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The Identity Problem in nilpotent groups of bounded class

Ruiwen Dong∗

Abstract

Let G be a unitriangular matrix group of nilpotency class at most ten. We show that the
Identity Problem (does a semigroup contain the identity matrix?) and the Group Problem (is
a semigroup a group?) are decidable in polynomial time for finitely generated subsemigroups
of G. Our decidability results also hold when G is an arbitrary finitely generated nilpotent
group of class at most ten. This extends earlier work of Babai et al. on commutative matrix
groups (SODA’96) and work of Bell et al. on SL(2,Z) (SODA’17). Furthermore, we formulate a
sufficient condition for the generalization of our results to nilpotent groups of class d > 10. For
every such d, we exhibit an effective procedure that verifies this condition in case it is true.

1 Introduction

Algorithmic problems in matrix semigroups. The computational theory of groups and semi-
groups is one of the oldest and most well-developed parts of computational algebra. Algorithmic
problems for matrix semigroups have been studied in computer science continuously since the work
of Markov [35] in the 1940s. The area now plays an essential role in analysing system dynamics,
and has numerous applications in automata theory, randomized algorithms, program analysis, and
interactive proof systems [1, 6, 9, 13, 16, 25]. Among the most prominent problems in this area are
Semigroup Membership and Group Membership, proposed respectively by Markov and Mikhailova
in the mid twentieth century. For these decision problems, we work in a fixed matrix group G.
The input is a finite set of matrices G = {A1, . . . , AK} ⊆ G and a matrix A. Denote by 〈G〉 the
semigroup generated by G, and by 〈G〉grp the group generated by G.

(i) (Semigroup Membership) decide whether 〈G〉 contains A.
(ii) (Group Membership) decide whether 〈G〉grp contains A.

Both problems are undecidable in general matrix groups by the classical results of Markov and
Mikhailova [35, 36]. In this paper, we consider two closely related problems introduced by Choffrut
and Karhumäki [13] in 2005: the Identity Problem and the Group Problem. These two decision
problems concern the structure of semigroups rather than their membership. Given as input a finite
set of matrices G:

(iii) (Identity Problem) decide whether 〈G〉 contains the identity matrix I.
(iv) (Group Problem) decide whether 〈G〉 is a group, in other words, whether 〈G〉 = 〈G〉grp.

All four algorithmic problems remain undecidable for matrices in low dimensions: for example, for
matrices in the group SL(4,Z) of 4×4 integer matrices of determinant one [8, 36]. The undecidability
results stem from the fact that SL(4,Z) can embed a direct product of two non-abelian free groups.
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On the other hand, for matrices in SL(2,Z), Semigroup Membership was shown to be decidable in
EXPSPACE by Choffrut and Karhumaki [13], Group Membership is in PTIME by a result of
Lohrey [32], and the Identity Problem and the Group Problem are NP-complete by results of Bell,
Hirvensalo, and Potapov [7].

The goal of this paper is to solve the Identity Problem and the Group Problem in matrix groups
with additional structures. To this end, we will consider the more general problem of computing
invertible subsets, which subsumes the Identity Problem and the Group Problem.

Definition 1.1. Let G be a matrix group. Given a finite set of elements G = {A1, . . . , AK} ⊆ G,
the invertible subset of G is the set of matrices in G who inverse lies in 〈G〉.

Proposition 1.2. Given a finite set of matrices G = {A1, . . . , AK} in a matrix group G. Denote
by Ginv the invertible subset of G.
(i) The Identity Problem for G has a positive answer if and only if Ginv is non-empty.
(ii) The Group Problem for G has a positive answer if and only if Ginv = G.

Nilpotent groups, unitriangular matrices, and related work. Computation on matrix
groups becomes easier in the presence of structural restrictions such as commutativity and nilpo-
tence. In [2], Babai et al. famously reduced algorithmic problems in commutative matrix groups
to computation on lattices. Thus, for commutative matrix groups, Group Membership reduces to
linear algebra over Z, and is hence decidable in PTIME; Semigroup Membership is equivalent to
integer programming, and is hence NP-complete; the Identity Problem and the Group Problem
reduce to solving homogeneous linear Diophantine equations, and are hence in PTIME. The work
of Babai left as an open problem how these complexity results generalize to nilpotent groups and
solvable groups. In this paper we work in the setting of nilpotent groups.

Definition 1.3. Given a group G and a subgroup H of G, define the commutator [G,H] to be
the group generated by the elements in {ghg−1h−1 | g ∈ G,h ∈ H}. The lower central series of a
group G is the inductively defined descending sequence of subgroups

G = G1 ≥ G2 ≥ G3 ≥ · · · ,

in which Gk = [G,Gk−1]. A group G is called nilpotent if its lower central series terminates with
Gd+1 = {I} for some d. The smallest such d is called the nilpotency class of G.

In particular, abelian groups are nilpotent of class one. Nilpotent groups are one of the most
studied classes of groups due to being the “simplest” non-commutative groups. Much research
has focused on algorithms for groups of relatively small nilpotency classes. For finite groups, the
decades-old quest for a PTIME algorithm of the group isomorphism problem has focused on the
very difficult case of class two nilpotent groups [3, 20, 39]. For infinite groups, a celebrated result
of Grunewald and Segal [22] showed decidability of group isomorphism for all finitely generated
nilpotent groups. For membership problems, a classic result of Kopytov showed that Group Mem-
bership is decidable in nilpotent matrix groups [29]. On the other hand, Roman’kov [38] recently
showed that Semigroup Membership is undecidable for a class two nilpotent matrix group. The
decidability and complexity of the Identity Problem and the Group Problem for nilpotent groups
remained an intricate open problem.

The most prominent example of nilpotent groups is the group UT(n,Q) of n× n unitriangular
rational matrices.
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Definition 1.4. Denote by UT(n,Q) the group of n × n upper triangular rational matrices with
ones along the diagonal:

UT(n,Q) :=








1 ∗ · · · ∗
0 1 · · · ∗
...

...
. . .

...
0 0 · · · 1


 , where ∗ are elements of Q .





A group G is called a unitriangular matrix group over Q if it is a subgroup of UT(n,Q) for some n.

The group UT(n,Q) is nilpotent of class n − 1 [26, Example 16.1.2]. A strong motivation
for studying UT(n,Q) is the fact that every finitely generated nilpotent group is isomorphic to a
subgroup of the direct product UT(n,Q) × F where F is finite [5, 26]. For this reason, it suffices
to focus our study on unitriangular matrix groups over Q.

In [28], Ko, Niskanen and Potapov showed the PTIME decidability of the Identity Problem in
UT(3,Q). Later, utilising the special structure of the first term in the Baker-Campbell-Hausdorff
(BCH) formula, Colcombet, Ouaknine, Semukhin and Worrell proved the decidability of Semigroup
Membership in UT(3,Q) by encoding it into a Parikh automaton [14]. Recently, Dong [17] showed
the PTIME decidability of the Identity Problem in UT(4,Z). However, Dong’s result relies on an
ad hoc argument from algebraic geometry, which seems unlikely to generalize to higher dimensions.
It was therefore left as an open problem whether the Identity Problem in UT(n,Q) is decidable
for n ≥ 5. On the undecidability side, Roman’kov [38] showed that Semigroup Membership in
UT(3,Q)k (which is of nilpotency class two) is undecidable for sufficiently large k. His main
technique is an embedding of the Hilbert’s tenth problem. In this paper, we generalize some of
the above decidability results to unitriangular matrix groups of arbitrary dimension, with bounded
nilpotency class.

Main contribution. The highlight of our approach is combining convex geometry and Lie algebra
to study semigroup algorithmic problems, which to the best of our knowledge is a new method in
this area. Convex geometry can be seen as the study of subsemigroups of the abelian group Rn.
Combined with Lie algebra techniques, we use it to study subsemigroups of nilpotent groups. The
most significant contribution of our paper includes proving several intricate properties of the k-th
term of the BCH formula, from which our main result follows. All but one of these properties are
proven for every term of the BCH formula, whereas the remaining one is verified term by term
using assistance from computer algebra software. The huge computational power needed to verify
this particular property is the reason why our result stops at nilpotency class ten1. However, we
exhibit an effective procedure that verifies this property for higher classes in case it is true.

2 Main results

The main result of this paper is the following theorem.

Theorem 2.1. Let G be a unitriangular matrix group over Q with nilpotency class at most ten.
Given any finite set G ⊆ G, the invertible subset of G is computable in polynomial time.

1Nilpotent groups of high classes have intrinsically complicated structures. Many conjectured results on nilpotent
groups and UT(n,K) are notoriously difficult to prove, but are verified for relatively small nilpotency classes. For
example, classification of nilpotent Lie algebras is done up to dimension seven [21], and Higman’s conjecture [41] on
the number of conjugacy classes in UT(n,Fp) is verified up to n ≤ 13.
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Here, the input size is defined as the total bit length of the entries in the matrices of G. The
proof of Theorem 2.1 will be given in Sections 4 and 5. Together with Proposition 1.2, Theorem 2.1
implies that the Identity Problem and the Group Problem are decidable in PTIME in unitriangular
matrix groups over Q with nilpotency class at most ten. For example, this result also applies to
the direct product UT(11,K)m for any m ∈ N and any algebraic number field K, since K can be
embedded as matrices in Qk×k, where k is the degree of the field extension K/Q.

The following corollary extends Theorem 2.1 to arbitrary finitely generated nilpotent groups.
However, the complexity will depend on specific group embeddings, which we do not analyse.

Corollary 2.2. Let G be a finitely generated nilpotent group of class at most ten, given by a finite
presentation [24, Chap. 8]. Then the Identity Problem and the Group Problem are decidable in G.

3 Preliminaries

Words and linear programming. All omitted proofs can be found in Appendix A. Given a
finite set of matrix G = {A1, . . . , AK}, one can consider G as a finite alphabet. Let G∗ denote the
set of words over G, and let G+ denote the set of non-empty words over G. Given a word w ∈ G+,
by multiplying consecutively the matrices appearing in w, we can evaluate w as a matrix, which
we denote by π(w). Then the semigroup 〈G〉 consists of all matrices π(w) where w ∈ G+. We now
define some concepts necessary for analysing words with linear algebra.

Definition 3.1 (Parikh image). Given a finite alphabet G = {A1, . . . , AK}, the Parikh image of a
word w = B1 · · ·Bm in G∗ is the vector ℓ = (ℓ1, . . . , ℓK) ∈ ZK

≥0 defined by ℓi = card({j | Bj = Ai})
(that is, ℓi is the number of times Ai appears in w). The Parikh image of w over the alphabet G is
denoted by PIG(w).

Definition 3.2 (Cones). Let V be a Q-linear space. A subset C ⊆ V is called a Q≥0-cone if
a ∈ C =⇒ aQ≥0 ⊆ C, and a, b ∈ C =⇒ a+ b ∈ C. Given a set of vectors S ⊆ V , denote by 〈S〉Q≥0

the Q≥0-cone generated by S, that is the smallest Q≥0-cone of V containing S. Similarly, denote by
〈S〉Q the Q-linear space generated by S. These notations extend to R≥0-cones and R-linear spaces.

Definition 3.3 (Support). A subset Λ ⊆ ZK
≥0 is called a Z≥0-cone if a, b ∈ Λ =⇒ a + b ∈ Λ, and

0 ∈ Λ. The support of a vector ℓ = (ℓ1, . . . , ℓK) ∈ ZK
≥0 is defined as the set of indices where the

entry of ℓ is non-zero:
supp(ℓ) := {i ∈ {1, . . . ,K} | ℓi > 0}.

The support of a Z≥0-cone Λ is defined as the union of supports of all vectors in Λ:

supp(Λ) :=
⋃

ℓ∈Λ
supp(ℓ) = {i | ∃(ℓ1, . . . , ℓK) ∈ Λ, ℓi > 0}.

Let V be a Q-linear subspace of QK , represented as the solution set of linear homogeneous
equations. Then ZK

≥0 ∩ V is a Z≥0-cone. In this paper, we will need to compute the support of

Z≥0-cones of the form Λ = ZK
≥0 ∩ V (namely, in Algorithm 1).

Lemma 3.4. Given V represented as the solution set of linear homogeneous equations, one can
compute the support of Λ = ZK

≥0 ∩ V in polynomial time.
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Lie algebra. For a general reference on Lie algebra, see [19].

Definition 3.5 (Lie algebra u(n)). The Lie algebra u(n) is defined as the Q-linear space of n× n
upper triangular rational matrices with zeros on the diagonal. There exist maps

log : UT(n,Q) → u(n), A 7→
n∑

k=1

(−1)k−1

k
(A− I)k,

and

exp : u(n) → UT(n,Q), X 7→
n∑

k=0

1

k!
Xk,

which are inverse of one another. In particular, log I = 0 and exp(0) = I.

The Lie algebra u(n) is equipped with a Lie bracket [·, ·] : u(n)×u(n) → u(n) given by [X,Y ] =
XY − Y X. The Lie bracket is bilinear, anticommutative (meaning [X,Y ] = −[Y,X]), and it
additionally satisfies the Jacobi Identity :

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X,Y,Z ∈ u(n).

Notation 3.6. Given a set of matrices G ⊆ UT(n,Q), we denote log G := {logA | A ∈ G}. It is a
subset of u(n). If G is a subgroup of UT(n,Q), then logG is similarly defined by considering G as
a set. Given a set of elements H ⊆ u(n) and an integer k ≥ 2, define

[H]k :=
{
[. . . [[X1,X2],X3], . . . ,Xk] | X1,X2, . . . ,Xk ∈ H

}
.

That is, [H]k is the set of all “left bracketing” of length k of elements in H.

It is a standard result that, using bilinearity, anticommutativity and the Jacobi identity, any
k-iteration of Lie brackets of elements in H can be written as a linear combination of elements in
[H]k. For example, for k = 4, one can write

[[X1,X2], [X3,X4]] =− [[X2, [X3,X4]],X1]− [[[X3,X4],X1],X2] (Jacobi identity)

= [[[X3,X4],X2],X1]− [[[X3,X4],X1],X2] (Anticommutativity).

The following lemma is a corollary of the so-called Mal’cev correspondence [34]:

Lemma 3.7. Let G be a subgroup of UT(n,Q). If G has nilpotency class d, then [logG]d+1 = {0}.

The Baker-Campbell-Hausdorff (BCH) formula.

Theorem 3.8 (Baker-Campbell-Hausdorff (BCH) formula [4, 11, 23]). Let G be a unitriangular
matrix group over Q, whose nilpotency class is at most d. Let B1, . . . , Bm be elements of G. Then

log(B1B2 · · ·Bm) =
m∑

i=1

logBi +
d∑

k=2

Hk(logB1, . . . , logBm), (1)

where the terms Hk(logB1, . . . , logBm), k = 2, 3, . . ., can be expressed as finite Q-linear combina-
tions of elements in [{logB1, . . . , logBm}]k.
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In theory, one can compute the expressions Hk effectively using recursion (see, for example [12]).
An explicit expression for the term Hk was discovered by Dynkin [31] (see Section 5). However,
as k grows, these expressions quickly become very complicated. For example, here are the explicit
expressions of the first two terms.

H2(C1, . . . , Cm) =
1

2

∑

i<j

[Ci, Cj ],

H3(C1, . . . , Cm) =
∑

i<j<k

(
[Ci, [Cj , Ck]]

3
+

[[Ci, Ck], Cj ]

6

)
+
∑

i<j

[Ci, [Ci, Cj ]] + [[Ci, Cj ], Cj ]

12
. (2)

4 Polynomial time algorithm for Theorem 2.1

In this section, we exhibit the algorithm that proves the main result of this paper (Theorem 2.1).
In order to describe our algorithm, we need to introduce the following notation. Let H be a finite
set of elements in the Lie algebra u(n). For any k ≥ 1, denote

L≥k(H) :=
〈⋃

i≥k
[H]i

〉
Q
.

That is, L≥k(H) is the linear space spanned by the set of all “left bracketing” of length at least k
of elements in H. By Lemma 3.7, if a unitriangular matrix group G has nilpotency class d, then for
any H ⊆ logG, we have L≥d+1(H) = {0}, and L≥k(H) = 〈[H]k〉Q + 〈[H]k+1〉Q + · · · + 〈[H]d〉Q. We
have thus an ascending series of linear spaces {0} = L≥d+1(H) ⊆ L≥d(H) ⊆ · · · ⊆ L≥1(H) ⊆ u(n),
such that [L≥i(H),L≥j(H)] ⊆ L≥i+j(H).

Example 4.1. We give a concrete example to show how the subspaces L≥k(H), k = d, . . . , 2, 1,
may look like. Let G = UT(4,Q), so it has nilpotency class d = 3. Consider the Lie algebra

u(4) =








0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0


 , where ∗ are entries in Q





.

It is a Q-linear space of dimension six. Let G = {A1, A2, A3}, where

A1 =




1 2 −1 1
0 1 2 1
0 0 1 2
0 0 0 1


 , A2 =




1 −1 −1 2
0 1 −1 −1
0 0 1 0
0 0 0 1


 , A3 =




1 0 3 −1
0 1 0 1
0 0 1 −1
0 0 0 1


 .

Let H = {logA1, logA2, logA3}. In particular,

logA1 =




0 2 −3 11
3

0 0 2 −1
0 0 0 2
0 0 0 0


 , logA2 =




0 −1 −3
2

3
2

0 0 −1 −1
0 0 0 0
0 0 0 0


 , logA3 =




0 0 3 1
2

0 0 0 1
0 0 0 −1
0 0 0 0


 . (3)

We have [H]4 = {0} by applying Lemma 3.7 with d = 3. Moreover,

[H]3 =
{
[[logA1, logA2], logA1], [[logA1, logA2], logA2], . . . , [[logA3, logA2], logA2]

}
,
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[H]2 =
{
[logA1, logA2], [logA1, logA3], [logA2, logA3], [logA2, logA1] = −[logA1, logA2], . . .

}
,

[H]1 =
{
logA1, logA2, logA3

}
.

Then, we have L≥4(H) = {0}, L≥3(H) = 〈[H]3〉Q, L≥2(H) = 〈[H]2〉Q + 〈[H]3〉Q and L≥1(H) =
〈[H]1〉Q + 〈[H]2〉Q + 〈[H]3〉Q. By direct computation, this yields

L≥3(H) =








0 0 0 a
0 0 0 0
0 0 0 0
0 0 0 0




∣∣∣∣∣∣∣∣
a ∈ Q





,L≥2(H) =








0 0 0 a
0 0 0 b
0 0 0 0
0 0 0 0




∣∣∣∣∣∣∣∣
a, b ∈ Q





,

L≥1(H) =








0 c1 c3 a
0 0 c1 b
0 0 0 c2
0 0 0 0




∣∣∣∣∣∣∣∣
a, b, c1, c2, c3 ∈ Q





. (4)

Hence in this example, L≥3(H),L≥2(H),L≥1(H) are respectively subspaces of u(4) of dimension
one, two and five.

Let G be a subgroup of UT(n,Q) of nilpotency class at most ten, and fix G = {A1, . . . , AK} to
be a finite alphabet of elements in G. For any vector ℓ = (ℓ1, . . . , ℓK) ∈ ZK

≥0, define

Gsupp(ℓ) := {Ai | Ai ∈ G, i ∈ supp(ℓ)}

as the set of matrices in G whose index appears in the support set supp(ℓ).
Recall that for a word w ∈ G+, the matrix π(w) is obtained by multiplying consecutively

the matrices appearing in w. The key ingredient of our algorithm is the following Theorem 4.2,
which provides a criterion for the existence of a non-empty word w ∈ G+ satisfying log π(w) = 0
(equivalently, π(w) = I). In particular, this provides a criterion for whether I ∈ 〈G〉 (the Identity
Problem), and can be extended to the computation of invertible subsets.

