
ar
X

iv
:2

31
0.

14
46

2v
1

 [
cs

.C
C

]
 2

3
O

ct
 2

02
3

FAST FOURIER TRANSFORM VIA AUTOMORPHISM GROUPS OF
RATIONAL FUNCTION FIELDS

SONGSONG LI AND CHAOPING XING

Abstract. The Fast Fourier Transform (FFT) over a finite field Fq computes evaluations
of a given polynomial of degree less than n at a specifically chosen set of n distinct evaluation
points in Fq. If q or q−1 is a smooth number, then the divide-and-conquer approach leads to
the fastest known FFT algorithms. Depending on the type of group that the set of evaluation
points forms, these algorithms are classified as multiplicative (Math of Comp. 1965) and
additive (FOCS 2014) FFT algorithms. In this work, we provide a unified framework for
FFT algorithms that include both multiplicative and additive FFT algorithms as special
cases, and beyond: our framework also works when q+1 is smooth, while all known results
require q or q− 1 to be smooth. For the new case where q+1 is smooth (this new case was
not considered before in literature as far as we know), we show that if n is a divisor of q+1
that is B-smooth for a real B > 0, then our FFT needs O(Bn log n) arithmetic operations
in Fq. Our unified framework is a natural consequence of introducing the algebraic function
fields into the study of FFT.

1. Introduction

The discrete Fourier transform (DFT for short) of length n over a field F is a transform
from n coefficients of a polynomial f(x) over F of degree less than n to n evaluations of f(x)
at all n-th roots of unity in F . The inverse DFT (iDFT for short) is just the reverse process
from n evaluations to n coefficients. However, the computation of DFT directly from the
definition requires O(n2) operations in F which is usually too slow for practical purposes.
Thus, we desire to design a faster DFT to fulfill various applications. This motivates the
study of fast Fourier transform (FFT for short). FFT is a classical topic in complexity theory
and has found various applications in theoretical computer science such as fast polynomial
arithmetic [VZGG13, BCS13, BSCKL23], and coding theory [Jus76, Gao03, GS10, LCH14,
LANHC16, LANH16, HCLB21].

1.1. Previous work. The origin of FFT can be traced back to Gauss’s unpublished work
in 1805, which was pointed out by Heideman et al. in [HJB84]. After 160 years, Cooley and
Tukey [CT65] independently rediscovered this algorithm and popularized it. Now this FFT
is known as the Cooley-Tukey algorithm. Cooley-Tukey’s algorithm is a divide-and-conquer
algorithm that implements DFT over the complex numbers C; namely, given a polynomial
f(x) =

∑

i<n aix
i ∈ C[X], evaluate f(x) at the n-th roots of unity in C. If n is a B-smooth

number, i.e., all its prime factors are not greater than B, Cooley-Tukey’s algorithm computes
DFT in O(Bn logn) arithmetic operations of C. In the following, we also call n is smooth
if B = O(1) is a constant. Using Cooley-Tukey’s algorithm, DFT over Fq can also be done
in O(n logn) field operations of Fq if Fq contains an n-th root of unity for smooth integer
n [M.71]. For DFTs of polynomials in Fq[x]<n, but the evaluation points in an extension field
Fqd which has smooth n-th roots of unity, van der Hoeven and Larrieu [vDHL17] showed
that the Frobenius automorphism Φ ∈ Gal(Fqd/Fq) can be used to accelerate the FFT over

1

http://arxiv.org/abs/2310.14462v1

2 SONGSONG LI AND CHAOPING XING

Fqd. The above class of FFTs is called multiplicative FFT due to the fact that the evaluation
set is a multiplicative subgroup of F∗

q.
However, if Fq does not have the desired n-th roots of unity, for example, Fq = F2r and

2r − 1 is a prime number, then the multiplicative FFT is not efficient. To implement FFT
over Fq in this case, a new type of FFT algorithm was discovered by Zhu-Wang [WY88] and
Cantor [Can89] independently. To distinguish Cooley-Tukey’s FFT algorithm from the one
by Zhu-Wang and Cantor, Mateer, and Gao [GS10] named the latter one as the additive
FFT based on the fact that the evaluation set is an additive subgroup of Fq. In their work
[GS10], Mateer and Gao improved the previous additive FFT algorithm [WY88, Can89]
and showed that their additive FFT algorithm requires O(n log2 n) additions and O(n logn)
multiplications in Fq = F2r . Particularly, in case r is a power of two, their improved FFT
needs O(n logn) multiplications and only O(n logn · log logn) additions. Four years later,
Lin et al. [LCH14] showed that additive FFT can be run in O(n logn) operations (including
additions and multiplications) over F2r by taking a novel polynomial basis of F2r [x]<n (the
F2r -vector space consisting of all polynomials over F2r of degree less than n). Moreover,
their new FFT algorithm is applicable to finite field F2r with arbitrary r. The same group of
authors later gave a new interpretation of their algorithm and presented some applications
of FFT in encoding and decoding of Reed-Solomon codes [LANH16, HCLB21]. Note that for
the additive FFT given in [LCH14, LANH16], it requires that every polynomial in Fq[x]<n

is represented under a certain basis consisting of products of linearized polynomials instead
of the standard monomial basis {1, x, . . . , xn−1}.

As we have seen, both multiplicative and additive FFTs over Fq have constraints. Namely,
for multiplicative FFT, one requires that q−1 is smooth; while for additive FFT, one requires
that the characteristic p of Fq is a small constant. Recently, Ben-Sasson et al. [BSCKL23]
made a breakthrough in the FFT-like algorithm over an arbitrary finite field. The new
algorithm is based on elliptic curves and isogenies of smooth degree, thus it is called elliptic-
curve-based FFT (ECFFT for short). More precisely, assume n is a smooth number. Let
f(x) ∈ Fq[x]<n be a polynomial and S ′ (Fq a carefully selected subset of cradinality
n. Then the multipoint evaluation (MPE for short) of f at S ′ can be done in O(n logn)
operations of Fq under the representation of f : f = (f(s1), . . . , f(sn)), where S (Fq is
another subset of size n and S ∩ S ′ = ∅ (This is different from previous FFTs which take
as input the coefficients of f under a certain basis of Fq[x]<n). They made use of isogenies
between elliptic curves to construct the transform from the MPE of f at S to the MPE of
f at S ′. During the transformation, some precomputations are required. The authors did
not give the total storage for the precomputations, but at least Ω(n) is required. This is
an additional overhead compared to the multiplicative/additive FFTs. Besides, a constraint
for the ECFFT over Fq is that length n is upper bounded by O(

√
q), especially for odd q.

This restricts many applications such as encoding and decoding of q-ary Reed-Solomon codes
where code lengths n are usually proportional to q.

1.2. Sketch of the multiplicative and additive FFT techniques. To compare our
results and better understand the FFT algorithm, let us sketch the idea of Cooley-Tukey’s
algorithm and Lin-Chung-Han’s algorithm [LCH14], which correspond to the multiplicative
and additive cases, respectively. For both cases, let n = 2r and f(x) ∈ Fq[x] be a polynomial
of degree less than n. Denote the complexity of FFT with respect to the number of additions
and multiplications by A(n) and M(n), respectively.

FAST FOURIER TRANSFORM 3

For Cooley-Tukey’s algorithm, the evaluation set is selected to be µn ⊆ F∗
q which is the

set of all n-th roots of unity, where n is equal to 2r for an integer r ≥ 1. Then the square
map s(x) = x2 maps µn onto µn/2. Moreover, the polynomial f(x) can be decomposed as
a combination of two lower-degree polynomials meanwhile, i.e., f(x) = f0(x

2) + x · f1(x2),
where f0, f1 ∈ Fq[x] are polynomials of degree less than n/2. Thus, the DFT of f(x) at µn

can be reduced to DFTs of f0 and f1 at µn/2 and then a combination of these two sets of
n/2 evaluations by using O(n) additions/multiplications in Fq. Then the running time A(n)
and M(n) both satisfy the recursive formula

A(n) = 2A(n/2) +O(n), M(n) = 2M(n/2) +O(n). (1.2.1)

After r steps of recursions, we have A(n) = M(n) = O(n logn).
Lin-Chung-Han’s additive FFT algorithm inherited the idea of the FFT algorithm [Fid72]

through polynomials modular arithmetic. Assume Fq = F2r = {αi}2
r−1

i=0 . Then the evalua-
tions of f(x) ∈ F2r [x]<2r at F2r are exactly the 2r residues

(
f(x) mod (x− α0), f(x) mod (x− α1), . . . , f(x) mod (x− α2r−1)

)
.

Note that
∏2r−1

i=0 (x− αi) = x2r − x and f(x) = f(x) mod (x2r − x). To efficiently get these
2r residues, Lin et al. introduced linearized polynomials to decompose the modulo (x2r − x)
into 2r modulus {(x− αi)}2

r−1
i=0 recursively. Assume

{0} = W0 (W1 (· · · (Wr−1 (Wr = F2r

is a subspace chain of F2r and Wi = Wi−1 ∪ (Wi−1 + vi) for some vi ∈ F2r and each i ∈ [1, r].
In particular, we have dimF2(Wi) = i and {v1, . . . , vr} constitutes a basis of F2r as a vector
space over F2. Define the linearized polynomial as ℓi(x) =

∏

w∈Wi
(x−w). Then deg(ℓi) = 2i

and

ℓi(x+ β) = ℓi−1(x+ β) · ℓi−1(x+ β + vi) for any β ∈ F2r .

For any e ∈ [0, 2r − 1], assume the 2-adic expansion of e is e =
∑r−1

i=0 ei2
i. Then

deg(ℓe00 (x)ℓe11 (x) · · · ℓer−1

r−1 (x)}) = e.

Hence B = {ℓe00 (x)ℓ1(x)
e1 · · · ℓer−1

r−1 (x) | e ∈ [0, 2r−1]} is a basis of F2r [x]<2r . Under the basis
B, write f(x) = f0(x) + ℓr−1(x) · f1(x), where f0, f1 ∈ F2r [x] are polynomials of degree less
than 2r−1. Since x2r − x = ℓr−1(x) · ℓr−1(x+ vr), by the Chinese Reminder theorem,

f(x) mod (x2r−x) =
(

f0(x) mod ℓr−1(x),
(
f0(x)+ℓr−1(vr)f1(x)

)
mod

(
ℓr−1(x)+ℓr−1(vr)

))

.

Thus, the computation of 2r residues {f(x) mod (x − α)}α∈Wr of f(x) can be reduced to
2r−1 residues {f0 mod (x − α)}α∈Wr−1 of f0(x) and 2r−1 residues {

(
f0 + ℓr−1(vr) · f1

)
mod

(x − α)}α∈Wr−1+vr of f0(x) + ℓr−1(vr)f1(x). Since f0, f1 both have degree less than 2r−1,
the computation of f0 + ℓr−1(vr)f1 needs O(n) additions and O(n) multiplications in F2r ,
respectively. Thus the running time A(n) and M(n) also satisfy equation (1.2.1) leading to
A(n) = M(n) = O(n logn).

So far, we have briefly described the ideas of multiplicative FFT and additive FFT. Al-
though there are similarities between multiplicative and additive FFTs, the methods used
are different. This makes great inconvenience for the generalization of these FFT algorithms
and their applications.

4 SONGSONG LI AND CHAOPING XING

1.3. Our result and comparisons. In this work, we provide a unified framework for FFT
in Fq that includes both multiplicative and additive FFT. More importantly, our framework
works well when either q − 1, q, or q + 1 is smooth. In other words, we give a new FFT
algorithm that includes both the multiplicative DFT and the additive DFT as two special
cases. Besides, we discuss a new case that has never been considered: if n is a divisor of q+1
that is B-smooth for a real number B > 0; namely, n can be factored into the product of
∏r

i=1 pi satisfying pi ≤ B for every 1 ≤ i ≤ r, then our FFT algorithm runs in O(B ·n · logn)
operations in Fq.

Theorem 1.1. Let B > 0 be a real. Let Fq[x]<n be the space of polynomials over Fq of degree
less than n. If n is a B-smooth divisor of either q− 1, q or q+1, then one can run FFT for
f(x) ∈ Fq[x]<n at a well-chosen multipoint set of size n in O(B ·n · log n) field operations of
Fq.

