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Abstract

In this paper, we propose a randomized Õ(µ(G))-round algorithm for the maximum cardi-
nality matching problem in the CONGEST model, where µ(G) means the maximum size of a
matching of the input graph G. The proposed algorithm substantially improves the current best
worst-case running time. The key technical ingredient is a new randomized algorithm of find-
ing an augmenting path of length ℓ with high probability within Õ(ℓ) rounds, which positively
settles an open problem left in the prior work by Ahmadi and Kuhn [DISC’20].

The idea of our augmenting path algorithm is based on a recent result by Kitamura and
Izumi [IEICE Trans.’22], which efficiently identifies a sparse substructure of the input graph
containing an augmenting path, following a new concept called alternating base trees. Their
algorithm, however, resorts to a centralized approach of collecting the entire information of the
substructure into a single vertex for constructing an augmenting path. The technical highlight
of this paper is to provide a fully-decentralized counterpart of such a centralized method. To
develop the algorithm, we prove several new structural properties of alternating base trees,
which are of independent interest.

1 Introduction

1.1 Background and Our Result

In this paper, we consider the maximum matching problem1 for general graphs in the CONGEST
model, a standard computational model for distributed graph algorithms. The network is modeled
as an undirected graph G = (V,E) of n vertices (nodes) and m edges (communication links). Each
vertex executes a deployed algorithm following round-based synchrony, and each edge can transfer
a message of O(log n) bits per round bidirectionally. In distributed settings, any graph problem
admits the trivial solution of aggregating all the topological information of G into a single vertex
(and solving the problem by any centralized algorithm). Due to the bandwidth limitation of the
CONGEST model, such a trivial solution requires Θ(m) rounds, which may be Θ(n2). Hence, the
technical challenge in the CONGEST model is to design an algorithm such that each node outputs
the solution without the whole input information at hand.

The maximum matching problem for general graphs is often referred to as the “hardest” prob-
lem of those admitting a polynomial-time solution in the context of centralized graph algorithms.
A similar situation can be seen in the CONGEST model: Until recently, it was unclear if one
could construct an algorithm faster than the trivial O(n2)-round algorithm or not. Looking at
the lower-bound side, it has been proved that any CONGEST algorithm of computing exact max-
imum matchings requires Ω(

√
n + D) rounds in the worst case even if the input is restricted to

∗Osaka University. Email: izumi.taisuke.ist@osaka-u.ac.jp, {n-kitamura, yutaro.yamaguchi}@ist.osaka-u.ac.jp
1Throughout this paper, we only consider the unweighted problem, and thus simply refer to a maximum cardinality

matching as a maximum matching.
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bipartite graphs [2], where D is the diameter of the input graph. One may think that this bound
can be improved when considering general graphs. However, it is also shown that such a lower
bound cannot be improved even for general graphs as long as the proof is based on the two-party
communication complexity argument, which is a dominant technique to prove lower bounds in the
CONGEST model [4]. In 2022, Kitamura and Izumi [19] proposed an algorithm running within
Õ(µ(G)1.5) rounds, where µ(G) represents the maximum matching size of the input graph. It is the
first algorithm beating the worst-case bound of O(n2) rounds. However, the current gap between
the best upper and lower bounds is still large.

The primary contribution of this paper is the development of a new CONGEST algorithm for
the maximum matching problem running in nearly linear time. The main theorem is stated below:

Theorem 1. There exists a randomized CONGEST algorithm to compute a maximum matching
of a given graph with high probability2 that terminates within Õ(µ(G)) rounds.

1.2 Technical Highlight

Our algorithm is built on the top of several known techniques. We first present an outline of those
techniques, and then explain the key technical idea newly proposed in this paper.

Edmonds’ Blossom Algorithm The starting point is the well-known centralized algorithm by
Edmonds, the so-called blossom algorithm [11]. This algorithm iteratively finds augmenting paths
and improves the current matching size using the identified augmenting paths. If an augmenting
path is found, the current matching is augmented by flipping the labels of matching and non-
matching edges along the path. The seminal theorem by Berge [7] states that the current matching
is the maximum if and only if there exists no augmenting path. Hence, the central difficulty of the
maximum matching problem lies in the efficient detection of augmenting paths.

Whereas a simple approach of expanding alternating paths in the BFS-like manner correctly
works in bipartite graphs, it fails in general graphs because of the existence of odd cycles, which
destroys the very useful property holding in bipartite graphs that any subpath of a shortest alter-
nating path is also a shortest alternating path. Following [25, 26], we refer to this property as the
BFS-honesty. Edmonds’ algorithm basically works in the same way as the case of bipartite graphs,
i.e., starting from unmatched vertices, it makes a BFS-like forest grow up by choosing matching and
non-matching edges alternately. If the forest growth process encounters a blossom, an odd cycle
and an alternating path from the tree source to the vertex incident to two non-matching edges in
the cycle, the algorithm contracts its odd-cycle part into a single vertex; subsequently, the forest
growth process continues in the resultant graph. An important observation is that the existence
of augmenting paths is preserved by this contraction operation. Once an augmenting path of the
contracted graph is found, an augmenting path of the original graph must be recovered from it.
Roughly, when the augmenting path finally found contains a vertex associated with a contracted
cycle, that vertex is expanded to an appropriate subpath in the cycle. This process is not so simple
because contracted cycles can be nested (i.e., some odd cycle may contain a vertex associated with
a contracted cycle), but certainly possible.

Since Edmonds’ algorithm is essentially sequential, it is highly challenging to obtain its efficient
distributed implementation in the CONGEST model. There are three major obstacles in the
implementation. 1) The iterative improvement of matchings: It can be iterated Θ(n) times. 2) The
construction of BFS-like forests: The depth of a tree in the forest may become Θ(n). 3) Graph

2Throughout this paper, the phrase “with high probability” means it succeeds with probability at least 1− 1/nc

for an arbitrary constant c > 1.
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contraction: The simulation of the contracted graph on the original message-passing topology can
incur expensive time cost, and the path recovery process is inherently sequential, particularly when
contracted cycles are nested. As a result, even it is nontrivial to compute an augmenting path
with a running time linearly dependent on its length. In fact, a natural distributed implementation
of Edmonds’ approach incurs Θ(ℓ2) rounds for finding an augmenting path of length ℓ. Since the
length of a shortest augmenting path can become Θ(n), such an implementation is not sufficient to
beat the trivial bound of O(n2) rounds.

Framework Based on Hopcroft–Karp Analysis In addition to faster augmenting-path de-
tection, efficient distributed implementation of Edmonds’ algorithm includes yet another challenge
that the iterative improvement can be repeated Θ(n) times. To design a nearly linear-time algo-
rithm, we must attain the amortized Õ(1)-round complexity of finding one augmenting path, which
looks a big hurdle. Fortunately, it is achieved by employing the classic Hopcroft–Karp structural
property on the length of shortest augmenting paths:

Theorem 2 (Hopcroft and Karp [16]). Let G = (V,E) be an undirected graph, and µ(G) be the
maximum matching size of G. Given a matching M ⊆ E of G with |M | ≤ µ(G)− k, there always
exists an augmenting path of length less than ⌊2µ(G)/k⌋.

Following this theorem, it suffices to find an augmenting path of length ℓ within Õ(ℓn1−ϵ) rounds
for improving the trivial O(n2)-round upper bound. By an elementary analysis, such an algorithm
works as an amortized Õ(n1−ϵ)-round algorithm. In particular, the algorithm with ϵ = 1 (i.e.
Õ(ℓ)-round algorithm) is the best-possible goal along this approach, which attains the amortized
optimal Õ(1)-round complexity.