Theorem 4.2. Let G = {A1, . . . , AK} be a finite set of matrices in UT(n,Q) that satisfies [log G]11 =
{0}. Given a non-zero vector ℓ = (ℓ1, . . . , ℓK) ∈ ZK

≥0:

(i) If there exists a word w ∈ G+ with PIG(w) = ℓ and log π(w) = 0, then

K∑

i=1

ℓi logAi ∈ L≥2(log Gsupp(ℓ)). (5)

(ii) If ℓ satisfies (5), then there exists a word w ∈ G+ with PIG(w) ∈ Z>0·ℓ, such that log π(w) = 0.

Part (i) of Theorem 4.2 is relatively easy to prove:

Proof of part (i) of Theorem 4.2. Let w be a word with PIG(w) = ℓ. Write w = B1B2 · · ·Bm where
Bi ∈ G, i = 1, . . . ,m. Regrouping by letters, we have

∑K
i=1 ℓi logAi =

∑m
i=1 logBi.

If log π(w) = 0, then by the BCH formula (Theorem 3.8), we have

m∑

i=1

logBi +

n−1∑

k=2

Hk(logB1, . . . , logBm) = log(B1B2 · · ·Bm) = 0.

The higher order terms Hk, k ≥ n vanish because [log G]n = {0} (a consequence of G ⊆ UT(n,Q)).
Therefore,

∑K
i=1 ℓi logAi =

∑m
i=1 logBi = −

∑n−1
k=2 Hk(logB1, . . . , logBm).
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Since the Parikh image of the word B1B2 · · ·Bm is ℓ, the matrices Bi all lie in the subset {Ai |
i ∈ supp(ℓ)} of G. Therefore, logBi ∈ log Gsupp(ℓ) for all i. By Theorem 3.8, for all k ≥ 2 we have
−Hk(logB1, . . . , logBm) ∈

〈
[{logBi | i = 1, . . . ,m}]k

〉
Q

⊆ L≥k(log Gsupp(ℓ)) ⊆ L≥2(log Gsupp(ℓ)).

Therefore, we have
∑K

i=1 ℓi logAi = −
∑n−1

k=2 Hk(logB1, . . . , logBm) ∈ L≥2(log Gsupp(ℓ)).

Proving part (ii) of Theorem 4.2 is highly non-trivial and will be the main focus of Section 5.
We continue Example 4.1 to give an intuition of the Condition (5) in Theorem 4.2.

Example 4.1 (continued). Let G be as in Example 4.1. As an example, we show that ℓ = (1, 2, 2)
satisfies Equation (5). When ℓ = (1, 2, 2), we have supp(ℓ) = {1, 2, 3}, so L≥2(log Gsupp(ℓ)) =
L≥2(log G) as defined in Equation (4). Therefore,

3∑

i=1

ℓi logAi = logA1 + 2 logA2 + 2 logA3 =




0 0 0 23
3

0 0 0 −1
0 0 0 0
0 0 0 0


 ∈ L≥2(log Gsupp(ℓ)),

where logAi, i = 1, 2, 3, are given in Equation (3). Hence in this example, ℓ satisfies Equation (5).

Note that finding solutions of Equation (5) relies only on linear algebra. Assuming Theorem 4.2,
we can devise the following Algorithm 1 that computes the invertible subset of any finite set G ⊆ G.

Algorithm 1: Computing the invertible subset of G

Input: A finite set of elements G = {A1, . . . , AK} in G.
Output: The invertible subset Ginv of G.

Step 1 Initialization. Set S := {1, . . . ,K}.
Step 2 Main loop. Repeat the following

(a) Represent the Q-linear subspace of QK :

V :=

{
(ℓ1, . . . , ℓK) ∈ QK

∣∣∣∣
∑K

i=1
ℓi logAi ∈ L≥2({logAi | i ∈ S})

}

as the solution set of homogeneous linear equations.

(b) Define Λ := ZK
≥0 ∩ V and compute supp(Λ) using Lemma 3.4.

(c) If supp(Λ) = S, terminate the algorithm and return Ginv = {Ai | i ∈ S}.
Otherwise let S := supp(Λ) and continue.

Proof of Theorem 2.1 and proof of correctness of Algorithm 1 (assuming Theorem 4.2). After each
iteration of Step 2, the cardinality of supp(Λ) strictly decreases. Therefore, the algorithm termi-
nates after at most K iterations of Step 2.

SinceG has nilpotency class at most ten, by Lemma 3.7, its subset G satisfies [log G]11 = {0}. We
start by showing that, when the algorithm terminates, every element of {Ai | i ∈ S} has an inverse
in the semigroup 〈G〉. When the algorithm terminates at Step 2(c), we have supp(Λ) = S. By the
additivity of Λ (that is, a, b ∈ Λ =⇒ a + b ∈ Λ), there exists a vector ℓ = (ℓ1, . . . , ℓK) ∈ Λ such
that supp(ℓ) = supp(Λ) = S. This vector then satisfies

∑K
i=1 ℓi logAi ∈ L≥2({logAi | i ∈ supp(ℓ)})

by the definition of V . By Theorem 4.2(ii), this shows that there exists a non-empty word w, with
PIG(w) ∈ Z>0 · ℓ such that log π(w) = 0 (that is, π(w) = I). For any i ∈ S, since supp(ℓ) = S,
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the letter Ai appears in the word w. Write w = w1Aiw2; then since π(w1Aiw2) = I, we have
π(w1)Aiπ(w2) = I. Hence, A−1

i = π(w2)π(w1) ∈ 〈G〉 ∪ {I}, so A−1
i ∈ 〈G〉.

We then show that for every matrix Ai invertible in 〈G〉, the index i is in the set S at the
termination of the algorithm. Suppose A−1

i is equal to π(w), where w is a non-empty word. Then
the product of the word w′ = wAi is equal to the identity, that is, log π(w′) = 0. By Theorem 4.2(i),
the Parikh image ℓ = PIG(w′) satisfies

∑K
i=1 ℓi logAi ∈ L≥2({logAi | i ∈ supp(ℓ)}).

We show that supp(ℓ) ⊆ S is an invariant of the algorithm. At initialization, we obviously have
supp(ℓ) ⊆ S. Before each iteration of Step 2(b), suppose we have supp(ℓ) ⊆ S, then

K∑

i=1

ℓi logAi ∈ L≥2({logAi | i ∈ supp(ℓ)}) ⊆ L≥2({logAi | i ∈ S}).

Hence ℓ ∈ Λ = ZK
≥0 ∩ V . Consequently, supp(ℓ) ⊆ supp(Λ) at the beginning of Step 2(c), which

shows that supp(ℓ) ⊆ S still holds after the iteration of Step 2. This invariant shows that i ∈
supp(ℓ) ⊆ S by the end of the algorithm. Combining with the previous implication, we conclude
that by the end of the algorithm, S is exactly the set of elements in G with inverse in 〈G〉.

For the complexity analysis, recall that the algorithm terminates after at most K iterations of
Step 2. At each iteration of Step 2(b), the support supp(Λ) can be computed in polynomial time by
Lemma 3.4. The total input size of these linear programming instances is polynomial with respect
to the total bit length of the matrix entries in G. Indeed, a Q-basis of L≥2({logAi | i ∈ S}) is
simply the set

⋃
10≥k≥2[{logAi | i ∈ S}]k, whose total bit length is of polynomial size in G. From

this, one can express V as the solution set of a system of homogeneous linear equations whose
total bit length is polynomial in G (note that the total bit length of logAi is also polynomial in G).
Therefore, the overall complexity of Algorithm 1 is polynomial with respect to the input G.

5 Proof of Theorem 4.2(ii)

In this section we give the proof of Theorem 4.2(ii). We first give an intuition of the proof by
continuing Example 4.1. This will illustrate some of the ideas necessary to prove the general case.

Example 4.1 (final part). Let G be as in Example 4.1. Let ℓ = (1, 2, 2). We have already shown
that ℓ satisfies Equation (5), so Theorem 4.2(ii) claims that there exists a word w ∈ G+ with
PIG(w) ∈ Z>0 · (1, 2, 2), such that log π(w) = 0. We illustrate here how to construct this word w in
two steps. By slight abuse of notation we now write logA instead of log π(A) for any word A ∈ G+.

Step 1. We find elements A′
1, A

′
2, A

′
3 in G+, such that logA′

1, logA
′
2, logA

′
3 generate the sub-

space L≥2(log Gsupp(ℓ)) as a Q≥0-cone. The idea is to take

A′
1 := At

1A
2t
2 A

2t
3 , A′

2 := A2t
2 A2t

3 A
t
1, A′

3 := A2t
2 A

t
1A

2t
3 , (6)

for a suitable t ∈ N. Apply the BCH formula (1) with B1 := At
1, B2 := A2t

2 , B3 := A2t
3 , we obtain

logA′
1 = log(At

1A
2t
2 A

2t
3 ) = logAt

1 + logA2t
2 + logA2t

3 +
∑3

k=2
Hk(logA

t
1, logA

2t
2 , logA

2t
3 )

= t · (logA1 + 2 logA2 + 2 logA3) +
∑3

k=2
tk ·Hk(logA1, 2 logA2, 2 logA3). (7)

The last equality is due to logAt = t logA and because the term Hk is a linear combination of
k-iterations of Lie brackets.

The linear term t · (logA1 + 2 logA2 + 2 logA3) in (7) falls in the subspace L≥2(log Gsupp(ℓ))

by Condition (5). The non-linear terms tk · Hk(logA1, 2 logA2, 2 logA3), k = 2, 3, also fall in the
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subspace L≥2(log Gsupp(ℓ)) by Theorem 3.8. Therefore, we have logA′
1 ∈ L≥2(log Gsupp(ℓ)). Similarly,

logA′
2 and logA′

3 are also in L≥2(log Gsupp(ℓ)).
Using the exact expression (2) for the terms H2 and H3, we obtain that the expressions for

logA′
1, logA

′
2 and logA′

3 are respectively



0 0 0 4
3t

3 + 23
3 t

0 0 0 2t2 − t
0 0 0 0
0 0 0 0


 ,




0 0 0 −8
3t

3 + 2t2 + 23
3 t

0 0 0 2t2 − t
0 0 0 0
0 0 0 0


 , and




0 0 0 4
3 t

3 + 23
3 t

0 0 0 −2t2 − t
0 0 0 0
0 0 0 0


 .

We then choose t = 10. This choice is made so that t is large enough for logA′
1, logA

′
2, logA

′
3 to

exhibit their “asymptotic” behaviour. When t = 10, we have

logA′
1 =




0 0 0 1410
0 0 0 190
0 0 0 0
0 0 0 0


 , logA′

2 =




0 0 0 −2390
0 0 0 190
0 0 0 0
0 0 0 0


 , logA′

3 =




0 0 0 1410
0 0 0 −210
0 0 0 0
0 0 0 0


 . (8)

Then indeed we have 〈logA′
1, logA

′
2, logA

′
3〉Q≥0

= L≥2(log Gsupp(ℓ)), which is proved by linear pro-

gramming. Furthermore, the Parikh images are PIG(A′
1) = PIG(A′

2) = PIG(A′
3) = (10, 20, 20).

Step 2. Consider the new alphabet G′ := {A′
1, A

′
2, A

′
3}. We now find a non-empty word

A′′ ∈ (G′)+, such that logA′′ ∈ L≥2(L≥2(log Gsupp(ℓ))) = {0}. Directly computing from (8) yields

117 · logA′
1 + 282 · logA′

2 + 361 · logA′
3 = 0. (9)

Let A′′ := (A′
1)

117 · (A′
2)

282 · (A′
3)

361 . By the BCH formula (1), we have logA′′ = 117 · logA′
1 +282 ·

logA′
2 + 361 · logA′

3 = 0. This is because all the terms Hk, k ≥ 2 in the BCH formula are in

L≥2(L≥2(log Gsupp(ℓ))) ⊆ L≥4(log Gsupp(ℓ)) = {0}. (10)

Furthermore, the Parikh image of A′′ is PIG(A′′) = 117 ·PIG(A′
1) + 282 ·PIG(A′

2) + 361 ·PIG(A′
3) =

7600 · (1, 2, 2). We have thus found the word w = A′′ satisfying log π(w) = 0, with Parikh image
7600 · (1, 2, 2). This concludes our example.

The following subsections aim to formalize the idea exhibited in this example and provide a
rigorous proof of Theorem 4.2(ii). Here is an overview of the main difficulties in formalizing a proof.

(i) In Equation (6) we took a specific choice of A′
1, A

′
2, A

′
3. In the general case, we will use

a similar idea of taking A′
i to be words of the form At

i1
At

i2
· · ·At

im
. However, the permutations

(i1, i2, . . . , im) need to be chosen carefully. We need to show that there exist enough permutations
so that the constructed elements logA′

1, logA
′
2, . . . , generate the linear space L≥2(log Gsupp(ℓ)). We

achieve this by proving a deep combinatorial property of the terms Hk (Proposition 5.1).
(ii) Furthermore, logA′

1, logA
′
2, . . . , need to generate L≥2(log Gsupp(ℓ)) as a cone. The coeffi-

cients (117, 282, 361) obtained in Equation (9) happen to be all positive, but this is a priori not
always the case. We need to show that 0 can always be written as a positive combination of logA′

i.
This is proved by finding identities over the terms Hk using computer assistance (Proposition 5.2).

(iii) The exponent t in Equation (6) needs to be chosen carefully. In fact, we may even need to
take several different t. Such t are chosen using techniques from convex geometry (Proposition 5.3).

(iv) In the above example the nilpotency class of G is three. This is the reason why in Step 2,
Equation (10) holds, and the matrices A′

1, A
′
2, A

′
3 commute with each other. In the general case,

we deal with groups of nilpotency class up to ten. Then, Equation (10) no longer holds. Hence,
we need to repeat the above process for more steps. In general, when G has nilpotency class up to
2d − 1, we need to repeat the process for d steps (Subsection 5.4).
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Thus, our formal proof of Theorem 4.2(ii) relies on the three following technical propositions.
For k ∈ Z>0, denote by Sk the permutation group of the set {1, . . . , k}.

Proposition 5.1. For every k ≥ 2, there exists a function µk : Sk → Z, such that for any sequence
of elements C1, . . . , Cm,m ≥ k, in the Lie algebra u(n) we have

[. . . [[C1, C2], C3], . . . , Ck] =
∑

σ∈Sk

µk(σ)Hk(Cσ(1), . . . , Cσ(k), Ck+1, . . . , Cm). (11)

Proposition 5.2. Let k ≤ 10 and let H ⊂ UT(n,Q) be a finite set of matrices for some n ≥ 2.
Then there exist a non-negative integer r, positive rational numbers α1, . . . , αr, as well as, for
s = 1, . . . , r, words js = js,1js,2 · · · js,ms in the alphabet I = {1, 2, . . . , k + 1}, such that PII(js) ∈
{(1, . . . , 1), (2, . . . , 2)} and

∑

σ∈Sk+1

Hk(logBσ(1), . . . , logBσ(k+1)) +

r∑

s=1

αs

∑

σ∈Sk+1

Hk(logBσ(js,1), . . . , logBσ(js,ms )
)

∈ L≥k+1(logH) + L≥2(L≥2(logH)) (12)

for all B1, . . . , Bk+1 ∈ UT(n,Q) satisfying logBi ∈ L≥1(logH) and
∑k+1

i=1 logBi ∈ L≥2(logH).

Proposition 5.3. Let V be a finite dimensional Q-linear space. Let d be a positive integer, I be a
finite index set, and a1i, . . . ,adi, i ∈ I be vectors in V . For any t ∈ Z>0 and i ∈ I, define

Pi(t) := t · a1i + t2 · a2i + · · ·+ td · adi.

Suppose the following two conditions hold:
(i) The Q≥0-cone Cd := 〈adi | i ∈ I〉Q≥0

is a linear space.
(ii) For k = d − 1, d − 2, . . . , 1, the inductively defined Q≥0-cones Ck := 〈aki | i ∈ I〉Q≥0

+ Ck+1

are linear spaces.
Then the Q≥0-cone 〈Pi(t) | i ∈ I, t ∈ Z>0〉Q≥0

is equal to C1.

This concludes the overview. In the following subsections we will gradually prove these technical
propositions. The intuition of Proposition 5.1 is as follows. Theorem 3.8 showed that in the BCH
formula, the terms Hk(logB1, . . . , logBm) can be written as a linear combination of k-iterated Lie
brackets [. . . [[logBi1 , logBi2 ], logBi3 ], . . . , logBik ]. Here, Proposition 5.1 shows that a converse of
it is true: for any k ≥ 2, the k-iterated Lie bracket [. . . [[logB1, logB2], logB3], . . . , logBk] can be
written as a linear combination of expressions in Hk.

Proposition 5.2 shows that for k ≤ 10, one can find a linear combination with positive coeffi-
cients of the terms Hk that lies in L≥k+1 + L≥2(L≥2(·)). (Note that a priori Hk lies in L≥k(·).)
Proposition 5.2 is the only one among the three above propositions that is limited by the nilpotency
class. This constitutes the main obstacle to generalizing Theorem 4.2 to higher nilpotency classes.

Finally, Proposition 5.3 concerns only convex geometry and is responsible for finding a suitable
t from difficulty (iii).

5.1 Proof of Proposition 5.1

For a permutation σ ∈ Sk, define d(σ) to be the number of descents in σ, that is, the number of
i ∈ {1, . . . , k − 1} such that σ(i) > σ(i+ 1). In order to prove Proposition 5.1, we need an explicit
expression for the terms Hk. This expression is provided by Dynkin2:

2Dynkin originally only proved the bivariate case of Lemma 5.4. It was later been generalized to the multivariate
case without much difficulty.
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Lemma 5.4 (Dynkin formula [18], [31, Proposition 3.4 and Proposition 4.2]). We have

Hk(C1, . . . , Cm) =
∑

i1+···+im=k

1

i1! . . . im!
ϕk(C1, . . . , C1︸ ︷︷ ︸

i1

, C2, . . . , C2︸ ︷︷ ︸
i2

, . . . , Cm, . . . , Cm︸ ︷︷ ︸
im

), (13)

where the indices i1, . . . , im are non-negative integers, and

ϕk(X1, . . . ,Xk) =
∑

σ∈Sk

(−1)d(σ)

k2
(k−1
d(σ)

) [. . . [[Xσ(1),Xσ(2)],Xσ(3)], . . . ,Xσ(k)]. (14)

Define recursively the following maps µk : Sk → Z, k = 2, 3, . . .. For k = 2, let µ2(id) =
1, µ2((12)) = −1, where id is the constant permutation and (12) is the permutation that swaps 1 and
2. For k ≥ 3, denote by (j1j2 · · · jm) the cyclic permutation that sends ji to ji+1, i = 1, . . . ,m− 1,
and sends jm to j1. Suppose µk−1 already defined, we then define

µk(σ) :=





µk−1(σ) k = σ(k)

−µk−1(σ ◦ (12 · · · k)) k = σ(1)

0 k = σ(i), i = 2, . . . , k − 1.

