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Shortest Disjoint Paths on a Grid

Mathieu Mari∗ Anish Mukherjee† Micha l Pilipczuk‡ Piotr Sankowski§

Abstract

The well-known k-disjoint paths problem involves finding pairwise vertex-disjoint paths between k specified
pairs of vertices within a given graph if they exist. In the shortest k-disjoint paths problem one looks for such
paths of minimum total length. Despite nearly 50 years of active research on the k-disjoint paths problem,
many open problems and complexity gaps still persist. A particularly well-defined scenario, inspired by VLSI
design, focuses on infinite rectangular grids where the terminals are placed at arbitrary grid points. While the
decision problem in this context remains NP-hard, no prior research has provided any positive results for the
optimization version. The main result of this paper is a fixed-parameter tractable (FPT) algorithm for this
scenario. It is important to stress that this is the first result achieving the FPT complexity of the shortest
disjoint paths problem in any, even very restricted classes of graphs where we do not put any restriction on the
placements of the terminals.

1 Introduction

The k-disjoint paths problem has been actively studied for almost 50 years already [20]. It is also one of the key
problems studied in the algorithmic graph minor theory [44, 45, 46]. The problem can be formally defined as
follows: Given a graph G and a set of 2k vertices s1, t1, . . . , sk, tk called terminals, the goal is to find a set of k
vertex disjoint paths P1, . . . , Pk where each Pi joins si and ti, for i ∈ [k]. While we are primarily interested in the
vertex disjoint version here, the edge-disjoint version of this problem is very well studied as well. For a survey on
the extensive study on this problem see e.g., [24, 30].

Since the very beginning, the central application for this problem was VLSI design. Disjoint paths are not
only key primitive in this setup, but they also allow for some simplifications. As formalized by [50] for the case
of VLSI design, the problem can be considered on rectangular grid graphs. One of the earliest papers on this
topic proves NP-completeness of k-disjoint paths problem in the case of infinite rectangular grids [34]. In this
problem, we are given pairs of terminals with integer coordinates on an infinite grid and we only need to decide
whether vertex disjoint paths connecting these terminals exist. Some flaws in this paper have been later corrected
in [21]. Following these papers, the rectangular grid setup has been considered in numerous papers with additional
extensions or restrictions [28, 38, 27, 53]. For example, [3] extends the problem to multi-layer meshes where the
goal is to optimize both of the layers as well as their number. Pinter [42] studies routing disjoint paths on two
parallel lines and shows several structural and algorithmic results for this scenario. Tompa [51] previously studied
the minimization version of a similar problem where the paths must be separated by a fixed distance. In [29]
edge-disjoint paths in finite grids is studied where the terminals can be placed on the inner or the outer face of the
grid. An efficient algorithm for finding the edge-disjoint paths in a rectangular grid where the terminals lie on
the boundary of the grid is given in [39]. Multicommodity flow [23] and other flow problems [8] have also been a
subject of study in rectangular grids.

In more recent years, [41] proposes an algorithm for the shortest non-crossing rectilinear paths in a 2D grid
that avoid obstacles placed on the boundary of the grid. Whereas [25] study bounds on the path-pairability number
in an infinite grid number which is the largest value k for which there exist k edge-disjoint paths. A series of works
have made significant progress, especially in the context of grids [10, 13, 12], where the goal is to maximize the
number of demand pairs satisfied (a path Pi) by a set of disjoint paths.
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Despite this long line of effort, there are still many white areas in its complexity map – especially when the aim
is to find the shortest disjoint paths. In the shortest k-disjoint paths (also referred to as the min-sum k-disjoint
paths) problem we also want the total length of the solution to be minimized. This minimization problem is
of central importance within algorithmic graph theory and combinatorial optimization, as it finds applications
in many different contexts including VLSI design, transportation networks, as well as virtual circuit routing.
While the decision version discussed above is fairly well understood, the optimization version is not so much. In
particular, none of the papers mentioned above considered the optimization version of the problem introduced
in [34], i.e., computing the shortest disjoint paths on infinite grids. This is the cleanest setup that one can consider
for the general k case. Here we focus on the scenario where the given instance is an infinite grid and there is no
restriction on the placements of the terminals. The main result of this paper is an FPT algorithm for this setup.

Theorem 1.1. Given a set T = {(s1, t1), . . . , (sk, tk)} of k pairs of terminals placed arbitrarily on a grid, we can

find the shortest k-disjoint paths between T or attest that there is no feasible solution in time k2
O(k)

⋅O([T ]),
where [T ] is the number of bits required to encode T in binary.

To the best of our knowledge, no XP algorithm was even known before this work. It is important to stress that this
is the first result stating the FPT bound for the shortest disjoint path problem in any, even very restricted, classes of
graphs where we do not put any restriction on the placements of the terminals. In our opinion, it strongly indicates
that similar results shall hold for general planar graphs, as graph minor theory [46] identifies grids as the core com-
plex cases for planar graphs. Our result is obtained using a variant of the irrelevant vertex technique [46] where we
prove that vertices far away from all of the terminals can be removed, without modifying the length of the shortest
solution and reintroduced after the optimal solution was found. The irrelevant vertex technique has been previously
used for planar graphs [1]. However, to our knowledge, this is the first time that it has been used for the minimiza-
tion version of the problem. In general, the minimization version of the problem is challenging as it is already
W[1]-hard in general undirected graphs, parameterized by k, even when each path needs to be the shortest path [35].

Related works on disjoint paths. As indicated at the beginning, the classic disjoint paths problem is
NP-hard in general graphs [20], and remains so even in very restricted settings. When the graph is directed, the
problem is NP-hard for k = 2 [22]. It is one of Karp’s NP-hard problems [26] (when k is part of the input) and
remains so when restricted to planar graphs [37]. [40] extends this result to the edge-disjoint variant as well which
remains NP-hard even when the graph is planar and the terminals are incident on the outer face [49]. Furthermore,
the problem remains NP-hard even on grid graphs [34]. Marx [38] shows that the problem is NP-hard on a
rectangular grid even if the union of the supply and the demand graphs is Eulerian.

However, some positive results are also known for special classes of directed graphs such as in directed acyclic
graphs [22], in directed planar graphs [48], and in tournaments [9]. Robertson and Seymour study the k-disjoint
paths problem in a planar graph, where the terminals lie on the boundary of one or two faces [44] as part of the
celebrated Graph Minors series. They extended the results to graphs on a surface [45] to give a fixed-parameter
tractable (FPT) algorithm, where the parameter is the number k of terminal pairs, and later even to general
undirected graphs [46]. A solution to this problem was central to the Graph Minors Project and added to the
importance of the corresponding optimization version. The dependency on the number of vertices n has been
further improved in more recently [31]. Furthermore, improved FPT algorithms have been obtained in planar
graphs for various cases in recent years and this is still an active area of research, see e.g., [1, 16, 36, 54].

Significant progress has also been made in the approximation front to overcome the intractability. In
particular, for the version where one wants to maximize the number of demands that can be satisfied (i.e., an siti
path) recent works have focused on the cases where the given instance is a grid or planar graph and the sources
lie on the outer face and obtain improved upper bounds [10, 11, 12] as well as results on the hardness side [10, 14, 13].

Related works on optimization versions. The optimization variants of the k-disjoint paths problem are
considerably harder. A version of the problem is called length-bounded disjoint paths, where each of the paths
needs to have a length bounded by some integer b. This problem is NP-hard even when the k terminals (where
k is part of the input) lie on the outer face [52]. The problem of finding two disjoint paths, one of which is the
shortest path, is also NP-hard [18].

