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Abstract

We present a parallel algorithm for the (1 − ε)-approximate maximum flow problem
in capacitated, undirected graphs with n vertices and m edges, achieving O(ε−3 polylogn)
depth andO(mε−3 polylogn) work in the PRAMmodel. Although near-linear time sequential
algorithms for this problem have been known for almost a decade, no parallel algorithms that
simultaneously achieved polylogarithmic depth and near-linear work were known.

At the heart of our result is a polylogarithmic depth, near-linear work recursive algorithm
for computing congestion approximators. Our algorithm involves a recursive step to
obtain a low-quality congestion approximator followed by a “boosting” step to improve its
quality which prevents a multiplicative blow-up in error. Similar to Peng [SODA’16], our
boosting step builds upon the hierarchical decomposition scheme of Räcke, Shah, and Täubig
[SODA’14]. A direct implementation of this approach, however, leads only to an algorithm
with no(1) depth and m1+o(1) work. To get around this, we introduce a new hierarchical
decomposition scheme, in which we only need to solve maximum flows on subgraphs obtained
by contracting vertices, as opposed to vertex-induced subgraphs used in Räcke, Shah, and
Täubig [SODA’14]. This in particular enables us to directly extract congestion approximators
for the subgraphs from a congestion approximator for the entire graph, thereby avoiding
additional recursion on those subgraphs. Along the way, we also develop a parallel flow-
decomposition algorithm that is crucial to achieving polylogarithmic depth and may be of
independent interest.

We extend our results to related graph problems such as sparsest and balanced sparsest
cuts, fair and isolating cuts, approximate Gomory-Hu trees, and hierarchical clustering. All
algorithms achieve polylogarithmic depth and near-linear work.

Finally, our PRAM results also imply the first polylogarithmic round, near-linear total
space MPC algorithms for approximate undirected maximum flows, as well as all its
aforementioned applications in the fully scalable regime where the local machine memory
is O(nδ) for any constant δ > 0.
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1 Introduction.

The maximum flow problem, or equivalently, the minimum congestion flow problem is one
of the oldest and most well-studied combinatorial optimization problems that finds numerous
applications across computer science and engineering. Formally, we are given a directed,
capacitated flow network (graph) G = (V,E, c) with |V | = n vertices and |E| = m edges
with positive edge capacities c ∈ R

E, along with a set of vertex demands b ∈ R
V specifying the

desired excess flow at each vertex where
∑

v∈V bv = 0. The objective is to find a flow f ∈ R
E

that satisfies demands b, while minimizing the maximum congestion |fe|/ce on any edge e ∈ E
in the network, i.e.

(1.1) min ‖C−1f‖∞ s.t. Bf = b (flow conservation constraints); f ≥ 0,

where C ∈ R
E×E is a diagonal matrix of edge capacities with Ce,e = ce, and B ∈ {−1, 0, 1}V ×E is

the vertex-edge incidence matrix with Bv,e being 1 if e = (u, v), −1 if e = (v, u) and 0 otherwise.
For the special case where the edges are undirected, the formulation is identical except that the
edges are oriented arbitrarily, and the non-negativity constraint on the flows is dropped; the
sign of the flow on an edge specifies its direction relative to the edge orientation.

The maximum flow problem has a rich history, starting with the work of [Dan51] and
[FF56], who first proposed algorithms with pseudo-polynomial running times of O(mn2U) and
O(m2U) respectively, for networks with maximum edge capacity U . Since then, substantial
effort has been devoted to designing increasingly efficient algorithms for this problem. This has
resulted in a sequence of exciting developments, with initial improvements coming from primarily
combinatorial ideas such as shortest augmenting paths and blocking flows [Din70, EK72, Kar73,
Din73, ET75, BK04], push-relabeling [GT88, Gol08, OG21], pseudo-flows [Hoc08, CH09], and
capacity scaling [AO95, GR98], eventually culminating in the recent breakthrough O(m1+o(1))
time result of [CKL+22] achieved through a combination of second-order continuous optimization
techniques (interior point methods) and efficient dynamic graph data-structures. Meanwhile, for
the weaker objective of finding an approximately maximum flow in undirected graphs, even faster
algorithms have been developed using simpler first-order continuous optimization techniques
[She13, Pen16, She17a, She17b]. In particular, [Pen16] showed that in undirected graphs, a
(1− ε)-approximate maximum flow can be computed in just O(m poly(1/ε, log n)) time.

However, these aforementioned algorithmic results were largely developed in the sequential
setting, and are not readily parallelizable. Moreover, the question of designing fast parallel
algorithms for max-flows has remained surprisingly under-explored.

In the context of parallel algorithms, several models of computation have been proposed over
the years. Amongst them, the parallel random-access machine (PRAM) is often considered as a
standard, owing to its simplicity and its well-understood connections to other models of parallel
computation. A generalization of the usual (sequential) RAMmodel, the PRAM is a synchronous,
shared-memory, multi-processor model. Within PRAM, there are several variants depending
on how concurrent operations in the shared memory are handled: (in decreasing order of
restrictiveness) exclusive-read-exclusive-write, concurrent-read-exclusive-write, and concurrent-
read-concurrent-write. However, due to the low-level nature of the PRAM, even the simplest
algorithms designed for it involve tedious implementation details. In order to abstract away
these specifics, we usually consider the equivalent work-depth paradigm, which measures the
performance of a parallel algorithm using two parameters – total work, which is the total running
time needed given only one processor, and depth, which is the total parallel time given a maximal



number of processors. Moreover, in this framework, the different variants of PRAM are equivalent
up to polylogarithmic factors in work and depth, and therefore, can also be abstracted.

For the question of designing parallel algorithms for max flows, the literature is sparse.
For finding exact max flows, early results of [SV82, R+90] achieved Õ(n2) depth and Õ(mn)
work. More recently, [PF22] improved the depth to Õ(n) while retaining the same asymptotic
work. For the weaker objective of finding an approximate max flow, the combined results of
[Mad16] and [PS14] imply an algorithm with Õ(

√
m) depth and Õ(m1.5) work at the cost of

a O(1/poly(n)) additive error in the flow value. A much earlier work of [SS91] also implies
a O(poly(log n, log(1/ε))) depth algorithm for finding a (1 − ε)-approximate max flow via a
reduction to finding maximum matchings in bipartite graphs. However, this comes at the
expense of an unspecified polynomial blow-up in work, a common issue with many of the early
results for parallel algorithms. The question of whether it is possible to simultaneously have
a polylogarithmic depth and near-linear work approximate max-flow algorithm remained open.
In this paper, we answer this in the affirmative for undirected graphs. Namely, we show the
following main result.

Theorem 1.1. There is a randomized PRAM algorithm that given an undirected capacitated
graph G = (V,E, c), s, t ∈ V , and precision ε > 0, computes both a (1 − ε)-approximate
s-t maximum flow and a (1 + ε)-approximate s-t minimum cut with high probability in
O
(
ε−3 polylog n

)
depth and O

(
mε−3 polylog n

)
total work.

A more recent model of parallel computation is the massively parallel computation (MPC)
model, which is a common abstraction of many MapReduce-style computational frameworks (see
i.e. [BKS17, ANOY14, GSZ11]). In this model, the input data is partitioned across multiple
machines that are connected together through a communication network. The computation
proceeds in synchronous rounds where in each round, the machines can perform unlimited local
computation on their local memory, but cannot communicate with other machines. Between
rounds, machines can communicate, so long as the total size of messages sent and received by
any machine does not exceed the size of its local memory. The performance of an MPC algorithm
is measured by the number of rounds needed to complete the computation, the size of the local
machine memory, as well as the total memory used across all machines. A simulation result of
[KSV10, GSZ11] shows that any PRAM algorithm with D depth and W work can be simulated
by an MPC algorithm with O(D) rounds and O(W ) total memory even in the most stringent
fully-scalable regime1 where the local memory size is O(nδ) for any constant δ > 0. Using this
simulation result, we obtain the following corollary of our main result.

Corollary 1.1. (of Theorem 1.1) There is a randomized MPC algorithm that given an
undirected capacitated graph G = (V,E, c), s, t ∈ V and precision ε > 0, computes both a
(1−ε)-approximate s-t maximum flow and a (1+ε)-approximate s-t minimum cut with high
probability in O

(
ε−3 polylog n

)
rounds, O

(
mε−3 polylog n

)
total memory and O

(
nδ
)
local

memory, for any constant δ > 0.

Note that by standard reduction, our Results 1.1 and 1.1 extend to general vertex demands
b ∈ R

V in the same form of Eq 1.1.

1The dependence of the the local memory parameter (the constant δ > 0) on the number of rounds and total memory
is a multiplicative O(1/δ), and is usually omitted.



1.1 Applications. Our result for approximate max flows has broad implications to other
related graph problems, where it implies either new or substantially improved parallel algorithms
(both PRAM and MPC) for them.

Sparsest cut and balanced sparsest cut: The sparsest cut problem is an important
subroutine for divide-and-conquer based approaches for several graph problems and has many
applications including image segmentation, VLSI design, clustering and expander decomposition.
In this problem, given a weighted undirected graph G = (V,E, c), the objective is to find a cut
(S, S̄) with minimum sparsity φ(S) which is defined as φ(S) := c(E(S, S̄))/min{|S|, |S̄|}, where
c(E(S, S̄)) is the total weight of the edges going across the cut. The balanced sparsest cut problem
is a variant of this problem where there is an additional requirement that the cut (S, S̄) must
be β-balanced, i.e. min{|S|, |S̄|} ≥ βn for some given parameter β ∈ (0, 1/2). Balanced sparse
cuts are useful in applications where one wants the divide-and-conquer tree to have low-depth.

The sparsest cut problem is NP-hard and the best known approximation factor of O(
√
log n)

is achieved by an SDP-based algorithm due to Arora, Rao and Vazirani [ARV09]. However, this
algorithm is highly sequential, and computationally expensive. The most efficient algorithms
for sparsest cut problem are based on the cut-matching game framework of Khandekar, Rao
and Vazirani [KRV06], which effectively reduces the sparsest cut problem to a poly-logarithmic
number of single commodity max-flow computations. In this framework, a cut-player and a
matching-player play an alternating game; in each round, the former produces a bisection (S, S̄)
of vertices, and the latter produces a perfect matching between S and S̄ that can be embedded
in the underlying graph. The game ends when either the cut player produces a bisection for
which the matching player cannot find a perfect matching (i.e. a sparse cut has been found), or
the union of the perfect matchings produced thus far form an expander (i.e. an expander can
be embedded in the underlying graph, certifying its expansion). [KRV06] showed that there is a
cut strategy with runtime Tcut = Õ(n) such that this game terminates in α = O(log2 n) rounds,
regardless of the matching player’s strategy. Furthermore, the matching player’s strategy can
be implemented using a max-flow computation with the sources and sinks being the two sides
of the bipartition. In combination, this framework produces an O(α)-approximation to sparsest
cut with a runtime of O(α · (Tcut + Tflow)), where α is an upper bound on the number of rounds
of this game, Tcut is the time to implement cut player’s strategy and Tflow is the time to compute
a single commodity max-flow. This framework also generalizes to the problem of β-balanced
sparsest cut for any constant β with the same approximation factor and running time.

Nanongkai and Saranurak [NS17] further showed that the matching player’s strategy can be
implemented using approximate max-flow computations rather than exact max-flows. Building
on [NS17], we show that our parallel algorithm for max-flows (Result 1.1) can be used to
implement the matching player’s strategy, yielding a O(polylog n) depth and Õ(m) work
algorithm for the matching player. Furthermore, we show that the cut player’s strategy can also
be implemented in O(polylog n) depth and Õ(m) work using our new parallel flow decomposition
algorithm (see Section 2.2 for a discussion). In combination, this gives a O(polylog n) depth and
Õ(m) work algorithm for sparsest cuts that has an approximation factor of O(log3 n). These
results also imply a bicriteria approximation algorithm for β-balanced sparsest cut with the same
depth and work. Specifically, our algorithm finds a (β/ log2 n)-balanced cut whose sparsity is at
most O(log3 n) times the sparsity of an optimal β-balanced cut.

Minimum cost hierarchical clustering: Hierarchical clustering is a fundamental problem



in data analysis where the goal is to recursively partition data into clusters which results in
a rooted tree structure. This problem has wide-ranging applications across different domains
including phylogenetics, social network analysis, and information retrieval. While the study
of hierarchical clustering goes back several decades, Dasgupta [Das16] initiated its study from
an optimization viewpoint. Specifically, he proposed a minimization objective for hierarchical
clustering on similarity graphs that measures the cost of a hierarchy as the sum of costs of its
internal splits, which in turn is measured as the total edge-weight across the split scaled by the
size of the cluster at that split. [Das16] and subsequent work by [CKMM18, CC17] showed that
the hierarchical clustering produced by recursively splitting the graph using a α-approximate
sparsest cut subroutine results in a hierarchy that is anO(α)-approximation for this minimization
objective. Furthermore, using an α-approximate β-balanced sparsest cut subroutine results in
the same approximation with an additional property that the depth of the tree is O(log n) for
β = Ω(1). [CC17] also showed that a (α, β′)-bicriteria approximation oracle for β-balanced min-
cut is sufficient to achieve a O(α/β′)-approximation for minimum cost hierarchical clustering.
As a consequence, using our parallel balanced min-cut algorithm as a subroutine, we get the
first parallel algorithm that computes a tree that is a O(log5 n)-approximation to Dasgupta’s
objective with Õ(m) work and O(polylog n) depth.

Fair cuts and approximate Gomory-Hu trees: Li et al. [LNPS23] recently introduced the
notion of fair cuts for undirected graphs which are a “robust” generalization of approximate
min-cuts. Specifically, for α ≥ 1, a s-t-cut is α-fair if there exists an s-t flow that uses at
least 1/α-fraction of the capacity of every edge in the cut. [LNPS23] showed that a near-
linear time oracle for computing a fair cut is useful for obtaining near-linear time algorithms
for several applications including computation of (approximate) all-pairs maxflow values (using
approximate Gomory-Hu trees). They also showed that, given an unweighted graph, a fair
cut can be computed in parallel using m1+o(1) work and no(1) depth, implying a similar result
for approximate Gomory-Hu trees. Our results improve upon their results by giving parallel
algorithms for fair cuts and approximate Gomory-Hu trees that have O(m polylog n) work and
O(polylog n) depth. The key technical tool that results in this improvement is our O(polylog n)
depth construction of a O(polylog n)-congestion approximator (see Section 2.1 for a discussion).

2 Technical Overview.

The starting point of our discussion is Sherman’s framework [She13, She17b], which was initially
proposed for computing fast approximate undirected max-flows in the sequential setting. Given
the optimization problem defined in Equation 1.1, let optG(b) := minf :Bf=b ‖C−1f‖∞ be the
minimum congestion of any feasible flow routing given demands b in the graph G. Sherman
showed that if we have a matrix Φ such that for any demand vector b, ‖Φb‖∞ is always an α-
approximation to opt(b), i.e., ‖Φb‖∞ ≤ opt(b) ≤ α · ‖Φb‖∞, then there is an iterative algorithm
to compute a (1 + ε)-approximate minimum congestion flow. The matrix Φ is called a α-
congestion approximator matrix, and the algorithm requires poly(α, ε−1, log n) iterations2 where
each iteration requires in total O(m)-time algorithmic operations plus computing the matrix-
vector products Φx and ΦTy for some arbitrary vectors x and y.

2To be precise, Sherman’s algorithm upon termination routes a flow that almost satisfies the desired demand b, and the
negligible residual demand is such that it can be routed in the flow network with 1/poly(m) congestion. We get a feasible
flow by trivially routing this residual demand along a maximum spanning tree, which is known to admit an efficient parallel
construction with Õ(m) work and polylog(n) depth [PR02].



A line of work in the parallel transshipment (ℓ1 flow) literature [ASZ20, Li20, RGH+22,
ZGY+22] observed that Sherman’s framework can be adapted to the parallel computing regime.
In particular, they showed the following: given an α-congestion approximator matrix Φ, there
is a PRAM algorithm which outputs a (1 + ε)-approximate minimum congestion flow. The
depth of the algorithm is poly(α, ε−1, log n) · (depth(Φx) + depth(ΦT y)), and the work is
poly(α, ε−1, log n) · (work(Φx) + work(ΦT y) +O(m)), where depth(·),work(·) denote the depth
and work required to compute the corresponding sub-problem respectively, and Φx,ΦT y denote
the sub-problems of multiplication between Φ and an arbitrary vector and the multiplication
between ΦT and an arbitrary vector respectively. Therefore, the problem effectively reduces
to efficiently computing a good congestion approximator matrix Φ that also allows efficient
computation of Φx and ΦTy.

Räcke, Shah, and Täubig [RST14] gave an efficient algorithm for building a tree-structured
congestion approximator. Specifically, they showed that given any graph G = (V,E, c), one
can construct an O(log n)-depth tree R = (VR, ER, cR) supported on VR ⊇ V such that for any
demand vector b, optR(b) ≤ optG(b) ≤ O(log4 n) · optR(b). A useful property of the tree R is
that the flow that goes from u to the parent of u is equal to the total demand within the subtree
of u. This implies that we can write optR(b) = ‖Φb‖∞ for a matrix Φ, where each row of Φ
corresponds to a node in R, such that the u-th entry of Φb equals the congestion of the tree
edge connecting u to its parent:

(Φb)u =

∑
v in the subtree of u bv
cR(u,parent of u)

.

Furthermore, computing Φx is equivalent to computing the sum of rescaled node weights in
each subtree, and computing ΦT y is equivalent to computing the sum of rescaled edge weights
of the path from each node to the root. Thus, both computations of Φx and ΦT y can be
done in polylog(n) depth and n · polylog(n) work using standard dynamic programming ideas.
Hence, our goal becomes to compute such a congestion approximator tree (or hereafter simply
congestion approximator) R.

The algorithm of [RST14] constructs such a tree by performing a hierarchical decomposition
of the graph. At a high level, starting with the vertex set V , they recursively apply a
subroutine to partition a given cluster S of vertices into smaller sub-clusters such that the
boundary edges leaving each sub-cluster are well-linked, in the sense that one can route a
product multicommodity flow between them with low congestion. However, this partitioning
routine itself requires computing (1+ ε)-approximate minimum congestion flows on the induced
subgraph G[S], which is the exact same problem (though on a subgraph) we set out to solve by
constructing a congestion approximator!

In the sequential setting, this chicken-and-egg situation was resolved by Peng [Pen16] using
a clever recursive construction, which we summarize below:

1. Given an input graph G = (V,E, c), the goal is to output an O(log4 n)-congestion
approximator tree R = (VR, ER, cR).

2. Simulate the algorithm of [RST14] on G. Every time a (1 + ε)-approximate minimum
congestion flow computation is required on some vertex-induced subgraph G[S] of G,
do the following:



(a) Compute a sparsifier H of G[S] such that for any demand b, optH(b) ≤ optG[S](b) ≤
polylog(n) · optH(b). In addition, H can be decomposed into a core graph C and
a forest F such that (i) C only has |S|/polylog(n) nodes and edges, and (ii) each
connected component of F has exactly one vertex in C.

(b) Recursively compute an O(log4 n)-congestion approximator tree RC for the core
graph C.

(c) Let RG[S] = RC ∪ F . It is easy to show that by composing, RG[S] is a polylog(n)-
congestion approximator tree for G[S].

(d) Compute a (1+ ε)-approximate minimum congestion flow on G[S] by plugging RG[S]

into Sherman’s algorithm.

3. Output an O(log4 n)-congestion approximator tree R for G obtained from simulating the
algorithm of [RST14].

Note that since C has significantly smaller size than G[S], the computation of a congestion
approximator tree for C is much faster than for G[S]. Leveraging this observation, and using a
large enough polylog(n) factor in the size reduction of the sparsifier, [Pen16] showed that the
overall running time of their algorithm can be bounded by m · poly(ε−1, log(n)).

However, there are two major challenges to convert Peng’s algorithm into a small depth
PRAM algorithm. The first challenge is that Peng’s algorithm has multiple recursive calls
and the input to each recursive call depends on the output of previous recursive calls. These
dependent recursive calls result in long dependent computation paths and thus the algorithm has
a large (i.e. super-logarithmic) depth. The second challenge comes from how the approximate
maximum flows are used in [RST14]. In particular, given an approximate maximum s-t flow,
[RST14] crucially requires a decomposition of the flow into s-t flow paths.

Our paper’s main technical contribution is to address these two challenges. To address the
second challenge, we propose a novel efficient parallel flow decomposition routine which we
discuss in more detail later in Section 2.2 of this overview. With this routine, we are already
able to implement the algorithm of [RST14] with m1+o(1) work and no(1) depth. However,
getting the depth down to polylog(n) leaves us with the considerably more difficult task of
addressing the first challenge. To this end, we devise a variant of the algorithm in [RST14] for
constructing congestion approximators. While our new algorithm also computes a hierarchical
decomposition of the graph, it allows us to apply our partitioning routine by running maximum
flows on subgraphs obtained by contracting vertices, as opposed to recursing on vertex-induced
subgraphs as done in [RST14]. This in particular allows us to extract congestion approximators
for the subgraphs from a given congestion approximator of the entire graph, thus avoiding any
additional recursive calls on these subgraphs. As a result, we only have one recursive call, whose
goal is to compute a congestion approximator of the core graph C of the sparsifier, enabling us
to obtain a depth of polylog(n).

We adopt a similar recursive idea to that of Peng [Pen16], with the key difference being our
approach involves only one recursive call. Specifically, our construction consists of a recursive
step to obtain a low-quality (though still polylog(n)-approximate) congestion approximator,
and a boosting step to improve it to an O(log9 n)-congestion approximator, so as to avoid an
accumulation of error over successive recursive calls. We summarize our new construction as
follows:



1. Given input G = (V,E, c), the goal is to output an O(log9 n)-congestion approximator tree
R = (VR, ER, cR).

2. Compute a sparsifier H of G such that for any demand b, optH(b) ≤ optG(b) ≤
polylog(n) · optH(b). In addition, H can be decomposed into a core graph C and a forest
F such that (i) C only has |S|/polylog(n) nodes and edges, and (ii) each connected
component of F has exactly one vertex in C.

3. (Recursive step) Only one recursive call: Recursively compute an O(log9 n)-congestion
approximator tree RC for the core graph C.

4. Let RG = RC ∪ F . Then RG is a polylog(n)-congestion approximator tree for G.

5. (Boosting step) Simulate our variant of the algorithm in [RST14] on G to find an O(log9 n)-
congestion approximator tree R, where every time when (1 + ε)-approximate minimum
congestion flow computation is required on some subgraph G(S) obtained from G by
contracting vertices V \ S into a single supernode, do the following:

(a) Extract from RG a polylog(n)-congestion approximator tree RS for G(S).

(b) Compute a (1 + ε)-approximate minimum congestion flow required on G(S) by
plugging RS into Sherman’s algorithm.

Line 2 involves constructing ultrasparsifiers [ST14, KMP14], and subsequently transforming
them into j-trees [Mad10]. Though not particularly technically challenging, we are the first to
give efficient constructions of these objects in the PRAM model. We refer the reader to Section 5
for their parallel implementations. Line 5, namely our variant of the algorithm in [RST14], is
substantially more involved, as we must open the blackbox of [RST14] entirely. In the following
section, we explain in more detail, our new construction of congestion approximators that is
used in our boosting step.

2.1 Overview of New Congestion Approximator Construction. As mentioned above,
the difficulty in parallelizing the construction of congestion approximators in [RST14] arises
from the fact that we need to solve (approximate) maximum flows on vertex-induced subgraphs,
which in turn requires congestion approximators for those subgraphs. However, recursing on
these subgraphs necessarily blows up the depth of our algorithm to super-logarithmic. There
are two possibilities of resolving this: (i) use a more aggressive size reduction than polylog(n)
when computing sparsifiers, or (ii) reduce the number of dependent recursive calls. Here, (i) can
be immediately ruled out, since a more aggressive size reduction implies a worse approximation
for the sparsifier, which in turn results in a larger iteration count (and hence, depth) of Sherman’s
algorithm to compute maximum flows. This leaves us with (ii) as the only option. Notice that

having even just two dependent recursive calls would result in a depth of 2
O
(

log n
log log n

)

= no(1),
which makes (ii) even more imperative.

This raises the following question: can we reduce the number of dependent recursive calls by
reusing congestion approximators? While it indeed seems plausible to combine the congestion
approximators for the subgraphs into one for the entire graph, this does not suit the construction
of [RST14] - in particular, the hierarchical decomposition tree there is computed in a top-
down manner, and thus we do not know on what subgraphs we want to run maximum flows



until we are done with the partitioning at higher levels. This suggests that we should instead
consider extracting congestion approximators for the subgraphs from that of the entire graph.
But unfortunately, this is in general impossible due to the information loss due to congestion
approximation (which in turn is a form of sparsification that preserves both cuts and flows).

Our solution here is to open the blackbox of [RST14] entirely and propose a new framework
for computing a hierarchical decomposition. Our new framework allows us to partition the graph
by running (approximate) maximum flows on contracted subgraphs, each of which is obtained by
contracting a subset of vertices into a single supernode, as opposed to vertex-induced subgraphs
as in [RST14]. We show that for the contracted subgraphs we encounter in our construction,
we are actually able to extract congestion approximators for them from a given congestion
approximator of the entire graph by contracting its vertices3, thereby avoiding any additional
recursive calls. Crucially, the congestion approximators obtained for the contracted subgraphs
have size proportional to the size of the corresponding subgraphs which prevents any substantial
blow up in the total work of our algorithm.

We next highlight some additional ideas needed to make our new construction work. Since
we run maximum flows on contracted subgraphs, the routing we get could use paths in the
contracted subgraphs, which are not necessary valid in the entire graph. Therefore we need a
“fixing” step in our routing - namely, whenever we obtain a routing in a contracted subgraph,
we have to then fix it so that it becomes a valid routing (with low congestion) in the entire
graph, while routing the exact same demands4. This fixing step is possible because our
construction guarantees that the edges incident on a contracted supernode (which we call
boundary edges) are always well-linked, in the sense that one could route in the entire graph a
product multicommodity flow between them with low (polylog(n)) congestion. Thus, we can
convert all the flow paths passing through a supernode in a contracted subgraph into flow paths
in the entire graph using the well-linkedness of these edges while blowing up the congestion by
at most polylog(n).

As stated thus far, it may seem that too many contracted subgraphs might end up using a
same edge in the entire graph to route and thus overcongesting the edge by too much. We address
this issue by fixing the routing level-by-level in our hierarchical decomposition in a bottom-up
manner; at each level, we only partially fix the routing in a contracted subgraph, in the sense that
it becomes valid (i.e. routes the exact same demand) in the slightly larger contracted subgraph
obtained one level above. We aim to maintain the invariant that in each contracted subgraph,
the edges incident on the contracted supernode (i.e. boundary edges) are never congested by a
factor larger than polylog(n). This invariant guarantees that in the (partial) fixing step, the
edges inside the contracted supernodes do not get congested by a factor larger than polylog(n)
either: any routing that utilizes these edges has to go through the boundary edges in the first
place, and the latter are guaranteed to have low congestion.

However, notice that naively performing this (partial) fixing operation level-by-level does
not get us the desired invariant. This is because each time we use well-linkedness of the
boundary edges to fix the routing, we get a multiplicative polylog(n) blowup in congestion,

3This is a vast simplification of our extraction process. In particular, since we need our congestion approximator to be
a tree in order to run Sherman’s algorithm, we can only do certain “partial” contractions that preserves the tree structure,
which significantly complicates both our algorithm and its analysis. We refer the reader to Section 7 for more detail.

4In a contracted subgraph, we only ever route demands that are supported entirely on the “uncontracted” vertices. Thus
there is no ambiguity in saying “same demands” in contracted subgraphs vs. in the entire graph.



which accumulates across all Θ(log n) levels to a very large value. To address this issue, we use
a similar trick as in [RST14] where, when solving maximum flows in each contracted subgraph,
we lower the weights of the boundary edges by a large enough polylog(n) factor. Therefore, the
actual congestion we get on these edges is in fact polylog(n) times smaller than what we get in
our maximum flow routing, canceling out the multiplicative blowup caused by the fixing step.
Moreover, a polylog(n)-congestion approximator for the original contracted subgraph remains
a polylog(n)-congestion approximator for the reweighted contracted subgraph, albeit with a
worse polylog(n) approximation factor. Therefore we can still use Sherman’s algorithm to solve
maximum flows on the reweighted subgraph in polylog(n) depth. Leveraging all these ideas, we
get a parallel algorithm for computing an O(log9 n)-congestion approximator.