(15)

In the first two cases, the permutation σ or σ ◦ (12 · · · k) fixes k, so they can be considered as
elements in Sk−1, hence µk−1(σ) is well defined. For example, µ3(σ) = 1 when σ = id or (13);
µ3(σ) = −1 when σ = (12) or (132); and µ3(σ) = 0 otherwise. We will show that, for this µk, the
Equation (11) in Proposition 5.1 is satisfied:

Proposition 5.1. For every k ≥ 2, there exists a function µk : Sk → Z, such that for any sequence
of elements C1, . . . , Cm,m ≥ k, in the Lie algebra u(n) we have

[. . . [[C1, C2], C3], . . . , Ck] =
∑

σ∈Sk

µk(σ)Hk(Cσ(1), . . . , Cσ(k), Ck+1, . . . , Cm). (11)

Proof. Take µk to be the function defined recursively in (15). For every j ≥ 2, there is a natural
embedding fj : Sj →֒ Sj+1, defined by fj(σ)(i) = σ(i), i = 1, . . . , j, fj(σ)(j + 1) = j + 1. It is easy
to verify that under this natural embedding, µj and µj+1 are identified, that is, µj = µj+1 ◦ fj.
Therefore, we can denote by µ the map ∪k≥2 Sk → Z as µ(σ) = µk(σ), where σ ∈ Sk. We prove
Equation (11) in three steps.
(1) First, we simplify the right hand side of Equation (11) by showing

∑

σ∈Sk

µ(σ)Hk(Cσ(1), . . . , Cσ(k), Ck+1, . . . , Cm) =
∑

σ∈Sk

µ(σ)ϕk(Cσ(1), . . . , Cσ(k)), (16)

where ϕk is defined in Lemma 5.4.
Thanks to Lemma 5.4, Hk(C1, . . . , Cm) can be written as

Hk(C1, . . . , Cm) =

∑

1≤j1<j2<···<jk≤m

ϕk(Cj1 , . . . , Cjk) +
k−1∑

l=2

∑

1≤j1<j2<···<jl≤m

Hkl(Cj1 , . . . , Cjl), (17)

where Hkl(Cj1 , . . . , Cjl) is some linear combination of elements in [{Cj1 , . . . , Cjl}]k. By abuse
of notation, for σ ∈ Sk and x > k, we define σ(x) = σ−1(x) = x. For any l = 2, . . . , k − 1, we
have
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∑

σ∈Sk

∑

1≤j1<j2<···<jl≤m

µ(σ)Hkl(Cσ(j1), . . . , Cσ(jl))

=
∑

t1,t2,...,tl∈{1,...,m}

pairwise distinct

Hkl(Ct1 , . . . , Ctl)
∑

σ∈Sk
σ−1(t1)<···<σ−1(tl)

µ(σ). (18)

We claim that, for any pairwise distinct t1, t2, . . . , tl ∈ {1, . . . ,m}, l < k, we have
∑

σ∈Sk
σ−1(t1)<···<σ−1(tl)

µ(σ) = 0. (19)

We show (19) by induction on k. When k = 2, by the definition of µ, (19) holds. Suppose
(19) holds for k − 1. Denote by c the cyclic permutation (12 · · · k), then by the recursive
definition of µ,

∑

σ∈Sk
σ−1(t1)<···<σ−1(tl)

µ(σ) =
∑

σ∈Sk−1

σ−1(t1)<···<σ−1(tl)

µ(σ)−
∑

σ∈Sk−1

c◦σ−1(t1)<···<c◦σ−1(tl)

µ(σ). (20)

Without loss of generality, suppose the sum on the left hand side is not empty. That is, there
exists at least one permutation σ ∈ Sk such that σ−1(t1) < · · · < σ−1(tl). Since σ−1 ∈ Sk
does not permute any tj with tj > k, the elements of {t1, . . . , tl} which are larger than k must
appear after the elements which are smaller or equal to k, and must appear in increasing order.
In other words, there exists some s ≥ 1, such that ti ≤ k for all i < s, and k < ts < · · · < tl.
(s could be l + 1, in which case ti ≤ k for all i = 1, . . . , l.) Since σ ∈ Sk does not change
the value of ts, · · · , tl, one can discard them without changing the sum. Hence, we suppose
without loss of generality t1, . . . , tl ∈ {1, . . . , k}.
(a) If ti = k for some i = 2, . . . , l − 1. Then no permutation σ ∈ Sk−1 can satisfy

σ−1(t1) < σ−1(ti) = k < σ−1(tl) or c ◦ σ−1(t1) < c ◦ σ−1(ti) = 1 < c ◦ σ−1(tl). Hence,
both sums on the right hand side of Equation (20) are empty. The claim (19) follows.

(b) If t1 = k. Then no permutation σ ∈ Sk−1 can satisfy σ−1(t1) < σ−1(ti) = k < σ−1(tl),
so the first sum on the right hand side of Equation (20) is empty. As for the second
sum, because c ◦σ−1(t1) = c(k) = 1, we have c ◦σ−1(t1) < · · · < c ◦σ−1(tl) if and only if
σ−1(t2) < · · · < σ−1(tl). Hence, using the induction hypothesis on t2, . . . , tl ∈ {1, . . . , k}
yields ∑

σ∈Sk−1

c◦σ−1(t1)<···<c◦σ−1(tl)

µ(σ) =
∑

σ∈Sk−1

σ−1(t2)<···<σ−1(tl)

µ(σ) = 0.

Therefore both sums on the right hand side of Equation (20) equal zero. The claim (19)
follows.

(c) If tl = k. Similar to the previous case, the second sum on the right hand side of
Equation (20) is empty. As for the first sum, because σ−1(tl) = k, we have σ−1(t1) <
· · · < σ−1(tl) if and only if σ−1(t1) < · · · < σ−1(tl−1). Hence, using the induction
hypothesis on t1, . . . , tl−1 ∈ {1, . . . , k} shows the sum is zero. The claim (19) follows.

(d) If ti 6= k for all i = 1, . . . , l. Then σ−1(t1) < · · · < σ−1(tl) if and only if c ◦ σ−1(t1) <
· · · < c ◦ σ−1(tl). Hence, the two sums on the right hand side of Equation (20) are the
same. The claim (19) follows.

Using the claim (19) on Equation (18) yields
∑

σ∈Sk

∑

1≤j1<j2<···<jl≤m

µ(σ)Hkl(Cσ(j1), . . . , Cσ(jl)) = 0, (21)
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and this combined with Equation (17) yields

∑

σ∈Sk

µ(σ)Hk(Cσ(1), . . . , Cσ(k), Ck+1, . . . , Cm)

=
∑

σ∈Sk

µ(σ)Hk(Cσ(1), . . . , Cσ(m)) (define σ(s) = s for σ ∈ Sk and s > k)

=
∑

σ∈Sk

µ(σ)
∑

1≤j1<j2<···<jk≤m

ϕk(Cσ(j1), . . . , Cσ(jk)) (by (17) and (21))

=
∑

t1,t2,...,tk∈{1,...,m}

pairwise distinct

ϕk(Ct1 , . . . , Ctk)
∑

σ∈Sk
σ−1(t1)<···<σ−1(tk)

µ(σ)

=
k∑

l=0

∑

t1,t2,...,tl∈{1,...,k}
pairwise distinct,

k<tl+1<···<tk≤m

ϕk(Ct1 , . . . , Ctk)
∑

σ∈Sk
σ−1(t1)<···<σ−1(tl)

µ(σ) (22)

Because Equation (19) holds for l < k, that is, the sum
∑

σ∈Sk
σ−1(t1)<···<σ−1(tl)

µ(σ) vanishes

whenever l < k, the above expression (22) is equal to

∑

t1,t2,...,tk∈{1,...,k}

pairwise distinct

ϕk(Ct1 , . . . , Ctk)
∑

σ∈Sk
σ−1(t1)<···<σ−1(tk)

µ(σ) =
∑

σ∈Sk

µ(σ)ϕk(Cσ(1), . . . , Cσ(k)).

We have hence shown Equation (16):

∑

σ∈Sk

µ(σ)Hk(Cσ(1), . . . , Cσ(k), Ck+1, . . . , Cm) =
∑

σ∈Sk

µ(σ)ϕk(Cσ(1), . . . , Cσ(k)),

(2) The second step is to show

∑

σ∈Sk

µ(σ)ϕk(Cσ(1), . . . , Cσ(k)) =
∑

T∈Sk

µ(T )

k
[. . . [[CT (1), CT (2)], CT (3)], . . . , CT (k)]. (23)

Using the exact expression for ϕk in Lemma 5.4, we have

∑

σ∈Sk

µ(σ)ϕk(Cσ(1), . . . , Cσ(k))

=
∑

σ∈Sk

∑

τ∈Sk

(−1)d(τ)µ(σ)

k2
(k−1
d(τ)

) [. . . [[Cσ◦τ(1), Cσ◦τ(2)], Cσ◦τ(3)], . . . , Cσ◦τ(k)]

=
∑

T∈Sk

[. . . [[CT (1), CT (2)], CT (3)], . . . , CT (k)]
∑

σ∈Sk

(−1)d(σ
−1◦T )µ(σ)

k2
( k−1
d(σ−1◦T )

) (24)

We will compute the value of
∑

σ∈Sk
(−1)d(σ

−1◦T )µ(σ)

k2( k−1
d(σ−1◦T ))

depending on the permutation T . We

show by induction on k that

∑

σ∈Sk

(−1)d(σ
−1◦T )µ(σ)

k2
( k−1
d(σ−1◦T )

) =
µ(T )

k
. (25)
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When k = 2, by direct computation,
∑

σ∈Sk

(−1)d(σ
−1◦T )µ(σ)

k2( k−1
d(σ−1◦T ))

is equal to 1
2 if T = id and to −1

2

if T = (12). This matches the values of µ(T )
k . If k ≥ 3, suppose (25) proven for k − 1. Again

denote by c the cyclic permutation (12 · · · k), by the recursive definition of µ we have

∑

σ∈Sk

(−1)d(σ
−1◦T )µ(σ)

k2
( k−1
d(σ−1◦T )

) =
∑

σ∈Sk−1

(−1)d(σ
−1◦T )µ(σ)

k2
( k−1
d(σ−1◦T )

) −
∑

σ∈Sk−1

(−1)d(c◦σ
−1◦T )µ(σ)

k2
( k−1
d(c◦σ−1◦T )

) . (26)

(a) If T (i) = k for some i = 2, . . . , k − 1. We claim that d(σ−1 ◦ T ) = d(c ◦ σ−1 ◦ T ) for
all σ ∈ Sk−1. In fact, for σ ∈ Sk−1, we have σ−1 ◦ T (i) = k and c ◦ σ−1 ◦ T (i) = 1.
Therefore σ−1 ◦T (i) > σ−1 ◦T (i+1), σ−1 ◦T (i) > σ−1 ◦T (i−1), whereas c◦σ−1 ◦T (i) <
c ◦ σ−1 ◦ T (i + 1), c ◦ σ−1 ◦ T (i) < c ◦ σ−1 ◦ T (i − 1). And for j 6= i − 1, i, we have
σ−1 ◦ T (j) > σ−1 ◦ T (j +1) if and only if c ◦ σ−1 ◦ T (j) > c ◦ σ−1 ◦ T (j +1). This shows
d(σ−1 ◦ T ) = d(c ◦ σ−1 ◦ T ). Hence, the two sums on the right hand side of (26) are

equal, and
∑

σ∈Sk

(−1)d(σ
−1◦T )µ(σ)

k2( k−1
d(σ−1◦T ))

= 0 = µ(T )
k .

(b) If T (1) = k. Similar to the above discussion, we can show that d(σ−1 ◦ T ) = d(c ◦ σ−1 ◦
T ) + 1. Hence the right hand side of (26) is equal to

−
∑

σ∈Sk−1

(
(−1)d(c◦σ

−1◦T )µ(σ)

k2
(

k−1
d(c◦σ−1◦T )+1

) +
(−1)d(c◦σ

−1◦T )µ(σ)

k2
(

k−1
d(c◦σ−1◦T )

)
)

= −
∑

σ∈Sk−1

(−1)d(c◦σ
−1◦T )µ(σ)

k(k − 1)
( k−2
d(c◦σ−1◦T )

)

=
−(k − 1)

k

∑

σ∈Sk−1

(−1)d(c◦σ
−1◦T )µ(σ)

(k − 1)2
(

k−2
d(c◦σ−1◦T )

)

We claim that d(c ◦ σ−1 ◦ T ) = d(σ−1 ◦ T ◦ c). This is because σ−1 ◦ T ◦ c(k − 1) <
σ−1 ◦T ◦c(k) = k, 1 = c◦σ−1 ◦T (1) < c◦σ−1 ◦T (2), and c◦σ−1 ◦T (i+1) > c◦σ−1 ◦T (i)
if and only if σ−1 ◦ T ◦ c(i) > σ−1 ◦ T ◦ c(i− 1), for i = 2, 3, . . . , k − 1. Hence,

−(k − 1)

k

∑

σ∈Sk−1

(−1)d(c◦σ
−1◦T )µ(σ)

(k − 1)2
( k−2
d(c◦σ−1◦T )

)

=
−(k − 1)

k

∑

σ′∈Sck−1

(−1)d(σ
−1◦T◦c)µ(σ)

(k − 1)2
(

k−2
d(σ−1◦T◦c)

)

=
−(k − 1)

k

µ(T ◦ c)

k − 1
(by induction hypothesis)

=
(k − 1)

k

µ(T )

k − 1
(by definition of µ)

=
µ(T )

k
.

(c) If T (k) = k. Similar to the above discussion, we can show that d(c ◦ σ−1 ◦ T ) =
d(σ−1 ◦ T ) + 1. And hence the right hand side of (26) is equal to

(k − 1)

k

∑

σ∈Sk−1

(−1)d(σ
−1◦T )µ(σ)

(k − 1)2
(

k−2
d(σ−1◦T )

) =
(k − 1)

k

µ(T )

k − 1
=

µ(T )

k
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by the induction hypothesis, where T can be considered as an element in Sk−1 since it
stabilizes k.

We have thus shown the claim (25). Putting this into Equation (24) shows Equation (23):

∑

σ∈Sk

µ(σ)ϕk(Cσ(1), . . . , Cσ(k)) =
∑

T∈Sk

µ(T )

k
[. . . [[CT (1), CT (2)], CT (3)], . . . , CT (k)].

(3) The third and last step is to show3

∑

T∈Sk

µ(T )[. . . [[CT (1), CT (2)], CT (3)], . . . , CT (k)] = k[. . . [[C1, C2], C3], . . . , Ck]. (27)

First, using induction on k, we will show that

∑

T∈Sk

µ(T )[. . . [[Ck+1, CT (1)], CT (2)], . . . , CT (k)] = −[. . . [[C1, C2], C3], . . . , Ck+1]. (28)

The case where k = 2 is immediate. Suppose Equation (28) hold for k − 1, then

∑

T∈Sk

µ(T )[. . . [[Ck+1, CT (1)], CT (2)], . . . , CT (k)]

=
∑

T∈Sk−1

µ(T )[[. . . [[Ck+1, CT (1)], CT (2)], . . . , CT (k−1)], Ck]

−
∑

T∈Sk−1

µ(T )[. . . [[Ck+1, Ck], CT (1)], . . . , CT (k−1)]. (29)

By the induction hypothesis, the first sum on the right hand side is equal to

−[[[. . . [[C1, C2], C3], . . . , Ck−1], Ck+1], Ck],

and the second sum on the right hand side is equal to

−[[. . . [[C1, C2], C3], . . . , Ck−1], [Ck+1, Ck]].

Using the Jacobi identity and the anticommutativity of Lie brackets, we have

− [[[. . . [[C1, C2], C3], . . . , Ck−1], Ck+1], Ck] + [[. . . [[C1, C2], C3], . . . , Ck−1], [Ck+1, Ck]]

= −[[[. . . [[C1, C2], C3], . . . , Ck−1], Ck], Ck+1].

Hence, Equation (29) yields

∑

T∈Sk

µ(T )[. . . [[Ck+1, CT (1)], CT (2)], . . . , CT (k)] = −[[. . . [[C1, C2], C3], . . . , Ck], Ck+1],

3A direct way of proving Equation (27) is to use the Dynkin-Specht-Wever theorem [18], which states that
if a non-commutative polynomial f ∈ Q〈C1, . . . , Ck〉 is Lie, then one can replace all monomials Ci1Ci2 · · ·Cik

by [. . . [Ci1 , Ci2 ], . . . , Cik ]/k without changing its value. Writing the right hand side of (27) as an ele-
ment in Q〈C1, . . . , Ck〉 gives k

∑
σ∈Sk

µ(σ)Cσ(1)Cσ(2) · · ·Cσ(k) (we can check this using the definition of µ),
which is equal to the left hand side by replacing the monomials Cσ(1)Cσ(2) · · ·Cσ(k) by the Lie brackets
[. . . [[Cσ(1), Cσ(2)], Cσ(3)], . . . , Cσ(k)]/k. Nevertheless, here we will give a self-contained proof without using the Dynkin-
Specht-Wever theorem.
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concluding the proof by induction for Equation (28).
Next, we will again use induction on k to prove Equation (27):

∑

T∈Sk

µ(T )[. . . [[CT (1), CT (2)], CT (3)], . . . , CT (k)] = k[. . . [[C1, C2], C3], . . . , Ck].

The case of k = 2 results from direct computation. Suppose (27) hold for k − 1, then
∑

T∈Sk

µ(T )[. . . [[CT (1), CT (2)], CT (3)], . . . , CT (k)]

=
∑

T∈Sk−1

µ(T )[[. . . [[CT (1), CT (2)], CT (3)], . . . , CT (k−1)], Ck]

−
∑

T∈Sk−1

µ(T )[. . . [[Ck, CT (1)], CT (2)], . . . , CT (k−1)]

= (k − 1)[. . . [[C1, C2], C3], . . . , Ck]

−
∑

T∈Sk−1

µ(T )[. . . [[Ck, CT (1)], CT (2)], . . . , CT (k−1)] (by induction hypothesis)

= k[. . . [[C1, C2], C3], . . . , Ck] (by Equation (28) for k − 1).

We have thus shown Equation (27).
Combining the Equations (16), (23) and (27) obtained in the three steps gives us

∑

σ∈Sk

µ(σ)Hk(Cσ(1), . . . , Cσ(k), Ck+1, . . . , Cm) = [. . . [[C1, C2], C3], . . . , Ck].

5.2 Proof of Proposition 5.2

In this subsection we prove Proposition 5.2. Again, the key is understanding the structure of the
expressions for Hk. For even k, the following lemma shows that the expression Hk(C1, . . . , Cm) is
“antisymmetric”, and immediately yields Proposition 5.2.

Lemma 5.5. When k is even, we have

Hk(C1, . . . , Cm) = −Hk(Cm, . . . , C1).

Proof. Define a new variable t. Replacing Bi by exp(tCi) in the BCH formula (1), we have

log(exp(tC1) · · · exp(tCm)) = t
m∑

i=1

Ci + tk
d−1∑

k=2

Hk(C1, . . . , Cm). (30)

Now, replace Bi by exp(−tCm+1−i), i = 1, . . . ,m, in the BCH formula (1), we obtain

log(exp(−tCm) · · · exp(−tC1)) = −t

m∑

i=1

Ci + (−t)k
d−1∑

k=2

Hk(Cm, . . . , C1). (31)

Since log(exp(tC1) · · · exp(tCm)) = − log(exp(−tCm) · · · exp(−tC1)), comparing the coefficients of
tk in (30) and (31) yields

Hk(C1, . . . , Cm) = −Hk(Cm, . . . , C1)

for even k.
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Next, we need the following lemmas regarding the odd terms H3, H5, H7 and H9. These
correspond to Proposition 5.2 for k = 3, 5, 7, 9.