For the shortest k-disjoint paths problem that we focus on in this paper, where the goal is to minimize the total
length of the paths, very few instances are known to be solvable in polynomial time. For unrestricted placement
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of the terminals in a graph only positive result known is for k = 2. Namely, Björklund and Husfeldt [5] give a
randomized polynomial time algorithm in general undirected graphs. A deterministic polynomial time bound for
the same and also, for k ≥ 3 whether the problem admits a polynomial time solution remain as tantalizing open
questions.

In planar graphs, Colin de Verdière and Schrijver [15] and Kobayashi and Sommer [32] give polynomial time
algorithms for the shortest k-disjoint paths problem in some very special cases. An O(kn logn) time algorithm is
given in [15] for the case when the sources are incident on one face and the sinks on another. In [32] an O(n4 logn)
time and O(n3 logn) time algorithm is given when the terminal vertices are on one face for k ≤ 3 or on two faces
for k = 2, respectively. Borradaile et al. [6] give an O(kn5) time algorithm when the sources and the sinks lie
in sequence on the boundary of the outer face. The case where all the terminals lie on the outer face in any
order admits an FPT algorithm [17, 33]. Björklund and Husfeldt [4] presented a deterministic algorithm for k = 2
in subcubic planar graphs. On the negative side, Brandes et. al [7] show that the shortest edge-disjoint paths
problem is NP-hard even in max degree 4 planar graphs, that even fulfills the Eulerian condition.

For arbitrary k, a linear time algorithm is known for bounded tree-width graphs [47]. Polynomial-time
algorithms are also known through reducing the problems to the minimum cost flow problem when all the sources
(or sinks) coincide or when the terminal vertices lie on a face in the order s1, s2, . . . , sk, tk, . . . , t2, t1 [52]. Lochet
[35] considers the k-disjoint shortest paths problem where the goal is to find k vertex-disjoint paths each of which

is the shortest path and gives an XP-algorithm running in time nO(k5k ) in an n vertex graph and also show
W[1]-hardness. Another related problem, called shortest non-crossing walks was studied in planar graphs [19],
which presents an FPT algorithm parameterized by the number of faces the terminals lie on.

1.1 Technical Overview Suppose we are given a set of 2k terminals in an infinite grid and that there exists
a family P of disjoints paths connecting each pair of terminals, such that the sum of the lengths of the paths
in P is minimum. The goal of our algorithm is to “guess” this solution P. By guessing, we mean that the
algorithm will enumerate all possible ways of connecting the terminals, and return the one with minimum total
length. Of course, in an infinite grid, there is a priori infinitely many potential solutions. To reduce the number
of solutions to enumerate, we show that P can be locally transformed into another solution of minimum total
length that does not use a specific set of vertices of the grid, called irrelevant vertices, whose location only
depends on the position of the terminals. This is formalized in our Structural Lemma, proved in Section 3.4.
For an illustration of the irrelevant vertices, see Fig. 2. There are two types of irrelevant vertices. The first
type are the vertices that are outside a bounding box of the terminals, whose border is at distance Θ(2k) from
the extreme terminals. The second type are the vertices inside the bounding box that are at distance Θ(k2k)

from the horizontal and vertical lines containing the terminals. Thanks to the structural lemma, we can thus
already considerably reduce the number of solutions to enumerate. However, the number of non-irrelevant
vertices may still be as large as Θ(k2k ⋅L) where L is the maximum distance between two terminals, which can
be arbitrarily larger than any function of k. Then, to further reduce the exploration space, we show that the
subpaths of an optimal solution, that are induced by vertices that are “far” from the terminals, are actually
shortest paths. Intuitively, there is no benefit for a path to do a “U-turn” far from the terminals, or equivalently,
the only reason for a path to do a U-turn is to bypass a terminal. This is formalized in Lemma 3.4. Hence,
since the parts of the sought solution that are far from the terminals consist of a union of shortest paths,

we show that it is actually enough to guess their endpoints. Overall, we have reduced the number of guesses to k2
O(k)

.

Organization After some preliminaries in Section 2, we prove the Structural Lemma in Section 3 and describe
our algorithm in Section 4. We conclude in Section 5 with some open questions.

2 Preliminaries

For two integers x, y with x ≤ y, we denote [x, y] = {z ∈ Z ∣ x ≤ z ≤ y}. For a set S ∈ Z2, we denote S ∶= {u ∈ Z2 ∣ u ∉

S} the complement of S. Given two sets of integers A,B, we denote X × Y = {(x, y) ∈ Z2 ∣ x ∈X,y ∈ Y } ⊆ Z2 the
cartesian product of X and Y .

A vertex is a point u = (x(u), y(u)) ∈ Z2, where x(u) is the x-coordinate of u, and y(u) is its y-coordinate.
Given two vertices u, v, we denote by d(u, v) = ∣x(u) − x(v)∣ + ∣y(u) − y(v)∣ their (Manhattan) distance. Given a
vertex u and a set of vertices S, we denote d(u,S) = minv∈S d(u, v). A path is a sequence of vertices (u0, . . . , us)
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Figure 1: A routing. The colored vertices represent the pairs of terminals.

such that for all i, i = 0, . . . , s− 1, we have d(ui, ui+1) = 1. The length of a path P = (u0, . . . , us) is `(P ) = s, and its
endpoints are the vertices u0 and us. We say that P connects u and v, if P is a path and u and v are its endpoints.
We say that two paths P and P ′ are disjoint if P ∩ P ′ = ∅.

Definition 2.1. (The k-SPG problem.) We are given a set of 2k vertices T = {s1, t1, . . . , sk, tk} called
terminals organized into pairs. A routing of T is a family P = (P1, . . . , Pk) of pairwise-disjoint paths such
that for each i ∈ [1, k], the path Pi connects si and ti. The length of a routing is the sum of the lengths of the paths
`(P) ∶= ∑

k
i=1 `(Pi). The goal is to compute an optimal routing of T , i.e., a routing with minimum total length or

attests that there is no routing of T .

Paths. We say that a path P = (u0, . . . , us) is simple if for every i, j ∈ [0, s] such that ∣i − j∣ ≥ 2, we have
d(ui, uj) ≥ 2. It is not difficult to see that if a solution of k-SPG exists, then all its paths are simple. Otherwise,
we could replace a non-simple path P of the routing with a strictly shorter path whose vertices are a strict subset
of the vertices of P . Notice that if P is a simple path, then P can simply be given as a set of vertices. Indeed,
each internal vertex has exactly two vertices at distance 1, so there are exactly two manners (that correspond to
both orientations) to order the vertices of a path. Thus, in this paper, to simplify, we often interpret P as a set of
vertices, non-necessarily ordered. In particular, we say that P ⊆ Z2 is a path if vertices of P can be ordered such
that the corresponding sequence is a path. Given a simple path P , we say that Q is a subpath of P if Q ⊆ P and
Q is a path.

Given a path P and a S ⊆ Z2, we say that Q is a hair of P in S if Q ⊆ P ∩ S, Q is a path, and there is no
path Q′ ⊆ P ∩ S, such that Q is a strict subset of Q′. It is easy to see that the hairs of P in S form a partition of
P ∩ S. If P is a routing, then the hairs of P in S is the union of all hairs of P in S, for all P ∈ P. We say that a
path P (a routing P) uses a vertex u if P (there is a path P ∈ P that, resp.) contains u.

