems, see for example the monograph of Fomin and Kratsch [32]. Typically, for subset problems,
where the goal is to find a subset of a given n-sized universe U that satisfies some property Π, a
solution can be found by enumerating all 2n subsets of U . Therefore, the goal is to design algorithms
that beat this exhaustive search and run in time O∗ (dn)1 for as small 1 < d < 2 as possible. More
recently, there has been interest in exponential-time approximation algorithms [3, 5, 9, 21, 25, 26, 56]
to obtain approximation ratios that are better than what is considered possible in polynomial time.
In this paper, we analyze how the simple technique of monotone local search can be used to derive
exponential-time approximation algorithms by repurposing existing exact parameterized algorithms,
existing polynomial-time approximation algorithms, and existing parameterized approximation algo-
rithms. Furthermore, we show that monotone local search is the optimal way to convert between those
types of algorithms.

Our setting is the following. We consider subset minimization problems where the goal is to find a
subset of the n-sized universe U of minimum cardinality that satisfies some additional property Π. To
make approximation feasible, we consider only monotone properties, that is, if S ⊆ U satisfies Π, then
so does any superset of S. For any approximation ratio β ≥ 1, we say that a subset S ⊆ U satisfying
the property Π is a β-approximate solution if |S| ≤ β · |OPT|, where OPT ⊆ U is an optimum solution.

An exponential β-approximation algorithm for a subset minimization problem returns a β-approxi-
mate solution and runs in time O∗(dn) for some 1 < d < 2. We assume that we are given access to an
algorithm with the following specification: given a problem instance and an integer k, if the optimum
solution has size at most k, then the algorithm returns a solution of size at most α · k in time O∗(ck).
Let us observe that in the special case of c = 1, it is equivalent to the notion of polynomial-time
constant-factor approximation algorithm [63] and in the special case of α = 1, it is equivalent to an
exact fpt-algorithm [20]. In general, the definition covers constant-factor parameterized approximation
algorithms, which have received increased attention recently [7,10,11,14,17,18,28,29,41,42,45,50–52,
54, 57]. For technical reasons, instead of an algorithm finding a small solution, we need an algorithm
finding a small extension: given a set X that can be extended to a solution by k further elements, it
returns such an extension with at most β · k further elements. For many problems that are defined in
terms of deletions (e.g., Vertex Cover, Feedback Vertex Set, Multicut etc.), the two notions
are equivalent via a simple reduction: the extension problem is equivalent to solving the problem on
G−X.

Our main goal is to understand, for a given α, β, and c, what is the best O∗(dn) time β-
approximation algorithm we can obtain if we have access to a parameterized α-approximate extension
algorithm running in time O∗(ck).

O∗(ck) time

α-approximate
extension algoritm

O∗(dn) time

β-approximate
algorithm

The special case when α = β = 1, that is, using exact fpt-algorithms to obtain exact exponential-
time algorithms, was treated by Fomin et al. [31]: they give a very simple procedure, monotone local
search, that repurposes an exact fpt-algorithm with running time O∗(ck) to obtain an exponential-time
algorithm with d = 2− 1

c . Monotone local search was extended to an approximate version by Esmer
et al. [26] to handle the case α = β > 1, with a much more complicated (non-closed-form) expression
for d, which we denote by amlsα=β(β, c). Some simulated results for the case α = 1 and β > 1 were
given in the thesis of Lee [48]. Table 1 shows various special cases of our setting.

These previous results suggest two obvious further research goals. First, one would like to extend
the understanding to the α ̸= β case. For example, Esmer et al. [26] showed how to obtain an

1The O∗ notation hides polynomial factors in the expression.

1

c α, β

c = 1 α > β > 1
polytime approximation⇝ exptime approximation
with better ratio

c > 1 α = β = 1 fpt exact⇝ exptime exact [31]

c > 1 α = 1, β > 1 fpt exact⇝ exptime approximation

c > 1 α > 1, β = 1
fpt approximation⇝ exptime exact
useless, cannot improve 2n brute force

c > 1 α = β > 1
fpt approximation⇝ exptime approximation
with the same ratio [26]

c > 1 1 < α < β
fpt approximation⇝ exptime approximation
with worse ratio

c > 1 α > β > 1
fpt approximation⇝ exptime approximation
with better ratio

Table 1: Special cases of our setting.

exponential 5-approximation algorithm if we are given an O∗(2k) time 5-approximate parameterized
extension algorithm (i.e., c = 2, α = β = 5). We would like to understand whether we can obtain a
faster 5-approximation algorithm if the extension algorithm is 3-approximate (c = 2, α = 3, β = 5)
and whether the 5-approximate extension algorithm is useful at all for obtaining an exponential 3-
approximation (c = 2, α = 5, β = 3).

Second, the previous results [26,31] did not provide any lower bounds. Is the O∗((2− 1
c)

n) algorithm
obtained by Fomin et al. [31] really the best we can have without any problem-specific knowledge?
We can formalize this question in a model where all we can do is checking the validity of a solution in
polynomial time and using an α-approximate extension algorithm running in time O∗(ck). If we have
lower bounds in this model, then we can evaluate whether the previous results [26,31] really repurposed
the extension algorithms in an optimal way and we can compare how the algorithms resulting from
two sets of parameters (α, c, β) and (α′, c′, β′) relate to each other.

Our main result fully achieves both of these goals: for every combination of parameters, we provide
tight upper and (unconditional) lower bounds on the best possible exponential-time approximation
algorithm.

For every fixed α, β, c ≥ 1, we determine the best possible d = best(α, c, β) such that a O∗(dn)
time β-approximation algorithm can be obtained from an α-approximate extension algorithm
running in time O∗(ck).

Similar to [26], we do not expect a simple closed-form expression for best(α, c, β). Indeed, it may
very well be that best(α, c, β) has no closed-form description similar to, for example, the running time
of certain branching algorithms where the base corresponds to the root of a polynomial of degree at
least five (see, e.g., [20]). This raises the philosophical question of when can we consider the problem
of determining best(α, c, β) “resolved.” Our answer consists of two parts:

(1) For every α, β, c ≥ 1, a simple approximate mononotone local search algorithm (which naturally
extends existing algorithms [26, 31, 48]) achieves the optimal running time (up to polynomial
factors; Theorem 2.3).

(2) This algorithm runs precisely in time O∗((best(α, c, β))n) and given α, β, c ≥ 1 and ε > 0, we
can compute best(α, c, β) up to an additive error of ε > 0, in time polynomial in the total
encoding length of the input (Theorem 2.5).

That is, we describe the optimal algorithm and show how to analyze its running time. Arguably,
these two results satisfy any intuitive expectation of resolving the problem. The basic approximate

2

monotone local search algorithm in inherently randomized, but it can be derandomized at the cost
of a subexponential factor in the running time (Theorem 2.4). To attain statement (1), we show
that the running time of approximate monotone local search is optimal, up to polynomial factors,
independently of the computation of the running time itself. This lower bound proof uses a simple
combinatorial argument that lower bounds the running time of any repurposing algorithm in terms
of the (unknown) running time of approximate monotone local search.

To reach statement (2), we describe best(α, c, β) as the solution of a continuous, convex optimiza-
tion problem, which allows us to evaluate best(α, c, β) up to any precision ε > 0 in time polynomial
in the encoding length of α, c, β and ε using standard tools from convex optimization (see, e.g., [36]).

We show that best(1, c, 1) = 2− 1
c and, more generally, best(β, c, β) = amlsα=β(β, c) which implies

that previous algorithms [26, 31] already exploited existing algorithms in an optimal way in their
respective restricted setting. These lower bounds are unconditional and do not rely on any complexity
assumption such as the (Strong) Exponential-Time Hypothesis: the lower bounds are proved in a
formal setting where our only problem-specific knowledge is being able to test the feasibility of a
solution and invoke the α-approximation extension algorithm.

To further appreciate the running time of our algorithm, we mathematically compare best(α, c, β)
to existing benchmarks.

Benchmark 1: Brute-Force for Exponential Approximation. A key feature of the bound
d = 2− 1

c obtained by Fomin et al. [31] is that it is always strictly better than the brute-force search
running in time O∗(2n). We extend this result to the approximate setting.

If our goal is to find a β-approximation for some β > 1, then the O∗(2n) brute force search
is certainly not optimal: for example, if β = 2 it suffices to only iterate over subsets of size at
most 1

3n and at least 2
3n, which only takes O∗ (1.8899n). This approach can be further optimized.

Indeed, Esmer et al. [26] showed that for every monotone subset minimization problem, the classic
brute-force approach can be generalized to a β-approximation brute-force algorithm running in time

O∗(brute(β)n), where brute(β) := 1 + exp
(
−β · H

(
1
β

))
and H(β) := −β lnβ − (1 − β) ln(1 − β)

denotes the entropy function. Moreover, this running time is optimal if the family of the solution sets
can only be accessed via a membership oracle. Note that brute(1) = 2, i.e., in the exact setting, this
recovers the standard brute-force algorithm running in time O∗(2n).

We compare approximate monotone local search to the β-approximation brute-force algorithm for
every choice of α, c ≥ 1.

For every fixed α, c ≥ 1 and β > 1, we have best(α, c, β) < brute(β):
approximate monotone local search is strictly faster than what can be obtained by brute force.

In other words, our main finding is that repurposing an α-approximation algorithm always leads to
a β-approximation algorithm strictly better than brute force except in the degenerate case α > β = 1:
an approximation algorithm cannot be used to obtain an exact algorithm better than the O∗(2n) brute
force. That is, somewhat counterintuitively, even a 1000-approximation algorithm running in time
O∗(1000k) is actually useful for obtaining an exponential-time 1.001-approximation algorithm better
than brute force. Intuitively, brute force corresponds to the limit c → ∞ and indeed approximate
local search converges to brute force as c goes to ∞. This also implies that even if the parameterized
extension algorithm is exact (i.e., α = 1), a running time O∗(2ω(k)) is not sufficient to obtain a
β-approximation algorithm running in time O∗((brute(β)− ε)n) for any fixed ε > 0.

Benchmark 2: AMLS with Equal Approximation Ratios. The results of [26] can also be
used to derive an exponential-time β-approximation algorithm from a α-approximate parameterized
extension algorithm with running time O∗(ck), in case α ≤ β. This is done by interpreting the
α-approximate parameterized extension algorithm as a β-approximate parameterized extension algo-
rithm (which is correct as α ≤ β), therefore leading to an exponential-time β-approximation algorithm
which runs in time O∗(dn), where d = amlsα=β(β, c). Since amlsα=β(β, c) < brute(β) for all β > 1
and c ≥ 1 (see [26]), this approach leads to a better than brute-force β-approximation for a wide

3

range of problems for which there is an exact (i.e., α = 1) parameterized algorithm with running
time O∗(ck).

For example, the best known exact parameterized algorithm for Odd Cycle Traversal runs in
time O∗(2.3146k) [55]. In particular, this algorithm is a parameterized 1.5-approximation algorithm
for Odd Cycle Traversal. Thus, using the result of [26] the algorithm can be used to derive an
exponential time 1.5-approximation algorithm for Odd Cycle Traversal which runs in time O∗(dn)
where d = amlsα=β(1.5, 2.3146) ≈ 1.340 < brute(1.5) ≈ 1.3849. Intuitively, using the result of [26] in
such a setting appears suboptimal. We confirm this intuition.

For every β > α ≥ 1 and every c > 1 it holds that best(α, c, β) < amlsα=β(β, c).

Using Multiple Parameterized Approximation Algorithms. So far, all algorithms we de-
scribed only use a single parameterized extension algorithm as a subroutine. However, since with our
new results any α-approximate extension algorithm can be used to obtain a β-approximation algo-
rithm, a natural extension is to use multiple α-approximate extension algorithms for different values
of α and c at the same time. For example, Feedback Vertex Set can be solved exactly in time
O∗(2.7k) [49] (i.e., α1 = 1 and c1 = 2.7) and admits a polynomial-time 2-approximation algorithm [4]
(i.e., α2 = 2 and c2 = 1). Instead of using only one of these subroutines to design an exponential
approximation, it seems much more natural to allow an algorithm to rely on both subroutines together.

We extend all of our results to the setting where any finite number of parameterized extension sub-
routines may be used by a single approximation algorithm. Maybe surprisingly, this allows us to obtain
further improvements over using only a single extension algorithm as a subroutine. That is, there are
parameter settings where given two extension algorithms with (α1, c1) and (α2, c2), we can obtain a
O∗(dn) time β-approximation algorithm with d being strictly smaller than both best(α1, c1, β) and
best(α2, c2, β). Unfortunately, we observe that, for many concrete problems, these improvements are
small and often restricted to only a small range of approximation ratios.

Applications. Our results can be used to obtain exponential approximation algorithms for a wide
range of problems. For many of these problems, there is no direct previous work on exponential-time
approximations, thus our results serve as a baseline for future works. For problems, such as Vertex
Cover or Feedback Vertex Set, for which there are existing works on exponential approximations,
our algorithms attain better running times than the state of art for the majority of approximation
ratios.

The most natural application are deletion problems to hereditary graph classes, where the input
is a graph G (which may be undirected or directed, and may contain labeled vertices), and we wish
to delete the minimum number of vertices to ensure a certain hereditary property (i.e., the family of
solution sets is closed under supersets). For example, we obtain exponential β-approximation algo-
rithms for FVS, Tournament FVS, Subset FVS, d-Hitting Set , Interval Vertex Deletion,
Proper Interval Vertex Deletion, Block Graph Vertex Deletion, Cluster Graph Ver-
tex Deletion, Split Vertex Deletion, Edge Multicut on Trees, Subset DFVS, DOCT
and Multicut.

To demonstrate the wide applicability, let us briefly discuss three illustrative examples here (a
more thorough discussion of the applications to our results can be found in Section 3; also running
times for all problems listed above and various approximation ratios β are listed in Appendix B).

• Odd Cycle Transversal has no constant-factor polynomial-time approximation under UGC
[43], but it can be solved exactly in time O∗(2.3146k) [55]. We obtain an exponential β-
approximation algorithm for every β > 1, which significantly improves upon brute force. For
example, we obtain a 1.1-approximation running in time O∗(1.3689n) while brute(1.1) ≈ 1.7153,
and the 1.1-approximation obtained via Benchmark 2 runs in time O∗(1.4223n).

• Directed Feedback Vertex Set (DFVS) has no constant-factor polynomial-time approxi-
mation under UGC [38], and it is an open question to determine if DFVS can be solved exactly

4

in time O∗(ck) for any constant (see, e.g., [16]). ButDFVS has a parameterized 2-approximation
algorithm running in time O∗(ck) for some constant c [54]. Hence, we obtain an exponential
β-approximation algorithm for every β > 1 that is faster than the β-approximation brute-force
algorithm. For 1 < β < 2, our algorithm is the first non-trivial β-approximation algorithm, and
for β > 2 our algorithm improves over the previous best algorithm from [26]. For β = 2, our
running time matches that of [26].

• Partial Vertex Cover has a polynomial-time 2-approximation [12], but is known to be
W[1]-hard [37]. We obtain the first non-trivial exponential β-approximation algorithm for every
1 < β < 2. For example, for β = 1.1, our algorithm runs in time O∗(1.6588n).

2 Our Results

In this section, we discuss our results in five parts. We define the computational model in Section 2.1,
and present the optimal algorithm as well as our the main results in Section 2.2. In Section 2.3
we describe the arguments to show that approximate monotone local search is the optimal way of
repurposing existing parameterized approximation algorithms. After that, Section 2.4 deals with the
computation of the running time, and Section 2.5 compares the running times to the benchmarks.

2.1 Computation Model

We state our results in an oracle-based computation model that properly reflects the setting described
in the introduction. Let U be a universe of elements (i.e., a finite set). A set system of U is a family
F ⊆ 2U of subsets of U . We say the set system F is monotone if (i) U ∈ F and (ii) for every
S ⊆ T ⊆ U , if S ∈ F then T ∈ F . We consider minimization problems in which the objective is to
find S ∈ F that minimizes |S|.

In the computation model, the universe U is given as part of the input to the algorithm. The
set system F , however, is not part of the input. Instead, the algorithm can implicitly access F using
extension oracles.

Definition 2.1. Let U be a finite universe, F be a set system of U and ℓ ∈ N. We say that S ⊆ U is
an ℓ-extension of X ⊆ U if X ∪ S ∈ F and |S| ≤ ℓ.

Informally, a random α-extension oracle of a universe U and a monotone set system F gets X ⊆ U
and ℓ ∈ N as an input, and returns a set Y ⊆ U such such X ∪ Y ∈ F and Y satisfies the following
property with probability at least 1

2 :

If there exists an ℓ-extension of X then Y is an (α · ℓ)-extension of X.

Though intuitive, this definition does not properly define what kind of an object an oracle is, and
considers an undefined probability space. These details will be important when proving lower bounds.
We provide a formal definition of an extension oracle as a function that, in addition to X and ℓ, also
receives a bit-string r as part of its argument. The bit string serves as the source of randomness for
the oracle, and we assume the algorithm provides a random bit-string alongside each query.

Definition 2.2 (Random Extension Oracle). Let U be a set and F be a monotone set system of U .
A random α-extension oracle for U and F is a function Ext : 2U × N × {0, 1}m → 2U where m ∈ N
that satisfies the following properties:

1. Ext(X, ℓ, r) ∪X ∈ F for every (X, ℓ, r) ∈ 2U × N× {0, 1}m, and

2. for every (X, ℓ) ∈ 2U × N such that X has an ℓ-extension it holds that∣∣∣{r ∈ {0, 1}m ∣∣∣ Ext(X, ℓ, r) is an α · ℓ-extension of X
}∣∣∣ ≥ 1

2
· |{0, 1}m|.

If m = 0, then we say the oracle is deterministic.

An algorithm may have access to several extension oracles. We associate a cost c ≥ 1 with each
oracle, representing the cost incurred by quering the oracle. The cost of the oracle query (X, ℓ) is cℓ.2

2We commonly omit the third argument to the oracle.

5

Observe that invocations to an extension oracle with ℓ = 0 are equivalent to membership queries, and
hence extension oracles can be viewed as generalizations of membership oracles. The cost of a query
(X, ℓ) represents the running time O∗(cℓ) of a parameterized algorithm which emulates the oracle in
our applications.

An (oracle) specification list is a non-empty and finite set L = {(α1, c1), . . . , (αs, cs)} such that
αj , cj ≥ 1 for every j ∈ [s]. We define a minimization problem for every oracle specification L. An
instance of the L-subset minimization problem (L-Sub) consists of a set U and a monotone set system
F of U . The objective is to find a set S ∈ F such that |S| is minimized. In our computational model
the set U is given to the algorithm as part of the input. Furthermore, the algorithm has access to an
α-extension oracle for U and F , associated with cost c, for every (α, c) ∈ L (that is, the algorithm is
given |L| oracles for the same set system F). In particular, F is part of the instance, but is not part
of the input.

Let A be an algorithm for L-Sub. The cost of an execution of A is the sum of costs over all oracle
queries initiated by the algorithm, plus the number of computational operations conducted throughout
the execution. That is, if Qα,c ⊆ 2U × N is the set of queries the algorithm makes to the α-extension
oracle for every (α, c) ∈ L in a specific execution and p is the number of computational operations,
then the cost of the execution is p+

∑
(α,c)∈L

∑
(X,ℓ)∈Qα,c

cℓ. We define costA(n) to be the maximal

cost of an execution of A given an input which satisfies |U | ≤ n. We say A is of cost f : N → N if
costA(n) ≤ f(n) for all n ∈ N.

Following the standard notion of approximation algorithms, we say an algorithm A is a (ran-
domized) β-approximation for L-Sub if for every universe U , monotone set system F over U , and
randomized extension oracles Extα,c for every (α, c) ∈ L, the algorithm always returns S ∈ F (with
probability 1) and it holds that |S| ≤ β ·minT∈F |T | with probability at least 1

2 .
We also consider deterministic algorithms for L-Sub. In this case we restrict our attention to

inputs with deterministic oracles. Formally, we say an algorithm A is a deterministic β-approximation
for L-Sub if for every universe U , monotone set system F over U , and deterministic extension oracles
Extα,c for every (α, c) ∈ L, the algorithms returns S ∈ F such that |S| ≤ β ·minT∈F |T |.

For every specification list L and β ≥ 1, we define best(L, β) to be the base of the best cost
β-approximation algorithm for L-Sub. Formally,

best(L, β) = inf
{
d ≥ 1

∣∣∣ there is a β-approximation for L-Sub with cost dn · nO(1)
}
. (1)

The paper revolves around the value of best(L, β). Our primary objectives are to attain an algorithm
with cost O∗ (best((L, β)n), derive a method to compute best(L, β), and analytically compare it to
the benchmarks.

2.2 Approximate Monotone Local Search

Our first main result is that a simple monotone local search algorithm, Approximate-MLSL,β (see
Algorithm 2) is a β-approximation algorithm for L-Sub with optimal cost of O∗ ((best(L, β))n). The
algorithm is a natural generalization of the monotone local search algorithms used in [26,31].

The algorithm is based on a simple sampling procedure (Algorithm 1). Let OPT = argminS∈F |S|
and assume k = |OPT|. The sampling procedure sample a set X ⊆ U of size t uniformly at random,
and then extends the set to a solution Z = X ∪ Y , where Y is attained via a query of the form (X, ℓ)
to the α-extension oracle Extα,c. To keep the intuitive description simple we assume the oracle is
deterministic.

The sampling produces a solution of size β · k assuming |X ∩ OPT| ≥ x, for a carefully selected
value x. Subject to this assumption, the set OPT \X is a (k − x)-extension of X, thus, according to
Definition 2.2, Y = Extα,c(X, k − x) is an α(k − x)-extension of X. It is therefore guaranteed that
X ∪ Y ∈ F and |X ∪ Y | ≤ t+ α(k − x). As our objective is to find a set in F of cardinality at most

β · k, the value of x needs to satisfy t+α(k−x) ≤ βk. Indeed, we set x = xα,β(k, t) :=
(
1− β

α

)
k+ t

α ,

which is the minimal value which satisfies t+ α(k − x) ≤ βk.
The distribution of |X ∩ OPT| is commonly referred as hyper-geometric. Define hyper(n, k, t, x)

to be the probability that a uniformly random set X of t items out of [n] := {1, . . . , n} satisfies

6

|X ∩ [k]| ≥ x. Note that

hyper(n, k, t, x) =

min{t,k}∑
y=⌈x⌉

(
k
y

)(
n−k
t−y

)(
n
t

) =

min{t,k}∑
y=⌈x⌉

(
t
y

)(
n−t
k−y

)(
n
k

) . (2)

It follows that the sampling procedure returns a solution of cardinality βk or less with probability

(at least) hyper (n, k, t, xα,β(k, t)). Furthermore, the cost of the procedure is O
(
ck−⌈xα,β(k,t)⌉

)
=

O
(
c
βk−t

α

)
. Thus, to obtain a constant success probability the sampling procedure has to be executed

≈ (hyper (n, k, t, xα,β(k, t)))
−1 times, leading to a total cost of

O

(
c
β·k−t

α

hyper (n, k, t, xα,β(k, t))

)
. (3)

The sampling procedure is used by Algorithm 2. This algorithm iterates over all possible values of
k = |OPT|. For each value of k the algorithm selects an oracle (α, c) ∈ L and t ∈ N which minimizes (3)
(Line 3 of Algorithm 2) and then invokes the sampling procedure sufficiently many times to attain

success probability of 1
2 . The range of values t can take is restricted to

[
M∗

α,β · k, β · k
]
∩ N, where

M∗
α,β :=

{
0 if α ≤ β
α−β
α−1 if α > β

(4)

for all α, β ≥ 1. This restriction ensures the algorithm only considers values of t for which xα,β(k, t) ≤ t.

Algorithm 1 Sample(U, k, t, α, β, Extα,c)

Input: A universe U , k ∈ N, t ∈ N, α, β ≥ 1 and an α-extension oracle Extα,c.
1: Sample a set X of size t from U uniformly at random.

2: Y ← Extα,c

(
X, k −

⌈(
1− β

α

)
· k + t

α

⌉)
.

3: Return Z ← X ∪ Y .

Algorithm 2 Approximate-MLSL,β

Input: A universe U and an extension oracle Extα,c for every (α, c) ∈ L
1: S ← ∅, n← |U |.
2: for k from 0 to n

β do

3: Find (α, c) ∈ L and t ∈
[
M∗

α,β · k, β · k
]
∩ N which minimize

(
c
βk−t

α

hyper(n,k,t,(1− β
α)·k+

t
α)

)
.

4: Run S ← S∪{Sample(U, k, t, α, β, Extα,c)} for 2 ·
⌈(

hyper
(
n, k, t, (1− β

α) · k +
t
α

))−1
⌉
times.

5: Return a minimum-sized set in S.

Our main theorem asserts that Approximate-MLSL,β has the best possible cost of a β-approximation
for L-Sub.

Theorem 2.3 (Main result: randomized algorithm). For every specification list L and β ≥ 1,
Approximate-MLSL,β is a randomized β-approximation for L-Sub of cost nO(1) · (best(L, β))n.

Similar to [26, 31], it is possible to derandomize Algorithm 2 with sub-exponential overhead in
the running time. The derandomized version of the algorithm, Deterministic-Approximate-MLSL,β
(Algorithm 3), is given in Section 4.

Theorem 2.4 (Main result: deterministic algorithm). For every specification list L and β ≥ 1,
Deterministic-Approximate-MLSL,β (Algorithm 3) is a β-approximation for L-Sub with cost at most

(best(L, β))n · 2o(n).

7

Though Theorem 2.3 states the cost of Algorithm 2 is the best possible, it does not provide any
method by which this cost can be computed. The next theorem addresses this issue.

Theorem 2.5 (Main result: computing best). There is an algorithm which given β ≥ 1, a
specification list L and ε > 0 computes best(L, β) up to additive precision of ε, and runs in polynomial
time in the encoding length of L, β and ε.

2.3 Optimality of the Algorithm

A naive calculation reveals that the cost of Algorithm 2 can be bounded by the function fL,β defined
by

fL,β(n) := max
k∈

[
0,n

β

]
∩N

min
(α,c)∈L

min
t∈[M∗

α,β ·k,β·k]∩N

exp
(
βk−t
α · ln c

)
hyper

(
n, k, t, (1− β

α) · k +
t
α

) . (5)

Lemma 2.6. For every β ≥ 1 and specification list L, it holds that Approximate-MLSL,β is a β-

approximation algorithm for L-Sub with cost at most nO(1) · fL,β(n).

The proof of Lemma 2.6 is given in Section 4. The same section also proves a variant of Lemma 2.6
which refers to Deterministic-Approximate-MLSL,β (Algorithm 3).

Lemma 2.7. For every β ≥ 1 and specification list L, Algorithm 3 is a deterministic β-approximation
for L-Sub with cost at most fL,β(n) · 2o(n).

Maybe surprisingly, one of the main insights in this paper is that these simple algorithms are
actually optimal in the oracle model defined above, i.e., we can also use fL,β as a lower bound on the
cost of any algorithm for L-Sub.

Lemma 2.8. For any β ≥ 1 and specification list L, every β-approximation algorithm for L-Sub has
cost at least n−O(1) · fL,β(n).

The proof of Lemma 2.8, given in Section 5, follows from the inability of an algorithm for L-Sub
to distinguish between instances in which F contains all sets of size at least β · k+1, versus instances
in which F contains a set R of cardinality k, its supersets, and all sets of size at least β · k + 1.
Returning a valid solution for the later requires the algorithm to initiate an oracle query of the form
(X, ℓ) to an α-extension oracle such that |X|+ αℓ ≤ βk and X has an ℓ-extension. As we select R to
be a random set, we can use this property to lower bound the total cost of the queries the algorithm
must initiate in order find an ℓ-extension with a constant probability. The value of k used in the
construction is the value which attains the maximum in (5). We note the oracles used in the proof of
Lemma 2.8 are deterministic. Hence, the lower bound holds even if the algorithm is guaranteed the
oracles are deterministic. Together Lemmas 2.6 and 2.8 indicate that Approximate-MLSL,β attains
the best possible cost of a β-approximation algorithm for L-Sub, up to polynomial factors. Similarly,
Lemmas 2.7 and 2.8 imply that Algorithm 3 is optimal up to sub-exponential factors.

It follows from Lemmas 2.6 and 2.8 that

best(L, β) = lim
n→∞

(fL,β(n))
1
n (6)

for all specification lists L and β ≥ 1. We note that the above limit does not imply Theorem 2.3, though
it can be used to establish as slightly weaker claim. Hypothetically, it is possible that fL,β(n) = 2n+

√
n

and thus, best(L, β) = 2 but fL,β(n) ̸= O∗(2n). We will later rule out the existence of such cases.
The proof of Lemma 2.8 can also be adapted to the exact setting of [30]. Given a set U and a

subset family F of U (not necessarily monotone), an exact extension oracle for F takes as an input a
set X ⊆ U and ℓ ∈ N. The oracle either returns YES or NO. If X has an ℓ-extension then the oracle
returns YES with probability at least 1

2 . If X does not have an ℓ-extension then the oracle returns NO.
Similarly to the approximate case, we associate a number c ≥ 1 with the oracle. The cost of an oracle
query is cℓ.

8

In the c-decision problem (c-Dec) the input is a universe U and an exact extension oracle for a
set family F of U . The objective is to determine if F ̸= ∅ (in particular, the set system does not
have to be monotone). The execution cost of an algorithm for c-Dec is the sum of costs of all oracle
queries plus the number of computational operations, where the cost of a query (X, ℓ) is cℓ. Similarly
to L-Sub, we say that an algorithm A for c-Dec is of cost f : N → N if every execution of A with
an input for which |U | ≤ n has cost at most f(n). In [31] it was shown that there is a randomized
algorithm for c-DEC of cost nO(1) ·

(
2− 1

c

)n
.

Using the same ideas as in the proof of Lemma 2.8 we can show the following.

Lemma 2.9. For every c > 1, every randomized algorithm for c-Dec has cost of at least n−O(1) ·
f{(1,c)},1(n).

As we can also show that f{(1,c)},1(n) ≥ n−O(1) ·
(
2− 1

c

)n
, we obtain the following theorem.

Theorem 2.10. For all c > 1, every randomized algorithm for c-Dec has cost of at least n−O(1) ·(
2− 1

c

)n
.

In particular, Theorem 2.10 indicates the result of [31] cannot be improved. The proofs of
Lemma 2.9 and Theorem 2.10 are given in Section 5.

2.4 Evaluating the Running Time of Approximate Monotone Local Search

So far, we showed that Approximate-MLSL,β attains the best possible cost of a β-approximation for
L-Sub, up to polynomial factors. However, the tools presented so far do not provide a method for
evaluating the running time of the algorithm, and do not suffice to show Theorems 2.3 and 2.4.

The proof of Theorem 2.5, which shows best(L, β) can be computed efficiently, consists of two
main stages. The first stage shows that fL,β ≈ dn (ignoring polynomial factors), where d is a solution
for a continuous max-min optimization problem. As a by product, the stage provides the missing
ingredient towards the proofs of Theorems 2.3 and 2.4. The second stage shows the minimization
part of the optimization problem is a minimization of a convex function, and the maximization part
is a maximization of a concave function. Hence, both parts of the optimization problem can be easily
solved using known tools from convex optimization (see, e.g., [36]).

Using the standard
(
n
k

)
≈ exp

(
n · H

(
k
n

))
estimation for binomial coefficients and basic analysis

of the hyper-geometric distribution hyper, the discrete optimization problem defined in (5) can be
converted to a continuous optimization problem. For every α, β, c ≥ 1 we define the following functions.