Remark 1.2. (1) In our framework, we need to represent a polynomial f ∈ Fq[x]<n

under a certain basis B of Fq[x]<n, then implement FFT of f at a well-chosen multi-
point set (the roots in Fq of a polynomial of degree n). As we will see in Section 3,
in the case of n | q − 1, then a basis B of Fq[x]<n constructed from our framework
is actually the standard monomial basis, i.e., B = {xi}n−1

i=0 ; in the case of n | q, then
B is constructed by the products of a series of linearized polynomials, which is the
same as in [LCH14].
Moreover, if n | q is smooth and the polynomial f is given under the standard basis
{xi}n−1

i=0 , then our framework can implement DFT of f in O(n log2 n) operations in
Fq (see Corollary 3.6 in Section 3), which is a generalization of Mateer-Gao’s additive
FFT over F2r to arbitrary characteristics.
Although the results for multiplicative and additive FFTs are known, we present

them under a unified framework for FFT by the theory of algebraic function fields.
(2) If both q and q − 1 are not smooth, then neither additive FFT nor multiplicative

FFT in Fq is applicable. In this case, if q + 1 has a smooth divisor n, then our
framework ensures that there is an efficient FFT in Fq. Therefore, our work loosens
the restriction of FFT on the finite field to some extent.
For instance, let p be a Sophie Germain prime, i.e., 2p+1 is also a prime. Then both

q := 2p+1 and q−1 = 2p are not smooth. Thus, if p+1 is smooth, then q+1 is smooth.
The other instance is that p is a Sophie Germain prime and q = 22p+1−1 is a Mersenne
prime, then q is not smooth. Furthermore, q − 1 = 22p+1 − 2 = 2 (2p − 1) (2p + 1).
Thus, with high probability q− 1 is not smooth as 2p− 1 is a Mersenne number. On
the other hand, we have q + 1 = 22p+1 is smooth.

(3) For the new case: q + 1 is smooth, we give a practical FFT algorithm over Fq with
multipoint set P ⊂ Fq in Section 4. Although one could also consider multiplicative
FFT in the quadratic extension field Fq2 in this case, the corresponding multipoint
set P1 is a subgroup of F∗

q2 . Note that P1 ∩ Fq = {1,−1}. Thus, the multiplicative
FFT over Fq2 does not imply the FFT over Fq.

We compare our result with known results in Subsection 1.1, see Table 1.

1in all cases, n need to be O(1)-smooth.
2a coset C = E(Fq)/G, where G ≤ E(Fq) is a subgroup of order n.
3a polynomial determined by the automorphism subgroup of Aut(Fq(x)/Fq) of order n.

FAST FOURIER TRANSFORM 5

Table 1. Comparisons of our result with known FFTs over Fq with complex-
ity O(n logn)

evaluation set P Representation of Fq[x]<n constraints1

Multiplicative P ≤ F∗
q f =

∑n−1
i=0 aix

i is rep. n | q − 1
FFT [CT65] n-th roots of unity under the standard basis
Additive P ≤ Fq f is rep. under a n | q

FFT[LCH14] subspace of Fq non-standard basis B
Elliptic curve P ⊂ Fq f is rep. as MPE n = O(

√
q)

FFT [BSCKL23] x-coord. of an n-coset2 f = (f(s1), . . . , f(sn))
Our P ⊂ Fq f is rep. under a n | q − 1, q,

results roots of an n-poly.3 (non-)standard basis B or q + 1

1.4. Our techniques. Let Aut(Fq(x)/Fq) be the automorphism group consisting of all auto-
morphisms of Fq(x) keeping elements of Fq invariant. Let G be a subgroup of Aut(Fq(x)/Fq)
and let Fq(x)

G be the subfield of Fq(x) fixed by G. If G satisfies the following conditions
(see Section 2.1 for precise definitions):

(i) G is an abelian group with smooth order n = |G|, i.e., n =
∏r

i=1 pi, where all prime
divisors pi are small constant.

(ii) There is a place Q of Fq(x)
G that is totally ramified in Fq(x)/Fq(x)

G.
(iii) Fq(x)

G has a rational place P that splits completely in Fq(x). Let P denote the set
of places of Fq(x) lying over P.

then we can construct an FFT for any polynomial in Fq[x]<n at P with complexity O(n logn)
(since every rational place P ∈ P is the zero of x − α for α ∈ Fq and f(P) = f(α) for any
f ∈ Fq[x], we identify P as a subset of Fq). Our FFT is based on the Galois theory, in order
to differentiate it from the classical FFT, we name it G-FFT.

By condition (i) and the structure of finite abelian groups, G has an ascending chain of
subgroups

{1} = G0 (G1 (· · ·Gr−1 (Gr = G,

where |Gi|/|Gi−1| = pi for i = 1, · · · , r. By the Galois theory [HKTO08], each group Gi

determines a fixed subfield Fq(x)
Gi of Fq(x). As any subfield of Fq(x) is again a rational

function field [Sti09, Proposition 3.5.9], we assume Fq(x)
Gi = Fq(xi) for some xi ∈ Fq(x).

Thus the subgroups chain leads to a tower of fields

Fq(x) = Fq(x0)) Fq(x1)) · · ·) Fq(xr) = Fq(x)
G.

Furthermore, if the pole place P∞ of x totally ramifies in the extension Fq(x)/Fq(x)
G, then

we can choose the xi such that each xi+1 is a polynomial of xi of degree pi+1 for 0 ≤ i ≤ r−1.
As a result, we have νP∞(xi) = −|Gi| for each 0 ≤ i ≤ r. Based on these facts, we can
construct an Fq-basis of the polynomial space Fq[x]<n as following

B = {xe0
0 xe1

1 · · ·xer−1

r−1 | e = (e0, e1, . . . , er−1) ∈ Zp1 × Zp2 × · · · × Zpr}. (1.4.1)

6 SONGSONG LI AND CHAOPING XING

Thus, any f(x) ∈ Fq[x]<n can be represented as

f(x) =

p1−1
∑

e0=0

p2−1
∑

e1=0

. . .

pr−1
∑

er−1=0

ae · xe0
0 xe1

1 · · ·xer−1

r−1

= f0(x1) + x · f1(x1) + · · ·+ xp1−1 · fp1−1(x1),

(1.4.2)

where the second “=” is the result of combining all terms with the same xe0 for e0 =
0, 1, . . . , p1 − 1. Then f0(x1), . . . , fp1−1(x1) ∈ Fq[x1] are polynomials of degree less than
n/p1 with respect to variable x1. Thus, the evaluations of f(x) at P can be reduced to the
evaluations of f0, f1, . . . , fp1−1 at P and then a combination of these p1 sets of values by
using p1O(n) additions/multiplications in Fq. However, for every fj ∈ Fq(x1), its evaluation
at every P ∈ P satisfying fj(P) = f

(
P ∩Fq(x1)

)
. According to (iii), let P1 = P ∩ Fq(x1) be

the set of places of Fq(x1) lying over P. Then |P1| = n/p1. Denote the complexity of FFT
with respect to the number of additions and multiplications by A(n) and M(n), respectively.
Then A(n) and M(n) both satisfy the recursive formula

A(n) = p1 ·A(n/p1) + p1 ·O(n), M(n) = p1 ·M(n/p1) + p1 · O(n). (1.4.3)

Similarly, the DFTs of f0, . . . , fp1−1 at P1 can be reduced to DFTs of polynomials of lower-
degree with respect to the variable x2 at P2 = P0 ∩Fq(x2). Then, after r steps of recursions,
we obtain A(n) = M(n) = O(B · n log n), where B = max1≤i≤r{pi}.

The above idea works well for a subgroup G of the affine linear group AGL2(q) as the pole
place P∞ of x totally ramifies in Fq(x)/Fq(x)

G. However, if we choose a subgroup that is not
contained in AGL2(q), then there are no rational places that totally ramify in Fq(x)/Fq(x)

G.
In this paper, we consider a cyclic subgroup G of Aut(Fq(x)/Fq) of order q + 1. There is
a place Q of degree 2 that totally ramifies in the extension Fq(x)/Fq(x)

G, and the rational
place P∞ is splitting completely. Assume n = q + 1 = 2r. By some elementary analysis, we
first construct a basis B of the Riemann-Roch space L (nQ) = 1

QnFq[x]≤2n (here we identify

the place Q with a quadratic irreducible polynomial Q). Then we show that a subset B̃ of

B spans the Fq vector space
ur,0(x)

Qn Fq[x]<n, where ur,0(x) is a polynomial of degree n with no

roots in Fq (see Lemma 4.5). In other words, we get a basis of Fq[x]<n, namely, Qn

ur,0(x)
B̃.

For a polynomial f ∈ Fq[x] which is represented under the basis Qn

ur,0(x)
B̃, let f̃ = ur,0(x)

Qn f ∈
L(nQ). By the same recursive reduction, we first show that the multipoint evaluation {f̃(α) |
α ∈ Fq} of f̃ can be computed via G-FFT in time O(n logn). Next, by precomputing Qn(α)

ur,0(α)

for all α ∈ Fq, we get f(α) = Qn(α)
ur,0(α)

(̃α) for every α ∈ Fq.

In the process, we need n precomputations of { Qn(α)
ur,0(α)

| α ∈ Fq}. Moreover, in the recursive

reduction, we also need some precomputations to get around the pole places of elements in
the basis B̃, which will cost O(logn) storage space. Therefore, the total storage in the G-FFT
algorithm is O(n).

1.5. Organization. The paper is organized as follows. In Section 2, we present some pre-
liminaries on algebraic function fields, in particular rational function fields. In Section 3,
we construct the G-FFT via affine linear subgroups G of Aut(Fq(x)/Fq) and instantiate G
by the multiplicative group F∗

q and additive group Fq as two examples. Moreover, in the
case q is smooth, we show that G-FFT under the standard basis of Fq[x]<n can be done in
O(n log2 n). In Section 4, we construct a new basis of Fq[x]<n via a non-affine cyclic subgroup

FAST FOURIER TRANSFORM 7

of Aut(Fq(x)/Fq) of order n. Then we show that the G-FFT of smooth length n | q + 1 can
be done in O(n logn) and give the G-FFT algorithm for the case q+1 = 2r. Finally, Section
5 concludes our work.

2. Preliminary

In this section, we will introduce some preliminaries on algebraic function fields, especially
some known results about the rational function field Fq(x) and its automorphism group. We
also introduce the definition of B-smooth groups which are similar to the B-smooth integers.

2.1. Algebraic extensions of function fields. We briefly introduce the theory of rational
function fields in this subsection. The reader may refer to [Sti09] for details.

For a prime power q, let Fq denote the finite field of q elements. An algebraic function
field over Fq in one variable is a field extension F ⊃ Fq such that F is an algebraic extension
of Fq(x) for some transcendental element x over Fq. In particular, the rational function
field Fq(x) is an algebraic function field of one variable. In the following, we say F/Fq is an
algebraic function field with the assumption that Fq is the full constant field of F , i.e., every
algebraic element of F over Fq belongs to Fq as well.

Now let F be the rational function field Fq(x) over Fq. For every irreducible polynomial
P (x) ∈ Fq[x], we define a discrete valuation νP which is a map from Fq[x] to Z ∪ {∞}
given by νP (0) = ∞ and νP (f) = a, where f is a nonzero polynomial and a is the unique
nonnegative integer satisfying P a|f and P a+1 ∤ f . This map can be extended to Fq(x) by
defining νP (f/g) = νP (f) − νP (g) for any two polynomials f, g ∈ Fq[x] with g 6= 0. Apart
from the above finite discrete valuation νP , we have an infinite valuation ν∞ defined by
ν∞(f/g) = deg(g)− deg(f) for any two polynomials f, g ∈ Fq[x] with g 6= 0. Note that we
define deg(0) =∞. The set of places of F is denoted by PF .

For each discrete valuation νP (P is either a polynomial or ∞), by abuse of notion we
still denote by P the set {y ∈ F : νP (y) > 0}. Then the set P is called a place of F . If
P = x− α, then we denote P by Pα. The degree of the place P is defined to be the degree
of the corresponding polynomial P (x). If P is the infinite place ∞, then the degree of ∞ is
defined to be 1. A place of degree 1 is called rational. In fact, there are exactly q+1 rational
places for the rational function field F over Fq.

Let PF be the set of all places of F/Fq and let P
(1)
F be the subset of PF consisting of all

rational places, i.e., places of degree one. Assume F ′/F is a finite algebraic extension of
degree n with the constant field Fq. A place P ′ ∈ PF ′ is said to be lying over P , written
as P ′ | P , if P ⊆ P ′. The ramification index of P ′ over P is denoted by e(P ′ | P). Let
P1, . . . , Pm be all the places of F ′ lying over P . If e(Pi | P) = [F ′ : F] for a place Pi | P , then
m = 1 and P is said to be totally ramified in F ′; if e(Pi | P) = 1 for every Pi, i = 1, . . . , m,
P is said to be unramified in F ′; furthermore, if e(Pi | P) = 1 and m = [F ′ : F], then P is
said to split completely in F ′. An important fact that is used in the design of our G-FFT is
that for every place P of F and a function f ∈ F with νP (f) ≥ 0, the value f(P ′) is constant
for all places P ′ of F ′ lying over P .