3 Structural Lemma

In this section, we present our structural lemma on which is based our algorithm. The lemma says there is a way
of “re-arranging” a routing, in a way that the total length does not increase, and the new routing does not use any
vertex from a specific set of vertices, called irrelevant vertices, which depends only on the position of the terminals.

There are two types of irrelevant vertices: the ones that are not outside a specific bounding box of the terminals;
and the ones that are contained inside the bounding box, but whose x- and y-coordinates are distant enough for
the coordinates of the terminals. See Fig. 2 for an illustration.

We now define precisely these sets. Let T = {s1, t1, . . . , sk, tk} be a set of 2k terminals. Let

BT ∶= [xmin − 2k+1, xmax + 2k+1] × [ymin − 2k+1, ymax + 2k+1],

where xmin, xmax, ymin, ymax denote the minimum and maximum x and y coordinates in T . Let HT and VT
respectively denote the set of the horizontal and vertical lines that contain a terminal. Formally,

HT ∶= ⋃
t∈T

{u ∈ Z2
∣ y(u) = y(t)} and VT ∶= ⋃

t∈T
{u ∈ Z2

∣ x(u) = x(t)}.
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2k+1

2k+1

2k+1

2k+1

(4k + 5)2k

Irrelevant vertices

BT

ZT ZT

ZTZT

BT

Figure 2: The set of irrelevant vertices is represented by red-shaded areas. Black points are terminals. We prove
that there is an optimal routing that does not use any irrelevant vertex.

Let ZT ∶= {u ∈ Z2 ∣ d(u,VT ∪HT ) > (4k + 5)2k}. We call BT ∪ZT the set of irrelevant vertices for T .

Lemma 3.1. (Structural Lemma) If there exists a routing of a set of terminals T , then there exists an optimal
routing of T that does not use any irrelevant vertex.

In the rest of the section, we prove Lemma 3.1. In the whole section we fix a set T = {s1, t1, . . . , sk, tk} of 2k
terminals, and we suppose that there exists a routing P = (P1, . . . , Pk) of T (otherwise there is nothing to prove).
Without loss of generality, we assume that all paths in P are simple. We construct a routing P ′ = (P ′

1, . . . , P
′
k) such

that `(P ′) ≤ `(P) and for all i ∈ [1, k], P ′
i ⊆ BT ∖ZT . To achieve this, we use two shortening strategies presented

in Section 3.1. The idea is that if there exists a set W of vertices with some special properties (see Definitions 3.1
and 3.2), then we are able to shorten the solution by re-arranging the routing locally around W .

Then, in Section 3.2, we study the intersection of P routing with some special subsets of vertices called strips.
We show that if P has some hairs in the strip that are not shortest paths, then we can locate and apply one of the
two shortening operations, in order to reduce the length of the routing. We show that this implies that vertices
outside the bounding box BT are indeed irrelevant. Next, in Section 3.3, we introduce a technique that consists of
modifying a routing, without modifying its length, by “pushing-down” its paths; and prove some useful properties
of pushed-down routings.

Finally, in Section 3.4, we complete the proof of the structural lemma, by showing that if a pushed-down
routing uses some irrelevant vertex in ZT , then we can again locate and apply one of our shortening strategies.

3.1 Shortening a routing We first present a rather straightforward shortening strategy, called simple shortcut,
and then present a more involved shortening strategy that relies on the existence of a shortenable window.

Definition 3.1. (Simple Shortcut) We say that a routing P has a simple shortcut if there exists a path P ∈ P

and two vertices u, v ∈ P such that:

1. x(u) = x(v) or y(u) = y(v),

2. d(u, v) ≥ 2,

3. no vertices in the (unique) shorter path from u to v (except u and v) belong to a path in P.
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v
u

u′

v′

Figure 3: A non-optimal routing. This is attested
by the presence of two simple shortcuts (dashed
segments).

W

≥ 2k + 1

2k

Figure 4: A routing with a horizontal shortenable
window (here, k = 3).

It is clear that if a routing has a simple shortcut, then it is not optimal. Indeed, replacing the subpath of P
between u and v by the shortest path between u and v creates a strictly shorter routing (see Fig. 3).

Let us now present the second, this time non-trivial, way of shortening a routing. A window is a set of vertices
[x−, x+] × [y−, y+] ⊂ Z2 for some integers x−, y−, x+, y+ such that x− < x+ and y− < y+.

Definition 3.2. Given a routing P of T , we say that a window W = [x−, x+]× [y−, y+] is horizontally shortenable
(with respect to P) if the following conditions hold:

(a) the height is y+ − y− + 1 = 2k,

(b) the width is x+ − x− ≥ 2k + 1, and

(c) for each integer y ∈ [y−, y+], the set [x−, x+] × {y} is a subpath of some path in P.

See Fig. 4 for an illustration. We define vertically shortenable windows symmetrically. A window is shortenable if
it is either vertically shortenable or horizontally shortenable.

Lemma 3.2. If P is a routing of T , and W is a shortenable window with respect to P, then there exists a routing
P ′ of T with `(P ′) < `(P).

In particular, this implies that an optimal solution has no shortenable windows. The proof is highly inspired
by a technique introduced in [2], sometimes referred to as the “reflection trick”. The plan of the proof is to first
identify a sub-window W ′ ⊂W that has the property that each path in P intersects W ′ an even number of times.
Then, we delete the subpaths of P that are in W ′ and then reconnect the disconnected terminals by adding
pairwise disjoint paths in W ′ of strictly shorter total length.

To identify W ′, we use the following combinatorial result. A word on an alphabet A, is an ordered sequence
a1 . . . an (with possibly repetitions), where for all i ∈ [1, n], ai ∈ A. A subword of a word a1 . . . an is a word of the
form ai . . . aj , with 1 ≤ i ≤ j ≤ n. A word is even if each letter appears an even number of times.

Lemma 3.3. Let w = a1 . . . an be a word of length n on an alphabet A. If n ≥ 2∣A∣, then w has an non-empty even
subword.

We remark that the bound 2∣A∣ on the size of w is tight. Indeed, for each n ≥ 1, there is a word wn of length
2n − 1 on the alphabet {1, . . . , n} that does not have any even subword.1

Proof. [Proof of Lemma 3.3.] Without loss of generality, we assume that A = {1, . . . ,m}. We define
f ∶ {0,1, . . . , n} → {0,1}m such that for each i ∈ [1, n], and each a ∈ A, the a-th coefficient of f(i) is 1 if
and only if a appears an even number of times in the prefix a1 . . . ai. If n ≥ 2m, then by the pigeonhole principle,
there exist two distinct indices i, j with 0 ≤ i < j ≤ n, such that f(i) = f(j). It is easy to see that the subword
ai+1 . . . aj is even, and not empty.

1define recursively wm = wm−1mwm−1.
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W ′ W ′

Figure 5: Shortening a routing via a shortenable window. All hairs of the window W ′ are replaced by new pairwise
disjoint paths inside W ′ connecting the same terminals. After these steps, some subpaths outside W ′ are no longer
needed and are removed from the routing.