Distributed Maximum Matching Verification by Ahmadi and Kuhn Motivated by the
aforementioned framework, Ahmadi and Kuhn [1] provided an interesting idea toward Õ(ℓ)-round
augmenting path algorithms. They actually did not present any construction algorithm, but a
verification algorithm of determining if a given matching is maximum or not. To be more precise,
the proposed algorithm provides each vertex with information on the lengths of shortest odd- and
even-alternating paths from a closest unmatched vertex, where an odd-alternating (resp. even-
alternating) path is an alternating path with an odd (resp. even) length. The running time of the
algorithm is parameterized by ℓ, and all the lengths till ℓ are reported within O(ℓ) rounds.

The computed information can be used to identify a subgraph which contains exactly two
unmatched vertices admitting a shortest augmenting path connecting them. It implies that the
quest for Õ(ℓ)-round augmenting path construction algorithms can be considered in a much more
moderate setting, where the two endpoints of the target shortest augmenting path has been known,
and every vertex knows the lengths of shortest odd- and even-alternating paths from the endpoints.
However, it should be emphasized that constructing an augmenting path is still challenging even
in this setting. Due to a lack of the BFS-honesty, subpaths of a shortest-alternating path are not
necessarily shortest alternating paths. Then, the straightforward path-tracing approach based on
distance information does not work.

Semi-Distributed Augmenting Path Construction by Kitamura and Izumi Kitamura
and Izumi [19] addressed the limitation of the aforementioned research line. They proposed an
algorithm which finds an augmenting path within Õ(ℓ

√
n) rounds on the top of the Ahmadi–Kuhn

framework, if the current matching admits an augmenting path of length ℓ. Their approach is
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to construct a sparse certificate, which is a sparse (i.e., containing O(n) edges3) subgraph of G
preserving the reachability from unmatched vertices by alternating paths. Specifically, a sparse
certificate contains a θ-alternating path from an unmatched vertex s to some vertex t for θ ∈
{odd, even} if and only if the original graph admits such a path. A node can collect all the
information on the sparse certificate within O(n) rounds, trivially allowing the centralized solution
of finding augmenting paths. The Õ(ℓ

√
n) running time is attained by using this algorithm if

ℓ ≥
√
n, or the naive O(ℓ2)-round algorithm otherwise.

It is easily seen that such a certificate always exists: Looking at Edmonds’ algorithm, the
augmenting path finally found in the contracted graph is expanded to a path in the original graph
whose edges lie in the constructed BFS-like forest and all the contracted odd cycles. In other words,
the union of the BFS-like forest and all the contracted cycles, whose number is at most n, becomes a
sparse certificate. The key ingredient of the Kitamura–Izumi algorithm is an efficient identification
of such a sparse certificate in the setting of the Ahmadi–Kuhn framework. It first constructs a
rooted spanning tree T called an alternating base tree, which corresponds to the BFS-like forest
by Edmonds, within O(1) rounds using the distance information provided by the Ahmadi–Kuhn
framework (it should be noted that T is a single tree because every vertex already knows the
endpoints of the target augmenting path with the aid of the Ahmadi–Kuhn framework, and thus it
suffices to start the tree growth process from one of the endpoints). To transform the alternating
base tree into a sparse certificate, they introduced the notion of edge levels and showed that the
desired structure is obtained by adding one minimum-level outgoing non-tree edge for each subtree.
It is also shown that the computation of edge levels and the identification of minimum-level outgoing
non-tree edges are efficiently implemented.

Our Technique While our algorithm is based on the techniques by Kitamura and Izumi, it in-
cludes many new ideas and insights regarding the problem. A big leap from Kitamura–Izumi is
that we provide a fully-decentralized path-construction algorithm. All the approaches explained
above leave one big obstacle faced in decentralized path construction: how is the task of finding
long augmenting paths decomposed into that of finding shorter subpaths? While such a mecha-
nism seems crucial for accelerating the construction of augmenting paths, nothing other than the
sequential tree growth process from one endpoint has been known so far, at least in the CONGEST
model. In addition, the (advanced) use of the Kitamura–Izumi algorithm also faces another ob-
stacle: The augmenting path preserved in the constructed sparse certificate is not necessarily the
shortest. Hence, it is also unlikely that one can benefit from their sparsification technique, except
for the centralized collection approach.

The primary technical contribution of this paper is to demonstrate that both obstacles can be
removed just by a small modification of their sparsification algorithm. More precisely, we use a
slightly modified definition of edge levels, and consider the same sparse certificate construction.
Under our new definition, it can be shown that the constructed certificate preserves at least one
shortest θ-alternating path for any relevant pair of vertices and any θ ∈ {odd, even} (if it exists),
including a shortest augmenting path. Furthermore, the preserved alternating paths are equipped
with an important property: let T be the alternating base tree, s be a vertex, and t be a descendant
of s in T and reachable from s by a θ-alternating path. Then it is guaranteed that at least one
preserved shortest θ-alternating path P from s to t is split into the prefix P1 and the suffix P2

respectively lying at the outside and the inside of the subtree of T rooted by t. Intuitively, this
property implies that the task of finding a shortest θ-alternating path P from s to t is decomposed

3The original paper [19] actually constructs the certificate of O(µ(G)) edges, and attains the algorithm running
within Õ(ℓ

√
µ(G)) rounds. Here we explain the idea with the simplification of µ(G) = Θ(n).
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into two independent subtasks of finding P1 and P2 at the outside/inside of the subtree. Following
this observation, we develop a surprisingly simple recursive algorithm of constructing a shortest
augmenting path, which runs in time linearly dependent on the output length.

To show the correctness our algorithm, many rich structural properties of alternating base trees
are newly proved in this paper. We believe that these insights are of independent interest, and
provide a very useful toolbox toward further improvement of algorithms, which will run in sublinear
time, and other related settings such as approximate and/or weighted variants.

1.3 Related Works

There have been many known results for the maximum matching problem in divergent settings [3,
5,9,15,17,18,21,22]. Table 1 summarizes the known (approximate) maximum matching algorithms
in distributed settings, with focus on relevant to our result. Many literatures have considered
approximate maximummatchings in both CONGEST and the more relaxed LOCALmodel, wherein
no restriction of bandwidth is incurred. The main interest of those studies is the localization of
the computation process. Typically, the results along this line exhibits the trade-off between the
approximation factor and the running time, and some algorithms attain the (1− ϵ)-approximation
factor, which can be seen as an exact algorithm by taking ϵ < 1/n. However, most of those results
in the CONGEST model have the running time exponentially depending on 1/ϵ, and thus their
performance as an exact algorithm is very poor. One exception is the recent breakthrough result
by Fischer, Slobodan, and Uitto [12], which provides a poly(1/ϵ, log n)-time (1 − ϵ)-approximate
algorithm. Recently, a similar result for weighted matchings was proposed by Huang and Su [17].
However, the hidden exponents of 1/ϵ for those algorithms are quite larger than two, and thus it is
not sufficient to break the trivial O(n2) bound. The paper by Huang and Su [17] also provides an
extensive survey on distributed approximate maximum matching algorithms.