2.2. The Riemann-Roch Space. Let F = Fq(x) be a rational function field. For a place
Q of F and an integer m, we define the Riemann-Roch space associated with Q as

L(mQ) := {f ∈ F ∗ : νP (f) ≥ 0 if P 6= Q; νQ(f) ≥ −m} ∪ {0}.

8 SONGSONG LI AND CHAOPING XING

Then L(mQ) is a finite-dimensional vector space over Fq. If Q is the pole of x, then L(mQ)
is the polynomial space Fq[x]≤m. The dimension dimFq L(mQ) is usually denoted by ℓ(mQ).
Then we have

ℓ(mQ) = m deg(Q) + 1

for m ≥ 0; and ℓ(mQ) = 0, otherwise.

2.3. Subfields of the rational function field. Let F = Fq(x) be the rational function
field for some transcendental element x ∈ F over the finite field Fq. We denote by Aut(F/Fq)
the automorphism group of F over Fq, i.e.,

Aut(F/Fq) = {σ : F → F : σ is an Fq-automorphism of F}. (2.3.1)

It is clear that an automorphism σ ∈ Aut(F/Fq) is uniquely determined by σ(x). It is well
known that every automorphism σ ∈ Aut(F/Fq) is given by

σ(x) =
ax+ b

cx+ d
(2.3.2)

for some constant a, b, c, d ∈ Fq with ad − bc 6= 0 (see [HKTO08]). Denote by GL2(q) the

general linear group of 2×2 invertible matrices over Fq. Thus, every matrix A =

(
a b
c d

)

∈
GL2(q) induces an automorphism of F given by (2.3.2). Two matrices of GL2(q) induce the
same automorphism of F if and only if they belong to the same coset of Z(GL2(q)), where
Z(GL2(q)) stands for the center {aI2 : a ∈ F∗

q} of GL2(q). This implies that Aut(F/Fq)
is isomorphic to the projective linear group PGL2(q) := GL2(q)/Z(GL2(q)). Thus, we can
idenitify Aut(F/Fq) with PGL2(q).

Consider the subgroup of PGL2(q)

AGL2(q) :=

{(
a b
0 1

)

: a ∈ F∗
q, b ∈ Fq

}

. (2.3.3)

AGL2(q) is called the affine linear group. Every element A =

(
a b
0 1

)

∈ AGL2(q) defines

an affine automorphism σ(x) = ax+ b.
In addition to the subgroup AGL2(q), PGL2(q) has a cyclic subgroup with order q + 1.

Let P (x) = x2 + ax + b be a primitive polynomial over Fq[x]. Consider the element σ =
(

0 1
−b −a

)

∈ PGL2(q). Then the order of σ is q + 1 (one can refer to [JMX19, Lemma

V.1]). Thus 〈σ〉 induces a q + 1-cyclic subgroup of Aut(Fq(x)/Fq).
For a subgroup G of Aut(F/Fq), let F

G be the fixed subfield by G, i.e.,

FG = {u ∈ F : σ(u) = u, for all σ ∈ G}
By the Galois theory [HKTO08], we know that F/FG is a Galois field extension with
Gal(F/FG) = G. Moreover, Lüroth’s Theorem [Sti09, Proposition 3.5.9] asserts that if
Fq (E ⊆ F , then E = Fq(z), where z ∈ Fq(x) is a rational function of x and z is transcen-
dental over Fq.

Lemma 2.1 ([HKTO08]). Assume Fq(z) is a subfield of Fq(x) and m = [Fq(x) : Fq(z)]. Then

z = f(x)
g(x)

for some polynomial f(x), g(x) ∈ Fq[x] with g(x) 6= 0 satisfying gcd(f(x), g(x)) = 1

and m = max{deg f(x), deg g(x)}. In particular, Fq(z) = Fq(x) if and only if there exist
a, b, c, d ∈ Fq such that z = ax+b

cx+d
and ad− bc 6= 0.

FAST FOURIER TRANSFORM 9

2.4. B-smooth groups. Let B > 0 be a constant integer. Recall that a positive integer m
is called B-smooth if every prime factor of m is upper bounded by B, i.e., m =

∏r
i=1 pi with

pi ≤ B for all 1 ≤ i ≤ r. Note that we do not require these r prime divisors pi to be distinct.
We give the definition of B-smooth finite groups as follows.

Definition 2.2. A finite group G is called B-smooth if there exists a chain of subgroups of
G:

{1} = G0 (G1 (· · · (Gr−1 (Gr = G (2.4.1)

such that |Gi|
|Gi−1|

≤ B for i = 1, . . . , r.

Lemma 2.3. Let G be a finite abelian group. If |G| is B-smooth, then G is B-smooth.

Proof. Assume |G| = ∏r
i=1 pi, where p1, . . . , pr are divisors not larger than B. Since G is

abelian, by the structure theorem for finite abelian groups [KS04], there exists a subgroup

Gr−1 of order
∏r−1

i=1 pi. As Gr−1 is also abelian, there is a subgroup Gr−2 of Gr−1 of order
∏r−2

i=1 pi. Continuing in this fashion until G0 = {1}, we get a series of finite subgroups of G

that satisfy the condition (2.4.1) and pj =
|Gj |

|Gj−1|
≤ B. �

3. Fast Fourier transform via affine subgroups of Aut(Fq(x)/Fq)

Assume the affine linear group AGL2(q) has a smooth subgroup G with order |G| = n.
We will first construct a polynomial basis B of Fq[x]<n in terms of G. Under this basis B, we
will then show that a Galois-group-based FFT (G-FFT for short) over Fq of length n can be
computed in quasi-linear time of n. We then instantiate our G-FFT by the multiplicative
group F∗

q and the additive group Fq as two examples.

3.1. G-FFT via affine subgroups. Assume G ≤ AGL2(q) is a B-smooth affine subgroup
with order n, i.e., |G| = n =

∏r
i=1 pi such that pi ≤ B for all 1 ≤ i ≤ r. Then there is an

ascending subgroup chain

{1} = G0 (G1 (· · · (Gr−1 (Gr = G

satisfying pi =
|Gi|

|Gi−1|
≤ B for i = 1, . . . , r. Let Fi = Fq(x)

Gi be the fixed subfield of Fq(x)

under Gi; namely,

Fi = {u ∈ Fq(x) : σ(u) = u for all σ ∈ Gi}.
By the Galois theory [HKTO08], F0/Fi is a Galois extension with F0 = Fq(x) and [F0 : Fi] =

|Gi| =
∏i

j=1 pj for 0 ≤ i ≤ r. Furthermore, we have Fi (Fi−1 resulting a tower of fields

Fq(x) = F0) F1) · · ·) Fr−1) Fr.

Lemma 3.1. Assume G is a B-smooth affine subgroup with order n and n =
∏r

i=1 pi. Let Gi

be a subgroup of G of order
∏i

j=1 pj and Fi = FGi be the fixed subfield under Gi for 0 ≤ i ≤ r.
Then we have

(1) For 0 ≤ i < r, Fi = Fq(xi) and xi =
∏

σ∈Gi
σ(x); moreover, each xi+1 can be written

as a polynomial of xi of degree pi+1.
(2) The set

B = {xe0
0 xe1

1 · · ·xer−1

r−1 | e = (e0, e1, . . . , er−1) ∈ Zp1 × Zp2 × · · · × Zpr}.
forms a basis of the Fq-vector space Fq[x]<n.

10 SONGSONG LI AND CHAOPING XING

Proof. (1) Let Ni(x) =
∏

σ∈Gi
σ(x). Since G is affine, σ(x) is a linear polynomial of x for

each σ ∈ G by § 2.3. Thus Ni(x) ∈ Fq[x] is a polynomial of degree |Gi|. Let xi = Ni(x).
Then xi ∈ Fi and x is a root of ϕi(T) = Ni(T)− xi. These lead to

|Gi| = [F0 : Fi] ≤ [F0 : Fq(xi)] ≤ |Gi|.
Thus Fi = Fq(xi). Moreover, by definition,

xi+1 =
∏

σ∈Gi+1

σ(x) =
∏

σ∈Gi+1/Gi

σ(xi).

By [JMX19, Proposition IV.2], the infinity place P∞ totally ramifies in Fq(x)/Fq(x)
G. Let

Pi,∞ = P∞ ∩ Fi be the place of Fi lying below P∞. Then e(P∞ | Pi,∞) = |Gi| for 0 ≤ i ≤ r.
Thus

νPi,∞
(xi) = νP∞(xi)/e(P∞ | Pi,∞) = −1;

namely, Pi,∞ is a pole of xi. Since Pi,∞ is totally ramified in Fi/Fi+1, for any σ ∈ Gi+1/Gi =
Gal(Fi/Fi+1), σ(Pi,∞) = Pi,∞. Thus

νPi,∞
(σ(xi)) = νPi,∞

(xi) = −1.
Therefore, each σ(xi) is a linear polynomial of xi and xi+1 can be seen as a polynomial of xi

of degree |Gi+1/Gi| = pi+1.
(2) It is easy to see that |B| = n. For any Xe = xe0

0 xe1
1 · · ·xer−1

r−1 ∈ B, by computation,

νP∞(Xe) = −
r−1∑

i=0

ei|Gi| > −pr · |Gr−1| = −n,

thus Xe ∈ Fq[x]<n and B (Fq[x]<n. Note that, if e 6= e′ = (e′0, . . . , e
′
r−1), assume k is the

largest index in [0, r − 1] such that ek 6= e′k. Then

νP∞(Xe) ≡
k∑

i=0

−ei · |Gi| mod |Gk+1| 6= νP∞(Xe
′) ≡

k∑

i=0

−e′i · |Gi| mod |Gk+1|.

Thus νP∞(Xe) 6= νP∞(Xe
′). As each element in B has pairwise distinct valuation at the

infinity place P∞, they must be linearly independent over Fq. Since Fq[x]<n has dimension
n, then B must be a basis of Fq[x]<n. �

By the above Lemma, under the basis B, we can express any f(x) ∈ Fq[x]<n as

f(x) =
∑

e

aeXe = f(x, x1, . . . , xr−1),

and xi, xi+1, . . . , xr are polynomials of xi−1 for 1 ≤ i ≤ r.

Theorem 3.2. Let F be the rational function field Fq(x). Let G be a B-smooth subgroup
of the affine group AGL2(q) with |G| = n. Assume P is a rational place of FG that splits
completely in the extension F/FG. Let P be the set of rational places of F lying over P

(hence |P| = n). Then, under the basis B as in Lemma 3.1, the evaluations of every function
f(x) ∈ Fq[x]<n at P can be computed in O(B · n logn) operations in Fq.

Proof. First, denote the complexity (i.e., the total number of operations in Fq) of eval-
uating f(x) at the set P by C(n). Under the basis B defined in Lemma 3.1, assume

FAST FOURIER TRANSFORM 11

f = f(x, x1, . . . , xr−1), where degxi
(f) < pi+1. To perform FFT of f(x) at P, write

f = f(x, x1, . . . , xr−1) in at most O(n) steps as follows

f = f0(x1, . . . , xr−1) + x · f1(x1, . . . , xr−1) + · · ·+ xp1−1 · fp1−1(x1, . . . , xr−1). (3.1.1)

Note that

νP1,∞fi(x1, . . . , xr−1) ≥ −
(
(p2 − 1) + (p3 − 1)p2 + · · ·+ (pr − 1)p2 · · · pr−2

)

> −p2 · · · pr = −n/p1 for i = 0, · · · , p1 − 1,

where P1,∞ = P∞∩F1 is the infinity place of F1. Thus we have f0, . . . , fp1−1 ∈ L ((n/p1)P1,∞) =
Fq[x1]<n/p1. By equation (3.1.1), the DFT of f at P can be reduced to the DFTs of
f0, f1, . . . , fp1−1 at P1 = P ∩ F1 and then a combination of these values by using p1O(n)
operations in Fq. Therefore, the running time C(n) satisfies the following recursive formula

C(n) = p1C(n/p1) + p1 ·O(n). (3.1.2)

We continue the reduction in this fashion till to the DFTs of functions in Fq[xr]<1. We
get a total of (p1 · · · pr) constant polynomials and need to compute their’s evaluations at
Pr = P ∩ Fr = {P}, which can be done in (p1 · · ·pr)O(1) orperations. Thus, the recursive
formula (3.1.2) leads the total running time equal to

C(n) = p1 · · · pr · O(1) + (p1 + · · ·+ pr)O(n) = O(B · n log n).