We treat the case when W is horizontal; the other case is symmetric. Notice that the sequence of hairs of
P in W from top to bottom can be seen as a word where each letter corresponds to a path in P (or a pair of
terminals). We deduce from Lemma 3.3 that there exist two integers y− < y+ such that for each path P ∈ P, the
number of hairs of P in the window W ′ ∶=W ∩ {(x, y) ∣ x ∈ Z, y ∈ [y−, y+]} is even. To facilitate the presentation,
we assume that W ′ = [0, h] × [0, `]. Notice that h is necessarily an odd number. Since W is a shortenable window,
we know that ` ≥ 2k + 1.

Let L = {(0, y) ∣ y ∈ Z,0 ≤ y ≤ h} and R = {(`, y) ∣ y ∈ Z,0 ≤ y ≤ h} be the left side and the right side of W ′,
respectively. For each path P ∈ P , let n(P ) ∶= ∣P ∩ (L ∪R)∣ that corresponds to the number of times that P enters
or leaves W ′. Notice that for each P ∈ P , n(P ) is a multiple of 4, and let n′(P ) = n(P )/4. Let P [1], . . . , P [n(P )]

denote the intersection vertices of P with L ∪R ordered in increasing distance (along P ) from the source of P .
In particular, for each j ∈ [1, n(P ) − 1] the subpath of P between P [j] and P [j + 1] is contained in W ′ (in

W ′) if and only if j is odd (even, resp.). To construct P ′, we replace, for each P ∈ P and each i ∈ [1, n′(P )], the
subpath of P between P [4i−3] and P [4i] by a subpath Qi

P (with endpoints P [4i−3] and P [4i]) that is contained
in W ′. We will ensure that these new paths are pairwise disjoint. This is illustrated in Fig. 5.

The key property to guarantee that new paths are pairwise-disjoint is to show that vertices on L ∪R to be
reconnected are pairwise non-crossing in the following sense.

Let us order the vertices in L ∪R as follows:

(0,0) ≺ (0,1) ≺ ⋅ ⋅ ⋅ ≺ (0, h) ≺ (`, h) ≺ (`, h − 1) ≺ ⋅ ⋅ ⋅ ≺ (`,0).

We say that two pairs of vertices in L ∪R are crossing if no two vertices from the same pair are consecutive (in
the ordered sequence that corresponds to these four vertices). Intuitively, two pairs of vertices are crossing, if any
two topological paths connecting the pairs are intersecting. See Fig. 6.

Claim 3.1. Let P,P ′ be any two paths in P (with possibly P = P ′), and let i, i′ be two integers such that
1 ≤ i ≤ n′(P ) and 1 ≤ i′ ≤ n′(P ′). Then, the pairs (P [4i − 3], P [4i]) and (P ′[4i′ − 3], P ′[4i′]) are non-crossing.

Proof. We first remark that (P [4i−3], P [4i]) and (P ′[4i′−3], P ′[4i′]) are crossing if and only if (P [4i−2], P [4i−1])
and (P ′[4i′ − 2], P ′[4i′ − 1]) are crossing. Indeed, the pairs (P [4i − 2], P [4i − 1]) and (P ′[4i′ − 2], P ′[4i′ − 1]) are
obtained by vertical symmetry from the pairs (P [4i − 3], P [4i]) and (P ′[4i′ − 3], P ′[4i′]); a vertical symmetry
results in inverting the order of the vertices of L ∪R; and the defining of crossing is invariant by inverting the
order.

Let H be the subpath of P that connects P [4i − 2] and P [4i − 1]. Similarly, let H ′ be the subpath of P ′ that
connects P ′[4i′ −2] and P ′[4i′ −1]. The paths H and H ′ are outside W , except their endpoints (that are in L∪R).
If (P [4i − 2], P [4i − 1]) and (P ′[4i′ − 2], P ′[4i′ − 1]) are crossing, then using the Jordan curve theorem, we obtain
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W ′

L

R

Figure 6: In this example, the green pair is
crossing with the red pair and with the blue pair.
However, the blue pair and the red pair are not
crossing; this is the case since red vertices are
between the blue vertices, according to the order
(arrows) defined on L ∪R.

W ′

L RP [4i− 3] P [4i− 2]

P [4i− 1]P [4i]

P ′[4i′ − 3]P ′[4i′ − 2]

P ′[4i′] P ′[4i′ − 1]

P ′

P
H

H ′

Figure 7: This situation is impossible. If (P [4i −
3], P [4i]) (red) and (P ′[4i′−3], P ′[4i′]) (green) are
crossing (gray dashed lines), then by symmetry,
(P [4i − 2], P [4i − 1]) and (P ′[4i′ − 2], P ′[4i′ − 1])
are also crossing, which implies that H and H ′ (and
thus also P and P ′) are not disjoint.

that H and H ′ are non-disjoint (see Fig. 7). This can also be seen by observing that there is a continuous function
of the plane that maps W ′ to W ′ and that preserves the boundary of W ′; thus crossing crossing inside W ′ implies
a crossing outside W ′. Thus our assumption contradicts the fact that P is a routing. Hence, (P [4i − 3], P [4i])
and (P ′[4i′ − 3], P ′[4i′]) are non-crossing.

We now construct a family of paths {Qi
P ∣ P ∈ P, i ∈ [1, n′(P )]}. Let

L ∶= {(P, i) ∣ P ∈ P, i ∈ [1, n′(P )], P [4i − 3] ∈ L and P [4i] ∈ L},

R ∶= {(P, i) ∣ P ∈ P, i ∈ [1, n′(P )], P [4i − 3] ∈ R and P [4i] ∈ R},

M ∶= {(P, i) ∣ P ∈ P, i ∈ [1, n′(P )], P [4i − 3] ∈ L and P [4i] ∈ R or vice-versa}.

To define the paths, we first need to define the level of each element of these families. Intuitively, when reconnecting
the disconnected terminals, we use paths that are “nested” in each other. This induces an ordering of the pairs,
formally captured by the notion of levels, defined below, that enables us to precisely define the new paths.

We define the level of elements in L recursively as follows. Let (P, i) ∈ L. If there is no (P ′, i′) ∈ L such that

(3.1) P ′
[4i′ − 3] and P ′

[4i′] are between P [4i − 3] and P [4i],

then l(P, i) = 1. Otherwise, l(P, i) = 1+max(l(P ′, i′)) where the max is over all elements (P ′, i′) ∈ L such that (3.1).
We define levels of elements of R similarly. Let lmax and rmax be the maximum levels in L and R, respectively.

We now define the levels of elements in M. Let (P, i) ∈ M. The level of (P, i) is l(P, i) ∶= 1 + n
where n is the number of elements (P ′, i′) ∈ M such that y(p) is between y(P [4i − 3]) and y(P [4i]) where
p = {P ′[4i′ − 3], P ′[4i′]} ∩L.

We can now construct the paths.

• For each (P, i) ∈ L, we define Qi
P as the path that connects P [4i − 3] and P [4i] with corners

(l(P, i), y(P [4i − 3])) and (l(P, i), y(P [4i])).

• For each (P, i) ∈ R, we define Qi
P as the path that connects P [4i − 3] and P [4i] with corners

(` − l(P, i), y(P [4i − 3])) and (` − l(P, i), y(P [4i])).

• For each (P, i) ∈ M, we define Qi
P as the path that connects P [4i − 3] and P [4i] with corners

(lmax + l(P, i), y(P [4i − 3])) and (lmax + l(P, i), y(P [4i])).
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Figure 8: Monotone paths. The red path is (⌞⌝)-
monotone, while the green one is (⌜⌟)-monotone.

case 1.

case 2.

case 3.

case 4.

u1

u1

u1

u1

v1

v1

v1

v1

Figure 9: Non-monotone paths.