Focusing on the exact computation, there are three algorithms of attaining nontrivial upper
bounds. Ben-Basat, Kawarabayashi, and Schwartzman [6] presents a CONGEST algorithm whose
running time is parameterized by µ(G). The running time of the algorithm is Õ(µ(G)2). They
also proved the lower bound of Ω(µ(G)) in the LOCAL model. A generalized Ω(1/ϵ) lower bound
for the (1 − ϵ)-approximate maximum matching is also presented. While these bounds apply to
the CONGEST model, the worst-case instance of providing these bounds has the diameter Θ(n).
Parameterizing this lower bound with diameter D, it only exhibits the bound of Ω(D). Since
the Ω̃(

√
n + D)-round bound we mentioned applies to the hard-core instances of D = O(log n),

their bounds are incomparable. An improved Õ(n)-round upper bound for bipartite graphs was
proposed by Ahmadi, Kuhn, and Oshman [2]. This is also the first paper utilizing the framework
based on the analysis of Hopcroft–Karp. It is worth remarking that no o(n)-round algorithm is
known even for bipartite matchings. The third algorithm is the one by Kitamura and Izumi [19]
attaining Õ(µ(G)1.5) rounds. Until our result, this was only the known result faster than the trivial
O(n2)-round algorithm.

We also remark centralized exact maximum matching algorithms. Edmonds’ blossom algo-
rithm is the first centralized polynomial-time solution for the maximum matching problem [10,11].
Hopcroft and Karp [16] proposed a phase-based algorithm of finding multiple augmenting paths.
Their algorithm finds a maximal set of pairwise disjoint shortest augmenting paths in each phase.
They showed that O(

√
n) phases suffice to obtain a maximum matching and proposed an O(m)-

time per phase implementation for bipartite graphs. Several studies have reported phase-based
algorithms for general graphs that attain O(

√
nm) time [8, 13, 24–26]. While our algorithm actu-

ally finds multiple disjoint augmenting paths in parallel, it cannot benefit from such a parallelism
because finding the last augmenting path can take Ω(n) rounds after all. It is an interesting open
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Table 1: Lower and upper bounds for (semantically) exact maximum matching algorithms in the
CONGEST model

Time Complexity Approximation Level Remark

Ben-Basat et al. [6] Ω(µ(G)) exact LOCAL

Ben-Basat et al. [6] Ω
(
1
ϵ

)
1− ϵ LOCAL

Ben-Basat et al. [6] Õ(µ(G)2) exact

Kitamura and Izumi [19] Õ(µ(G)1.5) exact

Ahmadi et al. [2] Õ(µ(G)) exact bipartite

Fischer et al. [12] O(poly(ϵ, log n)) 1− ϵ

Huang and Su [17] O(poly(ϵ, log n)) 1− ϵ weighted

Ahmadi et al. [2] O
(
log2 ∆+log∗ n

ϵ2

)
1− ϵ bipartite

Ahmadi et al. [2] Ω̃(
√
n+D) exact bipartite

Our result Õ(µ(G)) exact

question if the technique of the phase-based algorithms above can be utilized for obtaining much
faster CONGEST algorithms or not.

2 Preliminaries

2.1 Notations and Terminologies

We denote the vertex set and edge set of a given graph G by V (G) and E(G), respectively. The
diameter of a graph G is denoted by D(G). We denote by IG(v) the set of edges incident to v in
G. Throughout this paper, we only consider simple undirected graphs, and an edge connecting two
vertices u and v is denoted by {u, v}.

A path of G is an alternating sequence P = v0, e1, v1, e2, . . . , eℓ, vℓ of vertices and edges such
that all the vertices are distinct and ei = {vi−1, vi} ∈ E(G) for every 1 ≤ i ≤ ℓ. A path is often
regarded as a subgraph of G. For a path P = v0, e1, v1, . . . , vℓ of G and an edge e = {vℓ, u} ∈ E(G)
satisfying u ̸∈ V (P ), we denote by P ◦ e or P ◦u the path obtained by adding e and u to the tail of
P . Similarly, for another path P ′ starting at vℓ with V (P )∩V (P ′) = {vℓ}, we denote by P ◦P ′ the
path obtained by concatenating P ′ to the tail of P (without duplication of vℓ). The inversion of the
path P = v0, e1, v1, . . . , vℓ (i.e., the path vℓ, eℓ, vℓ−1, eℓ−1, . . . , v0) is denoted by P . The length ℓ of
a path P is denoted by |P |. Given a path P containing two vertices u and v such that u precedes
v, we denote by P [u, v] the subpath of P starting from u and terminating with v.

For a graph G, a matching M ⊆ E(G) is a set of edges that do not share endpoints. We denote
by µ(G) the maximum size of a matching of a graph G. In the following definitions, we fix a
matching M of G. A vertex v is called matched if M intersects IG(v), and unmatched otherwise. A
path P = v0, e1, v1, e2, . . . , eℓ, vℓ is called alternating if exactly one of ei−1 and ei is in M for every
1 < i ≤ ℓ. An augmenting path is an alternating path connecting two different unmatched vertices.
We say that (G,M) has an augmenting path if there exists an augmenting path in G with respect
to M . For notations V (G), E(G), D(G), and µ(G), we often use the shorthand without argument
G unless it causes any ambiguity.

Given a subgraph H of G and a matching M of H, an alternating path with an odd (resp. even)
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length is called an odd-alternating path (resp. even-alternating path). For u, v ∈ V (H), v is called
odd-reachable (resp. even-reachable) from u in H if there exists an odd-alternating (resp. even-
alternating) path from u to v. A vertex v is simply called reachable from u if it is odd-reachable
or even-reachable from u. We denote the length of the shortest odd (resp. even)-alternating path
from u to v in H by distoddH (u, v) (resp. distevenH (u, v)). If v is not odd (resp. even)-reachable from u,
we define distoddH (u, v) =∞ (resp. distevenH (u, v) =∞). For θ ∈ {odd, even}, θ represents the parity

different from θ. The parity θ ∈ {odd, even} satisfying distθH(u, v) < distθH(u, v) (i.e., the parity of
the shortest alternating path from u to v) is denoted by γH(u, v). Notice that it is well-defined for

any reachable v because distθH(u, v) ̸= distθH(u, v) necessarily holds as they have different parities.
We also introduce the notion of parity ρ(e) of each edge e ∈ EG, which is defined as ρ(e) = odd
if e is a matching edge, and ρ(e) = even otherwise. Intuitively, ρ(e) represents the parity of the
alternating path P from f such that P ◦ e can become an alternating path.

While a majority of notations and terminologies defined above actually depend on the matching
M currently given, M is fixed in most of the following arguments, and thus we introduce them
without describing an argument M for simplicity. In addition, the subscripts H of notations
distθH(u, v) and γH(u, v) are also abbreviated if H = G.

2.2 CONGEST Model

This paper assumes the CONGEST model, which is one of the standard models in designing
distributed graph algorithms. A distributed system is represented by a simple connected undirected
graph G of n vertices andm edges. Vertices and edges are uniquely identified by O(log n)-bit integer
values, and the computation follows round-based synchronous message passing. In one round, each
vertex v sends and receives O(log n)-bit messages through each of its incident edges, and executes
local computation following its internal state, local random bits, and all the received messages. A
vertex can send different messages to different neighbors in one round, and all the messages sent in
a round are necessarily delivered to their destinations within the same round.

Throughout this paper, we assume that each vertex initially knows the value of n and a 2-
approximate upper bound µ̂ of µ(G). This assumption is not essential because both values are
easily computed by an O(µ(G))-round preprocessing presented in [19].