δα,β(κ, τ) =

{ β
α
κ− τ

α
1−τ =

β
α
κ− 1

α
1−τ + 1

α if τ ̸= 1
1
α if τ = 1

(7)

γα,β(κ, τ) =

{(
1− β

α

)
κ
τ + 1

α if τ ̸= 0

1
α if τ = 0

(8)

gα,β,c(κ, τ) =
βκ− τ
α

ln c− τ · H (γα,β(κ, τ))− (1− τ) · H (δα,β(κ, τ)) +H (κ) (9)

Mα,β(κ) =

β−α
1−α·κ · κ if α < β

0 if α = β
α−β
α−1 · κ if α > β

(10)

Observe that Mα,β(κ) = M∗
α,β · κ (M∗

α,β is defined in (4)) if α ≥ β, but Mα,β(κ) ̸= M∗
α,β · κ if

α < β. We follow the standard notation in which 0 ln 0 = 0 and H(0) = H(1) = 0. For every β ≥ 1
and specification list L we define

amls(L, β) = exp

(
max

0≤κ≤ 1
β

min
(α,c)∈L

min
Mα,β(κ)≤τ≤βκ

gα,β,c(κ, τ)

)
. (11)

If L = {(α, c)}, we also write amls(α, c, β) instead of amls({(α, c)}, β).

9

Lemma 2.11. For every β ≥ 1 and specification list L it holds that

n−O(1) · (amls(L, β))n ≤ fL,β(n) ≤ nO(1) · (amls(L, β))n .

Note that the constants represented by O(1) in Lemma 2.11 may depend on L and β. The following
corollary is an immediate consequence of Lemma 2.11 and (6).

Corollary 2.12. For every specification list L and β ≥ 1 it holds that amls(L, β) = best(L, β).

Theorem 2.3 (Theorem 2.4) follows from Lemma 2.6 (Lemma 2.7), Lemma 2.11 and Corollary 2.12.
Now, our next challenge is to show that amls can be computed. Our first observation towards this

goal is that gα,β,c(κ, τ) is convex as a function of τ for every fixed κ.

Lemma 2.13. Let α, c ≥ 1, β > 1 and 0 < κ < 1
β . The function h(τ) = gα,β,c(κ, τ) is convex in the

domain [Mα,β(κ), β · κ] and minτ∈[Mα,β(κ),β·κ] gα,β,c(κ, τ) < h(βκ) = gα,β,c(κ, βκ).

The lemma follows from a standard calculus argument. In fact, we are able to show a slightly
stronger claim, which states that, up to some corner cases, the minimum of h(τ) (as defined in
Lemma 2.13) in the interval [Mα,β(κ), β · κ] is an interior point (that is, not Mα,β(κ) or βκ). One
of the corner cases occurs when α = β, in which the minimum may be at τ = 0 = Mα,α(κ). This
distinction provides some evidence that the analysis inevitably has to differ from the approaches taken
in [26,31] which deal with the special case of α = β.

For any α, β, c ≥ 1 and 0 ≤ κ ≤ 1
β we define

g∗α,β,c(κ) = min
Mα,β(κ)≤τ≤βκ

gα,β,c(κ, τ). (12)

Therefore,

amls(L, β) = exp

(
max

0≤κ≤ 1
β

min
(α,c)∈L

g∗α,β,c(κ)

)
. (13)

By Lemma 2.13, g∗α,β,c(κ) is the solution for a convex minimization over a closed interval. Observe
that gα,β,c(κ, τ) can be evaluated up to additive precision of ε in polynomial time in the encoding
length of α, β, κ, τ , κ and ε. Thus, using standard convex optimization tools (e.g., [36, Theorem
4.3.13]) we attain the following result.

Corollary 2.14. There exists an algorithm which, given α, β, c ≥ 1, 0 ≤ κ ≤ 1
β and ε > 0, computes

g∗α,β,c(κ) up to an additive precision of ε > 0, and runs in polynomial time in the encoding length of
α, β, c, κ and ε.

The main insight behind the proof of Theorem 2.5 is the following.

Lemma 2.15. For all α, c ≥ 1 and β > 1, it holds that g∗α,β,c(κ) is concave in the interval
[
0, 1β

]
.

To prove Lemma 2.15 we show that if (κ, τ) is a critical point of gα,β,c then the determinant
of the Hessian matrix of gα,β,c at (κ, τ) is negative. Once this argument is established, the lemma
follows quite easily. Since the minimum of concave functions is also a concave function, Lemma 2.15
immediately implies the following.

Corollary 2.16. For every specification list L and β ≥ 1, the function h(κ) = min(α,c)∈L g
∗
α,β,c(κ) is

concave on the interval
[
0, 1β

]
.

By Corollary 2.16 it follows that amls(L, β) (13) is the maximum of a concave function on a
closed interval. Furthermore, by Corollary 2.14 it holds that the function being maximized can be
computed, up to an additive error of ε, in polynomial time. Thus, using convex optimization once
more (e.g., [36, Theorem 4.3.13]), we get the following.

Corollary 2.17. There is an algorithm which, given a specification list L, β ≥ 1 and ε > 0, computes
amls(L, β) up to an additive error of ε in time polynomial in the encoding length of L, β and ε.

10

Theorem 2.5 immediately follows from Lemma 2.11 and Corollary 2.17. In particular, to prove
Theorem 2.5 we are left to provide proofs for Lemmas 2.11, 2.13 and 2.15. The proof of Lemma 2.11
is given in Section 6, and the proofs of Lemmas 2.13 and 2.15 are given in Section 7. We note that our
computations of specific values of best(L, β) do not implement the theoretical algorithm from [36].
Instead, we use a combination of Golden Section Search [60, Section 10.2] and a simple binary search
which finds the root of the derivative. We use mpmath [58] for high-precision arithmetics.

2.5 Comparisons

Since best(L, β) = amls(L, β), we can use the definition of amls(L, β) as the optimum of an op-
timization problem (11) to compare its value to Benchmarks 1 and 2. We first compare best to
brute.

Theorem 2.18. For every β > 1 and specification list L it holds that best(L, β) < brute(β). More-
over, limc→∞ best(α, c, β) = brute(β) for every α ≥ 1 and β > 1.

The proof of Theorem 2.18 is given in Section 8.
In [26] the authors showed that Approximate-MLS{(β,c)},β is a β-approximation algorithm for

{(β, c)}-Sub of cost O∗((amlsα=β(β, c))
n), where amlsα=β(β, c) is the unique value d ∈

(
1, 1 + c−1

β

)
which satisfies D

(
1
β

∥∥∥d−1
c−1

)
= ln c

β , for every β, c > 1.3 The next lemma, which we prove in Section

Section 7, also implies that the analysis in [26] is tight.

Lemma 2.19. For every β, c > 1 it holds that best(β, c, β) = amlsα=β(β, c).

Let β > α ≥ 1 and c ≥ 1. Since an α-extension oracle is also a β-extension oracle, the result of [26]
can be used to obtain a β-approximation algorithm for {(α, c)}-Sub by executing the β-approximation
algorithm for {(β, c)}-Sub whose running time is amlsα=β(β, c) = best(β, c, β). This approach, which
views an α-extension oracle as a special case of β-extension oracle intuitively seems suboptimal. The
next lemma, proven in Section 9, confirms this intuition.

Lemma 2.20. For every β > α ≥ 1 and every c > 1 it holds that best(α, c, β) < amlsα=β(β, c).

3 Applications

In this section, we demonstrate how our results can be used to obtain exponential approximation
algorithms for a wide range of problems. All the problems considered in this section are defined in
Appendix A. Moreover, extensive data sets providing the running times of the obtained algorithms
are provided in Appendix B.

3.1 Combining Exact FPT and Polynomial-Time Approximation Algorithms

The most common application of our results is to problems that admit a single-exponential FPT
algorithm and/or a constant-factor approximation algorithm. Indeed, both types of algorithms have
been intensively studied in the literature (see, e.g., [20, 63]), and there is an abundance of problems
admitting single-exponential fpt algorithms and/or constant-factor approximation algorithms which we
can use to obtain exponential approximation algorithms. Actually, from the view point of applications,
this is a key advantage over the previous work [26] that requires a parameterized β-approximation
algorithm, since such algorithms are still somewhat rare.

A large class of problems, many of which fall into this category, are deletion problems to some
graph property Π.

Π Vertex Deletion
Input: An (undirected or directed) graph G.
Question: Find a minimum set S of vertices of G such that G− S ∈ Π.

3D (a∥b) = a ln a
b
+ (1− a) ln 1−a

1−b
is the Kullback-Leibler divergence between two Bernoulli distributions with param-

eters a and b.

11

Feedback Vertex Set

(α, c) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
(β, 2.69998) 1.465 1.3861 1.3331 1.294 1.2637 1.2393 1.2193 1.2024 1.188
(1.0, 2.69998) 1.4156 1.3289 1.2753 1.2378 1.2099 1.1881 1.1706 1.1561 1.144
(2.0, 1.0) 1.6588 1.4847 1.3657 1.2768 1.2072 1.1507 1.1037 1.064 1.0298
combined 1.4156 1.3289 1.2753 1.2378 1.2068 1.1507 1.1037 1.064 1.0298

Tournament Feedback Vertex Set

(α, c) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
(β, 1.618) 1.2912 1.2463 1.2152 1.1918 1.1734 1.1583 1.1458 1.1352 1.126
(1.0, 1.618) 1.2348 1.1837 1.1531 1.132 1.1164 1.1042 1.0945 1.0865 1.0798
(2.0, 1.0) 1.6588 1.4847 1.3657 1.2768 1.2072 1.1507 1.1037 1.064 1.0298
combined 1.2348 1.1837 1.1531 1.132 1.1164 1.1042 1.0945 1.064 1.0298

Table 2: Running times for Feedback Vertex Set and Tournament Feedback Vertex Set.
An entry at in row (α, c) and column β is best(α, c, β). The last row contains best(LFVS, β) and
best(LTFVS, β), respectively.

This type problem can be translated into our framework by setting U := V (G) to be the set of
vertices of G, and the task is to find a minimum set in the set system F := {S ⊆ U | G−S ∈ Π}. If Π
is a hereditary graph property (i.e., it is closed under subgraphs), the set system F is monotone which
allows us to apply the algorithmic tools described in Section 2. As two illustrative examples, let us
consider the Feedback Vertex Set (FVS) problem (over undirected graphs), which corresponds
to Π being the class of forests, and the Tourament Feedback Vertex Set (Tournament FVS)
where the input is a tournament graph, and Π contains all acyclic tournaments.

The best (randomized) parameterized algorithm for FVS has been obtained by Li and Nederlof [49]
and runs in time O∗(2.69998k). Moreover, FVS admits a polynomial-time 2-approximation algo-
rithm [4]. The first algorithm provides a 1-extension oracle with cost 2.69998, and second algo-
rithm implements a 2-extension oracle with cost 1. Together, we obtain an oracle specification list
LFVS := {(1, 2.69998), (2, 1)}. Using Theorem 2.3, we can use approximate monotone local search to
obtain a β-approximation algorithm for FVS running in time O∗((best(LFVS, β))

n) for every β ≥ 1.
Similarly, Tournament Feedback Vertex Set can be solved in time O∗(1.618k) [46] and

admits polynomial-time 2-approximation algorithm [53], which gives rise to the oracle specification
list LTFVS := {(1, 1.618), (2, 1)}. Hence, we obtain a β-approximation algorithm for Tournament
FVS running in time O∗((best(LTFVS, β))

n).
We provide the values of best(LFVS, β) and best(LTFVS, β) for selected approximation ratios

β in Table 2, and give a graphical visualization in Figure 1. We also compare best(LFVS, β) and
best(LTFVS, β) with the running times of several other algorithms. As the most basic benchmark,
we compare the running times to the brute-force search as described in [26] (see also Benchmark
1). Also, by interpreting an exact single-exponential fpt algorithm as a β-approximation algorithm,
we can use Approximate Monotone Local Search for α = β [26] as a second benchmark (see also
Benchmark 2). It can be observed that best(LFVS, β) and best(LTFVS, β) are strictly better than
both of these algorithms for all β > 1 (see also Lemma 2.20 and Theorem 2.18). We remark that
another exponential β-approximation algorithm for FVS has been obtained in [25].4 However, this
algorithm is slower than the brute-force β-approximation algorithm described in [26], and thus, our
algorithm is also significantly faster than the algorithm from [25].

As a further comparison, we also consider the running of our algorithm when only a single or-
acle is used. More precisely, let us define L′FVS := {(1, 2.69998)} and L′′FVS := {(2, 1)}. Clearly,
best(LFVS, β) ≤ min(best(L′FVS, β), best(L′′FVS, β)) for all β ≥ 1. Interestingly, this inequality is
strict for some values of β. Indeed, while this may not be visible from Figure 1, one can observe
from Figure 2 that using both oracles together leads to a better running for β roughly in the range
[1.481, 1.507]. However, it can also be observed that the improvement obtained this way is rather

4The running time of this algorithm is not correctly stated in [25, Theorem 3.1]; their β-approximation algorithm
runs in time O∗(dn) where d ≥ 1 is the unique solution to the equation 1 = d−1 + d−β .

12

(a) Feedback Vertex Set

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

approximation ratio

ex
p
on

en
t
b
as
e

EPT [25]
brute

α = β, c = 2.69998
combined

α = 1.0, c = 2.69998
α = 2.0, c = 1.0

(b) Tournament Feedback Vertex Set

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

approximation ratio
ex
p
on

en
t
b
as
e

brute
α = β, c = 1.618

combined
α = 1.0, c = 1.618
α = 2.0, c = 1.0

Figure 1: Results for Feedback Vertex Set and Tournament Feedback Vertex Set. A dot
at (β, d) means that the respective algorithm outputs an β-approximation in time O∗(dn). Figure 2
zooms into the gray regions.

(a) Feedback Vertex Set

1.48 1.49 1.5 1.51 1.52

1.19

1.2

1.21

1.22

approximation ratio

ex
p
o
n
en
t
b
a
se

combined
α = 1.0, c = 2.69998
α = 2.0, c = 1.0

(b) Tournament Feedback Vertex Set

1.7 1.71 1.72 1.73 1.74 1.75

1.08

1.09

1.1

approximation ratio

ex
p
on

en
t
b
as
e

combined
α = 1.0, c = 1.618
α = 2.0, c = 1.0

Figure 2: Results for Feedback Vertex Set and Tournament Feedback Vertex Set. A dot
at (β, d) means that the respective algorithm outputs an β-approximation in time O∗(dn).

13

Problem c1 det. α2 det.

FVS 2.69998 [49] ✗ 2 [4] ✓

Tournament FVS 1.618 [46] ✓ 2 [53] ✗

Subset FVS 4.0 [39] ✓ 8 [27] ✓

d-Hitting Set (d ≥ 3) (d− 0.9245) [30] ✓ d [6] ✓

Interval Vertex Deletion 8.0 [13] ✓ 8 [13] ✓

Proper Interval Vertex Deletion 6.0 [62] ✓ 6 [62] ✓

Block Graph Vertex Deletion 4.0 [1] ✓ 4 [1] ✓

Cluster Graph Vertex Deletion 1.9102 [8] ✓ 2 [2] ✓

Cograph Vertex Deletion 3.0755 [30] ✓ 4 ✓

Split Vertex Deletion 2.0 [35] ✓ 2 + ϵ [23] ✓

Edge Multicut on Trees 1.5538 [40] ✓ 2 [33] ✓

Table 3: List of deletion problems admitting an single-exponential parameterized algorithm running
in time O∗(ck1) and a polynomial-time α2-approximation algorithm.

small. For example, we have best(LFVS, 1.5) ≈ 1.2068 and min(best(L′FVS, 1.5), best(L′′FVS, 1.5)) =
best(L′′FVS, 1.5) ≈ 1.2072. Similar observations can be made for Tournament FVS. Note that the
fact that we only obtain small improvements by using multiple oracles is not a shortcoming of the
algorithms designed in this paper, but inherent to the problem by Theorem 2.8.

We stress that these results are not limited to FVS and Tournament FVS. Indeed, there is wide
range of vertex-deletion problems for which a single-exponential fpt algorithm running in time O∗(ck1)
as well as a polynomial-time α2-approximation is known, for suitable constants c1, α2 > 1. A list of
examples is given in Table 3 (running times for all problems can be found in Appendix B).

Notably, Edge Multicut on Trees is not a vertex-deletion problem, but an edge-deletion
problem. This means we set U := E(G) which implies that the running time in Theorem 2.3 is
measured with respect to the number of edges rather than the number of vertices. However, for this
particular problem, the input graph G is a tree which implies that |E(G)| ≤ |V (G)|, and hence we
obtain the same runtime bound with respect to the number of vertices.

For all the problems listed in Table 3, by Theorem 2.3, monotone local search results in a β-
approximation algorithm running in time O∗((best(Lc1,α2 , β))

n), where Lc1,α2
:= {(1, c1), (α2, 1)}, for

all β ≥ 1 that outperforms all previously existing algorithms. Note that the algorithms we obtain
are randomized. However, by Theorem 2.4, we can also obtain a deterministic β-approximation algo-
rithm at the cost of an additional subexponential factor if all parameterized extension subroutine are
deterministic. Looking at Table 3, this is true for all listed problems except FVS and Tournament
FVS.

Note that our results are also applicable if only either a single-exponential fpt algorithm or a
polynomial-time constant-factor approximation algorithm is available. As a notable example, Odd
Cycle Transversal (OCT) can be solved in time O∗(2.3146k) [55], and has no constant-factor
approximation algorithm assuming the Unique Games Conjecture [43]. On the other side, the Partial
Vertex Cover problem has a polynomial-time 2-approximation [12], and is known to be W[1]-
hard [37] which means that it cannot be solved in single-exponential fpt time assuming FPT ̸= W[1].
Still, for both problems, we obtain a β-approximation algorithm that is faster than the brute-force
search (see Theorem 2.18) and, in the case of Odd Cycle Transversal (OCT), than the algorithm
obtained from [26] (see Lemma 2.20). For both problems, the running times of the obtained algorithms
can again be found in Appendix B.

3.2 Exploiting Parameterized Approximation Algorithms

We also obtain new algorithms for problems that are neither known to have a single-exponential fpt al-
gorithm nor a polynomial-time approximation algorithm, but admit a single-exponential parameterized
constant-factor approximation algorithm. For DFVS, Subset DFVS, DOCT and Multicut, [54]
provides a 2-approximation algorithm that runs in time O∗(ck) for some constant c. For example, one

14

Vertex Cover

(α, c) 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
(β, cvc(β)) 1.2038 1.1955 1.183 1.1697 1.158 1.1475 1.138 1.1294 1.1214 1.114
Lvc 1.1891 1.1752 1.1649 1.1566 1.1496 1.1433 1.1358 1.1275 1.1197 1.1125

3-Hitting Set

(α, c) 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
(β, chs(β)) 1.472 1.441 1.4157 1.3863 1.3543 1.3262 1.3013 1.2787 1.2584 1.2399
Lhs 1.4489 1.4083 1.3775 1.3527 1.3319 1.314 1.2984 1.2783 1.2579 1.2393

Table 4: Running times for Vertex Cover and 3-Hitting Set. An entry in row (α, c) and column
β is best({(α, c)}, β). The middle row in each table is the result from [26], the last row is the result
attained in this paper

can easily observe from the description of the DFVS algorithm in [54] that it runs in time O∗(1024k).
Using Theorem 2.3, monotone local search results in an exponential β-approximation algorithm that
runs in time O∗(best(2, 1024, β)) for all β > 1. By Theorem 2.18, this algorithm is qualitatively bet-
ter than the brute-force β-approximation algorithm running in time O∗((brute(β))n). For example,
best(2, 1024, 1.1) ≈ 1.71520 and brute(1.1) ≈ 1.71527. Similar results can be obtained for the other
problems.

Moreover, for the problem Symmetric Directed Multicut, it is possible to adapt a parame-
terized 2-approximation algorithm (which runs in time kO(k) · nO(1)) [24] to obtain a parameterized
α-approximation algorithm running in time O∗(ck) for some constants α, c > 1 [65]. As a consequence,
we also obtain an exponential β-approximation algorithm for this problem that beats the brute-force
β-approximation algorithm for every β > 1.

Similarly, using the O∗(ck)-time 2-approximation algorithm for d-Steiner Multicut in [59, The-
orem 37] for some c > 1, one can obtain a β-approximation algorithm that beats the brute-force
β-approximation algorithm for all β > 1.

3.3 Vertex Cover and 3-Hitting Set

Finally, we consider the Vertex Cover and 3-Hitting Set problem. Both problems have not
only been extensively studied for their exact parameterized complexity [15, 64], but also received sig-
nificant attention in the area of parameterized approximation algorithms [11, 29, 45]. As a result,
these two problems are the main applications considered in [26] for transforming a parameterized
β-approximation algorithm into an exponential β-approximation algorithm. Despite a parameter-
ized β-approximation being the natural oracle choice to obtain an exponential β-approximation, our
algorithmic framework allows us to obtain further improvements for both problems compared to [26].

For every α ∈ [1, 2] the best known running time of a parameterized randomized α-approximation
algorithm for VC is attained in [45] if α ≿ 1.03, and in [11] if α ≾ 1.03 (using the exact algorithm
from [15] for α = 1). Let us denote by cvc(α) the base of the currently fastest known parameterized
α-approximation algorithm for VC (i.e., an α-approximation can be computed in time O∗((cvc(α))

k)).
Similarly, for α ∈ [1, 3], we write chs(α) for the base of the currently fastest known parameterized α-
approximation algorithm for 3-HS. This best known base is attained by either [29] if α ≾ 1.08 (using
the exact algorithm from [64] for α = 1), or [45] if α ≿ 1.08. Note that cvc(2) = chs(3) = 1.

As indicated above, the currently fastest (randomized) exponential β-approximation algorithm for
VC (resp. 3-HS) was obtained in [26] and runs in time O∗(dn) where d := best(β, cvc(β), β) (resp.
d := best(β, chs(β), β)) using Lemma 2.19.

Now, to apply our algorithmic framework, we need to fix an oracle specification list Lvc (resp.
Lhs). Since we can only provide a finite number of oracles (and it is a priori unclear how to choose
those oracles optimally), we adopt the basic approach of equally discretizing the range for α. We set
Avc := {1, 1.01, 1.02, 1.03, . . . , 1.99, 2} and Ahs := {1, 1.02, 1.04, 1.06, . . . , 2.98, 3} (both sets contain
101 elements). Then we define Lvc := {(α, cvc(α)) | α ∈ Avc} and Lhs := {(α, chs(α)) | α ∈ Ahs}.

For the Vertex Cover problem, it can be observed that best(Lvc, β) < best(β, cvc(β), β) for all

15

Vertex Cover

(α, c) 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

(β, cvc(β)) 1.063058 1.036524 1.020288 1.0098549 1.0043411 1.0015504 1.00039597 1.000042813

Lvc 1.061819 1.035901 1.019999 1.0097939 1.0042837 1.0015355 1.00039185 1.000042504

Table 5: Running times for Vertex Cover. An entry in row (α, c) and column β is best({(α, c)}, β).
The middle row in each table is the result from [26], the last row is the result attained in this paper

β ∈ (1, 2)∩Avc (by evaluating both functions up to a sufficiently large precision). The most significant
improvements occur for small values of β (see Table 4), and it seems that this improvement can be
mostly attributed to the possibility of using the exact fpt algorithm for Vertex Cover [15] as a
subroutine. For larger approximation ratios, we only obtain small improvements as can be observed
from Table 5.

Generally speaking, it is also noteworthy that, even if the algorithm has access to |Avc| = 101
many different oracles, only 2-3 oracles corresponding to tuples from the specification list Lvc are
actually used, and the corresponding approximation ratios α are close to β. For example,

best(Lvc, 1.5) = best({(1.49, cvc(1.49)), (1.5, cvc(1.5))}, 1.5)
< min{best(1.49, cvc(1.49), 1.5), best(1.5, cvc(1.5), 1.5)}
= best(1.49, cvc(1.49), 1.5) ≈ 1.0098063.

Similar observations can be made for 3-Hitting Set.

4 Approximate Monotone Local Search

In this section, we analyse Algorithm 2 and describe how it can be derandomized. More precisely, we
prove Lemmas 2.6 and 2.7

4.1 Correctness and Basic Analysis

We first analyse the randomized algorithm Approximate-MLSL,β for the L-Sub problem. This algo-
rithm uses algorithm Sample as a subroutine. See Section 2 for the description of these algorithms.
Also recall the definitions of hyper(n, k, t, x) and M∗

α,β from Equations (2) and (4), respectively.

Lemma 4.1 (Correctness). For every specification list L and β ≥ 1, Approximate-MLSL,β (Algo-
rithm 2) is a randomized β-approximation algorithm for L-Sub.

Proof. Let U be a finite set system and F be a monotone set system of U . Also, for every (α, c) ∈ L
let Extα,c be an α-extension oracle of U and F . Let F be the implicit monotone subset family
associated with L. Also, let OPT = argminS∈F |S| be a minimum size solution of the L-Sub instance
U and F . Consider an execution of Sample(U, k, t, α, β, Extα,c) (Algorithm 1) in which k = |OPT|,
M∗

α,β · k ≤ t ≤ β · k and (α, c) ∈ L.
If the algorithm selects a set X in Step 1 such that

|OPT ∩X| ≥
(
1− β

α

)
· k + t

α

then

|OPT \X| ≤ k −
⌈(

1− β

α

)
· k + t

α

⌉
.

Moreover, (OPT \X)∪X ∈ F since (OPT \X)∪X = OPT∪X ⊇ OPT as F is monotone by assumption.

Since Extα,c is an α-extension oracle for (U,F), given the input
(
U,X, k −

⌈(
1− β

α

)
· k + t

α

⌉)
it

returns a set Y such that X ∪ Y ∈ F and with probability at least 1
2 it holds that

|Y | ≤ α ·
(
k −

⌈(
1− β

α

)
· k + t

α

⌉)
≤ α ·

(
k −

(
1− β

α

)
· k − t

α

)
= βk − t.

16

Let Z := X ∪ Y as in Step 3 of Algorithm 1. Then Z ∈ F and |Z| = |X|+ |Y | ≤ t+ βk − t = βk.
It follows that

Pr (Sample(U, |OPT|, t, α, β, Extα,c) returns a set of size at most β · |OPT|)

≥ 1

2
· Pr

(
|X ∩ OPT| ≥

(
1− β

α

)
· k + t

α

)
=

1

2
· hyper

(
n, |OPT|, t,

(
1− β

α

)
· k + t

α

)
(14)

where hyper is the function defined in Equation (2).
Now, consider the execution of Algorithm 2 with U as its input and let S be the set returned by

Algorithm 2. It is easy to see that S ∈ F since Algorithm 1 always returns a set from F . If |OPT| ≥ n
β

then |S| ≤ |U | ≤ β · |OPT| and the algorithm returns an β-approximate solution as desired. So we
may assume that |OPT| < n

β . Consider the iteration of the for-loop in Step 2 of Algorithm 2 in which
k = |OPT|. Using Equation (14), at least one of the calls to Algorithm 1 in this iteration returns a set
of size at most β · |OPT| with probability at least

1−
(
1− 1

2
· hyper

(
n, k, t,

(
1− β

α

)
· k + t

α

))2/hyper(n,k,t,(1− β
α)·k+

t
α)
≥ 1− exp (−1) > 1

2
.

So the minimum cardinality set in S (at the end of Algorithm 2) has size at most β · |OPT| with
probability at least 1

2 . Hence, the set S returned by the algorithm satisfies |S| ≤ β · |OPT| with
probability at least 1

2 .

Recall the definition of fL,β(n) from Equation 5.

Lemma 4.2 (Running time). Approximate-MLSL,β (Algorithm 2) has cost fL,β(n) · nO(1).

Proof. First consider Algorithm 1. In Line 2, the algorithm calls Extα,c with parameter

k −
⌈(

1− β

α

)
· k + t

α

⌉
≤ k −

(
1− β

α

)
· k − t

α
=
βk − t
α

.

So this step incurs a cost of at most c
βk−t

α = exp
(
βk−t
α · ln c

)
. This means that Step 4 of Algorithm 2

incurs a total cost of

2 ·
exp

(
βk−t
α · ln c

)
hyper

(
n, k, t, (1− β

α) · k +
t
α

) .
Since t, α, c are chosen to minimize this cost, we obtain that one iteration of the for-loop takes incurs
a cost of

min
(α,c)∈L

min
t∈[M∗

α,βk,βk]∩N
2 ·

exp
(
βk−t
α · ln c

)
hyper

(
n, k, t, (1− β

α) · k +
t
α

) .
As a result, every single iteration costs at most

max
k∈

[
0,n

β

]
∩N

min
(α,c)∈L

min
t∈[Mα,βk,βk]∩N

2 ·
exp

(
βk−t
α · ln c

)
hyper

(
n, k, t, (1− β

α) · k +
t
α

) .
Since there are at most n iterations of the for-loop, the entire algorithm has cost fL,β(n) · nO(1), as
desired.

Now, Lemma 2.6 immediately follows from Lemmas 4.1 and 4.2.

17

4.2 Derandomization

Next, we prove Lemma 2.7, i.e., we argue how to derandomize Approximate-MLSL,β. Towards this
end, the key notion is that of a set-intersection-family.

Definition 4.3. Let U be a universe of size n and let p, q, r ≥ 1 such that n ≥ p ≥ r and n− p+ r ≥
q ≥ r. A family C ⊆

(
U
q

)
is a (n, p, q, r)-set-intersection-family if for every T ∈

(
U
p

)
there is some

X ∈ C such that |T ∩X| ≥ r.

The basic idea of the derandomization is, instead of repeatedly sampling a random set X in
Algorithm 1, to compute a suitable set-intersection-family C and iterate over all its elements X.
Towards this, let us define

κ(n, p, q, r) :=

(
n
q

)(
p
r

)
·
(
n−p
q−r

) .
The following theorem computes the desired set-intersection-family of small size.

Theorem 4.4 ([26, Theorem 4.2]). There is an algorithm that, given a set U of size n and numbers
p, q, r ≥ 1 such that n ≥ p ≥ r and n − p + r ≥ q ≥ r, computes an (n, p, q, r)-set-intersection-family
of size κ(n, p, q, r) · 2o(n) in time κ(n, p, q, r) · 2o(n).

With the last theorem in hand, we are ready to prove Lemma 2.7. The updated deterministic
algorithm is given in Algorithm 3. Observe that it receives deterministic extension oracles.

Algorithm 3 Deterministic-Approximate-MLSL,β

Input: A universe U and a deterministic extension oracle Extα,c for every (α, c) ∈ L
1: S ← ∅.
2: for k from 0 to n

β do

3: Find (α, c) ∈ L and t ∈
[
M∗

α,βk, βk
]
∩ N which minimize

(
c
βk−t

α

hyper(n,k,t,(1− β
α)·k+

t
α)

)
.

4: Set x := (1− β
α) · k +

t
α .

5: Find y ∈ {⌈x⌉, . . . ,min{t, k}} for which κ(n, k, t, y) is minimized.
6: Compute a (n, k, t, y)-set-intersection-family C.
7: for X ∈ C do
8: Y ← Extα,c (U,X, k − ⌈x⌉).
9: S ← S ∪ {X ∪ Y }.

10: Return a minimum-sized set in S.

Proof of Lemma 2.7. Let U be a finite set system of size n and F be a monotone set system of U .
Also, for every (α, c) ∈ L let Extα,c be a deterministic α-extension oracle of U and F . Let F be the
implicit monotone subset family associated with L. Also, let OPT = argminS∈F |S| be a minimum size
solution of the L-Sub instance U and F .

Consider Algorithm 3. First, observe that ∅ ≠ S ⊆ F by Definition 2.2. If |OPT| ≥ n
β then every set

in S is a valid β-approximation. So suppose |OPT| ≤ n
β and consider the iteration in which k = |OPT|.

By definition of a set-intersection-family, there is some X ∈ C such that |X| = t and

|OPT ∩X| ≥ y ≥ ⌈x⌉.

Then
|OPT \X| ≤ k − ⌈x⌉.

Moreover, (OPT \X)∪X ∈ F since (OPT \X)∪X = OPT∪X ⊇ OPT as F is monotone by assumption.
Since Extα,c is an α-extension oracle for (U,F), given the input (U,X, k − ⌈x⌉) it returns a set Y

such that X ∪ Y ∈ F and

|Y | ≤ α · (k − ⌈x⌉) ≤ α ·
(
k −

(
1− β

α

)
· k − t

α

)
= βk − t.