It is not difficult to see that these paths are pairwise disjoint and that they are contained in W ′ (see Fig. 5).
We can now formally construct the new routing P ′. For each path P ∈ P that intersects W , and for 0 ≤ i ≤ n′(P ),

we replace the subpath of P from P [4i − 3] to P [4i] by Qi
P . We have shown that P ′ is a routing, and it is clear

that its length is strictly smaller than the length of P (this follows from the fact that in W ′ some vertices are not
used by any path in P ′, while all vertices in W ′ are used by P). This complete the proof of Lemma 3.2.

3.2 Monotone Hairs in Strips Given a path P = (u0, . . . , us), we say that a vertex ui ∈ P is a corner of P if
1 ≤ i ≤ s − 1 and if the vertices ui−1 and ui+1 have distinct x-coordinates and distinct y-coordinates. There are
four types of corners : ⌞,⌜,⌝ and ⌟ (see e.g. vertices denoted by letters u and v on Fig. 9). We denote ⌞(P ) the
subset of P that corresponds to ⌞-corners of P . We define similarly ⌜(P ),⌝(P ) and ⌟(P ).

We say that a simple path P = (u0, . . . , us) is monotone if it is the shortest path between its endpoints. On a
grid, a path P is a shortest path if and only if either (i) ⌞(P ) = ∅ and ⌝(P ) = ∅, or (ii) ⌜(P ) = ∅ and ⌟(P ) = ∅

(see Fig. 8). We refer to the former type as (⌜⌟)-monotone and the latter as (⌞⌝)-monotone. The subpath of P
between two consecutive corners is called a segment of P .

We say that a set S of vertices is connected if for each pair of vertices in S, there exists a path in S
that connects them. A connected component of S is a maximal (for inclusion) connected subset of S. Recall
that HT and VT respectively denote the set of the horizontal and vertical lines that contains a terminal. Let
Sv = {u ∈ Z2 ∣ d(u,VT ) ≥ 2k+1 + 1}. We refer to the connected components of Sv as vertical strips. Similarly, we
refer to the connected components of Sh ∶= {u ∈ Z2 ∣ d(u,HT ) ≥ 2k+1 + 1} as horizontal strips. A subset of vertices
is a strip if it is either a horizontal strip or a vertical strip. We remark that any vertex in a strip is at a distance
at least 2k+1 + 1 from any terminal.

Lemma 3.4. Let P be a routing of T . Suppose that there is a strip S and a path P ∈ P such that a hair of P in S
is not monotone. Then, P has either a simple shortcut or a shortenable window.

Proof. We treat the case when S is a horizontal strip. The other case is symmetric. Again, we assume without
loss of generality that paths in P are simple. Suppose that there exists a hair P1 in S that is not monotone. This
implies that P1 has two consecutive corners u1 and v1 such that one of the following conditions holds.

Case 1. u1 is a ⌜-corner and v1 is a ⌝-corner.

Case 2. u1 is a ⌟-corner and v1 is a ⌝-corner.

Case 3. u1 is a ⌞-corner and v1 is a ⌟-corner.

Case 4. u1 is a ⌞-corner and v1 is a ⌜-corner.

See Fig. 9. Cases 1 and 3 are symmetrical, and so are cases 2 and 4. We first treat case 1 and then case 2.
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2k+1
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v2
v3
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Figure 10: Proof of case 1 (Lemma 3.4). We identify a shortenable window W in the case that the routing has a
non-monotone hair (opaque green path) with respect to a strip (light blue area). To show the existence of this
window, we construct a long enough nested sequence of non-monotone subpaths or show that there exists a simple
shortcut.

Proof in case 1. We assume that P does not have any simple shortcut and we construct a horizontal
shortenable window for P. Notice that we have x(u1) < x(v1) and y(u1) = y(v1). We show by induction that

there exist vertices (ui)
2k+1

i=1 and (vi)
2k+1

i=1 such that, for all i ∈ [1,2k+1], it holds that

(i) ui and vi are two consecutive corners of some path Pi in P,

(ii) ui is a ⌜-corner and vi is a ⌝-corner,

(iii) if i ≥ 2, then y(ui) = y(vi) = y(ui−1) − 1 and x(ui−1) + 1 ≤ x(ui) < x(vi) ≤ x(vi−1) − 1.

See Fig. 10. The case i = 1 is true by assumption. Suppose that we have constructed u1, . . . , ui−1 and v1, . . . , vi−1
that satisfy conditions (i)-(iii) for some i ∈ [2,2k+1]. Let u = (x(ui−1), y(ui−1) − 1) and v = (x(vi−1), y(vi−1) − 1).
As ui−1 and vi−1 are respectively ⌜-corner and ⌝-corner of Pi−1, u and v are in Pi−1. Since by assumption, there
is no simple shortcut, the shortest path between them (red dashed line in Fig. 10) must contain a vertex from
another path Pi ∈ P (see Definition 3.1). Notice that Pi ≠ Pi−1, since Pi is simple.

Let ui denote the leftmost point on Pi∩{(x, y(u)) ∣ x(u) < x < x(v)}. We claim that ui is a ⌜-corner of Pi. First,
assume that ui is a terminal. Then, we know by applying (iii) recursively, that the vertex w = (x(ui), y(ui)+ i− 1)
belongs to P1, and we have d(w,ui) = i − 1 < 2k+1. But by assumption, P1 is contained in a strip, which by
definition, implies that d(w,T ) ≥ 2k+1. Thus, ui is not a terminal, and since Pi and Pi−1 are disjoint, ui is
necessarily a ⌜-corner of Pi. Now, let vi ∈ Pi be the corner of Pi consecutive to ui such that y(vi) = y(ui). Since
Pi and Pi−1 are disjoint, vi is necessarily a ⌝-corner and is contained in C. We have established the recurrence.

Let (ui)
2k+1

i=1 and (vi)
2k+1

i=1 the sequences of vertices obtained. We define W = [x(u2k), x(v2k)] × [y(u1), y(u2k)].
We claim that W is a horizontal shortenable window for P (see Definition 3.2). Indeed, by (iii), we have
y(u2k) = y(u1) − 2k + 1, so the height of the window is 2k. Moreover, by (iii), we have

x(v2k) − x(u2k) ≥ 2 + x(v2k+1) − x(u2k+1) ≥ ⋅ ⋅ ⋅ ≥ 2 ⋅ 2k + x(v2k+1) − x(u2k+1) ≥ 2k + 1.

Hence, the width of the window is at least 2k + 1. Finally, it follows from (iii) that for all i ∈ [1, 2k], x(ui) ≤ x(u2k)

and x(vi) ≥ x(v2k). Using (i) and (iii), we know that the segment from ui to vi is a subpath of Pi ∈ P, and that
these subpaths cover W completely. Thus, W is a horizontal shortenable window, what we wanted to prove.
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Figure 11: Proof of case 2 (Lemma 3.4). In an optimal routing, no hair of a horizontal strip can be “vertically”
non-monotone (case 2 and 4 in Figure 9). That would imply there is a terminal (vertex ut) contained in a strip
(blue area), which is impossible by the definition of a strip.