3 O(ℓ)-Round Construction of Augmenting Path

3.1 Specifications of Frameworks

As stated in the introduction, the technical core of our algorithm is to develop an O(ℓ)-round
algorithm of constructing an augmenting path of length at most ℓ on the top of the Ahmadi–
Kuhn framework. Such a construction is transformed into an Õ(µ(G))-round maximum matching
algorithm in the CONGEST model following the framework by the Hopcroft–Karp analysis. We
first present the formal specification of these two frameworks. On the Hopcroft–Karp framework,
we have the following lemma:

Lemma 1 (Ahmadi, Kuhn, and Oshman [2]). Assume a CONGEST algorithm A(M, ℓ) with the
following property:

For any graph G = (V,E) and matching M ⊆ E, A(M, ℓ) finds a nonempty set of
vertex-disjoint augmenting paths with high probability if (G,M) has an augmenting path
of length at most ℓ, and it always terminates within O(ℓ) rounds. Each vertex u ∈ V (G)
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outputs the predecessor and successor of the output augmenting path to which u belongs
(if it exists).

Then there exists a randomized CONGEST algorithm computing a maximum matching within
Õ(µ(G)) rounds in total.

The framework by Ahmadi and Kuhn is formalized by the following lemma:

Lemma 2 (Ahmadi and Kuhn [1], Kitamura and Izumi [19]). Assume that there exists an algorithm
A′(M, ℓ) satisfying the specification of Lemma 1 under the following additional assumptions.

• The graph G contains exactly two unmatched vertices f and g, which satisfies distodd(f, g) ≤ ℓ.

• Every vertex v ∈ V (G) has a shortest alternating path from f of length at most ℓ, i.e., v
satisfies distγ(f,v)(f, v) ≤ ℓ. In addition, v knows distodd(f, v), disteven(f, v), and the ID of
f . This assumption implies the diameter of G is O(ℓ).

Then there exists a randomized algorithm A(M, ℓ) satisfying the specification of Lemma 1 without
these assumptions.

While the proofs are given in the cited literatures, they do not state the lemmas explicitly in the
forms as above. We provide a complementary explanation of the proofs in Appendix A. In virtue
of these lemmas, we can focus only on the construction of A′ of Lemma 2. Note that the algorithm
A′ we present is deterministic, i.e., random bits are used only in the part of Ahmadi–Kuhn. Hence,
we do not pay much attention to the success probability of the algorithm.

In the following argument, we assume that the input graph G satisfies the assumption of
Lemma 2, and treat A′ as an algorithm of finding an augmenting path from f . The notations
distθ(u, v) and γ(u, v) are abbreviated to distθ(v) and γ(v) if u = f .

3.2 Alternating Base Tree and Edge Level

Our algorithm uses the concept of alternating base trees proposed by Kitamura and Izumi [19].

Definition 1 (Alternating base tree). An alternating base tree for G, M , and f is a rooted
spanning tree T of G satisfying the following conditions:

• f is the root of T .

• For any v ∈ V (G) \ {f} and its parent u, distγ(v)(v) = distγ(v)(u) + 1 holds.

It is easy to check that such a spanning tree always exists. As a vertex might have two or more
shortest alternating paths, T is not uniquely determined (see Figure 1 (1) and (2) for examples).
In the following argument, we fix one alternating base tree T arbitrarily chosen. The alternating
base tree does not necessarily contain an alternating path from f to each vertex v. For example,
both alternating base trees in Figure 1 have no alternating path from f to v9.

We denote by p(v) the parent of v in T , and denote by Tv the subtree of T rooted by v. We
define the level of each edge as follows:

Definition 2 (Edge level). For any e = {u, v} ∈ E(G) \ E(T ), we define the sum-level and max-
level of e as levelsum(e) = distρ(e)(u) + distρ(e)(v) and levelmax(e) = max(distρ(e)(u), distρ(e)(v)),
respectively. The level of an edge e ∈ E(G), denoted by level(e), is defined as the ordered pair
(levelsum(e), levelmax(e)) if e ∈ E(G) \ E(T ), and as (0, 0) if e ∈ E(T ).

8



Graph 𝐺 Alternating base tree(1) Alternating base tree(2)

𝑓
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𝑓
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𝑣4

𝑣5
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𝑣8
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𝑓
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𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8
𝑣9

Figure 1: Examples of alternating base trees (from [19]). Solid lines are matching edges, and broken
lines are non-matching edges.

We introduce the comparison operator < of edge levels following their lexicographic order,
i.e., for any two edges e1, e2 ∈ E(G), level(e1) < level(e2) holds if and only if either levelsum(e1) <
levelsum(e2) or (levelsum(e1) = levelsum(e2))∧(levelmax(e1) < levelmax(e2)) holds. Given an alternating
path P , we refer to the maximum level of the edges in P (with respect to <) as the level of P , which
is denoted by level(P ). The sum-level of P and its notation levelsum(P ) are also defined similarly.

The notion of edge levels is illustrated in Figure 2. A finite level of an edge e implies that there
exists an odd alternating walk starting and ending at f and containing e. Suppose that one of such
walks forms a blossom, i.e., an odd cycle containing e and an alternating path connecting f and the
odd cycle, called the stem, that share exactly one vertex. Then the sum-level of e corresponds to
the “minimum volume” of such a blossom, where the volume is measured by the number of edges in
the blossom with double count of those in the stem. The max-level of e is an upper bound for the
“height” of a minimum-volume blossom B, which is defined as the distance from f to the farthest
vertex along B. Especially, the minimum max-level of edges in B is equal to the height. If we take
a minimum-volume blossom B among all the blossoms containing e in the cycle, for any vertex w
in the cycle except for the one shared with the stem, the two paths from f to w along B are the
shortest odd- and even-alternating paths to w respectively.

Definition 3 (Minimum outgoing edge (MOE) of Tv). Let v ∈ V (G) be a vertex. An edge which is
not contained in T (not restricted to Tv) and crosses V (Tv) and V (G)\V (Tv) is called an outgoing
edge of Tv. A minimum outgoing edge (MOE) of Tv is an outgoing edge of Tv whose level is
minimum.

For simplicity of the proof, for each vertex v such that Tv has no outgoing edge (including the
case of v = f), we introduce a virtual outgoing edge ev of Tv whose level is (∞,∞). While a
minimum outgoing edge is not necessarily unique, we choose one of them for each v ∈ V (G) as the
canonical MOE of Tv following the rules below:

• If Tv has no outgoing edge, the virtual edge ev is chosen.

• If there exist MOEs incident to v, an arbitrary one of them is chosen.

• Otherwise, an arbitrary MOE is chosen.
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𝑓(∞, 0)

(1,∞)

(∞, 2)

(3,6) (3,6)

(5,4)(5,4)

(5,8)(5,8)

(7,6)
(7,6) (9,∞)

𝑣

[8,4]

[12, 12]

[12, 7]

𝑇𝑣

𝑜𝑢𝑡(𝑣)

Figure 2: An example of edge levels. Two values paired by parentheses respectively mean the
values of distodd(·) and disteven(·). The values paired by brackets represent edge levels. All tree
edges have level [∞,∞], which is not explicitly described in the figure.

We denote the canonical MOE of Tv by out(v), and E∗(Tv) as the set of all outgoing edges of Tv

with a finite edge level. In the following argument, we denote the two endpoints of out(v) by yv
and zv, i.e., out(v) = {yv, zv}. Using this notation, we always assume zv ∈ V (Tv). We also use the
shorthand notation ρ(v) = ρ(out(v)).

The key technical observation is the following lemma (the proof is deferred to Section 4).