Lemma 5.6. Let H ⊂ UT(n,Q) be a finite set of matrices. Given matrices B1, . . . , Bm in UT(n,Q)
such that logBi ∈ L≥1(logH), i = 1, . . . ,m, and

∑m
i=1 logBi ∈ L≥2(logH), then

∑

σ∈Sm

H3(logBσ(1), . . . , logBσ(m)) ∈ L≥4(logH).

Proof. Denote Ci := logBi, i = 1, . . . ,m, we will show the following identity

∑

σ∈Sm

H3(Cσ(1), . . . , Cσ(m)) =
m!

12

m∑

i=1


Ci,


Ci,

m∑

j=1

Cj




 . (32)

Write
H3(Cσ(1), . . . , Cσ(m)) =

∑

i<j<k

H33(Cσ(i), Cσ(j), Cσ(k)) +
∑

i<j

H32(Cσ(i), Cσ(j)),

where

H33(X,Y,Z) =
1

3
[X, [Y,Z]] +

1

6
[[X,Z], Y ],

H32(X,Y ) =
1

12
([X, [X,Y ]] + [[X,Y ], Y ]).

Using the Jacobi identity, we have

H33(Ci, Cj , Ck) +H33(Cj, Ck, Ci) +H33(Ck, Ci, Cj)

=
1

3
([Ci, [Cj , Ck]] + [Cj , [Ck, Ci] + [Ck, [Ci, Cj ]]])

+
1

6
([[Ci, Cj ], Ck] + [[Cj , Ck], Ci] + [[Ck, Ci], Cj ])

= 0

for any i, j, k. Similarly,

H33(Ck, Cj , Ci) +H33(Cj , Ci, Ck) +H33(Ci, Ck, Cj) = 0.

Hence,

∑

σ∈Sm

∑

i<j<k

H33(Cσ(i), Cσ(j), Cσ(k))

=
m!

6

∑

i<j<k

(H33(Ci, Cj , Ck) +H33(Cj , Ck, Ci) +H33(Ck, Ci, Cj))

+
m!

6

∑

i<j<k

(H33(Ck, Cj , Ci) +H33(Cj, Ci, Ck) +H33(Ci, Ck, Cj))

= 0.

Whereas
∑

σ∈Sm

∑

i<j

H3,2(Cσ(i), Cσ(j))
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=
m!

2

∑

i 6=j

H3,2(Ci, Cj)

=
m!

2

∑

i 6=j

(
1

12
[Ci, [Ci, Cj ]] +

1

12
[[Ci, Cj ], Cj ]

)

=
m!

2

m∑

i=1

m∑

j=1

(
1

12
[Ci, [Ci, Cj ]] +

1

12
[[Ci, Cj ], Cj ]

)

=
m!

2

m∑

i=1

1

12


Ci,


Ci,

m∑

j=1

Cj




+

m!

2

m∑

j=1

1

12

[[
m∑

i=1

Ci, Cj

]
, Cj

]

=
m!

12

m∑

i=1


Ci,


Ci,

m∑

j=1

Cj




 .

Adding up the two above expressions yields Equation (32). Since logBi ∈ L≥1(logH) for all i and∑m
i=1 logBi ∈ L≥2(logH), Equation (32) yields

∑

σ∈Sm

H3(logBσ(1), . . . , logBσ(m))

=
m!

12

m∑

i=1


logBi,


logBi,

m∑

j=1

logBj






∈
m!

12

m∑

i=1

[logBi, [logBi,L≥2(logH)]]

∈ L≥4(logH)

The following Lemmas 5.7, 5.9 and 5.10 regarding H5,H7,H9 are proven using computer assis-
tance from the software SageMath [40]. In what follows, we give a sketch of their proof. Details of
the full proof along with the algorithm used for computer assistance are given in Section B. Links
to the code can be found in the respective proofs.

Lemma 5.7. Let H ⊂ UT(n,Q) be a finite set of matrices. There exists a permutation (j1, j2, . . . , j12)
of the tuple (1, 1, 2, 2, . . . , 6, 6), such that for any given set of matrices B1, . . . , B6 in UT(n,Q) with
logBi ∈ L≥1(logH) and

∑6
i=1 logBi ∈ L≥2(logH), we have

∑

σ∈S6

H5(logBσ(1), . . . , logBσ(6)) +
∑

σ∈S6

H5(logBσ(j1), . . . , logBσ(j12))

∈ L≥6(logH) + L≥2(L≥2(logH)). (33)

Namely, we can take (j1, j2, . . . , j12) = (1, 2, 3, 4, 4, 5, 5, 6, 6, 1, 2, 3).

Sketch of proof of Lemma 5.7. For x, y ∈ u(n), denote x ∼ y if

x− y ∈ L≥6(logH) + L≥2(L≥2(logH)).
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The claim (33) can be written as
∑

σ∈S6

H5(logBσ(1), . . . , logBσ(6)) +
∑

σ∈S6

H5(logBσ(j1), . . . , logBσ(j12)) ∼ 0

By the Dynkin formula (Lemma 5.4), the expressions
∑

σ∈S6
H5(logBσ(1), . . . , logBσ(6)) and∑

σ∈S6
H5(logBσ(j1), . . . , logBσ(j12)) can be expressed as a sum in the form of

∑

j=(j1,...,j5)∈{1,...,6}5

αj

∑

σ∈S6

ϕ5(logBσ(j1), . . . , logBσ(j5)), (34)

where αj are rational numbers.
Since

∑6
i=1 logBi ∈ L≥2(logH), for any tuple j = (j1, . . . , j5) ∈ {1, . . . , 6}5, the expression∑

σ∈S6
ϕ5(logBσ(j1), . . . , logBσ(j5)) is equivalent (under ∼) to a rational multiple of∑

i 6=j[[[[logBi, logBj ], logBj], logBi], logBi]. (See Appendix B for detailed justification.) In par-
ticular, using computer assistance, we can compute these rational multiples and show

∑

σ∈S6

H5(logBσ(1), . . . , logBσ(6)) ∼
∑

i 6=j

[[[[logBi, logBj], logBj ], logBi], logBi],

∑

σ∈S6

H5

(
logBσ(j1), . . . , logBσ(j12)

)
∼ −

∑

i 6=j

[[[[logBi, logBj], logBj ], logBi], logBi].

This yields
∑

σ∈S6

H5(logBσ(1), . . . , logBσ(6)) +
∑

σ∈S6

H5(logBσ(j1), . . . , logBσ(j12)) ∼ 0.

The code for computer assistance can be found at https://doi.org/10.6084/m9.figshare.20124146.v1.

Remark 5.8. The added expression of L≥2(L≥2(logH)) on the right hand side of Equation (33)
is crucial for its correctness. In fact, we can consider Equation (33) in the quotient Lie algebra
L := L≥1(logH)/L≥2(L≥2(logH)). The Lie algebra L is metabelian, meaning [[L,L], [L,L]] = 0.
(Free) metabelian Lie algebras have significantly fewer dimensions compared to (free) Lie algebras
having the same number of generators. Moreover, free metabelian Lie algebras admit a relatively
simple basis (sometimes called the Gröbner-Shirshov basis) [10], making it computationally viable
to find identities such as Equation (33). In our computer assisted proofs (see Appendix B), we are
using a heavily modified version of this basis to compute Equation (33) as well as Equations (35)
and (36) in the following lemmas.

Lemma 5.9. Let H ⊂ UT(n,Q) be a finite set of matrices. There exist positive rational numbers
α1, α2, as well as, for s = 1, 2, permutations (js,1, js,2, . . . , js,16) of the tuple (1, 1, 2, 2, . . . , 8, 8),
such that for any given set of matrices B1, . . . , B8 in UT(n,Q) with logBi ∈ L≥1(logH) and∑8

i=1 logBi ∈ L≥2(logH), we have

∑

σ∈S8

H7(logBσ(1), . . . , logBσ(8)) +

2∑

s=1

αs

∑

σ∈S8

H7(logBσ(js,1), . . . , logBσ(js,16))

∈ L≥8(logH) + L≥2(L≥2(logH)). (35)

Namely, we can take α1 =
1
15 , α2 =

8
15 , and

(j1,1, j1,2, . . . , j1,16) = (1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 8, 8, 1, 2, 3, 4),

(j2,1, j2,2, . . . , j2,16) = (1, 2, 3, 4, 5, 4, 6, 7, 1, 2, 8, 3, 5, 6, 7, 8).
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Sketch of proof of Lemma 5.9. Similar to Lemma 5.7, define the equivalence relation

x ∼ y ⇐⇒ x− y ∈ L≥8(logH) + L≥2(L≥2(logH)).

By the Dynkin formula (Lemma 5.4), both the expressions
∑

σ∈S8
H7(logBσ(1), . . . , logBσ(8)) and∑

σ∈S8
H7(logBσ(j1), . . . , logBσ(j16)) can be expressed as a sum in the form of

∑

j=(j1,...,j7)∈{1,...,8}7

αj

∑

σ∈S8

ϕ7(logBσ(j1), . . . , logBσ(j7)),

where αj are rational numbers.
Denote Ci := logBi, i = 1, . . . ,m. Since

∑8
i=1 Ci ∈ L≥2(logH), for any tuple j = (j1, . . . , j7) ∈

{1, . . . , 8}7, the expression
∑

σ∈S8
ϕ7(Cσ(j1), . . . , Cσ(j7)) is equivalent to a linear combination (with

rational coefficients) of
∑

i 6=j

[[[[[[Ci, Cj ], Cj ], Ci], Ci], Ci], Ci],

∑

i 6=j

[[[[[[Ci, Cj ], Cj ], Cj ], Ci], Ci], Ci],

and ∑

i,j,k

distinct

[[[[[[Ci, Cj ], Cj ], Ck], Ck], Ci], Ci].

(See Section B for detailed justification.) In fact, using computer assistance, we show that

∑

σ∈S8

H7(logBσ(1), . . . , logBσ(8)) ∼
34

15
·
∑

i 6=j

[[[[[[Ci, Cj ], Cj ], Ci], Ci], Ci], Ci]

−
34

45
·
∑

i 6=j

[[[[[[Ci, Cj ], Cj ], Cj ], Ci], Ci], Ci] +
68

15
·
∑

i,j,k

distinct

[[[[[[Ci, Cj ], Cj ], Ck], Ck], Ci], Ci],

∑

σ∈S8

H7

(
logBσ(j1,1), . . . , logBσ(j1,16)

)
∼

34

15
·
∑

i 6=j

[[[[[[Ci, Cj ], Cj ], Ci], Ci], Ci], Ci]

+
238

45
·
∑

i 6=j

[[[[[[Ci, Cj ], Cj ], Cj ], Ci], Ci], Ci]−
68

5
·
∑

i,j,k

distinct

[[[[[[Ci, Cj ], Cj ], Ck], Ck], Ci], Ci],

and

∑

σ∈S8

H7

(
logBσ(j2,1), . . . , logBσ(j2,16)

)
∼ −

68

15
·
∑

i 6=j

[[[[[[Ci, Cj ], Cj ], Ci], Ci], Ci], Ci]

+
34

45
·
∑

i 6=j

[[[[[[Ci, Cj ], Cj ], Cj ], Ci], Ci], Ci]−
34

5
·
∑

i,j,k

distinct

[[[[[[Ci, Cj ], Cj ], Ck], Ck], Ci], Ci].

This yields

∑

σ∈S8

H7(logBσ(1), . . . , logBσ(8)) +

2∑

s=1

αs

∑

σ∈S8

H7(logBσ(js,1), . . . , logBσ(js,16)) ∼ 0,

where α1 =
1
15 , α2 =

8
15 . The code can be found at https://doi.org/10.6084/m9.figshare.20124113.v1.
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Lemma 5.10. Let H ⊂ UT(n,Q) be a finite set of matrices. There exist positive rational numbers
α1, . . . , α6, as well as, for s = 1, . . . , 6, permutations (js,1, js,2, . . . , js,20) of the tuple (1, 1, 2, 2, . . . , 10),
such that for any given set of matrices B1, . . . , B10 in UT(n,Q) with logBi ∈ L≥1(logH) and∑10

i=1 logBi ∈ L≥2(logH), we have

∑

σ∈S10

H9(logBσ(1), . . . , logBσ(10)) +

6∑

s=1

αs

∑

σ∈S10

H9(logBσ(js,1), . . . , logBσ(js,20))

∈ L≥10(logH) + L≥2(L≥2(logH)). (36)

Namely, we can take α1 = 44566633
13702661 , α2 = 557040

13702661 , α3 = 205175
3915046 , α4 = 1307207

13702661 , α5 = 86275275
27405322 ,

α6 =
4105194
1957523 , and

(j1,1, j1,2, . . . , j1,20) = (5, 4, 7, 10, 2, 8, 3, 8, 1, 9, 7, 6, 5, 6, 2, 3, 9, 10, 1, 4),

(j2,1, j2,2, . . . , j2,20) = (8, 3, 5, 7, 10, 6, 8, 2, 1, 10, 2, 4, 9, 1, 5, 9, 3, 6, 7, 4),

(j3,1, j3,2, . . . , j3,20) = (7, 10, 2, 6, 4, 9, 6, 4, 1, 5, 3, 5, 1, 9, 3, 7, 10, 2, 8, 8),

(j4,1, j4,2, . . . , j4,20) = (10, 2, 2, 6, 7, 1, 9, 3, 9, 4, 8, 7, 8, 5, 5, 1, 4, 10, 6, 3),

(j5,1, j5,2, . . . , j5,20) = (3, 5, 10, 1, 4, 8, 6, 9, 3, 2, 7, 6, 1, 10, 9, 7, 2, 4, 5, 8),

(j6,1, j6,2, . . . , j6,20) = (4, 7, 2, 10, 2, 1, 3, 5, 8, 1, 6, 9, 10, 7, 6, 8, 3, 5, 9, 4).

Sketch of proof of Lemma 5.10. Similar to Lemma 5.7, and Lemma 5.9, denote Ci = logBi for i =
1, . . . ,m. Since

∑10
i=1 Ci ∈ L≥2(logH), for any tuple j = (j1, . . . , j9) ∈ {1, . . . , 10}9, the expression∑

σ∈S10
ϕ9(Cσ(j1), . . . , Cσ(j9)) is equivalent to a linear combination (with rational coefficient) of

∑

i 6=j

[[[[[[[[Ci, Cj ], Cj ], Ci], Ci], Ci], Ci], Ci], Ci],

∑

i 6=j

[[[[[[[[Ci, Cj ], Cj ], Cj ], Ci], Ci], Ci], Ci], Ci],

∑

i 6=j

[[[[[[[[Ci, Cj ], Cj ], Cj ], Cj ], Ci], Ci], Ci], Ci],

∑

i,j,k

distinct

[[[[[[[[Ci, Cj ], Cj ], Ck], Ck], Ci], Ci], Ci], Ci],

∑

i,j,k

distinct

[[[[[[[[Ci, Cj ], Cj ], Cj ], Ck], Ck], Ci], Ci], Ci],

and
∑

i,j,k

distinct

[[[[[[[[Ci, Cj ], Cj ], Ck], Ck], Ck], Ci], Ci], Ci].

Similar to the previous lemmas, the rest of the proof can be done by computer assistance. The
code can be found at https://doi.org/10.6084/m9.figshare.20122979.v1.

Combining Lemma 5.5-5.10, we obtain Proposition 5.2.

Proposition 5.2. Let k ≤ 10 and let H ⊂ UT(n,Q) be a finite set of matrices for some n ≥ 2.
Then there exist a non-negative integer r, positive rational numbers α1, . . . , αr, as well as, for
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s = 1, . . . , r, words js = js,1js,2 · · · js,ms in the alphabet I = {1, 2, . . . , k + 1}, such that PII(js) ∈
{(1, . . . , 1), (2, . . . , 2)} and

∑

σ∈Sk+1

Hk(logBσ(1), . . . , logBσ(k+1)) +

r∑

s=1

αs

∑

σ∈Sk+1

Hk(logBσ(js,1), . . . , logBσ(js,ms )
)

∈ L≥k+1(logH) + L≥2(L≥2(logH)) (12)

for all B1, . . . , Bk+1 ∈ UT(n,Q) satisfying logBi ∈ L≥1(logH) and
∑k+1

i=1 logBi ∈ L≥2(logH).

Proof. For even k, Equation (12) is satisfied by Lemma 5.5 by taking r = 0 and pairing each
permutation σ with its reversal :

∑

σ∈Sk+1

Hk(logBσ(1), . . . , logBσ(k+1))

=
1

2


 ∑

σ∈Sk+1

Hk(logBσ(1), . . . , logBσ(k+1)) +
∑

σ∈Sk+1

Hk(logBrev(σ)(1), . . . , logBrev(σ)(k+1))




=
1

2

∑

σ∈Sk+1

(
Hk(logBσ(1), . . . , logBσ(k+1)) +Hk(logBrev(σ)(1), . . . , logBrev(σ)(k+1))

)

= 0.

Here rev(σ) ∈ Sk+1 is the reversal of σ, meaning rev(σ)(i) = σ(k + 2 − i), i = 1, . . . , k + 1. For
k = 3, 5, 7, 9, Equation (12) is satisfied by Lemma 5.6, 5.7, 5.9 and 5.10 respectively.

5.3 Proof of Proposition 5.3

In this subsection, we give the proof of Proposition 5.3.

Proposition 5.3. Let V be a finite dimensional Q-linear space. Let d be a positive integer, I be a
finite index set, and a1i, . . . ,adi, i ∈ I be vectors in V . For any t ∈ Z>0 and i ∈ I, define

Pi(t) := t · a1i + t2 · a2i + · · ·+ td · adi.

Suppose the following two conditions hold:
(i) The Q≥0-cone Cd := 〈adi | i ∈ I〉Q≥0

is a linear space.
(ii) For k = d − 1, d − 2, . . . , 1, the inductively defined Q≥0-cones Ck := 〈aki | i ∈ I〉Q≥0

+ Ck+1

are linear spaces.
Then the Q≥0-cone 〈Pi(t) | i ∈ I, t ∈ Z>0〉Q≥0

is equal to C1.

Proof. For convenience, define Cd+1 := {0}. We will prove that, for all k = 2, . . . , d + 1, the cone
〈Pi(t) | i ∈ I, t ∈ Z>0〉Q≥0

+ Ck is equal to C1. Notice that the claim in the proposition is the case
where k = d+ 1. We use induction on k.

For k = 2, since aki ∈ C2 for k ≥ 2, we have Pi(t) + C2 = ta1i + C2, so

〈Pi(t) | i ∈ I, t ∈ Z>0〉Q≥0
+ C2 = 〈ta1i | i ∈ I, t ∈ Z>0〉Q≥0

+ C2
(ii)
= C1.

For the induction step, suppose now that the cone 〈Pi(t) | i ∈ I, t ∈ Z>0〉Q≥0
+ Ck is equal to

C1, we want to prove that 〈Pi(t) | i ∈ I, t ∈ Z>0〉Q≥0
+ Ck+1 is equal to C1.
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By the induction hypothesis, there exist indices i1, . . . , im ∈ I as well as positive integers
t1, . . . , tm ∈ Z>0, such that

〈Pij (tj) | j = 1, . . . ,m〉Q≥0
+ Ck = C1.

Condition (ii) of the proposition shows that there exist indices i′1, . . . , i
′
m′ ∈ I such that

〈aki′j
| j = 1, . . . ,m′〉Q≥0

+ Ck+1 = Ck.