Proof in case 2. We show that P has a simple shortcut. Suppose for a contradiction that this is not the
case. Similar to case 1, we construct two sequences of vertices (ui)

t
i=1 and (vi)

t
i=1, for some integer t ≥ 1 such that,

ut = vt is a terminal and for all i ∈ [2, t],

(i) if i < t, then ui and vi are two consecutive corners of some path Pi in P;

(ii) if i < t, then ui is a ⌟-corner and vi is a ⌝-corner;

(iii) x(ui) = x(vi) = y(ui−1) − 1 and y(ui−1) + 1 ≤ y(ui) ≤ y(vi) ≤ x(vi−1) − 1.

See Fig. 11. By (iii), we deduce that y(u1) < y(ut) < y(v1). This implies that ut ∈ S, which is a contradiction
with the fact that a strip does not contain any terminal. This shows that in case 2, P necessarily has a simple
shortcut. This concludes the proof of Lemma 3.4.

With Lemma 3.4, we can already show that there vertices outside the bounding box BT are not used by any
optimal routing. Recall that BT = [xmin −2k+1, xmax +2k+1]× [ymin −2k+1, ymax +2k+1] where xmin, xmax, ymin, ymax

denote the maximum and minimum x- and y-coordinates in T .

Corollary 3.1. Let G be a routing that uses a vertex u ∉ BT . Then, P is not optimal.

Proof. See Fig. 12. The complement of BT is contained in the union of four strips. Suppose without loss of
generality that u is contained in the strip S = {v ∈ Z2 ∣ y(v) ≥ ymax + 2k+1}. Let P ∈ P be the path that contains
u. Since P connects two terminals, that are inside BT (and thus also outside S), it has to intersect the set
{z ∈ Z2 ∣ y(z) = ymax + 2k+1} in at least two vertices v and w, such that the subpath of P that connects v and w
contains u. This subpath is a hair with respect to S and is not monotone. Thus, by Lemma 3.4, either P has a
simple shortcut or has a shortenable window. In both cases, we deduce using Lemma 3.2 that P is not optimal.

3.3 Pushed-down routing We say that a vertex is a top-corner of a path if it is either a ⌝-corner or a ⌜-corner.
Given a ⌜-corner u of a path, we say that the vertex (x(u) + 1, y(u) − 1) is the inside vertex of u. We define
symmetrically the inside vertex of a ⌝-corner. See Fig. 13.
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2k+1
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non-monotone hair
Horizontal strip

w
v

u

Figure 12: Vertices that are not in BT are irrelevant: if a routing uses one of these vertices, then this routing is
not optimal. Otherwise, there would be a non-monotone hair in one of the extreme strips, which would contradict
Lemma 3.4.

Figure 13: The red points indicate the inside vertex
or their corresponding top-corner (black points).

↖(t)

t

u

v

P

P ′

Figure 14: Proof of Lemma 3.5. The orange dot is a
terminal t, and the set of dots represents the set ↖(t).
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Definition 3.3. (Pushed-down Routing) We say that a routing P is pushed-down if the inside vertex of
every top-corner in P is on some path in P.

The routing shown in Fig. 1 is pushed-down.

Observation 3.1. If there is a routing P of T , then there exists a pushed-down routing P ′ for T with the same
length as P.

Proof. Suppose that there is a path P = (u0, . . . , us) ∈ P that has a top-corner ui, for some i with 1 ≤ i ≤ s−1, such
that its inside vertex u′i is not contained in any path in P . Then, replace P by the path (u0, . . . , ui−1, u

′
i, ui+1, . . . , us).

This new family of paths is a routing and has the same length. Repeat this swap until for each top-corner, the
corresponding inside vertex is in some path of the routing. We now argue that this procedure eventually stops.
Indeed, defining the potential of a routing as the sum of the y-coordinates of the vertices of the paths in the
routing. Then, each swap diminishes the potential by one. This implies that the shortest routing with minimum
potential is pushed-down.

Given a vertex t, we denote ↖(t) ∶= {(x(t) − i, y(t) + i), i ∈ N} ⊂ Z2 and ↗(t) ∶= {(x(t) + i, y(t) + i), i ∈ N} ⊂ Z2.
See Fig. 14.

Lemma 3.5. Let P be a pushed-down routing with simple paths. If u is a ⌜-corner (a ⌝-corner) of some path
P ∈ P, then there exists a terminal t ∈ T , such that u ∈↖(t) (u ∈↗(t), resp.).

Proof. We only treat the case when u is a ⌜-corner, the other case is symmetric. See Fig. 14 for an illustration
of the proof. Let v denote the inside vertex of u. Since P is pushed-down, there exists P ′ ∈ P such that v ∈ P ′.
Since P is simple we have P ≠ P ′. If v ∈ T , then we have proved what we wanted. Otherwise, since P and P ′ are
disjoint, v is necessarily a ⌜-corner. Notice that u ∈↖(t) for some vertex t if and only if v ∈↖(t). Thus, we repeat
the same argument with u = v. Since P has a finite length, we will eventually reach a terminal.

3.4 Proof of Lemma 3.1 We have already proved (Corollary 3.1) that if a routing uses a vertex that is not in
BT , then this routing is not optimal. In this section, we show that it is also the case if the routing uses a point
in ZT . Recall that ZT = {u ∈ Z2 ∣ d(u,VT ∪HT ) > (4k + 5)2k}, where VT and HT are respectively the sets of
horizontal and vertical lines containing terminals. Unlike in Section 3.2, we need to assume here that the routing
considered is pushed-down.

Lemma 3.6. Let P be a pushed-down routing that uses a vertex in ZT . Then, P is not optimal.

This lemma, together with Observation 3.1 and Corollary 3.1 implies the Structural Lemma.

Proof. [Proof of Lemma 3.6.] First, we can assume that paths in P are simple. Otherwise we can easily obtain a
strictly shorter routing. Let u ∈ ZT denote the vertex used by P . We prove that P is not optimal by showing that
there is either a simple shortcut or a shortenable window. See Figure 15 for visual support of the proof.

The vertex u is contained in the intersection of a horizontal strip Sh and a vertical strip Sv. Indeed, notice
that for all k ≥ 1, we have (4k + 5)2k > 2k+1. Let Z ′ be the subset of Sh ∩ Sv formed by the vertices that are at
distance of at least 2k+1 from the boundary of Sh ∩ Sv. Notice that u ∈ Z ′. Let Q be the hair in Z ′ that contains
u. We may assume that Q is monotone, otherwise by Lemma 3.4, we already know that P is not optimal.

We now show that Q has at most 2k top-corners. We treat the case when Q is a (⌞⌝)-monotone path; the
other case is symmetric. In this case, all top-corners of Q are ⌝-corners. Since P is pushed-down, we know from
Lemma 3.5 that for each ⌝-corner v of Q, there exists a terminal tv such that v ∈↗(tv). Since Q is monotone,
for any two ⌝-corners of Q, v and v′, we have tv ≠ tv′ . Thus, since ∣T ∣ = 2k, we conclude that Q has at most 2k
top-corners. In particular, since corners of Q are alternating between top and bottom (⌞ or ⌝) corners, Q has
at most 4k corners, and thus at most 4k + 1 segments. Since Q connects two points in the boundary of Z ′ and
contains u, that is at a distance at least (4k + 1)2k from the boundary, the length of Q is at least (4k + 1)2k+1.
Thus, by the pigeonhole principle, there is a segment C of Q of length at least 2k+1.