This completes the proof. �

Remark 3.3. Let EvP(f) denote the MPE of f ∈ Fq[x]<n at P. The inverse G-FFT means
that given the EvP(f), output the coefficients of f(x) under the basis defined by G-FFT
(see Lemma 3.1). In the following, we show that the inverse G-FFT can also be done in
O(n logn) operations. Let I(n) denote the complexity of inverse G-FFT of length n. For
any P (1) ∈ P ∩ F1 = P(1), let P1,1, . . . , P1,p1 be the p1 places in PF lying over P (1). By the
recursive Equation (3.1.1),








f0(P
(1))

f1(P
(1))
...

fp1−1(P
(1))








=







1 x(P1,1) · · · xp1−1(P1,1)
1 x(P1,2) · · · xp1−1(P1,2)
...

... · · · ...
1 x(P1,p1) · · · xp1−1(P1,p1)







−1

·







f(P1,1)
f(P1,2)

...
f(P1,p1)







(3.1.3)

Thus, we can first compute the MPEs of f0, f1, . . . , fp1−1 at P(1) from the above equation,
which will cost p1O(n) operations. Then we can reduce the inverse G-FFT of EvP(f) to
p1 inverse G-FFTs of EvP(1)(f0), EvP(1)(f1), . . ., EvP(1)(fp1−1). Finally, we get f by Equa-
tion (3.1.1). Therefore, I(n) satisfies the following recursive formula

I(n) = p1I(n/p1) + p1O(n) = O(n logn).

3.2. Instantiation.

3.2.1. Multiplicative G-FFT. Let us first look at the multiplicative case. Let F be the
rational function field Fq(x). Consider a subgroup T of F∗

q of order n and an automorphism
subgroup

GT = {σ ∈ Aut(F/Fq) : σ(x) = ax for some a ∈ T}.
When T = F∗

q, we denote GT by G∗. Then the field extension F/FG∗ has extension degree

[F : FG∗] = q− 1. Furthermore, there are a few facts about this extension (refer to [JMX19,
Proposition IV.2])

12 SONGSONG LI AND CHAOPING XING

(1) The pole of x is totally ramified in the extension F/FG∗.
(2) There is a rational place ℘ of FG∗ that splits completely in F/FG∗ .

Let P be a rational place of FGT that lies over ℘. Then P splits completely in the extension
F/FGT . Let P be the set of rational places of F lying over P. Then |P| = n.

Assume that n has factorization n =
∏r

i=1 pi with pi ≤ B for a positive integer B. Consider
an ascending chain of subgroups

{1} = T0 (T1 (· · · (Tr−1 (Tr = T.

with |Ti| =
∏i

j=1 pi for i ≥ 1. Let Gi = GTi
and Fi = FGi . If Char(Fq) = 2, let xi :=

∏

σ∈Gi
σ(x). Then Fi = Fq(xi) and xi = (

∏

a∈Ti
a) · x

∏i
j=1 pj = x

∏i
j=1 pj . If Char(Fq) is odd,

then 2 | q − 1. We choose T1 with even order (hence n is also even). Then 2 | |Ti| and
∏

a∈Ti
a = −1 for each Ti. Let xi = −∏σ∈Gi

σ(x). Then Fi = Fq(xi) and xi = x
∏i

j=1 pj .
Therefore, we always have xi = xpi

i−1 for all i ≥ 1. Furthermore, it is easy to see that xi = 0
gives only one solution x = 0, i.e., the zero of xi totally ramifies in F/Fi. Let α be a primitive
element of Fq. Then for any β ∈ F∗

q, the equation xr = βn, i.e., xn = βn gives solutions

x = βαj(q−1)/n for j = 0, 1, . . . , n− 1. This implies that xr − βn splits into n rational places
of F . Let P be the set of rational places of F lying over xr − βn, i.e., P = {x− βαj(q−1)/n :

j = 0, 1, . . . , n − 1}. Thus, we have Pi = P ∩ Fi = {xi − β
∏i

j=1 piαk(q−1)
∏i

j=1 pj/n : k =

0, 1, . . . , n∏i
j=1 pj

−1}. Partition P into n∏i
j=1 pj

subsets ℜk := {(x−β ·αk(q−1)/n ·αℓ(q−1)/
∏i

j=1 pj) :

ℓ = 0, 1, . . . ,
∏i

j=1 pj − 1} for k = 0, 1, . . . , n/(
∏i

j=1 pj)− 1. It is easy to see that evaluation

of xi at every place of ℜk is a constant that is equal to β
∏i

j=1 piαk(q−1)
∏i

j=1 pj/n.
In our G-FFT algorithm, we have to decompose a polynomial in variable xi−1 in terms of

polynomials in variable xi. So we need represent f ∈ Fq[x]<n under the basis B defined in
Lemma 3.1. Actually, in this case,

BT = {xe0
0 xe1

1 · · ·xer−1

r−1 | e = (e0, e1, . . . , er−1) ∈ Zp1 × Zp2 × · · · × Zpr}

= {xe | e =
r−1∑

i=0

ei · (p1 · · · pi+1) ∈ [0, n− 1]} = {1, x, · · · , xn−1},

namely, BT is exactly the standard basis of Fq[x]<n. To illustrate, let us consider the first

step, i.e., express a polynomial f(x) ∈ Fq[x]<n as a combination of {xk}p1−1
k=1 with coefficients

of polynomials in variable x1 = xp1 . Then, in at most O(n) steps, f(x) can be written as

f(x) = f0(x
p1) + xf1(x

p1) + · · ·+ xp1−1fp1−1(x
p1)

= f0(x1) + xf1(x1) + · · ·+ xp1−1fp1−1(x1).
(3.2.1)

It is clear that each of fi(x1) has degree less than n/p1. We can then decompose each fi(x1)
as a combination of {xk

1}p2−1
k=0 with coefficients of polynomials in variable x2 = xp2

1 . Then the
polynomials in x2 all have degrees less than n/(p1p2). We continue in this fashion until in
the last step, all polynomials in variable xr have degrees less than n/

∏r
j=1 pj = 1, i.e., they

are all constants.
In conclusion, we have the following result.

Corollary 3.4. If n is a divisor of q − 1 that is B smooth, then one can run FFT for
polynomials f(x) ∈ Fq[x]<n in O(B · n · logn) field operations of Fq.

FAST FOURIER TRANSFORM 13

3.2.2. Additive G-FFT. We now turn to the additive case. Let F be the rational function
field Fq(x). Let p be the characteristic of Fq. Consider an Fp-subspace W of Fq of order n
and the associated automorphism group

GW = {σ ∈ Aut(F/Fq) : σ(x) = x+ b for some b ∈ W}.
When W = Fq, we denote GW by G+. Then the field extension F/FG+ has extension degree
[F : FG+] = q. Furthermore, there are a few facts about this extension [JMX19]:

(1) The pole of x is totally ramified in the extension F/FG+.
(2) There is a rational place ℘ of FG+ that splits completely in F/FG+.

Let P be a rational place of FGW that lies over ℘. Then P splits completely in the extension
F/FGW . Let P be the set of rational places of F lying over P. Then |P| = n.

Assume that n has factorization n = pr. For simplicity, choose a set {α1, α2, . . . , αr} of
Fp-linearly independent elements in Fq. Put Wi =

∑i
j=1 Fpαj . Then Wi is an Fp-subspace

of Fq of dimension i. Hence, |Wi| = pi for 1 ≤ i ≤ r. Put Gi = {σ ∈ Aut(F/Fq) : σ(x) =
x + b for some b ∈ Wi}, Fi = FGi and xi =

∏

σ∈Gi
σ(x) =

∏

a∈Wi
(x − a). Then each xi is a

linearized polynomial of degree pi, denoted by ℓi(x). Furthermore, xi = xp
i−1 − βixi−1 where

βi = ℓp−1
i−1 (αi) ∈ Fq. It is easy to see that xi = 0 gives solutions x = a for all a ∈ Wi. This

implies that xr splits into n rational places of F . Let P be the set of rational places of
F lying over xr, i.e., P = {x − a : a ∈ W}. Thus, there exists an Fp-vector space Vi of
dimension r − i such that Pi = P ∩ Fi = {xi − a : a ∈ Vi}.

To perform G-FFT, we need to represent f(x) ∈ Fq[x]<n under a basis B = BW constructed
in Lemma 3.1. In this case, each xi = ℓi(x) = xp

i−1 − βixi−1 is a linearized polynomial of
degree pi for 0 ≤ i ≤ r. In particular, ℓ0(x) = x. Thus,

BW = {ℓ0(x)e0ℓ1(x)e1 · · · ℓr−1(x)
er−1 : (e0, . . . , er−1) ∈ Zr

p}. (3.2.2)

We note that BW is constructed in the same way as in [LCH14]. Under this basis, we can
decompose a polynomial in variable xi−1 in terms of polynomials in variable xi step by step.
To illustrate, let us consider the first step only. Let f(x) be a polynomial of degree less than
n. Under the basis BW , write f(x) as

f(x) = f0(x1) + xf1(x1) + · · ·+ xp1−1fp1−1(x1)

= f0(x
p − β1x) + xf1(x

p − β1x) + · · ·+ xp−1fp1−1(x
p − β1x).

(3.2.3)

It is clear that each of fi(x1) has degree less than n/p = pr−1. We can then decompose each
fi(x1) as a combination of {xi

1}p−1
i=1 and polynomials in variable x2 = xp

1 − β2x1. Then the
polynomials in x2 all have degrees less than n/p2 = pr−2. We continue in this fashion until
the last step: all polynomials in variable xr have degrees less than n/pr = 1, i.e., all constant
polynomials. In conclusion, we have the following result.

Corollary 3.5. Let BW be a basis of Fq[x]<n defined as in equation (3.2.2). Let f(x) ∈
Fq[x]<n be a given polynomial that is represented under BW . If n is a divisor of q, then one
can run FFT for f(x) in O(p · n · logn) field operations of Fq.

The condition “f(x) ∈ Fq[x]<n is represented under BW” in Corollary 3.5 is necessary to
decompose a polynomial in variable xi−1 in terms of polynomials in variable xi step by step
in our G-FFT. If we are given a representation of f(x) under the standard basis, i.e., f(x) =

14 SONGSONG LI AND CHAOPING XING

∑n−1
i=0 aix

i, we need to compute its (xp−β1x)-adic expansion (refer to [GS10, VZGG13]) first,
i.e.,

f(x) = a0(x) + a1(x)(x
p− β1x) + · · ·+ am(x)(x

p− β1x)
m, deg(ai) < p for 0 ≤ i ≤ m < pr−1.

Then we can write f(x) as in the form of (3.2.3) in at most O(n) steps from its (xp − β1x)-
adic expansion. In the second recursion, we need also to compute the (xp

1 − β2x1)-adic
representation of each fi(x1) to write it as a combination of {xi

1}p−1
i=1 and polynomials in

variable x2 = xp
1 − β2x1. We continue in this fashion until the last step: all polynomials

in variable xr are constant. This has been considered in [GS10] for the case that Fq = F2r .
We notice that if the characteristic p is a constant (not only for p = 2), then the (xp − βx)-
adic expansion of any f(x) ∈ Fq[x]<n can be computed in O(n logn) for any β ∈ Fq (see

Lemma A.2). Consequently, if f(x) =
∑n−1

i=0 aix
i is given under the standard basis, we must

add the complexity of computing the (xp − βx)-adic expansions in the recurse formula of
C(n). Then C(n) satisfies the following recursive formula

C(n) = pC(n/p) + pO(n) +O(n logn),

After r steps of recursion, we have

C(n) = prC(1) +O (n · (log p+ · · ·+ logn)) + r · p · O(n) = O(n log2 n)

In conclusion, we have the following result.

Corollary 3.6. Let Fq be a finite field with constant characteristic p. Let f(x) ∈ Fq[x]<n be
a given polynomial under the standard basis. If n is a divisor of q, then one can run FFT
for f in O(n log2 n) field operations of Fq.

4. Fast Fourier transform via a cyclic subgroup of order q + 1

We continue to use the notation F to denote the rational function field Fq(x). Assume
n | q + 1 is a O(1)-smooth divisor. Let m(x) = x2 + ax + b ∈ Fq[x] be an irreducible and
primitive polynomial over Fq and Q(x) = x2 + a

b
x + 1

b
. Let Q denote the quadratic place

of F corresponding to Q(x). In this section, we will show that the DFT of any polynomial
f(x) ∈ Fq[x]<n at a well-chosen set can be done in O(n logn) by using our G-FFT algorithm.

Recall that σ =

(
0 1
−b −a

)

has order q + 1 in the group Aut(F/Fq) = PGL2(q), where

a, b are coefficients of m(x). Let P
(1)
F be the set of q+1 rational places of F . Then σ acts as

a (q + 1)-cycle on the set P
(1)
F .

Lemma 4.1 ([JMX19]). Let Q(x) and σ be defined as above. Let G ≤ 〈σ〉 be a subgroup of
order n. Then the fixed subfield of F by G is FG = Fq(z), where z =

∑

τ∈G τ(x). Moreover,

(1) the pole place P ∈ PFG of z splits completely in F/FG;
(2) the quadratic place Q ∈ PF is the unique place that is totally ramified in F/FG.