2.2 Overview of Our Parallel Flow Decomposition Routine. We now summarize the
ideas behind our parallel flow decomposition routine that addresses our second challenge. Here
we are given an s-t flow represented by a flow network, with each edge carrying some non-
negative amount of flow, and our goal is to decompose the flow into s-t flow paths. We will
decompose the flow in an iterative manner where in each iteration, we shortcut flow paths of
length two in the flow network by replacing them with a single edge having the same flow value.
We then repeat until (almost) all remaining edges directly go from s to t (i.e. all s-t paths have
length 1).

In order to achieve small depth, in every iteration, we need to find a large (in capacity)
collection of edge-disjoint length two flow paths so that they can be shortcut in parallel without
interfering with each other. We show that such a collection exists, and moreover, can be found
efficiently by formulating the problem as b-matching instances. Specifically, for every (directed)
edge e = (u, v) that does not directly connect s and t, we independently and randomly assign e
either as an “outgoing” edge to its head vertex u, or as an “incoming” edge to its tail vertex v.
Now taking a local view at any vertex w in the flow network, the task of shortcutting reduces to a
b-matching problem in a complete bipartite graph, where the two sides are vertices corresponding
to incoming edges into w and outgoing edges from w, respectively, with demands equal to their
flow values. This way, we never have to worry about an edge being matched more than once as
it gets assigned to exactly one of its two endpoints.

We show that in expectation over the random incoming/outgoing assignments of the
edges, the total weight of the maximum b-matchings across all vertices must be at least a
constant fraction of the total remaining flow that does not directly go from s to t. Moreover,
algorithmically, in each b-matching instance, we can utilize a natural greedy strategy to gather
at least a constant fraction of the maximum matched value, which can further be implemented
in parallel across all vertices. This guarantees that in each iteration, the total ℓ1-norm of
the remaining flow shrinks by a constant factor, and thus after O(log n) iterations we have
decomposed a (1 − 1/poly(n))-fraction of the total flow into s-t paths, which suffices for our
purpose since we only want approximate maximum flows. At the end, we output the entire
shortcutting history represented by a DAG data structure from which we can recover our desired
information.

2.3 Algorithms. Lastly, we present all the key algorithms outlines in our overview. Our main
algorithm is a recursive PRAM algorithm for computing a O(log9 n)-congestion approximator
in O(polylog n) depth and Õ(m) total work. We present our algorithms for the case where the



ratio between the largest and smallest capacities in the graph is bounded by poly(n), but by the
reduction shown in Section E, this is without loss of generality.

Algorithm 2.1. congestion-approx(G)
Input: Graph G = (V,E, c) with n = |V |,m = |E|
Output: A O(log9 n)-congestion approximator for G.
Procedure:

1: Gs ← ultrasparsifier(G,κ) with κ = 10 log4 n. ⊲ Section 5.1.1
2: (C, E)← j-tree(Gs) with C the core and E the envelope of the j-tree. ⊲ Section 5.1.2
3: // This is the only recursive call to congestion-approx

4: RC ← congestion-approx(C).
5: // RC ∪ E is an O(log13 n)-congestion approximator for G
6: R′ ← tree-hierarchical-decomp(RC ∪ E) ⊲ Section 5.2
7: // From the call to tree-hierarchical-decomp, R′ is a binary tree with O(log n) depth
8: R← improve-CA(G,R′) ⊲ Algorithm 2.2
9: return R

Our major technical contributions are in the new framework for computing congestion ap-
proximators, the implementation specifics of which are described in the improve-CA subroutine
and the details of which are discussed in Section 6.

Algorithm 2.2. improve-CA(G,R)
Input: Graph G = (V,E, c) and O(logd n)-congestion approximator R for G, with 9 < d ≤ 30.
Output: An O(log9 n)-congestion approximator for G.
Procedure:

1: A1, A2 ← partition-A(G) ⊲ Section 6.1
2: B1, B2 ← partition-B(G,A1, A2) ⊲ Section 6.2
3: // Claim 7.1 guarantees the edges leaving each Zi are O(1/ log9 n)-well-linked
4: Set Z1 = A1 ∩B1, Z2 = A2 ∩B1, Z3 = A1 ∩B2, Z4 = A2 ∩B2.
5: for all Zi do
6: // Ri has size Õ(|Zi|) by Lemma 7.1
7: Ri ← ca-contraction(R,Zi) ⊲ Section 7.1
8: // G(Zi) is a contracted subgraph (Definition 4.3), reweighted as in Section 6.3
9: Ti ← improve-CA(G(Zi), Ri)

10: Set R′ as the tree formed by the Ti, using lines 11 and 12 of Algorithm 6.1.
11: return R′

Theorem 2.1. Given an undirected capacitated graph G = (V,E, c) with n nodes and m edges,
Algorithm 2.1 is a polylog n-depth, O(m polylog n) total work PRAM algorithm which outputs a
hierarchical decomposition tree that, with high probability, is a O(log9 n)-congestion approximator
for G.

Proof. The depth, work and correctness of all subroutines besides improve-CA follow from the
proofs in their respective sections. Specifically, these sections show that R′ passed to improve-CA
is a O(polylog n)-congestion approximator for G which is a binary tree with depth O(log n), and
that R′ can be computed using O(polylog n) depth and Õ(m) work. Then, the correctness of



improve-CA follows from Theorem 6.1, as does the depth and work of all but the ca-contraction
calls. To bound the work from contracting the congestion approximators, by Lemma 6.1 we have
that A1, A2, B1, B2 are both partitionings of V , and so

⋃
i Zi = V . Let G(Zi) be as defined in

Definition 4.3, and properly modifying the capacities of some edges as in Section 6.3. As the
Zi’s are a partitioning of nodes V (G), each edge in G can be present in a most two contracted
graphs G(Zi). Thus,

∑
i |E(G(Zi))| = O(m) as well. Constructing all contracted graphs G(Zi)

can therefore be done in O(m) work (and O(1) depth), and so by Lemma 7.1, computing the
contracted congestion approximators for all G(Zi) takes work Õ(m) and depth O(log n). The
total work and depth of the algorithm then follow from Theorem 6.1.

Proof. (Theorem 1.1) Using the congestion approximator from Theorem 2.1, we can run the
parallel version of Sherman’s algorithm (Theorem 4.1) to get both a (1 − ε)-approximate
maximum s-t flow and a (1 + ε)-approximate minimum s-t cut.

2.4 Organization. We first discuss additional related work in Section 3 and then prelimi-
naries in Section 4. We give details of our construction of congestion approximators in three
subsequent sections. Firstly, Section 5 presents the construction of low-quality congestion ap-
proximators (outlined in Algorithm 2.1). Secondly, Section 6 presents the boosting step where
the quality of the congestion approximator is improved (outlined in Algorithm 2.2). Finally,
Section 7 presents details on how we extract congestion approximators for contracted subgraphs
and utilize them within Sherman’s framework [She13]. We give details of our parallel flow decom-
position algorithm in Section 8. We finally discuss applications of our approximate max-flows
result in Section 9.

3 Other Related Work.

In addition to the related work we covered in the introduction, parallel maximum flow has also
been studied for restricted classes of graphs. For example, when the flow network is a DAG
with depth r, [Coh95] gives a PRAM algorithm with near linear work and poly(r, log n) depth.
Another problem related to the parallel maximum flow is parallel global minimum cut. The
global minimum cut problem has been studied by [KS96, Kar00, GG18]. The current best
known algorithm [GG18] has polylog(n) depth and Õ(m) work.

In the sequential setting, the maximum flow problem on directed graphs has been extensively
studied over the past ∼70 years. Ford and Fulkerson gave the first maximum flow algorithm
using the idea of augmenting paths [FF56]. Since then, there has been a long line of work
giving increasingly more computationally efficient algorithms for this problem; a partial list
includes [Din70, EK72, Kar73, Din73, ET75, Gar85, GG88, GT88, GR98, BK04, Gol08, DS08,
Hoc08, CH09, LS14, GHK+15, Mad16, LS20, KLS20, CKL+22]. When supplies and demands
are polynomially bounded integrals, [CKL+22] provides the current fastest maximum flow
algorithm which achieves a running time of m1+o(1) by leveraging interior point methods,
which are powerful second-order continuous optimization methods. When considering undirected
maximum flow problem, continuous optimization techniques have also been used to obtain fast
(1−ε)-approximate maximum flow algorithms including, e.g., [CKM+11, KMP12, LRS13, She13,
KLOS14, Pen16, She17a, She17b]. Instead of using IPMs, these algorithms use simpler first-
order methods.

In the parallel computation setting, flow problems other than maximum flow/minimum
congestion flow have also been widely studied. As we have discussed in previous sections, the goal



of maximum flow/minimum congestion flow problem is to minimize the ℓ∞ norm of the (rescaled)
flow vector while satisfying the flow conservation constraints. Alternatively, if the objective is
to minimize the ℓ1 norm of the (rescaled) flow vector while satisfying the same constraints, the
problem is known as the uncapacitated minimum cost flow problem. This problem can be seen
as a generalization of the shortest path problem. There is a line of work of parallel undirected
uncapacitated minimum cost flow algorithms that are based on Sherman’s framework [She17b] as
well. In particular, [ASZ20, Li20, RGH+22] provide efficient procedures to compute a polylog(n)-
approximate ℓ1-oblivious routing scheme (ℓ1 preconditioner), and thus they are able to apply
Sherman’s framework [She17b] to compute a (1− ε)-approximate uncapacitated minimum cost
flow for undirected graphs using polylog(n) depth and Õ(m) work. If the goal is to minimize
the ℓ2 norm of the (rescaled) flow vector while satisfying the flow conservation constraints,
the problem is known as the electric flow problem. The efficient parallel electric flow (ℓ2-
flow) algorithm essentially reduces to an efficient (approximate) solver for symmetric, diagonally
dominant (SDD) linear systems due to [PS14]. In particular, [PS14] provides a parallel algorithm
to solve SDD systems with n dimensions and m non-zero entries in polylog(n) depth and Õ(m)
work, and thus the electric flow problem can be solved in the same complexity. Interestingly,
by plugging the parallel SDD system solver into the framework of [Mad16] to deal with the
computation of each Newton step in the IPMs, it implicitly gives a parallel maximum flow
algorithm for directed graphs with Õ(

√
m) depth and Õ(m1.5) work (and with 1/poly(n) additive

error).
Finally, we also note that a recent paper by Forster et al. [FGL+22] used a relevant

technique in [Coh95] to round fractional flows to integral ones in their distributed maximum
flow algorithms. However, we emphasize that the scheme of [Coh95] is for flow rounding rather
than flow decomposition, i.e. rounding fractional flows to integer flows, as opposed to finding
the actual s-t flow paths. The latter is crucial for our application in cut matching games, as the
matching player needs to compute a (fractional) matching between the sources and sinks from
a given s-t flow.

4 Preliminaries.

Graphs. We represent an n-vertex, m-edge undirected, capacitated graph as G = (V,E, c)
with V being the vertices (nodes), E being the edges, and c being the edge capacities (weights).
We also use V (G) and E(G) to denote the vertices and edges of the graph G, respectively. We
will interchangeably write the capacity of an edge e as c(e) or ce. Sometimes the same edge e
appears in two different graphs with different capacities, thus we write cH(e) or cHe to denote the
weight of e in graph H to avoid ambiguity. In Section E, we show how to transform a graph with
arbitrary capacities into one with polynomial aspect ratio while only reducing the maximum s-t
flow by a (1− ε) factor, for any s, t ∈ G and ε > 0. Thus, throughout the paper we assume that
graphs have poly(n/ε) aspect ratio.

We usually need to solve maximum flows by adding a source and a sink, for which we set
up the following notation.

Definition 4.1. (Graphs with Sources and Sinks) Given a graph H with two (not neces-
sarily disjoint) vertex subsets V1, V2 ⊆ V (H), and a parameter cu ≥ 0 for each u ∈ V1, and a
parameter du ≥ 0 for each u ∈ V2, we write Hst to denote the graph obtained from H by doing
the following:



1. Add a vertex s, and connect s to each u ∈ V1 with capacity cu;

2. Add a vertex t, and connect t to each u ∈ V2 with capacity du.

Congestion Approximators and Sherman’s Algorithm. Given a graph G = (V,E, c)
and a demand vector b, let optG(b) = minf :Bf=b ‖C−1f‖∞ be the optimal congestion of any flow
routing a given demand vector b in the graph G, with B being the edge-vertex incidence matrix
of G.

We first define congestion approximators. Note that in this paper, we always consider
congestion approximators that are trees, which are readily plugged into Sherman’s algorithm.

Definition 4.2. (Congestion Approximators) Given a graph G = (V,E, c), a tree R =
(VR, ER, cR) with V ⊆ VR is an α-congestion approximator of G for some α ≥ 1 if for any
demand vector b, we have

optR(b
′) ≤ optG(b) ≤ α · optR(b′),

where b′ is obtained by appending b with zeros on entries VR \ V .

We next state the parallel version of Sherman’s algorithm. While we believe it is known
that Sherman’s algorithm can be implemented with low depth modulo the computation of a
good congestion approximator, we give a discussion of such an implementation in Appendix C
for completeness.

Theorem 4.1. (Sherman’s algorithm [She13], Parallel Version) There is a PRAM al-
gorithm that, given a graph G = (V,E, c), an α-congestion approximator R = (VR, ER, cR) of G,
a source s ∈ V and a sink t ∈ V , and an ε ∈ (0, 1), computes a (1 − ε)-approximate maximum
s-t flow as well as a (1+ ε)-approximate minimum s-t cut in G. The total work of the algorithm
is O((|E|+ |ER|)α2ε−3 polylog(n)), and the depth of the algorithm is O(α2ε−3 polylog(n)).

Contracted Subgraphs. We give the definition of contracted subgraphs below. We use X
to denote the subset of vertices that we contract, and use S = V (G)\X to denote the remaining
vertices.

Definition 4.3. (Contracted Subgraphs) Given a graph G = (V,E, c) and a subset of
vertices S ⊆ V (G), we denote by G(S) the graph obtained from G by contracting X := V \ S
into a single supernode uX , deleting any resulting self-loops, and keeping all resulting parallel
edges.

We now define reweighted contracted subgraphs which will be useful in our new congestion
approximator construction in Section 6.

Definition 4.4. (Reweighted Contracted Subgraphs) Given a graph G = (V,E, c) and
a pair P = (S, ω), where S ⊆ V (G) is a subset of vertices, and ω : E(S, V (G) \ S) → (0, 1] is
a real-valued reweighting function, we denote by G(P) the graph obtained from G by doing the
following operations:

1. Contract X := V \ S into a single supernode uX , deleting any resulting self-loops, and
keeping all resulting parallel edges;



2. Scale the weight of each (parallel) edge e incident on uX by a factor of ω(e).

We call uX the contracted vertex, and refer to other vertices (a.k.a. S) in G(P) as uncontracted
vertices. We refer to the edges in G(P) that are incident on uX the boundary edges.

Subdivision Graphs and Well-Linked Edges. We recall the definition of subdivision
graphs from [RST14].

Definition 4.5. (Subdivision Graphs) Given a capacitated graph G = (V,E, c), we write
G′ = (V ′, E′, c′) to denote the subdivision graph of G, defined as follows. To obtain G′, we
split each edge e = (u, v) in G by introducing a new split vertex (or subdivision vertex) xe
and two split edges (u, xe) and (xe, v), both with capacity ce. In words, we have V ′ = V ∪XE

where XE is the set of split vertices of the edges in E, E′ =
⋃

e=(u,v)∈E {(u, xe), (xe, v)}, and
c′(u,xe)

= c′(v,xe)
= ce for every edge e ∈ E.

For a subset of edges F ⊆ E, we write XF to denote the set of split vertices of edges in E,
and cF (or equivalently, c(F )) to denote the total capacity of edges in F .

Definition 4.6. Given G(P) and another reweighting function ω̃ supported on the split edges
of the boundary edges of G(P) in G′(P). Then we define the graph G′(P̃ = (P, ω̃)) to be the
graph obtained from G′(P) by reweighting the split edges of the boundary edges by ω̃. That is,

for an edge e that is a split edge of a boundary edge, we have c
G′(P̃=(P,ω̃))
e = ω̃(e) · cG

′(P)
e .

We next recall the notion of well-linked edges as used in [RST14].

Definition 4.7. (Well-linked Edges) For a capacitated graph G = (V,E, c), a set F ⊆ E
of edges of total capacity cF is called β-well-linked for some β ∈ (0, 1] if there is a feasible
multicommodity flow in the subdivision graph G′ that sends (βcecf/cF ) units of flow from xe to
xf for all pairs e, f ∈ F simultaneously.

Any subset of well-linked edges are also well-linked.

Proposition 4.1. If set F ⊆ E of edges is β-well-linked in G = (V,E, c), then any subset
F ′ ⊆ F of F is β-well-linked.

Proof. Given a product demand on F ′, we can first let each edge distribute its demands uniformly
to all edges in F with each edge getting flow proportional to its capacity. This can be done
with congestion 1/β since edges in F are β-well-linked. Then for each demand between two
vertices s, t in F ′, we can compose the routings which distributed the flow from s and t to F .
The proposition thus follows.

PRAM Primitives. We state a few basic PRAM primitives, whose implementation is
discussed in Appendix A for completeness.

Proposition 4.2. (Prefix Sums [Akl97]) There is a PRAM algorithm that, given a list of
values a1, . . . , an, computes all prefix sums

∑
i≤k ai’s. The algorithm has O(n) total work and

O(log n) depth.

Proposition 4.3. (Subtree Sums) There is a PRAM algorithm that, given a tree T =
(VT , ET , wT ) where wT : VT → R is a vertex weight function, a vertex r ∈ VT , computes all
subtree sums of the weight function wT with the r being the root of tree. The algorithm has total
work O(|Et|) and total depth O(log |ET |).



5 Recursive Computation of a Low-Quality Congestion Approximator.

In this section, we detail the steps of Algorithm 2.1 up to the call to improve-CA (which is
detailed in Algorithm 2.2 and Section 6). That is, in this section we detail how to recursively
compute a α′-congestion approximator for G which is a O(log n) depth binary hierarchical
decomposition tree of G where α′ = O(polylog n). Section 6 then details how to improve the
quality of the congestion approximator to O(log9 n).

5.1 Reducing the Size of the Graph.

5.1.1 Constructing an Ultrasparsifier. To reduce the size, our first step is to construct
an ultrasparsifier of the graph. An ultrasparsifier, informally speaking, consists of a spanning
tree plus some additional edges that approximately preserves all graph cuts.

Definition 5.1. (Ultrasparsifier) Given a graph G = (V,E, c) with n nodes and m edges,
and any parameter κ ≥ 1, a κ-ultrasparsifier Gs = (V,Es, cs) is the union of a spanning tree T of
G and a collection of edges E′ such that |E′| = O(m log2 n/κ). Moreover, with high probability,
the capacity of every cut of G is preserved to within a κ factor in Gs.

In Algorithm 2.1, we use κ = 10 log4 n to ensure a polylog n reduction in size compared to the
original graph.

Lemma 5.1. There exists a randomized PRAM algorithm that given an undirected, capacitated
graph G = (V,E, c), and any desired quality parameter κ ≥ 1, constructs a κ-ultrasparsifier of
G with O(log n) depth, and O(m) total work.

Proof. The algorithm first computes a maximum spanning tree using the result of [PR02], which
uses O(log n) depth and O(m) work. Then, scale up the weights on the tree edges by a factor
of κ, and sample each remaining edge with probability Θ(log2 n/κ).

Sampling can easily be done in parallel, and the number of sampled edges in expectation is
also immediately as desired. So, it remains to show that the final constructed graph preserves
all cuts to within a O(κ) factor with high probability.

Let T be the constructed maximum spanning tree of G. Multiplying the weight of each edge
of T by κ results in a worst-case cut distortion factor of κ. So, after scaling, we wish to select
additional edges in order to approximate cuts (in the graph with newly scaled edges) to within
an O(1) factor. [FHHP19] shows that to approximate edges cuts to within a (1 + ε) factor, it
is sufficient to sample each edge e with probability at least Cce log

2 n/(ρeε
2), where ρe is the

edge-connectivity between the endpoints of e, ce is the capacity of edge e, and C is a suitably
large constant. Here, the connectivity of an edge e = (u, v) is defined as the capacity of the
minimum cut separating u from v.

As our algorithm samples off-tree edges (that is, edges in G but not T ) at rate Θ(log2 n/κ),
to complete our analysis it suffices to show that the connectivity of any off-tree edge e = (u, v)
is at least ceκ. Since e is off-tree, adding it to T creates a cycle. Moreover, T is the maximum
weight spanning tree, so ce ≤ ce′ for all e′ on the cycle created. Any cut separating u from v
must also involve some tree edge e′ from this cycle, so the capacity of any cut (after scaling) is
at least ce′κ. Thus, the connectivity of e is also at least ce′κ ≥ ceκ.



5.1.2 Constructing a j-tree. After constructing a O(polylog(n))-ultrasparsifier, we now
have a graph Gs which is the union of a spanning tree T and collection of off-tree edges E′. We
now transform the ultrasparsifer so that we only need to compute the congestion approximator
for a smaller subgraph. Namely, we convert the ultrasparsifer into a j-tree. A j-tree, introduced
in [Mad10], is a graph consisting of a forest with j trees (called the envelope) connected together
by an arbitrary graph (called the core) over j vertices, one from each tree.

Definition 5.2. (j-tree [Mad10]) A weighted graph G = (V,E, c) is a j-tree if it is a union
of a core graph H which is an arbitrary capacitated graph supported on at most j vertices of G,
and a forest on V such that each connected component in the forest has exactly one vertex in
H. We call this forest the envelope of the j-tree.

Lemma 5.8 of [Mad10] shows how to sequentially convert any ultrasparsifer to an O(j)-tree,
where j is the number of nodes incident on off-tree edges in the ultrasparsifer. In this section,
we show how to adapt this sequential process to the PRAM setting.

The algorithm of [Mad10] for converting an ultrasparsifier to a j-tree first recursively removes
degree 1 vertices. Let F be the subgraph consisting of these deleted nodes and edges; F is thus a
forest, and all removed edges come from the spanning tree T of the ultrasparsifier. Unfortunately,
this process is inherently sequential, so we instead show that an alternative process, which can
easily be parallelized and identifies this forest of removed nodes.

Lemma 5.2. Let Gs be a O(polylog(n))-ultrasparsifier with spanning tree T and off-tree edges
E′. Suppose T is rooted at an arbitrary node incident on some off-tree edge. Then, a node u
is removed by recursive deletion of degree 1 vertices if and only if the subtree of T rooted at u
contains no nodes incident on off-tree edges. Moreover, there is a PRAM algorithm with O(log n)
depth and O(m) work which removes all such nodes.

Proof. Let r be the root of T , and let F be the set of nodes removed by recursively deleting
degree 1 vertices (so F induces a forest). Define X as the set of nodes incident on some off-tree
edge. If the subtree of u contains no nodes in X, then it immediately follows that u (and all of
its descendants) must be in F because they induce a tree.

Now, suppose some node in the subtree of u is incident on an off-tree edge. Let p be the
parent of u, let v be a child of u such that the subtree rooted at v also contains a node in X,
and let Hu be the graph formed by removing u from Gs. As r ∈ X, both p and v are connected
to X in Hu. If p, v are in the same connected component of Hu, then u is in a cycle, and so it
will never be removed by the recursive deletion procedure.

Otherwise, p, v are connected in Hu to distinct elements of X; p is connected to r and v is
connected to some x ∈ X such that x 6= r. As p and v are both neighbors of u, there exists in
Gs a r → x path P such that u ∈ P . Consider the rounds of the recursive deletion procedure,
where in each round the procedure removes all degree 1 vertices currently present in the graph.
If before round i, no nodes of P have been deleted, then after round i, none of P has been
removed as well: the interior points have 2 neighbors in the path, thus having degree at least 2,
and the endpoints are never removed as they are incident on off-tree edges. The entire path is
trivially present before the procedure begins, and so no nodes in P are ever removed. Thus, as
u ∈ P , u 6∈ F , as desired.

The algorithm to find F is as follows: first, root T at an arbitrary node incident on some
off-tree edge. Construct node weights by setting wu = 1 if u is incident on some off-tree edge,



and wu = 0 otherwise. Then, run the subtree sum algorithm of Theorem A.4, and output all
nodes whose subtree sum is 0. Identifying which nodes are adjacent to off-tree edges requires at
most O(1) depth and O(m) work, and the subtree sum algorithm has depth O(log n) and total
work O(n), giving the desired runtime bounds.

Let G′ be the graph after recursively deleting degree 1 vertices, or, equivalently by Lemma
5.2, removing all nodes whose subtree contains no nodes incident on off-tree edges. The next
step is to find paths in G′ involving entirely degree 2 vertices except for the end points u, v
which have degree at least 3, and “move” capacity from the lowest weight edge into an edge
between the endpoints of the path. In Lemma 5.8, [Mad10] proves that after reconnecting the
vertices removed by recusively deleting degree 1 vertices, this results in (3j − 2)-tree, where j is
the number of nodes incident on off-tree edges in Gs.

Algorithm 5.1. transform-paths-and-cycles(G′)
Input: Graph G′ with no degree 1 vertices, and j nodes incident on off-tree edges.
Output: A O(j)-tree G′′.
Procedure:

1: Initialize W ← {u | deg(u) = 2}, P = ∅, C = ∅, and G′′ = G′.
2: Construct Gd by removing V \W (i.e. nodes of at least degree 3) from G′.
3: Run connectivity to identify connected components C1, . . . Cq of Gd.
4: for each component Ci do
5: Find U1 ⊆ Ci, the set of degree 1 vertices in Ci.
6: if |U1| = 0 then
7: Add Ci to C.
8: else
9: Let U1 = {u1, u2}, and let v1, v2 ∈ V \W be the additional neighbors in G′ of u1, u2.

10: if v1 = v2 then
11: Add the cycle formed by Ci and v1 to C.
12: else
13: Add the path from v1 → v2 through Ci to P.
14: for each S ∈ P ∪ C do
15: Find emin, the edge with minimum capacity in S.
16: For all other e ∈ S, update capacity w(e) = w(e) + w(emin) in G

′′.
17: If S ∈ P with endpoints (v1, v2) and (v1, v2) 6∈ E(G′′), create edge (v1, v2) with capacity

w(emin).
18: Delete emin from G′′.

19: return G′′.

Theorem 5.1. (Parallel Version of Lemma 5.8 of [Mad10]) Algorithm 5.1 uses
O(log n) depth and Õ(m) total work to construct a O(j)-tree, where j is the number of nodes
incident on an off-tree edge of Gs.

Proof. For runtime, in Line 3 we may use the connectivity algorithm shown in [SV80], which
has O(log n) depth and Õ(m) work. Finding the additional neighbors can be identified in O(1)
depth and O(n) work, along with identifying whether they induce a path or a cycle, and a
O(log n) depth algorithm can correctly update the capacities.



For correctness, all constructed paths have endpoints of degree 3. After removing all nodes
of degree at least 3, the remaining nodes all have degree 2 in G′, as G′ has no degree 1 vertices
by Lemma 5.2. So, every degree 2 vertex and every edge between degree 2 vertices is in exactly
one component, and thus every edge is in some path or cycle and all paths and cycles are edge
disjoint.

The result then follows from the proof Lemma 5.8 in [Mad10].

Once we have a O(j)-tree J , to identify the core on which we wish to construct a congestion
approximator, we first find a spanning tree of J . We then invoke the procedure of Lemma 5.2
with respect to this spanning tree to remove any nodes not present in the core. Then by Lemma
5.8 in [Mad10], the constructed j-tree preserves all cut values to within a polylog(n) factor.

Finally, we then recursively run Algorithm 2.1 on the core of the j-tree, and attach the trees
in the envelope (where envelope is defined as in Definition 5.2).

5.2 Hierarchical Decomposition on Trees. After recursing on the core of the j-tree, we
have a congestion approximator R′ for G. However, the depth of R′ may be very large, as there
is no bound on the depth of trees which make up the envelope of the j-tree. Several parts of our
algorithm, such as the procedure to reduce the size of the congestion approximator (Section 7.1),
rely on R′ having O(log n) depth. As such, before running the procedure to improve the quality
of the congestion approximation of R′, we emulate the hierarchical decomposition procedure
of [RST14] on the tree R′. That is, we take as input the tree R′, and output a hierarchical
decomposition tree with depth O(log n) which is an O(log4 n)5 congestion approximator for R′.
Moreover, to bound the work of the contraction of congestion approximators in Section 7.1, we
require the output congestion approximator to be a binary tree.