Based on this long segment C, we now construct a long sequence of stacked segments (similar as the proof of
Lemma 3.4) in order to identify a shortenable window. If the endpoints of C are corners of Q, then we define
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Figure 15: Proof of Lemma 3.6. The goal is to show the existence of a shortenable window W . To lighten the
figure, some paths in P are not represented.

u1 and v1 to be these vertices, where v1 is a top-corner. Otherwise, one endpoint of C is an endpoint of Q (like
in Fig. 15). Let P ∈ P be the path that contains Q. Let u1 and v1 denote the consecutive corners of P such
that C is contained in the segment between u1 and v1 (see Fig. 15). Without loss of generality, we assume that
v1 is the top-corner. Notice that one of strips Sh or Sv contains both u1 and v1. Also notice that either u1 or
v1 is contained in Z ′ (or both); suppose u1 ∈ Z

′; then for each terminal t ∈ T , we have ∣x(t) − x(u1)∣ ≥ 2k+2 and
∣y(t) − y(u1)∣ ≥ 2k+2.

We now construct the shortenable window. We assume that y(u1) = y(v1) and x(u1) < x(v1). Other cases are
treated symmetrically. Notice that this implies that u1 and v1 are respectively a ⌞ and a ⌝-corner, and are both
contained in Sh. Let W = [x(u1), x(u1)+ 2k + 1]× [y(u1)− 2k, y(u1)]. We claim either P is not optimal, or W is a
horizontal shortenable window for P. By Lemma 3.2, the second case implies that P is not optimal.

The proof that W is an horizontal shortenable window for P is similar to the proof of Lemma 3.4. Suppose

that P is optimal. We construct two sequences of vertices (ui)
2k

i=1 and (vi)
2k

i=1 such that, for all i, 1 ≤ i ≤ 2k,

(i) ui and vi are two consecutive corners of some path Pi in P,

(ii) ui is a ⌞-corner and vi is a ⌝-corner,

(iii) if i ≥ 2, then y(ui) = y(vi) = y(ui−1) − 1,

(iv) if i ≥ 2, then x(ui) ≤ x(ui−1) − 1 and x(vi) = x(vi−1) − 1.

It is not difficult to see that the existence of two such sequences implies that W is a horizontal shortenable window
for P (see Definition 3.2).

For i = 1, properties (i)-(iv) hold by assumption. Suppose that we have constructed u1, . . . , ui−1 and v1, . . . , vi−1
that satisfy conditions (i)-(iv) for some i ≥ 2. Since vi−1 is a ⌝-corner, and the routing is pushed-down, there is
a path Pi ∈ P that contains the inside vertex vi ∶= (x(vi−1) − 1, y(ui−1) − 1) of vi−1. Since Pi is simple, we have
Pi ≠ Pi−1. Moreover, vi ∉ T , as otherwise, applying (iii) for j = 1, . . . , i, that would imply that there is a terminal
t, such that ∣y(t) − y(u1)∣ = i − 1 < 2k+1, which is a contradiction with what precedes (specifically that u1 ∈ Z

′).
Therefore, since Pi and Pi−1 are disjoint, vi is necessarily a ⌝-corner of Pi. Let ui denote the corner of Pi that is
consecutive to vi on its left, i.e., x(ui) < x(vi) and y(ui) = y(vi) (notice that ui ∉ T , as otherwise that would again
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Figure 16: The partition of the relevant vertices into blocks (pink), horizontal tunnels (green), and vertical tunnels
(blue). Red lines indicate the junctions of long tunnels. Arrows indicate distances: thin ones for distance 2k, and
thick ones for distance (4k + 5)2k.

contradict the fact that u1 ∈ Z
′). We know by applying (iii), that ui and vi are both contained in Sh and thus by

Lemma 3.4, the hair of Pi in Sh is monotone. This implies that ui is a ⌞-corner of Pi. In particular, since Pi and
Pi−1 are disjoint, we must have x(ui) ≤ x(ui−1) − 1. We have established the recurrence. This finishes the proof of
Lemma 3.6.

This completes the proof of the Structural Lemma.

4 The Algorithm

In this section, we present a fixed-parameter algorithm that given a set T = {(s1, t1), . . . , (sk, tk)} of k pairs of
terminals, computes an optimal routing for T .

Theorem 4.1. There is an algorithm that computes an optimal routing for T in time k2
O(k)

⋅O([T ]), where [T ]

is the number of bits to encode T in binary.

We remark that our structural Lemma implies that the treewidth of the grid induced by the relevant vertices
is bounded by a function of k. This follows from the fact that the face-vertex incidence graph diameter of this
planar graph is bounded by a function of k [43]. Since the classical dynamic program for the classic k-disjoint
paths problem on bounded treewidth graphs can easily be adapted to the shortest version, we directly obtain an
FPT algorithm where the polynomial term in the running time corresponds to the number of relevant vertices. In
this section, we improve this bound by showing an algorithm where the polynomial term in the running time is
actually linear in the total number of bits used to encode the terminals.

To describe the algorithm, we first partition the set BT ∖ZT into tunnels and blocks. Let a horizontal street
be a connected component of the set

Rh ∶= BT ∩ {v ∈ Z2
∣ ∃t ∈ T , ∣y(t) − y(v)∣ ≤ (4k + 5)2k}.

Similarly, let a vertical street be a connected component of the set

Rv ∶= BT ∩ {v ∈ Z2
∣ ∃t ∈ T , ∣x(t) − x(v)∣ ≤ (4k + 5)2k}.

The intersection between a vertical street and a horizontal street is called a block. We call a horizontal tunnel, a
connected component of Rh ∖Rv and vertical tunnel, a connected component of Rv ∖Rh. It is easy to see that
blocks, horizontal tunnels and vertical tunnels form a partition of BT ∖ZT .
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We say that a horizontal (vertical) tunnel is long if its width (height, resp.) is at least its height (width, resp.).
Otherwise, we say that it is short.

For each long horizontal tunnel, we call left junction (right junction), the set of vertices of the tunnel with
leftmost (rightmost, resp.) x-coordinates. We define similarly the top junction and the bottom junction of a long
vertical tunnel. See Fig. 16.

We now define a configuration. Let V ′ denote the set of vertices that are either contained in a block, in a
short tunnel or in a junction of a long tunnel. A configuration is a map c ∶ V ′ → {0,1, . . . , k}.

Let c be a configuration and let J and J ′ be the two junctions of a given long horizontal tunnel (long vertical
tunnel). Let us order the sets {v ∈ J ∣ c(v) > 0} = {v1, . . . , vt} and {v′ ∈ J ′ ∣ c(v′) > 0} = {v′1, . . . , v

′
t′} from top to

bottom (from left to right, resp.). See Fig. 17. We say that J and J ′ are compatible (with respect to c), if t = t′

and if for each i ∈ [1, t], we have c(vi) = c(v′i). In this case we say that for each i ∈ [1, t], the vertices vi and v′i are
linked.

Claim 4.1. Let J and J ′ be the two junctions of a given long horizontal tunnel (long vertical tunnel). Let t be an
integer smaller than the height (width, resp.) of the tunnel. Let {v1, . . . , vt} ⊆ J a sequence of vertices of J ordered
from top to bottom (from left to right, resp.), and let {v′1, . . . , v

′
t} ⊆ J ′ a sequence of vertices of J ′ ordered from top

to bottom (from left to right, resp.).
Then, there exists a family (Qj)

t
j=1 of pairwise disjoint paths, such that for each j, 1 ≤ j ≤ t: (i) the endpoints

of Qj are vj and v′j , (ii) Qj is contained in the tunnel, (iii) Qj is a shortest path, (iv) Qj has at most two corners,
and (v) the internal vertices of Qj are not contained in the junctions.