Lemma 3. For any t ∈ V (G) such that E∗(Tt) ̸= ∅, the following three statements hold (see Fig. 3):

(S1) There exists a shortest ρ(t)-alternating path Y ′ from f to yt of level less than level(out(t)).

(S2) There exists a shortest ρ(t)-alternating path Z ′ from f to zt of level less than level(out(t)).

(S3) The path X ′ = Y ′ ◦ {yt, zt} ◦Z ′[zt, t] is a shortest γ(t)-alternating path from f to t. This does
not depend on the choices of Y ′ and Z ′ in the above two statements.

An illustrative explanation of this lemma is provided in Figure 3. Any bireachable vertex t is
contained in the odd cycle of some blossom B “strictly” (i.e., t is not the vertex shared with the stem
of B). This cycle must contain an edge in E∗(Tv) because the parent of t is the predecessor of the
shortest γ(t)-alternating path to t, and thus the γ(t)-alternating path along B must cross between
V (Tv) and V (G) \ V (Tv) at least once. Lemma 3 implies that at least one blossom containing
out(t) and t crosses exactly once. In addition, since out(t) has the minimum sum-level of all edges
in E∗(Tv), some blossom containing out(t) is minimum of all ones containing t (in their cycles
strictly). Hence the γ(t)- and γ(t)-alternating paths along such a blossom is shortest.

3.3 Algorithm Details

We present our algorithm in the centralized manner, and discuss its distributed implementation in
Section 3.4. We first introduce the notion of extendability of alternating paths.
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𝑓

𝑇𝑡

𝑡

𝑦𝑡 𝑧𝑡

𝑋′

𝑌′

𝑍′

Figure 3: A sketch of Lemma 3.

Definition 4. For s, t ∈ V (G) such that s is an ancestor of t, and θ ∈ {odd, even}, a pair (s, t) is
called θ-extendable if there exists a shortest θ-alternating path P from f to t satisfying s ∈ V (P )
and level(P ) < level(out(s)). Then the path P satisfying the condition above is called a θ-extension
of (s, t), and P [s, t] is called a θ-extendable path from s to t.

A key feature of extendable paths is that the task of finding minimum-level extendable paths is
self-reducible. The procedure EXTPATH(s, t, θ) recursively computes a minimum-level θ-extendable
path from s to t following such a reduction scheme. The pseudocode of this procedure is presented
in Algorithm 1. The principle behind the algorithm is explained as follows:

• For θ = γ(t): One can show that (s, p(t)) is θ-extendable, and hence the algorithm recursively
invokes EXTPATH(s, p(t), θ), which returns a minimum-level θ-extendable path Y from s to
p(t). It is easy to show that Y does not contain t. Thus, the algorithm finally returns
Y ◦ {p(t), t}, which is shown to be a minimum-level θ-extendable path from s to t.

• For θ = γ(t): Since any γ(t)-alternating path from f to t cannot contain the edge {p(t), t},
any θ-extension of (s, t) must contain an outgoing edge of Tt to reach t. That is, level(out(t)) <
level(out(s)) holds (recall that any θ-extension of (s, t) has a level less than level(out(s))). This
means that both yt and zt are in Ts. By Lemma 3, there exist two alternating paths Y ′◦{yt, zt}
and Z ′ from f to zt whose levels are at most level(out(t)) < level(out(s)). Since {p(s), s} is
the only edge of level less than level(out(s)) to reach the vertices in V (Ts), both Y ′ and Z ′

necessarily contain {p(s), s}. Hence, Y ′ and Z ′ are respectively ρ(t)-extensions of (s, yt) and
(t, zt), i.e., they are ρ(t)-extendable. The algorithm recursively invokes EXTPATH(s, yt, ρ(t))
and EXTPATH(t, zt, ρ(t)) for identifying two minimum-level ρ(t)-extendable paths, Y from
s to yt and Z from t to zt. Due to the existence of Y ′[s, yt] and Z ′[t, zt], whose levels are
less than level(out(t)), the levels of Y and Z are also less than level(out(t)). Then Y lies
at the outside of Tt, and Z lies at the inside of Tt. It implies that the concatenated path
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Y ◦ {yt, zt} ◦ Z, which is the output of the algorithm, is an alternating path from s to t.
Utilizing the statement (S3) of Lemma 3, one can prove that the output is a minimum-level
θ-extendable path.

Algorithm 1 Procedure EXTPATH(s, t, θ)

1: if s = t then

2: return the path of length zero

3: else if θ = γ(t) then

4: Y ← EXTPATH(s, p(t), θ)

5: return Y ◦ {p(t), t}
6: else

7: Y ← EXTPATH(s, yt, ρ(t)) // out(t) = {yt, zt}, where zt is in Tt

8: Z ← EXTPATH(t, zt, ρ(t))

9: return Y ◦ {yt, zt} ◦ Z

The correctness of the algorithm follows the lemma below. The formal proof is presented in
Section 4.3.

Lemma 4. For any tuple (s, t, θ) such that (s, t) is θ-extendable, EXTPATH(s, t, θ) outputs a
minimum-level θ-extendable path from s to t.

By the definition, any θ-extendable path from f to t becomes a shortest θ-alternating path from
f to t (recall level(out(f)) = (∞,∞)). Hence, it suffices to call EXTPATH(f, g, odd) for finding a
shortest augmenting path from f to g.

3.4 Distributed Implementation

In this section, we explain how EXTPATH is implemented in the CONGEST model with O(ℓ)
rounds, where ℓ represents the length of the path returned by the procedure. We define the dis-
tributed implementation of EXTPATH(s, t, θ) as the CONGEST algorithm such that its invocation
is triggered by the vertex t, and finally each vertex in the output path knows its successor and pre-
decessor. As precomputed information, our distributed implementation assumes that each vertex
u locally owns the following knowledge:

• The parent and children of u in T , and the value of γ(u).

• The IDs of two endpoints of out(u) (if out(u) is not virtual).

• Let Rv,zv be the unique path from v to zv in T . If u ∈ V (Rv,zv), u has the information
for routing messages from v to zv. More precisely, u knows the pair (zv, u

′), where u′ is the
successor of u in Rv,zv .

The knowledge above is obtained by the almost same technique as that presented in [19], whose
detail is explained in Appendix B. Utilizing the precomputed information stated above, it is very
straightforward to implement EXTPATH in the CONGEST model. If θ = γ(t), t sends the triggering
message with the information of s and θ to p(t) for invoking EXTPATH(s, p(t), θ), as well as adding
{p(t), t} to the output edge set. Otherwise, t sends the triggering message with s to the endpoints
of out(t) along the path Rt,zt ◦ out(t). Receiving the message, yt and zt add out(t) to the output
edge set, and respectively invoke EXTPATH(s, yt, ρ(t)) and EXTPATH(t, zt, ρ(t)). Notice that ρ(t)
is local information available at yt and zt.
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The correctness of this distributed implementation obviously follows Lemma 4. The remaining
issue is the running-time analysis. The running time of each invocation is dominated by the rounds
for transferring triggering messages. Particularly, the case of θ = γ(t) is the only nontrivial point.
One can show that the length of |Rt,zt | is bounded by the minimum of the lengths of extendable
paths from s to yt and from t to zt. The following lemma holds.

Lemma 5. For any γ(t)-extendable pair (s, t), let Z be a ρ(t)-extendable path from t to zt and Y
be a ρ(t)-extendable path from s to yt. Then, |Rt,zt | ≤ |Z| and |Rt,zt | ≤ |Y | hold.