18

So |X ∪Y | ≤ t+βk− t = βk which means that S contains a solution set of size at β · |OPT| as desired.
It remains to analyse the cost of Algorithm 3. Suppose k ∈ {0, . . . , ⌊nβ ⌋}. The algorithm computes

a number y ∈ {⌈x, . . . ,min{t, k}⌉} for which κ(n, k, t, y) is minimized, i.e., 1/κ(n, k, t, y) is maximized.
By Theorem 4.4 we get that

|C| = κ(n, k, t, y) · 2o(n) ≤ n · 1

hyper (n, k, t, x)
· 2o(n).

Also note that the family C can be computed within the same time bound.
It follows that the execution of the inner for-loop requires cost

exp
(
βk−t
α · ln c

)
hyper

(
n, k, t, (1− β

α) · k +
t
α

) · 2o(n).
Since t, α, c are chosen to minimize this cost, we obtain that one iteration of the outer for-loop incurs
a cost of

min
(α,c)∈L

min
t∈[M∗

α,βk,βk]∩N

exp
(
βk−t
α · ln c

)
hyper

(
n, k, t, (1− β

α) · k +
t
α

) · 2o(n).
Note that all other steps before the computation of the set-intersection family can be done using
polynomially many computation steps. As a result, every single iteration costs at most

max
k∈

[
0,n

β

]
∩N

min
(α,c)∈L

min
t∈[Mα,βk,βk]∩N

exp
(
βk−t
α · ln c

)
hyper

(
n, k, t, (1− β

α) · k +
t
α

) · 2o(n).
Since there are at most n iterations of the outer for-loop, the entire algorithm has cost fL,β(n) · 2o(n)
as desired.

5 Lower Bounds

In this section we prove Lemmas 2.8 and 2.9. We also argue how to derive Theorem 2.10 from
Lemma 2.9.

We begin with the proof of Lemma 2.9 as it is technically simpler. We actually prove the following
slightly stronger statement. Recall the definition of fL,β(n) (5).

Lemma 5.1. Let c > 1 and let A be an algorithm for c-Dec. Then costA(n) ≥ 1
2 · f{(1,c)},1(n) for

every n ≥ 1.

Proof. Let n ∈ N. We assume n is fixed throughout this proof. By (5) it holds that

f{(1,c)},1(n) = max
k∈[0,n]∩N

min
t∈[0,k]∩N

exp ((k − t) · ln c)
hyper (n, k, t, t)

= max
k∈[0,n]∩N

min
t∈[0,k]∩N

ck−t ·
(
n
k

)(
n−t
k−t

) . (15)

The last equality uses hyper (n, k, t, t) =
(n−t
k−t)
(nk)

by (2).

For all 0 ≤ k ≤ n and 0 ≤ t ≤ k we define

G(k, t) :=
ck−t ·

(
n
k

)(
n−t
k−t

) ,

t∗(k) := argmin
t∈[0,k]∩N

G(k, t),

k∗ := argmax
k∈[0,n]∩N

G(k, t∗(k)).

19

By (15) it follows that f{(1,c)},1(n) = G(k∗, t∗(k∗)). Furthermore, it holds that

t∗(k) = argmin
t∈[0,k]∩N

ck−t ·
(
n
k

)(
n−t
k−t

) = argmin
t∈[0,k]∩N

ck−t(
n−t
k−t

) . (16)

We set U := [n]. Our lower bound is based on the difficulty that algorithms have to distinguish
between the set-systems F = ∅ and F = {R} where R is a uniformly sampled random subset of U of
size k∗.

For a set system F of U we define an oracle ExtF by setting

ExtF (X, ℓ) :=

{
YES if there is an ℓ-extension of X with respect to U and F ,
NO otherwise.

Clearly, ExtF is a exact extension oracle for F . Note that Ext∅ always returns NO.
We assume the algorithm A gets a string of bits b ∈ {0, 1}q(n) as its source of randomness, where

q is an arbitrary function. This means A is deterministic given the input set U , the oracle Ext and
the random bits b. Let us denote by A(U, Ext, b) ∈ {YES, NO} the output of the algorithm A.

Let Q(b) ⊆ U ×N be the set of oracle queries the algorithm A makes on input U with oracle Ext∅
and random bits b. Equivalently, Q(b) is the set of queries A makes given the universe U in case the
oracle always returns NO for an answer. Observe that, in general, if all the responses to the queries
the algorithm makes are NO, then it has to return NO, because otherwise it violates the correctness
requirement in case its given the oracle Ext∅ for the set system ∅.

We define the coverage of an oracle query (X, ℓ) by

coverage(X, ℓ) :=
{
S ⊆ U

∣∣∣ |S| = k∗, X ⊆ S, |S \X| ≤ ℓ
}

=
{
S ⊆ U

∣∣∣ |S| = k∗ and X has an ℓ-extension w.r.t. the set system {S}
}

=
{
S ⊆ U

∣∣∣ Ext{S}(X, ℓ) = YES
}
.

Given a set W ⊆ 2U × N of queries we define coverage(W) :=
⋃

(X,ℓ)∈W coverage(X, ℓ).

Claim 5.2. Let b ∈ {0, 1}q(n). Then

costA(n) ≥
|coverage(Q(b))|(

n
k∗

) · f{(1,c)},1(n).

Proof. Consider the execution of A on input U using the oracle Ext∅ and random bits b. By definition,
the cost of the execution is

∑
(X,ℓ)∈Q(b) c

ℓ and thus, costA(n) ≥
∑

(X,ℓ)∈Q(b) c
ℓ. Therefore,

|coverage(Q(b))| ≤
∑

(X,ℓ)∈Q(b)

|coverage(X, ℓ)|

=
∑

(X,ℓ)∈Q(b) s.t. k∗−ℓ≤|X|≤k∗

(
n− |X|
k∗ − |X|

)

=
∑

(X,ℓ)∈Q(b) s.t. k∗−ℓ≤|X|≤k∗

ck
∗−|X| ·

(n−|X|
k∗−|X|

)
ck∗−|X|

≤
∑

(X,ℓ)∈Q(b) s.t. k∗−ℓ≤|X|≤k∗

ck
∗−|X| ·

(n−t∗(k∗)
k∗−t∗(k∗)

)
ck∗−t∗(k∗)

=

(
n
k∗

)
G(k∗, t∗(k∗))

·
∑

(X,ℓ)∈Q(b) s.t. k∗−ℓ≤|X|≤k∗

ck
∗−|X|

≤
(
n
k∗

)
G(k∗, t∗(k∗))

·
∑

(X,ℓ)∈Q(b)

cℓ

≤
(
n
k∗

)
G(k∗, t∗(k∗))

· costA(n).

20

The second inequality follows from (16). Since f{(1,c)},1(n) = G(k∗, t∗(k∗)), the assertion of the claim
follows. ⌟

Now let b∗ ∈ {0, 1}q(n) be the bit-string for which |coverage(Q(b∗))| is maximal. In light of
the last claim, in order to lower bound the cost of A, it suffices to lower bound the cardinality of
coverage(Q(b∗)). We use the correctness properties of A to attain such a lower bound.

Claim 5.3. It holds that

|coverage(Q(b∗))| ≥ 1

2
·
(
n

k∗

)
.

Proof. Consider the execution of A on input U using the oracle Ext{S}, where S ⊆ U such that
|S| = k∗, and a bit-string b. If S ̸∈ coverage(Q(b)) then the set of oracle queries the algorithm makes
is exactly Q(b) and all the queries return NO. So the algorithm also has to return NO. It follows that

A(U, Ext{S}, b) = YES =⇒ S ∈ coverage(Q(b)).

We define two independent random variable. Let R ⊆ U be a uniformly random subset of U of
size k∗. Also, we define r ∈ {0, 1}q(n) to be a uniformly random string of bits of length q(n). Then

Pr
(
A
(
U, Ext{S}, r

)
= YES

)
≤ Pr(R ∈ coverage(Q(r)))

=
∑

b∈{0,1}q(n)

Pr(r = b) · Pr(R ∈ coverage(Q(r)) | r = b)

=
∑

b∈{0,1}q(n)

Pr(r = b) · Pr(R ∈ coverage(Q(b)))

=
∑

b∈{0,1}q(n)

Pr(r = b) · |coverage(Q(b))|(
n
k∗

)
≤

∑
b∈{0,1}q(n)

Pr(r = b) · |coverage(Q(b∗))|(
n
k∗

)
=
|coverage(Q(b∗))|(

n
k∗

) .

(17)

The second equality holds since r is independent of R. Furthermore, as A returns YES with probability
at least 1

2 for YES instances,

Pr(A
(
U, Ext{R}, r

)
= YES) =

∑
S⊆U

Pr(R = S) · Pr(A
(
U, Ext{R}, r

)
) = YES | R = S)

≥
∑
S⊆U

Pr(S = R) · 1
2
=

1

2
.

(18)

The assertion of the claim now follows by combining (17) and (18). ⌟

Combining Claims 5.2 and 5.3 we get costA(n) ≥ 1
2 · f{(1,c)},1(n), which completes the proof.

Note that Lemma 2.9 immediately follows from Lemma 5.1. Next, we prove Theorem 2.10 using
Lemma 2.9.

Proof of Theorem 2.10. Let c > 1 and let A be a randomized algorithm for c-Dec. By Lemma 2.9 we
have

costA(n) ≥ n−O(1) · f{(1,c)},1(n) ≥ n−O(1) · (amls({(1, c)}, 1))n , (19)

where second equality follows from Lemma 2.11.
Observe that 2− 1

c ∈ (1, c+ 1) and

D

(
1

∥∥∥∥∥(2− 1
c)− 1

c− 1

)
= D

(
1

∥∥∥∥∥1− 1
c

c− 1

)
= D

(
1

∥∥∥∥1c
)

= ln c.

21

Therefore, by Lemma 2.19, it holds that amls({(1, c)}, 1) = 2− 1
c . In combination with (19) it follows

that costA(n) ≥ n−O(1) ·
(
2− 1

c

)n
.

The proof of Lemma 2.8 follows the same principles as the proof of Lemma 2.9. It defines a
coverage for each query, shows the cost of the algorithm is at least the cardinality of the coverage of
all queries, and then provides a lower bound on the cardinality of the coverage. The proof is slightly
more complicated than the proof of Lemma 2.9 due to the involvement of multiple oracles and since
the oracles only provide approximations. As before, we actually prove a slightly stronger statement.

Lemma 5.4. Let β ≥ 1. Also let L be a specification list and A be a randomized β-approximation
algorithm for L-Sub. Then

costA(n+ 1) ≥
fL,β(n)

2 · (n+ 1) ·max(α,c)∈L c

for every n ≥ 1.

Proof. Let n ≥ 1. We assume n is fixed for the remainder of the proof. Also suppose that L =
{(α1, c1), . . . , (αs, cs)} and define U := [n+ 1]. For every j ∈ [s] we define the functions

Gj(k, t) :=
(cj)

βk−t
αj

hyper
(
n, k, t, k − βk−t

αj

) , (20)

t∗j (k) := argmin
t∈

[
M∗

αj,β
·k, β·k

]
∩N
Gj(k, t), (21)

where M∗
αj ,β

is as defined in (4). Furthermore, we define

j∗(k) = argmin
j∈[s]

Gj(k, t
∗
j (k))

and
k∗ = argmax

k∈[0,n
β
]∩N

Gj∗(k)(k, t
∗
j∗(k)(k)).

With a slight abuse of notation we write j∗ := j∗(k∗) and t∗ := t∗j∗(k
∗). By (5) we have

fL,β(n) = Gj∗(k
∗, t∗).

We define the set system Fadv := {S ⊆ U | |S| ≥ ⌊β · k∗⌋+ 1}. Since β · k∗ ≤ n and U = [n+ 1] it
holds that Fadv ̸= ∅. For every T ⊆ U we define the set system FT = {S ⊆ U | T ⊆ S}∪Fadv, i.e., FT

is the set system containing all supersets of T and all sets of cardinality at least ⌊β · k∗⌋+ 1. Clearly,
Fadv and FT are monotone set systems of U for every T ⊆ U . Our lower bound is based on the fact
that A requires queries of high total cost to distinguish between Fadv and FT when T is a random set.

For every X ⊆ U we fix an arbitrary set QX ⊆ U \X such that |QX | = max {⌊β · k∗⌋+ 1− |X|, 0}.
Consequently, it holds that X ∪QX ∈ Fadv. We define an extension oracle Extadv via Extadv(X, ℓ) :=
QX for all X ⊆ U and ℓ ≥ 0.

Claim 5.5. For every j ∈ [s] it holds that Extadv is an αj-extension oracle for U and Fadv.

Proof. Let X ⊆ U and ℓ ∈ N. It holds that X ∪ Extadv(X) = X ∪QX ∈ Fadv. Furthermore, if there is
an ℓ-extension S of X, then |X| ≥ ⌊βk∗⌋+ 1− ℓ. Hence, |QX | ≤ ⌊β · k∗⌋+ 1− |X| ≤ ℓ ≤ αj · ℓ. That
is, QX is an (αj · ℓ) extension of X. So Extadv is an αj-extension oracle. ⌟

22

We define the coverage of an oracle query (X, ℓ) to the j-th oracle (i.e., to the αj-extension oracle)
by

coveragej(X, ℓ) :=

{
∅ |X|+ αj · ℓ ≥ ⌊β · k∗⌋+ 1,

{S ⊆ U | |S| = k∗, |S \X| ≤ ℓ} otherwise.
(22)

Intuitively speaking, coveragej(X, ℓ) contains all subsets ⊆ U of cardinality k∗ such that a determin-

istic αj-extension oracle for FS cannot return Extadv(X, ℓ) to the query (X, ℓ). Given a setW ⊆ 2U×N
of queries we define coveragej(W) :=

⋃
(X,ℓ)∈W coveragej(X, ℓ).

Claim 5.6. Let j ∈ [s] and suppose (X, ℓ) ∈ 2U × N such that coveragej(X, ℓ) ̸= ∅. Then

n− ℓ ≥ ⌊β · k∗ − αj · ℓ⌋ ≥ |X| ≥M∗
αj ,β
· k∗.

Proof. Since coveragej(X, ℓ) ̸= ∅ it holds that |X|+ αj · ℓ < ⌊β · k∗⌋+ 1. Therefore

|X| < ⌊β · k∗⌋+ 1− αj · ℓ ≤ β · k∗ − αj · ℓ ≤ n− ℓ,

which also implies |X| ≤ ⌊β · k∗ − αj · ℓ⌋. If αj ≤ β then M∗
αj ,β

= 0, and the trivial inequality |X| ≥ 0
completes the proof of the claim. So we assume that αj > β ≥ 1 for the remainder of the proof.

Using coveragej(X, ℓ) ̸= ∅ once more, by (22) there is some S ⊆ U such that |S| = k∗ and
|S \X| ≤ ℓ. So |X| ≥ k∗ − ℓ and we get that

⌊β · k∗ − αj · ℓ⌋ ≥ |X|

≥ αj

αj − 1
· |X| − 1

αj − 1
· |X|

≥ αj

αj − 1
· (k∗ − ℓ)− 1

αj − 1
· (β · k∗ − αj · ℓ)

=
αj − β
αj − 1

· k∗

= Mαj ,β · k
∗.

⌟

We assume the input for A consists of the set U , a collection of s extension oracles Ext1, . . . , Exts,
where Extj is an αj-extension oracle, and a bit-string b ∈ {0, 1}q(n+1) where q is an arbitrary function.
The bit-string b serves as the source of randomness, and we assume the algorithm is deterministic
given U , the oracles Ext1, . . . , Exts and b. We write A(U, Ext1, . . . , Exts, b) ⊆ U to denote the output
of A given U , the oracles Ext1, . . . , Exts and b.

For every b ∈ {0, 1}q(n+1) let Qj(b) ⊆ 2U ×N be the set of queries A makes to the j-th oracle given
the input U , Extadv as the j-th oracle for every j ∈ [s], and b.

Claim 5.7. Let b ∈ {0, 1}q(n+1). Then

costA(n+ 1) ≥ fL,β(n) ·
∑

j∈[s]
∣∣coveragej(Qj(b))

∣∣
(n+ 1) ·

(
n
k∗

)
·maxj∈[s] cj

.

23

Proof. For every j ∈ [s] it holds that∣∣coveragej(Qj(b))
∣∣ ≤ ∑

(X,ℓ)∈Qj(b)

|coveragej(X, ℓ)|

=
∑

(X,ℓ)∈Qj(b) s.t.
coveragej(X,ℓ)̸=∅

∣∣coveragej(X, ℓ)∣∣

=
∑

(X,ℓ)∈Qj(b) s.t.
coveragej(X,ℓ)̸=∅

k∗∑
y=k∗−ℓ

(
|X|
y

)
·
(
n+ 1− |X|
k∗ − y

)

≤ (n+ 1) ·
∑

(X,ℓ)∈Qj(b) s.t.
coveragej(X,ℓ)̸=∅

k∗∑
y=k∗−ℓ

(
|X|
y

)
·
(
n− |X|
k∗ − y

)
.

(23)

The second equality follows from a simple counting argument and the definition of coveragej in (22).

The second inequality holds since
(
m+1
r

)
≤ (m+1)·

(
m
r

)
ifm ≥ r ≥ 0. Observe that n−|X| ≥ ℓ ≥ k∗−y

for every (X, ℓ) ∈ Qj(b) such that coveragej(X, ℓ) ̸= ∅, and every k∗ ≤ y ≤ k∗ − ℓ using Claim 5.6.
Plugging the formula for hyper from (2) into (23) we obtain∣∣coveragej(Qj(b))

∣∣ ≤ (n+ 1) ·
(
n

k∗

) ∑
(X,ℓ)∈Qj(b) s.t.
coveragej(X,ℓ)̸=∅

hyper(n, k∗, |X|, k∗ − ℓ)

≤ (n+ 1) ·
(
n

k∗

) ∑
(X,ℓ)∈Qj(b) s.t.
coveragej(X,ℓ)̸=∅

hyper (n, k∗, ⌊βk∗ − αjℓ⌋, k∗ − ℓ)

≤ (n+ 1) ·
(
n

k∗

) ∑
(X,ℓ)∈Qj(b) s.t.
coveragej(X,ℓ)̸=∅

hyper

(
n, k∗, ⌊βk∗ − αjℓ⌋, k∗ −

βk∗ − ⌊βk∗ − αjℓ⌋
αj

)

= (n+ 1) ·
(
n

k∗

) ∑
(X,ℓ)∈Qj(b) s.t.
coveragej(X,ℓ)̸=∅

(cj)

βk∗−⌊βk∗−αjℓ⌋
αj · 1

Gj (k∗, ⌊βk∗ − αjℓ⌋)
.

(24)

The second inequality holds since |X| ≥ ⌊β · k∗ − αjℓ⌋ by Claim 5.6. The third inequality follows from

−ℓ ≥ −βk∗−⌊βk∗−αj ·ℓ⌋
αj

. The last equality follows from the definition of Gj in (20).

By Claim 5.6 it holds that M∗
αj ,β
·k∗ ≤ ⌊β · k∗ − αj · ℓ⌋ ≤ β ·k∗ for every (X, ℓ) ∈ 2U ×N for which

coveragej(X, ℓ) ̸= ∅. Hence,

Gj(k
∗, ⌊β · k∗ − αj · ℓ⌋) ≥ Gj(k

∗, t∗j (k
∗)) ≥ Gj∗(k

∗, t∗) = fL,β(n) (25)

for every (X, ℓ) ∈ 2U × N such that coveragej(X, ℓ) ̸= ∅. Combining (24) with (25) we have

∣∣coveragej(Qj(b))
∣∣ ≤ (n+ 1) ·

(
n

k∗

) ∑
(X,ℓ)∈Qj(b) s.t.
coveragej(X,ℓ)̸=∅

(cj)

βk∗−⌊βk∗−αjℓ⌋
αj · 1

fL,β(n)

≤ (n+ 1) ·
(
n

k∗

) ∑
(X,ℓ)∈Qj(b)

(cj)
ℓ+1 · 1

fL,β(n)
.

Since the last inequality holds for every j ∈ [s] we get∑
j∈[s]

∣∣coveragej(Qj(b))
∣∣ ≤ (n+ 1) ·

(
n

k∗

)
·
(
max
j∈[s]

cj

)
·
∑
j∈[s]

∑
(X,ℓ)∈Qj(b)

(cj)
ℓ · 1

fL,β(n)

24

and thus,

costA(n+ 1) ≥
∑
j∈[s]

∑
(X,ℓ)∈Qj(b)

(cj)
ℓ ≥ fL,β(n) ·

∑
j∈[s]

∣∣coveragej(Qj(b))
∣∣(

maxj∈[s] cj
)
· (n+ 1) ·

(
n
k∗
) . ⌟

By Claim 5.7, in order to lower bound the cost of A, we only need to provide a lower bound
on
∑

j∈[s]
∣∣coveragej(Qj(b))

∣∣ for some b ∈ {0, 1}q(n+1). For every T ⊆ U such that |T | = k∗ and every
j ∈ [s] we define an αj-extension oracle ExtT,j for U and FT by

ExtT,j(X, ℓ) :=

{
T \X T ∈ coveragej(X, ℓ),

Extadv(X, ℓ) otherwise.

Claim 5.8. For every T ⊆ U such that |T | = k∗ and j ∈ [s] it holds that ExtT,j is an αj-extension
oracle for U and the set system FT .

Proof. Let (X, ℓ) ∈ 2U×N. If T ∈ coveragej(X, ℓ) then X∪ExtT,j(X, ℓ) = X∪(T \X) = X∪T ∈ FT .
Otherwise X ∪ ExtT,j(X, ℓ) = X ∪ Extadv(X, ℓ) ∈ Fadv ⊆ FT . That is, X ∪ ExtT,j(X, ℓ) ∈ FT in all
cases.

Suppose X has an ℓ-extension S with respect to U and FT . To complete the proof we need to
show that |ExtT,j(X, ℓ)| ≤ αj · ℓ. We distinguish the following two cases.

• If |X|+ αj · ℓ ≥ ⌊βk∗⌋+ 1 then coveragej(X, ℓ) = ∅ by (22), and thus

|ExtT,j(X, ℓ)| = |Extadv(X, ℓ)| = max {⌊β · k∗⌋+ 1− |X|, 0} ≤ max{αj · ℓ, 0} ≤ αj · ℓ.

• Otherwise |X| + αj · ℓ < ⌊βk∗⌋ + 1 and we have that |S ∪X| ≤ |X| + ℓ < ⌊βk∗⌋ + 1. This
means S ∪ X /∈ Fadv. Since S ∪ X ∈ FT , we conclude that T ⊆ S ∪ X. So T \ X ⊆ S and
|T \X| ≤ |S| ≤ ℓ. Since |T | = k∗ we conclude that T ∈ coveragej(X, ℓ). It follows that
ExtT,j(X, ℓ) = T \X, and

|ExtT,j(X, ℓ)| = |T \X| ≤ |S| ≤ ℓ ≤ αj · ℓ. ⌟

Now, let b∗ ∈ {0, 1}q(n+1) be the bit-string for which
∑

j∈[s]
∣∣coveragej(Qj(b

∗))
∣∣ is maximal.

Claim 5.9. It holds that ∑
j∈[s]

∣∣coveragej(Qj(b
∗))
∣∣ ≥ 1

2
·
(
n+ 1

k∗

)
.

Proof. Consider the execution of A with the universe U , the oracles ExtT,1, . . . , ExtT,s and the bit-
string b, where T ⊆ U and |T | = k∗. Unless T ∈

⋃
j∈[s] coveragej(Qj(b)) the execution is identical to

the execution of A with the universe U , the oracles Extadv, . . . , Extadv and b. Hence, A has to return
a set S ∈ Fadv (otherwise it violates the correctness requirement for the latter execution), and thus
|S| ≥ ⌊βk∗⌋+ 1. It follows that

|A(U, ExtT,1, . . . , ExtT,s, b)| ≤ βk∗ =⇒ T ∈
⋃
j∈[s]

coveragej(Qj(b)). (26)

We define two independent random variables. Let R ⊆ U be a uniformly distributed random set

25

of cardinality k∗, and let r ∈ {0, 1}q(n+1) be a uniformly distributed bit-string. Using (26) we get

Pr (|A(U, ExtR,1, . . . , ExtR,s, r)| ≤ βk∗) ≤ Pr

R ∈ ⋃
j∈[s]

coveragej(Qj(r))

=

∑
b∈{0,1}q(n+1)

Pr(r = b) · Pr

R ∈ ⋃
j∈[s]

coveragej(Qj(r))

∣∣∣∣∣∣ b = r

=

∑
b∈{0,1}q(n+1)

Pr(r = b) · Pr

R ∈ ⋃
j∈[s]

coveragej(Qj(b))

≤

∑
b∈{0,1}q(n+1)

Pr(r = b) ·
∑

j∈[s]
∣∣coveragej(Qj(b))

∣∣(
n+1
k∗

)
≤

∑
b∈{0,1}q(n+1)

Pr(r = b) ·
∑

j∈[s]
∣∣coveragej(Qj(b

∗))
∣∣(

n+1
k∗

)
=

∑
j∈[s]

∣∣coveragej(Qj(b
∗))
∣∣(

n+1
k∗

) .

(27)

The second equality holds since r is independent of R. Furthermore,

Pr (|A(U, ExtR,1, . . . , ExtR,s, r)| ≤ βk∗)

=
∑

T⊆U s.t. |T |=k∗

Pr(R = T) · Pr (|A(U, ExtR,1, . . . , ExtR,s, r)| ≤ βk∗ | R = T)

=
∑

T⊆U s.t. |T |=k∗

Pr(R = T) · Pr (|A(U, ExtT,1, . . . , ExtT,s, r)| ≤ βk∗)

≥
∑

T⊆U s.t. |T |=k∗

Pr(R = T) · 1
2
≥ 1

2

(28)

By (27) and (28) it holds that
∑

j∈[s] |coveragej(Qj(b
∗))|

(n+1
k∗)

≥ 1
2 and the claim immediately follows. ⌟

By Claims 5.7 and 5.9 it holds that

costA(n+ 1) ≥ fL,β(n) ·
∑

j∈[s]
∣∣coveragej(Qj(b

∗))
∣∣

(n+ 1) ·
(
n
k∗
)
·maxj∈[s] cj

≥ fL,β(n) ·
1
2 ·
(
n+1
k∗

)
(n+ 1) ·

(
n
k∗

)
·maxj∈[s] cj

≥
fL,β(n)

2 · (n+ 1) ·maxj∈[s] cj
.

Proof of Lemma 2.8. Let A be a β-approximation algorithm for L-Sub. By Lemmas 2.11 and 5.4 it
holds that

costA(n+ 1) ≥
fL,β(n)

2 · (n+ 1) ·max(α,c)∈L c
≥ n−O(1) · (amls(L, β))n ≥ n−O(1) · (amls(L, β))n+1

≥ n−O(1) · fL,β(n+ 1)

for every n ≥ 1.

26

6 From Discrete to Continuous Optimization

Lemma 2.11 shows thatfL,β(n) ≈ (amls(L, β))n up to polynomial factors. While fL,β(n) (5) is defined
via maximum and minimum operations over a discrete set of values, the value of amls(L, β) (11) is
the outcome of continuous maximization and minimization. The proof utilizes basic estimation of
binomial coefficient using entropy and bounded-difference properties of the entropy function.

The value of τ in the definition of amls (11) corresponds to t
n in the formula of f (5). We note

that the range of t
n in (5) may differ from the range of τ in (11). Part of the proof is dedicated for

showing this difference is insignificant.
We first prove that fL,β(n) ≲ (amls(L, β))n in Lemma 6.6, and subsequently show that fL,β(n) ≳

(amls(L, β))n in Lemma 6.7. The proof of Lemma 6.6 is technically easier. This stems from the fact
that restricting the range of t, extending the range of k and lower-bounding the value of hyper (as it
appears in (5)) are trivial in this direction of the inequality, but not in the other. We also note that
special cases of the inequality fL,β(n) ≲ (amls(L, β))n for L = {(β, c)} implicitly appear in previous
works on (Approximate) Monotone Local Search [26, 31] as part of the analysis of the algorithm.
The opposite direction, fL,β(n) ≳ (amls(L, β))n, is central for the correctness of the lower bounds
in Lemma 2.8 and theorem 2.10, but has no algorithmic implications. As such, this direction of the
inequality was irrelevant to the previous works which only provided algorithmic results.

Recall H (x) = −x ln(x)− (1− x) ln(1− x). With slight abuse of notation we define 0 · H
(
a
0

)
= 0.

Our proofs utilize the following bound on binomial coefficients (see, e.g., [19, Example 11.1.3]):

1

n+ 1
· exp

(
n · H

(
k

n

))
≤
(
n

k

)
≤ exp

(
n · H

(
k

n

))
(29)

for all n, k ∈ N such that 0 ≤ k ≤ n. Furthermore, we utilize the following technical lemma which
follows from [26].

Lemma 6.1. For all 0 ≤ b ≤ a ≤ n, d > 1 and ε, δ ∈ [−d, d] such that 0 ≤ b+ δ ≤ a+ ε, we have∣∣∣∣a · H(ba
)
− (a+ ε) · H

(
b+ δ

a+ ε

)∣∣∣∣ = O(d · log(n)).
For every α, β ≥ 1 we define xα,β(k, t) =

(
1− β

α

)
·k+ t

α . We utilize the following technical lemmas

as part of the proofs of Lemmas 6.6 and 6.7.

Lemma 6.2. Let α, β ≥ 1, n ∈ N, k ∈
[
0, nβ

]
, t ≥ 0 and y ≥ xα,β(k, t). Then k − y ≤ n− t.

Proof. We have

n− t ≥ βk − t ≥ βk − t
α

= k − k + βk

α
− t

α
= k − xα,β(k, t) ≥ k − y.

Lemma 6.3. Let α, β ≥ 1, n ∈ N, k ∈
[
0, nβ

]
, and t ∈

[
M∗

α,βk, βk
]
. Then xα,β(k, t) ≤ min{k, t}.

Proof. Since t ≥ 0 we have

xα,β(k, t) =

(
1− β

α

)
k +

t

α
≤
(
1− β

α

)
k ≤ k.

For the second part, we consider the following two cases.

• If β ≥ α then

xα,β(k, t) =

(
1− β

α

)
k +

t

α
≤ t

α
≤ t.

• Otherwise β < α and we have t ≥M∗
α,β · k = α−β

α−1 · k. Thus,

xα,β(k, t) =

(
1− β

α

)
k +

t

α
=
α− 1

α
· α− β
α− 1

· k + t

α
≤ α− 1

α
· t+ t

α
= t.

27

In both cases xα,β(k, t) ≤ t which completes the proof.

Lemma 6.4. Let α, β ≥ 1, n ∈ N, k ∈
[
0, nβ

]
, and t ∈

[
M∗

α,βk, βk
]
. Then xα,β(k, t) ≥ kt

n if and only

if t ≥Mα,β

(
k
n

)
· n.

Proof. We consider the following two cases.

• If α < β it holds that

xα,β(k, t) ≥
kt

n
⇐⇒

(
1− β

α

)
· k + t

α
≥ kt

n
⇐⇒

(
1− β

α

)
· k ≥ t ·

(
k

n
− 1

α

)
.

Since k ≤ n
β we conclude that k

n −
1
α < 0. So

xα,β(k, t) ≥
kt

n
⇐⇒ t ≥

(
1− β

α

)
k
n −

1
α

· k =
β − α

1− α · kn
· k
n
· n =Mα,β

(
k

n

)
· n.

• Otherwise α ≥ β and we haveMα,β

(
k
n

)
·n =M∗

α,β ·k. Thus, we need to prove that xα,β(k, t) ≥ kt
n

holds unconditionally. Indeed,

xα,β(k, t) =

(
1− β

α

)
· k + t

α

=

(
1− β

α

)
· k + t

(
−k
n
+

1

α

)
+
kt

n

≥
(
1− β

α

)
· k + t

(
− 1

β
+

1

α

)
+
kt

n

≥
(
1− β

α

)
· k + β · k

(
− 1

β
+

1

α

)
+
kt

n
=

kt

n
,

where the first inequality follows from k ≤ n
β , and the second inequality holds since t ≤ βk and

− 1
β + 1

α ≤ 0.