Hence
〈Pij (tj) | j = 1, . . . ,m〉Q≥0

+ 〈aki′j
| j = 1, . . . ,m′〉Q≥0

+ Ck+1 = C1. (37)

We show that there exists t ∈ Z>0 such that

〈Pij (tj) | j = 1, . . . ,m〉Q≥0
+ 〈Pi′j

(t) | j = 1, . . . ,m′〉Q≥0
+ Ck+1 = C1.

Suppose the contrary, that for every t ∈ Z>0,

〈Pij (tj) | j = 1, . . . ,m〉Q≥0
+ 〈Pi′j

(t) | j = 1, . . . ,m′〉Q≥0
+ Ck+1 ( C1.

For any Q≥0-cone C, define the normal cone of C as the set of vectors v ∈ V such that v⊤c ≤ 0
for all c ∈ C. For every t, take a normalized vector vt ∈ C1 (meaning the norm of vt is 1) in the
normal cone of 〈Pij (tj) | j = 1, . . . ,m〉Q≥0

+ 〈Pi′j
(t) | j = 1, . . . ,m′〉Q≥0

+ Ck+1. That is,

v⊤
t Pij (tj) ≤ 0 for all j, v⊤

t Pi′j
(t) ≤ 0 for all j, vt ⊥ Ck+1. (38)

Such a vector must exist because 〈Pij (tj) | j = 1, . . . ,m〉Q≥0
+ 〈Pi′j

(t) | j = 1, . . . ,m′〉Q≥0
+ Ck+1

is a strict sub-cone of the linear space C1. The R-linear space VR = V ⊗Q R is finite dimensional
and hence compact. Embed V into VR canonically, then the sequence {vt}t∈Z>0 has a limit point
in VR. Denote by vlim this limit point. As all the vectors vt are in C1, vlim must be in C1 ⊗Q R.
Since the inner product of V canonically extends to the inner product of VR, taking the limit of
(38), we have

v⊤
lim · Pij (tj) ≤ 0 for all j, vlim ⊥ Ck+1, (39)

and

v⊤
lim · aki′j

= v⊤
lim · lim

t→∞

(
Pi′j

(t)

tk
− tak+1,i′j

− · · · − td−kad,i′j

)

= v⊤
lim · lim

t→∞

Pi′j
(t)

tk
≤ 0, j = 1, . . . ,m′. (40)

The second equality is due to ak+1,i′j
, . . . ,ad,i′j

∈ Ck+1 ⊥ vlim. Hence, (39) and (40) show that

v⊤
lim · v ≤ 0 for all v in the R≥0-cone

〈Pij (tj) | j = 1, . . . ,m〉Q≥0
+ 〈aki′j

| j = 1, . . . ,m′〉Q≥0
+ Ck+1

Eq. (37)
= C1.

Since C1 is a linear space, vlim is non-zero (it has norm one) and is in C1 ⊗Q R, this yields a
contradiction. We have thus shown that there exists t ∈ Z>0 such that

〈Pij (tj) | j = 1, . . . ,m〉Q≥0
+ 〈Pi′j

(t) | j = 1, . . . ,m′〉Q≥0
+ Ck+1 = C1.

Since Pi(t) ∈ C1, i ∈ I, t ∈ Z>0, this means

〈Pi(t) | i ∈ I, t ∈ Z>0〉Q≥0
+ Ck+1 = C1,

concluding the induction.
Finally, take k = d+ 1. This yields 〈Pi(t) | i ∈ I, t ∈ Z>0〉Q≥0

= C1.
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5.4 Full proof of Theorem 4.2

In this subsection, with Propositions 5.1 - 5.3 at our disposal, we will show the proof of Theorem 4.2.
First, we need the following lemma.

Lemma 5.11. Let H be a finite subset of the Lie algebra u(n). Let W,V be linear subspaces of
L≥1(H) such that W + L≥2(V ) = V , then L≥2(W ) = L≥2(V ).

Proof. Since W +L≥2(V ) = V , we have W ⊆ V , and thus L≥2(W ) ⊆ L≥2(V ). Therefore, it suffices
to prove the opposite inclusion L≥2(W ) ⊇ L≥2(V ).

Note that since W,V are linear spaces, the sets [V ]k, [W ]k are also linear spaces for all k =
1, . . . , n. We use induction on k to show that

[V ]k ⊆ [W ]k + L≥k+1(V ). (41)

For k = 1 this immediately results from the equation W + L≥2(V ) = V . Suppose Equation (41)
hold for k − 1. Then, take any elements x ∈ V, y ∈ [V ]k−1, by the induction hypothesis and by
W + L≥2(V ) = V , there exist x′ ∈ W,y′ ∈ [W ]k−1, such that x − x′ ∈ L≥2(V ), y − y′ ∈ L≥k(V ).
Then,

[y, x] = [y′, x′] + [y − y′, x′] + [y, x− x′]

∈ [[W ]k−1,W ] + [L≥k(V ),W ] + [[V ]k−1,L≥2(V )]

⊆ [W ]k + [L≥k(V ), V ] + [L≥k−1(V ),L≥2(V )]

⊆ [W ]k + L≥k+1(V ).

Taking the linear span for all x ∈ V, y ∈ [V ]k−1 shows [V ]k ⊆ [W ]k + L≥k+1(V ), concluding the
induction.

Now, for any l = 2, . . . , d, take the sum of Equation (41) for k = l, . . . , d, we have

L≥l(V ) =
∑

k≥l

[V ]k ⊆
∑

k≥l

[W ]k +
∑

k≥l

L≥k+1(V ) = L≥l(W ) + L≥l+1(V ).

Therefore,

L≥2(V )

⊆ L≥2(W ) + L≥3(V )

⊆ L≥2(W ) + L≥3(W ) + L≥4(V )

...

⊆ L≥2(W ) + L≥3(W ) + · · ·+ L≥n(W )

= L≥2(W ).

This shows the inclusion L≥2(W ) ⊇ L≥2(V ).

Let G = {A1, . . . , AK} be a finite alphabet of elements in UT(n,Q). For any vector ℓ =
(ℓ1, . . . , ℓK) ∈ ZK

≥0, define inductively the following Q-cones Rk(ℓ) for k = 11, 10, . . . , 2:

R11(ℓ) := {0}, (42)

Rk(ℓ) := Rk+1(ℓ) +

〈
Hk(logB1, . . . , logBm)

∣∣∣∣ Bi ∈ G∗,

m∑

i=1

PIG(Bi) ∈ {ℓ, 2ℓ}

〉

Q≥0

. (43)
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That is, Rk(ℓ) is the Q≥0-cone generated by the elements Hj(logB1, . . . , logBm), j ≥ k, where
B1, . . . , Bm are words in G∗, and the Parikh images of Bi sum up to ℓ or 2ℓ. Recall the definition
of

log Gsupp(ℓ) := {logAi | i ∈ supp(ℓ)}

as the set of logarithm of matrices in G whose index appears in supp(ℓ). Combining Proposition 5.1
and 5.2, we can show the following proposition that characterizes the cones Rk(log Gsupp(ℓ)) up to
the quotient by L≥2(L≥2(log Gsupp(ℓ))).

Proposition 5.12. Let G = {A1, . . . , AK} be a finite set of matrices in UT(n,Q) that satisfies
[log G]11 = {0}. Let ℓ = (ℓ1, . . . , ℓK) ∈ ZK

≥0 be a non-zero vector that satisfies
∑K

i=1 ℓi logAi ∈
L≥2(log Gsupp(ℓ)) as well as ℓi ≥ 10 for all i ∈ supp(ℓ). Consider the quotient linear space
u(n)/L≥2(L≥2(log Gsupp(ℓ))).

For any set C ⊆ u(n), denote by C the subset of u(n)/L≥2(L≥2(log Gsupp(ℓ))) consisting of the

equivalence classes c + L≥2(L≥2(log Gsupp(ℓ))), c ∈ C. Then for all k ≤ 11, the cone Rk(ℓ) is equal

to the linear space L≥k(log Gsupp(ℓ)).

Proof. We show that the claim is true for k = 11, 10, . . . , 2, using induction with reverse order on
k. For k = 11, we have R11(ℓ) = L≥11(log Gsupp(ℓ)) = {0} because [log G]11 = {0}. Now for some

10 ≥ k ≥ 2, suppose Rk+1(ℓ) = L≥k+1(log Gsupp(ℓ)) by induction hypothesis. We will show that

Rk(ℓ) = L≥k(log Gsupp(ℓ)).
First, we show that for any i1, i2, . . . , ik ∈ supp(ℓ), we have

[. . . [[logAi1 , logAi2 ], logAi3 ], . . . , logAik ] ∈ Rk(ℓ) + L≥2(L≥2(log Gsupp(ℓ))).

Take a tuple of words (B′
1, . . . , B

′
k+1) with B′

1 = Ai1 , B
′
2 = Ai2 , . . . , B

′
k = Aik , B

′
k+1 ∈ G∗, such that∑k+1

i=1 PIG(B′
i) = ℓ. Such a tuple can always be found because ℓ satisfies ℓi ≥ 10 ≥ k, i ∈ supp(ℓ).

For this tuple, the BCH formula gives us

k+1∑

i=1

logB′
i ∈

K∑

i=1

ℓi logAi + L≥2(log Gsupp(ℓ)) ⊆ L≥2(log Gsupp(ℓ)).

Hence, for any σ ∈ Sk, Proposition 5.2 shows that

−Hk

(
logB′

σ(1), logB
′
σ(2), . . . , logB

′
σ(k), logB

′
k+1

)

∈

〈
Hk(logB1, . . . , logBk+1)

∣∣∣∣ Bi ∈ G∗,
k+1∑

i=1

PIG(Bi) = ℓ

〉

Q≥0

+

〈
Hk(logB1, . . . , logB2k+2)

∣∣∣∣ Bi ∈ G∗,

2k+2∑

i=1

PIG(Bi) = 2ℓ

〉

Q≥0

+ L≥k+1(log Gsupp(ℓ)) + L≥2(L≥2(log Gsupp(ℓ)))

⊆ Rk(ℓ) + L≥k+1(log Gsupp(ℓ)) + L≥2(L≥2(log Gsupp(ℓ)))

= Rk(ℓ) + L≥2(L≥2(log Gsupp(ℓ))). (44)

The last equality come from L≥k+1(log Gsupp(ℓ)) = Rk+1(ℓ) ⊆ Rk(ℓ) by the induction hypothesis.
Hence, by Proposition 5.1,

[. . . [[logAi1 , logAi2 ], logAi3 ], . . . , logAik ]
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= [. . . [[logB′
1, logB

′
2], logB

′
3], . . . , logB

′
k]

=
∑

σ∈Sk

µ(σ)Hk(logB
′
σ(1), logB

′
σ(2), . . . , logB

′
σ(k), logB

′
k+1)

∈ Rk(ℓ) + L≥2(L≥2(log Gsupp(ℓ))).

The last inclusion comes from the fact that both the expressionsHk(logB
′
σ(1), . . . , logB

′
σ(k), logB

′
k+1)

and −Hk(logB
′
σ(1), . . . , logB

′
σ(k), logB

′
k+1) are in the cone Rk(ℓ)+L≥2(L≥2(log Gsupp(ℓ))) (by Equa-

tion (44)). Therefore for every σ ∈ Sk, regardless of the sign which µ(σ) takes, the summand
µ(σ)Hk(logB

′
σ(1), . . . , logB

′
σ(k), logB

′
k+1) is in the cone Rk(ℓ) + L≥2(L≥2(log Gsupp(ℓ))).

Therefore, [log Gsupp(ℓ)]k ⊆ Rk(ℓ) +L≥2(L≥2(log Gsupp(ℓ))); that is, [log Gsupp(ℓ)]k ⊆ Rk(ℓ). And

since L≥k+1(log Gsupp(ℓ)) ⊆ Rk+1(ℓ) ⊆ Rk(ℓ) by the induction hypothesis, we have

L≥k(log Gsupp(ℓ)) =
〈
[log Gsupp(ℓ)]k

〉
Q
+ L≥k+1(log Gsupp(ℓ)) ⊆ Rk(ℓ). (45)

Next, take any tuple (B1, . . . , Bm) ∈ (G∗)m,
∑m

i=1 PI
G(Bi) = ℓ or 2ℓ. Note that logBi ∈

L≥1(log Gsupp(ℓ)), i = 1, . . . ,m, by the BCH formula. Hence, the expression Hk(logB1, . . . , logBm)
can be written as a linear combination of elements in

[
L≥1(log Gsupp(ℓ))

]
k
. That is,

Rk(ℓ) ⊆
〈[

L≥1(log Gsupp(ℓ))
]
k

〉
Q
+Rk+1(ℓ)

⊆ L≥k(log Gsupp(ℓ)) +Rk+1(ℓ) = L≥k+1(log Gsupp(ℓ)). (46)

Combining (45) and (46) we have the desired equality. This concludes the induction and thus the
whole proof.

We now prove Theorem 4.2. Although part (i) has already been proven when the theorem is
first stated, we will restate it for the sake of completeness.

Theorem 4.2. Let G = {A1, . . . , AK} be a finite set of matrices in UT(n,Q) that satisfies [log G]11 =
{0}. Given a non-zero vector ℓ = (ℓ1, . . . , ℓK) ∈ ZK

≥0:

(i) If there exists a word w ∈ G+ with PIG(w) = ℓ and log π(w) = 0, then

K∑

i=1

ℓi logAi ∈ L≥2(log Gsupp(ℓ)). (5)

(ii) If ℓ satisfies (5), then there exists a word w ∈ G+ with PIG(w) ∈ Z>0·ℓ, such that log π(w) = 0.

Proof. (i) Let w be a word with PIG(w) = ℓ. Write w = B1B2 · · ·Bm Bi ∈ G, i = 1, . . . ,m.
Regrouping by letters, we have

∑K
i=1 ℓi logAi =

∑m
i=1 logBi.

If logw = 0, then by the BCH formula, we have

m∑

i=1

logBi +

n−1∑

k=2

Hk(logB1, . . . , logBm) = log(B1B2 · · ·Bm) = 0.

The higher order terms Hk, k ≥ n vanish because [log G]n = {0} (a consequence of G ⊆ UT(n,Q)).
Therefore,

∑K
i=1 ℓi logAi =

∑m
i=1 logBi = −

∑n−1
k=2 Hk(logB1, . . . , logBm).

Since the Parikh image of the word B1 · · ·Bm is ℓ, the matrices Bi all lie in the subset {Ai |
i ∈ supp(ℓ)} of G. Therefore, logBi ∈ log Gsupp(ℓ) for all i. By Theorem 3.8, for all k ≥ 2 we have
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−Hk(logB1, . . . , logBm) ∈
〈
[{logBi | i = 1, . . . ,m}]k

〉
Q

⊆ L≥k(log Gsupp(ℓ)) ⊆ L≥2(log Gsupp(ℓ)).

Therefore, we have
∑K

i=1 ℓi logAi = −
∑n−1

k=2 Hk(logB1, . . . , logBm) ∈ L≥2(log Gsupp(ℓ)).
(ii) Suppose condition (5) hold for the vector ℓ. Resonating Example 4.1, our proof for (ii)

proceeds in four steps. Now we give an overview of each step. As the first step, we want to
construct some matrices A′

1, . . . , A
′
K ′ ∈ 〈G〉, such that

〈logA′
i | i = 1, . . . ,K ′〉Q≥0

+ L≥2(L≥2(log Gsupp(ℓ))) = L≥2(log Gsupp(ℓ)) + L≥2(L≥2(log Gsupp(ℓ))).
(47)

The candidates for the matrices A′
1, . . . , A

′
K ′ are of the form Bt

1 · · ·B
t
m, where m ≥ 1, t ∈ Z>0,

Bi ∈ G∗, i = 1, . . . ,m and
∑m

i=1 PI
G(Bi) = ℓ or 2ℓ. The general strategy is to invoke Proposition 5.3

while using Proposition 5.12 to guarantee that the conditions (i) and (ii) of Proposition 5.3 are
satisfied.

As the second step, we work in the new alphabet G′ = {A′
1, . . . , A

′
K ′} of matrices found in the

previous step. We want to fabricate some matrices A′′
1 , . . . , A

′′
K ′′ ∈ 〈G′〉, such that

〈logA′′
i | i = 1, . . . ,K ′′〉Q≥0

+ L≥2(L≥2(L≥2(log Gsupp(ℓ))))

= L≥2

(
L≥2(log Gsupp(ℓ))

)
+ L≥2(L≥2(L≥2(log Gsupp(ℓ)))). (48)

The candidates for the matrices A′′
1 , . . . , A

′′
K ′′ are of the form Bt

1 · · ·B
t
m, where Bi ∈ (G′)∗ , i =

1, . . . ,m. The idea is to again invoke Proposition 5.3 and to use Proposition 5.12 for the new
alphabet G′ and a suitable vector ℓ′.

As the third step, we work in the new alphabet G′′ = {A′′
1 , . . . , A

′′
K ′′} of matrices found in the

previous step. We want to fabricate some matrices A′′′
1 , . . . , A

′′′
K ′′′ ∈ 〈G′′〉, such that

〈logA′′′
i | i = 1, . . . ,K ′′〉Q≥0

= L≥2(L≥2(L≥2(log Gsupp(ℓ)))). (49)

(Note that L≥2(L≥2(L≥2(L≥2(log Gsupp(ℓ))))) = {0}.) The candidates for A′′′
1 , . . . , A

′′′
K ′′′ are of the

form Bt
1 · · ·B

t
m, where Bi ∈ (G′′)∗ , i = 1, . . . ,m. The idea is to again invoke Proposition 5.3 and

to use Proposition 5.12 for the new alphabet G′′ and a suitable vector ℓ′′.
As the fourth and last step, we work in the new alphabet G′′′ = {A′′′

1 , . . . , A
′′′
K ′′′} of matrices

found in the previous step. We then observe that the matrices A′′′
1 , . . . , A

′′′
K ′′′ commute with each

other, because L≥2(L≥2(L≥2(L≥2(log Gsupp(ℓ))))) = {0}. Hence, it is very easy to search for the
desired non-empty word w ∈ (G′′′)∗ with logw = 0.

We now give the detailed account of each step.

(1) Find matrices A′
1, . . . , A

′
K ′ ∈ 〈G〉 satisfying condition (47). Since the right hand side of

Equation (5) is a linear space, we can replace ℓ by 10ℓ, and thus suppose ℓ satisfy ℓi ≥ 10, i ∈
supp(ℓ). Since Z>0 · 10ℓ ⊆ Z>0 · ℓ, the resulting word w will still satisfy PIG(w) ∈ Z>0 · ℓ.
Since ℓ satisfies

∑K
i=1 ℓi logAi ∈ L≥2(log Gsupp(ℓ)), we are able to use Proposition 5.12 for the

vector ℓ. Our aim is to apply Proposition 5.3 in the quotient space

V := u(n)/L≥2(L≥2(log Gsupp(ℓ))),

for the index set

I :=

{
(B1, . . . , Bm)

∣∣∣∣ m ≥ 1, Bi ∈ G∗,

m∑

i=1

PIG(Bi) ∈ {ℓ, 2ℓ}

}
,

that is, the set of tuples of words whose concatenation has Parikh image ℓ or 2ℓ. For any
element x ∈ u(n), denote by x := x+ L≥2(L≥2(log Gsupp(ℓ)) its equivalence class in

V = u(n)/L≥2(L≥2(log Gsupp(ℓ))).
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For any tuple b = (B1, . . . , Bm) ∈ I, consider the vectors in V :

a1b :=
m∑

i=1

logBi,

akb := Hk(logB1, . . . , logBm), k = 2, . . . , 10,

and

Pb(t) := log(Bt
1 · · ·B

t
m) = ta1b +

10∑

k=2

tkakb,

coming from the BCH formula for Bt
1, . . . , B

t
m. We now apply Proposition 5.3 to these vectors:

we need to verify that the cones Ck, k = 10, . . . , 1 as defined in Proposition 5.3 are indeed
linear spaces. Proposition 5.12 shows that

C10 = 〈a10b | b ∈ I〉Q≥0
= R10(ℓ)

and
Ck = 〈akb | b ∈ I〉Q≥0

+ Ck+1 = Rk(ℓ), k = 9, . . . , 2,

are linear subspaces of u(n)/L≥2(L≥2(log Gsupp(ℓ)). Furthermore, by the condition∑K
i=1 ℓi logAi ∈ L≥2(log Gsupp(ℓ)), we have

a1b ∈





K∑

i=1

ℓi logAi, 2 ·
K∑

i=1

ℓi logAi



 ⊆ L≥2(log Gsupp(ℓ)) = R2(ℓ)

for all b ∈ I. Hence,

C1 = 〈a1b | b ∈ I〉Q≥0
+ C2 = R2(ℓ) = L≥2(log Gsupp(ℓ))

is also a linear space. The conditions (i) and (ii) in Proposition 5.3 are thus satisfied. We can
thus apply Proposition 5.3, which yields

〈Pb(t) | b ∈ I, t ∈ Z≥0〉Q≥0
= C1 = L≥2(log Gsupp(ℓ)).