The goal of this section is to prove the following theorem:

Theorem 5.2. (Hierarchical Decomposition on Trees) Let T be a tree on n nodes.
There is a O(log3 n) depth, Õ(n) work algorithm to compute an O(log4 n)-congestion approxi-
mator R for T which is a hierarchical decomposition with depth O(log n). Moreover, in the same
depth and work, we can ensure that R is a binary tree.

The algorithm makes use of a tree separator node, which is any node q of a tree T such that
removing q results in a forest of components of size at most |T |/2.
Definition 5.3. (Tree Separator Node) A node q in a tree T is called a tree separator
node of T if the forest induced by T \ {q} consists of trees with at most |T |/2 nodes.

Lemma A.2 gives a O(log |T |) depth, O(|T |) work PRAM algorithm to find a tree separator node
for any tree T .

With this definition, we now describe the algorithm for computing a hierarchical decompo-
sition on trees. Each level in the hierarchical decomposition algorithm of [RST14] consists of
two partitioning steps. Given a set P of nodes, the first determines an Ω(1/ log2 n)-well-linked
(see Definition 4.7) set of edges within the graph induced by P and for the second, it suffices to
find an exact min-cut between these well-linked edges and the edges leaving P (see Lemma 3.9
of [RST14] for more details)6.

5As this loss of O(log4 n) suffices for our purposes, we do not attempt to improve it, and instead rely on the analysis of
[RST14] in a near-black-box fashion.

6We reuse the names “Partition A” and “Partition B” used in Section 6, to highlight the similar goals of the procedures
partition-A and partition-B, however we are not invoking or directly implementing these procedures.



Definition 5.4. (Partition A) Let P be a subset of nodes of a graph G = (V,E, c), and let
G′[P ] be the subdivision graph (see Definition 4.5) of the subgraph of G induced by P . Then,
Partition A is a partitioning of P into clusters P1, . . . , Pw such that the set of inter-cluster edges
in G′[P ], namely {(u, v) | u ∈ Pi, v ∈ Pj, i 6= j}, is Ω(1/ log2 n)-well-linked. Moreover, we have
|Pi| ≤ (1/2)|V (G)| for all i.

For the definition of Partition B, we state it in terms of an exact min-cut, which is stronger than
what [RST14] or Section 6 uses, since when the graph is a tree, we are able to compute exact
min-cut efficiently in low depth (see Section D for more details).

Definition 5.5. (Min-Cut Partition B) Let P be a subset of nodes of a graph G = (V,E, c),
let BP be set of edges with one endpoint in P and one endpoint in V \ P . Construct a graph H
as follows. Start with G′[P ], and for each edge e in BP , add a node xe to H. Finally, for each
e = (u, v) in BP such that v ∈ P , add an edge (xe, v) with capacity c(e)/ log n. Then, with W
the set of nodes of H which corresponds to the set of subdivision nodes of the inter-cluster edges
from Partition A, Partition B is a partitioning (X,P \ X) such that (X,P \ X) is a min-cut
between BP and W in the graph H.

The analysis of [RST14] and Section 6 shows that to get a polylog(n) depth, Õ(n) work PRAM

algorithm to compute a hierarchical decomposition for a tree, it suffices to implement Partition
A and Partition B in polylog(k) depth and Õ(k) work on a set of k nodes. We now give a pair
of lemmas showing that we can indeed do this.

Lemma 5.3. (Computing Partition A on Trees) There is a O(log k) depth, Õ(k) work
PRAM algorithm to compute Partition A on a set of k nodes which induce a tree.

Proof. Let T be the tree induced by the vertex set we wish to partition. Then, compute a tree
separator node c of T , and set the partitions to be the connected components of T \ {c} along
with {c}. The depth and work are then O(log k) and Õ(k), using the algorithms for finding a
tree separator node and connected components.

The only edges cut are those incident on the center c. The set of edges incident on the center
are 1-well-linked, since they share an endpoint, meeting the requirements for Partition A.

Lemma 5.4. (Computing Partition B on Trees) Given a tree T , there is a O(log2 k)
depth, Õ(k) work PRAM algorithm to compute Partition B on the subgraph of T induced by
a set K of k nodes.

Proof. First, note that the subgraph induced by K is a forest, as T is a tree. Then, with P = K,
define BP , W , and H as in Definition 5.5. Note that as the subgraph induced by K in T is a
forest, H is also a forest. Add to H a super-source s connected to each node of BP with capacity
∞ and a super-sink t connect to each node of W with capacity ∞. Then, the result follows from
computing a exact s-t min-cut on H (using Lemma D.2)7.

These lemmas allow us to compute hierarchical decompositions on trees.

7Lemma D.2 is written for a tree with the addition of a source s and sink t, rather than a forest; as such, we first add a
dummy node y that connects to one node of every component of the forest with a capacity 0 edge, which does not change
the min-cut value and allows us to use Lemma D.2.



Lemma 5.5. Given a tree T on n nodes, there is an O(log3 n) depth, Õ(n) work PRAM algorithm
to compute an O(log4 n)-congestion approximator R for T which is a hierarchical decomposition
with depth O(log n).

Proof. We follow the algorithm of [RST14] to construct a congestion approximator for T . As
each level of the constructed congestion approximator in [RST14] corresponds to a partitioning
of the edges, computing Partition A and B for all sets at a given level can be done in O(log2 n)
depth and Õ(n) work. The use of tree separator nodes leads to a constant factor size reduction
from each Partition A step, and so there are at most O(log n) levels, leading to a O(log3 n) depth,
Õ(n) work algorithm. Finally, the analysis of [RST14] shows that the constructed hierarchical
decomposition is a O(log4 n)-congestion approximator for the original tree, and that the tree
has O(log n) depth.

It thus remains shows how to convert the congestion approximator R into a binary tree; we
describe the procedure in Algorithm 5.2. In Algorithm 5.2, we use the term first non-binary node
to refer to any node u ∈ R such that none of the ancestors of u have more than two children,
but u has at least three children. Since R has depth O(log n), a breadth-first traversal can find
all first non-binary nodes in O(log n) depth and O(n) work.

Finally, for any node u of a hierarchical decomposition tree R, we use the notation Ru to
refer to the subtree of R rooted at u, and Pu the set represented by node u.

Algorithm 5.2. convert-binary(R)
Input: Hierarchical decomposition tree R = (VR, ER, cR) which is a α-congestion approximator
for some tree T .
Output: Binary tree R′ which is a α-congestion approximator for T .
Procedure:

1: Compute the set B of all first non-binary nodes in R
2: // Ru is the subtree of R rooted at u
3: Let F =

⋃
u∈B Ru \ B be the forest of descendants of all first non-binary nodes

4: Initialize R′ ← R \ F
5: for each first non-binary node u ∈ B do
6: // Pvi is the set represented by vi in R, and q ≥ 3 as u ∈ B
7: Let v1, . . . , vq be the children of u such that |Pv1 | ≥ |Pv2 | ≥ . . . |Pvq |
8: Set s such that s is the smallest index such that |Pv1 ∪ . . . ∪ Pvs | ≥ |Pu|/4
9: Add to R′ new nodes z1, z2 as children of u with edges of capacity ∞. Moreover, in R′,
z1 represents Pv1 ∪ . . . ∪ Pvs and z2 represents Pvs+1 ∪ . . . ∪ Pvq

10: for 1 ≤ i ≤ s do
11: Add Rvi to R

′ by adding edge (z1, vi) with capacity cR((u, vi))

12: for s+ 1 ≤ i ≤ q do
13: Add Rvi to R

′ by adding edge (z2, vi) with capacity cR((u, vi))

14: If z1 (or z2) has exactly one child v, remove z1 (or z2) and connect v to u with an edge
of capacity cR((u, v)).

15: If R′ is binary, return R′. Otherwise, return convert-binary(R′).

To prove the correctness of Algorithm 5.2, we first prove the following helper lemma.



Lemma 5.6. Let R′ = convert-binary(R), and consider x a node of R′. Let y be the parent
of x, and let z be the parent of y. Then, |P ′

x| ≤ (3/4)|P ′
z |, where for any w ∈ R′, P ′

w is the set
represented by w in R′.

Proof. Every node in R is present in R′, as each call to convert-binary adds nodes but does not
remove any. As such, V (R) ⊆ V (R′). We again use the notation Pw to denote the set represented
by a node w in R, and P ′

w = Pw for all w ∈ R. Call any node in R′ \R an intermediary node.
First, consider a node x in R′ whose parent y is not an intermediary node; that is, y ∈ R. If
x ∈ R as well, then by Lemma 5.3, |Px| ≤ (1/2)|Py |. So, suppose x is an intermediary node,
and thus P ′

x is a union of sets Pw1 , . . . , Pwq , where w1, . . . , wq are the children of y in R. As in
Algorithm 5.2, set s to be the smallest index such that |Pw1 ∪ . . . ∪ Pws | ≥ (1/4)|Py |, and let
S1 = Pw1 ∪ . . .∪Pws and S2 = Pws+1 ∪ . . .∪Pwq . From the fact that |Pwi

| ≤ (1/2)|Py | (which is
again from Lemma 5.3) and the setting of s, we have that (1/4)|Py | ≤ |S1| ≤ (3/4)|Py |. Since
S1 ∪ S2 = Py, the same inequality holds for |S2|. Thus, as either P ′

x = S1 or P ′
x = S2, we have

that |P ′
x| ≤ (3/4)|P ′

y |. Since R′ is a hierarchical decomposition, if z is the parent of y, P ′
y ⊆ P ′

z,
and thus all nodes which are the child of a non-intermediary node satisfy the lemma.

Now, consider a node x ∈ R′ whose parent y is an intermediary node. Let z be the parent of
y. As R′ is a hierarchical decomposition by construction, there exists a set S′ ⊆ V (R) such that
P ′
z =

⋃
w∈S′ Pw and a set S ⊂ S′ such that P ′

y =
⋃

w∈S Pw. If for all w ∈ S, |Pw| ≤ (1/2)|P ′
z |, then

by the same argument used in the case where y was non-intermediary, |P ′
x| ≤ |P ′

y| ≤ (3/4)|P ′
z |.

Suppose, for contradiction, there exists a w ∈ S such that |Pw| > (1/2)|Pz |. Since Algorithm 5.2
sorts the nodes in Line 7 in decreasing order of size of the sets they represent, if S contains an
element w such that |Pw| > (1/2)|Pz |, w must be the only element of S. As such, since S = {w},
y is not an intermediary node, which is a contradiction.

Lemma 5.7. Given an α-congestion approximator R from Lemma 5.5 for a tree T with n nodes,
Algorithm 5.2 is a O(log2 n) depth, Õ(n) work PRAM algorithm that constructs a binary tree R′

such that R′ is a α-congestion approximator for T . Moreover, R′ has depth O(log n).

Proof. Let R′ = convert-binary(R) be the output of Algorithm 5.2 on R. Lemma 5.6
immediately implies that R′ has depth O(log n), and Line 15 guarantees that it is binary, so
it remains to show that R′ is a α-congestion approximator for T and that Algorithm 5.2 has
O(log2 n) depth and Õ(n) total work. Note that for any edge (u, v) in R, there is a path from u
to v in R′ with the same minimum capacity as (u, v) in R; namely, all edges on the path from
u to v in R′ have capacity either ∞ or cR((u, v)). Let Puv be the path for (u, v) in R′, and
let Pxy be the path for some other edge (x, y) ∈ E(R) in R′. By the setting of edge capacities
in Algorithm 5.2, all edges along both Puv and Pxy, if there are any, must have capacity ∞.
As such, any routing in R′ can be converted to a routing in R with the same congestion, and
vice-versa, so R′ is also a α-congestion approximator for T .

Let R0 = R,R1, . . . , RL be the sequence of trees such that for all i < L, convert-binary(Ri)
makes a recursive call convert-binary(Ri+1) in Line 15, and the call convert-binary(RL)
returns R′ without further recursion. Each call to convert-binary only increases the number
of nodes and depth of the tree: no nodes are removed, and each addition of a node zi in Line
9 can only increase the depth. So, it follows that for any i ∈ [L], the depth of Ri is no more
than the depth of R′; by Lemma 5.6, we have that the depth of Ri is then O(log n). Moreover,
by construction, each Ri is a hierarchical decomposition of T , so each level j of Ri represents a



partitioning of V (T ). Thus, as there are O(log n) levels, each node in T can appear in the sets
of at most O(log n) nodes of Ri, each at a different level of Ri. Since there are n nodes in T , it
follows that there are O(n log n) nodes in Ri.

Each call convert-binary(Ri) before the recursive call in Line 15 can be implemented in
O(log |Ri|) depth and Õ(|Ri|) work. Since |Ri| = O(n log n), each call can be implemented in
O(log n) depth and Õ(n) work. To bound the total depth and work, it thus suffices to bound the
total number of recursive calls to convert-binary made during a call of convert-binary(R).
Define B(Ri) to be the lowest depth (i.e. distance from the root) of any first non-binary node in
Ri. In each call convert-binary(Ri), after the for loop of Line 4, all first non-binary nodes have
at most two children, and are thus no longer first non-binary nodes. In addition, the for loop can
only reduce the number of children any node has. As such, it follows that B(Ri+1) ≥ B(Ri) + 1
for all i < L. Then, as RL has depth O(log n), we must have B(Ri) = O(log n) for all i, and
thus L = O(log n) as well. This results in a complete depth of O(log2 n) and total work of Õ(n).

The proof of Theorem 5.2 then follows from Lemma 5.5 and Lemma 5.7.

6 New Framework for Congestion Approximator Computation.

The goal of this section and the next (Section 7) is to give a full presentation and analysis of our
Algorithm 2.2, whose goal is to boost the approximation quality of a given congestion approx-
imator. Specifically, given any congestion approximator of a graph G of arbitrary polylog(n)
distortion, we will compute an O(log9 n)-congestion approximator of G in O(m polylog(n)) work
and O(polylog(n)) depth.

Our presentation of Algorithm 2.2 will be given as two parts. First in this section, we
show, assuming being able to solve approximate maximum flows on contracted subgraphs, how
we can compute a congestion approximator of O(log9 n) distortion. Then in the next section
(Section 7), we show how we can directly extract congestion approximators for contracted
subgraphs from a given congestion approximator of the entire graph, allowing us to then run
Sherman’s algorithm [She13] to compute (1−ε)-approximate maximum flows on these contracted
subgraphs.

We now present in this section a variant of the framework in [RST14] that allows us to boost
the approximation of a given congestion approximator in a manner that is both work-efficient
and parallelizable. The key novelty in our new framework is to avoid running (approximate)
maximum flows on subgraphs of G, which are obtained by removing vertices/edges from G.
This is because running maximum flows on such subgraphs requires computing congestion
approximators for them using additional recursions, which would have blown up the depth
of our algorithm to at least no(1). Rather, we run approximate maximum flows on contracted
subgraphs of G, that are obtained from G by contracting subsets of vertices into single nodes.
As we will show in Section 7, we can extract congestion approximators for contracted subgraphs
directly from a given congestion approximator of the entire graph, without having to recurse on
the subgraphs.

Throughout this section, we assume that we have a PRAM algorithm A, whose implemen-
tation we describe in the next section (Section 7), that can compute a (1 − ε)-approximate
maximum flow on any given contracted subgraph of G with work near-linear in the number of
edges of the subgraph and depth O(polylog(n)). We separate the implementation of A from



the presentation of the new framework here in an effort to make the latter cleaner and more
intelligible.

Remark 6.1. Note that the specific implementation of algorithm A will depend on the execution
of our framework in this section, and in particular the execution of our framework and that of
A should alternate with each other. This is because the implementation of A involves extracting
congestion approximators for the contracted subgraphs from the given congestion approximator
of the entire graph. However, only after we have run A on a current cluster S do we know the
sub-clusters on which we want to run A subsequently. The composition of the two algorithms is
given in Algorithm 2.2.

We state the performance of our assumed PRAM algorithm A below, and describe how to
implement it in Section 7. Note that in our algorithm, we always set ζ to be at least 1/polylog(n)
so A has near-linear total work and polylog(n) depth.

Proposition 6.1. (Performance of A) Let G′(P = (S, ω)) be the subdivison of a contracted
subgraph of G with reweighting function ω such that the range of ω is within [ζ, 1] for some
ζ ∈ (0, 1]. Then given an arbitrary graph G′

st(P) obtained from G′(P) with maximum s-t flow
value F ∗, A computes with high probability

1. A feasible s-t flow of value at least (1− ε)F ∗ in G′
st(P).

2. An s-t cut (T, T̄ ) in G′
st(P) with capacity at most (1 + ε)F ∗.

A has total work O(|E(G′
st(P))|ζ−2ε−3 polylog(n)) and depth O(ζ−2ε−3 polylog(n)).

Plan for the Rest of the Section. We will obtain a hierarchical decomposition tree of
the graph that serves as our congestion approximator. In each step of the decomposition, we use
the maximum flow algorithm A to perform two partitioning steps on a current cluster S, and
use the resulting partitions to obtain a two-level decomposition tree. Recursively applying this
decomposition step to each sub-cluster obtained ends up giving us a hierarchical decomposition
tree of the graph. As will be guaranteed by our partitioning steps, in each decomposition step
we reduce the size of the cluster by a constant factor. As a result, we get a tree of O(log n)
depth.

At a high level, the goals of the two partitioning steps are similar to those of [RST14].
Specifically, the first partitioning step is to find a subset of edges that (i) are well-linked in the
sense that we can route product demands between them with low congestion, and (ii) separate
the current cluster S into sub-clusters whose sizes are a constant factor smaller. The second
partitioning step is then to find a bottleneck cut that separates the inter-cluster edges found
in step one and the boundary edges that go from S to V (G) \ S. The difference between
our partitioning steps and those of [RST14] is that we obtain these partitions in contracted
subgraphs rather than vertex-induced subgraphs, which avoids additional recursions on these
subgraphs when solving maximum flows on them, but on the other hand requires extra care
so as to prevent the edges from getting over-congested, since after all an edge could implicitly
appear in polynomially many contracted subgraphs as one inside the contracted vertices.

In the rest of this section, we will first present the two partitioning steps needed, and then
show how to use them to obtain a hierarchical decomposition tree. In the following, we will



interchangeably use the terms partitioning and clustering, and the terms partitions and clusters.
For a given edge subset F , the partition induced by F is the partition of the vertices correponding
to the connected components of the graph after the removal of F .

6.1 The First Partitioning Step. Given a contracted subgraph G(P) with at least two
uncontracted vertices, our first step is to partition the vertices V (G(P)) into sets Z1, Z2 such
that the edges between Z1, Z2 are well-linked in G(P), and Z1, Z2 are size balanced. To this end,
we first use the parallel implementation of the cut-matching game in [RST14] to get a balanced
partition with almost all of the inter-cluster edges well-linked. To simplify our presentation, we
say a partition Z1, . . . , Zz of a set Z is γ-balanced for some γ ∈ (0, 1] if |Zi| ≤ γ |Z| for all i.

By plugging A into the cut matching game of [RST14] (their Lemma 3.1), whose parallel
version is described in Appendix B, we have the following lemma.

Lemma 6.1. There exists a PRAM algorithm partition-A1 that given G(P) for P = (S, ω)
with X = V (G) \ S and the range of ω within [ζ, 1], and a set of edges F ⊆ E that induces a
3/4-balanced partition of V (G(P)), with high probability computes a set of new edges Fnew such
that Fnew also induces a 3/4-balanced partition of V (G(P)), and

1. either cG(P)(Fnew) ≤ 7
8c

G(P)(F );

2. or Fnew = A ∪ R with A,R disjoint, such that cG(P)(A) ≤ cG(P)(F ), cG(P)(R) ≤
2

logn · cG(P)(A), and edges in A are β-well-linked in G(P) for β = Ω(1/ log2 n).

The algorithm partition-A1 has O(|E(G(P))|ζ−2 polylog(n)) total work and O(ζ−2 polylog(n))
depth.

We also need the following lemma, whose proof is deferred to Section 6.2.

Lemma 6.2. There is a PRAM algorithm partition-A2 that given G(P) for P = (S, ω) with
X = V (G)\S and the range of ω within [ζ, 1], a set of edges F = A∪B inducing a 3/4-balanced
partition of V (G(P)) where A,B are disjoint with cG(P)(B) ≤ 2cG(P)(A)/ log n,

1. either finds an edge set Fnew with cG(P)(Fnew) ≤ 3
4c

G(P)(F ) that induces a 3/4-balanced
partition;

2. or finds an edge set C disjoint from A such that Fnew := A ∪ C induces a 3/4-balanced
partition, and there exists a multicommodity flow in G′(P) with congestion O(log n) from

XC to XA such that (i) each xe ∈ XC sends c
G(P)
e units of flow, and (ii) each xf ∈ XA

receives O(log n) · cG(P)
f units of flow.

The algorithm partition-A2 has O(|E(G(P))|ζ−2 polylog(n)) total work and O(ζ−2 polylog(n))
depth.

We now prove the main lemma about our first partitioning step.

Lemma 6.3. There is a PRAM algorithm partition-A that given G(P) for P = (S, ω) with
X = V (G) \ S and the range of ω within [ζ, 1], with high probability partitions the uncontracted
vertices into Z1, Z2 such that



1. Z1 ∪ Z2 = V (G(P)) \ {uX}.

2. |Zi| ≤ 7
8 |V (G(P))| for each i = 1, 2.

3. The set of inter-cluster edges F := {(u, v)|u ∈ Z1, v ∈ Z2} is β-well-linked in G(P) for
β = Ω(1/ log3 n).

The algorithm partition-A has O(|E(G(P))|ζ−2 polylog(n)) total work and O(ζ−2 polylog(n))
depth.

Proof. By composing Lemmas 6.1 and 6.2 the same way as [RST14] compose their Lemmas 3.1
and 3.2, we get in desired total work and depth a partition Z ′

1, . . . , Z
′
z of V (G(P )) such that

1. Z ′
1 ∪ . . . ∪ Z ′

z = V (G(P)).

2. |Z ′
i| ≤ 3

4 |V (G(P))| for each i ∈ [z].

3. The set of inter-cluster edges F ′ =
{
(u, v)|u ∈ Z ′

i, v ∈ Z ′
j, i 6= j

}
is β′-well-linked in G(P)

for β′ = Ω(1/ log3 n).

We can then obtain Z1, Z2 by the following process. First, we remove the supernode uX from
Z ′
1, . . . , Z

′
z to obtain a partition Z ′′

1 , . . . , Z
′′
z of the uncontracted vertices. Now the inter-cluster

edges between Z ′′
1 , . . . , Z

′′
z are still Ω(1/ log3 n)-well-linked in G(P) since they are a subset of

the inter-cluster edges between Z ′
1, . . . , Z

′
z. Then to get a bi-partition, we merge the subsets

Z ′′
1 , . . . , Z

′′
z as follows. Let i be the largest integer s.t. |Z ′′

1 ∪ Z ′′
2 ∪ . . . ∪ Z ′′

i | ≤ 7
8 |V (G(P)|. Then

we merge the Z ′′
1 , . . . Z

′′
i into one partition Z1 and the remaining Z ′′

i ’s into another partition Z2

to obtain our bi-partition Z1, Z2. Then because Z ′′
1 , . . . , Z

′′
z is a partition of the uncontracted

vertices, so is Z1, Z2. Since each Z ′′
i has size at most 3

4 |V (G(P))|, by the definition of i, Z1

has size between [18 |V (G(P))| , 78 |V (G(P))|]. Therefore, Z2 has size at most 7
8 |V (G(P))| since

Z1, Z2 is a partition of the uncontracted vertices in V (G(P)). Finally, inter-cluster edges (call
them F ) from Z1 to Z2 are still Ω(1/ log3 n)-well-linked in G(P) since they are a subset of the
inter-cluster edges between Z ′′

1 , . . . , Z
′′
z .

Note that the partitioning into Z1, Z2 can be done in parallel in O(log n) depth by computing
a prefix sum and a binary search. The total work and depth then follows from the performance
of the first partitioning step of [RST14].

6.2 The Second Partitioning Step. Let B denote the boundary edges in G(P), namely
those that go from the contracted vertex uX to the uncontracted vertices. In other words,
B := E(uX , V (G) \X).

Our second step is to find a cut in G(P) separating the boundary edges B from the inter-
cluster edges F that we identified in the first partitioning step. Here, we want the property that
there is a low-congestion routing from the cut edges we find to the boundary edges B, as well
as from the cut edges to the inter-cluster edges F , such that each cut edge sends out flow equal
to its capacity. Specifically, we prove the following lemma. Recall that for a graph H and an
edge e ∈ H, we write cHe to denote the capacity of edge e in H.

Lemma 6.4. There is a PRAM algorithm partition-B that given G(P) for P = (S, ω) with
X = V (G) \ S and the range of ω being within [ζ, 1] with ζ ∈ (0, 1], two disjoint edge subsets



B,F ⊂ E(G(P)), and a parameter ψ ∈ (0, 1], with high probability returns a subset of edges Y
(potentially intersecting both B and F ) in G(P) such that

1. XY separates XB from XF in G′(P), that is, in G′(P) every path between a vertex in XB

and a vertex in XF must contain a vertex in XY . Moreover, in G(P), the total capacity
of Y is at most twice the capacity of B and at most twice the capacity of F .

2. There is a multicommodity flow in G′(P) from XY to XB such that

(a) The congestion on edges incident on uX in G′(P) is O(ψ log n), while the congestion
on other edges in G′(P) is O(log n).

(b) Each xy ∈ XY sends c
G(P)
y units of flow while each xb ∈ XB receives at most

O(log n) · cG(P)
b units of flow.

3. Similarly, there is a multicommodity flow in G′(P) from XY to XF such that

(a) The congestion on edges incident on uX in G′(P) is O(ψ log n), while the congestion
on other edges in G′(P) is O(log n).

(b) Each xy ∈ XY sends c
G(P)
y units of flow, while each xf ∈ XF receives at most

O(log n) · cG(P)
f units of flow.

The algorithm partition-B has O(|E(G(P))|ζ−2ψ−2 polylog(n)) total work and
O(ζ−2ψ−2 polylog(n)) depth.

Proof. We will do an iterative refinement process to find the desired set of cut edges Y . Initially,
we start with Y being the smaller (in capacity) of B and F , which has the desired property that
XY separates XB from XF in G′(P). We will maintain this property, while “refine” the set Y .
In particular, we will classify the edges in Y into good edges Ygood and bad edges Ybad, and try
to reduce the total capacity of the bad edges Ybad. Initially, Ygood = ∅ and Ybad = Y .

In each iteration, we do the following refinement step. Define a reweighting function ω̃ on
the split edges (in G′(P)) of the boundary edges of G(P) such that

ω̃(f) =

{
ψ f incident on uX

1 otherwise.

and look at the graph G′(P̃ = (P, ω̃)). Let ε = log−1 n.
Let T1 := B and T2 := F . For j ∈ {1, 2}, we consider the graph G′

sjtj (P̃) where we connect

sj to each xy ∈ XYbad
with capacity c

G(P)
y and connect each xe ∈ XTj

to tj with capacity c
G(P)
e .

We run A (as defined in Proposition 6.1) on G′
sjtj (P̃) to find a (1 − ε)-approximate maximum

sj-tj flow f ′j and a (1 + ε)-approximate sj-tj minimum cut with edges Y ′
j .

We say an edge y ∈ Ybad has become good, if for both j = 1, 2, the edge (sj , xy) in G
′
sjtj (P̃)

carries (in the direction from sj to xy) at least c
G(P)
y /4 units of flow in f ′j.

We then do a case analysis as follows:



Case 1 If for both j = 1, 2, we have

c
G′

sjtj
(P̃)

(Y ′
j ) ≥

9

10
cG(P)(Ybad),

then move the edges in Ybad that have become good to Ygood.

Case 2 Else, let j∗ ∈ {1, 2} be such that

c
G′

sj∗ tj∗
(P̃)

(Y ′
j∗) <

9

10
cG(P)(Ybad).

Then let Ybad ← Yj∗ , where Yj∗ is constructed as follows:

(a) Let Y ′′
j∗ be Y ′

j∗ with edges incident on uX removed.

(b) Include any edge e ∈ E(G(P)) in Yj∗ if xe is incident on at least one edge in
Y ′′
j∗.

Claim 6.1. In Case 1, the edges y ∈ Ybad’s that have become good contribute at least 1/5 of
the total capacity of Ybad.