Finally, we use the following relation between M∗
α,β and Mα,β.

Lemma 6.5. Let α, β ≥ 1, n ∈ N, k ∈
[
0, nβ

]
. Then M∗

α,β · k ≤Mα,β

(
k
n

)
· n ≤ βk.

Proof. We first show thatM∗
α,β ·k ≤Mα,β

(
k
n

)
·n. If α ≤ β it holds thatM∗

α,β = 0. SinceMα,β

(
k
n

)
≥ 0

it follows that M∗
α,β · k = 0 ≤Mα,β

(
k
n

)
· n. Otherwise α > β and we have

Mα,β

(
k

n

)
· n =

α− β
α− 1

· k
n
· n =M∗

α,β · k,

where the last equality follows from the definition of M∗
α,β (4).

Next, we show that Mα,β

(
k
n

)
· n ≤ βk. If α < β it holds that

Mα,β

(
k

n

)
· n =

β − α
1− α · kn

· k
n
· n ≤ β − α

1− α · 1β
· k = β · k,

where the inequality follows from k ≤ n
β . Otherwise β < α and we have

Mα,β

(
k

n

)
· n =

α− β
α− 1

· k
n
· n ≤ α− 1

α− 1
· k
n
· n = k ≤ βk.

Finally, if α = β, we have Mα,β

(
k
n

)
· n = 0 · n ≤ βk.

The next lemma show the second inequality of Lemma 2.11.

28

Lemma 6.6. For every β ≥ 1 and specification list L it holds that

fL,β(n) ≤ nO(1) · (amls(L, β))n .

Proof. Let n ≥ 1. For every k ∈
[
0, nβ

]
∩ N and (α, c) ∈ L it holds that

min
t∈[M∗

α,β ·k,βk]∩N

exp
(
βk−t
α · c

)
hyper(n, k, t, xα,β(k, t))

= min
t∈[M∗

α,β ·k,βk]∩N

exp
(
βk−t
α · c

)
∑min{k,t}

y=⌈xα,β(k,t)⌉
(ty)·(

n−t
k−y)

(nk)

≤ min
t∈[M∗

α,β ·k,βk]∩N

exp
(
βk−t
α · c

)
(
(t
max{⌈xα,β(k,t)⌉,0})·(

n−t
k−max{⌈xα,β(k,t)⌉,0})

(nk)

)
≤ (n+ 1)2 · min

t∈[M∗
α,β ·k,βk]∩N

exp

(
βk − t
α

· c− t · H
(
max{⌈xα,β(k, t)⌉, 0}

t

)

− (n− t) · H
(
k −max{⌈xα,β(k, t)⌉, 0}

n− t

)
+ n · H

(
k

n

))

(30)

The first equality follows from the definition of hyper (2). The first inequality follows from selecting
y = max{⌈xα,β(k, t)⌉, 0}. Note that the resulting expression is well defined by Lemmas 6.2 and 6.3.
The last inequality follows from (29).

We can use Lemma 6.1 to avoid the rounding of the values of xα,β as well as extending the range

of t in (30). That is, for every k ∈
[
0, nβ

]
∩ N and (α, c) ∈ L it holds that

min
t∈[M∗

α,β ·k,βk]∩N

exp
(
βk−t
α · c

)
hyper(n, k, t, xα,β(k, t))

≤ nO(1) · min
t∈[M∗

α,β ·k,βk]∩N
exp

(
βk − t
α

· c− t · H
(
max{xα,β(k, t), 0}

t

)

− (n− t) · H
(
k −max{xα,β(k, t), 0}

n− t

)
+ n · H

(
k

n

))

≤ nO(1) · min
t∈[M∗

α,β ·k,βk]
exp

(
βk − t
α

· c− t · H
(
max{xα,β(k, t), 0}

t

)

− (n− t) · H
(
k −max{xα,β(k, t), 0}

n− t

)
+ n · H

(
k

n

))

≤ nO(1) · min
t∈[Mα,β(k

n)·n,βk]
exp

(
βk − t
α

· c− t · H
(
max{xα,β(k, t), 0}

t

)

− (n− t) · H
(
k −max{xα,β(k, t), 0}

n− t

)
+ n · H

(
k

n

))

≤ nO(1) · min
t∈[Mα,β(k

n)·n,βk]
exp

(
βk − t
α

· c− t · H
(
xα,β(k, t)

t

)

− (n− t) · H
(
k − xα,β(k, t)

n− t

)
+ n · H

(
k

n

))

(31)

Observe that in the third expression the range of t is not restricted to integers. The range of t was
further changed in the forth expression using Lemma 6.5. The last inequality follow from Lemma 6.4
(trivially, kt

n ≥ 0).

29

Observe that
xα,β(k, t)

t
=

(
1− β

α

)
k

t
+

1

α
= γα,β

(
k

n
,
t

n

)
(32)

unless t = 0, and

k − xα,β(k, t)
n− t

=
k −

(
1− β

α

)
k − t

α

n− t
=

β
α · k −

t
α

n− t
= δα,β

(
k

n
,
t

n

)
(33)

unless t = 1.
Using (32) and (33) we can simplify the expression in (31) and obtain

min
t∈[M∗

α,β ·k,βk]∩N

exp
(
βk−t
α · c

)
hyper(n, k, t, xα,β(k, t))

≤ nO(1) · min
t∈[Mα,β(k

n)·n,βk]
exp

(
β k
n −

t
n

α
· c− t

n
· H
(
γα,β

(
k

n
,
t

n

))

−
(
1− t

n

)
· H
(
δα,β

(
k

n
,
t

n

))
+H

(
k

n

))n

= nO(1) · min
τ∈[Mα,β(k

n),β
k
n]

(
gα,β,c

(
k

n
, τ

))n

.

(34)

By incorporating (34) into the formula of fL,β (5) we get

fL,β(n) = max
k∈

[
0,n

β

]
∩N

min
(α,c)∈L

min
t∈[M∗

α,β ·k,β·k]∩N

exp
(
βk−t
α · ln c

)
hyper

(
n, k, t, (1− β

α) · k +
t
α

)
≤ nO(1) · max

k∈
[
0,n

β

]
∩N

min
(α,c)∈L

min
τ∈[Mα,β(k

n),β
k
n]

exp

(
gα,β,c

(
k

n
, τ

))n

≤ nO(1) · max
k∈

[
0,n

β

] min
(α,c)∈L

min
τ∈[Mα,β(k

n),β
k
n]

exp

(
gα,β,c

(
k

n
, τ

))n

= nO(1) · max
κ∈

[
0, 1

β

] min
(α,c)∈L

min
τ∈[Mα,β(κ),βκ]

exp

(
gα,β,c (κ, τ)

)n

= nO(1) · (amls(L, β))n .
The second inequality simply extended the range of values k can takes, and the second equality
substituted k with κ · n.

Lemma 6.7. For every β ≥ 1 and specification list L it holds that

fL,β(n) ≥ nO(1) · (amls(L, β))n .

Proof. Let n ∈ N. For every k ∈
[
0, nβ

]
∩ N and (α, c) ∈ L it holds that

min
t∈[M∗

α,β ·k,βk]∩N

exp
(
βk−t
α · ln c

)
hyper(n, k, t, xα,β(k, t))

= min
t∈[M∗

α,β ·k,βk]∩N

exp
(
βk−t
α · ln c

)
∑min{k,t}

y=⌈xα,β(k,t)⌉
(ty)·(

n−t
k−y)

(nk)

≥ min
t∈[M∗

α,β ·k,βk]∩N

exp
(
βk−t
α · ln c

)
n ·maxy∈[max{⌈xα,β(k,t)⌉,0}, min{k,t}]∩N

(ty)·(
n−t
k−y)

(nk)

=
1

n
· min

t∈[M∗
α,β ·k,βk]∩N

min
y∈[max{⌈xα,β(k,t)⌉,0}, min{k,t}]∩N

exp
(
βk−t
α · ln c

)
(ty)·(

n−t
k−y)

(nk)

.

(35)

30

As in the proof of Lemma 6.6, we use (29) to estimate the binomial coefficients in (35). Thus, for all

k ∈
[
0, nβ

]
∩ N and (α, c) ∈ L we have

min
t∈[M∗

α,β ·k,βk]∩N

exp
(
βk−t
α · ln c

)
hyper(n, k, t, xα,β(k, t))

≥ n−O(1) · min
t∈[M∗

α,β ·k,βk]∩N
min

y∈[max{⌈xα,β(k,t)⌉,0}, min{k,t}]∩N

exp

(
βk − t
α

· ln c− t · H
(y
t

)
− (n− t) · H

(
k − y
n− t

)
+ n · H

(
k

n

))
≥ n−O(1) · min

t∈[M∗
α,β ·k,βk]∩N

min
y∈[max{xα,β(k,t),0}, min{k,t}]

exp

(
βk − t
α

· ln c− t · H
(y
t

)
− (n− t) · H

(
k − y
n− t

)
+ n · H

(
k

n

))
.

(36)

For every k ∈
[
0, nβ

]
and t ∈

[
M∗

α,β · k, βk
]
we define

hk,t(y) = −t · H
(y
t

)
− (n− t) · H

(
k − y
n− t

)
+ n · H

(
k

n

)
. (37)

We can use hk,t to rewrite (36) as

min
t∈[M∗

α,β ·k,βk]∩N

exp
(
βk−t
α · ln c

)
hyper(n, k, t, xα,β(k, t))

≥ n−O(1) · min
t∈[M∗

α,β ·k,βk]∩N
min

y∈[max{xα,β(k,t),0}, min{k,t}]
exp

(
βk − t
α

· ln c+ hk,t(y)

) (38)

for all k ∈
[
0, nβ

]
∩ N and (α, c) ∈ L.

Claim 6.8. For all k ∈
[
0, nβ

]
∩ N, (α, c) ∈ L and t ∈

[
M∗

α,β · k, βk
]
it holds that

min
y∈[max{xα,β(k,t),0}, min{k,t}]

hk,t(y) =

{
hk,t(xα,β(k, t)) if xα,β(k, t) ≥ kt

n ,

0 otherwise.

Furthermore, hk,t
(
kt
n

)
= 0.

Proof. We have H′(x) = ln 1−x
x where H′ is the first derivative of H. So the first derivative of hk,t is

h′k,t(y) = −t ·
1

t
· ln
(
1− y

t
y
t

)
− (n− t) · −1

n− t
· ln

(
1− k−y

n−t
k−y
n−t

)

= − ln

(
t

y
− 1

)
+ ln

(
n− t
k − y

− 1

)
.

It can be easily observed that h′k,t is a monotonically increasing function and thus, hk,t is convex.
Furthermore,

h′k,t

(
kt

n

)
= − ln

(
t · n
kt
− 1
)
+ ln

(
n− t
k − kt

n

− 1

)
= − ln

(n
k
− 1
)
+ ln

(n
k
− 1
)
= 0

and

hk,t

(
kt

n

)
= −t · H

(
kt
n

t

)
− (n− t) · H

(
k − kt

n

n− t

)
+ n · H

(
k

n

)

31

= −t · H
(
k

n

)
− (n− t) · H

(
k

n

)
+ n · H

(
k

n

)
= 0.

So overall, hk,t(y) is a convex function with a global minimum of value 0 at y = kt
n . Since k, t ≤ n it

also holds that kt
n ≤ min{k, t}. Hence,

min
y∈[max{xα,β(k,t),0}, min{k,t}]

hk,t(y) =

{
hk,t(xα,β(k, t)) if xα,β(k, t) ≥ kt

n ,

0 otherwise.

⌟

By Claim 6.8 and (38), for all k ∈
[
0, nβ

]
∩ N and (α, c) ∈ L, we have

min
t∈[M∗

α,β ·k,βk]∩N

exp
(
βk−t
α · ln c

)
hyper(n, k, t, xα,β(k, t))

≥ n−O(1) · min
t∈[M∗

α,β ·k,βk]∩N
exp

(
βk − t
α

· ln c+

{
hk,t(xα,β(k, t)) if xα,β(k, t) ≥ kt

n

0 otherwise

)

≥ n−O(1) · min
t∈[M∗

α,β ·k,βk]
exp

(
βk − t
α

· ln c+

{
hk,t(xα,β(k, t)) if xα,β(k, t) ≥ kt

n

0 otherwise

)
.

(39)

Observe the range of t in the last expression is not restricted to integral values.

Claim 6.9. For all k ∈
[
0, nβ

]
∩ N and (α, c) ∈ L it holds that

min
t∈[M∗

α,β ·k,βk]
exp

(
βk − t
α

· ln c+

{
hk,t(xα,β(k, t)) if xα,β(k, t) ≥ kt

n

0 otherwise

)

= min
t∈[Mα,β(k

n)·n,βk]
exp

(
βk − t
α

· ln c+ hk,t(xα,β(k, t))

)
.

Proof. First suppose α ≥ β. Then M∗
α,β · k =Mα,β

(
k
n

)
· n. Furthermore, by Lemma 6.4, it holds that

xα,β(k, t) ≥ kt
n for all t ∈

[
M∗

α,β · k, βk
]
, and the statement of the claim immediately follows.

We are left to handle the case α < β. By Lemma 6.4 we have

min
t∈[M∗

α,β ·k,Mα,β(k
n)·n]

exp

(
βk − t
α

· ln c+

{
hk,t(xα,β(k, t)) if xα,β(k, t) ≥ kt

n

0 otherwise

)

= min
t∈[M∗

α,β ·k,Mα,β(k
n)·n]

exp

(
βk − t
α

· ln c+

{
hk,t(xα,β(k, t)) if t =Mα,β

(
k
n

)
· n

0 otherwise

)

= min
t∈[M∗

α,β ·k,Mα,β(k
n)·n]

exp

(
βk − t
α

· ln c
)

= exp

(
βk − t
α

· ln c
)∣∣∣∣∣

t=Mα,β(k
n)·n

= exp

(
βk − t
α

· ln c+ hk,t(xα,β(k, t))

)∣∣∣∣∣
t=Mα,β(k

n)·n

,

where the second and forth equalities follow from xα,β (k, t) =
kt
n for t =Mα,β

(
k
n

)
·n and hk,t

(
kt
n

)
= 0

(Claim 6.8). The statement of the claim follows from the last series of equalities. ⌟

32

By (39) and Claim 6.9 it holds that

min
t∈[M∗

α,β ·k,βk]∩N

exp
(
βk−t
α · ln c

)
hyper(n, k, t, xα,β(k, t))

≥ n−O(1) · min
t∈[Mα,β(k

n)·n,βk]
exp

(
βk − t
α

· ln c+ hk,t(xα,β(k, t))

) (40)

for all k ∈
[
0, nβ

]
∩ N and (α, c) ∈ L. By the definition of fL,β (5) we have

fL,β(n) = max
k∈

[
0,n

β

]
∩N

min
(α,c)∈L

min
t∈[M∗

α,β ·k,β·k]∩N

exp
(
βk−t
α · ln c

)
hyper

(
n, k, t, (1− β

α) · k +
t
α

)
≥ n−O(1) max

k∈
[
0,n

β

]
∩N

min
(α,c)∈L

min
t∈[Mα,β(k

n)·n,βk]
exp

(
βk − t
α

· ln c+ hk,t(xα,β(k, t))

) (41)

where the inequality is by (40). To complete the proof we need to change the range of k in (41) to a
continuous range. The following claims are used to this end.

Claim 6.10. Let β, α ≥ 1 and κ ∈
[
0, 1β

]
. Then

0 ≤M ′
α,β (κ) ≤

β2

β−α if β > α

0 if α = β
α−β
α−1 if β < α

,

where M ′
α,β(κ) is the derivative of Mα,β(κ).

Proof. Consider the following cases.

• If β > α it holds that

M ′
α,β(κ) =

(1− ακ) · (β − α) + α(β − α) · κ
(1− ακ)2

=
β − α

(1− ακ)2
.

Observe the value is well define since α · κ ≤ α · 1β < 1. Thus, M ′
α,β(κ) =

β−α
(1−ακ)2

≥ 0. Similarly,

since κ ≤ 1
β ,

M ′
α,β(κ) =

β − α
(1− ακ)2

≤ β − α(
1− α · 1β

)2 =
β2

β − α
.

• If α = β it holds that M ′
α,β(κ) = 0.

• If β < α it holds that M ′
α,β(κ) =

α−β
α−1 > 0. ⌟

Claim 6.11. Let k ∈
[
0, nβ

]
and k′ = ⌊k⌋. Then

min
(α,c)∈L

min
t∈[Mα,β(k

n)·n,βk]
exp

(
βk − t
α

· ln c+ hk,t(xα,β(k, t))

)
≤ nO(1) · min

(α,c)∈L
min

t∈
[
Mα,β

(
k′
n

)
·n,βk′

] exp

(
βk′ − t
α

· ln c+ hk′,t(xα,β(k
′, t))

)
.

33

Proof. Pick (α′, c′) ∈ L and t′ ∈
[
Mα′,β

(
k′

n

)
· n, βk′

]
such that

exp

(
βk′ − t′

α′ ln c′ + hk′,t′(xα′,β(k
′, t′))

)
= min

(α,c)∈L
min

t∈
[
Mα,β

(
k′
n

)
·n,βk′

] exp
(
βk′ − t
α

ln c+ hk′,t(xα,β(k
′, t))

)
.

We set t′′ := max{t′,Mα,β

(
k
n

)
· n}. Since t′ ≤ βk′ ≤ βk and Mα,β

(
k
n

)
· n ≤ βk (Lemma 6.5) it follows

that t′′ ≤ βk. In order to bound |t′ − t′′| we consider the following cases.

• If t′ = t′′ we have |t′ − t′′| = 0.

• If t′′ =Mα,β

(
k
n

)
· n it holds that Mα,β

(
k′

n

)
· n ≤ t′ ≤Mα,β

(
k
n

)
· n = t′′. Then

∣∣t′′ − t′∣∣ ≤ n · ∣∣∣∣Mα,β

(
k′

n

)
−Mα,β

(
k

n

)∣∣∣∣ ≤ n · O(1) · k′ − kn
= O(1),

where the second inequality follows from Claim 6.10.

So overall |t′′ − t′| = O(1). Hence,

min
(α,c)∈L

min
t∈[Mα,β(k

n)·n,βk]
exp

(
βk − t
α

· ln c+ hk,t(xα,β(k, t))

)
≤ exp

(
βk − t′′

α′ · ln c′ + hk,t′′(xα′,β(k, t
′′))

)
= exp

(
βk − t′′

α′ · ln c′ − t′′ · H
(
xα′,β(k, t

′′)

t′′

)
− (n− t′′) · H

(
k − xα′,β(k, t

′′)

n− t′′

)
+ n · H

(
k

n

))

= exp

βk − t′′
α′ · ln c′ − t′′ · H

(
1− β

α

)
· k + t′′

α

t′′

− (n− t′′) · H

(
β
α · k −

t′′

α

n− t′′

)
+ n · H

(
k

n

)
≤ nO(1) · exp

βk′ − t′
α′ · ln c′ − t′ · H

(
1− β

α

)
k′ + t′

α

t′

− (n− t′) · H

(
β
αk

′ − t′

α

n− t′

)
+ n · H

(
k′

n

)
= nO(1) · exp

(
βk′ − t′

α′ · ln c′ + hk′,t′(xα′,β(k
′, t′)

)
= nO(1) · min

(α,c)∈L
min

t∈
[
Mα,β

(
k′
n

)
·n,βk′

] exp
(
βk′ − t
α

ln c+ hk′,t(xα,β(k
′, t))

)
.

The second inequality follows from Lemma 6.1. ⌟

By (41) and Claim 6.11 it holds that

fL,β(n) ≥ n−O(1) max
k∈

[
0,n

β

]
∩N

min
(α,c)∈L

min
t∈[Mα,β(k

n)·k,βk]
exp

(
βk − t
α

· ln c+ hk,t(xα,β(k, t))

)

≥ n−O(1) max
k∈

[
0,n

β

] min
(α,c)∈L

min
t∈[Mα,β(k

n)·n,βk]
exp

(
βk − t
α

· ln c+ hk,t(xα,β(k, t))

)

= n−O(1) max
κ∈

[
0, 1

β

] min
(α,c)∈L

min
τ∈[Mα,β(κ),βκ]

exp

(
βκ− τ
α

· ln c+ 1

n
· hκ·n,τ ·n(xα,β(κ · n, τ · n))

)n

= n−O(1) max
κ∈

[
0, 1

β

] min
(α,c)∈L

min
τ∈[Mα,β(κ),βκ]

exp (gα,β,c(κ, τ))
n

= n−O(1) (amls(L, β))n .

34

The first equality simply replaces k and t with κ · n and τ · n. The second equality follows from

βκ− τ
α

· ln c+ 1

n
· hκ·n,τ ·n(xα,β(κ · n, τ · n))

=
βκ− τ
α

· ln c− τ · H

(
1− β

α

)
· κ+ τ

α

τ

− (1− τ) · H

(
β
α · κ−

τ
α

1− τ

)
+H(κ)

= gα,β,c(κ, τ).

Proof of Lemma 2.11. The lemma follows immediately from Lemmas 6.6 and 6.7.

7 Evaluating the Running Time: Convexity and Concavity

In this section we prove Lemmas 2.13 and 2.15 which provide the mathematical properties required
for the evaluation of amls, as well as Lemma 2.19. In Section 7.1 we state basic properties of the
functions δ, γ and g which we need later on. In Section 7.2 we show that gα,β,c(κ, τ) is a convex

function of the variable τ in the interval τ ∈ [Mα,β(κ), β · κ], for all κ ∈
(
0, 1β

)
. This fact is used to

show the value τ ∈ [Mα,β(κ), β · κ] that minimizes gα,β,c(κ, τ) actually belongs to [Mα,β(κ), β · κ). In

Section 7.3 we prove that g∗(κ) is a concave function of κ in the interval κ ∈
[
0, 1β

]
. The proof uses

properties of the Hessian which are shown in Section 7.4, and relies on technical computations from
Section 7.5 and Section 7.6. Section 7.3 also contains the proof of Lemma 2.19 which follows from the
technical lemmas proved in the same section.

Recall the definitions of the functions used in the definition of amls:

δα,β(κ, τ) =

{ β
α
κ− τ

α
1−τ =

β
α
κ− 1

α
1−τ + 1

α if τ ̸= 1
1
α if τ = 1

γα,β(κ, τ) =

{(
1− β

α

)
κ
τ + 1

α if τ ̸= 0

1
α if τ = 0

gα,β,c(κ, τ) =
βκ− τ
α

ln c− τ · H (γα,β(κ, τ))− (1− τ) · H (δα,β(κ, τ)) +H (κ)

Mα,β(κ) =

β−α
1−α·κ · κ if α < β

0 if α = β
α−β
α−1 · κ if α > β

With a slight abuse of notation, we sometimes omit the subscript (α, β, c) from gα,β,c or (α, β) from
δα,β and γα,β, whenever it is clear from the context.

7.1 Basic Properties

We start by discussing basic properties of the functions γ, δ and g. We commonly rely on monotonicity
properties of δ and γ, as well as their possible range of values.

Lemma 7.1. For all α ≥ 1, β > 1 and κ ∈
(
0, 1β

)
, it holds that δα,β(κ, τ) is strictly decreasing with

τ in the range τ ∈ [Mα,β(κ), β · κ]. Furthermore, 0 ≤ δα,β(κ, τ) < 1
α for all τ ∈ [Mα,β(κ), β · κ].

Proof. Since κ < 1
β and β

α ·κ−
1
α < 0, the term

β
α
·κ− 1

α
1−τ is a strictly decreasing function of τ . Therefore

δ(κ, τ) is strictly decreasing with τ because δ(κ, τ) =
β
α
·κ− 1

α
1−τ + 1

α . Therefore, for all τ ∈ [Mα,β(κ), β ·κ],
we have 0 = δ(κ, β · κ) ≤ δ(κ, τ) and

δ(κ, τ) ≤ δ(κ,Mα,β(κ)) =
β
α · κ−

1
α

1−Mα,β(κ)
+

1

α
<

1

α
,

35

where the last step holds because Mα,β(κ) ≤ β · κ < 1 and β
α · κ−

1
α < 0.

While the function δ is decreasing regardless of the values of α and β, the direction of monotonicity
of γ does depend on the values of α and β.

Lemma 7.2. For all α ≥ 1, β > 1 and κ ∈
(
0, 1β

)
, the function γα,β(κ, τ) satisfies the following

properties depending on the values of α and β:

• If α > β, the function γα,β(κ, τ) is strictly decreasing with τ ∈ [Mα,β(κ), β · κ], and 1
β ≤

γα,β(κ, τ) ≤ 1.

• If α = β, it holds that γα,β(κ, τ) =
1
α for all τ ∈ [Mα,β(κ), β · κ].

• If α < β, the function γα,β(κ, τ) is strictly increasing with τ ∈ [Mα,β(κ), β · κ], and κ ≤
γα,β(κ, τ) ≤ 1

β .

Proof. Let us fix a κ ∈
(
0, 1β

)
and consider the different cases where α > β, α = β and α < β.

• If α > β, the term
(
1− β

α

)
is strictly positive, therefore

(
1− β

α

)
· κτ is a strictly decreasing

function of τ . It follows that γ(κ, τ) =
(
1− β

α

)
· κτ + 1

α is also a strictly decreasing function of

τ . Moreover, for all τ ∈ [Mα,β(κ), β · κ], we have

γ(κ, τ) ≥ γ (κ, β · κ) =
(
1− β

α

)
· κ

β · κ
+

1

α
=

1

β
and

γ(κ, τ) ≤ γ
(
κ,Mα,β(κ)

)
= γ

(
κ,
α− β
α− 1

· κ
)

=

(
1− β

α

)
· α− 1

α− β
+

1

α
= 1.

• If β = α, it is easy to see that γ(κ, τ) = 1
α for all τ ∈ [Mα,β(κ), β · κ] because (1− β

α) = 0.

• If α < β, the term
(
1− β

α

)
is strictly negative and

(
1− β

α

)
· κτ is a strictly increasing function

of τ . Therefore γ(κ, τ) =
(
1− β

α

)
· κτ + 1

α is also a strictly increasing function of τ . Moreover,

for all τ ∈ [Mα,β(κ), β · κ] it holds that

γ(κ, τ) ≤ γ(κ, β · κ) = 1

β
and

γ(κ, τ) ≥ γ
(
κ,Mα,β(κ)

)
= γ

(
κ,

(β − α)
1− α · κ

· κ
)
=

(
1− β

α

)
· 1− α · κ
β − α

+
1

α

=
ακ− 1 + 1

α
= κ.

The next lemma is also used a few times.

Lemma 7.3. Let β > α > 1 and κ ∈
(
0, 1β

)
. Then

δα,β (κ,Mα,β(κ)) = γα,β(κ,Mα,β(κ)) = κ.

Proof. By simple calculation we have

δ(κ,Mα,β(κ)) =
1

α
·

(
β · κ− 1

1− (β−α)·κ
1−α·κ

+ 1

)

36

=
1

α
·

(
β · κ− 1

1−α·κ−β·κ+α·κ
1−α·κ

+ 1

)

=
1

α
·
(
(1− α · κ) · β · κ− 1

1− β · κ
+ 1

)
=

1

α
· (α · κ)

= κ.

Similarly,

γ(κ,Mα,β(κ)) =

(
1− β

α

)
· κ
(β−α)·κ
1−α·κ

+
1

α

=
α− β
α
· κ · (1− α · κ)

(β − α) · κ
+

1

α

=
α · κ− 1

α
+

1

α
= κ.

Finally, we show g is non-negative.

Lemma 7.4. For all α, β, c ≥ 1, κ ∈
[
0, 1β

]
and τ ∈ [Mα,β(κ), βκ] it holds that gα,β,c(κ, τ) ≥ 0.

Proof. It holds that

gα,β,c(κ, τ) =
βκ− τ
α

· ln c− τ · H (γα,β(κ, τ))− (1− τ) · H (δα,β(κ, τ)) +H(κ)

≥ 0− τ · H (γα,β(κ, τ))− (1− τ) · H (δα,β(κ, τ)) +H(κ)
≥ −H (τ · γα,β(κ, τ) + (1− τ) · δα,β(κ, τ)) +H(κ)
= −H(κ) +H(κ) = 0,

where the first inequality holds since τ ≤ β ·κ and c ≥ 1. The second inequality holds as H is concave,
and the second equality follows from τ · γ(κ, τ) + (1− τ) · δ(κ, τ) = κ.

7.2 Convexity

In this section we fix some value for κ and analyze the function gα,β,c(κ, τ) as a function of τ . For all

κ ∈
[
0, 1β

]
, we define g

[κ]
α,β,c : (Mα,β(κ), β · κ)→ R via

g
[κ]
α,β,c(τ) := gα,β,c(κ, τ).

Recall that D (a∥b) = a ln a
b + (1− a) ln 1−a

1−b is the Kullback-Leibler divergence between two Bernoulli
distributions with parameters a and b.

Let (∂τgα,β,c)(κ0, τ0) and (∂2τ,τgα,β,c)(κ0, τ0) denote the first and second order partial derivatives of
the function gα,β,c(κ, τ) with respect to the variable τ , evaluated at (κ0, τ0). Lemmas 7.5 and 7.6 pro-
vide formulas for (∂τgα,β,c)(κ0, τ0) and (∂2τ,τgα,β,c)(κ0, τ0). The lemmas follow from a simple calculation
and we defer the proofs to Section 7.5.

Lemma 7.5. For all α, c ≥ 1 and β > 1 it holds that

(∂τgα,β,c)(κ, τ) = −
ln(c)

α
−D

(
1

α

∥∥∥∥γ(κ, τ))+D
(
1

α

∥∥∥∥δ(κ, τ)) .

37

We use the following functions to simplify the formula for (∂2τ,τgα,β,c)(κ, τ):

Γα,β(κ, τ) =
1

τ
· 1

γα,β(κ, τ) · (1− γα,β(κ, τ))
(42)

∆α,β(κ, τ) =
1

(1− τ)
· 1

δα,β(κ, τ) · (1− δα,β(κ, τ))
(43)

Lemma 7.6. For all α, c ≥ 1 and β > 1, the second order partial derivative of g(κ, τ) by τ , i.e.,
(∂2τ,τgα,β,c)(κ, τ) is given by

(∂2τ,τgα,β,c)(κ, τ) =

(
γ(κ, τ)− 1

α

)2

· Γα,β(κ, τ) +

(
δ(κ, τ)− 1

α

)2

·∆α,β(κ, τ).

We sometimes omit the subscript α, β, c from g
[κ]
α,β,c, (∂τgα,β,c) and (∂2τ,τgα,β,c) unless it causes

confusion.

Lemma 7.7. Let α, c ≥ 1, β > 1 and 0 < κ < 1
β . The function g

[κ]
α,β,c(τ) is strictly convex in the open

interval (Mα,β(κ), β · κ). In particular, the second order partial derivative of gα,β,c(κ, τ) with respect
to τ is strictly positive, i.e., (∂2τ,τg)(κ, τ) > 0 for all τ ∈ (Mα,β(κ), β · κ).

Proof. Let α, c ≥ 1, β > 1, by Lemma 7.6 and (43) and (42) we have

(∂2τ,τg)(κ, τ) =
1

τ
·

(
γ(κ, τ)− 1

α

)2
γ(κ, τ) ·

(
1− γ(κ, τ)

) +
1

1− τ
·

(
δ(κ, τ)− 1

α

)2
δ(κ, τ) ·

(
1− δ(κ, τ)

) .
By Lemmas 7.1 and 7.2, we have that 0 < δ(κ, τ) < 1

α < 1 and 0 < γ(κ, τ) < 1, since β > 1 and

τ ∈ (Mα,β(κ), β · κ) ⊆ (0, 1). Therefore, it follows that (∂2τ,τg)(κ, τ) > 0. Thus g[κ](τ) is a strictly
convex function.

Since g
[κ]
α,β,c(τ) is a continuous function of the variable τ , it attains its minimum over the closed

interval [Mα,β(κ), β · κ]. We show that up to some corner cases, the optimal value of τ lies within the
open interval (Mα,β(κ), β · κ). We use the following definition to easily exclude the corner cases.