In other words,

〈
log(Bt

1 · · ·B
t
m)

∣∣∣∣ t ∈ Z≥0,m ≥ 1, Bi ∈ G∗,

m∑

i=1

PIG(Bi) ∈ {ℓ, 2ℓ}

〉

Q≥0

= L≥2(log Gsupp(ℓ)).

Since u(n)/L≥2(L≥2(log Gsupp(ℓ))) is of finite dimension, this shows that there exist K ′ > 0

tuples of words (B11, . . . , B1m), . . ., (BK ′1, . . . , BK ′m) with
∑m

i=1 PI
G(Bji) = ℓ or 2ℓ for all

j ∈ {1, . . . ,K ′}, as well as positive integers t1, . . . , tK ′ ∈ Z>0, such that

〈log(Bti
i1 · · ·B

ti
im) | i = 1, . . . ,K ′〉Q≥0

+ L≥2(L≥2(log Gsupp(ℓ)))

= L≥2(log Gsupp(ℓ)) + L≥2(L≥2(log Gsupp(ℓ))).

Hence, the matrices A′
i = Bti

i1 · · ·B
ti
im, i = 1, . . . ,K ′ satisfy the Equation (47). Define a new

alphabet G′ = {A′
1, . . . , A

′
K ′} ⊆ G.
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(2) Find matrices A′′
1, . . . , A

′′
K ′′ ∈ 〈G′〉 satisfying condition (48). Since the right hand

side of Equation (47) is a linear space, we have − logA′
j ∈ 〈logA′

i | i = 1, . . . ,K ′〉Q≥0
+

L≥2(L≥2(log Gsupp(ℓ))) for j = 1, . . . ,K ′. Hence, there exists a non-zero vector ℓ′ = (ℓ′1, . . . , ℓ
′
K ′)

in ZK ′

≥0, satisfying supp(ℓ′) = {1, . . . ,K ′}, ℓ′i ≥ 10 for all i ∈ {1, . . . ,K ′}, and

K ′∑

i=1

ℓ′i logA
′
i ∈ L≥2(L≥2(log Gsupp(ℓ))). (50)

Define log G′
supp(ℓ′)

:= {logA′
i | i ∈ supp(ℓ′)} = log G′, because supp(ℓ′) = {1, . . . ,K ′}. First,

we claim that
L≥2(L≥2(log Gsupp(ℓ))) = L≥2(log G

′
supp(ℓ′)). (51)

Indeed, Equation (47) shows that

〈
log G′

supp(ℓ′)

〉
Q
+ L≥2(L≥2(log Gsupp(ℓ)))

= L≥2(log Gsupp(ℓ)) + L≥2(L≥2(log Gsupp(ℓ))) = L≥2(log Gsupp(ℓ)).

Applying Lemma 5.11 withW =
〈
log G′

supp(ℓ′)

〉
Q
, V = L≥2(log Gsupp(ℓ)) to the above equation

yields the equality (51). Consequently, we have

K ′∑

i=1

ℓ′i logA
′
i ∈ L≥2(log G

′
supp(ℓ′))

by (50). Apply Proposition 5.12 for the alphabet G′ and the vector ℓ′, then we have that, in
the quotient space

u(n)/L≥2(L≥2(log G
′
supp(ℓ′))),

the equations Rk(ℓ
′) = L≥k(log G′

supp(ℓ′)
), k = 10, . . . , 2, hold. Then, applying Proposition 5.3

in the quotient linear space

V := u(n)/L≥2(L≥2(log G
′
supp(ℓ′)))

as in the previous step, we have

〈
log(Bt

1 · · ·B
t
m)

∣∣∣∣ t ∈ Z≥0,m ≥ 1, Bi ∈
(
G′
)∗

,
m∑

i=1

PIG
′
(Bi) ∈ {ℓ′, 2ℓ′}

〉

Q≥0

= L≥2(log G′
supp(ℓ′)

).

Hence, there exist K ′′ > 0 tuples of words (B′
11, . . . , B

′
1m), . . ., (B′

K ′′1, . . . , B
′
K ′′m) in (G′)∗

with
∑m

i=1 PI
G′
(B′

ji) = ℓ′ or 2ℓ′ for all j, as well as positive integers t′1, . . . , t
′
K ′′ ∈ Z>0, such

that

〈log(B′t
′
i

i1 · · ·B
′t
′
i

im) | i = 1, . . . ,K ′′〉Q≥0
+ L≥2(L≥2(log G

′
supp(ℓ′)))

= L≥2(log G
′
supp(ℓ′)) + L≥2(L≥2(log G

′
supp(ℓ′))). (52)

Substituting with L≥2(log G
′
supp(ℓ′)

) = L≥2(L≥2(log Gsupp(ℓ))), Equation (52) can be rewritten
as
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〈log(B
t′i
i1 · · ·B

t′i
im) | i = 1, . . . ,K ′′〉Q≥0

+ L≥2(L≥2(L≥2(log Gsupp(ℓ))))

= L≥2(L≥2(log Gsupp(ℓ))) + L≥2(L≥2(L≥2(log Gsupp(ℓ)))).

Hence, the matrices A′′
i = B′t

′
i

i1 · · ·B
′t
′
i

im, i = 1, . . . ,K ′′ satisfy the Equation (48). Define the
new alphabet G′′ = {A′′

1 , . . . , A
′′
K ′′}.

(3) Find matrices A′′′
1 , . . . , A

′′′
K ′′′ ∈ 〈G′′〉 satisfying condition (49). Similar to the previous

step, one can find a vector ℓ′′ = (ℓ′′1 , . . . , ℓ
′′
K ′′) ∈ ZK ′′

≥0 , satisfying supp(ℓ′′) = {1, . . . ,K ′′},
ℓ′′i ≥ 10, i = 1, . . . ,K ′′, and

K ′′∑

i=1

ℓ′′i logA
′′
i ∈ L≥2(L≥2(log G

′
supp(ℓ′))).

Define log G′′
supp(ℓ′′)

:= {logA′′
i | i ∈ supp(ℓ′′)} = log G′′. As in the previous step, we have

L≥2(log G
′′
supp(ℓ′′)) = L≥2(L≥2(log G

′
supp(ℓ′))).

Combining it with L≥2(log G
′
supp(ℓ′)

) = L≥2(L≥2(log Gsupp(ℓ))), we have

L≥2(log G
′′
supp(ℓ′′)) = L≥2(L≥2(L≥2(log Gsupp(ℓ)))).

Apply Proposition 5.12 for the alphabet G′′ and the vector ℓ′′, then we have that, in the
quotient space u(n)/L≥2(L≥2(log G

′′
supp(ℓ′′)

)), the equations Rk(ℓ
′′) = L≥k(log G

′′
supp(ℓ′′)

), k =

10, . . . , 2, hold.
Then, applying Proposition 5.3 in the quotient linear space

V := u(n)/L≥2(L≥2(log G
′′
supp(ℓ′′)))

as in the previous steps, we have

〈
log(Bt

1 · · ·B
t
m)

∣∣∣∣ t ∈ Z≥0,m ≥ 1, Bi ∈
(
G′
)∗

,

m∑

i=1

PIG
′′
(Bi) ∈ {ℓ′′, 2ℓ′′}

〉

Q≥0

= L≥2(log G′′
supp(ℓ′′)

).

Hence, there exist K ′′′ > 0 tuples of words (B′′
11, . . . , B

′′
1m), . . ., (B′′

K ′′′1, . . . , B
′′
K ′′′m) in (G′′)∗

with
∑m

i=1 PI
G′′
(B′′

ji) = ℓ′′ or 2ℓ′′ for all j, as well as positive integers t′′1, . . . , t
′′
K ′′′ ∈ Z>0, such

that

〈log(B′′t
′′
i

i1 · · ·B
′′t

′′
i

im) | i = 1, . . . ,K ′′′〉Q≥0
+ L≥2(L≥2(log G

′′
supp(ℓ′′)))

= L≥2(log G
′′
supp(ℓ′′)) + L≥2(L≥2(log G

′′
supp(ℓ′′))). (53)

Since L≥2(log G
′′
supp(ℓ′′)

) = L≥2(L≥2(L≥2(log Gsupp(ℓ)))), we have

L≥2(L≥2(log G
′′
supp(ℓ′′))) ⊆ L≥16(log Gsupp(ℓ)) = {0}.

Thus, Equation (53) can be rewritten as

〈log(B′′t
′′
i

i1 · · ·B
′′t

′′
i

im) | i = 1, . . . ,K ′′′〉Q≥0
= L≥2(L≥2(L≥2(log Gsupp(ℓ)))).

Hence, the matrices A′′′
i = B′′t

′′
i

i1 · · ·B
′′t

′′
i

im, i = 1, . . . ,K ′′′ satisfy the Equation (49). Define the
new alphabet G′′′ = {A′′′

1 , . . . , A
′′′
K ′′′}.
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(4) Find a word w ∈ 〈G′′′〉 with logw = 0. Since the right hand side of Equation (49) is a
linear space, we have − logA′′′

j ∈ 〈logA′′′
i | i = 1, . . . ,K ′′′〉Q≥0

for j = 1, . . . ,K ′′′. Hence, there

exists a non-zero vector ℓ′′′ = (ℓ′′′1 , . . . , ℓ
′′′
K ′) ∈ ZK ′′′

≥0 , satisfying

K ′′′∑

i=1

ℓ′′′i logA′′′
i = 0.

Since log G′′′ ∈ L≥2(L≥2(L≥2(log Gsupp(ℓ)))) ⊆ L≥8(log Gsupp(ℓ)), we have

L≥2(log G
′′′) ⊆ L≥16(log Gsupp(ℓ)) = {0}.

Hence, by the BCH formula,

log(A′′′ℓ
′′′
1
1 · · ·A′′′ℓ

′′′
K′′′

K ′′′ ) =

K ′′′∑

i=1

ℓ′′′i logA′′′
i = 0,

because the terms Hk, k ≥ 2 are in L≥2(log G
′′′), which vanishes. Therefore, we have found

the non-empty word w = A′′′ℓ
′′′
1
1 · · ·A′′′ℓ

′′′
K′′′

K ′′′ ∈ (G′′′)∗ satisfying logw = 0. By replacing A′′′
i

with their corresponding words B′′t
′′
i

i1 · · ·B
′′t

′′
i

im in (G′′)∗, then replacing A′′
i with corresponding

words in (G′)∗, then replacing A′
i with corresponding words in G∗, we see that w considered

as a word in G∗ has Parikh image in Z>0 · ℓ, because the words Bti
i1 · · ·B

ti
im corresponding to

A′
i all have Parikh image in Z>0 · ℓ.

6 Conjecture for higher nilpotency class

In Sections 4 and 5, we showed that the invertible subset of any finite set G ⊆ G is computable
in polynomial time, where G is a subgroup of UT(n,Q) of nilpotency class at most ten. The only
obstacle for generalizing this result to higher nilpotency class is to prove Proposition 5.2 for k ≥ 11.
If the identities (12) exist for k ≥ 11, then they can be found with the same computer aided
procedure as the one used in the proof of Lemma 5.7-5.9 (see Section B). Following this idea, given
k ≥ 11, we propose the following conjecture, which generalizes Proposition 5.2:

Conjecture 6.1. Let H ⊂ UT(n,Q) be any finite set of matrices. There exist an integer r ≥ 0,
positive rational numbers α1, . . . , αr, as well as, for s = 1, . . . , r, words js = js,1js,2 · · · js,ms in the
alphabet I = {1, 2, . . . , k + 1}, such that PII(js) ∈ Z>0 · (1, 1, . . . , 1) and

∑

σ∈Sk+1

Hk(logBσ(1), . . . , logBσ(k+1)) +

r∑

s=1

αs

∑

σ∈Sk+1

Hk(logBσ(js,1), . . . , logBσ(js,ms )
)

∈ L≥k+1(logH) + L≥2(L≥2(logH)) (54)

for all matrices B1, . . . , Bk+1 in UT(n,Q) satisfying logBi ∈ L≥1(logH) and
∑k+1

i=1 logBi ∈ L≥2(logH).

For even k, Conjecture 6.1 is correct by the antisymmetry of Hk (Lemma 5.5). For k = 3, it
is correct by taking r = 0 and using Lemma 5.6. For k = 5, 7, 9, it is verified by Lemma 5.7, 5.9,
5.10, where the words js, s = 1, . . . , r, all satisfy PII(js) = (2, 2, . . . , 2).
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For odd k larger than 10, using Algorithm 2 in Section B, we can search for words js that
potentially verify Conjecture 6.1. Namely, starting with q = 2, take all the words js satisfying
PII(js) = (p, p, . . . , p), 2 ≤ p ≤ q. Under the equivalence relation ∼ (defined in the proof of
Lemma 5.7), we can write each expression

hk(js) :=
∑

σ∈Sk+1

Hk(logBσ(js,1), . . . , logBσ(js,ms )
)

as a linear combination of expressions M̂ (P, c) (see Section B) using Algorithm 2. Then, writing

−
∑

σ∈Sk+1
Hk(logBσ(1), . . . , logBσ(k+1)) also as a linear combination of M̂(P, c), we can verify

whether it is in the Q≥0-cone generated by the elements hk(js). If this is the case, then there exist
positive rational numbers αs, s = 1, 2, . . . , satisfying Equation (54). If this is not the case, we can
increase q and repeat the above procedure.

If there exists a relation of the form (54), then the above procedure terminates for some q and
returns this relation. Otherwise it does not terminate. In practice, it is more computationally
viable to not take all the words js satisfying PII(js) = (p, p, . . . , p), but only a small amount of
them chosen randomly.

Due to the restraint on computational power, we have only verified Conjecture 6.1 for all k ≤ 10,
this is the reason why the main result of this paper stops at nilpotency class ten. However, if we
can verify Conjecture 6.1 for larger k (it suffices to verify for odd k), then we can extend the result
of this paper to higher nilpotency class. This is formalized by the following theorem.

Theorem 6.2. Let G be a subgroup of UT(n,Q) whose nilpotency class is at most d. If Conjec-
ture 6.1 holds for all k ≤ d, then Algorithm 1 correctly computes the invertible subset of any finite
set G ⊆ G in polynomial time.

Proof. For any ℓ ∈ ZK
≥0, similar to Equation (42), define recursively the cones

Rd+1(ℓ) := {0},

Rk(ℓ) := Rk+1(ℓ) +

〈
Hk(logB1, . . . , logBm)

∣∣∣∣ m ≥ 1, Bi ∈ G∗,
m∑

i=1

PIG(Bi) ∈ Z>0 · ℓ

〉

Q≥0

,

k = d, d− 1, . . . , 3, 2,

and the set
log Gsupp(ℓ) := {logAi | Ai ∈ G, i ∈ supp(ℓ)}.

Suppose ℓ satisfies ℓi ≥ d, i ∈ supp(ℓ). Consider the quotient space u(n)/L≥2(L≥2(log Gsupp(ℓ))).
Following the pattern in the proof of Proposition 5.12, we can show that for all k ≤ d+1, the cone
Rk(ℓ) is equal to the linear space L≥k(log Gsupp(ℓ)).

Then, using the same arguments as Theorem 4.2, we can show the following generalization of
Theorem 4.2:
(i) If there exists a word w ∈ G∗ with PIG(w) = ℓ and logw = 0, then

K∑

i=1

ℓi logAi ∈ L≥2(log Gsupp(ℓ)). (55)

(ii) If ℓ satisfies (55), then there exists a non-empty word w ∈ G∗, with PIG(w) ∈ Z>0 · ℓ, such
that logw = 0.
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From here, the proof of correctness of Algorithm 1 and its complexity analysis is identical to the
proof of Theorem 2.1, replacing the property [log G]11 = {0} by [log G]d+1 = {0}.

A natural question is whether our result can be extended to arbitrary nilpotency class d. This
can either be done by proving Conjecture 6.1 for higher k or by finding another way to approach
this problem. In particular, similar to Corllary 2.2, this would yield the decidability for the Identity
Problem and the Group Problem for arbitrary finitely generated nilpotent groups of class at most
d.
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Appendix A Omitted proofs from Sections 1-3

In this section of the appendix we give the proofs of several semigroup and group theory results
omitted in the main paper.

Proposition 1.2. Given a finite set of matrices G = {A1, . . . , AK} in a matrix group G. Denote
by Ginv the invertible subset of G.
(i) The Identity Problem for G has a positive answer if and only if Ginv is non-empty.
(ii) The Group Problem for G has a positive answer if and only if Ginv = G.

Proof. For a word w over the alphabet G, define π(w) to be the matrix obtained by multiplying
consecutively the matrices appearing in w.

(i) If the Identity Problem has a positive answer, let w be a non-empty word over the alphabet
G such that π(w) = I. Write w = Aiw

′, (w′ could be the empty word), then A−1
i = π(w′). If
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Ai = I then obviously A−1
i = Ai ∈ 〈G〉. If Ai 6= I then π(w′) 6= I so w′ is not the empty word

and π(w′) ∈ 〈G〉. Therefore A−1
i ∈ 〈G〉. Conversely, if Ai ∈ Ginv, then either Ai = I in which case

I = Ai ∈ 〈G〉, or A−1
i = π(w′) for some non-empty word w′, so I = π(Aiw

′) ∈ 〈G〉.
(ii) Since every element in Ginv is invertible in 〈G〉, the semigroup 〈Ginv〉 it generates also only

contains invertible elements. Therefore, if G = Ginv then 〈G〉 is a group. On the other hand, if 〈G〉
is a group then every element of G is invertible in 〈G〉, so G = Ginv.

Corollary 2.2. Let G be a finitely generated nilpotent group of class at most ten, given by a finite
presentation [24, Chap. 8]. Then the Identity Problem and the Group Problem are decidable in G.

Proof. A consistent polycyclic presentation [24, Chapter. 8] of G can be computed from a finite
presentation of G [37], so we can suppose that a consistent polycyclic presentation of G is given.
Let G be a finitely generated nilpotent group of class at most ten. The set of torsion elements
in G forms a normal subgroup T of G. A set of generators of T along with a presentation can
be effectively computed by [33, Theorem 8]. Then, by [24, Lemma 8.38], a consistent polycyclic
presentation for the torsion-free nilpotent group G/T can be computed. Note that G/T is still
nilpotent and its nilpotency class does not exceed that of G. An embedding of G/T as a subgroup
of UT(n,Q) for some n can then be effectively computed ([30], [15]). Using this embedding, the
Identity Problem and the Group Problem can be decided in the quotient group G/T by Theorem 2.1
and Proposition 1.2(i), (iii).