Proof. For j ∈ {1, 2}, consider the flow f ′j in G′
sjtj (P̃). The flow value is at least 4

5c
G(P)(Ybad)

given the conditions of Case 1 and that f ′j is a (1−ε)-approximate maximum flow. Therefore at

least 3/5 (in capacity) of y ∈ Ybad’s (call them Y
(j)
good) satisfies that the edge (sj, xy) in G

′
sjtj (P̃)

carries (in the direction from sj to xy) at least c
G(P̃)
y /4 units of flow in f ′j, since otherwise the

total flow value would be
(
3

5
+

2

5
· 1
4

)
cG(P)(Ybad) <

4

5
cG(P)(Ybad),

a contradiction. The claim then follows by taking the intersection of Y
(1)
good and Y

(2)
good.

Claim 6.2. In Case 2, we have

cG(P)(Yj∗) ≤ c
G′

sj∗ tj∗
(P̃)

(Y ′
j∗).

Moreover, XYj∗∪Ygood
separates XB from XF .

Proof. For the capacity condition, notice that we can simply charge the capacity of every edge in
e ∈ Yj∗ to the capacity of an edge in Y ′′

j∗ that is incident on xe. Let Y
′
good denote the set of all split

edges of edges in Ygood in G′(P). Define edge set Zj∗ by including edges e ∈ E(G(P)) for which
xe is incident on at least on edge in Y ′

j∗ . Since Y ′
j∗ is an sj-tj cut in G′

sjtj (P̃), XZj∗
separates

XYbad
from XTj∗

. Since XYbad
∪XYgood

separates XB and XF , XZj∗
∪XYgood

also separates XB

and XF . Now notice that the only difference between Yj∗ and Zj∗ is that the former does not
have the edges e for which the only incident edge of e in Y ′

j∗ is (uX , xe). However, these edges
are only useful for moving between XB through uX , and thus does not affect whether or not
XB is separated from XF . Hence XYj∗∪Ygood

also separates XB from XF .



Therefore, if we repeat the above refinement process, each time we shrink the capacity of
Ybad by a constant factor. So after O(log n) iterations, we are done finding a desired set of cut
edges Y that can route to both B and F with the desired congestion. Moreover, in each iteration,
we can determine in parallel which edges in Ybad have become good by simply examining our
flow solution. The lemma thus follows.

We now prove Lemma 6.2.

Proof. (Lemma 6.2) The proof is essentially the same as Lemma 3.2 of [RST14], with their
second partitioning step replaced by ours. Using Lemma 6.4 with ψ = 1, we can find an edge
set C such that XC separates XA and XB in G′(P) and there exists a desired multicommodity
flow routing from XC to XA as guaranteed by Lemma 6.4. Moreover, the total capacity of C
is at most twice of the total capacity of B. Using the fact that XC separates XA and XB in
G′(P), and that A∪B induces a 3/4-balanced partition, due to Claim 1 in the Proof of Lemma
3.2 in [RST14], either A ∪C or B ∪C induces a 3/4-balanced partition. If it is A ∪C, then we
have achieved the second case of the lemma. If it is B ∪ C, we have achieved the first case of
the lemma.

6.3 Recursive Construction of Congestion Approximators. We now show how to
recursively construct a congestion approximator for G using our two partitioning steps above.
Note that imperatively, we use a lower reweighting factor for the boundary edges in partition-A

than in partition-B (log−12 n vs. log−4 n) to avoid a blowup in the congestion when doing the
routing “fixing” phase, which is needed because we route on contracted subgraphs rather than
vertex-induced subgraphs.

Algorithm 6.1. hierarchical-decomp(G(P))
Input: Reweighted contracted subgraph G(P), where P = (S, 1).
Output: A hierarchical tree decomposition tree T of G.
Procedure:

1: if G(P) only has one uncontracted vertex, plus the supernode uX then
2: Return the single uncontracted vertex as our congestion approximator and abort.

3: Run partition-A on G(PA := (S, log−12 n)) to get a partition Z1, Z2 of the uncontracted
vertices V (G(P)) \ {uX}, with F being the inter-cluster edges between Z1, Z2.

4: Run partition-B on G(PB := (S, log−4 n)) with ψ = log−6 n to obtain a set of cut edges
Y separating boundary edges B from inter-cluster edges F .

5: // Recall that B is the set of edges incident to uX in G(PB).
6: Let L1 denote the vertices in V (G(P)) that cannot reach any edge in B after the removal

of Y , and let L2 denote the other vertices.
7: // L2 are the vertices that can reach B after the removal of Y
8: Let Z := {Z1 := Z1 ∩ L1,Z2 := Z2 ∩ L1,Z3 := Z1 ∩ L2,Z4 := Z2 ∩ L2} be the partition

obtained by taking the intersection of the partitions returned by partition-A and
partition-B.

9: for Zi ∈ Z do
10: Recursively run hierarchical-decomp on G(Pi) to get a tree Ti, where Pi = ({Si :=
Zi}, 1)



11: Create a new tree node r as the root of our tree, and two other nodes vL1 , vL2 as r’s children
corresponding to vertex subsets vL1 , vL2 respectively. We also create nodes v1, v2, v3, v4
corresponding to Z1,Z2,Z3,Z4 respectively, and let v1, v2 be the children of L1 and let
v3, v4 be the children of L2.

12: For each vi, let vi be the root of the tree Ti that we computed using recursive calls to
hierarchical-decomp. In other words, the children of L1 are the roots of T1 and T2, and
the children of L2 are the roots of T3 and T4.

13: For each tree node corresponding to a subset of vertices S ⊂ V (G), weight the tree edge
that connects this tree node to its parent by the total capacity of the cut (S, V (G) \ S) in
G.

14: return The tree rooted at r constructed above.

Similar to [RST14], our congestion approximator will also be a hierarchical decomposition
tree of the graph. For a tree node corresponding to a subset of vertices S ⊂ V , the tree edge
that connects this tree node to its parent will have capacity equal to the total capacity of edges
leaving S in G (i.e. the capacity of the cut (S, V (G) \ S) in G).

We give the pseudocode of our construction of a congestion approximator of G below. As
we highlighted at the beginning of this section, this algorithm implements our Algorithm 2.2
modulo being able to solve approximate maximum flows on contracted subgraphs, which we
will show how to do in the next section (Section 7). During the execution of our algorithm,
we do not reweight the graph that we recurse on, but only do reweighting when running the
two partitioning steps. We slightly abuse notations by writing a number γ to denote a constant
reweighting function that evaluates to γ on every boundary edge. Initially, we call the algorithm
on the entire graph with X = ∅.

Theorem 6.1. The algorithm hierarchical-decomp(G) has O(m polylog(n)) total work and
O(polylog(n)) depth. Moreover, the output tree T = hierarchical-decomp(G) is an O(log9 n)-
congestion approximator of G with high probability.

Proof. The total work and depth follows easily from the performance of the two partitioning
steps above. We thus focus on proving that the returned tree T is an O(log9 n)-congestion
approximator. Specifically, we show that

1. Any multicommodity flow demands that can be routed in G with congestion 1 can also be
routed on the tree with congestion at most 1.

2. Any multicommodity flow demands that can be routed on the tree with congestion 1 can
also be routed in G with congestion O(log9 n).

Here 1 is clear, since the tree cut induced by each tree edge corresponds to a cut in the original
graph with exactly the same capacity, and thus the set of these tree cuts are a subset of the
cuts in the original graph. We then prove 2. Consider that there is a demand Dst between
each vertex pair s, t ∈ V (G) such that these demands Dst’s can be routed simultaneously on the
tree with congestion at most 1. We then describe a routing scheme to show that they can also
be simultaneously routed in G with congestion O(log9 n). Our routing scheme will be invoking
an essentially same routing routine in [RST14], plus an additional routing fixing phase, which



is necessary due to the fact that we work in contracted subgraphs rather than vertex-induced
subgraphs.

To illustrate a routing between s and t of flow value Dst, we let each of s, t send out a message
of size Dst. We will thus use the terms flow and message, as well as message passing and flow
routing, interchangeably. We will move these messages up along the hierarchical decomposition
tree by repeatedly moving the messages from the boundary edges of the current cluster to the
boundary edges of the parent cluster. If at some point, to some edge, we have routed the same
amount of flow from s and t, then we can construct a routing from s to t of this flow amount by
reversing the message trail of t; whenever this happens in our routing process, we discard these
paired-up messages and never consider them in subsequent routing steps. Crucially, we move
these messages for different s, t pairs simultaneously.

We will specify this message passing process inductively. Note that in each recursive call of
the tree construction, we always do two steps of partitioning and obtain a two-level tree before
recursing on the leaves of the two-level tree corresponding to smaller clusters. Let us call the
two levels in each single recursive call a level block. We will route the messages level block by
level block. For each level block with root being S = V (G) \ X, we specify a routing in the
graph G′(P = (S, 1)), the subdivision of the contracted subgraph. When we say we route some
flow to an edge in G(P) (the contracted subgraph without subdivision), we mean we route the
flow to the split vertex of that edge. We will maintain the following invariant:

Invariant: After we are done with the routing for a level block with root being
S = V (G)\X, all messages originating from vertices in S either have been discarded,
or reside on the boundary edges (i.e. the ones that go between S and uX). (⋆)

We will also do the routing “fixing” inductively. Specifically, in each inductive step, even
before we specify the routing, we first fix the routing for each smaller cluster Zi that we specified
in the smaller contracted subgraph G′(Pi = (Zi, 1)), so that they become routings in the bigger
contracted subgraph G′(P = (S, 1)). Only after the fixing is done for each Zi do we proceed
with the routing of the messages in G′(P).

As a result, our inductive step consists of two phases, namely a fixing phase, and a routing
phase, where the routing phase will be essentially the same as in [RST14]. We now fully
describe our inductive routing scheme below, as well as analyze the congestion caused. Notice
that, throughout the proof, we always analyze the congestion of edges with respect to their
original capacities in G (without considering the reweighting factors that we use in contracted
subgraphs). We will highlight all the congestion we calculate along the way of presenting our
routing scheme. Since we route in subdivision graphs, we will need to distinguish, for a boundary
edge e, the congestion on its split edge incident on uX , and the congestion on its other split
edge incident on S. We will call the former outer congestion, and the latter inner congestion.

Note that for our goal of proving the obtained tree is a congestion approximator, it suffices
to prove the existence of such a low-congestion routing. We will then plug in the tree into
Sherman’s algorithm to compute approximate maximum flows.

Base Case. Initially, as the base case of the inductive routing process, for each demand
Dst, s and t will each distribute the total amount of flow Dst uniformly to their outgoing edges -
a.k.a. the boundary edges of these singleton clusters - with each edge getting flow proportional
to its capacity. Thus we have established the invariant (⋆).

This routing causes congestion at most 2 on the edges of G, since a node cannot send or



receive a total flow amount greater than its weighted degree given that the demands are routable
with congestion 1, and an edge is incident on two vertices.

Inductive Step: Fixing Phase. For i = 1, 2, 3, 4, given a routing in G′(Pi), we aim to
obtain another routing in the bigger contracted subgraph G′(P) that route the same demands.
Recall that S denotes the set of nodes in consideration, i.e., S = V \X = Z1 ∪ Z2 ∪ Z3 ∪ Z4.
Suppose first we take the exact same given routing in G′(Pi) and simply expand (namely, undo
the contractions of) the vertices in S \ Zi, obtaining a routing in G′(P). Due to the expanding
we have done, we may have created extra deficits and excesses on the vertices in (S \Zi)∪{uX},
which we now have to fix. To this end, it suffices to give for each demand a routing with the
deficits/excesses on (S\Zi)∪{uX} switched. These routings should be simultaneously achievable
with low congestion.

Let αi ≥ 0 be the maximum outer congestion on the boundary edges of G(Pi = (Zi, 1)), and
let α := max {α1, α2, α3, α4}. Let γi ≥ 0 be the maximum inner congestion on the boundary
edges of G(Pi = (Zi, 1)), and let γ := max {γ1, γ2, γ3, γ4}.

Claim 6.3. We can fix the routings in G(Pi)’s so that the become routings in G(P) with the
same demand while causing outer congestion of boundary edges O(α log−3 n), inner congestion
of boundary edges O(α log n), and congestion on edges inside S O(α log8 n).

Proof. For Z3,Z4, we fix the extra deficits/excesses by a routing from Y \ B to B, followed
by a mixing to uniform (with each edge getting flow proportional to its capacity) over B. The
routing causes outer congestion of boundary edges O(α log−9 n), inner congestion of boundary
edges O(α log−3 n), and congestion of edges inside S O(α log n). The mixing causes congestion
O(α log−3 n). The last congestion is because each edge in B receives O(α log−3 n) times its
capacity units of flow,

For Z1,Z2, we fix the extra deficits/excesses by a routing from Y to F , followed by a mixing
to uniform (with each edge getting flow proportional to its capacity) over F . The routing
causes outer congestion of boundary edges O(α log−5 n) , inner congestion of boundary edges
O(α log n) , and congestion of edges inside S O(α log5 n). The mixing causes congestion on
boundary edges O(α log−4 n), and congestion on edges inside S O(α log8 n).

Inductive Step: Routing Phase. This phase is essentially the same as in [RST14], except
that we do the routing in the contracted subgraph G′(P) rather than in the vertex induced
subgraph, and therefore we also have to analyze the congestion on the boundary edges B.

For the routing phase, we divide the messages originating in S that haven’t yet been discarded
(thus still need to be rounted) into following types:

Type 1 The messages corresponding to demands Dst’s for which both s, t lie in L = Z1 ∪Z2

(vertices not reachable from B after removing Y ).

Type 2 The messages corresponding to demands Dst’s for which one of s, t lies in L and the
other lies outside of L.

Type 3 The messages corresponding to demands Dst’s for which both s, t lie outside L (but
at least one of s, t lies in R = S \L, as otherwise they are not considered in this level
block).



Recall that, by the invariant (⋆) that we maintain, all three types of messages reside on
the boundary edges of the smaller clusters Zi’s. Note that, by the construction of the Z’s, the
boundary edges of clusters Z1,Z2 are subsets of F ∪ Y , while the boundary edges of Z3,Z4 are
subsets of Y ∪B. The goal of our inductive routing step is as follows:

Goal 1 For Type 1 messages, we show that we can simultaneously pair up the messages
from s and the ones from t.

Goal 2 For Type 2 and Type 3 messages, we show how to route them to the boundary
edges B of the bigger cluster S.

Here Goal 1 means that we can discard all Type 1 messages afterwards, since by doing so we
have already found a simultaneous routing of the corresponding demands Dst’s; whereas Goal 2
means that after our routing, Type 2 andType 3messages always reside on the boundary edges
of S. These together imply that we have maintained our invariant (⋆).

We now describe how we achieve these goals, as well as analyze the congestion caused.
Throughout, let βi ≥ 0 be the maximum ratio of the amount of flow received to the (original)
edge capacity over the boundary edges of Zi, when we finish routing in G(Pi). Then let
β = max {β1, β2, β3, β4}.

Inductive Step: Routing Type 1 Messages. By our invariant (⋆), Type 1 messages
reside on the boundary edges of Z1 ∪ Z2, which are Y ∪ F . We first route Type 1 messages
that reside on Y \ F to F . By the guarantee of partition-B, this can be done with outer
congestion of boundary edges O(β log−5 n) , inner congestion of boundary edges O(β log n) ,
and congestion of edges inside S O(β log5 n) .

After the routing, all Type 1 messages reside on F , and the flow that each edge in F carries
is at most 2β +O(β log5 n) = O(β log5 n) of its capacity. We then simultaneously mix each of
Type 1messages uniformly over F , in the sense that each edge in F gets an amount proportional
to its capacity. After the mixing, we have successfully paired up all Type 1 messages and thus
can discard them all.

This mixing causes congestion on boundary edges O(β log−4 n) , and congestion on edges
inside S O(β log8 n) . Combined this with the congestion we get in the Y \F → F routing, the
added outer and inner congestion of B in G(P) is at most O(β log−4 n) and O(β log n), whereas
the added congestion on edges inside S in G(P) is at most O(β log8 n).

Inductive Step: Routing Type 2, Type 3 Messages. By our invariant (⋆), both
Type 2 and Type 3 messages reside on the edges in Y ∪B∪F . We first route the messages that
reside on F \Y to Y . This routing consists of first mixing the message uniformly on F and then
reversing the routing from Y to a uniform distribution over F , whose existence is guaranteed
by partition-B. After the routing, edges in F \ Y carry no flow on them, and each edge in Y
carries flow that is at most 2β + 1 of its capacity in G(P).

By a similar analysis as in the routing of Type 1 messages, the routing can be done with
outer congestion of boundary edges O(β log−5 n) , inner congestion of boundary edges O(β log n)
, and congestion of edges inside S O(β log5 n) .

We then route message on Y \B to B. The routing causes outer congestion of boundary edges
O(β log−9 n), inner congestion of boundary edges O(β log−3 n), and congestion of edges inside S
O(β log n). After the routing, each edge in B carries flow that is at most β+(2β+1)O(log−3 n) =
(1 +O(1/ log3 n))β of its capacity in G(P).



Total Congestion Analysis. We first obtain an upper bound on β, the total amount of
flow carried by a boundary edge divided by its capacity in G. Initially, we have β = O(1) in our
base case. Then in each inductive step, β grows by 1+O(1/ log3 n), as we have analyzed above
when routing Type 2, Type 3 messages, which is the only place where we route flows to B.
Since the depth of the tree is O(log n), we have β = O(1) throughout.

We next obtain an upper bound on α, the total outer congestion of any boundary edge, and
γ, the total inner congestion of any boundary edge, In the fixing phase, the total outer congestion
and inner congestion added on a boundary edge is O(αi/ log

3 n) and O(α log n) respectively. In
the routing phase, the total outer and inner congestion added on a boundary edge is O(β log−4 n)
and O(β log n). Therefore, by a simple induction and the fact that the tree has O(log n) depth,
the total outer and inner congestion accumulated over descendant routing steps on a boundary
edge is bounded by O(1) and O(log2 n), respectively.

Finally, in the routing phase and the fixing phase, the total congestion added on the edges
inside S is bounded by O(β log8 n)+O(α log8 n) = O(log8 n). Since each edge appears O(log n)
times as inside S, the total congestion accumulated is O(log9 n). This finishes the proof of the
theorem.

7 Extraction of Congestion Approximators.

We finally describe the implementation details of the approximate maximum flow oracle A in
Section 6 whose performance guarantees are summarized in Proposition 6.1. We would like
to remind the reader that this oracle, at its heart, utilizes Sherman’s framework to compute
approximate maximum flows which requires as input polylog n-congestion approximators for
the flow instance upon which it is invoked. While we defer the PRAM implementation details
of Sherman’s algorithm to Appendix C, we discuss in this section, three important routines for
constructing congestion approximators required for the contracted subgraphs generated by our
new framework for constructing high-quality congestion approximators. These are (i) (partially)
compressing the global congestion approximator to obtain one for the contracted subgraphs, (ii)
obtaining a near-linear work, low-depth implementation of Sherman’s algorithm when given as
input these (partially) compressed congestion approximators, and (iii) constructing congestion
approximators for contracted subgraphs with an arbitrarily attached super-source and super-
sink. We would crucially like to remind the reader that at all points in our overall approach, we
build and maintain congestion approximators for subdivision graphs and contracted subdivision
graphs, as these are precisely the flow instances upon which the max-flow oracle is invoked.

7.1 Compressing Congestion Approximators. We start by describing the
ca-contraction subroutine of Algorithm 2.2 that given a contracted subgraph and a
congestion approximator for a much larger graph, compresses it to have size proportional to
that of the contracted subgraph. Specifically, we are given as input a O(polylog n)-congestion
approximator R for some larger graph G = (V,E, c) along with a subset S ⊂ V of k vertices
that have the following special property: all edges that leave the set S are well-linked in G. We
prove such a property for the graphs we encounter:

Claim 7.1. In any G(P = (S, 1)) with X = V (G) \ S and S being a cluster corresponding
to a leaf of a level block of the tree constructed by hierarchical-decomp, the boundary edges
incident on uX are Ω(1/ log9 n)-well-linked in G.



Proof. Note that in G(P), these edges are 1-well-linked. We then consider the multicommodity
flow routing between them in G(P). We now fix this routing using our fixing step with
performance guaranteed by Claim 6.3 in a bottom-up manner until we have converted the
routing into a valid one in G with the same demands. Then by Claim 6.3 the total congestion
is O(log9 n), implying the claim.

Our goal is to output a O(polylog n)-congestion approximator of size O(k log n) for the
contracted subgraph G(S) where V \S is compressed into a single node8, and the aforementioned
well-linkedness property will be crucial in achieving it. This compression step is critical in
order to achieve near-linear work; while the original congestion approximator R of G is also a
O(polylog n)-congestion approximator for the contracted graph G(S), its size may be very large
relative to that of G(S), and naively using it for computing approximate max-flows in G(S)
would substantially blow up the total work. This subroutine precisely addresses this issue by
reducing the size of the congestion approximator without degrading its quality substantially.

If we were simply to contract into a single node all the nodes in R which represent only
subsets of V \ S, the resulting graph would not be a tree, and so we would not be able to use
it for computing max-flows with Sherman’s algorithm. As such, we must use an alternative
approach to shrink the size of R that preserves the tree structure. We accomplish this with the
following algorithm, which uses all three properties guaranteed by the transformation in Section
5.2: R is a hierarchical decomposition and also a binary tree of depth O(log n). As R is a
hierarchical decomposition, for all v ∈ S, there is a leaf of R corresponding to the set containing
only v. Assign a node weight of 1 to these leaves, and assign a weight of 0 to all other nodes
in R. Then, run the subtree sum algorithm of Theorem A.4 and contract all subtrees whose
subtree sum is 0. As before, for a graph G and set S ⊆ V (G), let G(S) be G with V (G) \ S
contracted into a single node. We use the fact that R is binary and has O(log n) depth to bound
the size of resulting tree.

Algorithm 7.1. ca-contraction(R,S)
Input: α-congestion approximator R (for a graph G = (V,E, c)), which is a hierarchical
decomposition and a binary tree of depth O(log n); a subset S ⊂ V of |S| = k uncontracted
vertices.
Output: Tree R′ with O(k log n) nodes that is an (α · polylog n)-congestion approximator for
G(S).
Procedure:

1: Assign a node weight of 1 to each leaf u of R such that Pu = {v} for some v ∈ S,
where Pu ⊆ V is the partition of vertices the node u corresponds to in the hierarchical
decomposition.

2: Assign a node weight of 0 to all other nodes of R.
3: Compute the subtree sums with respect to these weights using the algorithm of Theorem

A.4.
4: From top-down, contract each subtree whose sum is 0 into a single supernode.

It is important to note that this algorithm does not require all leaves of the input R to
correspond to single vertices, as is the case in a standard hierarchical decomposition tree. In

8with some edges properly reweighted; see Section 6.3. Since this does not affect the algorithm or analysis of this section,
we assume this reweighting has been done prior to the call to ca-contraction.



Algorithm 2.2, we contract congestion approximators that themselves have been contracted from
a previous tree, and so not all leaves may correspond to single vertices.

Lemma 7.1. The ca-contraction(R,S) subroutine has depth O(log n) and O(|R| log n) total
work, and outputs a tree R′ with O(k log n) nodes.

Proof. By Theorem A.4 and the fact that R has O(log n) depth, the algorithm has O(log n) depth
and O(|R| log n) total work. To bound the size, first note by the fact that R is a hierarchical
decomposition, if u1, . . . , uq are the nodes of R at some level i, the Pu1 , . . . , Puq are a partitioning
of V . So, at each level of R, there can be at most k nodes u such that Pu ∩ S 6= ∅, and so at
most k nodes can remain uncontracted at each level after contraction. Moreover, since R is
a binary tree, every uncontracted node can have at most two supernodes as children, and, by
definition, all supernodes are leaves. Since R has depth O(log n), it thus follows that the size of
the resulting tree R′ is O(k log n), as desired.

It thus remains to show that the contracted tree R′ can still be used to route flow with low
congestion in the graph with V \S contracted into a single node. R′ is constructed by contracting
some subtrees of R; call the root of these contracted subtrees (along with any remaining leaves
corresponding to single nodes from V \ S) u∗1, . . . , u∗q and let Ti = Pu∗

i
, ordering arbitrarily. So,

T1 ∪ . . . ∪ Tq = V \ S. Let Ḡ(S) be the graph with each Ti contracted to a single node, but
these contracted nodes are not further contracted. Since R′ is constructed by contracting the
nodes corresponding to each Ti in R, R

′ is a α-congestion approximator for Ḡ(S) (where α is
the congestion achieved by R for routing on G). Our goal is thus to show that R′ can be used
as an (α · polylog n)-congestion approximator for G(S).

Let x be the contracted node (i.e. the node formed by contracting V \ S in G) in G(S),
and suppose we are given a demand vector b on G(S). Furthermore, for each i ∈ [q], let xi
be the node in Ḡ(S) formed by contracting Ti. If we were able to efficiently split the demand
bx into demands for x1, . . . , xq without inducing much additional congestion, then we would be
able to use R′ as a congestion approximator for G(S). Namely, we first convert the demand
on G(S) into the corresponding demand on Ḡ(S), and then use R′ to route the flow on Ḡ(S)
which is also a routing on G(S) (by replacing any xi with x). So, it remains to show that we
may indeed split the demand bx into demands b′x1

, . . . , b′xq
such that bx =

∑
i∈[q] b

′
xi

and b′ can

be routed on Ḡ(S) with low congestion. This follows from the fact that we are guaranteed the
set of edges leaving S in G are Ω(1/ log9 n)-well-linked (Claim 7.1), and is formalized in the
following lemma. Importantly, since R′ remains an α-congestion approximator for Ḡ(S), for any
Q ⊆ S, ca-contraction(R′, Q) is also an α-congestion approximator for Ḡ(Q)9. As such, the
error does not accumulate when repeatedly contracting a congestion approximator, as we do in
Algorithm 2.2.

Lemma 7.2. Let b be a demand vector on G(S) which can be satisfied with congestion 1. Let
Wx =

∑
(u,x)∈E c((u, x)) be the sum of capacities of edges incident on x in G(S), and define Wxi

similarly for each xi in Ḡ(S). Then, with b′ the demand vector on Ḡ(S) such b′u = bu for all
u ∈ S and b′xi

=Wxi
bx/Wx, b

′ can be satisfied with congestion O(log9 n).

9We slighly abuse notation to refer to Ḡ(Q) as the graph with the same components contracted as in the tree output of
ca-contraction(R′, Q)



Proof. Consider some flow f in G(S) which satisfies b with congestion 1. Let S = {(u, x) | u ∈ S}
be the set of edges leaving S in G(S), and similarly let Si = {(u, xi) | u ∈ S} be the set of edges
incident on xi in Ḡ(S). Note that for each (u, x) ∈ S, there exists a corresponding edge (u, xi)
(for some xi) in Ḡ(S) with the same capacity, by the construction of x and x1, . . . , xq. So, we
may convert f into a flow on Ḡ(S); call this f ′. Define the flow vector b∗ such that b∗xi

is the
net incoming flow to xi induced by f ′, and b∗u = bu for all u ∈ S. f ′ has congestion 1, by
assumption on b, and satisfies the demand vector b∗, so it follows that b∗ can be satisfied in
Ḡ(S) with congestion 1 as well. As S is Ω(1/ log9 n)-well-linked for each S on which we call
ca-contraction in Algorithm 2.2 (as shown in Claim 7.1), each Si is as well by Proposition
4.1. Thus, by definition of well-linked and the fact that b and b∗ differ only on the xi, it follows
that b′ can be satisfied on Ḡ(S) with congestion O(log9 n).

There is one last point to check: that this splitting procedure can be implemented in O(log n)
depth and O(|R|) work. This is not as simple as it may initially seem: since there could be
potentially Θ(k log n) contracted nodes xi in Ḡ(S), naively summing the weight on all edges
could result in Ω(k2) work. Fortunately, given access to the contracted graph G(S) (which
are computed in Algorithm 2.2), we can use subtree sums to implement the demand splitting
efficiently. Iterate through these edges, and for each (u, v) ∈ B, where B is the boundary edges
of G(S), such that u ∈ S and v ∈ V \ S, assign a node weight of c((u, v)) to leaf of R which
corresponds to v. Assigning these weights can be implemented in work O(|B|); this suffices
to prove that Algorithm 2.2 requires only Õ(m) total work and does not affect the runtime of
ca-contraction. Once the node weights have been assigned, compute the subtree sums for
each node in R, which can be done in O(log n) depth and O(|R|) work by Theorem A.4. The
sum Wxi

used in Lemma 7.2 is then exactly the subtree sum of the node corresponding to the
set Ti, allowing us to correctly distribute the demands.