Thus, the total running time is bounded as follows:

Lemma 6. Let g(h) be the worst-case round complexity of EXTPATH(s, t, θ) over all (s, t, θ) ad-
mitting a θ-extendable path from s to t of length h. For any 0 ≤ h ≤ ℓ, g(h) ≤ 2h holds.

As we stated in Section 3.3, EXTPATH(f, g, odd) suffices to find a shortest augmenting path
from f to g. For its length ℓ, the running time is at most 2ℓ. Putting all the results presented in
this section together, we obtain the following corollary.

Corollary 1. There exists an algorithm A′(M, ℓ) satisfying the specification of Lemma 2.

Combining with Lemmas 1 and 2, Theorem 1 is deduced.

4 Detailed Proofs

4.1 Fundamental Properties of Alternating Base Trees

Before proceeding to the proofs of key technical lemmas, we present several fundamental properties
related to alternating base trees and edge levels. We say that a path P from s to t lies at the
inside of Tv if V (P ) ⊆ V (Tv) holds. We also say that P lies at the outside of Tv if V (P ) ⊆
(V (G) \V (Tv))∪{v}, i.e., P is either completely disjoint from V (Tv) or disjoint from V (Tv) except
for one of its endpoints that is v.

Lemma 7. The following statements hold:

(S1) For any alternating path P from f to t and an ancestor s of t (including the case of s = t),
P contains {p(s), s} if level(P ) < level(out(s)). Hence any alternating path P from f to t not
containing {p(t), t} satisfies level(P ) ≥ level(out(t)).

(S2) For any t ∈ V (G) and a shortest γ(t)-alternating path P from f to p(t), P does not contain
t.

(S3) The parity of any alternating path P from f to t terminating with edge {p(t), t} is γ(t), and
thus any γ(t)-alternating path from f to t does not contain {p(t), t}.

(S4) For u ∈ V (G), distγ(p(v))(p(v)) < distγ(v)(v) holds, and thus for any descendant v of u,
distγ(u)(u) < distγ(v)(v) holds.

(S5) Any shortest γ(t)-alternating P path from f to t lies at the outside of Tt.

Proof. Proof of (S1): The path P must contain at least one edge in E∗(Ts)∪{{p(s), s}} to reach
s. Since only {p(s), s} has a level less than level(out(s)), P necessarily contains it.
Proof of (S2): Suppose for contradiction that there exists a shortest γ(t)-alternating path P
from f to p(t) that contains t. Then P [f, t] is an alternating path from f to t of length at
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(1)Parities of ℎ′ and ℎ are the same

𝑓

𝑣𝑘

𝑒𝑗

𝑣′ℎ′ = 𝑣ℎ

𝑣′ℓ′ = 𝑣𝑗

𝑃

(2)Parities of ℎ′ and ℎ are different

𝑓

𝑣𝑘

𝑒𝑗

𝑣′ℎ′ = 𝑣ℎ

𝑣′ℓ′ = 𝑣𝑗

𝑃

Figure 4: Illustration of Case 2 in the proof of Lemma 8.

most |P | − 1 < distγ(t)(f, p(t)). However, by the definition of alternating base trees, the shortest

alternating path from f to t is of length dist
γ(t)
G (f, p(t)) + 1. It is a contradiction.

Proof of (S3): Since any two alternating paths from f terminating with the same edge must have
the same parity, it suffices to show that there exists a γ(t)-alternating path from f terminating
with {p(t), t}. Let Q be any shortest γ(t)-alternating path from f to p(t). By statement (S2), Q
does not contain t, and thus we obtain a γ(t)-alternating path P ′ = Q ◦ {p(t), t} from f to t.

Proof of (S4): By the definition of alternating base trees, distγ(v)(v) = distγ(v)(p(v)) + 1 holds.
Since the case of γ(v) = γ(p(v)) is obvious, we consider the case of γ(v) = γ(p(v)). By defini-

tion, we obtain distγ(p(v))(p(v)) < distγ(p(v))(p(v)). It follows distγ(v)(v) = distγ(v)(p(v)) + 1 =

distγ(p(v))(p(v)) + 1 > distγ(p(v))(p(v)).
Proof of (S5): Every vertex u ∈ V (P ) satisfies distγ(u)(u) ≤ distγ(t)(t). By statement (S4), P
does not contain any vertex in V (Tt) \ {t}, i.e., P lies at the outside of Ts.

4.2 Proof of Lemma 3

Lemma 8. For any θ ∈ {odd, even} and θ-reachable u ∈ V (G), there exists a shortest θ-alternating
path P from f to u such that levelsum(P ) ≤ 2distθ(u)− 1.

Proof. Let Qk be the set of pairs (v, θ) such that distθ(v) = k. We prove that the lemma holds
for any k and (u, θ) ∈ Qk by the induction on k. (Basis) For any (u, θ) ∈ Q1, the edge {f, u}
is in the alternating base tree. Since the sum-level of any tree edge is zero, the lemma obviously
holds. (Inductive Step) Suppose as the induction hypothesis that the lemma holds for any (u′, θ′) ∈⋃

k′<kQk′ , and consider the pair (u, θ) ∈ Qk. We divide the proof into the following two cases:

(Case 1) θ = γ(u): Let P be any minimum-level shortest γ(u)-alternating path from f to p(u).
By Lemma 7(S2), P does not contain u, and thus we obtain an alternating path P ′ = P ◦ (p(u), u),
whose parity is γ(u) by Lemma 7(S3). By the definition of alternating base trees, the length of P ′ is

|P |+1 = distγ(u)(p(u))+1 = distγ(u)(u) = k, i.e., (p(u), γ(u)) ∈ Qk−1. By the induction hypothesis,
we obtain levelsum(P ) ≤ 2k − 3. It follows levelsum(P

′) = max{levelsum(P ), levelsum({p(u), u})} ≤
2k−3 (recall levelsum({p(u), u}) = 0). That is, the sum-level of P ′ is at most 2distγ(u)(u)−1. Since
|P ′| = distγ(u)(u) holds, it is the path satisfying the condition of the lemma.
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(Case 2) θ = γ(u): Let P = v0, e1, v1, . . . , ek, vk be any shortest θ-alternating path from f to u,
where v0 = f and vk = u, and ej (1 ≤ j ≤ k) be the edge such that levelsum(ej) > 2k − 1 and
levelsum(P [vj , vk]) ≤ 2k− 1 hold. If such an edge does not exist, P obviously satisfies levelsum(P ) ≤
2distθ(u) − 1, and the proof finishes. Since P [f, vj−1] is a ρ(ej)-alternating path from f to vj−1,

we obtain distρ(ej)(vj−1) ≤ |P [f, vj−1]| = j − 1. Then distρ(ej)(vj) = levelsum(ej)− distρ(ej)(vj−1) >

2k − j ≥ k holds. Since P [f, vj ] is a ρ(ej)-alternating path from f to vj of length j ≤ k, we have

distρ(ej)(vj) > k ≥ distρ(ej)(vj). That is, ρ(ej) = γ(vj) holds. It follows j < k since we assume that

the parity θ of P = P [f, vk] is γ(vk).
The induction hypothesis provides a shortest γ(vj)-alternating path Q = v′0, e

′
1, v

′
1, . . . , e

′
ℓ, v

′
ℓ

(where ℓ = distγ(vj)(vj), v
′
0 = f , and v′ℓ = vj) from f to vj of sum-level at most 2ℓ − 1. Since Q

is a shortest alternating path from f to vj , its length ℓ is at most |P [f, vj ]| = j. Let h′ be the
smallest index such that v′h′ ∈ V (P [vj , vk]), and h be the index such that v′h′ = vh holds (1 ≤ h′ ≤ ℓ,
j ≤ h ≤ k). Note that such h′ and h necessarily exist because vj is contained in both V (Q) and
V (P [vj , vk]).