Assume G = 〈σ(q+1)/n〉 is a B-smooth subgroup of order n, i.e., |G| = n =
∏r

i=1 pr, where
p1, . . . , pr ≤ B. Then there is an ascending chain of subgroups:

G0 = {1}, Gi−1 ≤ Gi with index [Gi : Gi−1] = pi, i = 1, . . . , r.

Let Fi = FGi be the fixed subfield. By the same analysis as in Subsection 3.1, we have
Fi (Fi−1 resulting a tower of fields

F0 = Fq(x), Fi−1) Fi with extension degree [Fi−1 : Fi] = pi, i = 1, . . . , r.

FAST FOURIER TRANSFORM 15

Define

xi =
∑

τ∈Gi

τ(x), yi =
∏

τ∈Gi

τ

(
1

Q(x)

)

. (4.0.1)

Then Fi = Fq(xi) by taking G = Gi in Lemma 4.1. Let Ei = Fq(yi). It is clear that
Ei (Fi according to the definition of Fi. Furthermore, since Q is totally ramified in
F/FG, τ(Q) = Q for all τ ∈ G [Sti09, Theorem 3.8.2]. Thus the pole divisor of yi is
(yi)∞ =

∑

τ∈Gi
τ(Q) = |Gi|Q. By [Sti09, Theroem 1.4.11],

[F : Ei] = deg(yi)∞ = 2|Gi|.
Thus [Fi : Ei] = [F : Ei]/[F : Fi] = 2. We have the following diagram

Fq(x)

Fq(x1)

Fq(y1)

Fq(x2)

Fq(y2)

...

...

Fq(xr)

Fq(yr).

p1
2p1

p2

2

2p2

p3

2

pr
2pr

2

Let Pi,∞ ∈ PFi
denote the pole place of xi for 0 ≤ i ≤ r. According to Lemma 4.1, we

know that Pi,∞ splits completely in F/Fi. In particular, let P ⊂ PF be the set of places
lying over Pr,∞. Then |P| = n. Let P(i) = P ∩ Fi be the set of all rational places in PFi

lying above Pr,∞. Then |P(i)| = n/|Gi|. By the definition of xi, P0,∞ | Pi,∞ for every i, thus
Pi,∞ ∈ P(i). Define

P̂(i) = P(i) \ {Pi,∞}, i = 0, 1, . . . , r − 1. (4.0.2)

Since every rational place P ∈ P̂(i) is the zero of xi−α for some α ∈ Fq, we identify P with

α in this correspondence. Thus, P̂(i) can be viewed as a subset of Fq for all i. In particular,

P(0) = P and P̂ = P \ {P∞}.
The following lemma presents the relationships between xi, yi, xi−1, yi−1, which is crucial

for us to construct a basis of Fq[x]<n and perform the G-FFT for any f ∈ Fq[x]<n.

Lemma 4.2. For 1 ≤ i ≤ r, let xi, yi be defined as in Equation (4.0.1). Let Qi = Q∩ Fi be
the quadratic place of Fi lying below Q. Then, the followings hold:

(1) 1/yi is a prime element of Qi, i.e., 1/yi = Qi(xi), where Qi(xi) is a quadratic irre-
ducible polynomial corresponding to Qi.

16 SONGSONG LI AND CHAOPING XING

(2) The pole place Pi,∞ of xi splits into pi rational places including Pi−1,∞ in Fi−1; namely,

xi =
ui,i−1(xi−1)

(xi−1−λi,1)···(xi−1−λi,|pi|−1)
for some polynomial ui,i−1(T) ∈ Fq[T] of degree pi, and

λi,1, . . . , λi,|pi|−1 ∈ Fq are pairwise distinct.
(3) yi = ciy

pi
i−1 · (xi−1 − λi,1)

2 · · · (xi−1 − λi,|pi|−1)
2, where ci ∈ F∗

q and λi,1, . . . , λi,|pi|−1 are
given in (2).

(4) xr =
ur,i(xi)∏

α∈P̂(i)(xi−α)
for some ur,i(T) ∈ Fq[T] of degree n/|Gi|, and yr =

∏
α∈P̂(i)(xi−α)2

cr,iQ
n/|Gi|
i (xi)

,

where cr,i ∈ F∗
q and P̂(i) is defined by Equation (4.0.2).

Proof. Let τi = σ(q+1)/|Gi|. Then τi is a generator of Gi, i.e., Gi = 〈τi〉. Since σ acts as a

(q + 1)-cycle on the set P
(1)
Fq(x)

, then, as a permutation of P
(1)
Fq(x)

, τi can be decomposed as a

product of (q + 1)/|Gi| cycles of length |Gi|. Assume the cycle which contains P0,∞ = P∞ is
as follows

P∞
τi−→ Pαi,1

τi−→ . . .
τi−→ Pαi,|Gi|−1

τi−→ P∞, (4.0.3)

where αi,1, . . . , αi,|Gi|−1 ∈ Fq are pairwise distinct. Thus

xi = x+ τi(x) + · · · τ |Gi|−1
i (x) =

ui(x)

(x− αi,1) · · · (x− αi,|Gi|−1)
, (4.0.4)

for some ui(x) ∈ Fq[x]. Consider the principal divisor div(1/Q(x)) = 2P∞ − Q. Since Q is

totally ramified, τ ji (Q) = Q for all τ ji ∈ Gi by [Sti09, Theorem 3.8.2]. Then

νQ
(
τ ji (1/Q(x))

)
= ντ−j

i (Q)(1/Q(x)) = νQ(1/Q(x)) = −1.
According to equation (4.0.3),

div(yi) =

|Gi|−1
∑

j=0

div(
(
τ ji (1/Q(x))

)
= 2P∞ +

|Gi|−1
∑

j=1

2Pαi,j
− |Gi|Q.

Thus, we have

yi = c′i ·
(x− αi,1)

2 · · · (x− αi,|Gi|−1)
2

Qp1···pi(x)
, for some c′i ∈ F∗

q. (4.0.5)

Let Pi,∞ ∈ PFi
be the pole of xi for 0 ≤ i ≤ r. By Equations (4.0.4) and (4.0.5), Pi,∞ is a

double zero of yi and Qi is the unique pole of yi in Fi. Furthermore,

νQi
(yi) = νQ(yi)/e(Q | Qi) = −1.

Thus 1/yi must be a prime element of Qi, denoted by Qi(xi). Then yi = 1/Qi(xi). This
completes the proof of (1).
(2) For the relationship between xi and xi−1, we note that

xi =
∑

τ̄∈Gi/Gi−1

τ̄(xi−1). (4.0.6)

By Equation (4.0.4), the pole Pi,∞ of xi splits completely in the extension F/Fi. Thus Pi,∞

splits into pi places of Fi−1. It is obvious to see that Pi−1,∞ | Pi,∞ from equation (4.0.6).
Assume Pi−1,∞, Pλi,1

, . . . , Pλi,pi−1
are pi places of Fi−1 lying above Pi,∞. Then τ̄i, as an

automorphism of Fi−1, permutes these pi places. Without loss of generality, assume

Pi−1,∞
τ̄i−→ Pλi,1

τ̄i−→ . . .
τ̄i−→ Pλi,pi−1

τ̄i−→ Pi−1,∞, (4.0.7)

FAST FOURIER TRANSFORM 17

Then we have

xi =
ui,i−1(xi−1)

(xi−1 − λi,1) · · · (xi−1 − λi,|pi|−1)
,

for some polynomial ui,i−1(T) ∈ Fq[T]. As [Fq(xi−1) : Fq(xi)] = pi, by Lemma 2.1, we then
have deg ui,i−1 = pi. This completes the proof of (2).
(3) For the relationship between yi and xi−1, we note that

yi =
∏

τ̄∈Gi/Gi−1

τ̄(yi−1) =
∏

τ̄∈Gi/Gi−1

τ̄ (1/Qi−1(xi−1)).

The second equality in the above display follows from (1). Consider the principal divisor
div(1/(Qi−1(xi−1))) = 2Pi−1,∞ −Qi−1 in Fi. By Equation (4.0.7),

div(yi) =

pi−1
∑

j=0

div
(
τ̄ ji (1/Qi−1(xi−1))

)
= 2Pi,∞ +

pi−1
∑

j=0

(2Pλi,j
)− piQi−1.

Thus yi = ci ·
(xi−1−λi,1)2···(xi−1−λi,|pi|−1)

2

Qi−1(xi−1)pi
= ci · ypii−1 · (xi−1 − λi,1)

2 · · · (xi−1− λi,|pi|−1)
2 for some

ci ∈ F∗
q.

(4) can be proved similarly by substituting i with r in the proof of (2) and (3). We do not
repeat it here. �

Remark 4.3. If n = q+1 = 2r, by Equations (4.0.4) and (4.0.5) in the proof of Lemma 4.2,
then

xr =
ur,0(x)

xq − x
for some ur,0(x) ∈ Fq[x] with deg(ur,0(x)) = q + 1,

yr =
(xq − x)2

cr,0Qq+1(x)
for some cr,0 ∈ F∗

q .

(4.0.8)

In the following, we will first construct a basis B of the Riemann-Roch space L(nQ). For
simplicity, we define the following notions:

for 0 ≤ i ≤ r − 1, z
(ei)
i :=

{

1, if ei = 0,
1

(xi−λi+1,1)(xi−λi+1,2)···(xi−λi+1,ei
)
, if 1 ≤ ei ≤ pi+1 − 1,

z(0)r := 1, z(1)r := xr, and pr+1 := 2.

(4.0.9)

where all (xi − λi+1,ei) are given in Lemma 4.2(2) for 0 ≤ i ≤ r − 1 and ei ∈ Zpi+1
.

Lemma 4.4. We continue the notations in Lemma 4.2. Let z
(ei)
i be defined as in Equa-

tion (4.0.9) for i = 0, 1, . . . , r and ei ∈ Zpi+1
. Then

B =

{

z
(e0)
0 z

(e1)
1 · · · z(er−1)

r−1 z(er)r yr | e = (e0, e1, . . . , er−1, er) ∈
r+1∏

i=1

Zpi

}

∪ {1}

is a basis of the Riemann-Roch space L (nQ).

Proof. For m = 1, 2, . . . , r, define the set Bm−1 as follows

Bm−1 = {ym, y2m, . . . , y
n

p1···pm
m } · {1, xm}

︸ ︷︷ ︸

Bm−1,m

· {1, z(1)m−1, . . . , z
(pm−1)
m−1 }

︸ ︷︷ ︸
Bm−1,m−1

, (4.0.10)

18 SONGSONG LI AND CHAOPING XING

where the product “·” of sets means a set consisting of all possible products of elements from
these three sets. Then |Bm−1| = 2n/(p1 · · ·pm−1). Let Bm−1,m and Bm−1,m−1 be two sets
defined in Equation (4.0.10). We claim that

(i) Bm−1 ∪ {1} is a basis of the Riemann-Roch space L
(

n
p1···pm−1

Qm−1

)

.

(ii) Bm−1,m ∪ {1} is a basis of the Riemann-Roch space L
(

n
p1···pm

Qm

)

.

Then Bm and Bm−1,m are linearly equivalent and have same cardinality. By substituting the

subset Bm−1,m with Bm in Bm−1, we get a new basis B′
m−1 ∪ {1} of L

(
n

p1···pm−1
Qm−1

)

, where

B′
m−1 = Bm · Bm−1,m−1. In particular, for m = 0, B0 ∪ {1} = (B0,1 · B0,0) ∪ {1} is a basis of
L (nQ). By substituting B0,1 with B1, then we have (B1 · B0,0)∪ {1} is also a basis of L(nQ).
Continuing in this fashion till to m = r − 1, then we get a basis of L(nQ), i.e.,

B = Br · Br−1,r−1 · · · B1,1 · B0,0 ∪ {1}
= {yr,xryr} · {1, z(1)r−1, . . . , z

(pr−1)
r−1 } · · · {1, z(1)0 , . . . , z

(p1−1)
0 } ∪ {1}.

Therefore, it suffices to prove the above claims (i) and (ii).