Definition 7.8. We say α, β, c ≥ 1 are simple if β > 1 and none of the following conditions hold:

• α = β, or

• c = 1 and α < β.

Lemma 7.9. For all α ≥ 1, c ≥ 1, β > 1 and κ ∈
(
0, 1β

)
, there is a unique value of τ ∈ [Mα,β(κ), β ·κ],

denoted by τ∗α,β,c(κ), that minimizes gα,β,c(κ, τ). Furthermore, it holds that τ∗α,β,c(κ) < βκ, and if α, β, c

are simple then Mα,β(κ) < τ∗α,β,c(κ) < βκ and (∂τg)
(
κ, τ∗α,β,c(κ)

)
= 0.

Proof. Since the function g[κ](τ) is strictly convex by Lemma 7.7, the value

τ∗α,β,c(κ) = argmin
τ∈[Mα,β(κ),β·κ]

gα,β,c(κ, τ)

is uniquely defined. Also note that (∂τg)(κ, τ) is an increasing function of τ by Lemma 7.7.
By Lemma 7.5 we have

lim
τ→β·κ

(∂τg)(κ, τ) = lim
τ→β·κ

(
− ln(c)

α
−D

(
1

α

∥∥∥∥γ(κ, τ))+D
(
1

α

∥∥∥∥δ(κ, τ))
)

= − ln(c)

α
−D

(
1

α

∥∥∥∥ 1β
)
+D

(
1

α

∥∥∥∥ lim
τ→β·κ

δ(κ, τ)

)
=∞,

(44)

38

which follows from the fact that D
(
1
α

∥∥x) is a continuous function of x and limτ→β·κ δ(κ, τ) = 0. Thus,
there is ε > 0 such that (∂τg)(κ, τ) > 0 for all τ ∈ (βκ− ε, βκ), and hence g(κ, τ) is strictly increasing
in (βκ− ε, βκ), and by continuity in (βκ− ε, βκ]. This implies that τ∗α,β,c(κ) < βκ by its definition.

This above completes the proof for general values of α, β, c, and thus we can assume α, β, c are
simple from this point onward. Using Lemma 7.5 once more we get

lim
τ→Mα,β(κ)

(∂τg)(κ, τ) = −
ln(c)

α
− lim

τ→Mα,β(κ)
D
(
1

α

∥∥∥∥γ(κ, τ))+ lim
τ→Mα,β(κ)

D
(
1

α

∥∥∥∥δ (κ, τ)) . (45)

Consider the following cases.

• If α > β > 1 and c ≥ 1, we have

lim
τ→Mα,β(κ)

γ(κ, τ) = γ(κ,Mα,β(κ)) = γ

(
κ,
α− β
α− 1

· κ
)

= 1,

therefore limτ→Mα,β(κ)D
(
1
α

∥∥γ(κ, τ)) =∞. Similarly, by Lemma 7.1, we have

lim
τ→Mα,β(κ)

δ(κ, τ) = δ (κ,Mα,β(κ)) <
1

α
< 1,

and
lim

τ→Mα,β(κ)
δ(κ, τ) = δ (κ,Mα,β(κ)) > 0, (46)

since Mα,β(κ) > 0. Therefore it holds that limτ→Mα,β(κ)D
(
1
α

∥∥δ(κ, τ)) <∞ and by (45) we get

lim
τ→Mα,β(κ)

(∂τg)(κ, τ) = lim
τ→β·κ

(
− ln(c)

α
−D

(
1

α

∥∥∥∥γ(κ, τ))+D
(
1

α

∥∥∥∥δ(κ, τ))
)

= −∞.

• If β > α ≥ 1, c > 1, by Lemma 7.3 we have

lim
τ→Mα,β(κ)

δ(κ, τ) = δ(κ,Mα,β(κ)) = κ

and

lim
τ→Mα,β(κ)

γ(κ, τ) = γ(κ,Mα,β(κ)) = κ.

Thus, by (45), we have

lim
τ→Mα,β(κ)

(∂τg)(κ, τ) = −
ln(c)

α
−D

(
1

α

∥∥∥∥κ)+D
(
1

α

∥∥∥∥κ) = − ln(c)

α
< 0,

since c > 1.

So in both cases limτ→Mα,β(κ)(∂τg)(κ, τ) < 0. Thus, by (44) there is τ̃ ∈ (Mα,β(κ), β · κ) such that
(∂τg)(κ, τ̃) = 0, and since gα,β,c(κ, τ) is convex as a function of τ this implies τ∗α,β,c(κ) = τ̃ . Hence
(∂τg)(κ, τ

∗
α,β,c(κ)) = 0 and τ∗α,β,c(κ) ∈ (Mα,β(κ), β · κ).

Lemma 2.13. Let α, c ≥ 1, β > 1 and 0 < κ < 1
β . The function h(τ) = gα,β,c(κ, τ) is convex in the

domain [Mα,β(κ), β · κ] and minτ∈[Mα,β(κ),β·κ] gα,β,c(κ, τ) < h(βκ) = gα,β,c(κ, βκ).

Proof. The first part of the claim follows from the fact that g[κ](τ) is a continuous function on the
closed interval [Mα,β(κ), β · κ] and convex on the open interval (Mα,β(κ), β · κ) by Lemma 7.7. The
second part of the claim simply follows from Lemmas 7.7 and 7.9.

39

7.3 Concavity

In this section we prove Lemma 2.15, that is, we show g∗α,β,c(κ) is concave. The proof relies on
properties of the Hessian of gα,β,c when α, β, c are simple (see Definition 7.8). The excluded corner
cases, in which α, β, c are not simple, are handled separately.

As in previous sections, we use g and g∗ instead of gα,β,c and g
∗
α,β,c when the values of α, β and c

are known by context. Recall that the Hessian matrix of g at (κ, τ), denoted Hg(κ, τ), is defined by

Hg(κ, τ) =

∂2g(κ,τ)
∂κ2

∂2g(κ,τ)
∂κ∂τ

∂2g(κ,τ)
∂κ∂τ

∂2g(κ,τ)
∂τ2

 .

For every (κ, τ) in the domain of g, |Hg(κ, τ)| denotes the determinant of the Hessian of the function
g evaluated at (κ, τ). Specifically, we have

|Hg(κ, τ)| =
∂2g(κ, τ)

∂κ2
· ∂

2g(κ, τ)

∂τ2
−
(
∂2g(κ, τ)

∂κ∂τ

)2

.

Our proof is motivated by the second partial derivative test for multivariate functions, which uses the
Hessian to classify critical points to maximum, minimum and saddle points. Technically, we use the
Hessian directly and do explicitly rely on the second derivative test.

Recall that τ∗α,β,c(κ) is the unique value of the τ ∈ [Mα,β(κ), β · κ] that minimizes g
[κ]
α,β,c(τ).

Lemma 7.10. For all simple α, β, c ≥ 1 and κ ∈
(
0, 1β

)
, the determinant of the Hessian of g at

(κ, τ∗(κ)) is negative, i.e., |Hg(κ, τ
∗(κ))| < 0.

The proof of Lemma 7.10 is given in Section 7.4. We also use the next theorem from [22] (see
also [44]) to show that τ∗α,β,c is continuously differentiable and to calculate its derivative.

Theorem 7.11 (Implicit Function Theorem for R2, [22, Theorem 4]). Let G(x, y) be a real-valued
continuously differentiable function defined in a neighbourhood of (x0, y0) ∈ R2. Suppose that G(x, y)
satisfies the two conditions

G(x0, y0) = 0,

∂G(x, y)
∂y

∣∣∣∣∣
(x,y)=(x0,y0)

> 0.

Then there exist open intervals U ⊆ R and V ⊆ R, with x0 ∈ U, y0 ∈ V , and a function G : U → V
satisfying

G(x,G(x)) = 0, for all x ∈ U.

Furthermore, this function G is continuously differentiable with

G′(x0) =
∂G(x)

∂x

∣∣∣∣∣
x=x0

= −

∂G(x,y)
∂x

∣∣∣∣∣
(x,y)=(x0,y0)

∂G(x,y)
∂y

∣∣∣∣∣
(x,y)=(x0,y0)

.

We use Theorem 7.11 in the proof of the following lemma.

Lemma 7.12. For every simple α, β, c ≥ 1, the function τ∗α,β,c(κ) is continuously differentiable on(
0, 1β

)
. Moreover, for all κ0 ∈

(
0, 1β

)
it holds that

∂τ∗α,β,c(κ)

∂κ

∣∣∣∣∣
κ=κ0

= −
(∂2κ,τgα,β,c)(κ0, τ

∗
α,β,c(κ0))

(∂2τ,τgα,β,c)(κ0, τ
∗
α,β,c(κ0))

.

40

Proof. Let κ0 ∈
(
0, 1β

)
and τ0 = τ∗(κ0). Consider a function G defined on a neighborhood E of

(κ0, τ0) by
G (κ, τ) = (∂τgα,β,c) (κ, τ) ,

for every (κ, τ) ∈ E. Lemma 7.6 implies that the partial derivative ∂g(κ,τ)
∂τ of g(κ, τ) is continuously

differentiable. By Lemma 7.9 we have that G (κ0, τ0) = 0. Furthermore, by Lemma 7.7 we also have

∂G
∂τ

(κ0, τ0) =
∂2g(κ, τ)

∂τ2

∣∣∣∣∣
(κ,τ)=(κ0,τ0)

> 0,

therefore Theorem 7.11 implies that exists open intervals U, V with κ0 ∈ U, τ0 ∈ V and a continuously
differentiable function G : U → V such that

G
(
κ,G(κ)

)
=
∂g(κ, τ)

∂τ

∣∣∣∣∣
(κ,τ)=(κ,G(κ))

= 0 for all κ ∈ U.

By Lemma 7.9 it holds that τ0 ∈ (Mα,β(κ0), βκ0). So there is an environment U ′ ⊆ U of κ0 such that
G(κ) ∈ (Mα,β(κ), βκ) for all κ ∈ U ′. By Lemma 7.7 it also holds that g[κ] is strictly convex for every
κ ∈ U ′. Thus, by the definition of τ∗, we have G(κ) = τ∗(κ) for every κ ∈ U ′.

This implies that τ∗(κ) is continuously differentiable in a neighborhood of κ0. Since this holds for

all κ0 ∈
(
0, 1β

)
, it follows that τ∗(κ) is continuously differentiable on

(
0, 1β

)
. Moreover, Theorem 7.11

further implies

G′(κ0) =
∂τ∗(k)

∂κ

∣∣∣∣∣
κ=κ0

= −
(∂2κ,τgα,β,c)(κ0, τ0)

(∂2τ,τgα,β,c)(κ0, τ0)
.

Lemma 7.13. For every simple α, β, c ≥ 1 and κ ∈
(
0, 1β

)
It holds that

∂2g∗α,β,c(κ)

∂κ2

∣∣∣∣∣
κ=κ0

< 0.

Proof. Let κ0 ∈
(
0, 1β

)
and τ0 = τ∗α,β,c(κ0). Using the chain rule for differentiation we get

∂g∗(κ)

∂κ

∣∣∣∣∣
κ=κ0

=
∂g(κ, τ)

∂κ

∣∣∣∣∣
(κ,τ)=(κ0,τ0)

+
∂g(κ, τ)

∂τ

∣∣∣∣∣
(κ,τ)=(κ0,τ0)

· ∂τ
∗(κ)

∂κ

∣∣∣∣∣
κ=κ0

=
∂g(κ, τ)

∂κ

∣∣∣∣∣
(κ,τ)=(κ0,τ0)

= (∂κg)(κ0, τ
∗(κ0))

(47)

where the second equality follows from ∂g(κ,τ)
∂τ

∣∣∣∣∣
(κ,τ)=(κ0,τ0)

= 0 by Lemma 7.9. By (47) and using

Lemma 7.12 we get

∂2g∗(κ)

∂2κ

∣∣∣∣∣
κ=κ0

= (∂2κ,κg)(κ0, τ0) +
∂τ∗(κ)

∂κ

∣∣∣∣
κ=κ0

· (∂2κ,τg)(κ0, τ0)

= (∂2κ,κg)(κ0, τ0)−
(∂2κ,τg)(κ0, τ0)

(∂2τ,τg)(κ0, τ0)
· (∂2κ,τg)(κ0, τ0)

=
1

(∂2τ,τg)(κ0, τ0)
·

(
(∂2κ,κg)(κ0, τ0) · (∂2τ,τg)(κ0, τ0)−

(
(∂2κ,τg)(κ0, τ0)

)2)

41

=
1

(∂2τ,τg)(κ0, τ0)
· |Hg(κ0, τ0)|

< 0,

where the last inequality follows from Lemmas 7.7 and 7.10.

It can also be easily shown using standard calculus arguments that g
[κ]
α,β,c(κ) is continuous in the

closed interval
[
0, 1β

]
(see, e.g., [61]). Thus, the following corollary is an immediate consequence of

Lemma 7.13.

Corollary 7.14. For every simple α, β, c ≥ 1 it holds that g∗α,β,c is concave on the interval
[
0, 1β

]
.

To complete the proof Lemma 2.15 we need to handle the corner cases excluded from Corollary 7.14.

Lemma 7.15. For all β > α ≥ 1 and c = 1, it holds that g∗α,β,c(κ) is concave in the interval
[
0, 1β

]
.

Proof. For every κ ∈
[
0, 1β

]
, by the definition of τ∗, it holds that

gα,β,1

(
κ, τ∗α,β,1(κ)

)
≤ g (κ,Mα,β(κ))

=
β · κ−Mα,β(κ)

α
· ln(1)−Mα,β(κ) · H

(
γ (κ,Mα,β(κ))

)
− (1−Mα,β(κ)) · H

(
δ (κ,Mα,β(κ))

)
+H(κ)

= H(κ) ·
(
−Mα,β(κ)−

(
1−Mα,β(κ)

)
+ 1

)
= 0,

where the second equality follows from Lemma 7.3. By Lemma 7.4 we also have gα,β,1

(
κ, τ∗α,β,1(κ)

)
≥

0. So g∗α,β,1

(
κ) = gα,β,1

(
κ, τ∗α,β,1(κ)

)
= 0. Thus, the function is trivially concave.

Another easy to handle corner case occurs when α = β and c = 1.

Lemma 7.16. Let α > 1 and c = 1, then g∗α,α,c(κ) = 0 for all κ ∈
[
0, 1β

]
.

Proof. Let κ ∈
[
0, 1β

]
. By Lemma 7.4, for every τ ∈ [Mα,α(κ), α · κ] = [0, ακ], it holds that

gα,α,c(κ, τ) ≥ 0. Furthermore,

gα,α,c(κ, 0) =

(
κ− 0

α

)
· ln c− 0 · H (γα,α(κ, 0))− (1− 0) · H (δα,α(κ, 0)) +H(κ)

= −
(
κ− 0

α

)
· 0−H(κ) +H(κ) = 0.

So we have
g∗α,α,c(κ) = min

τ∈[0,α·κ]
gα,α,c(κ, τ) = 0.

We are left to handle the case in which α = β > 1 and c > 1. The analysis for this case is based
on ideas from [26]. The analysis is also used as part of the proof of Lemma 2.19. We first provide an
explicit formula for g∗(κ) in this case.

Lemma 7.17. Let α > 1 and c > 1. Then

g∗α,α,c(κ) = κ · ln c−

{
0 κ < δ∗

D (κ∥δ∗) κ ≥ δ∗
.

for all κ ∈
(
0, 1α

)
where δ∗ ∈

(
0, 1α

)
is the unique value which satisfies D

(
1
α

∥∥δ∗) = ln c
α .

42

In the proof of Lemma 7.17 we use the following identity.

Lemma 7.18. For all a, b ∈ (0, 1) it holds that

H(a)− (a− b) · ln
(
1− a
a

)
= D (b∥a) +H(b).

Proof. By expanding the term H(a) we get

H(a)− (a− b) · ln
(
1− a
a

)
= − a ln a− (1− a) ln(1− a)− (a− b) ln(1− a) + (a− b) ln a

= − b ln a− (1− b) ln(1− a)

= b ln

(
b

a

)
+ (1− b) ln

(
1− b
1− a

)
− b ln b− (1− b) ln(1− b)

= D (b∥a) +H(b).

Proof of Lemma 7.17. Define τ̃(κ) = κ−δ∗
1
α
−δ∗

. It can be easily verified that δα,α(κ, τ̃(κ)) = δ∗ for all

κ ∈
[
0, 1α

]
. By Lemma 7.5 we have

(∂τgα,α,c)(κ, τ̃(κ)) = − ln(c)

α
−D

(
1

α

∥∥∥∥γα,α(κ, τ̃(κ)))+D
(
1

α

∥∥∥∥δα,α(κ, τ̃(κ)))
= − ln(c)

α
−D

(
1

α

∥∥∥∥ 1α
)
+D

(
1

α

∥∥∥∥δ∗)
= − ln(c)

α
+− ln(c)

α
= 0,

where the third equality follows from the definition of δ∗. By Lemma 2.13 it holds that gα,α,c(κ, τ) is
convex as a function of τ , and we can conclude that the function has a global minimum at τ̃(κ).

It also holds that

τ̃(κ) =
κ− δ∗
1
α − δ∗

=
α · κ ·

(
1
α − δ

∗)+ ακδ∗ − δ∗
1
α − δ∗

≤ ακ

for all κ ≤ 1
α .

Thus, for every δ∗ ≤ κ ≤ 1
β it holds that τ̃(κ) ≥ 0, and hence,

g∗α,α,c(κ) = min
0≤τ≤ακ

gα,α,c(κ, τ)

= gα,α,c(κ, τ̃(κ))

=

(
κ− τ̃(κ)

α

)
· ln c− τ̃(κ) · H

(
1

α

)
− (1− τ̃(κ)) · H (δα,α(κ, τ̃(κ))) +H(κ)

= κ · ln c− τ̃(κ) · D
(
1

α

∥∥∥∥δ∗)− τ̃(κ) · H(1

α

)
− (1− τ̃(κ)) · H(δ∗) +H(κ)

= κ · ln c− τ̃(κ) ·
(
H(δ∗)−

(
δ∗ − 1

α

)
· ln
(
1− δ∗

δ∗

))
− (1− τ̃(κ)) · H(δ∗) +H(κ)

= κ · ln c+ τ̃(κ) ·
(
δ∗ − 1

α

)
· ln
(
1− δ∗

δ∗

)
−H(δ∗) +H(κ)

The forth equality holds as ln c
α = D

(
1
α

∥∥δ∗), and the fifth equality follows from Lemma 7.18. By the
definition of τ̃(κ) we have τ̃(κ)

(
δ − 1

α

)
= (δ∗ − κ), thus for every δ∗ ≤ κ < 1

β we have

g∗α,α,c(κ) = κ · ln(c) + τ̃(κ) ·
(
δ∗ − 1

α

)
· ln
(
1− δ∗

δ∗

)
−H(δ∗) +H(κ)

= κ · ln(c) + (δ∗ − κ∗) · ln
(
1− δ∗

δ∗

)
−H(δ∗) +H(κ)

= κ · ln(c)−D (κ∥δ∗) ,

(48)

43

where the last equality follows from Lemma 7.18.
Also, for every 0 ≤ κ < δ∗ it holds that τ̃(κ) < 0. Hence, since gα,α,c(κ, τ) is convex as a function

of τ (Lemma 7.7), it holds that

g∗α,α,c(κ) = min
0≤τ≤ακ

gα,α,c(κ, τ)

= gα,α,c(κ, 0)

=

(
κ− 0

α

)
· ln c− 0 · H

(
1

α

)
− (1− 0) · H (δα,α(κ, 0)) +H(κ)

= κ · ln c−H (κ) +H(κ)
= κ · ln c.

(49)

By (48) and (49) it holds that

g∗α,α,c(κ) = κ · ln c−

{
0 κ < δ∗

D (κ∥δ∗) κ ≥ δ∗
.

Observe the function

ζ(x) =

{
0 x < δ∗

D (x∥δ∗) x ≥ δ∗

is convex. Thus the following is a corollary of Lemma 7.17 and the continuity of g∗α,α,c(κ).

Corollary 7.19. For every α > 1 and c > 1 it holds that g∗α,α,c(κ) is concave on
[
0, 1α

]
.

We can now proceed to the proof of Lemma 2.15.

Lemma 2.15. For all α, c ≥ 1 and β > 1, it holds that g∗α,β,c(κ) is concave in the interval
[
0, 1β

]
.

Proof. The lemma follows immediately from Corollary 7.14, Lemmas 7.15 and 7.16, and Corollary 7.19.

We also use the formula in Lemma 7.17 to prove Lemma 2.19.

Lemma 2.19. For every β, c > 1 it holds that best(β, c, β) = amlsα=β(β, c).

Proof. Let β, c > 1 and let δ∗ ∈
(
0, 1β

)
be the unique value such that D

(
1
β

∥∥∥δ∗) = ln c
β . Then by

Lemma 7.17 it holds that

max
0≤κ≤ 1

β

g∗β,β,c(κ) = max
0≤κ≤ 1

β

(
κ · ln c−

{
0 κ < δ∗

D (κ∥δ∗) κ ≥ δ∗

)
= max

δ∗≤κ≤ 1
β

(κ · ln c−D (κ∥δ∗)) .

Define h(κ) = κ ln c−D (κ∥δ∗). Then, by Corollary 2.12 and (11), we get

best(β, c, β) = amls(β, c, β) = exp

(
max

0≤κ≤ 1
β

g∗β,β,c(κ)

)
= exp

(
max

δ∗≤κ≤ 1
β

h(κ)

)
. (50)

Let h′ be the derivative of h, and observe that ∂D(a∥b)
∂a = ln

(
a

1−a ·
1−b
b

)
. So

h′(κ) = ln c− ln

(
κ

1− κ
· 1− δ

∗

δ∗

)
. (51)

Since h is concave it can be trivially deduced that h′(κ) is increasing in κ ∈ [δ∗, κ∗]. Furthermore,

h′(δ∗) = ln(c)− ln

(
δ∗

1− δ∗
· 1− δ

∗

δ∗

)
= ln(c) > 1 (52)

44

and

h′
(
1

β

)
= ln(c)− ln

(
1
β

1− 1
β

· 1− δ
∗

δ∗

)

= β · D
(
1

β

∥∥∥∥δ∗)− ln

(
1
β

1− 1
β

· 1− δ
∗

δ∗

)

= β · 1
β
· ln

(

1
β

)
δ∗

+ β ·
(
1− 1

β

)
· ln

(
1− 1

β

1− δ∗

)
− ln

(
1
β

1− 1
β

· 1− δ
∗

δ

)

= β · ln

(
1− 1

β

1− δ∗

)
< 0,

(53)

where the second equality uses ln c
β = D

(
1
β

∥∥∥δ∗) and the last inequality holds since δ < 1
β . By (52)

and (53), there is k∗ ∈
(
δ∗, 1β

)
such that h′ (κ∗) = 0. Furthermore, by (51) and simple algebraic

manipulation, we get κ∗ = c·δ∗
1+δ∗(c−1) . Therefore,

max
δ∗≤κ≤ 1

β

h(κ) = h(κ∗). (54)

It also holds that

D (κ∗∥δ∗) = κ∗ · ln
(
κ∗

δ∗

)
+ (1− κ∗) · ln

(
1− κ∗

1− δ∗

)
= κ∗ ·

(
κ∗

1− κ∗
· 1− δ

∗

δ∗

)
+ ln

(
1− κ∗

1− δ∗

)
= κ∗ ln(c) + ln

(
1− κ∗

1− δ∗

)
,

where the last equality follows from h′(κ∗) = 0 and (51). Thus,

h(κ∗) = κ∗ ln(c)−D (κ∗∥δ∗) = − ln

(
1− κ∗

1− δ∗

)
= − ln

(
1− c·δ∗

1+δ∗(c−1)

1− δ∗

)
= ln (1 + (c− 1)δ∗) .

By the above equitation, (50) and (54) we have best(β, c, β) = 1+(c−1)·δ∗. Thus, 1 ≤ best(β, c, β) ≤
1 + c−1

β and

D
(
1

β

∥∥∥∥best(β, c, β)− 1

c− 1

)
= D

(
1

β

∥∥∥∥δ∗) =
ln(c)

β
.

So best(β, c, β) = amlsα=β(β, c) by the definition of amlsα=β.

7.4 The Determinant of the Hessian is Negative

In this section we prove Lemma 7.10, that is, we show the determinant of the Hessian of g is negative.
To do so we first obtain an explicit formula for the Hessian. Recall Γ and ∆ are defined in (42) and
(43).

Lemma 7.20. Let α ≥ 1, β > 1 such that α ̸= β, κ ∈
(
0, 1β

)
and τ ∈ (Mα,β(κ), β · κ). Then

|Hg(κ, τ)| =
Γα,β(κ, τ) ·∆α,β(κ, τ)

α2 · (1− κ)
·

(
1− β

α

)
· (γα,β(κ, τ)− δα,β(κ, τ))

γα,β(κ, τ)− 1
α

·

(Aα,β (γα,β(κ, τ)) + δα,β(κ, τ) ·Bα,β (γα,β(κ, τ))) ,

where

Aα,β(x) := −2 + x (1 + α+ β)− α · β · x2 and

Bα,β(x) := x · α · (β − 2) + 1 + α− β.

45

The formula in Lemma 7.20 is derived from a technical computation of |Hg(κ, τ)| followed by
re-arrangement of the terms. We defer the proof of Lemma 7.20 to Section 7.6. We use the notation
Aα,β and Bα,β (or just A and B) to refer to the functions defined in Lemma 7.20.

As before, we often omit the subscripts α, β from functions (e.g., δ(κ, τ) instead of δα,β(κ, τ))
when α, β are known by context. Furthermore, we often also omit the function parameters (κ, τ)
when known by context (e.g., δ instead of δα,β(κ, τ)).

By Lemmas 7.1 and 7.2, for every α ≥ 1, β > 1 such that α ̸= β κ ∈ (0, 1β) and τ ∈ (Mα,β(κ), β · κ)
it holds that δα,β(κ, τ), γα,β(κ, τ) ∈ (0, 1). So Γα,β(κ, τ), ∆α,β(κ, τ) > 0. Also, by Lemma 7.2, if β < α

it holds that
(
1− β

α

)
> 0 and γ − 1

α > 0, and if β > α it holds that
(
1− β

α

)
< 0 and γ − 1

α < 0.

Hence, (
1− β

α

)
γα,β(κ, τ)− 1

α

> 0

in both cases. Following the above argument and Lemma 7.20 we attain the next corollary.

Corollary 7.21. Let α ≥ 1, β > 1 such that α ̸= β, κ ∈ (0, 1β) and τ ∈ (Mα,β(κ), β · κ). Then
|Hg(κ, τ)| < 0 if and only if

(Aα,β (γα,β(κ, τ)) + δα,β(κ, τ) ·Bα,β (γα,β(κ, τ))) · (γα,β(κ, τ)− δα,β(κ, τ)) < 0.

The following lemma allows us to determine the sign of |Hg(κ, τ)| using an even simpler expression.

Lemma 7.22. Let α ≥ 1, β > 1 such that α ̸= β, κ ∈
(
0, 1β

)
and τ ∈ (Mα,β(κ), β · κ). Then

γα,β(κ, τ) > δα,β(κ, τ).

Proof. Consider the following cases.

• If α > β > 1, by Lemmas 7.1 and 7.2, we immediately have that δ(κ, τ) < 1
α <

1
β ≤ γ(κ, τ).

• If β > α ≥ 1, then by Lemma 7.2 it holds that γ > κ. Furthermore, by Lemma 7.1

δ(κ, τ) ≤ δ(κ,Mα,β(κ, τ)) =
β
ακ−

1
α

1−Mα,β(κ)
+

1

α
=

β
ακ−

1
α

1− β−α
1−ακ · κ

+
1

α
=

β
ακ−

1
α

1−ακ−(β−α)κ
1−ακ

+
1

α

=
1
α (βκ− 1)

1− βκ
· (1− ακ) + 1

α
= κ.

Thus, δ ≤ κ < γ.

By Corollary 7.23 and Lemma 7.22 we obtain the following.

Corollary 7.23. Let α ≥ 1, β > 1 such that α ̸= β, κ ∈
(
0, 1β

)
and τ ∈ (Mα,β(κ), β · κ). Then

|Hg(κ, τ)| < 0 if and only if

Aα,β (γα,β(κ, τ)) + δα,β(κ, τ) ·Bα,β (γα,β(κ, τ)) < 0.

We proceed to analyze the functions Aα,β and Bα,β towards our goal of showing that Aα,β(γ)+ δ ·
Bα,β(γ) is negative.

Lemma 7.24. For every α, β ≥ 1 such that α ̸= β, κ ∈
(
0, 1β

)
and τ ∈

(
Mα,β(κ), β · κ

)
it holds that

Aα,β

(
γ(κ, τ)

)
< 0.

Proof. We can re-write Aα,β (as defined in Lemma 7.20) as

Aα,β(x) = −α · β ·
(
x− 1 + α+ β

2 · α · β

)2
− 2 +

(α+ β + 1)2

4 · α · β
.

Note that Aα,β(x) is a quadratic polynomial in x, which reaches its maximum value at x0 := 1+α+β
2·α·β .

Consider the following cases.

46

• If x0 ≤ 1, then for every x ∈ (0, 1) we have

Aα,β(x) ≤ Aα,β(x0) = − α · β(x0 − x0)2 − 2 + x20 = − 2 + x20 < 0,

where the last inequality holds as 0 ≤ x0 ≤ 1.

• If x0 > 1, then Aα,β(x) is monotonically increasing in [0, 1]. Thus, for every x ∈ (0, 1), it holds
that

Aα,β(x) < Aα,β(1) = − 2 + (1 + α+ β)− α · β = − (α− 1)(β − 1) ≤ 0.

So overall Aα,β(x) < 0 for all x ∈ (0, 1). By Lemma 7.2 it holds that γα,β(κ, τ) ∈ (0, 1). So
Aα,β (γα,β(κ, τ)) < 0.

The tools attained so far suffice to show that A(γ) + δ ·B(γ) is negative in case α < β.

Lemma 7.25. For all β > α ≥ 1, κ ∈
(
0, 1β

)
and τ ∈

(
Mα,β(κ), β · κ

)
it holds that

A
(
γ(κ, τ)

)
+ δ(κ, τ) ·B

(
γ(κ, τ)

)
< 0.

Proof. Consider the following cases.

• If B(γ(κ, τ)) ≤ 0, then δ ≥ 0 by Lemma 7.1. So

A
(
γ(κ, τ)

)
+ δ(κ, τ) ·B

(
γ(κ, τ)

)
≤ A

(
γ(κ, τ)

)
< 0,

where the last inequality follows from Lemma 7.24.

• If B(γ(κ, τ)) > 0, we can use γα,β(κ, τ) > δα,β(κ, τ) (Lemma 7.22) to obtain

A(γ) + δ ·B(γ) < A(γ) + γ ·B(γ)

= −2 + γ (1 + β + α)− β · α · γ2 + α · (β − 2) · γ2 + γ · (1 + α− β)
= γ2 · (−2α) + γ · (2(α+ 1))− 2

= −2 · (1− γ) · (1− α · γ) ≤ 0,

where the last inequality follows from γ ≤ 1
α by Lemma 7.2.

Lemma 7.25 suffices to show Lemma 7.10 for the case β > α ≥ 1.

Lemma 7.26. For all β > α ≥ 1, c > 1 and κ ∈
(
0, 1β

)
it holds that |Hg(κ, τ

∗(κ))| < 0.

Proof. By Lemma 7.9 it holds that τ∗(κ) ∈ (Mα,β(κ), β · κ) and (∂τg)(κ, τ
∗(κ)) = 0. By Lemma 7.25

we have

A
(
γ(κ, τ∗(κ))

)
+ δ(κ, τ∗(κ)) ·B

(
γ(κ, τ∗(κ))

)
< 0.

Thus, by Corollary 7.23, we get |Hg(κ, τ
∗(κ))| < 0.