Consider the case that the parities of h and h′ are the same (see Fig. 4(1)). Since Q[f, v′h′ ] and
P [vh, vk] are vertex disjoint except for v′h′ = vh, we obtain a θ-alternating path R = Q[f, v′h′ ] ◦
P [vh, vk] from f to vk = u. The length of R is h′ + k − h ≤ ℓ + k − j ≤ k = distθ(u),
i.e., R is a shortest θ-alternating path. In addition, levelsum(Q) ≤ 2j − 1 ≤ 2k − 1 holds and
P [vj , vk] does not contain any edge of sum-level greater than 2k − 1. It implies levelsum(R) =
max{levelsum(Q[f, v′h′ ]), levelsum(P [vh, vk])) ≤ 2k − 1. That is, R satisfies the condition of the
lemma.

Finally, we rule out the case that the parities of h and h′ are different (see Fig. 4(2)). Suppose
for contradiction that such a case occurs. Then R′ = Q[f, v′h′ ]◦P [vh, vj ] becomes a ρ(ej)-alternating
path from f to vj of length h′ + h − j ≤ j + k − j = k (because of h′ ≤ ℓ ≤ j and |P [vh, vj ]| ≤
|P [vj , vk]|). Since distρ(ej)(vj−1) ≤ |P [f, vj−1]| ≤ k − 1 holds, we have levelsum(ej) ≤ 2k − 1 holds.
It is a contradiction.

Lemma 9. For any t ∈ V (G) such that E∗(Tt) is not empty, the following two inequalities hold:

(S1) level(out(t)) ≤ (distodd(t) + disteven(t)− 1, distγ(t)(t)− 1).

(S2) distγ(t)(t) ≥ distρ(t)(zt) + distρ(t)(yt) + 1− distγ(t)(t).

Proof. Let P be any shortest γ(t)-alternating path from f to t. By Lemma 7(S5), P lies at the
outside of Tt. Let Q be any shortest γ(t)-alternating path from f to t. By Lemma 7(S3), Q
does not contain {p(t), t} and thus contains at least one edge in E∗(Tt). Let e = {y′, z′}, where
z′ ∈ V (Tt), be the edge in E(Q) ∩ E∗(Tt) such that Q[z′, t] does not contain any edge in E∗(Tt).
Since Q[t, z′] lies at the inside of Tt, P ◦ Q[t, z′] is a ρ(e)-alternating path from f to z′ and thus
distρ(e)(z′) ≤ |P ◦Q[t, z′]| holds. In addition, since Q[f, y′] is a ρ(e)-alternating path from f to y′,
distρ(e)(y′) ≤ |Q[f, y′]| also holds.
Proof of (S1): Since level(out(t)) ≤ level(e) holds, it suffices to show level(e) ≤ (distodd(t) +

disteven(t)− 1,distγ(t)(t)− 1). We have

levelsum(e) = distρ(e)(z′) + distρ(e)(y′)

≤ |P ◦Q[t, z′]|+ |Q[f, y′]|
= |P |+ |Q[t, z′]|+ |Q[f, y′]|
= |P |+ |Q| − 1
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= distγ(t)(t) + distγ(t)(t)− 1

= distodd(t) + disteven(t)− 1.

Next, we upper bound levelmax(e) = max{distρ(e)(y′),distρ(e)(z′)} by distγ(t)(t) − 1. We have

distρ(e)(y′) ≤ |Q[f, y′]| ≤ |Q| − 1 = distγ(t)(t)− 1. Since z′ is a descendant of t (including t itself),
|Q[f, z′]| > distγ(t)(t) holds as follows. If z′ = t, then |Q[f, z′]| = |Q| > |P | = distγ(t)(t); otherwise,
|Q[f, z′]| ≥ distγ(z

′)(z′) > distγ(t)(t) by Lemma 7(S4). Then distρ(e)(z′) ≤ |P ◦Q[t, z′]| = distγ(t)(t)+

(distγ(t)(t)− |Q[f, z′]|) < distγ(t)(t) holds. Consequently, we have levelmax(e) ≤ distγ(t)(t)− 1.
Proof of (S2): Since P ◦Q[t, z′] is a ρ(e)-alternating path from f to z′, distρ(e)(z′) ≤ |P ◦Q[t, z′]| =
|Q[z′, t]|+ distγ(t)(t) holds, i.e., |Q[z′, t]| ≥ distρ(e)(z′)− distγ(t)(t) holds. Then we have

distγ(t)(t) = |Q|
= |Q[f, y′] ◦ e ◦Q[z′, t]|
≥ distρ(e)(y′) + 1 + distρ(e)(z′)− distγ(t)(t)

≥ distρ(t)(yt) + 1 + distρ(t)(zt)− distγ(t)(t),

where the last inequality follows from the definition of MOEs, i.e., levelsum(e) ≥ levelsum(out(t))
implies that distρ(e)(z′) + distρ(e)(y′) ≥ distρ(t)(zt) + distρ(t)(yt).

Lemma 10. For any t ∈ V (G) such that E∗(Tt) is not empty, if distρ(t)(yt) ≤ distρ(t)(zt) holds,

distρ(t)(zt) ≤ distρ(t)(yt) + 1 holds.

Proof. Utilizing Lemma 8 with θ = ρ(t) and u = yt, there exists a shortest ρ(t)-alternating path
P from f to yt such that levelsum(P ) ≤ 2distρ(t)(yt)− 1 (note that yt is ρ(t)-reachable because any
edge e ∈ E∗(Tt) has a finite edge level and thus distρ(t)(yt) is finite). Since we assume distρ(t)(yt) ≤
distρ(t)(zt) we also have levelsum(out(t)) = distρ(t)(yt) + distρ(t)(zt) ≥ 2distρ(t)(yt), i.e., no outgoing
edge of Tt is contained in P . It implies that P lies at the outside of Tt and thus does not contain
zt. Hence P ′ = P ◦ {yt, zt} is a ρ(t)-alternating path from f to zt, whose length is distρ(t)(yt) + 1.

That is, distρ(t)(zt) ≤ distρ(t)(yt) + 1 holds.

Lemma 11. For any t, t′ ∈ V (G) such that E∗(Tt) and E∗(Tt′) are not empty, if level(out(t)) =
level(out(t′)) holds, then ρ(t) = ρ(t′) holds.

Proof. In particular, we have levelmax(out(t)) = levelmax(out(t
′)), i.e., max{distρ(t)(yt),distρ(t)(zt)} =

max{distρ(t′)(yt′), distρ(t
′)(zt′)}. The both sides must have the same parity, which means ρ(t) =

ρ(t′).

Lemma 3 (Repeat). For any t ∈ V (G) such that E∗(Tt) ̸= ∅, the following three statements hold
(see Fig. 3):

(S1) There exists a shortest ρ(t)-alternating path Y ′ from f to yt of level less than level(out(t)).

(S2) There exists a shortest ρ(t)-alternating path Z ′ from f to zt of level less than level(out(t)).

(S3) The path X ′ = Y ′ ◦ {yt, zt} ◦Z ′[zt, t] is a shortest γ(t)-alternating path from f to t. This does
not depend on the choices of Y ′ and Z ′ in the above two statements.