By [5, Theorem 2.1], G can be embedded (injectively) as a subgroup of a direct productA×G/T ,
where A is a finite group. Let φ : G →֒ A×G/T denote this embedding, and let p : A×G/T → G/T
be the natural projection.

By the injectivity of φ, the Identity Problem has a positive answer for G ⊆ G if and only if
it has a positive answer for φ(G) ⊆ A × G/T . We claim that the Identity Problem has a positive
answer for φ(G) ⊆ A×G/T if and only if it has a positive answer for p(φ(G)) ⊆ G/T . Indeed, for
any group H, denote eH its natural element. If eA×G/T ∈ 〈φ(G)〉, then obviously eG/T ∈ 〈p(φ(G))〉
because p is a semigroup homomorphism. If eG/T ∈ 〈p(φ(G))〉, then there exists a ∈ A such that

(a, eG/T ) ∈ 〈φ(G)〉. Because A is finite, there exists a positive integer k, such that ak = eA for all

a ∈ A. Then eA×G/T = (eA, eG/T ) = (ak, ekG/T ) ∈ 〈φ(G)〉. This proves the claim. Therefore, the

Identity Problem for G ⊆ G is equivalent to the Identity Problem for p(φ(G)) ⊆ G/T , which is
decidable by the first part of the proof.

The injectivity of φ also shows that the Group Problem has a positive answer for G ⊆ G if and
only if it has a positive answer for φ(G) ⊆ A × G/T . We claim that the Group Problem has a
positive answer for φ(G) ⊆ A × G/T if and only if it has a positive answer for p(φ(G)) ⊆ G/T .
Indeed, suppose 〈φ(G)〉 is a group, then there exists a non-empty word w ∈ φ(G)+ where every
letter of φ(G) appears at least once, and whose product is equal to the neutral element eA×G/T .
This is because every letter B ∈ φ(G) has a inverse in 〈φ(G)〉, hence multiplying B with the word
representing its inverse yields a word wB whose product is the neutral element, and where the letter
B appears. Concatenating the words wB for all B ∈ φ(G) yields the word w. Next, projecting
each letter in w with p yields a non-empty word p(w) ∈ p(φ(G))+ where every letter of p(φ(G))
appears at least once, and whose product is equal to the neutral element eG/T . Thus every element
in p(φ(G)) is invertible in 〈p(φ(G))〉. This show that if 〈φ(G)〉 is a group then 〈p(φ(G))〉 is a group.
For the opposite implication, suppose 〈p(φ(G))〉 is a group, then there exists a non-empty word
w ∈ φ(G)+ where every letter of φ(G) appears at least once, and whose product is equal to some
element (a, eG/T ) ∈ A × eG/T . Because A is finite, there exists a positive integer k, such that

ak = eA. Hence the product of the word wk ∈ φ(G)+ is equal to (ak, ekG/T ) = eA×G/T . As every

letter of φ(G) appears in wk at least once, every element in φ(G) is invertible in 〈φ(G)〉. Thus
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〈φ(G)〉 is a group. Therefore, the Group Problem for G ⊆ G is equivalent to the Group Problem
for p(φ(G)) ⊆ G/T , which is decidable by the first part of the proof.

Lemma 3.4. Given V represented as the solution set of linear homogeneous equations, one can
compute the support of Λ = ZK

≥0 ∩ V in polynomial time.

Proof. For i = 1, . . . ,K, we can check whether i ∈ supp(Λ) in the following way. By definition,
i ∈ supp(Λ) if and only if the system

(ℓ1, . . . , ℓK) ∈ V, ℓ1 ≥ 0, . . . , ℓi > 0, . . . , ℓK ≥ 0 (56)

has an integer solution (ℓ1, . . . , ℓK) ∈ ZK. By the homogeneity of the system (56), it has an integer
solution if and only if it has a rational solution. The existence of a rational solution to system (56)
can be decided by linear programming in polynomial time. Therefore, the support of Λ can be
computed in polynomial time by checking whether i ∈ supp(Λ) for every i = 1, . . . ,K.

Lemma 3.7. Let G be a subgroup of UT(n,Q). If G has nilpotency class d, then [logG]d+1 = {0}.

Proof. For an element g ∈ G and a rational number q ∈ Q, define gq := exp(q log g). A group
G ≤ UT(n,Q) is called Q-powered if for every element g ∈ G and q ∈ Q, we have gq ∈ G. A
unitriangular matrix group over Q is torsion-free, because An = I ⇐⇒ n logA = 0 ⇐⇒ logA =
0 ⇐⇒ A = I. Therefore, by [27, Theorem 9.20(a)], G can be embedded in a Q-powered group Ĝ
of the same nilpotency class d.4 By [27, Theorem 10.3(d)], log Ĝ is a Lie algebra over Q, and log Ĝ
is of nilpotency class d (meaning [log Ĝ]d+1 = {0}). Therefore, [logG]d+1 ⊆ [log Ĝ]d+1 = {0}.

Appendix B Computer-aided proof of Lemma 5.7-5.10

In this section we give the detailed account for the proof of Lemma 5.7-5.10 using computer assis-
tance.

We fix an integer k for the whole section. Let H be a subset of UT(n,Q). For x, y ∈ u(n), we
write

x
L≥2(L≥2(logH))

∼ y

if x− y ∈ L≥2(L≥2(logH)), and

x
L≥k+1(logH)

∼ y

if x− y ∈ L≥k+1(logH). Obviously,
L≥2(L≥2(logH))

∼ and
L≥k+1(logH)

∼ are equivalence relations and we
denote by ∼ the transitive closure of these two relations.

The following lemma shows the effect of the relation
L≥2(L≥2(logH))

∼ . In fact, the quotient Lie
algebra L := L≥1(logH)/L≥2(L≥2(logH)) is metabelian, meaning [[L,L], [L,L]] = 0. This property
allows us the permute elements in iterated Lie brackets:

Lemma B.1. For C1, . . . , Ck ∈ L≥1(logH) and i = 3, . . . , k − 1, we have

[. . . [[. . . [C1, C2], . . . , Ci], Ci+1], . . . , Ck]
L≥2(L≥2(logH))

∼ [. . . [[. . . [C1, C2], . . . , Ci+1], Ci], . . . , Ck].

4One can take the group Ĝ to be Mal’cev completion of G.
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Proof. For i = 3, . . . , k − 1, by the Jacobi identity,

[. . . [[. . . [C1, C2], . . . , Ci], Ci+1], . . . , Ck]− [. . . [[. . . [C1, C2], . . . , Ci+1], Ci], . . . , Ck]

= [. . . [[. . . [C1, C2], . . . , Ci−1], [Ci, Ci+1]], . . . , Ck]

∈ [. . . [L≥2(logH),L≥2(logH)], . . . , Ck].

⊆ [. . . [L≥2(L≥2(logH)), Ci+2], . . . , Ck]. (57)

We then show that

X ∈ L≥2(L≥2(logH)), Y ∈ L≥1(logH) =⇒ [X,Y ] ∈ L≥2(L≥2(logH)). (58)

Since X is in L≥2(L≥2(logH)), it can be written as a linear combination of elements of the form
[. . . [X1,X2], . . . ,Xs] where s ≥ 2, Xi ∈ L≥2(logH), i = 1, . . . , s. Therefore it suffices to show the
implication (58) for the case X = [. . . [X1,X2], . . . ,Xs] where Xi ∈ L≥2(logH), i = 1, . . . , s. Let

X ′ := [. . . [X1,X2], . . . ,Xs−1] ∈ L≥2(s−1)(logH) ⊆ L≥2(logH),

so X = [X ′,Xs] with X ′,Xs ∈ L≥2(logH). Then by the Jacobi identity,

[X,Y ] = [[X ′,Xs], Y ] = −[[Xs, Y ],X ′]− [[Y,X ′],Xs],

where

[[Xs, Y ],X ′] ∈ [[L≥2(logH),L≥1(logH)],L≥2(logH)]

⊆ [L≥2(logH),L≥2(logH)] ⊆ L≥2(L≥2(logH))

and

[[Y,X ′],Xs] ∈ [[L≥1(logH),L≥2(logH)],L≥2(logH)]

⊆ [L≥2(logH),L≥2(logH)] ⊆ L≥2(L≥2(logH)).

Therefore [X,Y ] ∈ L≥2(L≥2(logH)), showing the implication (58).
Applying this implication with Y = Ci+2, Ci+3, . . . , Ck in Equation (57) shows

[. . . [L≥2(L≥2(logH)), Ci+2], . . . , Ck]

⊆ [. . . [L≥2(L≥2(logH)), Ci+3], . . . , Ck]

...

⊆ [L≥2(L≥2(logH)), Ck]

⊆ L≥2(L≥2(logH))

Hence Equation (57) yields

[. . . [[. . . [C1, C2], . . . , Ci], Ci+1], . . . , Ck]
L≥2(L≥2(logH))

∼ [. . . [[. . . [C1, C2], . . . , Ci+1], Ci], . . . , Ck].
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Fix an integer k. Define an integer partition P (of k) to be a series of numbers (a1, . . . , as)
such that a1 ≥ a2 ≥ · · · ≥ as ≥ 1 and k = a1 + · · · + as. Define max(P ) := a1,min(P ) := as and
set(P ) := {t | ∃ai = t}. Define a set partition S (of {1, . . . , k}) to be a set of non-empty disjoint
sets S = {A1, . . . , As} such that A1 ∪ · · · ∪ As = {1, . . . , k}. For any k-tuple j = (j1, . . . , jk) ∈
{1, . . . , k+1}k, define the associated set partition of j the set partition consisting of sets of indices
of its distinct elements

SP(j) :=

{
Ai := {l | jl = i}

∣∣∣∣ i = 1, . . . , k + 1, Ai 6= ∅

}
.

For example, if k = 6, j = (4, 2, 7, 2, 2, 4), then SP(j) = {{1, 6}, {2, 4, 5}, {3}}.
Define the associated integer partition IP(S) of a set partition S to be the series of set car-

dinalities in S in decreasing order. For example, if k = 6, S = {{1, 6}, {2, 4, 5}, {3}}, then
IP(S) = (3, 2, 1). In particular, in this example we have max(IP(S)) = 3,min(IP(S)) = 1 and
set(P ) = {3, 2, 1}.

We now fix elements C1, . . . , Ck ∈ L≥1(logH). For a given tuple j = (j1, . . . , jk) ∈ {1, . . . , k +
1}k, define the symmetric sums

Φ(j) :=
1

(k + 1− card(SP(j)))!

∑

σ∈Sk+1

ϕk(Cσ(j1), Cσ(j2), . . . , Cσ(jk)),

M(j) :=
1

(k + 1− card(SP(j)))!

∑

σ∈Sk+1

[. . . [Cσ(j1), Cσ(j2)], . . . , Cσ(jk)].

Here, ϕk is the expression defined in the Dynkin formula (14). The relation between Φ(j) and
M(j) can be computed as follows.

Φ(j) =
1

(k + 1− card(SP(j)))!

∑

σ∈Sk+1

ϕk(Cσ(j1), Cσ(j2), . . . , Cσ(jk))

=
1

(k + 1− card(SP(j)))!

∑

σ∈Sk+1

∑

τ∈Sk

(−1)d(τ)

k2
(k−1
d(τ)

) [. . . [Cσ(jτ(1)), Cσ(jτ(2))], . . . , Cσ(jτ(k))]

=
∑

τ∈Sk

(−1)d(τ)

k2
(k−1
d(τ)

) ·
1

(k + 1− card(SP(j)))!

∑

σ∈Sk+1

[. . . [Cσ(jτ(1)), Cσ(jτ(2))], . . . , Cσ(jτ(k))]

=
∑

τ∈Sk

(−1)d(τ)

k2
(k−1
d(τ)

) ·M(jτ ), (59)

where jτ := (jτ(1), jτ(2), . . . , jτ(k)).
From the definition of Φ(j) and M(j) it follows that that for any σ ∈ Sk+1, writing σ(j) :=

(σ(j1), . . . , σ(jk)), we have Φ(σ(j)) = Φ(j) and M(σ(j)) = M(j). By this symmetry, Φ(j) and
M(j) only depend on their associated set partition SP(j). Hence for any set partition S, we can
define

Φ(S) := Φ(j), M(S) := M(j), where SP(j) = S.

From Equation (59) we get

Φ(S) =
∑

τ∈Sk

(−1)d(τ)

k2
(
k−1
d(τ)

) ·M(Sτ ), (60)
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where Sτ is the set partition obtained by replacing i by τ(i) in all sets of S for all i = 1, . . . , k:

Sτ :=

{
{τ(j) | j ∈ A}

∣∣∣∣ A ∈ S

}
.

For two set partitions S1 and S2, S2 is called a coarsening of S1 if for every A ∈ S1, there exists
A′ ∈ S2 such that A ⊆ A′. For example, {{1, 3, 4}, {2, 5, 6}} is a coarsening of {{1, 3, 4}, {2}, {5, 6}}.
In particular, any set partition is a coarsening of itself. Denote by S2 < S1 if S2 is a coarsening of
S1.

The next lemma shows the effect of the relation
L≥k+1(logH)

∼ for sums over coarsenings.

Lemma B.2. Let H be a subset of UT(n,Q). Suppose C1, . . . , Ck+1 ∈ L≥1(logH) and
∑k+1

i=1 Ci ∈
L≥2(logH). If a set partition S satisfies min(S) = 1, then

∑

S′<S

M(S′)
L≥k+1(logH)

∼ 0. (61)

Proof. First let us illustrate the intuition with an example. Let k = 6, S = {{1, 3, 4}, {2}, {5, 6}},
then there are five coarsenings of S, which are:

S, {{1, 3, 4}, {2, 5, 6}}, {{1, 3, 4, 2}, {5, 6}}, {{1, 3, 4, 5, 6}, {2}}, {{1, 3, 4, 2, 5, 6}}.

Correspondingly,

M(S) +M({{1, 3, 4}, {2, 5, 6}}) +M({{1, 3, 4, 2}, {5, 6}}) +M({{1, 3, 4, 5, 6}, {2}})

+M({{1, 3, 4, 2, 5, 6}})

=
1

4!

∑

σ∈S7

[[[[[[Cσ(1), Cσ(2)], Cσ(1)], Cσ(1)], Cσ(3)], Cσ(3)]

+
1

5!

∑

σ∈S7

[[[[[[Cσ(1), Cσ(2)], Cσ(1)], Cσ(1)], Cσ(2)], Cσ(2)]

+
1

5!

∑

σ∈S7

[[[[[[Cσ(1), Cσ(1)], Cσ(1)], Cσ(1)], Cσ(2)], Cσ(2)]

+
1

5!

∑

σ∈S7

[[[[[[Cσ(1), Cσ(2)], Cσ(1)], Cσ(1)], Cσ(1)], Cσ(1)]

+
1

6!

∑

σ∈S7

[[[[[[Cσ(1), Cσ(1)], Cσ(1)], Cσ(1)], Cσ(1)], Cσ(1)]

=
∑

i,j,k distinct

[[[[[[Ci, Cj], Ci], Ci], Ck], Ck] +
∑

i 6=j=k

[[[[[[Ci, Cj ], Ci], Ci], Ck], Ck]

+
∑

i=j 6=k

[[[[[[Ci, Cj ], Ci], Ci], Ck], Ck] +
∑

i=k 6=j

[[[[[[Ci, Cj], Ci], Ci], Ck], Ck]

+
∑

i=j=k

[[[[[[Ci, Cj ], Ci], Ci], Ck], Ck]

=

7∑

i=1

7∑

j=1

7∑

k=1

[[[[[[Ci, Cj ], Ci], Ci], Ck], Ck]
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=

7∑

i=1

7∑

k=1

[[[[[[Ci,

7∑

j=1

Cj], Ci], Ci], Ck], Ck]

∈
7∑

i=1

7∑

k=1

[[[[[[Ci,L≥2(logH)], Ci], Ci], Ck], Ck]

⊆L≥7(logH).

So
∑

S′<S M(S′)
L≥k+1(logH)

∼ 0 for this particular example.
For the general case, write S = {A1, . . . , As} with card(A1) = 1, then

∑

S′<S

M(S′)

=
∑

S′<S

∑

j∈{1,...,k+1}k

SP(j)=S′

[. . . [Cj1 , Cj2 ], . . . , Cjk ]

=
∑

(j1,...,jk)∈{1,...,k+1}k

ji=ji′ if i,i′ are in the same set of S

[. . . [Cj1 , Cj2 ], . . . , Cjk ]

=

k+1∑

i1=1

· · ·
k+1∑

is=1

[. . . [Cif(1) , Cif(2) ], . . . , Cif(k) ] where f(r) is defined by r ∈ Af(r).

=

k+1∑

i2=1

· · ·
k+1∑

is=1

[. . . [. . . [Cif(1) , Cif(2) ], . . . ,

k+1∑

i1=1

Ci1 ], . . . , Cif(k) ]

∈
k+1∑

i2=1

· · ·
k+1∑

is=1

[. . . [. . . [Cif(1) , Cif(2) ], . . . ,L≥2(logH)], . . . , Cif(k) ]

⊆ L≥k+1(logH).

Hence
∑

S′<S M(S′)
L≥k+1(logH)

∼ 0.

Using Equation (60), Lemma B.2 gives the following corollaries.

Corollary B.3. Let H be a subset of UT(n,Q). Suppose C1, . . . , Ck+1 ∈ L≥1(logH) and
∑k+1

i=1 Ci ∈
L≥2(logH). If a set partition S satisfies min(S) = 1, then

∑

S′<S

Φ(S′)
L≥k+1(logH)

∼ 0. (62)

Proof. For any τ ∈ Sk, we have that S′
τ < Sτ if and only if S′ < S. Therefore by Equation (60),

∑

S′<S

Φ(S′) =
∑

S′<S

∑

τ∈Sk

(−1)d(τ)

k2
(k−1
d(τ)

) ·M(S′
τ ) =

∑

S′
τ<Sτ

∑

τ∈Sk

(−1)d(τ)

k2
(k−1
d(τ)

) ·M(S′
τ )

=
∑

τ∈Sk

(−1)d(τ)

k2
(k−1
d(τ)

) ·
∑

S′
τ<Sτ

M(S′
τ )

L≥k+1(logH)
∼ 0.
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Corollary B.4. Let H be a subset of UT(n,Q). Suppose C1, . . . , Ck+1 ∈ L≥1(logH) and
∑k+1

i=1 Ci ∈

L≥2(logH). For any set partition S, the symmetric sum Φ(S) is equivalent under
L≥k+1(logH)

∼ to
a linear combination of Φ(S′) where min(IP(S′)) ≥ 2 (that is, every set in the partitions S′ has
cardinality at least two).

In other words, there exist integers αS′, where S′ ranges over all set partitions satisfying
min(IP(S′)) ≥ 2, such that

Φ(S)
L≥k+1(logH)

∼
∑

S′,min(IP(S′))≥2

αS′Φ(S′).

Proof. Corollary B.3 shows that if min(IP(S)) = 1, then under the equivalence
L≥k+1(logH)

∼ , we can
replace Φ(S) by−

∑
S′<S,S′ 6=S Φ(S′). Repeat this “coarsening” procedure for all Φ(S′), min(IP(S′)) =

1, for sufficiently many times, we can rewrite Φ(S) as a linear combination of expressions Φ(S′)
where min(IP(S′)) ≥ 2.