Note that Lemma 7.25 implies a stronger claim than the one stated in Lemma 7.26: for all β >
α ≥ 1 and (κ, τ) the determinant Hessian evaluated at (κ, τ) is negative. This property, however, does
not hold if α > β > 1, i.e., in this case the determinant of the Hessian may be positive for some values
of (κ, τ). We use the following lemma to restrict the possible values κ and τ may take.

Lemma 7.27. For all α > β > 1, c ≥ 1, κ ∈ (0, 1β) and τ ∈ (Mα,β(κ), β ·κ) such that (∂τg)(κ, τ) = 0,

it holds that D
(
1
α

∥∥γα,β(κ, τ)) ≤ D (1α∥∥δα,β(κ, τ)).
Proof. By Lemma 7.5, the condition (∂τg)(κ, τ) = 0 is equivalent to

−D
(
1

α

∥∥∥∥γ(κ, τ))+D
(
1

α

∥∥∥∥δ(κ, τ)) =
ln(c)

α
≥ 0

since c ≥ 1. Therefore, D
(
1
α

∥∥γα,β(κ, τ)) ≤ D (1α∥∥δα,β(κ, τ)).
47

The next lemmas enables us to further simplify the criteria in Corollary 7.23.

Lemma 7.28. Let α > β > 1, κ ∈
(
0, 1β

)
and τ ∈

(
Mα,β(κ), β · κ

)
, then Bα,β

(
γα,β(κ, τ)

)
> 0.

Proof. Consider the following cases.

• If β ≥ 2, it holds that

B(γ) = γ · α · (β − 2) + 1 + α− β ≥ 0 · α(β − 2) + 1 + α− β = 1 + α− β > 0,

where the first inequality follows from γ(κ, τ) ≥ 0 (Lemma 7.2) and the last inequality uses β < α.

• If β < 2, since γ < 1 (Lemma 7.2) we have that

B(γ) = γ · (β − 2) · α+ 1 + α− β > 1 · α (β − 2) + 1 + α− β = (β − 1) · (α− 1) ≥ 0.

For every α > β > 1 we define Cα,β : (0, 1)→ R via

Cα,β(x) := −
Aα,β(x)

Bα,β(x)
(55)

for all x ∈ (0, 1). Lemma 7.28 and corollary 7.23 imply the following.

Corollary 7.29. Let α > β > 1, κ ∈
(
0, 1β

)
and τ ∈

(
Mα,β(κ), β · κ

)
. Then |Hg(κ, τ)| < 0 if and

only if C(γα,β(κ, τ)) > δα,β(κ, τ).

The following lemma utilizes Lemma 7.27 to show that the condition in Corollary 7.29 holds on
critical points of gα,β,c.

Lemma 7.30. Let α > β > 1, c ≥ 1, κ ∈ (0, 1β) and τ ∈ (Mα,β(κ), β · κ), such that (∂τg)(κ, τ) = 0.

Then Cα,β

(
γ(κ, τ)

)
> δα,β(κ, τ).

Proof. The next claim allows us to eliminate the dependency on β.

Claim 7.31. Cα,β (γ(κ, τ)) >
γα,β(κ,τ)

2·α·γα,β(κ,τ)−1 .

Proof. For every β̃ ∈ (1, α) can rewrite

Aα,β̃(x) = −2+x
(
1 + α+ β̃

)
−αβ̃x2 = −2+x(1+α)+β̃x·(1− αx) = a(α, x)−β̃x (αx− 1) , (56)

where a(α, x) := −2 + x (1 + α). Similarly, for every β̃ ∈ (1, α) it holds that

Bα,β̃(x) = x · α ·
(
β̃ − 2

)
+ 1+ α− β̃ = β̃ (αx− 1)− 2 · x · α+ 1+ α = β̃(αx− 1) + b(α, x), (57)

where b(α, x) := −2 · x · α+ 1 + α.
Using (56) and (57), for every β̃ ∈ (1, α) and x ∈

(
1
α , 1
)
it holds that

Aα,β̃(x) + x ·Bα,β̃(x) = a(α, x) + x · b(α, x)

= − 2 + x(1 + α)− 2 · x2 · α+ x+ αx

= 2 ·
(
−1 + x(1 + α)− x2 · α

)
> 0.

(58)

The last inequality holds as ζ(x) = −1 + x(1 + α) − αx2 is concave and ζ
(
1
α

)
= ζ(1) = 0. Observe

the sum Aα,β̃(x) + x ·Bα,β̃(x) does not depend on β̃.
By (58) we have

Cα,β̃(x) = −
Aα,β̃(x)

Bα,β̃(x)
= −

Aα,β̃(x) + x ·Bα,β̃(x)− x ·Bα,β̃(x)

Bα,β̃(x)
= x− a(α, x) + x · b(α, x)

Bα,β̃(x)
. (59)

48

For a fixed x > 1
α , by (57), we have Bα,β̃(x) is increasing as a function of β̃. Hence, by (58) and (59), the

expression Cα,β̃(x) is increasing as a function of β̃. By Lemma 7.2 it holds that 1
α <

1
β < γ(κ, τ) < 1.

Using the monotonicity property of Cα,β̃(x) we get

Cα,β (γ) > Cα, 1
γ
(γ)

= −
Aα, 1

γ
(γ)

Bα, 1
γ
(γ)

= −
−2 + γ(1 + α) + 1

γ · γ · (1− α · γ)
1
γ (αγ − 1)− 2 · γ · α+ 1 + α

= − −1 + γ

2α− 2γα+ 1− 1
γ

=
γ

2 · α · γ − 1

where the last equality follows from a re-arrangement of terms. ⌟

We combine Claim 7.31 with the following inequality.

Claim 7.32. For every x ∈
[
1
α , 1
)
it holds that D

(
1
α

∥∥∥ x
2αx−1

)
≤ D

(
1
α

∥∥x).
Proof. Define h(x) = D

(
1
α

∥∥x)−D (1
α

∥∥∥ x
2αx−1

)
. The statement of the claim is equivalent to h(x) ≥ 0

for all x ∈
[
1
α , 0
)
. Recall ∂D(a∥b)

∂b = b−a
b(1−b) . Therefore,

∂

∂x

(
D
(
1

α

∥∥∥∥ x

2αx− 1

))
=

2αx− 1− x · 2α
(2αx− 1)2

·
x

2αx−1 −
1
α

x
2αx−1 ·

(
1− x

2αx−1

)
= −

(
x− 1

α
(2αx−1)

2αx−1

)
x(2αx− 1− x)

=
x− 1

α

x(2αx− 1− x)(2αx− 1)
.

Let h′ be the derivative of h. Thus,

h′(x) =
x− 1

α

x(1− x)
−

x− 1
α

x(2αx− 1− x)(2αx− 1)
=

x− 1
α

x

(
1

1− x
− 1

(2αx− 1− x)(2αx− 1)

)
.

For every x ∈
[
1
α , 1
)
it holds that 1− x, x− 1

α , 2αx− 1− x, 2αx− 1 ≥ 0. So

h′(x) ≥ 0 ⇐⇒
1− x ≤ (2 · αx− x− 1) · (2αx− 1) ⇐⇒
1− x ≤ 4α2x2 − 2αx− 2αx2 + x− 2αx+ 1 ⇐⇒
0 ≤ 2x · (xα− 1)(2α− 1).

As the last condition is true for all x ∈
[
1
α , 1
)
, it follows that h′(x) ≥ 0. So h is (weakly) increasing in[

1
α , 1
)
. Hence,

h(x) ≥ h
(
1

α

)
= D

(
1

α

∥∥∥∥ 1α
)
−D

(
1

α

∥∥∥∥∥ 1
α

2α · 1α − 1

)
= D

(
1

α

∥∥∥∥ 1α
)
−D

(
1

α

∥∥∥∥ 1α
)

= 0

for all x ∈
[
1
α , 1
)
. ⌟

To wrap-up the proof, consider the following cases.

49

• If Cα,β (γα,β(κ, τ)) > 1
α , then δα,β(κ, τ) <

1
α by Lemma 7.1. So δα,β(κ, τ) < Cα,β (γα,β(κ, τ)).

• If Cα,β(γ) ≤ 1
α , then D

(
1
α

∥∥x) is decreasing in the interval
[
0, 1α

]
. Thus

D
(
1

α

∥∥∥∥Cα,β(γ)

)
< D

(
1

α

∥∥∥∥ γ

2 · α · γ − 1

)
≤ D

(
1

α

∥∥∥∥γ) ≤ D
(
1

α

∥∥∥∥δ) .
The first inequality follows from Claim 7.31, the second follows from Claim 7.32 (recall γ ∈

(
1
α , 1
)

by Lemma 7.2) and the last inequality follows from Lemma 7.27. Since Cα,β(γ), δ ≤ 1
α (see

Lemma 7.1), it follows that Cα,β(γ) < δ.

The next lemma follows from Lemma 7.30.

Lemma 7.33. For all α > β > 1, c ≥ 1 and κ ∈
(
0, 1β

)
it holds that |Hg(κ, τ

∗(κ))| < 0.

Proof. By Lemma 7.9 it holds that τ∗(κ) ∈ (Mα,β(κ), β · κ) and (∂τg)(κ, τ
∗(κ)) = 0. Thus, by

Lemma 7.30, we have Cα,β (γ(κ, τ
∗(κ))) > δ (κ, τ∗(κ)). So |Hg(κ, τ

∗(κ))| < 0 by Corollary 7.29.

We can now proceed to the proof of Lemma 7.10.

Lemma 7.10. For all simple α, β, c ≥ 1 and κ ∈
(
0, 1β

)
, the determinant of the Hessian of g at

(κ, τ∗(κ)) is negative, i.e., |Hg(κ, τ
∗(κ))| < 0.

Proof. The lemma follows from Lemmas 7.26 and 7.33.

7.5 Partial Derivatives

In this section we calculate the partial derivatives of the function gα,β,c(κ, τ). For notational brevity,
we use the following naming scheme for the partial derivatives:

(∂κgα,β,c)(κ0, τ0) :=
∂gα,β,c(κ, τ)

∂κ

∣∣∣
(κ,τ)=(κ0,τ0)

(∂τgα,β,c)(κ0, τ0) :=
∂gα,β,c(κ, τ)

∂τ

∣∣∣
(κ,τ)=(κ0,τ0)

(∂2κ,τgα,β,c)(κ0, τ0) :=
∂2gα,β,c(κ, τ)

∂κ∂τ

∣∣∣
(κ,τ)=(κ0,τ0)

(∂2κ,κgα,β,c)(κ0, τ0) :=
∂2gα,β,c(κ, τ)

∂κ2

∣∣∣
(κ,τ)=(κ0,τ0)

(∂2τ,τgα,β,c)(κ0, τ0) :=
∂2gα,β,c(κ, τ)

∂τ2

∣∣∣
(κ,τ)=(κ0,τ0)

We sometimes omit the subscript (α, β, c) from (∂κgα,β,c), (∂τgα,β,c), (∂
2
κ,κgα,β,c), (∂

2
τ,τgα,β,c) and

(∂2κ,τgα,β,c).

Recall that D (a∥b) = a ln a
b+(1−a) ln 1−a

1−b is the Kullback-Leibler divergence between two Bernoulli
distributions with parameters a and b. In the next lemmas, we use algebraic properties of the KL
divergence to calculate the partial derivatives of g(κ, τ).

It can be easily verified that the partial derivatives of D (a∥b) and H(x) are

∂D (a∥b)
∂b

=
b− a
b(1− b)

(60)

∂H(x)
∂x

= ln

(
1− x
x

)
. (61)

50

Moreover, the partial derivatives of γ(κ, τ) and δ(κ, τ) are

∂γ(κ, τ)

∂κ
=

(
1− β

α

)
· 1
τ

(62)

∂γ(κ, τ)

∂τ
= −

(
1− β

α

)
κ

τ2
= −

γ(κ, τ)− 1
α

τ
(63)

∂δ(κ, τ)

∂κ
=

β

α · (1− τ)
(64)

∂δ(κ, τ)

∂τ
=

(β · κ− 1)

α · (1− τ)2
=
δ(κ, τ)− 1

α

1− τ
(65)

For notational brevity, we sometimes omit the arguments (κ, τ) from γ(κ, τ) and δ(κ, τ), and simply
use γ and δ instead.

Lemma 7.5. For all α, c ≥ 1 and β > 1 it holds that

(∂τgα,β,c)(κ, τ) = −
ln(c)

α
−D

(
1

α

∥∥∥∥γ(κ, τ))+D
(
1

α

∥∥∥∥δ(κ, τ)) .
Proof. By (61) and standard derivation rules we have

(∂τg)(κ, τ) =
∂

∂τ

(
βκ− τ
α

ln c− τ · H (γα,β(κ, τ))− (1− τ) · H (δα,β(κ, τ)) +H (κ)

)

= − ln(c)

α
−H(γ) +H(δ)− τ · ln

(
1− γ
γ

)
· ∂γ(κ, τ)

∂τ
− (1− τ) · ln

(
1− δ
δ

)
· ∂δ(κ, τ)

∂τ

= − ln(c)

α
−H(γ) +H(δ) +

(
γ − 1

α

)
· ln
(
1− γ
γ

)
−
(
δ − 1

α

)
· ln
(
1− δ
δ

)
= − ln(c)

α
−D

(
1

α

∥∥∥∥γ)+H
(
1

α

)
+D

(
1

α

∥∥∥∥δ)−H(1

α

)
= − ln(c)

α
−D

(
1

α

∥∥∥∥γ)+D
(
1

α

∥∥∥∥δ)
where the third equality uses (63) and (65), and the forth follows from Lemma 7.18.

Lemma 7.34. For all α, c ≥ 1 and β > 1 it holds that

(∂κgα,β,c)(κ, τ) =
β

α
· ln(c) + (β − α) ·

(
D
(
1

α

∥∥∥∥γ(κ, τ))+ ln
(
1− γ(κ, τ)

))

− β ·

(
D
(
1

α

∥∥∥∥δ(κ, τ))+ ln
(
1− δ(κ, τ)

))

+ α ·

(
D
(
1

α

∥∥∥∥κ)+ ln
(
1− κ

))
.

The following identify is used in the proof of Lemma 7.34.

Lemma 7.35. For all x ∈ [0, 1] and α ≥ 1 it holds that

ln

(
1− x
x

)
= α · D

(
1

α

∥∥∥∥x)− ln

(
1
α

1− 1
α

)
− α · ln

(
1− 1

α

1− x

)

Proof. By a sequence of algebraic manipulations we get

1

α
· ln
(
1− x
x

)
=

1

α
· ln
(
1

x

)
− 1

α
· ln
(

1

1− x

)
51

=
1

α
· ln

(
1
α

x

)
− 1

α
· ln
(
1

α

)
− 1

α
· ln

(
1− 1

α

1− x

)
+

1

α
· ln
(
1− 1

α

)

=
1

α
· ln

(
1
α

x

)
− 1

α
· ln
(
1

α

)
+

(
1− 1

α

)
· ln

(
1− 1

α

1− x

)
+

1

α
· ln
(
1− 1

α

)
− ln

(
1− 1

α

1− x

)

= D
(
1

α

∥∥∥∥x)− 1

α
· ln
(
1

α

)
+

1

α
· ln
(
1− 1

α

)
− ln

(
1− 1

α

1− x

)

= D
(
1

α

∥∥∥∥x)− 1

α
· ln

(
1
α

1− 1
α

)
− ln

(
1− 1

α

1− x

)

Proof of Lemma 7.34. By (9) we have

(∂κg)(κ, τ) =
β

α
ln(c) +

∂

∂κ

(
−τ · H (γα,β(κ, τ))

)
︸ ︷︷ ︸

Π1

+
∂

∂κ

(
−(1− τ) · H (δα,β(κ, τ))

)
︸ ︷︷ ︸

Π2

+
∂

∂κ

(
H (κ)

)
︸ ︷︷ ︸

Π3

.

It holds that

Π1 = (−τ) · ln
(
1− γ(κ, τ)
γ(κ, τ)

)
· ∂γ(κ, τ)

∂κ

=
β − α
α
· ln
(
1− γ(κ, τ)
γ(κ, τ)

)
=
β − α
α
·

(
α · D

(
1

α

∥∥∥∥γ(κ, τ))− ln

(
1
α

1− 1
α

)
− α · ln

(
1− 1

α

1− γ(κ, τ)

))
,

where the second equality follows from (62) and the last equality follows from Lemma 7.35. By
Lemma 7.35 and (64) we have

Π2 = (−1 + τ) · ln
(
1− δ(κ, τ)
δ(κ, τ)

)
· ∂δ(κ, τ)

∂κ

= −β
α
· ln
(
1− δ(κ, τ)
δ(κ, τ)

)
= −β

α
·

(
α · D

(
1

α

∥∥∥∥δ(κ, τ))− ln

(
1
α

1− 1
α

)
− α · ln

(
1− 1

α

1− δ(κ, τ)

))
,

and

Π3 = ln

(
1− κ
κ

)
= α · D

(
1

α

∥∥∥∥κ)− ln

(
1
α

1− 1
α

)
− α · ln

(
1− 1

α

1− κ

)
.

Overall, we get

(∂κg)(κ, τ) =
β

α
ln(c) + Π1 +Π2 +Π3

=
β

α
· ln(c) + (β − α) ·

(
D
(
1

α

∥∥∥∥γ(κ, τ))+ ln
(
1− γ(κ, τ)

))

− β ·

(
D
(
1

α

∥∥∥∥δ(κ, τ))+ ln
(
1− δ(κ, τ)

))

+ α ·

(
D
(
1

α

∥∥∥∥κ)+ ln
(
1− κ

))
.

52

Recall the functions Γα,β and ∆α,β from (42) and (43).

Lemma 7.36. For all α, c ≥ 1and β > 1 it holds that

(∂2κ,κgα,β,c)(κ, τ) =

(
1− β

α

)2

· Γα,β(κ, τ) +

(
β

α

)2

·∆α,β(κ, τ)−
1

κ · (1− κ)
.

Proof. Using Lemma 7.34 we have

(∂2κ,κg)(κ, τ) = (β − α) · ∂
∂κ

(
D
(
1

α

∥∥∥∥γ(κ, τ))+ ln (1− γ(κ, τ))

)
︸ ︷︷ ︸

Π1

−β · ∂
∂κ

(
D
(
1

α

∥∥∥∥δ(κ, τ))+ ln (1− δ(κ, τ))

)
︸ ︷︷ ︸

Π2

+α · ∂
∂κ

(
D
(
1

α

∥∥∥∥κ)+ ln (1− κ)

)
︸ ︷︷ ︸

Π3

.

By (60), (62) and (64) we obtain

Π1 = (β − α) ·

(
γ(κ, τ)− 1

α

γ(κ, τ) · (1− γ(κ, τ))
− 1

1− γ(κ, τ)

)
· ∂γ(κ, τ)

∂κ

= (β − α) ·

(
γ(κ, τ)− 1

α

γ(κ, τ) · (1− γ(κ, τ))
− 1

1− γ(κ, τ)

)
·
(
1− β

α

)
· 1
τ

=

(
1− β

α

)2

·

(
1

τ · γ(κ, τ) ·
(
1− γ(κ, τ)

))

=

(
1− β

α

)2

· Γα,β(κ, τ),

Π2 = −β ·

(
δ(κ, τ)− 1

α

δ(κ, τ) ·
(
1− δ(κ, τ)

) − 1

1− δ(κ, τ)

)
· ∂δ(κ, τ)

∂κ

= −β ·

(
δ(κ, τ)− 1

α

δ(κ, τ) ·
(
1− δ(κ, τ)

) − 1

1− δ(κ, τ)

)
·
(

β

α · (1− τ)

)

=

(
β

α

)2

·

(
1

(1− τ) · δ(κ, τ) ·
(
1− δ(κ, τ)

))

=

(
β

α

)2

·∆α,β(κ, τ),

Π3 = α ·

(
κ− 1

α

κ · (1− κ)
− 1

1− κ

)
=

−1
κ · (1− κ)

.

Finally, we have

(∂2κ,κg)(κ, τ) = Π1 +Π2 +Π3 =

(
1− β

α

)2

· Γα,β(κ, τ) + +

(
β

α

)2

·∆α,β(κ, τ)−
1

κ · (1− κ)
.

53

Lemma 7.37. For all α, c ≥ 1 and β > 1 it holds that

(∂2κ,τgα,β,c)(κ, τ) = −
(
1− β

α

)
·
(
γ(κ, τ)− 1

α

)
· Γα,β(κ, τ) +

β

α
·
(
δ(κ, τ)− 1

α

)
·∆α,β(κ, τ).

Proof. By lemma 7.34 we get

(∂2κ,τg)(κ, τ) = (β − α) · ∂
∂τ

(
D
(
1

α

∥∥∥∥γ(κ, τ))+ ln
(
1− γ(κ, τ)

))
︸ ︷︷ ︸

Π1

−β · ∂
∂τ

(
D
(
1

α

∥∥∥∥δ(κ, τ))+ ln
(
1− δ(κ, τ)

))
︸ ︷︷ ︸

Π2

.

By (60), (63) and (65) we have

Π1 = (β − α) ·

(
γ(κ, τ)− 1

α

γ(κ, τ) ·
(
1− γ(κ, τ)

) − 1

1− γ(κ, τ)

)
· ∂γ(κ, τ)

∂τ

= (β − α) ·

 −1

α · γ(κ, τ) ·
(
1− γ(κ, τ)

)
 ·(−γ(κ, τ) + 1

α

τ

)

= −
(
1− β

α

)
·
(
γ(κ, τ)− 1

α

)
· Γα,β(κ, τ)

and

Π2 = −β ·

(
δ(κ, τ)− 1

α

δ(κ, τ) ·
(
1− δ(κ, τ)

) − 1

1− δ(κ, τ)

)
· ∂δ(κ, τ)

∂τ

= −β ·

(
−1

α · δ(κ, τ) ·
(
1− δ(κ, τ)

)) ·(δ(κ, τ)− 1
α

1− τ

)

=
β

α
·
(
δ(κ, τ)− 1

α

)
·∆α,β(κ, τ).

So

(∂2κ,τg)(κ, τ) = Π1 +Π2 = −
(
1− β

α

)
·
(
γ(κ, τ)− 1

α

)
· Γα,β(κ, τ) +

β

α
·
(
δ(κ, τ)− 1

α

)
·∆α,β(κ, τ).

Lemma 7.6. For all α, c ≥ 1 and β > 1, the second order partial derivative of g(κ, τ) by τ , i.e.,
(∂2τ,τgα,β,c)(κ, τ) is given by

(∂2τ,τgα,β,c)(κ, τ) =

(
γ(κ, τ)− 1

α

)2

· Γα,β(κ, τ) +

(
δ(κ, τ)− 1

α

)2

·∆α,β(κ, τ).

Proof. By Lemma 7.5 we have

(∂2τ,τg) =
∂

∂τ

(
D
(
1

α

∥∥∥∥δ(κ, τ))
)
− ∂

∂τ

(
D
(
1

α

∥∥∥∥γ(κ, τ))
)
.

By (60) and (65) we have

∂

∂τ

(
D
(
1

α

∥∥∥∥δ(κ, τ))
)

=
δ − 1

α

δ · (1− δ)
· ∂δ(κ, τ)

∂τ
=

δ − 1
α

δ · (1− δ)
·
δ − 1

α

1− τ
=

(
δ − 1

α

)2

·∆α,β(κ, τ).

54

Similarly, by (60) and (63) we have

∂

∂τ

(
D
(
1

α

∥∥∥∥γ(κ, τ))
)

=
γ − 1

α

γ ·
(
1− γ

) · ∂γ(κ, τ)
∂τ

=
γ − 1

α

γ · (1− γ)
·
−
(
γ − 1

α

)
τ

= −
(
γ − 1

α

)2

· Γα,β(κ, τ).

Together

(∂2τ,τg) =
∂

∂τ

(
D
(
1

α

∥∥∥∥δ(κ, τ))
)
− ∂

∂τ

(
D
(
1

α

∥∥∥∥γ(κ, τ))
)

=

(
δ − 1

α

)2

·∆α,β(κ, τ) +

(
γ − 1

α

)2

· Γα,β(κ, τ).

7.6 A Formula for the Determinant of the Hessian

In this section we prove Lemma 7.20, that is, we provide a formula for |Hg(κ, τ)|.

Lemma 7.20. Let α ≥ 1, β > 1 such that α ̸= β, κ ∈
(
0, 1β

)
and τ ∈ (Mα,β(κ), β · κ). Then

|Hg(κ, τ)| =
Γα,β(κ, τ) ·∆α,β(κ, τ)

α2 · (1− κ)
·

(
1− β

α

)
· (γα,β(κ, τ)− δα,β(κ, τ))

γα,β(κ, τ)− 1
α

·

(Aα,β (γα,β(κ, τ)) + δα,β(κ, τ) ·Bα,β (γα,β(κ, τ))) ,

where

Aα,β(x) := −2 + x (1 + α+ β)− α · β · x2 and

Bα,β(x) := x · α · (β − 2) + 1 + α− β.

Proof. By Lemmas 7.6 and 7.36 we have

(∂2κ,κg)(κ, τ) · (∂2τ,τg)(κ, τ)

=

((
1− β

α

)2

· Γ +

(
β

α

)2

·∆− 1

κ · (1− κ)

)
·

((
γ − 1

α

)2

· Γ +

(
δ − 1

α

)2

·∆

)

=

(
γ − 1

α

)2

·
(
1− β

α

)2

· Γ2 +

(
δ − 1

α

)2

·
(
β

α

)2

·∆2 −
(∂2τ,τg)(κ, τ)

κ(1− κ)

+ ∆ · Γ

((
γ − 1

α

)2

·
(
β

α

)2

+

(
δ − 1

α

)2

·
(
1− β

α

)2
)
.

(66)

Similarly, by Lemma 7.37 it holds that

(
(∂2κ,τg)(κ, τ)

)2
=

(
−
(
1− β

α

)
·
(
γ − 1

α

)
· Γ +

β

α
·
(
δ − 1

α

)
·∆
)2

=

(
γ − 1

α

)2

·
(
1− β

α

)2

· Γ2 +

(
δ − 1

α

)2

·
(
β

α

)2

·∆2

− 2 ·
(
γ − 1

α

)
·
(
1− β

α

)
·
(
δ − 1

α

)
·
(
β

α

)
· Γ ·∆.

(67)

55

By (66) and (67) we have

|Hg(κ, τ)| = (∂2κ,κg)(κ, τ) · (∂2τ,τg)(κ, τ)−
(
(∂2κ,τg)(κ, τ)

)2
= −

(∂2τ,τg)(κ, τ)

κ(1− κ)
+ ∆ · Γ

((
γ − 1

α

)2

·
(
β

α

)2

+

(
δ − 1

α

)2

·
(
1− β

α

)2
)

+ 2 ·
(
γ − 1

α

)
·
(
1− β

α

)
·
(
δ − 1

α

)
·
(
β

α

)
· Γ ·∆

= −
(∂2τ,τg)(κ, τ)

κ(1− κ)
+ ∆ · Γ

((
γ − 1

α

)
·
(
β

α

)
+

(
δ − 1

α

)
·
(
1− β

α

))2

=
∆ · Γ
1− κ

·

(
−

(∂2τ,τg)

κ ·∆ · Γ
+ (1− κ) ·

((
γ − 1

α

)
·
(
β

α

)
+

(
δ − 1

α

)
·
(
1− β

α

))2
)
.

(68)

We define

ψα,β(κ, τ) =
β

α
·
(
γα,β(κ, τ)−

1

α

)
+

(
1− β

α

)
·
(
δα,β(κ, τ)−

1

α

)
. (69)

As before, we use the shorthand ψ = ψα,β(κ, τ). Thus,

|Hg(κ, τ)| =
∆ · Γ
1− κ

·

(
−

(∂2τ,τg)

κ ·∆ · Γ
+ (1− κ) · ψ2

)
. (70)

We use the following algebraic identity to simplify (70).

Claim 7.38. κ · ψ = δ
(
γ − 1

α

)
.

Proof. The statement of the claim immediately follows from the following equation.

κ · ψ − δ
(
γ − 1

α

)
= κ ·

(
1− β

α

)
·
(
δ − 1

α

)
+ κ · β

α

(
γ − 1

α

)
− δ ·

(
γ − 1

α

)
=

(
δ − 1

α

)
·
(
γ − 1

α

)
· τ +

(
γ − 1

α

)
·
(
κ · β

α
− δ
)

=

(
γ − 1

α

)
·
((

δ − 1

α

)
· τ + β

α
· κ− δ

)
=

(
γ − 1

α

)
·
(
−δ · (1− τ) + β

α
κ− τ

α

)
= 0.

The first equality follows from an expansion of ψ by (69). The second equality uses the identity

(γ − 1
α) · τ =

(
1− β

α

)
· κ by (8). The last equality holds as δ · (1− τ) = β

α · κ−
τ
α . ⌟

By Lemma 7.6 and the definition of ∆ (43) and Γ (42) it holds that

(∂2τ,τg)

κ ·∆ · Γ
=

1

κ
·
(
γ − 1

α

)2

· (1− τ) · δ · (1− δ) + 1

κ
·
(
δ − 1

α

)2

· τ · (1− γ) · γ

=
1

κ
·
(
γ − 1

α

)2

· δ · (1− δ) + τ

κ

((
δ − 1

α

)2

· (1− γ) · γ −
(
γ − 1

α

)2

· δ · (1− δ)

)

= ψ ·
(
γ − 1

α

)
· (1− δ) + Π1,

(71)

where the last equality uses 1
κ · δ

(
γ − 1

α

)
= ψ by Claim 7.38 and

Π1 :=
τ

κ

((
δ − 1

α

)2

· (1− γ) · γ −
(
γ − 1

α

)2

· δ · (1− δ)

)
.

56

Furthermore,

(1− κ) · ψ2 = ψ2 − κ · ψ2 = ψ2 − ψ · δ ·
(
γ − 1

α

)
, (72)

where the second equality follows from Claim 7.38. By (70), (71) and (72) we have

|Hg(κ, τ)| =
∆ · Γ
1− κ

·
(
−ψ

(
γ − 1

α

)
· (1− δ)−Π1 + ψ2 − ψ · δ ·

(
γ − 1

α

))
=

∆ · Γ
1− κ

·
(
−ψ

(
γ − 1

α

)
+ ψ2 −Π1

)
=

∆ · Γ
1− κ

· (Π2 −Π1) ,

(73)

where

Π2 := −ψ
(
γ − 1

α

)
+ ψ2.

Observe that

γ · (1− γ) ·
(
δ − 1

α

)2

− δ · (1− δ) ·
(
γ − 1

α

)2

= γ · (1− γ) ·
(
δ2 − 2

α
δ +

1

α2

)
− δ · (1− δ) ·

(
γ2 − 2

α
γ +

1

α2

)
= δ2γ − 2

α
δγ +

γ

α2
− δ2 · γ2 + 2

α
δ · γ2 − γ2

α2

− γ2δ + 2

α
γδ − δ

α2
+ γ2 · δ2 − 2

α
γ · δ2 + δ2

α2

= (δ − γ) · γδ + (γ − δ) · 1

α2
+ (γ − δ) · 2

α
γδ − 1

α2
(γ + δ)(γ − δ)

= (γ − δ) · 1

α2

(
−α2 · γδ + 1 + 2α · γδ − γ − δ

)
and τ

κ =
1− β

α

γ− 1
α

by (8). Thus

Π1 =

(
1− β

α

)
· (γ − δ)(

γ − 1
α

)
· α2

·
(
−α2 · γδ + 1 + 2α · γδ − γ − δ

)
=

(
1− β

α

)
· (γ − δ)(

γ − 1
α

)
· α2

·
(
δ ·
(
−α2 · γ + 2αγ − 1

)
+ 1− γ

) (74)

Additionally,

Π2 = − ψ
(
γ − 1

α

)
+ ψ2

= ψ

(
−
(
γ − 1

α

)
+

(
δ − 1

α

)
·
(
1− β

α

)
+
β

α
·
(
γ − 1

α

))
= ψ

(
1− β

α

)
· (δ − γ) .