7.2 Implementing Sherman’s Algorithm on the Contracted Subgraph. Next, we
discuss how we achieve a linear-work, low-depth implementation of Sherman’s algorithm on
the contracted subgraph G(S), where S ⊂ V is the set of |S| = k uncontracted vertices, with
all other vertices V \ S being contracted into a single super-vertex x. We encourage the reader
to familiarize themselves with the vanilla implementation of Sherman’s algorithm outlined in
Appendix C to obtain a better understanding of the discussion that follows.

Recall from the preceding section, that we are given access to an α′-congestion approximator
R′ for a slightly larger graph Ḡ(S), where the vertices V \S have been partitioned and contracted
into multiple super-vertices x1, . . . , xq. In order to use this congestion approximator R′ for our
desired contracted graph G(S), we need to translate demands on vertices in G(S) into demands
on vertices in Ḡ(S). The optimization problem within the AlmostRoute subroutine of [She13]
therefore becomes a minimization problem over the new congestion potential

φ(f) = lmax(C−1f) + lmax(2α′R′P (Bf − b)),

where B is the vertex-edge incidence matrix for G(S), and P is a linear operator that projects
any demands b supported over vertices of G(S) to demands b′ supported over vertices of Ḡ(S)
as described in Lemma 7.2. Due to the fact that R′ is a O(k log n) size, O(log n) depth tree,
evaluating this potential is easy; its computation remains unchanged from the vanilla case
described in Appendix C. The only major challenge here is efficiently computing the derivatives



of this new potential, specifically, the derivative of the second term

φ2(f) := lmax(2α′R′P (Bf − b)).
First, observe that the operation P · B effectively constructs a new vertex-edge incidence

matrix10 B′ for Ḡ(S) from the incidence matrix B in the following way: for every edge
e = (u1, u2) in G(S) with only uncompressed vertices u1, u2 ∈ S as its endpoints, this operation
replicates the edge exactly in B′, i.e. B′

v,e = Bv,e ∈ {−1, 1}, for v ∈ {u1, u2} and 0 otherwise.
However, for any edge e = (u, x) (or (x, u)) with one of its endpoints being the contracted
vertex x, this operation splits the edge e into fractional copies e1 = (u, x1), . . . , eq = (u, xq) with
copy ei having fractional value ρxi

:= Wxi
/Wx as defined in Lemma 7.2. i.e. for each i ∈ [q],

B′
xi,ei = ρxi

· Bx,e, B
′
u,ei = ρxi

· Bu,e, and 0 otherwise. Note that we never consider edges going
between two partially contracted vertices xi, xj , as they are absent in G(S). While we do not
explicitly compute this new incidence matrix B′ as doing so naively might exceed our linear (in
size of G(S)) work requirement, it will serve as a useful intermediate object for analyzing the
gradients.

Now let I ′ be the set of all cuts considered by our congestion approximator R′, and for
any cut i = (Si, Si) ∈ I ′, let yi = 2α′[R′P (Bf − b)]i be the congestion induced by the residual
demands across cut i. We have that for any edge e ∈ G(S), the partial derivative

∂φ2(f)

∂fe
=
∑

i∈I′

∂φ2(f)

∂yi
· ∂yi
∂fe

=
∑

i∈I′

exp(yi)− exp(−yi)
exp(φ2(f))

·
2α′B′

Si,e

c(Si, Si)
,

where c(Si, Si) is the capacity of cut i = (Si, Si) in Ḡ(S) considered in our congestion
approximator R′, and (with some abuse of notation) B′

Si,e
represents the total “fraction”

of the edge e crossing the cut (Si, Si); for edges e = (u1, u2) with only uncompressed
vertices as its endpoints, this quantity is B′

Si,e
=
∑

v∈Si
B′

v,e =
∑

v∈Si∩S
Bv,e, and for edges

e = (u, x) (or (x, u)) with one of its endpoints being the compressed vertex, this quantity is
B′

Si,e
=
∑

j∈[q]B
′
Si,ej

=
∑

j∈[q]

∑
v∈Si

B′
v,ej =

∑
v∈Si∩S

Bv,e +
∑

v∈Si\S
ρv · Bx,e, where the set

{ej}j∈[q] correspond to the fractional copies of edge e constructed by the operation P · B.
In order to efficiently compute this gradient, we shall again exploit the fact that R′ is

represented by a rooted hierarchical decomposition tree T ′ of size O(k log n) and depth O(log n).
To do so, we use the same node-potential trick as in Appendix C: for any internal node j in T ′

(which in turn corresponds to a cut (Sj , Sj)), we define the node potential πj as

πj :=
∑

i∈T ′

j,r

exp(yi)− exp(−yi)
exp(φ2(f))

· 2α′

c(Si, Si)
,

where T ′
j,r denotes the path in T ′ from node j to the root r of T ′. Now observe that, following

an identical calculation as in Appendix C, the gradient of φ2(f) w.r.t. the flow fe on any
edge e = (u1, u2) with only uncompressed vertices as its end-points remains unchanged from the
vanilla case.

∂φ2(f)

∂fe
=

∑

i∈T ′

u1,u2

exp(yi)− exp(−yi)
exp(φ2(f))

·
2αB′

Si,e

c(Si, Si)
= πu2 − πu1 ,

10Note that this new vertex-edge incidence matrix B′ may not be the same as the actual incidence matrix of Ḡ(S).
However, this is how it effectively appears to Sherman’s algorithm when invoked with R′ as its input.



where T ′
u1,u2

denotes the unique path between u1, u2 in the tree T ′. For any edge e = (u, x) (or
(x, u)) with one of its end points being the contracted vertex x that is in turn partitioned into
fractional edges e1 = (u, x1), . . . , eq = (u, xq) in B

′, observe that this gradient

∂φ2(f)

∂fe
=
∑

j∈[q]

∑

i∈T ′

u,xj

exp(yi)− exp(−yi)
exp(φ2(f))

·
2αB′

Si,ej

c(Si, Si)

=
∑

j∈[q]

ρxj
(πxj

− πu) =



∑

j∈[q]

ρxj
πxj


− πu,

where the final equality follows from the fact that
∑

j∈[q] ρxj
= 1. We can easily compute

all these node potentials πv (through a prefix sum over an Eulerian tour of the congestion
approximator tree T ′ starting at its root) and precompute the quantity

∑
j∈[q] ρxj

πxj
in the

PRAM model with O(|R′|) = O(k log n) work and O(log n) depth. Since this is all we need,
namely, be able to efficiently evaluate congestions and compute gradients over the supplied
congestion approximator, we have an efficient implementation of Sherman’s algorithm on the
contracted subgraph Ḡ(S).

7.3 Computing a Congestion Approximator for G ∪ {s, t}. The final requirement is
the following: in the cut-matching game of Section B, we need to compute (1 − 1/polylog n)-
approximate max flow on G with the addition of a source s and sink t which are arbitrarily
connected to G. As such, we must convert our α-congestion approximator R for G into a
O(α polylog n)-congestion approximator R′ for G ∪ {s, t}. In this section, we specify how this
is achieved.

Lemma 7.3. Let R be a α-congestion approximator for G which is a hierarchical decomposition,
and let s, t be two additional vertices connected arbitrarily (and with arbitrary capacities) to G.
Then, there is a polylog k depth, Õ(k) work PRAM algorithm which computes a O(α polylog n)-
congestion approximator R′ for G ∪ {s, t}, where k = |R|.

Note that R∪ {s, t}, with s,t connected to the leaves of R corresponding to their neighbors,
can be used to route any feasible flow on G∪{s, t} with congestion α, since R is an α-congestion
approximator for G. However, R ∪ {s, t} is not a tree, and thus cannot be readily plugged
into Sherman’s algorithm to compute maximum flows in G ∪ {s, t}. It thus remains to obtain
a congestion approximator (that is a tree) for G ∪ {s, t}, which boils down to computing a
hierarchical decomposition (as in [RST14]) for R ∪ {s, t}. The algorithm is quite similar to the
procedure of Section 5.2, but with a few key modifications to account for the nodes s and t.

Recall from Section 5.2 that it suffices to implement the two partitioning steps Partition A
and Partition B; we use the same definitions as in Section 5.2.

Lemma 7.4. Partition A11 can be implemented in O(log |Q|) depth and Õ(|Q|) work on any
subset Q of nodes of R ∪ {s, t}.

11If s ∈ Q or t ∈ Q, the partitions are not balanced, which does not meet the exact definition of Partition A. However,
there are only be 2 such paritionings, and so this can only increase the depth of the final tree by 2.



Proof. We use the following procedure:

1. If s ∈ Q, then output the partition ({s}, Q \ {s})

2. If t ∈ Q and s 6∈ Q, then output the partition ({t}, Q \ {t})

3. If s 6∈ Q and t 6∈ Q, then Q induces a subtree of R, and we run the procedure of Lemma
5.3

The depth and work are immediate from Lemma 5.3. It remains to show that the edges between
the partition that is output are 1-well-linked. If s ∈ Q or t ∈ Q, then all the edges between the
outputted partitions are incident on s or t and are thus 1-well-linked. If s 6∈ Q and t 6∈ Q, then
the edges between the outputted partitions are 1-well-linked by Lemma 5.3.

For Partition B, we only need to apply it on partitions without s or t, or on partitionings
where all boundary edges are incident on either s or t, by the construction of Partition A. As
such, Partition B reduces to finding the (exact) min-cut on a tree with a source and sink added,
exactly as in Section 5.2. So, we may use the algorithm of Appendix D to compute Partition B
and the analysis follows from Lemma 5.4.

The proof of Lemma 7.3 is then essentially identical to the proof of Lemma 5.5.

8 Parallel Flow Decomposition by Shortcutting.

We describe our PRAM flow decomposition subroutine in this section, and we will begin by
specifying the relevant notation. Consider an s-t flow f specified by a weighted, directed graph
H = (V,E, f) containing a source vertex s ∈ V , and sink vertex t ∈ V , with the flow on any edge
given by f : E → R

+. Note that this flow network H is restricted to only the subset of edges that
carry positive flow, and will be iteratively updated by our algorithm as we make progress towards
our flow-decomposition objective. Moreover, while the initial graph H specifying the flow f
does not contain any parallel edges, such edges will inevitably end up being created in our flow-
decomposition process. Therefore in this section, we will more generally deal with multigraphs,
whose edges are assumed to be uniquely indexed. Let |f | := ∑

(s,v)∈E f(s,v) −
∑

(v,s)∈E f(v,s)
be the value of the s-t flow. Lastly, we use S = NH

out(s) to denote the out-neighbors of s
corresponding to the “source-side” vertices, and T = NH

in (t) to denote the in-neighbors of t
corresponding to the “sink-side” vertices.

Our goal is to determine how much flow in f is routed between each pair x ∈ S, y ∈ T . We
do so by computing pairwise demands12 d : S × T → R

+ such that ‖d‖1 = |f | and d can be
routed in H exactly with f being the edge-capacity constraints, and as in the parallel setting,
this objective more easily admits a small work and low-depth implementation. We will build a
DAG data structure that implicitly encodes the necessary information.

Definition 8.1. (Flow Decomposition DAG) An ℓ-layered directed graph D is a flow
decomposition DAG of an s-t flow f specified by a weighted, directed graph H iff

12For the objective of computing pairwise demands, we assume that the source and sink-side vertices are non-overlapping,
i.e. S ∩ T = ∅, since this will always be the case in our application which is the implementation of the cut-matching game.
The parallel flow-decomposition result however, is more generally applicable.



1. Each node of D corresponds to a directed edge (not necessarily in H) between two vertices
u, v in V associated with a flow value h(u,v) ∈ R

+. We use (u, v, h) to represent this node
in D, dropping the subscript (u, v) in the flow value h(u,v) when it is unambiguous for ease
of exposition. Note that there can be multiple nodes of the form (u, v, h(u,v)) at the same
layer of D due to the existence of parallel (u, v) edges, each with potentially different flow
values h(u,v). We assume that all nodes in D are uniquely indexed to avoid ambiguity.

2. The nodes (u, v, h) at the lowest layer 1 do not have any predecessors. In particular, each
node (u, v, h) in layer 1 corresponds to a directed edge (u, v) ∈ E in H, and has the same
flow value h(u,v) = f(u,v) as in H.

3. Each node (u, v, h) in any other layer l ∈ {2, . . . , ℓ} has at most two predecessors in the
previous layer l − 1. If (u, v, h) has two predecessors, then they have the form (u,w, g),
(w, v, g′) corresponding to a length-two path between u, v; this means that (u, v, h) is
obtained by “merging” (a part of the) flows (u,w, g) and (w, v, g′). If (u, v, h) has only one
predecessor, it must have the form (u, v, g). This means that (u, v, g) had some residual
flow h ≤ g that was not merged with any other node.

4. The nodes at each layer l ∈ {1, . . . , ℓ − 1} satisfy flow conservation with the succeeding
layer l + 1, i.e. for each node (u, v, h) at any layer l having successors Π(u, v, h) at layer
l + 1, we have

∑
(x,y,g)∈Π(u,v,h) g(x,y) = h(u,v).

5. The nodes at the top-most layer ℓ are only of the form (s, t, h), and have total flow value
equal to |f |, i.e. these nodes all correspond to parallel (s, t) edges, which together account
for all of the s-t flow f .

The size of this data-structure is measured in terms of the total number of nodes and edges
it contains, where the edges denote successor-predecessor relationships between nodes across
consecutive layers. If the size and the number of layers of a flow decomposition DAG are
both low, we can efficiently perform various PRAM computations with low work and depth
therein. Of particular importance to our approximate max-flow algorithm, for a η-size ℓ-layer
flow decomposition DAG, we can compute the second vertex (which is a neighbor of s) and
penultimate vertex (which is a neighbor of t) of every flow path in layer ℓ simultaneously with
O(η) work and O(ℓ+ log η) depth using a simple algorithm; we show this in Lemma 8.2.

We now show that a small-size and low-depth flow decomposition DAG can indeed be
found efficiently by slightly relaxing property 5 in Definition 8.1; specifically, given a parameter
δ ∈ (0, 1), we have that the nodes of the form (s, t, ·) (i.e. parallel (s, t) edges) in layer ℓ together
account for a (1−δ) fraction of the s-t flow value |f | (at a small cost to its size and depth). This
is sufficient for all our applications, since we are only concerned with approximate max flows.
The precise guarantees are given in the following main theorem of this section.

Theorem 8.1. (Parallel Flow Decomposition) There exists a PRAM algorithm
flow-decomp that given any parameter δ ∈ (0, 1) and a polynomially bounded s-t flow
specified by a weighted, directed graph H = (V,E, f) with flow value |f |, finds with high
probability a flow decomposition DAG D of ℓ = O(log(n/δ)) layers such that at the topmost
layer ℓ, the total value of the flow captured by nodes (s, t, ·) representing (parallel) (s, t) edges is
at least (1 − δ)|f |. The algorithm flow-decomp has total work O(m polylog(n) log(n/δ)) and



the total depth is O(polylog(n) log(n/δ)). The total number of nodes, and edges representing
successor-predecessor relationships between nodes across consecutive layers in D are both
bounded by O(m log(n/δ)).

The idea behind our proof of Theorem 8.1 can be illustrated by the following relatively
intuitive process13: repeatedly “shortcut” the flow graph H by replacing a length-two flow path
u→ w → v with a single edge (u, v) having maximal flow value h(u,v) = min{g(u,w), g(w,v)}, and
a residual edge (x, y) ∈ {(u,w), (w, v)} having flow value h(x,y) = |g(u,w) − g(w,v)| iff there is any
non-zero leftover flow not accounted for by this shortcut edge (u, v). Consequently in the flow-
decomposition DAG, the nodes (u,w, g(u,w)) and (w, v, g(w,v)) become the predecessors of this
“shortcut edge” (u, v, h(u,v)), and the node (x, y, g(x,y)) becomes the predecessor of the residual
edge (x, y, h(x,y)) if there is any leftover flow. In order to achieve low depth, our objective is to
find a collection of length-two flow paths that together account for a large fraction of the (total
ℓ1 norm of the) flow that does not directly go from s to t which we can then shortcut in parallel.
We show that we can find such a collection of flow paths efficiently with the following technical
lemma.

Lemma 8.1. Let f be an s-t flow of value |f | specified by a weighted, directed multigraph
H = (V,E, f) containing source vertex s ∈ V , sink vertex t ∈ V with no edges directly connecting
s to t and with no self-loops, and the flow on any edge being given by f : E → R

+. Then we
can find in O(m polylog(n)) work and O(polylog(n)) depth, a collection of “shortcut paths”

represented as tuples P :=
{
(e

(1)
i , e

(2)
i , hi)

}
where e

(1)
i 6= e

(2)
i ∈ E, hi ∈ R

+, along with a

collection of “residual edges” given by R := {(ei, ri)} where ei ∈ E are disjoint, and ri ∈ R
+

such that

1. (Length-two paths) For each i ∈ [|P|], e(1)i , e
(2)
i form a path of length two.

2. (Flow constraints) For each edge e ∈ E, the total flow accounted for by the shortcut paths
involving this edge, which is given by the summation of hi over the tuples in P in which e
appears along with its residual capacity ri if any (if e is present in R), is exactly fe:

∑
i∈[|P|]:e∈

{

e
(1)
i , e

(2)
i

} hi +
∑

i∈[|R|]:e=ei
ri = fe.

3. (Large ℓ1-norm) With probability at least 1/15,
∑

i∈[|P|] hi ≥ ‖f‖1 /16.

4. (Non-increasing flow-support) |P|+ |R| ≤ |E|.

Proof. (Theorem 8.1) Given a flow f specified by a weighted directed graph H = H1, we begin
by creating the lowest layer 1 of our flow decomposition DAG D from H1 as specified in property
2 of Definition 8.1. It is easy to see that this can be achieved with O(m) total work and O(1)
depth. We also create a set S, initially empty, to track tuples of the form (s, t, h(s,t)) (i.e. direct
(s, t) edges) which correspond to “fully processed” s-t flow paths. If H1 contains such a direct
edge, we delete it from H1 and add the tuple (s, t, f(s,t)) to S. The subsequent proof (and
algorithmic procedure) then follows from a repeated application of Lemma 8.1; the l > 1-th
iteration, given as input an s-t flow specified by a weighted, directed multigraph Hl−1, we have:

13This is only an illustration of our idea, see Section 8.1 and the proof of Proposition 8.1 for what we actually do.



1. Invoke Lemma 8.1 on Hl−1 to find the desired collection of shortcut paths Pl ={
(e

(1)
i , e

(2)
i , hi)

}
, and residual edges Rl = {(ei, ri)}. Set Sl to be initially empty.

2. Construct a new flow graph Hl, initially empty, as follows: for each tuple (e
(1)
i , e

(2)
i , hi) ∈

Pl, add a directed edge (ui, vi) with flow value f(ui,vi) = hi, where ui, vi are the endpoints
14

of the length-two path (e
(1)
i , e

(2)
i ). For each residual edge (ei, ri) ∈ Rl, add a directed edge

ei with flow value ri. Note that this may lead to the creation of parallel edges. Delete any
edge (s, t) in Hl (may be multiple), as these correspond to “fully processed” flow paths
that will be tracked separately in Sl. Also delete any self-loops (edges with both endpoints
being the same vertex) from Hl.

3. Construct layer l of the flow-decomposition DAG D as follows: for each tuple

{e(1)i , e
(2)
i , hi} ∈ Pl, add to the lth layer of D a node (ui, vi, hi), where ui, vi are the

endpoints15 of the length-two path (e
(1)
i , e

(2)
i ). We set the predecessors of (ui, vi, hi)

to be the nodes (u
(1)
i , v

(1)
i , f

(u
(1)
i ,v

(1)
i )

) and (u
(2)
i , v

(2)
i , f

(u
(2)
i ,v

(2)
i )

) from layer l − 1, where

e
(j)
i = (u

(j)
i , v

(j)
i ) for j ∈ {1, 2}. For each residual edge (ei, ri) ∈ Rl, add to the lth layer

of D, a node (ui, vi, ri) where ei = (ui, vi). We set the predecessor of (ui, vi, ri) to be the
node (ui, vi, f(ui,vi)) from layer l − 1. For each newly created node of the form (s, t, h) at

layer l, add this node to S. For each node (s, t, hi) ∈ Sl−1, add to the lth layer of D, a new
node (s, t, hi), and set its predecessor to be the corresponding (s, t, hi) node from layer
l − 1. Finally, create Sl by adding all newly created (s, t, ·) tuples in S to Sl−1.

Observe that in each iteration, the updated flow specified by the multigraph Hl (prior to
deleting (s, t) edges and self-loops if any) can trivially be routed in the preceding graph Hl−1 by
simply “undoing” the shortcutting that producedHl. Moreover, after accounting for all the (s, t)
edges specified by tuples in Sl, the total flow value leaving s is preserved across all iterations in
our procedure. Therefore, the “routability” property desired of the flow decomposition procedure
is trivially satisfied by our aforementioned process.

We shall now prove the work and depth guarantees of this algorithm, along with the near
linear-size and polylogarithmic depth of the resulting flow-decomposition DAG D. Since in every
iteration, the ℓ1-norm of the flow f reduces by

∑
i∈P hi, which by property (3) of Lemma 8.1

is at least a constant-fraction of the ℓ1-norm of the flow f at the start of the iteration with

constant probability, we can deduce that after ℓ = Θ(log
n‖f‖1
δ|f | ) = Θ(log(n/δ)) iterations of the

above process, with polynomially high probability (in n, follows by a straightforward Chernoff
bound), the edges that remain in the flow graph Hℓ (i.e. that do not directly go from s to t)
contribute at most a δ fraction of the total (initial) amount of flow |f | leaving s. Since in all
our applications, we are only concerned with finding an approximate max-flow, we can safely
ignore this residual flow for small enough δ. The second equality in the above bound follows by
observing that |f | ≥ mine∈E we, and ‖f‖1 ≤

∑
e∈E we ≤ m · maxe∈E we, and the aspect ratio

maxe∈E we/mine∈E we is assumed to be polynomially bounded.

14Since we are only guaranteed an approximate max-flow f , it may contain circulations that we may discover in this
process, i.e. the two endpoints ui, vi are identical. In this case, we can simply delete all the self-loops.

15If ui = vi, then skip this tuple without adding any nodes/edges.



In each iteration l, our procedure involves obtaining the relevant collection of tuples Pl,Rl

given an input flow multigraph Hl−1, which in turn are used to add a new layer l to the flow-
decomposition DAG D, and to update the flow multigraph Hl−1 → Hl. The total number of
edges |El| in the updated flow multigraph Hl is at most |Pl|+ |Rl|−|Sl \Sl−1|, which by property
(4) of Lemma 8.1 is at most |El−1|, the total number of edges in the flow multigraph Hl−1 from
the previous iteration l − 1. Moreover, the total number of nodes added to layer l in D is at
most |Pl| + |Rl|+ |Sl−1| = |Pl|+ |Rl| − |Sl \ Sl−1|+ |Sl \ Sl−1|+ |Sl−1| ≥ |El|+ |Sl|. However,
by property (4) of Lemma 8.1, we also have that |Pl|+ |Rl| ≤ |El−1|, due to which we have that
|Pl| + |Rl| + |Sl−1| ≤ |El−1| + |Sl−1|. Therefore, we can infer that the quantity |El′ | + |Sl′ | is
non-increasing across l′, due to which we can conclude that |El′ |+ |Sl′ | ≤ |E1|+ |S1| = |E|. The
above bounds, and the fact that the number of edges |E| in the initial flow graph H provided as
input to our algorithm is at most m combined with the computational guarantees of Lemma 8.1
gives us that any iteration of our algorithm (finding tuples, updating Hl−1 → Hl, creating a new
layer in D) can be implemented in O(m polylog n) work and O(polylog n) depth. Moreover,
each new layer created in the flow decomposition DAG has at most m nodes, and at most
2m edges between it and the preceding layer (since every node has at most two predecessors

from the previous layer). Since there are a total of Θ(log
n‖f‖1
δ|f | ) = O(log(n/δ)) iterations of

our algorithm for polynomially bounded flows, we have that the total work and depth of our
algorithm is O(m polylog(n) log(1/δ)) and O(polylog(n) log(1/δ)), respectively, and the size
(number of nodes,edges) and depth of the flow decomposition DAG D produced is at most
O(m log(n/δ)), and O(log(n/δ)), respectively as claimed.

8.1 Proof of Lemma 8.1. One can formulate the problem as a (uncapacitated) b-matching
problem. Specifically, we create a b-matching instanceHb from the flow multigraphH = (V,E, f)
(with no edge directly connecting s to t) as follows. For each edge e ∈ E, we create a vertex ue
with demand fe. Then for every pair of edges e(1), e(2) that form a length-two path by sharing a
vertex v ∈ V , we connect their corresponding vertices ue(1) , ue(2) with an edge of infinite capacity.
It suffices to find a large b-matching whose size is a constant fraction of ‖f‖1, the total ℓ1-norm
of the flow f .

First, we shall prove such a b-matching exists. To this end, let us consider a bipartite
b-matching instance H ′

b, constructed as follows. For each edge e ∈ E, we create two vertex
copies uein and ueout both with demand fe. Then for every pair of edges (e(1), e(2)) that form a
length-two path by sharing a vertex v ∈ V , we add an edge between u

e
(1)
in

and u
e
(2)
out

with infinite

capacity. We claim that there is a b-matching of size at least ‖f‖1 /2, by the following simple
construction. For each vertex v ∈ V such that v 6= s and v 6= t, we use a perfect b-matching
between the vertices corresponding to the “in” copies of the incoming edges of v and the vertices
corresponding to the “out” copies of the outgoing edges of v, whose existence is guaranteed by
the flow conservation property. Then both vertices corresponding to every edge e ∈ E is fully
matched except for the vertices corresponding to the “out” copies of edges leaving the source
s, and the vertices corresponding to the “in” copies of edges entering the sink t. By a simple
charging argument that assigns the b-matching value for every vertex v ∈ V to the “in” copies
of the vertices corresponding to the incoming edges into v, we can bound the total demand
of these aforementioned unmatched edges by at most ‖f‖1 /2, which gives us our claim. Now
consider for each edge e ∈ E, keeping either uein or ueout uniformly at random and discarding
the other vertex, letting the resulting subsampled graph be Hb. Then in expectation, observe



that the maximum b-matching in the resulting subsampled graph is at least ‖f‖1 /8, since each
matched edge is kept with probability 1/4 (i.e. if its two end points, one of which is a vertex
corresponding to the “in” copy of an incoming edge, and the other is a vertex corresponding to
the “out” copy of an outgoing edge are both sampled in the subsampled graph Hb). Therefore,
by a standard Markov argument, we have that with probability at least 1/15, the matching size
in the subsampled graph is at least ‖f‖1 /16.

We can in fact algorithmically compute such a matching efficiently in light of the above
construction. As described above, we can subsample the vertices corresponding to the edge-
copies in the graphH ′

b and find the maximum b-matching in the resulting graph by locally finding,
for each vertex v ∈ V \ {s, t}, the maximum b matching between the (subsampled) vertices
corresponding to “in” copies of incoming edges into v, and (subsampled) vertices corresponding
to “out” copies of outgoing edges from v in H. This is correct because after we keep either
uein or ueout and discard the other for each e in H, the graph becomes a union of disjoint
connected components, where each component consists of the “in” copies of the incoming edges
and the “out” copies of the outgoing edges of a single vertex. It then remains to show that
we can efficiently find the maximum b-matching locally for every component, along with the
non-increasing flow-support property for which it suffices to prove the following proposition.

Proposition 8.1. Given two sets of elements A = {a1, . . . , anin
} and B = {b1, . . . , bnout}, along

with a positive function f : A∪B → R
+ we can find in O((nin +nout) polylog(nin +nout)) total

work and O(log(nin + nout)) depth, collections of tuples P := {(xi, yi, hi)} where xi ∈ A, yi ∈
B,hi ∈ R

+, and R := {(zi, ri)} where zi ∈ A ∪B are disjoint and ri ∈ R
+ such that

1. (Flow constraints) For each a ∈ A (and each b ∈ B), we have

∑

i∈[|P|]:xi=a

hi +
∑

i∈[|R|]:a=zi

ri = fa, and

∑

j∈[|P|]:yj=b

hj +
∑

j∈[|R|]:b=zj

rj = fb.

2. (Non-increasing support) |P|+ |R| ≤ nin + nout

3. (Maximality)
∑

i∈[|P|] hi = min
{∑

a∈A fa,
∑

b∈B fb
}
.