(i) For every element yimx
j
mz

(em−1)
m−1 in Bm−1, where 1 ≤ i ≤ n/p1 · · · pm, j = 0, 1 and

em−1 ∈ Zpm, by Lemma 4.2, we have

νQm−1(y
i
mx

j
mz

(em−1)
m−1) = νQm−1

(
yim
)
= −i · pm ≥ −n/(p1 · · · pm−1),

and it has no other poles except for Qm−1. Thus Bm−1 ∪ {1} (L
(

n
p1···pm−1

Qm−1

)

. Assume

a +

n/(p1···pm)
∑

i=1

1∑

j=0

pm−1
∑

e=0

ai,j,e · yimxj
mz

(e)
m−1 = 0 (4.0.11)

where all ai,j,e ∈ Fq and a ∈ Fq. Multiplying by (xm−1 − λm,1) · · · (xm−1 − λm,pm−1) on both
sides of Equation (4.0.11), we have



a+

n/(p1···pm)
∑

i=1

1∑

j=0

ai,j,0 · yimxj
m



 (xm−1 − λm,1) · · · (xm−1 − λm,pm−1)

+

n/(p1···pm)
∑

i=1

1∑

j=0

∑

e>0

ai,j,ey
i
mx

j
m(xm−1 − λm,e+1) · · · (xm−1 − λm,pm−1) = 0

(4.0.12)

Since [Fm−1 : Fm] = pm, we have the coefficients of xk
m−1 for 0 ≤ k ≤ pm − 1 are all zero;

namely, a+
∑

i,j ai,j,0 ·yimxj
m = 0 and

∑

i,j ai,j,e ·yimxj
m = 0 for every 0 < e < pm. As [Fq(xm) :

Fq(ym)] = 2, we then have a = 0 and
∑

i ai,j,e · yim = 0 for all 0 ≤ e ≤ pm−1 and j = 0, 1. As
ym is transcendental over Fq, we have all the coefficients ai,j,e = 0. Therefore, the elements

in Bm−1 are linearly independent. By the Riemann-Roch theorem [Sti09], L
(

n
p1···pm−1

Qm−1

)

has dimension:

ℓ

(
n

p1 · · · pm−1

Qm−1

)

= 2n/(p1 · · ·pm−1) + 1 = |Bm−1 ∪ {1}|.

Thus, Bm−1 ∪ {1} is a basis of L
(

n
p1···pm−1

Qm−1

)

.

FAST FOURIER TRANSFORM 19

(ii) For every element yimx
j
m in the set Bm−1,m = {ym, y2m, . . . , y

n
p1···pm
m } × {1, xm}, by

Lemma 4.2, we have

νQm

(
yimx

j
m

)
= νQm(y

i
m) = −i ≥ −n/(p1 · · ·pm).

Thus Bm−1,m (L
(

n
p1···pm

Qm

)

. We have shown in (i) that Bm−1,m ∪ {1} is a linearly inde-

pendent set. By the Riemann-Roch theorem [Sti09], ℓ(n
p1···pm

Qm) = 2n/(p1 · · · pm) + 1 =

|Bm−1,m ∪ {1}|. Hence Bm−1,m ∪ {1} is also basis of L
(

n
p1···pm

Qm

)

. �

Next, we take a subset of B to construct a basis of Fq[x]<n.

Lemma 4.5. Let z
(ei)
i be defined as in Equation (4.0.9) for 0 ≤ i ≤ r and ei ∈ Zpi+1

. Let

xr =
ur,0(x)∏
α∈P̂

(x−α)
by Lemma 4.2 for ur,0(x) ∈ Fq[x] of degree n. Then

B̃ = {z(e0)0 z
(e1)
1 · · · z(er−1)

r−1 xryr | e = (e0, e1, . . . , er−1) ∈ Zp1 × Zp2 × . . .× Zpr}
is a basis of ur,0(x)

Qn(x)
Fq[x]<n. In other words, Qn(x)

ur,0(x)
B̃ is a basis of Fq[x]<n.

Proof. Firstly, let Wq(B̃) be the Fq-subspace of L(nQ) spanned by B̃. By Lemma 4.4, B̃ is
an Fq-linearly independent subset of B. Then

dim(Wq(B̃)) = p1p2 · · · pr = n = dim

(
ur,0(x)

Qn(x)
· Fq[x]<n

)

.

It suffices to show that B̃ ⊂ ur,0(x)

Qn(x)
· Fq[x]<n.

By Lemma 4.2,

z(1)r yr = xryr =
ur,0(x)

∏

α∈P̂(x− α)
·
∏

α∈P̂(x− α)2

Qn(x)
=

ur,0(x)

Qn(x)

∏

α∈P̂

(x− α).

Claim: assume z
(e0)
0 z

(e1)
1 · · · z(er−1)

r−1 = Ne(x)/De(x) ∈ Fq(x), where Ne(x), De(x) ∈ Fq[x].
Then the denominator De(x) will be killed by

∏

α∈P̂(x− α).

By the above claim, we have z
(e0)
0 z

(e1)
1 · · · z(er−1)

r−1 z
(1)
r yr ∈ ur,0(x)

Qn(x)
Fq[x]. Since Wq (B \ {1}) =

1
Qn(x)

Fq[x]<2n, then the numerator of z
(e0)
0 z

(e1)
1 · · · z(er−1)

r−1 z
(1)
r yr (as a rational polynomial func-

tion) belongs to ur,0(x)Fq[x]<n. Thus, the lemma is proved if the claim is true.

The proof of claim: It is equivalent to show that the pole places of z
(e0)
0 z

(e1)
1 · · · z(er−1)

r−1

is a subset of P. Since z
(ei)
i = 1/(xi − λi+1,1) · · · (xi − λi+1,ei), the pole places of z

(ei)
i in PF

are those lying above Pλi+1,k
for 1 ≤ k ≤ ei, where Pλi+1,k

∈ PFi
is the zero of xi − λi+1,k.

Moreover, Pλi+1,k
| Pi+1,∞ and Pi+1,∞ splits completely in F/Fi+1 by Lemma 4.2, thus each

Pλi+1,k
splits completely in F/Fi. Let

(

z
(ei)
i

)

∞
∈ Div(F) be the pole place of z

(ei)
i and

Z
(ei)
i := Supp

((

z
(ei)
i

)

∞

)

be its support set. Then |Z(ei)
i | = ei · p1 · · · pi. In particular,

Z
(pi+1−1)
i contains Z

(ei)
i which has cardinality

(
∏i+1

k=1 pk

)

−
(
∏i

k=1 pk

)

. Moreover, let Pi :=

{P ∈ PF : P | Pi,∞}. Then Z
(pi+1−1)
i ∩ Pi = ∅. For any j < i, since Z

(ej)
j ⊂ Z

(pj+1−1)
j ⊂

Pi, Z
(ej)
j and Z

(ei)
i are disjoint. This means the disjoint union

⊔r−1
i=0 Z

(ei)
i is a subset of

⊔r−1
i=0 Z

(pi+1−1)
i = P̂. Thus, the denominator De can be killed by

∏

α∈P̂(x− α).

20 SONGSONG LI AND CHAOPING XING

�

Assume n =
∏r

i=1 pi is B-smooth, i.e., pi < B for all i = 1, . . . , r. By Lemma 4.1, there are
q+1
n

rational places in PFr that are splitting completely in F0/Fr, namely those places lying

above the pole place of
∑q

i=0 σ
i(x) in F 〈σ〉. Denote the set consisting of these q+1

n
places by

Q. Particularly, Q = {Pr,∞} if n = q + 1, and contains Pr,∞ if n < q + 1. We make the
following choices:

P ∈ Q \ {Pr,∞}, if n < q + 1,

P = Pr,∞, if n = q + 1.
(4.0.13)

Let P ⊂ PF be the set of all rational places of F lying over P (hence |P| = n). If n < q + 1,

by the proof of claim in Lemma 4.5, every base element z
(e0)
0 z

(e1)
1 · · · z(er−1)

r−1 xryr ∈ B̃ has no
poles in P.
Theorem 4.6. Let G be a cyclic subgroup of 〈σ〉 of order n =

∏r
i=1 pi. Let P ∈ PFG and

P be defined as above. If n is B-smooth, then the DFT of any polynomial f ∈ Fq[x]<n at P
can be done in O(Bn logn) operations of Fq.

Proof. Let f̃ = ur,0(x)

cr,0Qn(x)
f , where ur,0(x) and cr,0Q

n(x) come from xr = ur,0(x)∏
α∈P̂ (x−α)

and yr =
∏

α∈P̂
(x−α)2

cr,0Qn(x)
by Lemma 4.2(4). Then f̃ ∈ Wq(B̃) by Lemma 4.5. We will first show that the

MPE of f̃ at P can be done in O(n logn). By pre-computing
cr,0Qn(α)

ur,0(α)
for all α ∈ P, we

can obtain f(α) =
cr,0Qn(α)

ur,0(α)
f̃(α) for every α ∈ P. If n = q + 1, we define f(P∞) = ∞ since

νP∞(f) < 0. Denote the complexity (i.e., the total number of operations of Fq) to compute

the n evaluations of any f̃ ∈ Wq(B̃) ⊂ L(nQ) at the set P by C(n).

Under the basis B̃ in Lemma 4.5, we represent f̃ as

f̃ =
∑

e∈
∏r−1

i=0 Zpi+1

ae · xryr z
(e)

=
∑

e0∈Zp1

z
(e0)
0 ·

∑

e
′∈

∏r−1
i=1 Zpi+1

ae′ e0 · xryr z
(e′)

= z
(0)
0 · f0 + z

(1)
0 · f1 + · · ·+ z

(p1−1)
0 · fp1−1

= f0 +
1

x− λ1,1
· f1 + · · ·+

1

(x− λ1,1) · · · (x− λ1,p1−1)
· fp1−1.

(4.0.14)

where fk =
∑

e
′∈

∏r−1
i=1 Zpi+1

ae′ k · xryr z
(e′) for every 0 ≤ k < p1. Now, all fk ∈ F1 and

νQ1(fk) ≥ νQ1(yr) = −
n

p1
, where Q1 = Q ∩ F1.

Thus, fk ∈ L(n
p1
Q1) for all 0 ≤ k ≤ p1 − 1.

For any P ∈ P, let P1 = P ∩ F1. Then fk(P) = fk(P1) as fk ∈ F1. Let P(1) = P ∩ F1 =

{P ∩ F1 : P ∈ P}. Then |P(1)| = n
p1

by Lemma 4.1. Thus the evaluations of f̃ at P can

be reduced to evaluations of f0, · · · , fp1−1 at P(1), and then a combination of these values
according to Equation (4.0.14). If n < q+1, by the choice of P, there are no places in P that
are poles of 1/(x− λ1,1) · · · (x− λ1,p1−1). So the reduction works well and we can directly get
the recursive formula (4.0.17) which leads to the final result C(n) = O(Bn logn). However,

FAST FOURIER TRANSFORM 21

if n = q + 1, the pole places of 1/(x− λ1,1) · · · (x− λ1,p1−1) are contained in P which need
to be dealt with separately.
We are left to consider the case n = q + 1. According to Lemma 4.2 (2), let Λ1 =
{Pλ1,1 , . . . , Pλ1,p1−1 , P0,∞} be the set of all rational places of F0 lying above P1,∞. For any
Pλ1,i

∈ Λ1, by computations,

νPλ1,i
(yr) = νPr,∞(yr) = 2, νPλ1,i

(xr) = −1,

νPλ1,i
(z

(ej)
j) = νPj,∞

(z
(ej)
j) = ej ≥ 0, for 1 ≤ j ≤ r − 1, ej ∈ Zpj+1

νPλ1,i
(z

(k)
0) = −1, for i ≤ k ≤ p1 − 1,

νPλ1,i
(z

(k)
0) = 0, for 1 ≤ k < i,

(4.0.15)

Then,

νPλ1,i
(fk) ≥ min

e
′∈

∏r−1
i=1 Zpi+1

{νPλ1,i
(ae′ k · xryr z

(e′))} ≥ 1,

namely, each Pλ1,i
is a zero of fk =

∑

e
′∈

∏r−1
i=1 Zpi+1

ae′ k · xryr z
(e′). However, {Pλ1,1 , . . . , Pλ1,k

}
are simple poles of z

(k)
0 . We cannot evaluate fk and z

(k)
0 separately at Pλ1,i

for i ≤ k.
Note that, by Equation (4.0.15), νPλ1,i

(xryr z
e) ≥ 0 and take 0 only at e = (0 · · ·0k) for

i ≤ k ≤ p1 − 1. Thus

z
(k)
0 fk(Pλ1,i

) =
(
a0···0kxryr · z(k)0

)
(Pλ1,i

)

=

(

a0···0k
ur,0(x)

∏

α∈P̂ (x− α)

Qn(x)
· 1

(x− λ1,1) · · · (x− λ1,k)

)

(Pλ1,i
)

=







a0···0k ·
ur,0(λ1,i)

∏
α∈P̂\{λ1,1,...,λ1,k}(λ1,i−α)

Q(λ1,i)n
, if i ≤ k ≤ p1 − 1;

0, if k < i ≤ p1 − 1.

(4.0.16)

where the second “=” follows from Lemma 4.2 (4).