57

By further expanding the expression for ψ and dividing and multiplying by α2 ·
(
γ − 1

α

)
we get

Π2 = −

(
1− β

α

)
· (γ − δ)(

γ − 1
α

)
· α2

·
(
γ − 1

α

)
· α2

((
γ − 1

α

)
· β
α
+

(
δ − 1

α

)
·
(
1− β

α

))

= −

(
1− β

α

)
(γ − δ)(

γ − 1
α

)
· α2

·
((

γ − 1

α

)
·
((

γ − 1

α

)
αβ − (α− β)

)
+ δα

(
γ − 1

α

)
(α− β)

)

= −

(
1− β

α

)
· (γ − δ)(

γ − 1
α

)
· α2

·
((

γ − 1

α

)
· (α · β · γ − α) + δ · (γα · (α− β)− α+ β)

)

= −

(
1− β

α

)
· (γ − δ)(

γ − 1
α

)
· α2

·
(
αβγ2 − γ(β + α) + 1 + δ · (γα · (α− β)− α+ β)

)
.

(75)

Define ξ = ∆·Γ
1−κ ·

(1− β
α)·(γ−δ)

(γ− 1
α)·α2

. By (73), (74) and (75) we have

|Hg(κ, τ)| = ξ ·

(
−
(
αβγ2 − γ(β + α) + 1 + δ · (γα · (α− β)− α+ β)

)
− δ ·

(
−α2 · γ + 2αγ − 1

)
− 1 + γ

)
= ξ ·

(
−αβγ2 + γ(α+ β + 1)− 2 + δ (γα · (β − 2) + α− β + 1)

)
= ξ · (Aα,β(γ) + δ ·Bα,β(γ))

=
∆ · Γ
1− κ

·

(
1− β

α

)
· (γ − δ)(

γ − 1
α

)
· α2

· (Aα,β(γ) + δ ·Bα,β(γ)) ,

which completes the proof of the lemma.

8 Better than Brute Force

In this section we prove Theorem 2.18. We first use Lemma 2.13 to show that amls(α, c, β) < brute(β)
for all α, c ≥ 1 and β > 1. Broadly speaking, the brute force algorithm presented in [26] works as
follows. The algorithm iterates over k from 0 to n

β (where n is the size of the universe U), and the
analysis focuses on the iteration in which k is the minimum cardinality of a set in F . For each value
of k the algorithm samples random subsets of the universe U of size β · k and checks if each set is in
the set system F . The number of sampled sets is selected to be sufficiently large to ensure a constant
success probability. It can be shown (though not formally used by our proofs) that the number of
sampled sets of size βk should be ≈ exp

(
n · ξβ

(
k
n

))
where ξβ is defined by

ξβ(κ) := −β · H
(
1

β

)
· κ+H(κ). (76)

for all 0 ≤ κ ≤ 1. It can also be easily verified that

ξβ(κ) = gα,β,c(κ, β · κ) (77)

for all α, β, c ≥ 1 and 0 ≤ κ ≤ 1
β . We use the following property of ξβ.

Lemma 8.1. For all β > 1 it holds that max0≤κ≤ 1
β
ξβ(κ) = ln (brute(β)).

Proof. The expression −β · H
(

1
β

)
· κ is a linear function of κ, and H(κ) is a concave function of κ.

So ξβ is a concave function. Also,

ξβ(0) = −β · H
(
1

β

)
· 0 +H(0) = 0

58

and

ξβ

(
1

β

)
= −β · H

(
1

β

)
· 1
β
+H

(
1

β

)
= 0.

Thus, ξβ has a maximum in
(
0, 1β

)
. Let κ∗ ∈

(
0, 1β

)
be such a maximum and let ξ′β be the derivative

of ξβ. Then ξ
′
β(κ

∗) = 0.
Using basic differentiation rules we have

ξ′β(κ) = − β · H
(
1

β

)
+ ln

(
1− κ
κ

)
.

It follows that

ln(1− κ∗)− ln(κ∗) = ln

(
1− κ∗

κ∗

)
= β · H

(
1

β

)
. (78)

Hence,
max

0≤κ≤ 1
β

ξβ(κ) = ξβ(κ
∗)

= − β · H
(
1

β

)
· κ∗ +H(κ∗)

= − κ∗ · (ln(1− κ∗)− ln(κ∗))− κ∗ · ln (κ∗)− (1− κ∗) ln (1− κ∗)
= − ln (1− κ∗)

= ln

(
1− κ∗ + κ∗

1− κ∗

)
= ln

(
1 +

κ∗

1− κ∗

)
= ln

(
1 + exp

(
−β · H

(
1

β

)))
.

The third equality follows from (78) and the definition of H. The forth, fifth and sixth equalities
are simple re-arrangements of the terms. The seventh equality uses (78) once more. Recall that

brute(β) = 1 + exp
(
−β · H

(
1
β

))
, so max0≤κ≤ 1

β
ξβ(κ) = ln (brute(β)).

We use Lemma 8.1 in the proof of the following lemma.

Lemma 8.2. Let α, c ≥ 1 and β > 1. Then amls(α, c, β) < brute(β).

Proof. There exists κ ∈
[
0, 1β

]
such that exp

(
g∗α,β,c(κ)

)
= amls(α, c, β) (see (13)). Consider the

following cases.

• If κ = 0 or κ = 1
β , it can be easily verified that g∗α,β,c(κ) = 0. So

amls(α, c, β) = exp
(
g∗α,β,c(κ)

)
= 1 < brute(β).

• If 0 < κ < 1
β , then, by Lemma 2.13, we have

amls(α, c, β) = exp
(
g∗α,β,c(κ)

)
< exp (gα,β,c(κ, β · κ))
= exp (ξβ(κ))

≤ exp

(
max

0≤κ′≤ 1
β

ξβ(κ
′)

)
= exp (ln (brute(β)))

= brute(β).

The second equality follows from (77) and the forth equality follows from Lemma 8.1.

59

The next lemma provides the missing ingredient towards the proof of Theorem 2.18.

Lemma 8.3. Let α ≥ 1 and β > 1. Then limc→∞ amls(α, c, β) = brute(β).

Proof. By Lemma 8.1 there is some 0 ≤ κ ≤ 1
β such that ξβ(κ) = ln (brute(β)). We define L :=

lim infc→∞ g∗α,c,β(κ). By Lemma 8.2, for every c ≥ 1, it holds that g∗α,c,β(κ) ≤ ln(amls(α, c, β)) ≤
ln (brute(β))). So L ≤ ln (brute(β))).

There exists a strictly increasing sequence (ci)
∞
i=1 such that L = limi→∞ gα,ci,β(κ). For every i ∈ N

define τi := argminM∗
α,β(κ)≤τ≤βκ gα,β,ci(κ, τ). Recall that the Bolzano-Weierstrass Theorem asserts

that every bounded sequence has a convergent subsequence (see, e.g., in [47, Theorem 2.4.1]). By the
Bolzano-Weierstrass Theorem, as M∗

α,β(κ) ≤ τi ≤ βκ for all i ∈ N, there exists a monotone sequence
of indices (ij)

∞
j=0 such that τij −−−→

j→∞
τ∗ for some M∗

α,β(κ) ≤ τ∗ ≤ βκ. Thus, we have

L = lim
j→∞

g∗α,cij ,β
(κ)

= lim
j→∞

gα,cij ,β(κ, τij)

= lim
j→∞

(
βκ− τij

α
ln cij − τij · H

(
γα,β(κ, τij)

)
− (1− τij) · H

(
δα,β(κ, τij)

)
+H (κ)

)
,

(79)

where second equality uses the definition of g∗α,β,c (12) and the third equality uses the definition of
gα,β,c (9).

Assume towards contradiction that τ∗ < βκ. Then
βκ−τij

α ln cij −−−→
j→∞

∞. Also, since the entropy

function and τij are both bounded, it follows that the expression −(1 − τij) · H
(
δα,β(κ, τij)

)
+H (κ)

is bounded. Thus, by (79), we have L =∞, contradicting L ≤ ln (brute(β)). So τ∗ = βκ.
Using τ∗ = β · κ and τij −−−→

j→∞
τ∗, we can simplify the limit in (79) and obtain

L = lim
j→∞

(
βκ− τij

α
ln cij − τij · H

(
γα,β(κ, τij)

)
− (1− τij) · H

(
δα,β(κ, τij)

)
+H (κ)

)
.

≥ − β · κ · H (γα,β(κ, β · κ))− (1− β · κ) · H (δα,β(κ, β · κ)) +H (κ)

= − κ · β · H
(
1

β

)
− (1− β · κ) · H (0) +H (κ)

= ξβ(κ) = ln(brute(β)).

Therefore,
lim inf
c→∞

ln (amls(α, c, β)) ≥ lim inf
c→∞

g∗α,β,c(κ) ≥ ln (brute(β)) ,

where the first inequality follows from (13). Since ln is continuous the last inequality implies

lim inf
c→∞

amls(α, c, β) ≥ brute(β), (80)

Also, by Lemma 8.2, we have

lim sup
c→∞

amls(α, c, β) ≤ lim sup
c→∞

brute(β) = brute(β). (81)

Combining (80) and (81) we get limc→∞ amls(α, c, β) = brute(β).

We can now proceed to the proof of Theorem 2.18.

Proof of Theorem 2.18. Let β > 1 and let L be a specification list. Pick an arbitrary element (α∗, c∗) ∈
L (recall that a specification list is always non-empty) and observe that α∗, c∗ ≥ 1. Now, we have

best(L, β) = amls(L, β)

= exp

(
max

0≤κ≤ 1
β

min
(α,c)∈L

g∗α,β,c(κ))

)

60

≤ exp

(
max

0≤κ≤ 1
β

g∗α∗,c∗,β(κ)

)
= amls(α∗, c∗, β)

< brute(β),

where the first equality follows from Corollary 2.12, the second and third equalities follows from (13),
and the last inequality follows from Lemma 8.2.

For the second part, let α ≥ 1. Then

lim
c→∞

best(α, c, β) = lim
c→∞

amls(α, c, β) = brute(β),

where the first equality follows from Corollary 2.12, and the second equality follows from Lemma 8.3.

9 Monotonicity Properties

In this section we prove that amls(α, c, β) is strictly monotone in α in the interval [1, β], and use this
result to prove Lemma 2.20.

Lemma 9.1. For every β ≥ α′ > α ≥ 1 and every c > 1 it holds that amls(α, c, β) < amls(α′, c, β).

The proof of Lemma 9.1 is given towards the end of this section. We first use Lemma 9.1 to prove
Lemma 2.20.

Proof of Lemma 2.20. Let β > α ≥ 1 and c > 1. Then

best(α, c, β) = amls(α, c, β) < amls(β, c, β) = best(β, c, β) = amlsα=β(β, c).

The first and second equalities follow from Corollary 2.12. The inequality holds by Lemma 9.1, and
the last equality follows form Lemma 2.19.

In order to prove Lemma 9.1 we give an alternative formula for g∗α,β,c (12) as a solution for a
continuous optimization problem in two variables. Though this alternative formula uses a continuous
optimization problem, it is inspired by an interpretation of the discrete analysis of Algorithms 1
and 2. The algorithm samples a t-element set X ⊆ U , and the analysis focuses on samples which
satisfy |X ∩ OPT| ≥ y, for a carefully selected y. Subsequently, the α-extension oracle is invoked with

the query (X, k − y). The algorithm optimally selects y =
(
1− β

α

)
· k + t

α . The analysis we present

in this section leaves y as an additional parameter to be optimized. Though this seems to only yield a
more involved formula, this formula turns out to be useful to determine the behavior of amls(α, c, β)
as α changes.

For every 1 ≤ α ≤ β we define

Xα,β(κ, τ) :=

(
1− β

α

)
· κ+

τ

α
. (82)

Similarly, for every 1 ≤ α ≤ β and κ ∈
[
0, 1β

]
we define a set

Dα,β(κ) :=
{
(τ, y) ∈ R2

∣∣ 0 ≤ τ ≤ β · κ, max{0, Xα,β(κ, τ)} ≤ y ≤ min{κ, τ}
}
. (83)

Finally, for every 1 ≤ α ≤ β and κ ∈
[
0, 1β

]
we define the function

g̃[κ]c (τ, y) := (κ− y) · ln(c)− τ · H
(y
τ

)
− (1− τ) · H

(
κ− y
1− τ

)
+H(κ). (84)

It can be easily verified that
g∗α,β,c(κ, τ) = g̃[κ]c

(
τ,Xα,β (κ, τ)) (85)

unless τ ∈ {0, 1}.
The next lemma provides the alternative formula for g∗α,β,c.

61

Lemma 9.2. Let β ≥ α ≥ 1, c > 1 and κ ∈
(
0, 1β

)
. Then

g∗α,β,c(κ) = min
(τ,y)∈Dα,β(k)

g̃[κ]c (τ, y). (86)

Moreover, for all (τ, y) ∈ Dα,β(κ) such that g∗α,β,c(κ) = g̃
[κ]
c (τ, y), we have y = Xα,β(κ, τ).

Proof. The proof uses an alternative representation of the set Dα,β(κ). We define

Eα,β(κ) :=

{
(τ, y) ∈ R2

∣∣∣∣ 0 ≤ y ≤ κ, y ≤ τ ≤ α · (y − (1− β

α

)
· κ
)}

. (87)

Claim 9.3. Eα,β(κ) = Dα,β(κ).

Proof. Let (τ, y) ∈ Dα,β(κ). Then

0 ≤ max{0, Xα,β(κ, τ)} ≤ y ≤ min{κ, τ} ≤ κ.

Furthermore, y ≤ min{κ, τ} ≤ τ and

y ≥ max{0, Xα,β(κ, τ)} ≥ Xα,β(κ, τ) =

(
1− β

α

)
κ+

τ

α

and thus, τ ≤ α
(
y −

(
1− β

α

)
· κ
)
. Overall, we have that 0 ≤ y ≤ κ and t ≤ τ ≤ α

(
y −

(
1− β

α

)
· κ
)
.

By (87) we have (τ, y) ∈ Eα,β(κ), and we conclude that

Dα,β(κ) ⊆ Eα,β(κ). (88)

Similarly, let (τ ′, y′) ∈ Eα,β(κ). It follows that τ
′ ≥ y′ ≥ 0. Furthermore,

τ ′ ≤ α

(
y′ −

(
1− β

α

)
· κ
)
≤ α ·

(
κ−

(
1− β

α

)
· κ
)

= β · κ,

where the second inequality follows from y′ ≤ κ. So together, we obtain that

0 ≤ τ ′ ≤ β · κ. (89)

By re-arranging the inequality τ ′ ≤ α
(
y′ −

(
1− β

α

)
· κ
)
we obtain

y′ ≥
(
1− β

α

)
· κ+

τ ′

α
= Xα,β(κ, τ

′).

As (τ ′, y′) ∈ Eα,β(κ), it also holds that y′ ≥ 0. So y′ ≥ max{0, Xα,β(κ, τ
′)}. Finally, since (τ ′, y′) ∈

Eα,β(κ) we have y′ ≤ κ and y′ ≤ τ ′, and hence y′ ≤ min{κ, τ ′}. So overall

max{0, Xα,β(κ, τ
′)} ≤ y′ ≤ min{κ, τ ′}. (90)

By (89) and (90) it holds that (τ ′, y′) ∈ Dα,β(κ). Thus

Eα,β(κ) ⊆ Dα,β(κ). (91)

By (88) and (91) we have Dα,β(κ) = Eα,β(κ). ⌟

Using Claim 9.3 we have

min
(τ,y)∈Dα,β(k)

g̃[κ]c (τ, y) = min
(τ,y)∈Eα,β(k)

g̃[κ]c (τ, y) = min
0≤y≤κ

min
y≤τ≤α·(y−(1− β

α)·κ)
g̃[κ]c (τ, y). (92)

In order to simplify (92) we use some analytical properties of g̃
[κ]
c (τ, y).

62

Claim 9.4. It holds that ∂g̃
[κ]
c (τ,y)
∂τ = ln

(
1− y

τ

)
− ln

(
1− κ−y

1−τ

)
.

Proof. For every a ∈ R define qa(x) = x · H
(
a
x

)
. Using basic differentiation rules we have,

∂qa(x)

∂x
= H

(a
x

)
+ x · −a

x2
· ln

(
1− a

x(
a
x

))
= − a

x
· ln
(a
x

)
−
(
1− a

x

)
· ln
(
1− a

x

)
− a

x
· ln
(
1− a

x

)
+
a

x
· ln
(a
x

)
= − ln

(
1− a

x

)
.

Thus,

∂g̃
[κ]
c (τ, y)

∂τ
=

∂

∂τ

(
(κ− y) · ln(c)− τ · H

(y
τ

)
− (1− τ) · H

(
κ− y
1− τ

)
+H(κ)

)
= − ∂qy(τ)

∂τ
− ∂qκ−t(1− τ)

∂τ

= ln
(
1− y

τ

)
− ln

(
1− κ− y

1− τ

)
.

⌟

We use Claim 9.4 to show the following.

Claim 9.5. For every 0 ≤ y ≤ κ, it holds that g̃
[κ]
c (τ, y) is strictly convex as a function of τ , and has

a minimum at τ = y
κ .

Proof. For every 0 ≤ y ≤ κ the expression 1 − y
τ is increasing with τ and the expression 1 − κ−y

1−τ is

decreasing with τ . Furthermore, 1 − y
τ is strictly increasing, unless y = 0, and in this case 1 − κ−y

1−τ

is strictly decreasing. It follows that ∂g̃
[κ]
c (τ,y)
∂τ = ln

(
1− y

τ

)
− ln

(
1− κ−y

1−τ

)
is strictly increasing with

τ for every 0 ≤ y ≤ κ. We conclude that g̃
[κ]
c (τ, y) is strictly convex as a function of τ (for a fixed

y ∈ [0, κ]). Furthermore,

∂g̃
[κ]
c (τ, y)

∂τ

∣∣∣∣∣
τ= y

κ

= ln

(
1− y

y
κ

)
− ln

(
1− κ− y

1− y
κ

)
= ln(1− κ)− ln(1− κ) = 0,

so the minimum of g̃
[κ]
c (τ, y), as a function of τ (for a fixed y), is at τ = y

κ . ⌟

For every 0 ≤ y ≤ κ, the value of g̃
[κ]
c (τ, y) at its minimum is

g̃[κ]c

(y
κ
, y
)

= (κ− y) · ln(c)− y

κ
· H
(
y
y
κ

)
−
(
1− y

κ

)
· H
(
κ− y
1− y

κ

)
+H(κ)

= (κ− y) · ln(c)− y

κ
· H(κ)−

(
1− y

κ

)
· H (κ) +H(κ)

= (κ− y) · ln(c).

(93)

By the above, for every 0 ≤ y ≤ κ such that y
κ ≤ α ·

(
y −

(
1− β

α

)
· κ
)
it holds that

min
y≤τ≤α·(y−(1− β

α)·κ)
g̃[κ]c (τ, y) = g̃[κ]c

(y
κ
, y
)

= (κ− y) · ln(c). (94)

63

The first equality holds since g̃
[κ]
c (τ, y) is convex with a minimum at y

κ ≥ y, as a function of τ
(Claim 9.5). The second equality follows from (93). Also, observe that

y

κ
≤ α ·

(
y −

(
1− β

α

)
· κ
)

⇐⇒ y

(
1

κ
− α

)
≤ − (α− β) · κ

⇐⇒ y ≤ β − α
1− ακ

· κ2 = Mα,β(κ) · κ,

(95)

where the second transition holds as 1
κ > β ≥ α. Recall that Mα,β(κ) is defined in (10).

By (94) and (95) we have

min
0≤y≤Mα,β(κ)·κ

min
y≤τ≤α·(y−(1− β

α)·κ)
g̃[κ]c (τ, y)

= min
0≤y≤Mα,β(κ)·κ

(κ− y) ln(c)

= (κ−Mα,β(κ) · κ) · ln c

= g̃[κ]c

(
Mα,β(κ) · κ

κ
, Mα,β(κ) · κ

)
= min

Mα,β(κ)·κ ≤ τ ≤ α·(Mα,β(κ)·κ−(1− β
α)·κ)

g̃[κ]c

(
τ, Mα,β(κ) · κ

)
.

(96)

It can be easily verified that Mα,β(κ) ≤ 1. Thus, we can use (96) to change the range of y in (92)
as follows:

min
(τ,y)∈Dα,β(k)

g̃[κ]c (τ, y) = min
0≤y≤κ

min
y≤τ≤α·(y−(1− β

α)·κ)
g̃[κ]c (τ, y)

= min
Mα,β(κ)·κ≤y≤κ

min
y≤τ≤α·(y−(1− β

α)·κ)
g̃[κ]c (τ, y).

(97)

By Claim 9.5, for every 0 ≤ y ≤ κ such that y
κ ≥ α ·

(
y −

(
1− β

α

)
· κ
)
, it holds that

min
y≤τ≤α·(y−(1− β

α)·κ)
g̃[κ]c (τ, y) = g̃[κ]c

(
α ·
(
y −

(
1− β

α

)
· κ
)
, y

)
. (98)

Similarly to (95) it holds that

y

κ
≥ α ·

(
y −

(
1− β

α

)
· κ
)

⇐⇒ y ≥Mα,β(κ) · κ. (99)

Thus, using (98) and (97), we get

min
(τ,y)∈Dα,β(k)

g̃[κ]c (τ, y) = min
Mα,β(κ)·κ≤y≤κ

min
y≤τ≤α·(y−(1− β

α)·κ)
g̃[κ]c (τ, y)

= min
Mα,β(κ)·κ≤y≤κ

g̃[κ]c

(
α ·
(
y −

(
1− β

α

)
· κ
)
, y

)
= min

Mα,β(κ)≤τ≤β·κ
g̃[κ]c (τ,Xα,β(κ, τ))

= min
Mα,β(κ)≤τ≤β·κ

gα,β,c(κ, τ)

= g∗α,β,c(κ).

(100)

The third equality follows from substitution y with τ = α
(
y −

(
1− β

α

)
· κ
)
, which is equivalent to

y = Xα,β(κ, τ). The forth equality follows from g̃[κ](τ,Xα,β(κ, τ)) = gα,β,c(κ, τ). That last equality
follows from (12). Observe that (100) implies (86).

64

Let (τ, y) ∈ Dα,β(κ) = Eα,β(κ) such that g∗α,β,c(κ) = g̃
[κ]
c (τ, y). To complete the proof of the lemma

we are left to show that y = Xα,β(κ, τ). By (100) it follows that

g̃[κ]c (τ, y) = min
(τ ′,y′)∈Dα,β(κ)

g̃[κ]c (τ ′, y′) = min
(τ ′,y′)∈Eα,β(κ)

g̃[κ]c (τ ′, y′). (101)

Assume towards contradiction that y < Mα,β(κ) · κ. Then, since (y, τ) ∈ Eα,β(κ), we have

g̃[κ]c (τ, y) ≥ min
y≤τ ′≤α·(y−(1− β

α)·κ)
g̃[κ]c (τ ′, y)

= (κ− y) · ln(c)
> (κ−Mα,β(κ) · κ) · ln(c)
= min

Mα,β(κ)·κ ≤ τ ′ ≤ α·(Mα,β(κ)·κ−(1− β
α)·κ)

g̃[κ]c

(
τ ′, Mα,β(κ) · κ

)
≥ min

(τ ′,t′)∈Eα,β(κ)
g̃[κ]c

(
τ ′, y′

)
.

(102)

The first inequality follows from (101) and the definition of Eα,β (87). The first equality follows from
(94) and (95). The second equality uses (96). The last inequality is also a consequence of the definition
of Eα,β (87). Observe that (102) contradict (101), so y ≥Mα,β(κ) · κ.

By (101) it holds that

g̃[κ]c (τ, y) = min
y≤τ ′≤α·(y−(1− β

α)·κ)
g̃[κ]c (τ ′, y) (103)

By Claim 9.5 we have that g̃[κ](τ ′, y) is strictly convex as a function of τ ′ with a minimum at τ ′ = y
κ

and by (99) we have y
κ ≥ α ·

(
y −

(
1− β

α

)
· κ
)
. Thus, the minimum of the RHS of (103) is at

τ ′ = α ·
(
y −

(
1− β

α

)
· κ
)
. Therefore, τ = α ·

(
y −

(
1− β

α

)
· κ
)
, and by rearranging the term we get

y = Xα,β(κ, τ).

Using Lemma 9.2 we can easily derive the following lemma.

Lemma 9.6. Let β ≥ α′ > α ≥ 1, c > 1 and κ ∈
(
0, 1β

)
. Then g∗α,β,c(κ) < g∗α′,β,c(κ).

Proof. By Lemma 9.2 we have g∗α′,β,c(κ) = min(τ,y)∈Dα′,β(κ)
g̃
[κ]
c (τ, y). Thus, there is (τ ′, y′) ∈ Dα′,β

such that g̃
[κ]
c (τ ′, y′) = g∗α′,β,c(κ) and y

′ = Xα′,β(κ, τ
′).

Assume towards contradiction that τ ′ = βκ. Then

g∗α′,β,c(κ) = g̃[κ]c (τ ′, y′) = g̃[κ]c (β · κ,Xα′,β(κ, β · κ)) = gα′,β,c(κ, β · κ).

where the last equality follows from (85). However, by Lemma 2.13 it holds that g∗α′,β,c(κ) < gα′,β,c(κ, β·
κ), contradicting the above. Thus τ ′ ̸= βκ.

As (τ ′, y′) ∈ Dα′,β it also holds that 0 ≤ τ ′ < β · κ and 0 ≤ y′ ≤ min{κ, τ ′}. Furthermore,

y′ = Xα′,β(κ, τ
′)

=

(
1− β

α′

)
· κ+

τ ′

α′

= 1− 1

α′
(
β · κ− τ ′

)
> 1− 1

α

(
β · κ− τ ′

)
= Xα,β(κ, τ

′),

where the inequality holds since τ ′ < β · κ, and α′ > α. Thus (τ ′, y′) ∈ Dα,β(κ) and y
′ ̸= Xα,β(κ, τ

′).
Using Lemma 9.2 once more we get

g∗α′,β,c(κ) = g̃[κ]c (τ ′, y′) > min
(τ,y)∈Dα,β

g̃[κ]c (τ, t) = g∗α,β,c(κ).

65

Lemma 9.1 essentially follows from Lemma 9.6, though the proof itself involves some technical
steps which exclude the possibility of a corner case.

Proof of Lemma 9.1. Define κ̃ = 1
2 ·

1
β . Since H(x) is concave, for every Mα,β(κ̃) ≤ τ < βκ̃, it holds

that

gα,β,c(κ̃, τ) =
βκ̃− τ
α

ln c− τ · H (γα,β(κ̃, τ))− (1− τ) · H (δα,β(κ̃, τ)) +H (κ̃)

≥ βκ̃− τ
α

ln c−H (τ · γα,β(κ̃, τ) + (1− τ) · δα,β(κ̃, τ)) +H (κ̃)

=
βκ̃− τ
α

ln c−H (κ̃) +H (κ̃)

=
βκ̃− τ
α

ln c > 0,

(104)

where the second equality holds as τ · γα,β(κ̃, τ) + (1− τ) · δα,β(κ̃, τ) = κ̃ and the last inequality uses
c > 1. Furthermore,

gα,β,c(κ̃, β · κ̃)

=
βκ̃− β · κ̃

α
ln c− β · κ̃ · H (γα,β(κ̃, β · κ̃))− (1− β · κ̃) · H (δα,β(κ̃, β · κ̃)) +H (κ̃)

= − β · κ̃ · H
(
1

β

)
− (1− β · κ̃) · H (0) +H (κ̃)

> −H
(
βκ̃ · 1

β
+ (1− βκ̃) · 0

)
+H (κ̃) = 0,

(105)

where the inequality holds as H is strictly concave. By (104) and (105) it follows that

g∗α,β,c(κ̃) = min
Mα,β(κ̃)≤τ≤βκ̃

gα,β,c(κ̃, τ) > 0.

Now, there exists κ ∈
[
0, 1β

]
such that

g∗α,β,c(κ) = max
κ′∈

[
0, 1

β

] g∗α,β,c(κ′) > 0.

It can be easily verified that g∗α,β,c(0) = g∗α,β,c

(
1
β

)
= 0 (select τ = 0 in the first and τ = β · κ in the

latter case). So 0 < κ < 1
β .

Thus, by Lemma 9.6, we have

ln (amls(α, β, c)) = max
k′∈

[
0, 1

β

] g∗α,β,c(κ′)
= g∗α,β,c(κ)

< g∗α′,β,c(κ)

≤ max
k′∈

[
0, 1

β

] g∗α′,β,c(κ
′)

= ln
(
amls(α′, β, c)

)
The first and last equality follows from (13). Thus, amls(α, β, c) < amls(α′, β, c).

10 Conclusion

In this paper we studied how exponential-time approximation algorithms can be obtained from ex-
isting polynomial-time approximation algorithms, existing parameterized exact algorithms and exist-
ing parameterized approximation algorithms. We provided a theoretical oracle model by which the
above question can be rigorously studied and showed that the approximate monotone local search

66

approach [26,31] attains optimal running times (up to polynomial factors). Furthermore, we provided
the mathematical machinery to compute the running time of the resulting algorithms in practice.

While previous works on monotone local search [26, 31, 48] only provided algorithmic results, in
this work we use a restricted oracle model in which we are also able to show the optimality of our
algoritms (which in particular implies the algorithms from [26,31] are optimal). This way, we provide a
complete answer of how to repurpose (any finite number of) parameterized approximation algorithms
(which includes polynomial-time approximations and exact parameterized algorithms as special cases)
for the design of exponential-time (approximation) algorithms.

Still, our work raises a number of follow-up questions. First, we focused on allowing a finite
number of extension oracles. However, for problems such as Vertex Cover, there is a parameterized
α-approximation algorithm for every α ≥ 1. In the language of this work, this gives rise to an infinite
number of extension oracles; it would be interesting to properly formalize such a setting and extend
our result to it. Even if we only want to provide a finite number of extension oracles, it is already
unclear how to choose these oracles in an optimal way. In fact, we already encountered this problem in
Section 3.3 where we adopted a simple discretization appraoch (which is likely not optimal) to choose
a finite number of extension oracles.

The second question asks what happens with other types of oracles. Indeed, in this work, we
focused on repurposing parameterized approximation algorithms (which includes polynomial-time ap-
proximations and exact parameterized algorithms as special cases) for the design of exponential-time
approximation algorithms. Can we find other types of algorithms that can be repurposed in a sim-
ilar way? For example, is it possible to repurpose exact exponential-time algorithms (e.g., Vertex
Cover can be solved in time O∗(1.1996n) [66]) in a meaningful way? More generally, in [34] the au-
thors show that monotone local search can also be used to convert a ck · bn ·nO(1) time algorithm into
a
(
1 + b− 1

c

)n · nO(1) time algorithm for the same problem. What is the optimal way of repurposing
such an algorithm in order to obtain an exponential β-approximation algorithm for any β > 1? We
remark that our lower-bound technique can be used to show the result of [34] already repurposes such
algorithms in an optimal way in the exact setting.

Finally, we ask about weighted problems. Similarly to our setting, one can define an extension
oracle model for weighted problems in which the objective is to find set S ∈ F of (approximately)
minimum weight. Using this model its possible to define a weighted variant of best. Is this variant
equal to the function best defined in this paper? Which algorithm attains this cost for weighted
problems?

References

[1] Akanksha Agrawal, Sudeshna Kolay, Daniel Lokshtanov, and Saket Saurabh. A faster FPT
algorithm and a smaller kernel for block graph vertex deletion. In Evangelos Kranakis, Gonzalo
Navarro, and Edgar Chávez, editors, LATIN 2016: Theoretical Informatics - 12th Latin American
Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings, volume 9644 of Lecture Notes in
Computer Science, pages 1–13. Springer, 2016. doi:10.1007/978-3-662-49529-2_1.

[2] Manuel Aprile, Matthew Drescher, Samuel Fiorini, and Tony Huynh. A tight approximation
algorithm for the cluster vertex deletion problem. Math. Program., 197(2):1069–1091, 2023.
doi:10.1007/s10107-021-01744-w.