Proof. The proof is standard and it appeared in earlier work like [ASZ20], though we describe it
explicitly for completeness. We begin by computing the prefix sum of the values in both A and
B; with some abuse of notation, let Ak =

∑k
i=1 fai and Bk =

∑k
i=1 fbi . By a standard PRAM

algorithm ([Akl97]), this procedure takes O(nin + nout) work and O(max{log nin, log nout}) =
O(log(nin + nout)) depth. Next, we rank (sort) all the values in {Ai}i∈[nin] ∪ {Bj}j∈[nout], which
takes O((nin + nout) log(nin + nout)) work and O(log(nin + nout)) depth; let Ck be the k-th
ranked value in the resulting sorted prefix sum values, with ck denoting the element ai or bj
depending on whether Ck = Ai or Ck = Bj. If there are ties (i.e. the total value Ai of the
first i elements of A is exactly equal to the total value Bj of the first j elements of B for
some i, j), then set ck = ai, and drop the Ck′ term corresponding to Bj after setting bj to be
the successor of ck, which we define next. For each element ck, find its successor csucc-k to be
the element from the other array corresponding to the smallest prefix sum that is at least as



large as Ck, i.e., if ck = ai for some i (i.e. Ck = Ai), then the successor csucc-k = bj where
j = argminℓ:Bℓ≥Ck=Ai

Bℓ. If there is no such value (i.e. Ck = Ai > Bnout), then we set the
successor csucc-k to be a dummy element ⊥. The case where ck = bj follows symmetrically. We
also let C0 = 0 so that the subsequent process is well defined. Finally let C be the resulting
processed, sorted array, and let ntot be its length (i.e. array C contains C0, C1, . . . , Cntot−1).
This procedure can also be done in O((nin + nout) · log(nin + nout)) work and O(log(nin + nout))
depth by the standard doubling trick. Now starting with both P,R being initially empty, do the
following: for each ℓ ∈ {1, . . . , ntot− 1} in parallel: if cℓ = ai, and csucc-ℓ 6=⊥, then add the tuple
(cℓ, csucc-ℓ, Cℓ−Cℓ−1) to P; if cℓ = bj , and csucc-ℓ 6=⊥, then add the tuple (csucc-ℓ, cℓ, Cℓ−Cℓ−1) to
P; otherwise, add the tuple (cℓ, Cℓ−Cℓ−1) to R. This entire process requires just O(nin +nout)
work and O(1) depth. This proves our computational guarantees.

We shall now prove the flow constraint, non-increasing support, and maximality properties
outlined in the proposition statement. To prove the flow constraint property, consider any
fixed element bj for some j. By nature of our algorithm, bj appears in tuples due to one of
two reasons: either (a) it was the successor bj = csucc-k′ for some elements ck′ (the number of
such elements is ≥ 0), or (b) when the element Ck = Bj was processed by itself (exactly once
if Bj was not tied with some Ai, in which case it was combined with its successor csucc-k to
form a tuple and added to set P if csucc-k 6=⊥, and to set R otherwise. If tied with some Ai,
then this does not occur as there is no k : Ck = Bj). In the former, observe that bj will be
the successor of all elements ck′ = ai with value Ck′ = Ai where Bj−1 < Ck′ = Ai ≤ Bj .
If we sum the hk′ values corresponding to all such k′, including the final hk value (which
occurs only if there is a k : Ck = Bj), we get

∑
k′:Bj−1<Ck′≤Bj

hk′ + 1(∃ k : Ck = Bj)hk =∑
k′:Bj−1<Ck′≤Bj

(Ck′ −Ck′−1)+1(∃ k : Ck = Bj)(Ck−Ck−1) = Bj −Bj−1 = fbj , where the final
equality follows by telescoping summation. The argument where ck = ai follows symmetrically.
The non increasing support property trivially follows by observing that the total number of
tuples added to P,R together is exactly ntot−1 ≤ nin+nout by definition of C. Lastly, to prove
maximality, observe that the largest term Cntot−1 must be achieved at either Anin

or Bnout . Let
us assume that it is Bnout , in which case it must be the case that every Ck term corresponding
to some Ai value will have a successor in B, in which case the total capacity of Anin

=
∑nin

i=1 fai
must be accounted for by the tuples in P, since no ai element will end up in the residual set
R. The argument for the other case where the largest term Cntot−1 is achieved at Anin

follows
symmetrically.

8.2 Computing Fractional Matching. It remains to show how, for each neighbor u of s,
we may determine how much flow through u is routed through each neighbor of t. This allows us
to use the flow to compute a (fractional) matching between the neighbors of s and the neighbors
of t, which we use in the cut matching game (see Section B). Note also that in our use, the flow
f that we want to decompose never contains any edges connecting s directly to t. The following
lemma shows that this can be done using a flow-decomposition DAG; combined with Theorem
8.1, this lemma shows that this can be done in logarithmic depth and near-linear work.

Lemma 8.2. Given a graph H, and vertices s, t ∈ V (H), let S and T be the set of neighbors
of s and t in H, respectively. Given a flow f without edges connecting s directly to t and a
flow-decomposition DAG D of size η and depth ℓ, let P be the set of flow paths corresponding to
the nodes of the form (s, t, ·) at the final layer ℓ. There exists a O(ℓ + log η) depth, O(η) work



PRAM algorithm which computes rx,y for each x ∈ S and y ∈ T such that a total of rx,y units
of flow is routed by the flow paths in P whose second vertex is x and penultimate vertex is y.

Proof. For each node u of the form (s, t, ·) at layer ℓ of the flow-decomposition DAG D, our goal
is to compute search(u), which is the set {x, y} such that x ∈ S is the second node on the path
represented by u and y ∈ T is the penultimate node. To aid in presentation, for each DAG node
v of the form v = (s, a, ·) where a 6= t, we define search(v) to be only the second node x ∈ S
along the path represented by v; we analogously define search(v) to be only the penultimate
node on the path when v = (a, t, ·). Note that we are only interested in search(v) of nodes
u = (v1, v2, ·) of D such that v1 = s or v2 = t.

Starting from each node u of the form (s, t, ·) at level ℓ, in parallel we recursively compute
search(u) as follows:

• If u has exactly one predecessor p, return search(p).

• If u is at level 1 in D, then either u = (s, x, ·) for some x ∈ S or u = (y, t, ·) for some
y ∈ T (recall that the initial given flow f does not contain edges directly connecting s to
t); return x (or y, respectively).

• Otherwise, u has two predecessors u1 and u2.

– If u = (s, t, ·), then u1 = (s, a, ·) and u2 = (a, t, ·), for some a ∈ V (H). Return
{search(u1), search(u2)}.

– Otherwise, u = (v1, v2, ·), where either v1 = s or v2 = t (but not both), and
u1 = (v1, a, ·) and u2 = (a, v2, ·) for some a ∈ V (H). If v1 = s, return search(u1),
and if v2 = t, return search(u2).

The correctness follows by induction on the level of u. If u is at level 1, search(u) is trivially
correct, and if u has exactly one predecessor p, then search(u) = search(p), which is correct
by induction. Otherwise, suppose u has two predecessors u1 and u2. If u = (s, t, ·), then by
the inductive hypothesis, search(u1) is the second node on the path represented by u1 and
search(u2) is the penultimate node on the path represented by u2; since the path represented
by u is the union of the paths represented by u1 and u2, it then follows that search(u) is
also correct. The correctness of search(u) when u = (v1, v2, ·), with v1 = s or v2 = t, follows
similarly.

The depth of the algorithm is bounded by the depth of D, which is ℓ. Similarly, for work,
the work to compute any one search(u) is at most O(ℓ), as D has ℓ layers. So, the total work
is O(ζℓ) = O(η), where ζ is the number of nodes at level ℓ, and ζℓ = O(η) by property 4 of
Lemma 8.1. The desired values rx,y can then be computed by, for each u at level ℓ, adding the
flow value of u to rsearch(u) (which is initially set to 0), which takes O(η) work O(log η) depth
by parallel summation.

9 Applications.

In this section, we discuss some notable applications of our parallel approximate max-flow
algorithm. Namely, we show that our aforementioned result implies new or substantially
improved parallel algorithms for (balanced) sparsest cuts, minimum-cost hierarchical clustering
[Das16], fair-cuts [LNPS23] and approximate Gomory-Hu trees. The input instance to all these



aforementioned problems are undirected, weighted graphs G = (V,E, c) with positive edge-
weights that are assumed to be polynomially-bounded (or alternatively, a polynomially bounded
ratio of maximum to minimum edge weights).

9.1 Sparsest Cut and Balanced Min-cut. The sparsest cut problem is a classic problem in
graph theory that informally asks to partition a given graph while removing as little edge-mass
as possible. More precisely, given an undirected, weighted graph G = (V,E, c) the objective is
to find a cut (X,V \X) of minimum sparsity, which is formally defined as

φ(X) =
c(E(X,V \X))

min {|X| , |V \X|} ,

where c(E(X,V \ X)) is the total weight of edges going across the cut (X,V \ X). A closely
related problem, the β-balanced minimum cut asks for a cut (X,V \X) such that the smaller
side of the partition has at least βn vertices for a given parameter β > 0, and the total edge
weight c(E(X,V \ X)) is minimized among all such partitions. The β-balanced sparsest cut
is similarly defined as a cut whose i). smaller side has at least βn vertices and ii). sparsity is
minimized among all such partitions.

All the aforementioned problems are known to be NP-hard, and the best-known polynomial-
time algorithms achieve O(

√
log n)-approximation [ARV09] to their corresponding objective,

albeit at the expense of a large (sequential) polynomial running time. For the balance constrained
variants of these cut problems, bicriteria approximations that allow multiplicative factors on both
the balance parameter as well as the cut size are also commonly studied. This notion can be
formally defined as follows.

Definition 9.1. (Bicriteria approximation for balanced cut problems) Let β′ <
β ≤ 1

2 be real numbers, and let (X∗, V \X∗) be an optimal β-balanced min-cut (resp. β-balanced
sparsest cut of G). We say that a cut (X,V \ X) is an (α, β′)-bicriteria approximation of the
β-balanced min-cut (resp. β-balanced sparsest cut) if

1. (X,V \X) is a β′-balanced cut, and;

2. Approximation guarantees:

(a) For β-balanced sparsest cut, φ(X) ≤ α · φ(X∗) .

(b) For β-balanced min-cut, c(E(X,V \X)) ≤ α · c(E(X∗, V \X∗)) .

While algorithms for sparsest and balanced-min cuts have been developed for the distributed
CONGEST model of computation [KM15, CS19], no parallel PRAM algorithms with nearly-linear
work and polylogarithmic depth are known. We resolve this state-of-the-affair by designing the
first PRAM (polylog n,polylog n)-bicriteria approximation for both problems using our parallel
approximate max-flow algorithm. Formally,

Theorem 9.1. There is a randomized PRAM algorithm that given an undirected weighted graph
G = (V,E, c), computes with high probability a cut (X,V \X) that achieves

• An O(log3 n)-approximation for sparsest cut;

• An
(
O
(
log3 n

)
, O
(

β
log2 n

))
-bicriteria approximation for β-balanced sparsest cut;



• An
(
O
(
log3 n

β

)
, O
(

β
log2 n

))
-bicriteria approximation for β-balanced min-cut.

This algorithm has O(m · polylog n) work and O(polylog n) depth.

Our algorithm builds upon the cut-matching game framework developed by [KRV06] that
effectively reduces the computation of all of these aforementioned problems to polylogarithmi-
cally many single-commodity max-flow computations (as well as a flow-decomposition of the
corresponding max-flow solutions). As a consequence, this framework provides algorithms for
computing polylog n approximations to all these cut problems with work and depth that match-
ing that of the max-flow (and flow-decomposition) oracle utilized in their implementations up
to a polylog n factor. While the original idea of [KRV06] required an exact max-flow oracle in
its implementation, [NS17] showed in a fairly straightforward extension that an approximate
max-flow oracle also suffices to achieve morally the same result.

Our algorithm, formally described in Algorithm 9.1, is a straightforward extension of this
aforementioned result of [NS17] to the PRAM setting. By crucially utilizing our parallel ap-
proximate max-flow result in Theorem 1.1, the parallel flow-decomposition result in Lemma 8.1,
and the near-linear work, logarithmic depth flow-rounding algorithm of [Coh95], this algorithm
achieves guarantees formally described in Lemma 9.1, which in turn imply the guarantees claimed
in Theorem 9.1.

Algorithm 9.1. Parallel cut-matching game for sparsest cuts(G,α, β)
Input: Graph G = (V,E, c) with n = |V |,m = |E|, a sparsity parameter α, a balance parameter
β.
Output:
Either Cut Case: a cut (X,V \X) such that φ(X) ≤ α and βn ≤ |X| ≤ n

2 ;
Or Expander Case: a graph H embeddable in G with congestion at most O(log3 n/α) such
that every (β log2 n)-balanced cut in H has sparsity at least Ω(1).
Procedure:

1: for round t = 1, . . . , c1 log
2 n, where c1 is a sufficiently large constant do

2: // The cut player:
3: Sample a random n-dimensional unit vector r orthogonal to 1.
4: if t > 1 then
5: u ← Mt−1(Mt(. . . (M1r))), where for any t′ < t, the (n × n) (sparse) matrix Mt′ is

the probability transition matrix corresponding to perfect matching output by the matching
player in round t′.

6: else
7: u ← r

8: Return cut Xt ← vertices corresponding to the smallest n/2 entries in u .
9: // Matching player:

10: Fix ε = 1/10, and let c2 = c2(ε) be a sufficiently large constant.
11: for sub-round j = 1, . . . , c2 log n do
12: Maintain Sljt and Srjt : at the beginning, let Sl1t = Xt; Sl

j
t = Sljt \ V (Mj−1

t ), where
V (Mj−1

t ) is the matching computed in the (j − 1)-th sub-round of the matching player.
Update Srjt analogously.

13: // Note that the sizes of Sljt and Srjt always remain equal by construction across all
sub-rounds.



14: Connect a source s to Sljt and a sink t to Srjt with edge capacities 1, and scale all
other edge capacities in G by α−1.

15: Compute a (1−ε)-approximate max-flow, and round the flow to be integral using the
algorithm in [Coh95]; also obtain the corresponding approximate min-cut (Cj

t , V \ Cj
t ).

16: // by the dual variables of Sherman’s framework.

17: if c(E(Cj
t , V \ Cj

t )) <
∣∣∣Sljt

∣∣∣− βn then

18: Output (Cj
t , V \ Cj

t ) as the desired α-sparse cut and terminate the game.
19: else
20: Compute a partial matching M

j
t between the vertex sets Sljt , Sr

j
t given by the flow

decomposition.

21: Let SlJ+1
t = SlJt \ V (MJ

t ), and SrJ+1
t = SrJt \ V (MJ

t ), where J = c2 log n is the final
sub-round of the matching player.

22: if
∣∣∣SlJ+1

t

∣∣∣ =
∣∣∣SrJ+1

t

∣∣∣ < βn then

23: Compute an arbitrary matching M′
t between Sl

J+1
t , SrJ+1

t .

24: Return the perfect matching Mt =
(⋃

M
j
t

)
∪ M′

t to be the union of the partial

matchings across all sub-rounds of the matching player.

25: If the matching player outputs a cut in any (sub)round, then it is the desired α-sparse cut;
otherwise, H =

⋃(
Mt \M′

t

)
is the graph embeddable in G with low congestion.

Lemma 9.1. (Parallel version of [NS17] Lemma B.18, cf. [KRV06]) There is a ran-
domized PRAM algorithm that given an undirected, weighted graph G = (V,E, c), a sparsity
parameter α > 0, and a balance parameter β = O( 1

log2 n
), with high probability computes

• either an α-sparse cut X such that βn ≤ |X| ≤ n
2 ;

• or a graph H embeddable in G with congestion at most O(log3 /α) such that every
(β log2 n)-balanced cut in H has sparsity at least Ω(1).

The algorithm has O(m · polylog n) work and O(polylog n) depth.

Proof. These aforementioned guarantees are achieved by Algorithm 9.1, and its correctness
follows directly from [NS17] with no change to the proofs. Specifically the correctness for an
α-approximate (unconstrained) sparsest cut follows from Lemma B.16 and Corollary B.21, and
for an α-approximate, β-balanced sparsest cut follows from Lemma B.18 and Corollary B.22.

We now show that this algorithm admits a O(m · polylog n) work and O(polylog n) depth
PRAM implementation. First, observe that in the tth round of the cut-matching game, the cut
player’s strategy can implemented in O(mt) work and O(t log n) depth as described in Lemma
B.1. Now consider the matching player’s strategy in the tth round of the cut-matching game,
which consists of O(log n) sub-rounds. We claim that each sub-round j of the matching player
requires O(m · polylog n) work and O(polylog n) depth. Observe that maintaining Sl and Sr
and scaling edge weights can be done in O(m) work and O(1) depth. Since we pick ε = O(1),
the (1 − ε) max-flow algorithm runs in O(m · polylog n) work and O(polylog n) depth as in
Corollary 1.1. Rounding the flow to an integral solution can be done in O(m) work and O(log n)
depth by [Coh95]. Finally, since the edge capacities are bounded polynomials, we can use our
parallel flow decomposition algorithm in Lemma 8.1 with δ = ε

‖c‖1
. By Lemma 8.1, this takes



O(m · polylog n) work and O(polylog n) depth, and it preserves flow decomposition for a (1− ε)
approximate max-flow. Since there are at most O(log n) sub-rounds of the matching player in
any (outer) round of our cut-matching game, the cut-player’s strategy in the tth round can also
be implemented in O(m polylog n) work and O(polylog n) depth. Finally, since the number of
rounds t of the cut-matching game is bounded by O(log2 n), the total work and depth of our
algorithm is bounded by O(m polylog n) and O(polylog n), respectively.

The algorithm and analysis of Lemma 9.1. The algorithm follows from
polylogarithmically-many parallel applications of Lemma 9.1. Concretely, when setting β′ =
β/(10c log2 n) (or β′ = 0 for the sparsest cut), we can guess the value of α as (cmin/n) · 2i for
integer i and return the smallest guess value that returns a sparse cut. Any graph G whose
eligible cuts have sparsity less than α/ log3 n will not be embeddable for H, which gives us a
cut whose sparsity is at least an O(log3 n) approximation. Finally, note that by the balance of
partition, an α-approximation of the β-balanced sparsest is always an O(α/β)-approximation
for the β-balanced min-cut.

To analyze the efficiency, under the assumption that the ratio between the maximum and
the minimum capacities is polynomial, the geometrically-increasing guess can be done in parallel
with an O(log n) multiplicative factor of work and O(1) depth overhead. Each call to the
algorithm of Lemma 9.1 takes O(m·polylogn) work and O(polylog n) depth, and so the complete
algorithm has total work O(m · polylog n) and depth O(polylog n).

9.2 Minimum Cost Hierarchical Clustering. Hierarchical clustering is a fundamental
data analysis tool used to organize data into a dendogram. Given data represented as an
undirected weighted graph G = (V,E, c), where the vertices represent datapoints and (positive)
edge weights represent similarities between their corresponding end points, the goal is to build
a hierarchy, represented as a rooted tree T ; the leaves of this tree correspond to individual
datapoints (vertices V ), and the internal nodes correspond to a cluster S ⊆ V consisting of their
descendent leaves. Intuitively, this tree can be viewed as clustering the vertices of G at multiple
levels of granularity simultaneously, with the clustering becoming increasingly fine-grained at
deeper levels. [Das16] initiated the study of this problem from an optimization perspective by
proposing the following cost function for similarity-based hierarchical clustering-

costG(T ) =
∑

(u,v)∈E

cuv · |leaves(Tuv)|,(9.2)

where cuv is the weight (similarity) of the edge (u, v) ∈ E and Tuv is the subtree of T rooted
at the least common ancestor of u and v, and |leaves(Tuv)| is the number of descendent leaves
in this subtree Tuv. Intuitively, this objective imposes a large penalty for separating “similar”
vertices at higher levels in the tree, thereby placing “similar” vertices closer together.

This minimization problem was shown to be NP-hard, and moreover, no polynomial time
constant factor approximation factor was shown to be possible for this objective assuming the
small-set expansion hypothesis [CC17]. Nevertheless, this objective is considered a reasonable
one; [Das16] and a follow-up work by [CKMM18] show that it satisfies several properties desired
of a “good” hierarchical clustering. As a consequence, this objective has been well studied in
the literature (cf. [Das16, CC17, RP16, CNC18, CKMM18, ACL+22, AKLP22], and references
therein), where it was shown to have strong algorithmic connections to the sparsest cut-problem.



Specifically, [Das16, CC17, CKMM18] show that recursively partitioning the subgraph induced
at each internal node using any α-approximate sparsest cut oracle results in a cluster tree that
is a O(α) approximation for Dasgupta’s objective.

While our results do imply a near-linear work, polylogarithmic depth parallel algorithm for
computing polylog-approximate sparsest cuts, this by itself does not suffice to give a low-depth,
work-efficient parallel algorithm for (approximately minimum-cost) hierarchical clustering. The
reason is precisely that the sparsest cut subroutine may produce highly imbalanced partitions,
resulting in a cluster tree with super-logarithmic depth. Due to the dependent nature of
the recursively generated subgraphs on which the sparsest cut oracle is invoked, the resulting
clustering algorithm would have not just super-logarithmic depth, but also super-linear work.

Fortunately, the solution is relatively simple, which is to recursively partition the graph using
balanced min-cuts (with β = Ω(1)) instead, guaranteeing that the resulting hierarchy would have
logarithmic depth. When utilizing such a balanced min-cut subroutine, [CC17, ACL+22] show
morally the same guarantees for the resultant hierarchical clustering as the unbalanced case.
Specifically, they show that recursively partitioning the subgraph induced at each internal node
using any (α, β′)-bicriteria approximation oracle for β-balanced min-cuts (0 < β′ ≤ β ≤ 1/2)
results in a hierarchy that is an O(α/β′) approximation for Dasgupta’s cost function.

This result in combination with our parallel O(β−1 log3 n, β log−2 n)-bicriteria approximation
algorithm for β-balanced min-cuts presented in Theorem 9.1 directly gives us the first PRAM

algorithm for minimum-cost hierarchical clustering. Formally,

Theorem 9.2. There is a randomized PRAM algorithm that given an undirected weighted graph
G = (V,E, c), computes with high probability, a hierarchical clustering tree T that is a O(log5 n)-
approximation for Dasgupta’s objective (Eq (9.2)). This algorithm has O(m · polylog n) work
and O(polylog n) depth.

Combined with the simulation result of [KSV10, GSZ11], the above result implies the first
fully-scalable MPC algorithm for this problem; our algorithm computes a O(log5 n)-approximate
minimum cost hierarchical clustering in O(polylog n) rounds, where each machine has local-
memory O(nδ) for any constant δ > 0, and the total memory is O(m polylog n). Prior to
this work, the state-of-the-art MPC algorithm for this problem required Ω(n polylog n) local
(per-machine) memory [AKLP22].

9.3 Fair Cuts and Approximate Gomory-Hu Trees. In a recent work, [LNPS23]
introduced the notion of fair cuts and showed that it is useful in several applications, one
of them being the constructing approximate Gomory-Hu trees. Formally, a fair cut is defined as
follows.

Definition 9.2. (Fair Cut [LNPS23]) Let G = (V,E, c) be an undirected graph with edge
capacities c ∈ RE

>0. For any two vertices s and t, and parameter α ≥ 1, we say that a cut (S, T )
is a α-fair (s, t)-cut if there exists a feasible (s, t)-flow such that f(u, v) ≥ 1

α · c(e) for every
e ∈ E(S, T ).

Note that an α-fair (s, t)-cut is also an α-approximate (s, t)-min-cut but not vice-versa. We
show that the results presented in our paper also extend to this stronger notion of approximate
min-cuts, improving upon the algorithmic result of [LNPS23]. In particular, [LNPS23] give a



PRAM algorithm for computing a (1 + ε)-fair cut with no(1)/poly(ε) depth and m1+o(1)/poly(ε)
work. Importantly, the computational bottleneck in their approach is the construction and
resultant quality of a congestion approximator for the input graph, in the sense that their
algorithm has depth and work poly(α, ε−1, log n), andm poly(α, ε−1, log n), respectively, plus the
depth and work required to construct such an α-congestion approximator. The same bottleneck
persists in the application of their fair cut idea for computing isolating cuts and approximate
Gomory-Hu trees. In their work, [LNPS23] utilize a boundary-linked expander decomposition of
[CS19, GRST21] as their congestion approximator, which requires no(1) depth and m1+o(1) work
to construct, producing a no(1)-congestion approximator which gives them their PRAM result16.
Our new polylogarithmic depth, near-linear work construction of congestion approximators from
Theorem 2.1 when used as a blackbox in the algorithm of [LNPS23] immediately imply the
following improvements.

Theorem 9.3. There is a randomized PRAM algorithm that given as input an undirected,
weighted graph G = (V,E, c), vertices s, t ∈ V , and desired precision ε > 0, with high probability,
computes a (1 + ε)-fair (s, t)-cut in O(m poly(ε−1, log n)) work and O(poly(ε−1, log n)) depth.

Theorem 9.4. There is a randomized PRAM algorithm that given as input an undirected,
weighted graph G = (V,E, c), and desired precision ε > 0, computes with high probability a
(1 + ε)-approximate Gomory-Hu tree in O(m poly(ε−1, log n)) work and O(poly(ε−1, log n))
depth.
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A PRAM Primitives.

A.1 Eulerian Tours and Subtree Sum. Consider a tree T , and for each undirected edge
(u, v) create two anti-parallel arcs (u, v) and (v, u); call this new graph T ′. Then, T ′ admits an
Eulerian tour, which can also be viewed as DFS traversal of T . This Eulerian tour can be used
to compute a number of properties of T efficiently in parallel, and in this section we describe
several of use to us. Most of these results are folklore and can be found in several textbooks on
parallel algorithms, such as [Akl97].

Theorem A.1. (Eulerian Tour [Akl97]) There is a O(1) depth, O(n) total work PRAM al-
gorithm which outputs an ordered list of nodes corresponding to an Eulerian tour of a tree T
with n nodes starting at a root r.

Eulerian tours are usually computed via a linked list representation, where each directed arc
points to the next element in the tour. This can also be converted to a random access ordered
array, which is useful in several results below.

It is also known that one can compute all prefix sums of an array in O(log n) depth.



Theorem A.2. (Prefix Sums [Akl97]) Given a list of values a1, . . . , an, there is an O(log n)
depth, O(n) work PRAM algorithm which outputs a new list b1, . . . , bn such that bk =

∑
i≤k ai

Using prefix sums and Eulerian tours, we can compute several useful properties of nodes in
a tree.

Theorem A.3. ([Akl97]) Let T be a tree rooted at r. Then, there is a PRAM algorithm which
in O(log n) depth and O(n) total work computes

1. The first and last time each node is visited by an Eulerian tour starting at r

2. The parent of each node

3. The depth of each node

whenever there are at least Ω(n) processors.

Proof. Note that the length of the Eulerian tour array is always O(n), as each original edge is
traversed exactly twice and all trees over n nodes have n − 1 edges. To find the first time each
node is visited by a tour starting at r, assign one processor to each pair of consecutive elements
in the list. Let u, v be these elements, appearing at indices i−1, i. The processor assigned to the
pair then sets b[(u, v)] = i, where b is a new lookup table for the ordering of edges. To determine
the first time a node u is visited by the tour, it suffices to compute minv b[(v, u)], and similarly
the last time can be determined by maxv b[(u, v)]. These minimums and maximums can then
be computed in depth O(log n) [Akl97]. The parent of any node first visited at position i in the
list is the i− 1 element in the Eulerian tour list.

For the depth each node, we say (u, v) is a “forward” arc if u is the parent of v, and a
“reverse” edge if v is the parent of u. In the ordered list of arcs traversed by the Eulerian tour,
assign each forward arc a value of +1 and each reverse arc a value of −1. Then, run prefix sum.
Any cycle in the tour must have zero sum, since it must use both copies of each undirected edge
it visits, and so the prefix sum whenever the tour vists v is the depth of v. Using the previously
computed first time each node is visited, we may in parallel output the depth of every node.

One of the most useful results of this this section is that we can compute sumtree sums.

Theorem A.4. (Subtree Sum) Let T be a tree where each node v is associated with a weight
wv. Then, there is a PRAM algorithm with O(log n) depth and O(n) total work that computes,
for every node u, the sum of the wv in the subtree rooted at u.

Proof. As in the proof of Theorem A.3, classify each arc in the Eulerian tour of T as either
forward or reverse. Set the weight of each reverse arc to be 0, and the weight of each forward
arc (u, v) to wv. Then, run prefix sum on the Eulerian tour list of arcs. At the last occurrence
of u, all arcs in the subtree of u must have already been traversed (since the Eulerian tour uses
each arc exactly once, and does not visit u again), so the prefix sums includes the sum of all
weights in this subtree. Moreover, between the first and last visit to u, the tour cannot leave
the subtree of u; if it did, then one of the arcs between u and its parent must have been used
at least twice. So, the sum of the subtree is exactly wu + p[u(−1)]− p[u(1)], where p is the array



of prefix sums and u(−1), u(1) are the indices of the last and first occurrences of u in the tour,
respectively. The prefix sum along with first and last occurrences of each node can be computed
in O(log n) depth and O(n) work, and the final sum requires only O(1) depth and O(n) work.