Proof. We prove the Claim when the tunnel is horizontal and J is the left junction. Other cases are symmetric. For
each j ∈ [1, t], let cj = (xj , y(vj)) and c′j = (xj , y(v

′
j)) where xj = x(vj)+ j if y(vj) ≤ y(v′j) and xj = x(v′j)+ t+ 1− j

otherwise. See Fig. 17. Let Qj be the path from vj to v′j with corners cj and c′j . It is easy to see that this path is
well-defined and satisfies the desired properties. Moreover, it is clear that these paths are pairwise disjoints and
contained inside the tunnel.

We say that a configuration c is valid, if the two junctions of each long tunnel are compatible and if for
each i ∈ [1, k], the set of vertices V ′

i ∶= {v ∈ V ′ ∣ c(v) = i} = {v0, . . . , vs} can be ordered in a way that v0 = si,
vs = ti and for each j ∈ [0, ` − 1], vj and vj+1 are either at distance 1 or are linked (within some long tunnel).

In this case we say that the length of Pi is `(Pi) = ∑
s−1
j=0 d(vj , vj+1). The length of a valid configuration is ∑

k
i=1 `(Pi).

The algorithm. The algorithm of Theorem 4.1 works as follows: enumerate all possible configurations and
return a valid configuration of shorter length, if such routing exists; otherwise, return that there is no routing for
T .

Notice that, as described, the algorithm returns an integer (that we later prove to be the minimum length
of a routing for T , if such a routing exists). We explain how to construct the paths associated to that valid
configuration. Then, we show the correctness of the algorithm and finally analyze its running time.

Construction of the paths. Let c be a valid configuration. We construct a routing P = (P1, . . . , Pk)

from c as follows. Let Q be the union of the paths obtained from Claim 4.1 over each long tunnel, where the
sequences {v1, . . . , vt} and {v′1, . . . , v

′
t} for each pair of junctions J, J ′ correspond to the sets {v ∈ J ∣ c(v) > 0} and

{v′ ∈ J ′ ∣ c(v′) > 0}. If a path Q ∈ Q connects two vertices v and v′ such that c(v) = c(v′) = i for some i with 1 ≤ i ≤ k,
we say that Q is of color i. For each i, 1 ≤ i ≤ k, we construct Pi as the union of {v ∈ V ′ ∣ c(v) = i} and the union
of paths Q ∈ Q of color i. It is not difficult to see that P is a routing for T whose length is the same as the length of c.

Correctness of the algorithm. Assume that P∗ = (P1, . . . , Pk) is an optimal routing of T . We construct a
valid configuration c, of the same length.

From the Structural Lemma, we know that we can assume that the paths of P∗ do not contain any irrelevant
vertex. In particular, these paths are contained in the union of blocks and tunnels. We define c as follows. Let
i ∈ [1, k] and v ∈ V ′∩Pi. If v is contained in a block, a short tunnel, or is contained in a junction and has a neighbor
in Pi that is contained in a block, then c(v) = i, otherwise, c(v) = 0.2 We argue that c is a valid configuration and

2the intuition here is that we want to avoid two consecutive vertices on the same junction to have color i, otherwise this may results
in two non-compatible junctions.
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Figure 17: Two compatible junctions. Pairs of linked vertices can be connected with a family of disjoint shortest
paths contained in the tunnel (see Claim 4.1).

that it has the same length as P.
Fix i ∈ [1, k], and let V ′

i = {v1, . . . , vs} ⊆ Pi be the set of vertices such that c(v) = i, ordered from the source of
Pi to its sink. Suppose that there is an index j ∈ [1, s − 1] such that d(vj , vj+1) > 1. We show that vj and vj+1 are
linked (within some tunnel). First, it is clear that the interior of the path between vj and vj+1 is contained in
some tunnel (since Pi does not contain any irrelevant vertex). Suppose for a contradiction that vj and vj+1 are
contained in the same junction of that tunnel. Let u and u′ be the vertices on Pi and are respectively adjacent to
vj and vj+1 and that are contained in a block. These vertices exist by definition of c and are contained in the same
block (this follows from our assumption). Further, they have the same x-coordinate (if the tunnel is horizontal), or
the same y-coordinate (otherwise). This implies that the subpath of Pi(u,u

′) between u and u′ is not a shortest
path (or equivalently not monotone). This is a contradiction with Lemma 3.4 since the path Pi(u,u

′) is contained
in a strip. Thus, vj and vj+1 are linked. In particular, the length of Pi(vj , vj+1) is equal to d(vj , vj+1). We have
shown that c is a valid configuration of the same length as P∗.

Running time. To give the running time of our algorithm, we need to calculate the size of V ′. The sum of the
widths (heights) of the blocks of distinct x-coordinates (distinct y-coordinates) is at most k ⋅(1+2⋅(4k+5)2k) = 2O(k).
Thus there are at most (2O(k))2 = 2O(k) vertices contained into blocks. Further, there are at most (2O(k))2 = 2O(k)

vertices contained into long tunnels. Finally, the number of vertices contained in junctions is 2O(k). Thus

∣V ′∣ = 2O(k). This implies that the number of configurations is (k + 1)∣V
′∣ = k2

O(k)

. All vertices in V ′ are contained
in a bounding box that is at a distance at most 2k from the coordinates of each vertex and can be encoded using
O(2(b+ log(2k))) = O([T ]) bits, where b is the maximum number of bits of a coordinate of a point in T . For each
configuration, we can decide in time poly(2O(k)) whether this configuration is valid or not. Hence, the overall

running time is k2
O(k)

O([T ]).
This completes the proof of Theorem 4.1.

5 Conclusion

In this paper, we consider the shortest k-disjoint paths problem in a grid and show that the problem admits a
fixed parameter tractable algorithm parameterized by the number of terminals. Although our result is primarily
stated for the case of an infinite rectangular grid our result applies to any finite rectangular grid as well. While
we resolve the complexity question of the shortest k-disjoint paths problem in a grid, there are several intriguing
questions that remain open. The main open question arising from our work would be to resolve the complexity
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status of shortest k-disjoint paths in general planar graphs. The only known positive results, in this case, either
consider a very small number of terminals or put restrictions on their placement in the graph.

Another interesting question is to extend our algorithm for the case of grids with holes. As presented, our
techniques rely on the assumption that we work on a complete grid. For instance, the definition of a simple
shortcut, the definition of pushed-down routings, and the procedure to identify shortenable windows. That said,
we believe that our techniques potentially could be extended to argue that, there exist irrelevant vertices even in
the case of holes. For instance, one might still be able to prove the existence of a bounding box at the distance
O(2k) around the terminals and some holes: first discard holes that are far from the bounding box of the terminals
since they do not perturb the solution, and then take a bounding box that is far enough from the terminals and
the remaining holes. Inside this bounding box, points with x-coordinates (and y-coordinates) distant enough from
the x-coordinates (and y-coordinates) of the terminals and the holes would still be irrelevant. Still, in the analysis
of the running time, one difficulty with the holes is how to encode them in the problem instance. An interesting
future work could be to study the parameterized complexity of the problem when parameterized by the number of
terminals plus the number of corners of the holes.
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