[3] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games and
related problems. J. ACM, 62(5):42:1–42:25, 2015. doi:10.1145/2775105.

[4] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the undi-
rected feedback vertex set problem. SIAM J. Discret. Math., 12(3):289–297, 1999. doi:

10.1137/S0895480196305124.

[5] Nikhil Bansal, Parinya Chalermsook, Bundit Laekhanukit, Danupon Nanongkai, and Jesper Ned-
erlof. New tools and connections for exponential-time approximation. Algorithmica, 81(10):3993–
4009, 2019. doi:10.1007/s00453-018-0512-8.

67

https://doi.org/10.1007/978-3-662-49529-2_1
https://doi.org/10.1007/s10107-021-01744-w
https://doi.org/10.1145/2775105
https://doi.org/10.1137/S0895480196305124
https://doi.org/10.1137/S0895480196305124
https://doi.org/10.1007/s00453-018-0512-8

[6] Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for the weighted
vertex cover problem. J. Algorithms, 2(2):198–203, 1981. doi:10.1016/0196-6774(81)90020-1.

[7] Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Karthik C. S., Bingkai
Lin, Pasin Manurangsi, and Dániel Marx. Parameterized intractability of even set and shortest
vector problem. J. ACM, 68(3):16:1–16:40, 2021. doi:10.1145/3444942.

[8] Anudhyan Boral, Marek Cygan, Tomasz Kociumaka, and Marcin Pilipczuk. A fast branching
algorithm for cluster vertex deletion. Theory Comput. Syst., 58(2):357–376, 2016. doi:10.1007/
s00224-015-9631-7.

[9] Nicolas Bourgeois, Bruno Escoffier, and Vangelis Th. Paschos. Approximation of max independent
set, min vertex cover and related problems by moderately exponential algorithms. Discret. Appl.
Math., 159(17):1954–1970, 2011. doi:10.1016/j.dam.2011.07.009.

[10] Ljiljana Brankovic and Henning Fernau. Parameterized approximation algorithms for hitting set.
In Roberto Solis-Oba and Giuseppe Persiano, editors, Approximation and Online Algorithms -
9th International Workshop, WAOA 2011, Saarbrücken, Germany, September 8-9, 2011, Revised
Selected Papers, volume 7164 of Lecture Notes in Computer Science, pages 63–76. Springer, 2011.
doi:10.1007/978-3-642-29116-6_6.

[11] Ljiljana Brankovic and Henning Fernau. A novel parameterised approximation algorithm for
minimum vertex cover. Theor. Comput. Sci., 511:85–108, 2013. doi:10.1016/j.tcs.2012.12.

003.

[12] Nader H. Bshouty and Lynn Burroughs. Massaging a linear programming solution to give a
2-approximation for a generalization of the vertex cover problem. In Michel Morvan, Christoph
Meinel, and Daniel Krob, editors, STACS 98, 15th Annual Symposium on Theoretical Aspects
of Computer Science, Paris, France, February 25-27, 1998, Proceedings, volume 1373 of Lecture
Notes in Computer Science, pages 298–308. Springer, 1998. doi:10.1007/BFb0028569.

[13] Yixin Cao. Linear recognition of almost interval graphs. In Robert Krauthgamer, editor,
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1096–1115. SIAM, 2016. doi:

10.1137/1.9781611974331.ch77.

[14] Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From gap-exponential time hypothesis to fixed pa-
rameter tractable inapproximability: Clique, dominating set, and more. SIAM J. Comput.,
49(4):772–810, 2020. doi:10.1137/18M1166869.

[15] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor. Comput.
Sci., 411(40-42):3736–3756, 2010. doi:10.1016/j.tcs.2010.06.026.

[16] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5):21:1–21:19, 2008. doi:

10.1145/1411509.1411511.

[17] Yijia Chen and Bingkai Lin. The constant inapproximability of the parameterized dominating
set problem. SIAM J. Comput., 48(2):513–533, 2019. doi:10.1137/17M1127211.

[18] Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized approximation
algorithms for bidirected steiner network problems. ACM Trans. Algorithms, 17(2):12:1–12:68,
2021. doi:10.1145/3447584.

[19] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-Interscience, 2nd
edition, 2006. doi:10.1002/047174882X.

68

https://doi.org/10.1016/0196-6774(81)90020-1
https://doi.org/10.1145/3444942
https://doi.org/10.1007/s00224-015-9631-7
https://doi.org/10.1007/s00224-015-9631-7
https://doi.org/10.1016/j.dam.2011.07.009
https://doi.org/10.1007/978-3-642-29116-6_6
https://doi.org/10.1016/j.tcs.2012.12.003
https://doi.org/10.1016/j.tcs.2012.12.003
https://doi.org/10.1007/BFb0028569
https://doi.org/10.1137/1.9781611974331.ch77
https://doi.org/10.1137/1.9781611974331.ch77
https://doi.org/10.1137/18M1166869
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1137/17M1127211
https://doi.org/10.1145/3447584
https://doi.org/10.1002/047174882X

[20] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

[21] Marek Cygan, Lukasz Kowalik, and Mateusz Wykurz. Exponential-time approximation of
weighted set cover. Inf. Process. Lett., 109(16):957–961, 2009. doi:10.1016/j.ipl.2009.05.003.

[22] Oswaldo de Oliveira. The implicit and inverse function theorems: easy proofs. Real Anal. Ex-
change, 39(1):207–218, 2013/14. doi:10.14321/realanalexch.39.1.0207.

[23] Matthew Drescher, Samuel Fiorini, and Tony Huynh. A simple (2+ϵ)-approximation algorithm for
split vertex deletion. CoRR, abs/2009.11056, 2020. URL: https://arxiv.org/abs/2009.11056,
arXiv:2009.11056.

[24] Eduard Eiben, Clément Rambaud, and Magnus Wahlström. On the parameterized complexity
of symmetric directed multicut. In Holger Dell and Jesper Nederlof, editors, 17th International
Symposium on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Pots-
dam, Germany, volume 249 of LIPIcs, pages 11:1–11:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.IPEC.2022.11.

[25] Bruno Escoffier, Vangelis Th. Paschos, and Emeric Tourniaire. Super-polynomial approximation
branching algorithms. RAIRO Oper. Res., 50(4-5):979–994, 2016. doi:10.1051/ro/2015060.

[26] Baris Can Esmer, Ariel Kulik, Dániel Marx, Daniel Neuen, and Roohani Sharma. Faster
exponential-time approximation algorithms using approximate monotone local search. In Shiri
Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual Eu-
ropean Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany,
volume 244 of LIPIcs, pages 50:1–50:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ESA.2022.50.

[27] Guy Even, Joseph Naor, and Leonid Zosin. An 8-approximation algorithm for the sub-
set feedback vertex set problem. SIAM J. Comput., 30(4):1231–1252, 2000. doi:10.1137/

S0097539798340047.

[28] Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A survey on
approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146,
2020. doi:10.3390/a13060146.

[29] Michael R. Fellows, Ariel Kulik, Frances A. Rosamond, and Hadas Shachnai. Parameterized
approximation via fidelity preserving transformations. J. Comput. Syst. Sci., 93:30–40, 2018.
doi:10.1016/j.jcss.2017.11.001.

[30] Fedor V. Fomin, Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Saket Saurabh. Iterative
compression and exact algorithms. Theor. Comput. Sci., 411(7-9):1045–1053, 2010. doi:10.

1016/j.tcs.2009.11.012.

[31] Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via
monotone local search. J. ACM, 66(2):8:1–8:23, 2019. doi:10.1145/3284176.

[32] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, 2010. doi:10.1007/978-3-642-16533-7.

[33] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approximation algo-
rithms for integral flow and multicut in trees, with applications to matching and set cover.
In Andrzej Lingas, Rolf G. Karlsson, and Svante Carlsson, editors, Automata, Languages and
Programming, 20nd International Colloquium, ICALP93, Lund, Sweden, July 5-9, 1993, Pro-
ceedings, volume 700 of Lecture Notes in Computer Science, pages 64–75. Springer, 1993.
doi:10.1007/3-540-56939-1_62.

69

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.ipl.2009.05.003
https://doi.org/10.14321/realanalexch.39.1.0207
https://arxiv.org/abs/2009.11056
http://arxiv.org/abs/2009.11056
https://doi.org/10.4230/LIPIcs.IPEC.2022.11
https://doi.org/10.1051/ro/2015060
https://doi.org/10.4230/LIPIcs.ESA.2022.50
https://doi.org/10.1137/S0097539798340047
https://doi.org/10.1137/S0097539798340047
https://doi.org/10.3390/a13060146
https://doi.org/10.1016/j.jcss.2017.11.001
https://doi.org/10.1016/j.tcs.2009.11.012
https://doi.org/10.1016/j.tcs.2009.11.012
https://doi.org/10.1145/3284176
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/3-540-56939-1_62

[34] Serge Gaspers and Edward J. Lee. Exact algorithms via multivariate subroutines. In Ioannis
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Col-
loquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw,
Poland, volume 80 of LIPIcs, pages 69:1–69:13. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2017. doi:10.4230/LIPIcs.ICALP.2017.69.

[35] Esha Ghosh, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad Panolan, Ashutosh Rai,
and M. S. Ramanujan. Faster parameterized algorithms for deletion to split graphs. Algorithmica,
71(4):989–1006, 2015. doi:10.1007/s00453-013-9837-5.

[36] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and Com-
binatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988. doi:

10.1007/978-3-642-97881-4.

[37] Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized complexity of vertex cover
variants. Theory Comput. Syst., 41(3):501–520, 2007. doi:10.1007/s00224-007-1309-3.

[38] Venkatesan Guruswami and Euiwoong Lee. Simple proof of hardness of feedback vertex set.
Theory Comput., 12(1):1–11, 2016. doi:10.4086/toc.2016.v012a006.

[39] Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, lp-branching, and FPT
algorithms. SIAM J. Comput., 45(4):1377–1411, 2016. doi:10.1137/140962838.

[40] Iyad A. Kanj, Guohui Lin, Tian Liu, Weitian Tong, Ge Xia, Jinhui Xu, Boting Yang, Fenghui
Zhang, Peng Zhang, and Binhai Zhu. Improved parameterized and exact algorithms for cut
problems on trees. Theor. Comput. Sci., 607:455–470, 2015. doi:10.1016/j.tcs.2015.06.010.

[41] Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized complexity of
approximating dominating set. J. ACM, 66(5):33:1–33:38, 2019. doi:10.1145/3325116.

[42] Ken-ichi Kawarabayashi and Bingkai Lin. A nearly 5/3-approximation FPT algorithm for min-
k-cut. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 990–999. SIAM,
2020. doi:10.1137/1.9781611975994.59.

[43] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 17th
Annual IEEE Conference on Computational Complexity, Montréal, Québec, Canada, May 21-24,
2002, page 25. IEEE Computer Society, 2002. doi:10.1109/CCC.2002.1004334.

[44] Steven G. Krantz and Harold R. Parks. The implicit function theorem: history, theory, and
applications. Birkhäuser Boston, Inc., Boston, MA, 2002. doi:10.1007/978-1-4612-0059-8.

[45] Ariel Kulik and Hadas Shachnai. Analysis of two-variable recurrence relations with application
to parameterized approximations. In Sandy Irani, editor, 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages
762–773. IEEE, 2020. doi:10.1109/FOCS46700.2020.00076.

[46] Mithilesh Kumar and Daniel Lokshtanov. Faster exact and parameterized algorithm for feedback
vertex set in tournaments. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on
Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France,
volume 47 of LIPIcs, pages 49:1–49:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPIcs.STACS.2016.49.

[47] Beatriz Lafferriere, Gerardo Lafferriere, and Mau Nam Nguyen. Introduction to Mathematical
Analysis I. Portland State University Library, 3rd edition, 2022. doi:10.15760/pdxopen-34.

[48] Edward Lee. Exponential time algorithms via separators and random subsets. PhD thesis, Uni-
versity of New South Wales, 2021. doi:10.26190/unsworks/22740.

70

https://doi.org/10.4230/LIPIcs.ICALP.2017.69
https://doi.org/10.1007/s00453-013-9837-5
https://doi.org/10.1007/978-3-642-97881-4
https://doi.org/10.1007/978-3-642-97881-4
https://doi.org/10.1007/s00224-007-1309-3
https://doi.org/10.4086/toc.2016.v012a006
https://doi.org/10.1137/140962838
https://doi.org/10.1016/j.tcs.2015.06.010
https://doi.org/10.1145/3325116
https://doi.org/10.1137/1.9781611975994.59
https://doi.org/10.1109/CCC.2002.1004334
https://doi.org/10.1007/978-1-4612-0059-8
https://doi.org/10.1109/FOCS46700.2020.00076
https://doi.org/10.4230/LIPIcs.STACS.2016.49
https://doi.org/10.15760/pdxopen-34
https://doi.org/10.26190/unsworks/22740

[49] Jason Li and Jesper Nederlof. Detecting feedback vertex sets of size k in O(2.7k) time. ACM
Trans. Algorithms, 18(4):34:1–34:26, 2022. doi:10.1145/3504027.

[50] Bingkai Lin. Constant approximating k-clique is W[1]-hard. In Samir Khuller and Vir-
ginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1749–1756. ACM, 2021.
doi:10.1145/3406325.3451016.

[51] Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. On lower bounds of approximating
parameterized k-clique. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,
49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July
4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 90:1–90:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.90.

[52] Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. Constant approximating parameterized
k-setcover is W[2]-hard. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of
the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January
22-25, 2023, pages 3305–3316. SIAM, 2023. doi:10.1137/1.9781611977554.ch126.

[53] Daniel Lokshtanov, Pranabendu Misra, Joydeep Mukherjee, Geevarghese Philip, Fahad Panolan,
and Saket Saurabh. A 2-approximation algorithm for feedback vertex set in tournaments. CoRR,
abs/1809.08437, 2018. URL: http://arxiv.org/abs/1809.08437, arXiv:1809.08437.

[54] Daniel Lokshtanov, Pranabendu Misra, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi.
FPT-approximation for FPT problems. In Dániel Marx, editor, Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13,
2021, pages 199–218. SIAM, 2021. doi:10.1137/1.9781611976465.14.

[55] Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Algorithms,
11(2):15:1–15:31, 2014. doi:10.1145/2566616.

[56] Pasin Manurangsi and Luca Trevisan. Mildly exponential time approximation algorithms for ver-
tex cover, balanced separator and uniform sparsest cut. In Eric Blais, Klaus Jansen, José D. P.
Rolim, and David Steurer, editors, Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton,
NJ, USA, volume 116 of LIPIcs, pages 20:1–20:17. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.20.

[57] Dániel Marx. Parameterized complexity and approximation algorithms. Comput. J., 51(1):60–78,
2008. doi:10.1093/comjnl/bxm048.

[58] The mpmath development team. mpmath: a Python library for arbitrary-precision floating-point
arithmetic (version 1.3.0), 2023. URL: https://mpmath.org/.

[59] George Osipov and Magnus Wahlström. Parameterized complexity of equality mincsp. CoRR,
abs/2305.11131, 2023. arXiv:2305.11131, doi:10.48550/arXiv.2305.11131.

[60] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
recipes: the art of scientific computing, 3rd Edition. Cambridge University Press, 2007. URL:
https://www.worldcat.org/oclc/123285342.

[61] Georg Still. Lectures on parametric optimization: An introduction. Optimization Online, 2018.

[62] Pim van ’t Hof and Yngve Villanger. Proper interval vertex deletion. Algorithmica, 65(4):845–867,
2013. doi:10.1007/s00453-012-9661-3.

[63] Vijay V. Vazirani. Approximation algorithms. Springer, 2001. doi:10.1007/

978-3-662-04565-7.

71

https://doi.org/10.1145/3504027
https://doi.org/10.1145/3406325.3451016
https://doi.org/10.4230/LIPIcs.ICALP.2022.90
https://doi.org/10.1137/1.9781611977554.ch126
http://arxiv.org/abs/1809.08437
http://arxiv.org/abs/1809.08437
https://doi.org/10.1137/1.9781611976465.14
https://doi.org/10.1145/2566616
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.20
https://doi.org/10.1093/comjnl/bxm048
https://mpmath.org/
http://arxiv.org/abs/2305.11131
https://doi.org/10.48550/arXiv.2305.11131
https://www.worldcat.org/oclc/123285342
https://doi.org/10.1007/s00453-012-9661-3
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

[64] Magnus Wahlström. Algorithms, measures and upper bounds for satisfiability and related problems.
PhD thesis, Linköping University, Sweden, 2007. URL: https://nbn-resolving.org/urn:nbn:
se:liu:diva-8714.

[65] Magnus Wahlström. A single-exponential parameterized approximation algorithm for symmetric
directed multicut. Personal communication, 2022.

[66] Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set. Inf.
Comput., 255:126–146, 2017. doi:10.1016/j.ic.2017.06.001.

A Problem Definitions

In this section, we give the problem definitions of all the problems discussed in the paper.

Vertex Cover (VC)
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G− S has no edges.

Partial Vertex Cover (VC)
Input: An undirected graph G and an integer t ≥ 0.
Question: Find a minimum set S of vertices of G such that G− S has at most |E(G)| − t many
edges.

d-Hitting Set (d-HS)

Input: A universe U and set family F ⊆
(
U
≤d

)
.

Question: Find a minimum set S ⊆ U such that for each F ∈ F , S ∩ F ̸= ∅.

Feedback Vertex Set (FVS)
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G− S is an acyclic graph.

Subset Feedback Vertex Set (Subset FVS)
Input: An undirected graph G and a set T ⊆ V (G).
Question: Find a minimum set S of vertices of G such that G− S has no cycle that contains at
least one vertex of T .

Tournament Feedback Vertex Set (TFVS)
Input: A tournament graph G.
Question: Find a minimum set S of vertices of G such that G− S is an acyclic tournament.

Directed Feedback Vertex Set (DFVS)
Input: A directed graph G.
Question: Find a minimum set S of vertices of G such that G− S is a directed acyclic graph.

Directed Subset Feedback Vertex Set (Subset DFVS)
Input: A directed graph G and a set T ⊆ V (G).
Question: Find a minimum set S of vertices of G such that G − S has no directed cycle that
contains at least one vertex of T .

Odd Cycle Transversal (OCT)
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G− S has no cycle of odd length.

72

https://nbn-resolving.org/urn:nbn:se:liu:diva-8714
https://nbn-resolving.org/urn:nbn:se:liu:diva-8714
https://doi.org/10.1016/j.ic.2017.06.001

Directed Odd Cycle Transversal (DOCT)
Input: A directed graph G.
Question: Find a minimum set S of vertices of G such that G− S has no directed cycle of odd
length.

Multicut
Input: An undirected graph G and a set P ⊆ V (G)× V (G).
Question: Find a minimum set S of vertices of G such that G − S has no path from u to v for
any (u, v) ∈ P

Edge Multicut on Trees
Input: A tree T and a set P ⊆ V (G)× V (G).
Question: Find a minimum set S of edges of T such that T − S has no path from u to v for any
(u, v) ∈ P

d-Steiner Multicut

Input: An undirected graph G, a family of at most d-sized sets P ⊆
(V (G)

d

)
.

Question: Find a minimum set S of vertices of G such that for each T ∈ P, there exists u, v ∈ T
such that G− S either has no u to v path.

Directed Symmetric Multicut
Input: A directed graph G and a set P ⊆ V (G)× V (G).
Question: Find a minimum set S of vertices of G such that for each (u, v) ∈ P, G−S either has
no u to v path, or no v to u path.

Interval Vertex Deletion
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G− S is an interval graph.

Proper Interval Vertex Deletion
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G− S is a proper interval graph.

For the next problems, we require some additional definitions. A graph G is cluster graph if every
connected component of G is a complete graph. We say G is a block graph if every 2-connected
component of G is a complete graph. A cograph is a graph G which does not contain P4 (a path on 4
vertices) is an induced subgraph. Finally, a graph G is a split graph if the vertex set can be partitioned
into two sets V (G) = I ⊎ C such that I is an independent set and C is a clique in G.

Block Graph Vertex Deletion
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G− S is a block graph.

Cluster Graph Vertex Deletion
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G− S is a cluster graph.

Cograph Vertex Deletion
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G− S is a cograph.

Split Vertex Deletion
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G− S is a split graph.

73

B Running Times of Exponential Approximation Algorithms

We provide extensive data sets on the running times for the obtained exponential approximation
algorothms for the problems listed in Section 3.1. More precisely, we provide data sets fr the problems
FVS, Tournament FVS, Subset FVS, 4-Hitting Set, Odd Cycle Transversal, Interval
Vertex Deletion, Proper Interval Vertex Deletion, Block Graph Vertex Deletion,
Cluster Graph Vertex Deletion, Cograph Vertex Deletion, Split Vertex Deletion,
Edge Multicut on Trees and Partial Vertex Cover. Tables 6 and 7 contain the running
times for selected approximation ratios, and graphical visualizations can be found in Figures 3 to 5

Feedback Vertex Set

(α, c) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
(β, 2.69998) 1.465 1.3861 1.3331 1.294 1.2637 1.2393 1.2193 1.2024 1.188
(1.0, 2.69998) 1.4156 1.3289 1.2753 1.2378 1.2099 1.1881 1.1706 1.1561 1.144
(2.0, 1.0) 1.6588 1.4847 1.3657 1.2768 1.2072 1.1507 1.1037 1.064 1.0298
combined 1.4156 1.3289 1.2753 1.2378 1.2068 1.1507 1.1037 1.064 1.0298

Tournament Feedback Vertex Set

(α, c) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
(β, 1.618) 1.2912 1.2463 1.2152 1.1918 1.1734 1.1583 1.1458 1.1352 1.126
(1.0, 1.618) 1.2348 1.1837 1.1531 1.132 1.1164 1.1042 1.0945 1.0865 1.0798
(2.0, 1.0) 1.6588 1.4847 1.3657 1.2768 1.2072 1.1507 1.1037 1.064 1.0298
combined 1.2348 1.1837 1.1531 1.132 1.1164 1.1042 1.0945 1.064 1.0298

Subset Feedback Vertex Set

(α, c) 1.1 1.8 2.5 3.2 3.9 4.6 5.3 6.0 6.7 7.4
(β, 4.0) 1.5474 1.2323 1.1507 1.1118 1.0889 1.0738 1.0631 1.0552 1.049 1.044
(1.0, 4.0) 1.5098 1.1952 1.1235 1.0906 1.0716 1.0592 1.0505 1.044 1.039 1.035
(8.0, 1.0) 1.7153 1.2891 1.1787 1.1225 1.0871 1.0623 1.0436 1.029 1.0171 1.0073
combined 1.5098 1.1952 1.1235 1.0906 1.0716 1.0592 1.0436 1.029 1.0171 1.0073

4-Hitting Set

(α, c) 1.1 1.4 1.7 2.0 2.3 2.6 2.9 3.2 3.5 3.8
(β, 3.0755) 1.4961 1.3117 1.2318 1.1853 1.1546 1.1327 1.1163 1.1035 1.0933 1.0849
(1.0, 3.0755) 1.4506 1.2592 1.1861 1.1459 1.1202 1.1023 1.0891 1.0789 1.0708 1.0643
(4.0, 1.0) 1.7147 1.4208 1.2882 1.2072 1.151 1.1093 1.0768 1.0506 1.029 1.0107
combined 1.4506 1.2592 1.1861 1.1459 1.1202 1.1023 1.0768 1.0506 1.029 1.0107

Odd Cycle Transversal

(α, c) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
(β, 2.3146) 1.4223 1.3521 1.3046 1.2695 1.2421 1.22 1.2018 1.1864 1.1733
(1.0, 2.3146) 1.3689 1.2908 1.243 1.2098 1.185 1.1658 1.1503 1.1376 1.1269

Interval Vertex Deletion

(α, c) 1.1 1.8 2.5 3.2 3.9 4.6 5.3 6.0 6.7 7.4
(β, 8.0) 1.6319 1.262 1.1688 1.1248 1.0991 1.0822 1.0702 1.0613 1.0544 1.0489
(1.0, 8.0) 1.6111 1.2401 1.1526 1.1121 1.0886 1.0733 1.0625 1.0545 1.0483 1.0434
(8.0, 1.0) 1.7153 1.2891 1.1787 1.1225 1.0871 1.0623 1.0436 1.029 1.0171 1.0073
combined 1.6111 1.2401 1.1526 1.1121 1.0871 1.0623 1.0436 1.029 1.0171 1.0073

Table 6: An entry at in row (α, c) and column β is best(α, c, β).

74

Proper Interval Vertex Deletion

(α, c) 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6
(β, 6.0) 1.6038 1.3001 1.204 1.1551 1.1252 1.105 1.0905 1.0795 1.0708 1.0639
(1.0, 6.0) 1.577 1.2698 1.1799 1.1354 1.1087 1.0908 1.078 1.0684 1.0609 1.0549
(6.0, 1.0) 1.7153 1.3436 1.2215 1.1546 1.111 1.0797 1.0559 1.0371 1.0217 1.0089
combined 1.577 1.2698 1.1799 1.1354 1.1087 1.0797 1.0559 1.0371 1.0217 1.0089

Block Graph Vertex Deletion

(α, c) 1.1 1.4 1.7 2.0 2.3 2.6 2.9 3.2 3.5 3.8
(β, 4.0) 1.5474 1.3406 1.2521 1.201 1.1674 1.1435 1.1257 1.1118 1.1007 1.0916
(1.0, 4.0) 1.5098 1.2961 1.2131 1.1672 1.1379 1.1174 1.1022 1.0906 1.0813 1.0738
(4.0, 1.0) 1.7147 1.4208 1.2882 1.2072 1.151 1.1093 1.0768 1.0506 1.029 1.0107
combined 1.5098 1.2961 1.2131 1.1672 1.1379 1.1093 1.0768 1.0506 1.029 1.0107

Cluster Graph Vertex Deletion

(α, c) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
(β, 1.9102) 1.3584 1.3007 1.2614 1.232 1.209 1.1904 1.1749 1.1619 1.1507
(1.0, 1.9102) 1.3015 1.2367 1.1974 1.1703 1.1501 1.1345 1.1219 1.1116 1.1029
(2.0, 1.0) 1.6588 1.4847 1.3657 1.2768 1.2072 1.1507 1.1037 1.064 1.0298
combined 1.3015 1.2367 1.1974 1.1703 1.1501 1.1345 1.1037 1.064 1.0298

Split Vertex Deletion

(α, c) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
(β, 2.0) 1.3749 1.314 1.2726 1.2418 1.2176 1.1981 1.1819 1.1683 1.1566
(1.0, 2.0) 1.3186 1.2503 1.2089 1.1802 1.1589 1.1423 1.129 1.1181 1.1089

(2.0001, 1.0) 1.6588 1.4847 1.3657 1.2768 1.2072 1.1507 1.1038 1.064 1.0298
combined 1.3186 1.2503 1.2089 1.1802 1.1589 1.1423 1.1038 1.064 1.0298

Multicut on Trees

(α, c) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
(β, 1.5538) 1.2729 1.2313 1.2025 1.1807 1.1634 1.1494 1.1376 1.1277 1.1191
(1.0, 1.5538) 1.2173 1.1699 1.1416 1.1221 1.1076 1.0964 1.0874 1.08 1.0738
(2.0, 1.0) 1.6588 1.4847 1.3657 1.2768 1.2072 1.1507 1.1037 1.064 1.0298
combined 1.2173 1.1699 1.1416 1.1221 1.1076 1.0964 1.0874 1.064 1.0298

Partial Vertex Cover

(α, c) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
(2.0, 1.0) 1.6588 1.4847 1.3657 1.2768 1.2072 1.1507 1.1037 1.064 1.0298

Table 7: An entry at in row (α, c) and column β is best(α, c, β).

75

(a) Feedback Vertex Set

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

approximation ratio

ex
p
on

en
t
b
as
e

EPT [25]
brute

α = β, c = 2.69998
combined

α = 1.0, c = 2.69998
α = 2.0, c = 1.0

(b) Tournament Feedback Vertex Set

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

approximation ratio

ex
p
o
n
en
t
b
a
se

brute
α = β, c = 1.618

combined
α = 1.0, c = 1.618
α = 2.0, c = 1.0

(c) Subset Feedback Vertex Set

1 2 3 4 5 6 7 8

1

1.2

1.4

1.6

1.8

2

approximation ratio

ex
p
on

en
t
b
as
e

brute
α = β, c = 4.0

combined
α = 1.0, c = 4.0
α = 8.0, c = 1.0

(d) 4-Hitting Set

1 1.5 2 2.5 3 3.5 4

1

1.2

1.4

1.6

1.8

2

approximation ratio

ex
p
on

en
t
b
as
e

brute
α = β, c = 3.0755

combined
α = 1.0, c = 3.0755
α = 4.0, c = 1.0

Figure 3: Results for Feedback Vertex Set, Tournament Feedback Vertex Set, Subset
Feedback Vertex Set and 4-Hitting Set. A dot at (β, d) means that the respective algorithm
outputs an β-approximation in time O∗(dn).

76

(a) Odd Cycle Transversal

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

approximation ratio

ex
p
on

en
t
b
as
e

brute
α = β, c = 2.3146
α = 1.0, c = 2.3146

(b) Interval Vertex Deletion

1 2 3 4 5 6 7 8

1

1.2

1.4

1.6

1.8

2

approximation ratio

ex
p
o
n
en
t
b
a
se

brute
α = β, c = 8.0

combined
α = 1.0, c = 8.0
α = 8.0, c = 1.0

(c) Proper Interval Vertex Deletion

1 2 3 4 5 6

1

1.2

1.4

1.6

1.8

2

approximation ratio

ex
p
on

en
t
b
as
e

brute
α = β, c = 6.0

combined
α = 1.0, c = 6.0
α = 6.0, c = 1.0

(d) Block Graph Vertex Deletion

1 1.5 2 2.5 3 3.5 4

1

1.2

1.4

1.6

1.8

2

approximation ratio

ex
p
on

en
t
b
as
e

brute
α = β, c = 4.0

combined
α = 1.0, c = 4.0
α = 4.0, c = 1.0

Figure 4: Results for Odd Cycle Transversal, Interval Vertex Deletion, Proper Interval
Vertex Deletion and Block Graph Vertex Deletion. A dot at (β, d) means that the respective
algorithm outputs an β-approximation in time O∗(dn).

77

(a) Cluster Graph Vertex Deletion

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

approximation ratio

ex
p
on

en
t
b
as
e

brute
α = β, c = 1.9102

combined
α = 1.0, c = 1.9102
α = 2.0, c = 1.0

(b) Split Vertex Deletion

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

approximation ratio

ex
p
o
n
en
t
b
a
se

brute
α = β, c = 2.0

combined
α = 1.0, c = 2.0

α = 2.0001, c = 1.0

(c) Multicut on Trees

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

approximation ratio

ex
p
on

en
t
b
as
e

brute
α = β, c = 1.5538

combined
α = 1.0, c = 1.5538
α = 2.0, c = 1.0

(d) Partial Vertex Cover

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

approximation ratio

ex
p
on

en
t
b
as
e

brute
α = 2.0, c = 1.0

Figure 5: Results for Cluster Graph Vertex Deletion, Split Vertex Deletion, Multicut
on Trees and Partial Vertex Cover. A dot at (β, d) means that the respective algorithm outputs
an β-approximation in time O∗(dn).

78

	Introduction
	Our Results
	Computation Model
	Approximate Monotone Local Search
	Optimality of the Algorithm
	Evaluating the Running Time of Approximate Monotone Local Search
	Comparisons

	Applications
	Combining Exact FPT and Polynomial-Time Approximation Algorithms
	Exploiting Parameterized Approximation Algorithms
	Vertex Cover and 3-Hitting Set

	Approximate Monotone Local Search
	Correctness and Basic Analysis
	Derandomization

	Lower Bounds
	From Discrete to Continuous Optimization
	Evaluating the Running Time: Convexity and Concavity
	Basic Properties
	Convexity
	Concavity
	The Determinant of the Hessian is Negative
	Partial Derivatives
	A Formula for the Determinant of the Hessian

	Better than Brute Force
	Monotonicity Properties
	Conclusion
	Problem Definitions
	Running Times of Exponential Approximation Algorithms