For example, subtree sums can be used to find the LCA of two nodes in a tree, which we
use in Section D.

Theorem A.5. Let T be a tree rooted at r. Then, for any u, v ∈ T , there is an O(log n) depth,
O(n) work PRAM algorithm to find the least-common ancestor of u and v.

Proof. The algorithm first sets weights of 0 on all nodes besides u and v, and sets weight 1 on u
and v before computing subtree sums. Using the algorithm of Theorem A.3, also compute the
depth of each node. Then, output the lowest-depth (i.e. furthest from the root) node who has
subtree sum 2.

Computing the subtree sum and depth of each node can be done in O(log n) work and O(n)
work. Identifying all nodes with sum 2 can be done in O(1) depth and O(n) work, and taking
the max depth of these can be done in O(log n) depth and O(n) work, so the entire algorithm
has the desired runtime.

For correctness, the algorithm computes the lowest-depth node whose subtree contains both
u and v, which is exactly the LCA of u and v.

A.2 Tree Separators. As also defined in Section 5.2, a tree separator node of a tree is a
node whose removal results is a forest with components of at most half the size of the original
tree.

Definition A.1. (Tree Separator Node, Definition 5.3) A node q in a tree T is called
a tree separator node of T if the forest induced by T \ {q} consists of trees with at most |T |/2
nodes.

A very useful folklore results shows that every tree contains at least one tree separator node.

Lemma A.1. (folklore) For all trees T , there exists a node q ∈ T such that q is a tree
separator node of T .

Proof. Suppose for contradiction T does not contain a tree separator node. Define Mu for each
node u ∈ T to be the size of the largest component of T \ {u}, and let u′ = argminu∈T Mu. By
assumption, Mu′ > |T |/2, and let C ′ be the component of T \ {u′} with size Mu′ . Since T is a
tree, there is a unique neighbor of u′ in C; call this node v. |C ′| > |T |/2, so |T \ C ′| ≤ |C ′|+ 1
and |T \ (C ′∪{u′})| ≤ |C ′|. Thus, C ′ \{v} must be the largest component in T \{v}, as the sum
of all other components can be at most |C ′| − 1. But then we have Mv < Mu′ , contradicting
that Mu′ is minimal.

We now give an algorithm to find a tree separator node with logarithmic depth and linear
work, and uses the subtree sum algorithm of Theorem A.4.

Lemma A.2. There is a O(log k) depth, O(k) work PRAM algorithm to find a tree separator
node of any tree with k nodes.



Proof. Let T be a tree with k nodes, and arbitrarily root T . The algorithm first assigns every
node weight 1, and uses the algorithm of Theorem A.4 to compute subtree sums. Let su be the
value of this subtree sum at node u. Then, in parallel, for each u ∈ T , check if sv ≤ k/2 for all
v children of u, and check that k − su ≤ k/2. Output any such u as a tree separator node.

Removing any tree separator node, by definition, results in a forest with components of size
at most k/2, which is the exact condition the algorithm checks. A tree separator node exists for
all trees (Lemma A.1), so the algorithm always outputs a tree separator node. The depth of the
algorithm comes from the fact that the subtree sums and examining all nodes can be done in
O(log k) depth. For work, note that the value of every node u needs to be checked twice: once
when determining if k − su ≤ k/2, and once when its (unique) parent checks if su ≤ k/2. So,
combined with the O(k) work for subtree sums, the total work is O(k).

B Parallel Implementation of the Cut-Matching Game of [RST14].

In this section, we discuss the implementation of partition-A1 in Section 6.1, which in turn is
built on top of the cut-matching game in [RST14]. In the remainder of this section, note that we
always operate over the subdivision graph as defined in Definition 4.5, i.e., we have V ′ = V ∪XE

where XE is the set of split vertices of the edges in E, E′ =
⋃

e=(u,v)∈E {(u, xe), (xe, v)}, and
c′(u,xe)

= c′(v,xe)
= ce for every edge e ∈ E. Moreover, for ease of exposition, whenever we refer

to a set of edges Y , we in fact refer to the subdivision vertices XY corresponding to set Y . It is
straightforward to see that constructing the subdivision graph only takes O(m) work and O(1)
depth.

All the algorithms that are presented in this section are identical to that of [RST14]; we
merely discuss them for the sake of completeness and showing that they admit a O(m polylog n)
work and O(polylog n) depth PRAM implementation. This entire process requires a blackbox
access to only two subroutines: a (1− ε)-approximate max-flow algorithm Fε that also returns
the (1 + ε)-approximate minimum cut, and a (1 − δ)-approximate flow-path decomposition
algorithm Dδ (whose implementation is given in Section 8). We shall henceforth refer to the
work and depth of these algorithms A ∈ {Fε,Dδ} on an m-edge graph as T (A,m), and D(A,m).
To build intuition, we begin by discussing the implementation specifics for the uncapacitated
case in Appendix B.1 through Appendix B.4, and extend our result to the general capacitated
case in Appendix B.5.

Using a cut-matching game to find well-linked edges. Before discussing [RST14], we
shall find it useful to first understand the cut-matching game framework of [KRV06]. It is a
technical tool connecting the problem of approximating sparsest cuts or alternatively, certifying
expansion to max flows, and is vital in the aforementioned result of [RST14]. Conceptually, it
is an alternating game between a cut-player and a matching-player, where the former produces
a bisection of the vertices, and the latter responds by producing a perfect matching across this
bisection that does not necessarily belong to the underlying graph, but can be embedded in it17.
The game ends when either the cut player produces a bisection for which the matching player
cannot find a perfect matching that can be embedded in it (i.e. a sparse cut has been found),
or the union of the perfect matchings produced thus far form an expander (i.e. an expander
can be embedded in the underlying graph, certifying its expansion). The objective of the cut
player is to terminate this game as quickly as possible, whereas the matching player seeks to

17Roughly speaking, we say a matching can be embedded into the graph, if there exist flow paths connecting every pair
of matched nodes such that the net flow does not exceed the capacity of any edge.



delay this. In their work, [KRV06] showed that there is a near-linear time strategy for the cut-
player that guarantees that this game terminates in O(log2 n) rounds, regardless of the matching
player’s strategy, and it is easiest to understand when viewed as the following multicommodity
flow problem: initially, every vertex starts off with a unit of its own unique commodity (which
we can represent as a n-dimensional one-hot encoded vector, which we shall henceforth refer to
as a flow vector held by the vertex), and the goal is to uniformly distribute these commodities
across all vertices with low congestion. In each round of the game, every matched pair of
vertices (according to the perfect matching produced by the matching player) mix (average)
their currently held commodities with each other through the matching edge. Since the perfect
matching could be embedded into the underlying graph, this operation is guaranteed to be
feasible. Now supposing in some round, every vertex ended up with a (near) uniform spread
over all unique commodities, then we are done; it implies that the union of the perfect matchings
must induce an expander, which moreover can be embedded into the underlying graph. A good
cut strategy therefore must find bisections that mix these commodities quickly, and the key to
arguing its existence is a potential function that measures the total distance of each vertex’s
currently held commodities from uniform. In particular, one can show that there always exists
a bipartition that guarantees a multiplicative (1−Ω(1/ log n)) factor reduction in this potential,
regardless of the perfect matching produced by the matching-player, guaranteeing that the game
terminates in just O(log2 n) rounds. Moreover, this bisection can be found efficiently. While
this sketches the analysis, this procedure would be far too inefficient to implement as it would
require explicitly maintaining the vector of currently held commodities for every vertex (which
would naively take O(n2) work). Fortunately, [KRV06] showed that it suffices to consider a
sketch that is a random projection of these flow vectors in every round and still obtain the same
convergence guarantees with high probability. The matching players strategy is essentially a
max-flow computation with the sources and sinks being the two sides of the bipartition. If the
max flow value is n/2, then we can obtain a perfect matching via a flow-path decomposition.
Otherwise, a perfect matching cannot be embedded into this cut.

The above cut-matching game provides the basis of the algorithm of [RST14] for finding well
linked edges; intuitively, a set F of edges is well-linked if we can embed an expander between
the subdivision vertices of these edges, and the cut-matching game is precisely the technical tool
used to verify this. The algorithm of [RST14] starts off with a candidate set of edges F , and
the cut-matching game is used to either certify well-linkedness of this set F , or to produce a
witness of non-expansion (a highly congested cut), in which case F is updated to a new set Fnew

(intuitively, to the edges in the most congested cut). However, in the event that F is updated,
the entire game would have to restart, which would be too expensive (unless the updated set
is a constant factor smaller than the old candidate set, in which case it is okay because the
number of restarts would be bounded by O(log n)). The modified game of [RST14] circumvents
this issue by reusing rounds of the old game in the event that the candidate set F does not
change by much. This is achieved by moving flow vectors from the old candidate set F to the
new set Fnew along paths of constant congestion (found by the flow decomposition algorithm D).
However, not all edges in the new set Fnew may end up receiving a flow vector from the old set
F . Following the notation of [RST14], we shall therefore denote all candidate sets F := A ⊎R,
where A refers to the set of active edges that have a flow vector, and R refers to the remaining
edges in F . The exact details of this matching player are discussed in Appendix B.3. The cut-
player is also slightly different from the one in [KRV06], where instead of a strict bipartition, the



player produces a disjoint edge sets corresponding to the “source” side and “sink” side satisfying
certain necessary properties. The exact details of this cut player are discussed in Appendix B.2.

B.1 Computing the projections of flow vectors. We first discuss how to efficiently
compute the sketch, i.e. random projection of current state of the flow vectors held by every
active edge (which evolves starting with a one-hot encoded vector, mixing and moving in every
round depending on the matching player’s strategy in that round). We remind the reader that
given a candidate set of active edges A, there are |A| flow vectors, each in R

m, and the naive way
to average and move flow vector would take O(|A| ·m) = O(m2) work. However, we note that
in the algorithmic process, the flow vectors are only used for cut player to find the sources and
sinks, and the procedure is implemented by a projection onto a random unit vector which we
show can be simulated in nearly-linear work. We give a subroutine for such an implementation.

Lemma B.1. Let r be any unit vector of dimension m, and let Mt =MtMt−1 · · ·M1 be a m×m
matrix such that each Mi is supported over at most m′ non-zero coordinates, and let {v i}mi=1 be
m standard basis vectors that represent indicators for each of the m unique commodities. Then,

there exists a PRAM algorithm that computes µ
(t)
i = r

T Mt v i for every i, in O(t log n) depth
and O((m+m′)t) work.

Proof. We perform the multiplication from left to right: µ
(t)
i = ((rTMt)Mt−1)Mt−2 . . ., where

each time we multiply a vector with a matrix of at most m′ nonzeros, which takes O(log n)
depth and O(m′) work. Summing over t iterations gives the desired result.

As we will see shortly, the operations on the flow vectors in the tth round of the cut-matching
game can all be simulated by matrix multiplication of rT Mt v i as prescribed in Lemma B.1.
Moreover, in all applications where the above subroutine is invoked, we always have the sparsity
property m′ = O(m polylog n) for each matrix Mi since they correspond to fractional matrices
that mix or move flows produced by the flow decomposition algorithm D, and t = O(polylog n)
due to the convergence guarantees of the cut-matching game in [RST14]. We will refer to these
matrices Mi’s as mix-or-move matrices. We remark that the idea was implemented by both
[KRV06] and [RST14], albeit it was less explicitly stated.

B.2 Parallel implementation of the cut player. We now describe the parallel imple-
mentation of a single iteration of the cut player that achieves the guarantees in Lemma 3.3
in [RST14]. Recall that the cut player’s strategy given a set of active edges A, is to find two
different subsets AS ⊆ A and AT ⊆ A whose commodities are not well-mixed. This is done in
the following way: for every edge e ∈ A, let fe be the flow vector currently held by e. In round t
of the game, this is precisely given by fe =MtMt−1 . . .M1ve, where v e is the indicator (one-hot
encoded vector) of edge e’s unique commodity, and each Mi represents the fractional mix-or-
move matrix representing the matching player’s strategy (i.e. mixing or moving) in round i. Let
µ := (1/|A|)∑e∈A fe represent the average flow vector in that round. Given these quantities
(neither explicitly computed), and a random vector r , for every edge e ∈ A, let µe = 〈fe , r〉,
and µ̄ := 〈µ , r〉 denote the projection of the flow vector of edge e, and the average flow vector
onto the random vector, respectively. For any B ⊆ A, the potential PB is defined as

PB :=
∑

f∈B

(µf − µ̄)2 .



Now given a set of active edges A, the cut player precisely seeks to identify a set of source edges
AS , a set of sink edges AT , along with a value η such that (rf. Lemma 3.3 in [RST14])

1. η separates the sets, i.e. maxe∈AS
µe ≤ η ≤ minf∈AT

µf or mine∈AS
µe ≥ η ≥ maxf∈AT

µf ,

2. |AS | ≤ |A|/8 and |AT | ≥ |A|/2

3. for every source edge e ∈ AS , |µe − η|2 ≥ (1/9)|µe − µ̄|2,

4.
∑

e∈AS
|µe − µ̄|2 ≥ (1/160)

∑
e∈A |µe − µ̄|2,

Note that, unlike [KRV06], AS and AT does not need to be an exact bi-partition of A. The
following procedure describes implementation of the cut player’s strategy that meets the above
requirements in detail.

Subroutine find-sources-and-sinks [RST14]

Input: subdivision graph G′ = (V ′, E′); a set of active edges A ⊆ E; a sequence of t
mix-or-move matrices Mt, . . . ,M1 each of dimension m × m and supported over at most
O(m polylog n) non-zero coordinates.

Output: a set of source edges AS ⊂ A, a set of sink edges AT ⊂ A, and a separation value η.

Procedure:

1. Sample a unit vector r uniformly at random, and project the flow vector of each e ∈ A
to r to get µe = 〈Mtv e , r〉, where Mt = MtMt−1 . . .M1. This step is executed by
initializing length-m flow vectors with v e the indicator vector of e, and then running the
algorithm from Lemma B.1.

2. Assuming w.l.o.g that |{e ∈ A | µe < µ̄}| ≤ |{e ∈ A | µe ≥ µ̄}|, pick L = {e ∈ A | µe <
µ̄}, and let R = A \ L.

3. Compute PL and PR. If PL ≥ 1
20PA, set AS as the |A| /8 edges (or all edges in L if there

are fewer than |A| /8 edges in L) with the smallest µe values from L, AT as R, and η as
µ̄.

4. Otherwise:

(a) Let ℓ =
∑

e∈L |µe − µ̄|, and let η = µ̄+ 4ℓ/ |A|.
(b) Let AT be the edges whose µe is at most η.

(c) Construct new sets R′ = {e ∈ A | µe ≥ µ̄+ 6ℓ/ |A|}, and let AS be the |A|/8 edges
with the largest µe values from R′.

This subroutine is used repeatedly during the cut-matching game in the hierarchical
decomposition procedure of [RST14]. We now show this subroutine can be implemented
efficiently in the PRAM setting.



Claim B.1. There is a PRAM implementation of the subroutine find-source-and-sinks that,
given an arbitrary sequence of t matrices, each with support over O(m polylog n) nonzero entries,
has O(t log n) depth and O(tm polylog n) work.

Proof. By Lemma B.1, computing the projections µe’s takes O(log n) depth and O(m polylog n)
work since the support size of each mix-or-move matrix Mi is O(m polylog n). The steps that
compute the average and the potential all take O(log n) depth and O(m polylog n) work. Finally,
taking a subset from A (resp. L and R) by checking the µ values also takes O(log n) depth and
O(m) work. Summarizing the above steps gives the desired O(log n) depth and O(m polylog n)
work.

B.3 Parallel implementation of the matching player. We now discuss the parallel
implementation of the matching player. The matching player takes as input the source edges AS

and the sink edges AT computed by the cut player, and computes a partial fractional matching
M between the subdivision nodes XAS

and XAT
in the subdivision graph G′. The matching

player uses a (1− ε)-approximate max-flow algorithm Fε
18 to ensure that the matching can be

routed in G′ with constant congestion, and uses the (1−δ)-approximate flow-path decomposition
algorithm Dδ to construct a matching from the output of the flow algorithm. At this point, we
remind the reader that the cut-matching game in [RST14] deviates from that of [KRV06]. In
[RST14], the matching player chooses to perform either a matching step or a deletion step and
the choice is made by flipping a fair random coin. The matching step is similar to [KRV06]
where the flow vectors of the matched edges are mixed resulting in a reduction in potential. The
deletion step deletes the flow vectors on some edges (potentially moving them to new edges)
resulting in a new set of active edges which again leads to potential reduction. The following
procedure describes the matching player’s strategy from [RST14] in detail.

Subroutine match-or-delete [RST14]

Inputs: subdivision graph G′ = (V ′, E′); a set of candidate edges F ⊆ E, active edges A ⊆ E,
remaining edges R ⊆ E; source edges AS ⊂ A; sink edges AT ⊂ A; set of edges B.
Output: a m × m mix-or-move matrix M with support size at most O(m polylog n); new
candidate edges Fnew; new active edges Anew; new remaining edges Rnew; set Bnew.

Procedure:

1. Construct a capacitated graph G′
st: add a super-source s and connect s to all subdivision

vertices x ∈ XAS
with capacity 1; add a super-sink t and connect t to all subdivision

vertices x ∈ XAT
with capacity 1

2 ; add capacity 2 to all edges in G′ that are not incident
on s or t.

2. Run the flow algorithm Fε on G′
st with ε = 1

3 log3 n
to obtain a flow f ; let C ′ ∈ E′ be

the set of edges that correspond to the approximate min cut, and let C ∈ E be the
corresponding set of cut edges in G.

18We assume that Fε is such that it also outputs an approximate min-cut. Note that Sherman’s algorithm [She13] satisfies
this assumption.



3. Run the flow-decomposition algorithm Dδ on f with δ = 1
3 log3 n

, and let G be the data-

structure encoding the flow paths (see Lemma 8.1). For every edge (s, x) where x ∈ XAS

with flow f(s,x) ≥ 1/2, rescale the flow such that f(s,x) = 1. For every flow path p that
uses edge (s, x), rescale the flow on p by 1/f(s,x) to make the flow path consistent, which
can be done by propagating this rescaling top-down in G. Adjust capacities in G′

st to
make this new flow feasible.

4. With probability 1
2 , enter the matching case:

(a) Let M0 be the matrix of the fractional matching between XAS
,XAT

induced at the
top-level of G. If M0 is a partial matching, then make it perfect by adding self
loops. Then, the mix-or-move matrix is given by M ← 1

2M0 +
1
2I where I is the

identity matrix.

(b) return mix-or-move matrix M , candidate edges Fnew = F = A ⊎R, set Bnew = B

5. With probability 1
2 , enter the deletion case:

(a) If ((A ∪ R) \ AT ) ∪ C induces a balanced clustering in G, return new candidate
edges Fnew = ((A ∪R) \AT ) ∪C. In this case, |Fnew| ≤ (7/8)|F | due to which the
cut-matching game restarts from scratch, and the remaining return values are not
useful.

(b) Else set Fnew = ((A ∪ R) \ AS) ∪ C: Let M0 be the fractional matching between
XAS

,XAT
induced at the top level of G. For each matched pair (x, x′) ∈

(XAS
×XAT

) in M0, identify the first edge y in C on the flow path x  x′ using
the data-structure G and construct a mix-or-move matrix M which moves the flow
vector (instead of mixing it) from x to y. If the total flow received by y from all
x ∈ AS exceeds 1, rescale this total flow to have value 1. Otherwise, zero out this
flow, and add this edge y to set CB .

(c) Set Anew = (A \AS) ∪ (C \ CB)
a, Rnew = Fnew \Anew.

(d) return mix-or-move matrix M , Fnew, Anew, Rnew, Bnew = B ∪ CB .

aNote that this update is mentioned as Anew = (A \AT ) ∪ (C \ CB) in [RST14] which is a typo.

Note that although the flow decomposition is an approximation version, the total flow value
induced by the decomposition is at least (1 − 1

3 log3 n
)2 ≥ (1 − 1

log3 n
) of the max-flow value

(assuming n ≥ 6), which satisfies the desired requirement as in [RST14]. We now show that the
matching-or-deletion subroutine can be implemented under the PRAM setting efficiently.

Claim B.2. There is a PRAM implementation of the subroutine match-or-delete using depth
O (D(Fε,m) +D(Dδ,m) + polylog n) and work O

(
T (Fε,m) + T (Dδ,m) +m polylog n

)
, where

D(A,m) and T (A,m) are the depth and work required by the algorithm A ∈ {Fε,Dδ} for
ε, δ = 1/(3 log3 n), respectively.

Proof. The first step in the algorithm is the construction of the graph G′
st which can be done in

O(1) depth and O(m) work. The set C ′ is returned by Fε, and C can be constructed from C ′



in O(1) depth and O(m polylog n) work. There are at most O(m polylog n) flow paths. Hence,
using the data structure G returned by the flow decomposition algorithm Dδ, re-scaling of the
flows and adjusting capacities takes O(log n) depth and O(m polylog n) work. We now analyze
the required depth and work for both the matching and the deletion cases:

• In the matching case, since the fractional matching matrix has support sizeO(m polylog n),
adding self-loops and computing the mixing matrixM takes O(m polylog n) work and O(1)
depth.

• In the deletion case, checking whether an induced clustering is balanced in Line 5a can
be done by simply deleting the candidate edges and checking the sizes of the resulting
connected components which takes O(m) work and O(log n) depth. If we enter Line 5b,
since there are at most O(m polylog n) matched pairs (x, x′), identifying the first edge
in C on the flow path x  x′ for every matched pair requires O(polylog(n)) depth and
O(m polylog(n)) work using the data structure G. The moving matrix M can then be
computed in O(m polylog n) work and O(1) depth. Rescaling and deleting flows can also
be performed using O(m polylog n) work and O(1) depth.

Taking the worst-case work and depth among the cases gives us the desired statement.

B.4 Putting it together: partition-A1. In this section we combine the implementation of
the cut and matching players to achieve the guarantees of Lemma 3.1 in [RST14]. This is also
the algorithm that achieves the guarantees we claim in Lemma 6.1. Specifically, given a set of
edges F that induces a 3/4-balanced clustering of the graph, the goal of Lemma 3.1 is to find a
new set of edges Fnew such that (rf. Lemma 3.1 in [RST14])

1. either |Fnew| ≤ 7
8 |F |;

2. or Fnew = A ∪ R such that |A| ≤ |F |, |R| ≤ 2
lognA, and the edges in A are Ω(1/ log2 n)-

well-linked.

The following presents the details of the algorithm that is used to prove Lemma 3.1 in [RST14].

Subroutine partition-A1

Input: Subdivision graph G′ = (V ′, E′) of G = (V,E); a set of edges F ⊆ E that induce a
3/4-balanced partition of V .
Output: A new set of edges Fnew that also induces a 3/4-balanced partition of V such that
either

1. |Fnew| ≤ (7/8)|F |, or

2. Fnew = A ∪ R with A,R disjoint such that edges in A are Ω(1/ log2 n)-well-linked, and
|R| ≤ 2|A|/ log n.

Procedure (cut-matching game):

1. Initialize matching matrix M0 corresponding to self-loops; A = F ; R = ∅; B = ∅.



2. For t = 1, 2, . . . , O(log2 n):

(a) (AS , AT , η)← find-source-and-sinks(G′, A, {Mi}0≤i<t).

(b) (Mt, Fnew, Anew, Rnew, Bnew)←match-or-delete(G′, F,A,R,AS , AT , B).

(c) If |Fnew| ≤ (7/8)|F |: return Fnew (return condition 1).

(d) Else, update B = Bnew, A = Anew, R = Rnew.

(e) Compute potential PA of active edges A.

(f) If PA ≤ 1/(16n2) (flow vectors in A have mixed):

i. If |B| ≤ 2|A|/ log n: return Fnew = A ∪B (return condition 2).

ii. Else, we necessarily have |A ∪ R| ≤ (7/8)|F |: return Fnew = A ∪ R (return
condition 1).

With Claims B.1 and B.2, it is not difficult to check that the whole procedure of step 2 can
be implemented in poly-logarithmic depth and nearly-linear work. We formalize this as follows.

Lemma B.2. There is a PRAM implementation of the above algorithm that has depth
O ((D(Fε,m) +D(Dδ,m)) · polylog n) and work O

(
(m + T (Fε,m) + T (Dδ,m)) · polylog n

)
for

ε, δ = O(1/ log3 n).

Proof. Firstly, the number of iterations of the cut-matching game is upper bounded by O(log2 n).
Then the lemma follows immediately from the work and depth calculations of the cut and
matching steps in Claims B.1 and B.2, respectively.

B.5 Extending to the capacitated case. Although [RST14] states that their results hold
for capacitated graphs, they do not detail this extension. However, for completeness, we sketch
the implementation of the cut matching game in [RST14] on capacitated graphs, and discuss
how they can be implemented in PRAM. Throughout this section we assume graphs have integer
capacities bounded by poly(n).

We note that the analysis of the cut matching game follows by viewing each edge e of capacity
ce as ce uncapacitated parallel copies. It thus remains to show that the cut matching game can
be implemented with O(m polylog n) work and polylog n depth, assuming a (1− ε)-approximate
maxflow algorithm with the same work and depth. We first describe a key subroutine that we
need throughout the cut matching game, namely averaging of flow vectors, and then describe
the changes we make to the cut and matching players.

Averaging flow vectors. Note that naively, treating each capacitated edge as uncapaci-
tated copies can potentially lead to a large number of edges, and maintaining flow vectors on
them will be too costly. Therefore we will always maintain the invariant that the parallel copies
of the same capacitated edge carries the same flow vector. Whenever this variant gets violated
(e.g. after a flow mixing or deletion step), we restore it by averaging out the flow vectors across
the parallel copies. Thereby, we never store more than O(m polylog(n)) flow vectors at any
point. Notice that in the actual implementation of the cut matching game, we never explicitly
store the flow vectors but only store their projections; and thus we only need to average the
projections of these vectors, which is equivalent to first averaging the flow vectors and then



taking projections by linearity. The averaging of the projections can be done in O(log n) depth
and near-linear work by parallel summation.

Moreover, as we show in the claim below, the potential function only decreases after the
averaging of any collection of flow vectors. Recall that in a graph with m0 uncapacitated edges
e1, . . . , em0 with flow vectors fe1 , . . . , fem0

on them, the potential function in [RST14] is defined
to be

Φf :=min
c

m0∑

i=1

‖fei − c‖2 =
m0∑

i=1

‖fei − µ‖2 ,

where µ = 1
m0

∑m0
i=1 fei is the average of all flow vectors.

Claim B.3. Let E′ ⊆ E be any collection of uncapacitated edges. Define new flow vectors
f ′e1 , . . . , f

′
em0

by averaging out the flow vectors on edges in E′, namely,

f ′e =

{
1

|E′|

∑
e∈E′ fe e ∈ E′

fe e /∈ E′
.

Then the potential function can only decrease going from f to f ′:

Φf ≥ Φ′
f .

Proof. Let µ = 1
m0

∑m0
i=1 fei be the average flow vector of all edges. Note that this is also the

average flow vector with respect to f ′, since averaging the flow vectors of edges in E′ does not
change the total sum of the flow vectors. Thus it suffices to compare the contribution of edges
in E′ to the potential function with respect to f, f ′ respectively. To this end, we write the
contribution with respect to f ′ as

∑

e∈E′

∥∥f ′e − µ
∥∥2 =

∑

e∈E′

∥∥∥∥∥
1

|E′|
∑

e∈E′

fe − µ
∥∥∥∥∥

2

=|E′| ·
∥∥∥∥∥

1

|E′|
∑

e∈E′

fe − µ
∥∥∥∥∥

2

.

Letting D denote the uniform distribution over edges in E′, we can write the above contribution
as

|E′| · ‖Ee∈D [fe]− µ‖2 .

Notice that the function f(x) = ‖x− µ‖2 is quadratic and hence also convex. Therefore we can
apply Jensen’s inequality and obtain

|E′| · ‖Ee∈D [fe]− µ‖2 ≤|E′| · Ee∈D

[
‖fe − µ‖2

]

=
∑

e∈E

‖fe − µ‖2 .

That is, the contribution of edges in E′ with respect to f ′ is at most that with respect to f ,
implying that the potentail of f ′ can only be smaller than that of f , as desired.