Define a partition-integer pair to be a pair (P, c), where P is an integer partition and c is a
number in set(P ). For a partition-integer pair (P, c), define the following symmetric sum.

M̂(P, c) := M(S),

where S is a set partition such that IP(S) = P , and 1 ∈ A ∈ S with card(A) = max(P ) and

2 ∈ A′ ∈ S with card(A′) = c. For example, a possible definition of M̂((3, 2, 1), 1) can be

M̂((3, 2, 1), 1) := M({{1, 3, 4}, {2}, {5, 6}})

=
1

4!

∑

σ∈S7

[[[[[[Cσ(2) , Cσ(7)], Cσ(2)], Cσ(2)], Cσ(4)], Cσ(4)]

=
∑

1≤i,j,k≤7,i,j,k distinct

[[[[[[Ci, Cj ], Ci], Ci], Ck], Ck].

Note that this definition a priori depends on the choice of the set partition S. However, under the

equivalence relation
L≥2(L≥2(logH))

∼ , different choices of S result in the same equivalence class. Indeed,
let j be a tuple whose associated set partition is S. By Lemma B.1, any exchange of order among
the elements j3, j4, . . . , jk will not change the equivalence class of [. . . [Cσ(j1), Cσ(j2)], . . . , Cσ(jk)], so
it will not change the equivalence class of M(j). This means that the equivalent class of M(S) does
not change when we permute the numbers 3, 4, . . . , k. For example, M({{1, 3, 4}, {2}, {5, 6}}) ∼
M({{1, 3, 5}, {2}, {4, 6}}), because

M({{1, 3, 4}, {2}, {5, 6}}) =
1

4!

∑

σ∈S7

[[[[[[Cσ(2), Cσ(7)], Cσ(2)], Cσ(2)], Cσ(4)], Cσ(4)]

L≥2(L≥2(logH))
∼

1

4!

∑

σ∈S7

[[[[[[Cσ(2) , Cσ(7)], Cσ(2)], Cσ(4)], Cσ(2)], Cσ(4)] = M({{1, 3, 5}, {2}, {4, 6}}).

Hence, the equivalent class of M(S) only depends on the integer partition IP(S) as well as the
cardinality of the sets where 1 and 2 belong. This is uniquely determined by the partition-cardinality
pair (P, c).
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Lemma B.5. Let H be a subset of G. Suppose C1, . . . , Ck+1 ∈ L≥1(logH) and
∑k+1

i=1 Ci ∈
L≥2(logH). For any set partition S satisfying min(IP(S)) ≥ 2, the symmetric sum M(S) is

equivalent (under ∼) to a linear combination of M̂(P, c), where (P, c) are partition-integer pairs
satisfying c 6= max(P ) and min(P ) ≥ 2.

In other words, there exist integers β(P,c), where (P, c) ranges over all partition-integer pairs
with c 6= max(P ) and min(P ) ≥ 2, such that

M(S) ∼
∑

(P,c)

β(P,c)M̂(P, c).

Proof. Write S = {A1, . . . , As} with card(A1) = max(IP(S)). By Lemma B.1, the equivalence
class of M(S) does not change when we permute the numbers 3, 4, . . . , k. We can therefore suppose
3 ∈ A1. Take any tuple j = (j1, . . . , jk) ∈ {1, . . . , k + 1}k with SP(j) = S. By the Jacobi identity,

[. . . [[Cσ(j1), Cσ(j2)], Cσ(j3)], . . . , Cσ(jk)] =

[. . . [[Cσ(j3), Cσ(j2)], Cσ(j1)], . . . , Cσ(jk)]− [. . . [[Cσ(j3), Cσ(j1)], Cσ(j2)], . . . , Cσ(jk)]. (63)

Summing up for σ ∈ Sk+1, the expression
∑

σ∈Sk+1
[. . . [[Cσ(j3), Cσ(j2)], Cσ(j1)], . . . , Cσ(jk)] is equiva-

lent to (k + 1− card(S))! · M̂(IP(S), c), with c = card(Ai) where j2 ∈ Ai. Similarly, the expression

∑

σ∈Sk+1

[. . . [[Cσ(j3), Cσ(j1)], Cσ(j2)], . . . , Cσ(jk)]

is equivalent to (k + 1− card(S))! · M̂ (IP(S), c′), with c′ = card(Ai′) where j1 ∈ Ai′ .

We claim that if c = max(IP(S)), then M̂(IP(S), c) ∼ 0. This is because, writing

M̂(IP(S), c) =
1

(k + 1− card(S))!

∑

σ∈Sk+1

[. . . [[Cσ(j3), Cσ(j2)], Cσ(j1)], . . . , Cσ(jk)],

if j2 ∈ Ai with card(Ai) = max(IP(S)), then swapping 2 and 3 in the set partition SP(j) does not
change its associated integer partition. Therefore, we have

M̂(IP(S),max(S′)) =
1

(k + 1− card(S))!

∑

σ∈Sk+1

[. . . [[Cσ(j3), Cσ(j2)], Cσ(j1)], . . . , Cσ(jk)] ∼

−
1

(k + 1− card(S))!

∑

σ∈Sk+1

[. . . [[Cσ(j2), Cσ(j3)], Cσ(j1)], . . . , Cσ(jk)] ∼ −M̂(IP(S′),max(S′)),

so M̂(IP(S),max(S)) ∼ 0. This proves that if c = max(IP(S)), then M̂(IP(S), c) ∼ 0.
Summing up Equation (63) for σ ∈ Sk+1, we conclude that

M(S) =
1

(k + 1− card(S))!

∑

σ∈Sk+1

[. . . [[Cσ(j1), Cσ(j2)], Cσ(j3)], . . . , Cσ(jk)]

= M̂(IP(S), c) − M̂(IP(S), c′)

is equivalent (under ∼) to a linear combination of expressions M̂(IP(S), c), where c 6= max(S).
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For any k, all partition-integer pairs satisfying c 6= max(P ) and min(P ) ≥ 2 can be effectively
listed. For example, when k = 5, there is only one pair ((3, 2), 2). When k = 7, there are three
pairs

((5, 2), 2), ((4, 3), 3), ((3, 2, 2), 2).

When k = 9, there are six pairs

((7, 2), 2), ((6, 3), 3), ((5, 4), 4), ((5, 2, 2), 2), ((4, 3, 2), 3), ((4, 3, 2), 2).

Combining Corollary B.4, Equation (60) and Lemma B.5, we obtain the following proposition.

Proposition B.6. Suppose C1, . . . , Ck+1 ∈ L≥1(logH) and
∑k+1

i=1 Ci ∈ L≥2(logH). Let m ≥ 2
and j = (j1, . . . , jm) ∈ {1, . . . , k + 1}m. The expression

∑
σ∈Sk+1

Hk(Cσ(j1), . . . , Cσ(jm)) is equiv-

alent (under ∼) to a linear combination of M̂(P, c), where (P, c) ranges over all partition-integer
pairs with c 6= max(P ) and min(P ) ≥ 2. Furthermore, this linear combination can be effectively
computed.

In other words, one can effectively compute rational numbers γ(P,c), such that

∑

σ∈Sk+1

Hk(Cσ(j1), . . . , Cσ(jm)) ∼
∑

(P,c)

γ(P,c)M̂(P, c).

Proof. By the Dynkin formula (Lemma 5.4), the expression
∑

σ∈Sk+1
Hk(Cσ(j1), . . . , Cσ(jm)) can be

rewritten into a linear combination of Φ(SP(j ′)), where j′ are subsequences (with possible repeti-
tion) of j. Then, Corollary B.4 shows that each Φ(SP(j′)) is equivalent (under ∼) to a linear combi-
nation of Φ(S′) with min(IP(S′)) ≥ 2. Next, Equation (60) shows that each Φ(S′),min(IP(S′)) ≥ 2
is equal to a linear combination of M(S′′) with min(IP(S′′)) ≥ 2. The condition min(IP(S′′)) ≥ 2
is due to the fact that for any τ ∈ Sk we have IP(Sτ ) = IP(S). Finally, by Lemma B.5,

each M(S′′),min(IP(S′′)) ≥ 2 is equivalent (under ∼) to a linear combination of M̂(P, c) with
c 6= max(P ) and min(P ) ≥ 2.

In summary, any expression
∑

σ∈Sk+1
Hk(Cσ(j1), . . . , Cσ(jr)) is equivalent to a linear combination

of M̂(P, c), where (P, c) ranges over all partition-integer pairs with c 6= max(P ) and min(P ) ≥ 2.
Furthermore, the proof of Corollary B.4, Equation (60) and Lemma B.5 give an effective procedure
that computes the coefficients of this linear combination.

The effective procedure of Proposition B.6 is summarized by Algorithm 2. Note that for the
algorithm we fix the integer k, so all set partitions in the algorithm refer to set partitions of k.

We can now give computer assisted proofs of Lemmas 5.7 - 5.10 based on Algorithm 2.

Proof of Lemma 5.7. (The SageMath [40] code can be found at https://doi.org/10.6084/m9.figshare.20124146.v1.)
Set k = 5. Using Algorithm 2 on the tuples (1, 2, 3, 4, 5, 6) and

j = (1, 2, 3, 4, 4, 5, 5, 6, 6, 1, 2, 3),

we get

∑

σ∈S6

H5(logBσ(1), . . . , logBσ(6)) ∼ M̂((3, 2), 2),

∑

σ∈S6

H5

(
logBσ(j1), . . . , logBσ(j12)

)
∼ −M̂((3, 2), 2).
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Algorithm 2: Find γ(P,c) where
∑

σ∈Sk+1
Hk(Cσ(j1), . . . , Cσ(jm)) ∼

∑
(P,c) γ(P,c)M̂(P, c)

Input: an integer k and a tuple j = (j1, . . . , jm) ∈ {1, . . . , k + 1}m.
Output: rational numbers γ(P,c), where (P, c) ranges over all partition-integer pairs with

c 6= max(P ) and min(P ) ≥ 2.
1. Compute rational numbers aS such that

∑

σ∈Sk+1

Hk(Cσ(j1), . . . , Cσ(jm)) =
∑

set partition S

aSΦ(S) (64)

in the following way:
(a) Initialize with aS := 0 for all set partitions S.
(b) For every tuple (i1, . . . , im) ∈ Zm

≥0 such that i1 + · · ·+ im = k, compute the sequence

ι := (j1, . . . , j1︸ ︷︷ ︸
i1

, j2, . . . , j2︸ ︷︷ ︸
i2

, . . . , jm, . . . , jm︸ ︷︷ ︸
im

)

and update aSP(ι) := aSP(ι) +
(k+1−card(SP(ι)))!

i1!···im! .
2. Compute rational numbers bS such that

∑

set partition S

aSΦ(S) =
∑

set partition S,

min(IP(S))≥2

bSΦ(S) (65)

in the following way:
(a) Initialize with bS := aS for all set partitions S.
(b) Order all set partitions S into S1, S2, . . . , Sp, such that if Sj < Si then j ≥ i.
(c) For i = 1, 2, . . . , p :

If min(IP(Si)) = 1, then update bSi
:= 0 and bSj

:= bSj
− bSi

for all Sj < Si.
3. Compute rational numbers gS such that

∑

set partition S,

min(IP(S))≥2

bSΦ(S) =
∑

set partition S,

min(IP(S))≥2

gSM(S) (66)

in the following way:
(a) Initialize with gS := 0 for all set partitions S,min(IP(S)) ≥ 2.
(b) For every set partition S and every permutation σ ∈ Sk, compute the set partition

Sσ :=
{
{σ(j) | j ∈ A}

∣∣∣ A ∈ S
}

and update gSσ
:= gSσ + bS · (−1)d(σ)

k2(k−1
d(σ))

(where d(·) denotes the number of descents).

4. Compute all partition-integer pairs (P, c) with c 6= max(P ) and min(P ) ≥ 2.
(To be continued in the next page)

Therefore,

∑

σ∈S6

H5(logBσ(1), . . . , logBσ(6)) +
∑

σ∈S6

H5(logBσ(j1), . . . , logBσ(j12)) ∼ 0.
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Algorithm 2: (continued)

5. Compute rational numbers γ(P,c) such that

∑

set partition S

min(IP(S))≥2

gSM(S) =
∑

(P,c)

c 6=max(P ),min(P )≥2

γ(P,c)M̂(P, c) (67)

in the following way:
(a) Initialize with γ(P,c) := 0 for all (P, c), c 6= max(P ) and min(P ) ≥ 2.
(b) For all set partitions S with min(IP(S)) ≥ 2:

i. If 1 ∈ A, card(A) = max(IP(S)) and 2 ∈ B, card(B) 6= max(IP(S)), then update
γ(IP(S),card(B)) := γ(IP(S),card(B)) + gS .

ii. If 1 ∈ A, card(A) 6= max(IP(S)) and 2 ∈ B, card(B) = max(IP(S)), then update
γ(IP(S),card(A)) := γ(IP(S),card(A)) − gS .

iii. If 1 ∈ A, card(A) 6= max(IP(S)) and 2 ∈ B, card(B) 6= max(IP(S)), then update
γ(IP(S),card(A)) := γ(IP(S),card(A)) − gS , γ(IP(S),card(B)) := γ(IP(S),card(B)) + gS .

6. Return the numbers γ(P,c).

Proof of Lemma 5.9. (The SageMath [40] code can be found at https://doi.org/10.6084/m9.figshare.20124113.v1.)
Set k = 7. Using Algorithm 2 on the tuples (1, 2, . . . , 8) and

j1 = (j1,1, j1,2, . . . , j1,16) = (1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 8, 8, 1, 2, 3, 4),

j2 = (j2,1, j2,2, . . . , j2,16) = (1, 2, 3, 4, 5, 4, 6, 7, 1, 2, 8, 3, 5, 6, 7, 8).

We get

∑

σ∈S8

H7(logBσ(1), . . . , logBσ(8)) ∼
34

15
M̂((5, 2), 2) −

34

45
M̂((4, 3), 3) +

68

15
M̂((3, 2, 2), 2),

∑

σ∈S8

H7

(
logBσ(j1,1), . . . , logBσ(j1,16)

)
∼

34

15
M̂((5, 2), 2) +

238

45
M̂((4, 3), 3) −

68

5
M̂((3, 2, 2), 2),

∑

σ∈S8

H7

(
logBσ(j2,1), . . . , logBσ(j2,16)

)
∼ −

68

15
M̂((5, 2), 2) +

34

45
M̂((4, 3), 3) −

34

5
M̂((3, 2, 2), 2).

Therefore,

∑

σ∈S8

H7(logBσ(1), . . . , logBσ(8)) +

2∑

s=1

αs

∑

σ∈S8

H7(logBσ(js,1), . . . , logBσ(js,16)) ∼ 0

with α1 =
1
15 , α2 = 8

15 .

Proof of Lemma 5.10. (The SageMath [40] code can be found at https://doi.org/10.6084/m9.figshare.20122979.v1).
Set k = 9. Using Algorithm 2 on the tuples (1, 2, . . . , 10) and

(j1,1, j1,2, . . . , j1,20) = (5, 4, 7, 10, 2, 8, 3, 8, 1, 9, 7, 6, 5, 6, 2, 3, 9, 10, 1, 4),

(j2,1, j2,2, . . . , j2,20) = (8, 3, 5, 7, 10, 6, 8, 2, 1, 10, 2, 4, 9, 1, 5, 9, 3, 6, 7, 4),
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(j3,1, j3,2, . . . , j3,20) = (7, 10, 2, 6, 4, 9, 6, 4, 1, 5, 3, 5, 1, 9, 3, 7, 10, 2, 8, 8),

(j4,1, j4,2, . . . , j4,20) = (10, 2, 2, 6, 7, 1, 9, 3, 9, 4, 8, 7, 8, 5, 5, 1, 4, 10, 6, 3),

(j5,1, j5,2, . . . , j5,20) = (3, 5, 10, 1, 4, 8, 6, 9, 3, 2, 7, 6, 1, 10, 9, 7, 2, 4, 5, 8),

(j6,1, j6,2, . . . , j6,20) = (4, 7, 2, 10, 2, 1, 3, 5, 8, 1, 6, 9, 10, 7, 6, 8, 3, 5, 9, 4).

We get

∑

σ∈S10

H9(logBσ(1), . . . , logBσ(10)) ∼
347

105
M̂((7, 2), 2) +

347

315
M̂((6, 3), 3)

+
347

105
M̂((5, 4), 4) +

1388

105
M̂((5, 2, 2), 2) −

347

21
M̂((4, 3, 2), 3) +

347

21
M̂((4, 3, 2), 2),

∑

σ∈S10

H9

(
logBσ(j1,1), . . . , logBσ(j1,20)

)
∼ −

347

105
M̂((7, 2), 2) +

21167

945
M̂((6, 3), 3)

−
4511

315
M̂ ((5, 4), 4) + 0 · M̂((5, 2, 2), 2) +

3817

63
M̂((4, 3, 2), 3) +

1735

63
M̂((4, 3, 2), 2),

∑

σ∈S10

H9

(
logBσ(j2,1), . . . , logBσ(j2,20)

)
∼

347

45
M̂((7, 2), 2) +

18391

945
M̂((6, 3), 3)

+
347

14
M̂((5, 4), 4) −

1388

315
M̂((5, 2, 2), 2) +

9022

63
M̂((4, 3, 2), 3) −

694

63
M̂((4, 3, 2), 2),

∑

σ∈S10

H9

(
logBσ(j3,1), . . . , logBσ(j3,20)

)
∼

16309

42
M̂((7, 2), 2) +

85709

630
M̂((6, 3), 3)

+
241859

1260
M̂((5, 4), 4) +

30883

126
M̂((5, 2, 2), 2) −

8675

63
M̂((4, 3, 2), 3) +

94037

630
M̂((4, 3, 2), 2),

∑

σ∈S10

H9

(
logBσ(j4,1), . . . , logBσ(j4,20)

)
∼

20473

210
M̂((7, 2), 2) −

314729

1890
M̂((6, 3), 3)

+
4511

140
M̂((5, 4), 4) +

137759

630
M̂ ((5, 2, 2), 2) −

23249

315
M̂((4, 3, 2), 3) +

33659

210
M̂((4, 3, 2), 2),

∑

σ∈S10

H9

(
logBσ(j5,1), . . . , logBσ(j5,20)

)
∼

347

210
M̂((7, 2), 2) +

35741

1890
M̂((6, 3), 3)

−
18391

1260
M̂((5, 4), 4) +

1041

70
M̂((5, 2, 2), 2) −

347

63
M̂((4, 3, 2), 3) +

1735

126
M̂((4, 3, 2), 2),

∑

σ∈S10

H9

(
logBσ(j6,1), . . . , logBσ(j6,20)

)
∼ −

1388

105
M̂ ((7, 2), 2) −

56561

945
M̂ ((6, 3), 3)

+
4511

126
M̂((5, 4), 4) −

3123

70
M̂ ((5, 2, 2), 2) −

28454

315
M̂((4, 3, 2), 3) −

51703

630
M̂((4, 3, 2), 2).

Therefore,

∑

σ∈S10

H9(logBσ(1), . . . , logBσ(10)) +
6∑

s=1

αs

∑

σ∈S10

H9(logBσ(js,1), . . . , logBσ(js,20)) ∼ 0

with α1 =
44566633
13702661 , α2 =

557040
13702661 , α3 = 205175

3915046 , α4 =
1307207
13702661 , α5 =

86275275
27405322 , α6 = 4105194

1957523 .
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