Thus, for these p1−1 places in Λ1, we can get f̃(Pλ1,i
) according to equations (4.0.16) and

(4.0.14) which can be done in p21 by pre-computing of

ur,0(λ1,i)
∏

α∈P̂\{λ1,1,...,λ1,k}
(λ1,i − α)

Q(λ1,i)n
for 1 ≤ i ≤ k ≤ p1 − 1.

It is not hard to see νP0,∞(z
(k)
0 fk) > 0, thus z

(k)
0 fk(P0,∞) = 0. As for other n − p1 rational

places in P \ Λ1, the functions {z(k)0 , fk}p1−1
k=0 in equation (4.0.14) are well-defined at them.

Thus, we can get the corresponding n− p1 evaluations of f̃ according to Equations (4.0.14)
by using p1 · O(n− p1) operations in Fq. Since each fk ∈ L(n

p1
Q1) and |P1| = n/p1, by the

above analysis, we get a recursive formula for C(n):

C(n) = p1 · C (n/p1) + p1 · O(n). (4.0.17)

Then we can continue to reduce the DFT of each fk at P(1) to the DFTs of p2 functions
in L

(
(n/p1p2)Q2

)
at P(2) = P ∩ F2, till to the last step where we get n functions in L(Qr)

and evaluate them at P(r) = {Pr,∞}, which can be done in O(n) operations. Overall, the
recursive formula (4.0.17) lead to a final complexity of C(n):

C(n) = p1p2 · · · pr · C(1) + (pr + · · ·+ p2 + p1) · O(n) = O(B · n logn).

22 SONGSONG LI AND CHAOPING XING

Since we need some precomputations in each step of the reduction, we analyze the total stor-
age for these precomputations. Precisely, in step j of the reduction, we need to precompute

(

yrxrz
(k)
j

)

(Pλj,i
) =

ur,j(λj,i)
∏

α∈P̂(j)\{λj,1,...,λj,k}
(λj,i − α)

Qj(λj,i)n
for 1 ≤ i ≤ k ≤ pj − 1.

Therefore, the storage for the precomputations in the process of reduction is:

r∑

j=1

pj−1
∑

k=1

∑

i≤k

1 = O(B4 log n).

By adding the storage for
ur,0(α)

Qn (α) for every α ∈ P, the total storage for precomputation is

n+O(B4 logn) = O(n).
�

Remark 4.7. (1) By the same analysis as in Remark 3.3, the inverse G-FFT for the
q + 1 case can also be performed in O(n logn) operations.

(2) Let f(x) ∈ Fq[x]<n be any nonzero polynomial. In the affine G-FFT, we showed that
the transformation from the coefficients of f(x) under the basis B in Lemma 3.1 to
the coefficients of f(x) under the standard basis can be done in at most O(n logn)
operations. However, in the q + 1 case, this transformation will cost O(M(n) logn)
operations in Fq, where M(n) denotes the cost of multiplication of two polynomials
of degree less than n. For simplicity, we take q + 1 = 2r as an example to illustrate.

In this case, assume xi+1 =
ui,i+1(xi)

xi−λi
for i = 0, 1, . . . , r − 1. Assume f(x) = (xq − x) ·

∑

e∈Zr
2
ae z

(e), where each z(e) = z
(e0)
0 z

(e1)
1 · · · z(er−1)

r−1 is the base element in Lemma 4.5,

and the evaluation set P = Pi,0 ⊔ Pi,1, where i = 1, 2, . . . , r − 1 and Pi,0 (resp. Pi,1)
(PF is the set of places lying above Pi,∞ (resp. Pi,λi

). Since

f(x) = (xq − x) ·
∑

e
′∈Zr−1

2

ae′ 0 z
(e′)+(xq − x)z

(1)
r−1 ·

∑

e
′∈Zr−1

2

ae′ 1 z
(e′)

= f0(x) ·
∏

α∈Pr−1,1

(x− α) + f1(x).

where

f0(x) =
∏

α∈P̂r−1,0

(x− α)
∑

e
′∈Zr−1

2

ae′ 0 z
(e′), f1(x) =

∏

α∈P̂r−1,0

(x− α)
∑

e
′∈Zr−1

2

ae′ 1 z
(e′) .

The pole places of z(e
′) are in P̂r−1,0 for all e′ ∈ Zr−1

2 . Therefore, the computation
of coefficients of f(x) under the standard basis can be reduced to the computations
of f0(x) and f1(x) under the standard basis. Then get f by multiplying f0 with
∏

α∈Pr−2,1
(x−α) and add f1. Thus the transformation complexity, denoted by B(n),

satisfies
B(n) = 2B(n/2) +M(n) = O(M(n) logn).

Example 4.8. At last, let us present an example with q + 1 = 2r to illustrate the G-FFT.

Since xi =
ui,i−1(xi−1)

xi−1−λi−1
for i = 1, . . . , r by Lemma 4.2, the pole place Pi,∞ ∈ PFi

of xi splits into

two places in PFi−1
, i.e., Pi−1,∞ and Pi−1,λi−1

. Let ci =
yrxr

xi−λi
|xi=λi

for i = 0, 1, . . . , r. Then
the G-FFT in the proof of Theorem 4.6 can be implemented by the following Algorithm 1.

FAST FOURIER TRANSFORM 23

Note that it can be also applied to the general case, i.e., q + 1 =
∏r

i=1 pi is B-smooth,

by writing f̃ under the basis B̃ in step 4 and adding the discussion of pj − 1 pole places
{Pj,1, . . . , Pj,pj−1} ⊂ P(j−1) of xj in step 8. For better understanding, we only present the
simplest case q + 1 = 2r.

Algorithm 1 G-FFT(f,P).
Input: f =

∑

e∈Zr
2
ae

xq−x∏r−1
i=0 (xi−λi)ei

∈ Fq[x]<q and P = Fq = {P1, P2, . . . , Pq}.
Output: (f(P1), . . . , f(Pq)) ∈ Fq

q.

– Write f̃ =
ur,0(x)

cr,0Qq+1(x)
f =

∑

e∈Zr
2
ae

yrxr∏r−1
i=0 (xi−λi)ei

.

– For j = 0, 1, . . . , r, let P(j) = P ∩ Fj. In particular, P(0) = P.
1: for j = 0 to r − 1 do
2: Write f̃ = f0 + f1

1
xj−λj

.

3: j ← j + 1
4: Call G-FFT

(
fk,P(j)

)
for k = 0, 1.

5: Return f̃(P) = f0(P) + f1(P) · 1
xj−1(P)−λj−1

for P ∈ P(j−1) \ {Pλj−1
};

6: Return f̃(P) = a0···01 · cj−1 for P = Pλj−1
, where a0···01 is the coefficient of f at the

term yrxr

xj−1−λj−1
.

7: end for
8: Output f(P) =

cr,0Qq+1(P)

ur,0(P)
f̃(P) for every P ∈ P.

More specifically, all data for the case q = 127 are as follows. Let F = F127(x). Firstly,
we choose a primitive polynomial over F127: m(x) = x2 + 126x + 3. The automorphism

σ =

(
0 1
124 1

)

∈ PGL2(q) has order 128. Since q + 1 = 27 and r = 7, we can construct

a tower of fields, i.e., Fq(xi) = FGi is the subfield fixed by Gi = 〈σ2r−i〉, i = 0, 1, . . . , 7.
Then xi =

∑

τ∈Gi
τ(x). In addition, let Q(x) = x2 + 42x+ 85 and Q be the quadratic place

corresponding to Q(x). Then Q is totally ramified in F/FG. Let yi =
∏

τ∈Gi
τ(1/Q(x)). The

field Ei = Fq(yi) is a subfield of Fq(xi). By computation, we have
(1) The generator xi (resp. yi = 1/Qi(xi)) of the subfield Fi = Fq(xi) (resp.

Ei = Fq(yi)) for i = 0, 1, . . . , 7. By the definition (4.0.1), we have

x0 = x, x1 =
x2 + 42

x+ 21
, x2 =

x4 + 125x2 + 71x+ 33

x3 + 63x2 + 28x+ 100
, x3 =

x8 + 33x6 + 105x5 + 24x4 + · · · + 122

x7 + 20x6 + 69x5 + · · ·+ 20

x4 =
x16 + 87x14 + 34x13 + 116x12 · · · + 43

x15 + 61x14 + 91x13 + 34x12 + · · ·+ 44
, x5 =

x32 + 4x30 + 29x29 + 119x28 + · · · + 8

x31 + 16x30 + 22x29 + 47x28 + · · ·+ 116
,

x6 =
x64 + 90x62 + 15x61 + 89x60 + · · ·+ 80

x63 + 53x62 + 67x61 + 64x60 + · · ·+ 71
, x7 =

x128 + 42x+ 85

x127 + 126x
=

u3,0(x)

xq − x
.

24 SONGSONG LI AND CHAOPING XING

and

y0 = 1/Q(x), y1 =
x2 + 42x+ 60

25Q(x)2
, y2 =

x6 + 126x5 + · · ·+ 94

16Q(x)4
, y3 =

x14 + 40x13 + · · ·+ 19

38Q(x)8
,

y4 =
x30 + 122x29 + · · ·+ 31

16Q(x)16
, y5 =

x62 + 32x61 + · · ·+ 121

100Q(x)32
, y6 =

x126 + 106x125 + · · ·+ 88

4Q(x)64
,

y7 =
x254 + 125x128 + x2

100Q(x)128
.

(2) The basis of Fq[x]<128. The pole place Pi,∞ ∈ PFi
of xi splits into two places in PFi−1

,
i.e., Pi−1,∞ and Pi−1,λi−1

, for every i. By computations, we have λ0 = 106, λ1 = 85, λ2 =
43, λ3 = 86, λ4 = 45, λ5 = 90, λ6 = 53. Thus, by Lemma 4.5, a basis of Fq[x]<128 is

{

x127 − x
∏6

i=0(xi − λi)ei
| e = (e0, e1, . . . , e6) ∈ Z7

2

}

(3) The precomputations. In the proof of Theorem 4.6, we need to store r values in
precomputing process:

c0 =
y7x7

x− λ0
|x=λ0= 106, c1 =

y7x7

x1 − λ1
|x1=λ1= 101, c2 =

y7x7

x2 − λ2
|x2=λ2= 64,

c3 =
y7x7

x3 − λ3
|x3=λ3= 34, c4 =

y7x7

x4 − λ4
|x4=λ4= 35, c5 =

y7x7

x5 − λ5
|x5=λ5= 1,

c6 =
y7x7

x6 − λ6
|x6=λ6= 0.

According to Algorithm 1, we can compute the MPE for any f =
∑

e∈Z7
2
ae

x127−x∏6
i=0(xi−λi)ei

∈
F127[x]<127 at F127. In Appendix B, we take a random f(x) (see its coefficients in Table

2) and set f̃ = x128+42x+85
100Q128(x)

f . Then we compute {f̃(P) : P ∈ F128} by G-FFT and get

f(P) = 100Q128(P)
u7,0(P)

f̃(P) for every P ∈ F127 (see Table 3 for the MPEs of f̃ and f at Fq).

5. Conclusion

In this work, we consider FFT for evaluations of polynomials at a chosen set P ⊆ Fq.
We conclude that when either q − 1, q or q + 1 is smooth, then it is possible to run FFT
in O(n logn) operations of Fq, which loosens the restriction of FFT on the finite field to
some extent. Most importantly, if n | (q + 1) is smooth, we give a practical algorithm to
implement FFT over Fq of length n rather than turn to a quadratic extension field Fq2 to
do FFT of length n. Our framework is based on the Galois theory and properties of the
rational function field. The applications of our new algorithm to polynomial arithmetic and
encoding/decoding of Reed-Solomon codes are not considered in this work and we leave them
as a future research work.

Acknowledgments

We would like to thank Yi Kuang for his help in implementing the G-FFT algorithm. We
would also like to thank Liming Ma and Fuchun Lin for their valuable comments on the
manuscript of this work. This Research is partially supported by the National Key Research
and Development Program under Grant 2022YFA1004900 and the National Natural Science
Foundation of China under Grant numbers 123031011 and 12031011.

FAST FOURIER TRANSFORM 25

References

[BCS13] Peter Bürgisser, Michael Clausen, and Mohammad A Shokrollahi. Algebraic complexity theory,
volume 315. Springer Science & Business Media, 2013.

[BSCKL23] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Elliptic curve fast Fourier
transform (ECFFT) part I: Low-degree extension in time O(n logn) over all finite fields. In
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
700–737. SIAM, 2023.

[Can89] D. G. Cantor. On arithmetical algorithms over finite fields. J. Combin. Theory, ser.,
50(2):285–300, 1989.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
Fourier series. Mathematics of computation, 19(90):297–301, 1965.

[Fid72] Charles M Fiduccia. Polynomial evaluation via the division algorithm the fast Fourier transform
revisited. In Proceedings of the fourth annual ACM symposium on Theory of computing, pages
88–93, 1972.