The cut and matching players. The cut player uses the exact same strategy to find the
sources and sinks, except that now they do not explicitly operate all parallel copies, but rather
manipulate the parallel copies of the same edge together, by exploiting the fact that they all
have the same flow vectors. For example, when computing projection of the flow vectors, we
only need to do the computation once for the parallel copies of the same edge; when computing
the average of the flow vectors, we just need to compute a weighted average where each flow
vector is weighted by the capacity of the corresponding edge. Notice that when choosing AS ,
we could end up only choosing a subset of the parallel copies of the same edge, but leaving the
remaining parallel copies out. Then the matching player will create a flow graph by connecting
super source to the split vertex of the edge with capacity being the number of parallel copies in
AS .

The matching player also adopts almost the same strategy as the uncapacitated case, with
the following modifications:

1. Most notably, in both matching case and deletion case, where we mix or move flow
vectors, we average the flow vectors of parallel copies of the same edge afterwards. This
is because different copies of the same edge could be matched differently, resulting in
different flow vectors after mixing/moving. However, since the matching we found has
support size O(m polylog(n)), the total number of distinct flow vectors is always bounded
by O(m polylog(n)). Notice that once again, we never explicitly average the flow vectors
but only average their projections.

2. At Line 3 of match-or-delete, after we find a flow decomposition, we scale the flow paths
as follows. For every edge (s, x) with flow f(s,x) ≥ (1/2)c(s,x), rescale the flow such that
f(s,x) = c(s,x); For every flow path p that uses edge (s, x), rescale the flow on p by c(s,x)/f(s,x)
to make the flow path consistent, which can be done by propagating this rescaling top-down
in the flow decomposition DAG in O(m polylog(n)) work and polylog(n) depth. Adjust
capacities in G′

st accordingly.

3. At Line 5b of match-or-delete, if the total flow received by y exceeds cy, rescale this total
flow to have value cy. Otherwise, zero out this flow, and add (the parallel copies of) this
edge y to set CB. Notice that the rescaling of the flow can again be done by propagating it
top-down in the flow decomposition DAG in O(m polylog(n)) work and polylog(n) depth.

C Parallel Implementation of Sherman’s Algorithm.

In this section, we discuss the implementation details of vanilla Sherman’s algorithm [She13]
in the PRAM model, which forms the basis of the near-linear work, polylogarithmic depth
approximate max-flow subroutine invoked in our cutting-scheme in Section 6. This algorithm
consists of an outer-algorithm that makes O(logm) many iterative calls to an inner procedure
AlmostRoute that actually performs the gradient descent. At the end of these calls, we are left
with a minimum congestion flow that is almost feasible, in the sense that there is a negligible
residual demand that can be routed in the flow network with O(1/poly(m)) congestion. This
outer-algorithm terminates by routing this residual demand along a maximum spanning tree,
achieving feasibility of the superimposed flows (i.e. the resultant flow routes the desired demands
b). This relatively simpler outer algorithm is described below, with the bulk of the technical
detail being contained in the AlmostRoute subroutine that implements gradient descent.



Algorithm C.1. approximate maximum flow(G,R, b, α, ε)
Input: Graph G = (V,E, c); α-congestion approximator R that is a hierarchical decomposition
ofG; vertex demands b ∈ R

V ; quality of the congestion approximator α = O(polylog n); precision
ε > 0.
Output: A (1 + ε)-approximate minimum congestion flow f ∈ R

E that routes demands b;
(1− ε)-approximate maximum congested cut S.
Procedure:

1: b0 ← b; compute B, the vertex-edge incidence matrix of G.
2: (f0, S0)← AlmostRoute(G,R, b0, α, ε)
3: for i← 1 . . . log(2m) do
4: bi ← bi−1 −Bfi−1

5: (fi, Si)← AlmostRoute(G,R, bi, α, 1/2). ⊲ subsequent Si are not needed

6: Let t = log(2m) be the final iteration counter of the above loop; set bT ← bt −Bft.
7: Compute the maximum spanning tree T of G.
8: Let fT be the flow obtained by routing demands bT on the tree T

9: return flow f = fT +
∑log(2m)

i=1 fi; cut S = (S0, S0).

It is easy to see that the above outer-algorithm admits an efficient PRAM implementation,
assuming that the subroutine AlmostRoute admits a PRAM implementation with near-linear
work and polylogarithmic depth; there are only O(log n) many iterations in the outer algorithm,
and lines 1,4,6, and 8 can easily be implemented with O(m) work and O(1) depth, and the
maximum spanning tree construction in line 7 has a known O(m) work, O(polylog n) depth
PRAM algorithm [PR02].

We next discuss the implementation specifics of the subroutine AlmostRoute which actually
performs the optimization and is more involved. The key idea behind this subroutine is to
transform the constrained optimization problem (for undirected graphs) given in Eqn. 1.1 into
an unconstrained one using the following congestion potential function

φ(f) = lmax(C−1f) + lmax(2αR(b−Bf)),
where for any x ∈ R

k,

lmax(x) := log

(
k∑

i=1

(exi + e−xi)

)

is the symmetric softmax function, a differentiable approximation of || · ||∞. Algorithmically,
this is achieved via a standard gradient descent which finds a (1 − ε)-approximate maximum
flow f after at most O(ε−3α2 log n) iterations. Therefore, an efficient PRAM implementation of
this algorithm effectively reduces to finding an efficient implementation of a single iteration of
the descent step within this algorithm, a formal description of which is given below.

Algorithm C.2. AlmostRoute(G,R, b, α, ε)
Input: Graph G = (V,E, c); α-congestion approximator R that is a hierarchical decomposition
ofG; vertex demands b ∈ R

V ; quality of the congestion approximator α = O(polylog n); precision
ε > 0.
Output: A (1 + ε)-approximate minimum congestion flow f ∈ R

E that routes demands b;
(1− ε)-approximate maximum congested cut S.
Procedure:



1: Initialize f ← 0; compute kb ← (16 log n)/(2αε||Rb||∞); scale b← kb · b.
2: repeat
3: Set kf ← 1; scaling factor s← 17/16.
4: while φ(f) < 16ε−1 log n do
5: Scale kf ← s · kf ; f ← s · f ; b← s · b.
6: Set δ ←∑

e∈E

∣∣∣ce · ∂φ(f)∂fe

∣∣∣.
7: if δ ≥ ε/4 then

8: For each edge e ∈ E, update fe ← fe − sign
(
∂φ(f)
∂fe

)
· δce
1+4α2 .

9: else
10: Undo scaling f ← f/kf , b← b/(kbkf ).
11: Compute the maximum congested cut (S, S) from the (n−1) threshold cuts of vertex

potentials {πv}v∈V induced due to ∂φ(f)/∂fe (described shortly).
12: return flow f , cut S .

13: until termination

Observe that implementing the above algorithm requires us to compute (i) the value of the
potential function φ(f), and (ii) the partial derivatives ∂φ(f)/∂fe of the potential with respect
to the flow on each edge in the graph. Additionally, we also need to bound the total number of
iterations of the above algorithm (lines 2, 4), for which we directly leverage the result of Sherman
(Lemma 2.5 in [She13]), which shows that the total number of iterations until termination (line
2) is O(α2ε−3 log n), and within each iteration, the total number of times we scale the flow and
demands (line 4) is O(logα). We now show how to compute the value of the potential, and its
partial derivatives. In order to do so, we shall find it instructive to understand the structure of
the congestion approximator R.

The congestion approximator R ∈ R
x×n is a matrix with each row i ∈ [x] corresponding to a

cut in the graph, and each column corresponding to a vertex. For any cut i = (Si, Si) considered
by the congestion approximator, entry Ri,v ∈ {0, 1} indicates whether vertex v lies on the Si side
of the cut, normalized by the total capacity c(Si, Si) of the cut, i.e. the sum of capacities of all
edges crossing this cut. Therefore, the product [Rb′]i of this row of the congestion approximator
with any demand vector b′ gives the congestion that would be induced by routing these demands
across the cut (Si, Si). However, we cannot explicitly construct this matrix due to work and
depth constraints, and instead shall use the specific structure of the congestion approximator to
efficiently compute these congestion values for all cuts explicitly considered by the approximator.

The congestion approximator in our case is a O(log n) depth rooted tree T corresponding to
a hierarchical decomposition of the flow instance G = (V,E) upon which Sherman’s algorithm
is invoked, with the leaves corresponding to the vertices v ∈ V in the flow network, and the
internal nodes corresponding to a cluster consisting of the leaf vertices in the subtree rooted at
that internal node. This hierarchical decomposition tree T can equivalently be viewed as a set
of cuts in the input graph; each node i ∈ T in this tree corresponds to a cut (Si, Si), where Si
is the set of vertices corresponding to the leaves in the subtree rooted at node i in the tree T .
In the following analysis, we shall leverage this view of the congestion approximator in order to
efficiently compute the value of the congestion potential, as well as its partial derivatives.

We begin by decomposing the congestion potential into its two components

φ(f) = φ1(f) + φ2(f); where φ1(f) = lmax(C−1f), and φ2(f) = lmax(2αR(b −Bf)).



To compute the first component φ1(f), we can simply compute the congestion fe/ce of every
edge e ∈ E in parallel, followed by an aggregation step, which can be done with O(m) total
work and O(log n) depth.

To compute the second component φ2(f), we can compute the residual demands bv −∑
e∈δ(v)Bv,efe for every vertex v ∈ V where δ(v) corresponds to the set of edges incident

on vertex v. This also requires O(m) total work and O(log n) depth (with every vertex first
reading the flow values of incident incoming edges followed by those of incident outgoing edges
in two separate passes to avoid read collisions). The total demand of any subset of vertices in the
congestion approximator (rooted-tree) can then be computed with Õ(n) total work and O(log n)
depth using subtree sums. Given the capacity c(Si, Si) of every cut i = (Si, Si) represented by
the internal nodes in our congestion approximator, the second term can then be computed via
an aggregation, which can be done with O(m) total work and O(log n) depth.

To compute the partial derivatives, we first consider the component φ1(f) in our congestion
potential. Then we have that for any edge e ∈ E, the partial derivative

∂φ1(f)

∂fe
=

exp(fe/ce)− exp(−fe/ce)
ce · exp(φ1(f))

which can easily be computed with O(m) work and O(1) depth when the potential φ1(f) is
known (its computation is described above).

To compute the partial derivative of the second component φ2(f), let I be the set of all
cuts (rows) considered by our congestion approximator, and for any cut i = (Si, Si) ∈ I, let
yi = 2α[R(b −Bf)]i be the congestion induced by the residual demands across cut i = (Si, Si).
Then we have for any edge e ∈ E, the partial derivative

∂φ2(f)

∂fe
=
∑

i∈I

∂φ2(f)

∂yi
· ∂yi
∂fe

=
∑

i∈I

exp(yi)− exp(−yi)
exp(φ2(f))

· 2αBSi,e

c(Si, Si)
,

where c(Si, Si) is the capacity of the cut i = (Si, Si) considered in our congestion approximator,
and (with some abuse of notation) BSi,e =

∑
v∈Si

Bv,e ∈ {−1, 0, 1} is an indicator of whether in
cut i, edge e is an incoming edge (1), outgoing edge (−1) or does not cross it (0). The cuts I
are not arbitrary. Rather, they are induced by a single rooted hierarchical decomposition tree
T , which we can use to efficiently compute this partial derivative for every edge. For an edge
e = (u, v) ∈ E, let Tu,v be the unique path between u, v in T . Then we have that

∂φ2(f)

∂fe
=
∑

i∈Tu,v

exp(yi)− exp(−yi)
exp(φ2(f))

· 2αBSi,e

c(Si, Si)
.

Now observe that for any internal node i (corresponding to some cut (Si, Si)) that is encountered
on the path Tu,x between u and the least-common-ancestor x of u, v in the rooted tree T , we
have BSi,e = −1, and for any internal node i that is encountered on the path Tx,v between v
and x in T , we have BSi,e = +1. Now for any internal node j in T , let Tj,r denote the unique
path in T from the root r of T to node j. Then we can define for every internal node j in T , a
node potential πj as

πj :=
∑

i∈Tj,r

exp(yi)− exp(−yi)
exp(φ2(f))

· 2α

c(Si, Si)
,



which is easy to compute with O(n) total work and O(log n) depth through a prefix sum
on an Eulerian tour of T that starts and ends at the root r of T . This is achieved by
setting the weight of the forward edge entering an internal node i from its parent to be
+(exp(yi) − exp(−yi))/(exp(φ2(f))) · (2α/c(Si, Si)) and the reverse edge leaving the internal
node i going to its parent to be −(exp(yi)− exp(−yi))/(exp(φ2(f))) · (2α/c(Si, Si)). Therefore,
sum corresponding to subtrees in the prefix sums evaluate to 0, leaving just the sum of the root
r to node i path. Given these node potentials, it is now easy to compute the partial derivatives
of any edge e = (u, v) as

∂φ2(f)

∂fe
= πv − πu,

which requires just O(m) total work and O(log n) depth.
Lastly, Sherman shows that these vertex potentials πv induced by the flow when it is

approximately optimal (i.e. when the subroutine terminates) also allow us to efficiently
recover the approximate minimum cut (equivalently, the approximate maximum congested cut).
Specifically, one of the threshold cuts with respect to the vertex potentials is an approximate min-
cut, and this can be computed efficiently in Õ(m) total work and O(log n) depth by sorting the
vertices by their potential values and returning the most congested cut from the resulting n− 1
threshold cuts. Therefore, we have that Sherman’s algorithm admits an efficient implementation
in the PRAM model.

D Computing Min Cut on Trees.

To compute a hierarchical decomposition on trees in Section 5.2, we need to compute an exact
s-t min-cut cut on a congestion approximator tree with the addition of a super-source s and
super-sink t. In this section, we show how to compute the exact min-cut when the tree has
O(log n) depth, which is simpler, before extending it to trees with arbitrary depth.

The easy case: O(log n) depth. Let T be a tree rooted at r with O(log n) depth, let s 6∈ T
be a super-source, and t 6∈ T be a super-sink; s and t may be connected arbitrarily to T and
these edges may have arbitrary capacity. For a s-t min-cut (S, S̄) of T ∪ {s, t}, without loss of
generality s ∈ S and t ∈ S̄. As such, it remains to determine which nodes of T are in S and
which are in S̄, and so we consider finding a s-t min-cut as a tree problem. To account for the
capacities of edges incident on s or t, for each u ∈ T , we set node weights ws

u = cus and w
t
u = cut,

where cus, cut are the capacities of the (u, s) and (u, t) edges, respectively, or 0 if no such edge
exists.

To find the min-cut capacity, we can use dynamic programming. For each u ∈ T , define
cuts(u) and cutt(u) as the s-t min-cut capacity of the subtree rooted at u with the restriction
that u is on the s side of the cut (i.e. u ∈ S) or u is on the t side of the cut (i.e. u ∈ S̄), respectively.
The recurrence relations are then cuts(u) = wt

u +
∑

v∈D(u)min{cuts(v), cuv + cutt(v)} and

cutt(u) = ws
u +

∑
v∈D(u)min{cuv + cuts(v), cutt(v)}, where D(u) is the set of children of u.

Since we assume T has O(log n) depth, standard dynamic programming techniques allow us to
compute min{cuts(r), cutt(r)}, which is the s-t min-cut capacity, in O(log n) depth and O(n)
work. For brevity, we have presented computing only the capacity of the min-cut, but the actual
cut may be found by storing the argmin for each minimum taken in the recurrence relations.

Before continuing to the arbitrary depth case, we introduce a (slightly) generalized problem
where some vertices are constrained to be in S, or S̄, an extension useful when extending to



trees of arbitrary depth.

Definition D.1. ((Fs, Ft)-Restricted s-t Min-Cut) Let T be a tree, let s be a super-source
and let t be a super-sink. Then, given disjoint subsets Fs, Ft of nodes of T , a (Fs, Ft)-Restricted
s-t Min-Cut of T ∪ {s, t} is a minimum s-t cut (S, S̄) under the restriction that Fs ∪ {s} ⊆ S
and Ft ∪ {t} ⊆ S̄.

The DP presented before can be easily modified to also solve this extended version when T
has O(log n) depth, using recurrence relations

res cuts(u) =

{
wt
u +

∑
v∈D(u) min{res cuts(v), cuv + res cutt(v)} if u 6∈ Ft

∞ if u ∈ Ft

(D.1)

res cutt(u) =

{
ws
u +

∑
v∈D(u) min{cuv + res cuts(v), res cutt(v)} if u 6∈ Fs

∞ if u ∈ Fs

(D.2)

where again D(u) is the set of children of u ∈ T .

Lemma D.1. Let T be a tree on n nodes rooted at r with depth O(log n), and let res cuts

and res cutt be defined as in (D.1) and (D.2). Then, given disjoint subsets Fs, Ft of vertices
of T , min{res cuts(r), res cutt(r)} is the capacity of an (Fs, Ft)-Restricted s-t Min-Cut on
T ∪ {s, t}. Moreover, this value can be computed using an O(log n) depth and O(n) total work
PRAM algorithm.

Proof. By straightforward dynamic programming, since T has O(log n) depth, res cuts(r) and
res cutt(r) can be computed in O(log n) depth and O(n) work. For correctness, first note that
the base cases are correct: the cost of any solution where x ∈ Fs is placed in S̄ is infinite (and
analogously for Ft and S) and, by construction, ws

u is the capacity of the edge between u and s,
if it exists (and similarly for wt

u). The correctness then follows by induction.

Extending to arbitrary depth trees. When T has super-logarithmic depth, we modify the
DP and divide into subproblems based on tree separator nodes (see Definition 5.3) rather than
children. For a DP subproblem to find the s-t min-cut on a tree T ′, we compute a tree separator
node q and recurse on each tree of T ′ \ {q}. From the definition of a tree separator node, this
results in subproblems on trees which are at most half the size of T ′.

When combining subproblems, we use the recursive calls to determine the min-cut capacity
when q ∈ S and the min-cut capacity with q ∈ S̄, and return the lower value. To do this, we
must also determine for each u ∈ δ(q) (i.e. each neighbor of q in T ′) whether u ∈ S or u ∈ S̄, in
order to determine whether to add the capacity of the (u, q) edge to the cut. As such, for every
neighbor u of q, we compute 2 subproblems on the connected component of T ′ \ {q} containing
u: one where we constrain u ∈ S, and one where we constrain u ∈ S̄. Due to recursion, in any
given subproblem there might be multiple vertices which are constrained to be in S or S̄; we
call these the tracked vertices. Each subproblem then takes as input a tree T ′, a set of tracked
vertices A, and subset S ⊆ A, where the goal of the subproblem is to compute a s-t min-cut
(S, S̄) on T ′ under the restriction that S ⊆ S and (A \ S) ⊆ S̄.

However, there are 2|A| possible subsets S ⊆ A, and so the number of possible subproblems
(and thus total work) is exponential in the number of tracked vertices. As such, we must bound



the number of tracked vertices in any subproblem. To do this, if we ever have a subproblem with
3 tracked vertices, rather than recursing on the components formed by removing a tree separator
node, we recurse on the trees formed by removing the LCA of 2 tracked vertices. By rooting every
subtree at a tracked vertex, this results in new subproblems with at most 2 tracked vertices, and
so all subproblems have at most 3 tracked vertices. Importantly, these additional steps to reduce
the number of tracked vertices at most double the depth of the recursion, leading to O(log n)
levels of recursion. Since each level of recursion can be implemented in O(log n) depth and O(n)
work via dynamic programming, we obtain a O(log2 n) depth, Õ(n) work PRAM algorithm.

Below we present the full algorithm for general trees. For brevity, we present computing the
capacity of the min-cut; the actual cut may be found by storing the argmin for each min taken
in the recurrence relation. We reuse the notation from the algorithm for O(log n) depth, with S
denoting the side of the cut containing s and ws

u, w
t
u denoting the capacity of the (u, s) or (u, t)

edge, respectively, and 0 if no such edge exists.

Min Cut on Trees Subroutine
Inputs: Tree T with root r, super-source s 6∈ T and super-sink t 6∈ T , both connected
arbitrarily to T .

Goal: For T ′ a subtree of T , A ⊆ T ′ a set of tracked vertices and S ⊆ A, recursively compute
cut(T ′,A,S), which is the capacity of a s-t min-cut (S, S̄) on T ′∪{s, t} such that S ∪{s} ⊆ S
and (A \ S) ∪ {t} ⊆ S̄.
Output: cut(T, ∅, ∅) as the s-t min-cut capacity.

Computing cut(T ′,A,S):
If the depth of T ′ is at most 10 log n, run the algorithm of Lemma D.1 on T ′ ∪ {s, t}, with
Fs = S and Ft = A \ S (and T ′ rooted arbitrarily).

Otherwise, with T ′ rooted at any tracked vertex when |A| 6= ∅ and arbitrarily otherwise:

1. Compute a split vertex q:

(a) If |A| ≤ 2, set q to be a tree separator node of T ′, using the algorithm of Lemma
A.2.

(b) If |A| = 3, set q as the LCA of 2 non-root tracked vertices, using the algorithm of
Theorem A.5.

2. Compute the connected components of T ′ \ {q}, and for each u ∈ δ(q)a define Cu as the
component containing u.

3. For each u ∈ δ(q), update tracked vertices Au = (A ∩Cu) ∪ {u} and Su = S ∩ Au.

4. Compute the min-cut capacity conditioned on q ∈ S:

cutq∈S = wt
q +

∑

u∈δ(q)

min{wt
u + cut(Cu,Au,Su ∪ {u}), ws

u + cuq + cut(Cu,Au,Su)}



5. Similarly, compute the min-cut capacity conditioned on q ∈ S̄:

cutq∈S̄ = ws
q +

∑

u∈δ(q)

min{wt
u + cuq + cut(Cu,Au,Su ∪ {u}), ws

u + cut(Cu,Au,Su)}

6. If q 6∈ A, return
cut(T ′,A,S) = min{cutq∈S, cutq∈S̄}

7. If q ∈ A and q ∈ S, return cut(T ′,A,S) = cutq∈S .

8. If q ∈ A and q 6∈ S, return cut(T ′,A,S) = cutq∈S̄ .

aδ(q) is the set of neighbors of q in T ′

Lemma D.2. (Min Cut on Trees) The algorithm Min Cut on Trees computes the s-t min-
cut capacity of a tree T with the addition of a super-source s and super-sink t in O(log2 n) depth
and Õ(n) work.

Proof. To bound the depth and work of the algorithm, we first show that the number of tracked
vertices in any subproblem is always at most 3. The algorithm begins with a call that has
no tracked vertices, and each recursive call adds at most one additional tracked vertex to each
subproblem. So, to bound the number of tracked vertices, it suffices to show that if a subproblem
has 3 tracked vertices, the number of tracked vertices in each recursive call is at most 2. Consider
the call cut(T ′,A,S) with |A| = 3, and let q be the LCA computed in Line 1. By the definition
of an LCA and the fact that we always root T ′ at a tracked vertex, it follows that the path in
T ′ between any 2 tracked vertices passes through q. As such, after removing q from T ′, each
element of A is in a separate connected component. Thus, the tracked sets used in the recursive
calls each have at most 2 elements: at most one element from A, and one neighbor of q.

We claim there are at most O(log n) recursive levels of the algorithm, where recursive level i
consists of all subproblems resulting from i consecutive recursive calls to cut(T, ∅, ∅). Consider a
subproblem to compute cut(T ′,A,S) with at most 2 tracked vertices (i.e. |A| ≤ 2). In this case,
we recurse on subtrees which are connected components after the removal of a tree separator
node. By the definition of a tree separator node (Definition 5.3), this removal results in subtrees
which are at most half the size of T ′. So, there can be at most O(log n) such steps before the
recursion terminates. Now, suppose |A| = 3 and the subproblem cut(T ′,A,S) occurs at level
i. The resulting subproblems in level i + 1 have at most 2 tracked vertices, and so in level
i + 2, the size of the resulting subtrees is at most half the size of T ′. Thus, there are O(log n)
total levels. Each recursive level can be processed in parallel, in O(log n) depth (to compute
connected components, subtree sums, and combining recursive calls), making the total depth of
the algorithm O(log2 n).

The subtrees (i.e. all distinct T ′ from subproblems) at each level of recursion form a partition
of the nodes of T . Moreover, by rooting trees and computing the split vertex q deterministically,
every subproblem on T ′ has the same set of tracked vertices. So, since there are at most 3
tracked vertices in any subproblem, there are at most 8 possible sets S ⊆ A, and thus at most 8
subproblems using any one subtree. The work to compute a k node subtree, outside of recursion,



is at most O(k). So, the total work at each level is O(n), and as there are O(log n) levels, the
complete work is Õ(n).

For subtrees with depth O(log n), the correctness follows from Lemma D.1. For trees with
larger depth, we must have either q ∈ S or q ∈ S̄, where q is the split vertex computed in Line
1. By induction and the setting of the edge weights ws

u, w
t
u, cutq∈S is the min-cut with the

restrictions on A imposed by S when q ∈ S (and similarly for cutq∈S̄). So, as we take the min
of cutq∈S, cutq∈S̄ when q 6∈ A, cut(T ′,A,S) is the correct min-cut capacity.

E Ensuring Polynomial Aspect Ratio.

In this section, we give a O(log n) depth, Õ(m) work PRAM algorithm which, given s, t and ε
converts any capacitated graph G into one with with poly(n/ε) aspect ratio that preserves the
s-t maximum flow up to a (1− ε) factor.

Algorithm E.1. lower-aspect-ratio(G, s, t, ε)
Input: Graph G with arbitrary capacities, s, t ∈ V (G), error parameter ε.
Output: Graph G′ with poly(n/ε) aspect ratio. Moreover, with f the max s-t flow value in G
and f ′ the max s-t flow value in G′, (1− ε)f ≤ f ′ ≤ f .
Procedure:

1: Initialize G′ ← G.
2: Let T be a maximum spanning tree of G, computed using the algorithm of [PR02].
3: Compute c′ as the capacity of the lowest capacity edge on the unique s-t path in T .
4: For any edge e in G′ with capacity larger than mc′, reduce its capacity to mc′.
5: For any edge e in G′ with capacity less than εc′/m, delete e.
6: return G′

The algorithm of [PR02] has O(log n) depth and O(m) work and finding all edges on the
s-t path in T can be done in O(log n) depth and Õ(m) work using subtree sums, so computing
c′ and modifying the capacities can be done in O(log n) depth and Õ(m) work. Moreover, by
construction, the modified graph G′ has aspect ratio m2/ε = poly(n/ε) and no capacities have
been increased, so it remains to show that the maximum s-t flow does not reduce by more than
a (1− ε) factor.

For this, we first need the following simple lemma about maximum spanning trees.

Lemma E.1. Let G be a capacitated graph and let T be a maximum capacity spanning tree of
G. Let P be the unique s-t path in T (which is also a path in G), and let P ′ be any other s-t
path in G. Then,

min
e∈P

ce ≥ min
e∈P ′

ce

where ce is the capacity of edge e.

Proof. Let c′ = mine∈P ce, and suppose for contradiction there exists in G a s-t path P ′ such
that for all e ∈ P ′, ce > c′. Let e′ be an edge on P with capacity c′. Removing e′ from T results
in exactly two connected components S and V \S (with s ∈ S and t ∈ V \S). Since P ′ is an s-t
path, it must contain an edge h = (u, v) such that u ∈ S and v ∈ V \ S, so removing e′ from T
while adding h results in a spanning tree T ′. But ch > ce′ by assumption, and so the capacity
of T ′ is greater than that of T , contradicting that T is a maximum spanning tree of G.



This then allows us to show the procedure decreases the maximum flow by at most a ε factor.

Lemma E.2. Let G be a capacitated graph and let G′ = lower-aspect-ratio(G, s, t, ε).
Suppose it possible to route f units of flow from s to t in G. Then, it is possible to route
(1− ε)f units of flow from s to t in G′.

Proof. Let T be a maximum spanning tree of G, and let c′ be the capacity of the minimum
capacity edge on the unique s-t path in T . By Lemma E.1, all other s-t paths in G have
minimum capacity at most c′; thus, every s-t path can support at most c′ units of flow. There
can be at most m disjoint paths from s to t, and so it follows that f ≤ c′m. Thus, reducing the
capacity of all edges with capacity greater than mc′ to mc′ does not affect the maximum flow.
Similarly, clearly f ≥ c′, as there is a s-t path with minimum capacity c′. Thus, as the sum
flow on edges of capacity at most εc′/m is at most εc′, deleting edges of capacity at most εc′/m
reduces the flow by at most εf . It then follows that the max flow in G′ must have value at least
(1− ε)f .
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