[Gao03] Shuhong Gao. A new algorithm for decoding Reed-Solomon codes. Communications, information
and network security, pages 55–68, 2003.

[GS10] Mateer T. Gao S. Additive fast Fourier transforms over finite fields. IEEE Transactions on
Information Theory, 56(12):6265–6272., 2010.

[HCLB21] Yunghsiang S Han, Chao Chen, Sian-Jheng Lin, and Baoming Bai. On fast Fourier transform-
based decoding of Reed-Solomon codes. International Journal of Ad Hoc and Ubiquitous Com-
puting, 36(3):180–187, 2021.

[HJB84] Michael Heideman, Don Johnson, and Charles Burrus. Gauss and the history of the fast Fourier
transform. IEEE Assp Magazine, 1(4):14–21, 1984.

[HKTO08] James William Peter Hirschfeld, Gábor Korchmáros, Fernando Torres, and Fernando Ed-
uardo Torres Orihuela. Algebraic curves over a finite field, volume 20. Princeton University
Press, 2008.

[JMX19] Lingfei Jin, Liming Ma, and Chaoping Xing. Construction of optimal locally repairable codes
via automorphism groups of rational function fields. IEEE Transactions on Information Theory,
66(1):210–221, 2019.

[Jus76] Jørn Justesen. On the complexity of decoding Reed-Solomon codes (corresp.). IEEE transactions
on information theory, 22(2):237–238, 1976.

[KS04] Hans Kurzweil and Bernd Stellmacher. The theory of finite groups: an introduction, volume 1.
Springer, 2004.

[LANH16] Sian-Jheng Lin, Tareq Y Al-Naffouri, and Yunghsiang S Han. FFT algorithm for binary exten-
sion finite fields and its application to Reed-Solomon codes. IEEE Transactions on Information
Theory, 62(10):5343–5358, 2016.

[LANHC16] Sian-Jheng Lin, Tareq Y Al-Naffouri, Yunghsiang S Han, and Wei-Ho Chung. Novel polyno-
mial basis with fast Fourier transform and its application to Reed-Solomon erasure codes. IEEE
Transactions on Information Theory, 62(11):6284–6299, 2016.

[LCH14] Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang S Han. Novel polynomial basis and its appli-
cation to Reed-Solomon erasure codes. In 2014 IEEE 55th annual symposium on foundations of
computer science, pages 316–325. IEEE, 2014.

[M.71] Pollard J M. The fast Fourier transform in a finite field. Mathematics of computation,
25(114):365–374, 1971.

[Sti09] Henning Stichtenoth. Algebraic function fields and codes, volume 254. Springer Science & Busi-
ness Media, 2009.

[vDHL17] Joris van Der Hoeven and Robin Larrieu. The frobenius FFT. In Proceedings of the 2017 ACM
on International Symposium on Symbolic and Algebraic Computation, pages 437–444, 2017.

[VZGG13] Joachim Von Zur Gathen and Jürgen Gerhard.Modern computer algebra. Cambridge University
press, 2013.

[WY88] Zhu X. Wang Y. A fast algorithm for the Fourier transform over finite fields and its VLSI
implementation. IEEE Journal on Selected Areas in Communications, 6(3):572–577, 1988.

26 SONGSONG LI AND CHAOPING XING

Appendix A. (xp − αx)-adic expansions of polynomials in Fq[x]

Definition A.1 ([VZGG13, GS10]). Let Fq be a finite field with characteristic p. Assume
f(x) ∈ F[x]<n is a polynomial of degree less than n. For any α ∈ Fq, the (xp − αx)-adic
expansion of f(x) is

f(x) = a0(x) + a1(x) · (xp − αx) + · · ·+ am(x) · (xp − αx)m,

where ai(x) ∈ Fq[x]<p for 0 ≤ i ≤ m and m = ⌊n/p⌋.
Mateer-Gao [GS10] showed that when p = 2, the (x2 − x)-adic expansion of f(x) can

be computed in O(n logn). In this part, we will generalize this result to any constant
characteristic p.

Lemma A.2. Assume Fq is a finite field with constant characteristic p. Let f(x) ∈ Fq[x]<n

be a polynomial of degree less than n. For any α ∈ Fq, one can compute the (xp − αx)-adic
representation of f(x) in O(n logn) operations in Fq.

Proof. Let cn be the leading coefficient of f(x). If n ≤ p, then the (xp − αx)-adic expansion
of f is

f(x) =

{

f(x), if deg(f) < p,

cp(x
p − αx) + f(x)− cp(x

p − αx), if deg(f) = p.

Next, we assume deg(f) > p. Let r ≥ 2 be a positive integer such that

pr−1 < n ≤ pr.

Write f(x) as

f(x) =

p−1
∑

k=0

f1(x) · xpr−1

+ · · ·+ fp−1(x) · x(p−1)pr−1

,

=

p−1
∑

k=0

p−1
∑

ℓ=0

fk,ℓ(x) · xℓpr−2+kpr−1

,

(A.0.1)

where deg(fk,ℓ) < pr−2 for 0 ≤ k, ℓ ≤ p − 1. For the convenience of writing, we sometimes
denote xp − αx by T and denote αpm by αm for any integer m ≥ 0. Since the characteristic
of Fq is p, we have

xpr−1

= (xp − αx)p
r−2

+ αr−2x
pr−2

= T pr−2

+ αr−2x
pr−2

.

Thus, for each k in [0, p− 1], we have

xkpr−1

= (T pr−2

+ αr−2x
pr−2

)k =
k∑

j=0

(
k

j

)

· αk−j
r−2 · x(k−j)pr−2

T jpr−2

. (A.0.2)

Now, by substituting each xkpr−1
in equation (A.0.1) with the formula on the right side of

equation (A.0.1), we then have

f(x) =
∑

k,ℓ

k∑

j=0

fk,ℓ(x) ·
(
k

j

)

· αk−j
r−2 · x(ℓ+k−j)pr−2

T jpr−2

=

p−1
∑

j=0

p−1
∑

k≥j

p−1
∑

ℓ=0

fk,ℓ(x) ·
(
k

j

)

· αk−j
r−2 · x(ℓ+k−j)pr−2

T jpr−2

.

(A.0.3)

FAST FOURIER TRANSFORM 27

If ℓ+ k − j ≥ p, then

x(ℓ+k−j)pr−2

= x(ℓ+k−j−p)pr−2

(T pr−2

+ αr−2).

We split the sum over ℓ in equation (A.0.3) into two parts: a sum over ℓ satisfying ℓ ≥ p−k+j
and a sum over ℓ satisfying ℓ < p− k + j. Then, by the above equation, we have

f(x) =

p−1
∑

j=0

(
p−1
∑

k≥j

∑

ℓ+k−j<p

fk,ℓ(x) ·
(
k

j

)

· αk−j
r−2 · x(ℓ+k−j)pr−2

)

T jpr−2

+

p−1
∑

j=0

(
p−1
∑

k≥j

∑

ℓ+k−j≥p

fk,ℓ(x) ·
(
k

j

)

· αk−j+1
r−2 · x(ℓ+k−j−p+1)pr−2

)

T jpr−2

+

p−1
∑

j=1

(
p−1
∑

k≥j−1

∑

ℓ+k−j+1≥p

fk,ℓ(x) ·
(

k

j − 1

)

· αk−j+1
r−2 · x(ℓ+k−j−p+1)pr−2

)

T jpr−2

.

(A.0.4)

Note that the three coefficients of T jpr−2
in the above equation all are polynomials of degree

less than pr−1. Thus their sum, denoted by gj(x), is also a polynomial of degree less than

pr−1. To explicitly compute the coefficients polynomial gj(x) of T jpr−2
, we need to add

some polynomial terms fk,ℓx
spr−2

and fk′,ℓ′x
s′pr−2

for 0 ≤ s, s′ ≤ p − 1 in equation (A.0.4).
Since deg(fℓ,k), deg(fℓ′,k′) < pr−2, the additions are only needed when s = s′. In this case,

fk,ℓx
spr−2

+ fk′,ℓ′x
spr−2

can be computed in at most pr−2 additions in Fq. By counting, there

are at most p2 polynomials in the form fk,ℓx
spr−2

for 0 < ℓ, k ≤ p − 1. Thus we need

at most p · pr additions in Fq to compute the coefficient gj(x) of T jpr−2
. Next, we count

the total multiplications in Fq to compute gj(x). Since there are most p2 polynomials fk,ℓ
needed to be multiplied by a scalar

(
k
j

)
αk−j
r−2 and each scalar multiplication needs at most pr−2

multiplications in Fq. Thus the total multiplications are also pr+1. After the combinations,
we get

f(x) =

p−1
∑

j=0

gj(x)T
jpr−2

, deg(gj) < pr−1 for 0 ≤ j ≤ p− 1.

Thus, the (xp−αx)-adic expansion of f(x) of degree less than pr is reduced to p (xp−αx)-adic
expansions of polynomials of degree < pr−1. We can continue this procedure recursively to
g0, g1, . . . , gp−1. Then in at most r recursions, all the polynomials will have degrees less than
p and we obtain the (xp − αx)-expansion of f(x). Let Ap(n) and Mp(n) be the complexity
of the (xp −αx)-adic expansion of a polynomial in Fq[x]≤n. Through the above analysis, we
have

Ap(n) = p · Ap(n/p) +O(n), Mp(n) = p ·Mp(n/p) +O(n).

The recursive formula finally leads to Ap(n) = O(n · log n) and Mp(n) = O(n · log n). �

28 SONGSONG LI AND CHAOPING XING

Table 2. The coefficients of f(x)

e 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ae 15 4 37 109 3 87 116 18 10 90 73 51 92 66 121 86 70
e 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
ae 13 21 95 29 122 78 122 78 41 26 49 44 66 19 66 40 121
e 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
ae 81 3 116 4 50 40 121 85 25 66 38 55 42 98 37 116 15
e 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
ae 49 33 100 86 120 104 61 114 0 10 17 68 91 81 98 124 44
e 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
ae 5 23 119 115 25 73 10 113 17 91 11 86 118 8 31 63 32
e 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
ae 21 62 77 51 90 53 89 48 97 11 15 77 8 64 63 7 62
e 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
ae 55 92 116 116 118 53 80 39 47 84 53 100 4 97 40 106 108
e 119 120 121 122 123 124 125 126 127
ae 39 107 25 67 51 87 90 111 93

Appendix B. An example of G-FFT with q + 1 = 128

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong Uni-

versity, Shanghai 200240, China

Email address : songsli@sjtu.edu.cn

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong Uni-

versity, Shanghai 200240, China

Email address : xingcp@sjtu.edu.cn

FAST FOURIER TRANSFORM 29

Table 3. The MPEs of f(x) and f̃(x)

α f(α) f̃(α) α f(α) f̃(α) α f(α) f̃(α) α f(α) f̃(α) α f(α) f̃(α)
∞ 0 0 81 74 71 8 55 114 59 85 121 6 54 32
106 123 89 107 126 91 92 75 101 66 11 112 11 3 62
101 94 2 24 91 33 46 108 57 5 92 104 38 61 123
111 123 108 49 3 63 117 99 31 22 85 35 41 10 79
21 42 64 68 105 95 9 96 83 20 68 5 19 119 34
54 102 106 110 42 107 84 22 18 93 74 14 26 117 53
31 9 99 1 40 102 37 68 9 25 98 111 27 25 48
64 98 107 76 93 5 99 77 6 53 96 62 124 68 43
34 114 12 48 109 91 12 31 68 75 124 119 10 40 22
94 38 103 113 10 75 86 36 50 115 41 5 97 40 104
89 89 93 13 16 100 72 30 124 23 68 48 32 116 22
100 120 30 109 21 100 103 68 94 91 48 71 60 72 66
51 76 8 73 113 84 0 86 61 40 83 72 63 20 68
118 37 117 126 48 109 2 79 89 116 96 30 80 3 31
112 0 0 14 29 116 70 23 71 30 23 17 65 54 60
123 24 95 69 36 71 82 120 118 108 69 33 119 40 11
4 0 0 57 77 83 43 89 11 33 75 81 45 111 107

105 111 59 78 106 106 56 105 52 122 73 33 96 48 15
35 109 6 39 35 22 98 15 65 3 104 43 62 126 74
67 51 57 95 65 114 125 8 126 15 110 69 121 58 17
17 62 44 77 73 22 44 58 1 83 46 47 52 93 9
102 105 77 120 53 90 47 10 16 85 16 97 90 36 105
36 69 52 7 101 101 74 110 72 29 76 109 55 77 79
61 40 48 28 77 83 79 69 55 42 122 85 104 34 77
18 89 92 16 41 35 58 77 31 87 6 31
50 123 86 71 84 82 88 4 10 114 43 17