Proof. For k ∈ N2, let Vk be the set of the vertices v such that E∗(Tv) is not empty and level(out(v)) =
k holds. We show that the lemma holds for any k and t ∈ Vk following the induction on k. The
base case of k = (0, 0) is obvious (as Vk = ∅), and thus we focus on the inductive step. The proof
of the inductive step consists of the following three parts:
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(P1) Supposing as the induction hypothesis that the lemma holds for any t′ ∈
⋃

k′<k Vk′ , show the
statement (S2) holds for any vertex t ∈ Vk.

(P2) Supposing that the lemma holds for any t′ ∈
⋃

k′<k Vk′ as the induction hypothesis, and that
the statement (S2) holds for any t ∈ Vk by the consequence of (P1), show the statement (S1)
holds for any t ∈ Vk.

(P3) For any t ∈ Vk, (S1) and (S2) imply (S3).

The proof of (P1): The proof is divided into the following three cases:
(Case 1) distρ(t)(zt) ≤ distρ(t)(yt): Then levelsum(out(t)) ≥ 2distρ(t)(zt) holds. By Lemma 8, there
exists a shortest ρ(t)-alternating path P from f to zt of sum-level at most 2distρ(t)(zt) − 1 <
levelsum(out(t)), i.e., P is the path satisfying the condition of (S2).
(Case 2) distρ(t)(zt) > distρ(t)(yt) and level(out(zt)) < level(out(t)): By the induction hypoth-
esis, there exists a shortest γ(zt)-alternating path X ′ from f to zt whose level is bounded by

level(out(zt)) < level(out(t)). Since distρ(t)(zt) > distρ(t)(yt), by Lemma 10, we obtain distρ(t)(zt) ≤
distρ(t)(yt) + 1 ≤ distρ(t)(zt). It implies ρ(t) = γ(zt) because of distρ(t)(zt) ̸= distρ(t)(zt). Then X ′

is the path satisfying the condition of (S1).
(Case 3) distρ(t)(zt) > distρ(t)(yt) and level(out(zt)) ≥ level(out(t)): We show that this case never
happens by leading to a contradiction. Let t′ = zt, yt′ = yzt , and zt′ = zzt for short. Since
out(t) is an edge incident to zt which reaches the vertex yt at the outside of Tt, out(t) is also
an outgoing edge of Tzt , i.e., level(out(zt)) ≤ level(out(t)) holds. Combining with the assumption
of level(out(zt)) ≥ level(out(t)), we obtain level(out(zt)) = level(out(t)). In addition, by the rule
of choosing canonical MOEs, the edges of level level(out(zt)) incident to zt have higher priority.
Hence out(zt) is incident to zt, i.e., zt′ = t′ holds. Since ρ(t) = ρ(t′) is obtained by Lemma 11,
the assumption of distρ(t)(zt) > distρ(t)(yt) implies distρ(t

′)(zt′) > distρ(t
′)(yt′). Then we obtain

distρ(t
′)(zt′) ≤ distρ(t

′)(yt′) + 1 by Lemma 10. Putting all the (in)equalities above together, we

conclude distρ(t
′)(t′) ≤ distρ(t

′)(yt′) + 1 ≤ distρ(t
′)(t′). Then, the level of out(t′) is bounded as

follows:

levelsum(out(t
′)) = distρ(t

′)(yt′) + distρ(t
′)(zt′)

≥ distρ(t
′)(t′)− 1 + distρ(t

′)(t′)

= distodd(t′) + disteven(t′)− 1,

levelmax(out(t
′)) = max{distρ(t′)(yt′), distρ(t

′)(zt′)}

= distρ(t
′)(t′)

> distγ(t
′)(t′)− 1.

That is, level(out(t′)) > (distodd(t′) + disteven(t′)− 1, distγ(t
′)(t′)− 1). It contradicts Lemma 9(S1).

The proof of (P2): The proof is divided into the two cases below:
(Case 1) level(out(t)) ≤ level(out(yt)): Suppose that yt is an ancestor of zt. If ρ(t) = γ(yt), then a
shortest ρ(t)-alternating path from f to yt plus out(t) is a ρ(t)-alternating path from f to zt, say P .
By Lemma 7(S4), we obtain distγ(zt)(zt) ≤ distρ(t)(zt) ≤ |P | = distγ(yt)(yt)+1 ≤ distγ(zt)(zt), which
implies ρ(t) = γ(zt). However, this implies that distγ(yt)(yt) and distγ(zt)(zt) have the same parity,
so distγ(yt)(yt) ≤ distγ(zt)(zt) − 2 holds. Thus we conclude distγ(zt)(zt) ≤ |P | = distγ(yt)(yt) + 1 ≤
distγ(zt)(zt)− 1, a contradiction.
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Otherwise, ρ(t) = γ(yt). By Lemma 7(S4) again, we have

levelsum(out(t)) = distρ(t)(yt) + distρ(t)(zt)

≥ distγ(yt)(yt) + distγ(zt)(zt)

> distγ(yt)(yt) + distγ(yt)(yt),

which implies that there exists an edge e ∈ T ∗(yt) such that levelsum(out(t)) > levelsum(e) (since the
union of shortest γ(yt)- and γ(yt)-alternating paths from f to yt must contain an edge in T ∗(yt) of

sum-level at most distγ(yt)(yt) + distγ(yt)(yt)). Hence level(out(t)) > level(out(yt)), a contradiction.
Now we assume that yt is not an ancestor of zt, which means that out(t) is also an outgoing

edge of Tyt . Hence level(out(t)) ≥ level(out(yt)) necessarily holds and it suffices to consider the
case of level(out(t)) = level(out(yt)), i.e., yt ∈ Vk. Since out(t) is the edge incident to yt, out(yt)
must be incident to yt by the rule of choosing canonical MOEs. By applying (S1) of this lemma
(recall that the proof of (P2) assumes that (P1) holds even for t ∈ Vk), we have a shortest ρ(yt)-
alternating path Z ′ from f to yt of level less than level(out(yt)) = level(out(t)). By Lemma 11,
level(out(t)) = level(out(yt)) implies ρ(t) = ρ(yt). Hence Z ′ is the one satisfying the condition of
(S1).
(Case 2) level(out(t)) > level(out(yt)): In this case, yt ∈

⋃
k′<k Vk′ holds. By the induction hypoth-

esis, we obtain a shortest ρ(yt)-alternating path Z ′ from f to zyt of level less than level(out(yt)) <
level(out(t)). Since level(Z ′) < level(out(yt)) holds, Z ′ must contain {p(yt), yt} to reach the inside
of Tyt , and contains no outgoing edge in E∗(Tyt). Then Z ′[f, yt] lies at the outside of Tyt and
Z ′[yt, zyt ] lies at the inside of Tyt . It implies that Z ′[f, yt] is a shortest γ(yt)-alternating path
from f to yt because if there exists a γ(yt)-alternating path Q from f to yt shorter than Z ′[f, yt],
Q ◦ Z ′[yt, zyt ] becomes a ρ(yt)-alternating path shorter than Z ′ (note that Q lies at the outside of
Tyt by Lemma 7(S5) and thus Q ◦Z ′[yt, zyt ] necessarily becomes an alternating path). In addition,

by the induction hypothesis, we also has a shortest γ(yt)-alternating path X ′ from f to yt of level
less than level(out(yt)) < level(out(t)). Consequently, either Z ′[f, yt] or X

′ has parity ρ(t), which is
the path satisfying the condition of (S1).
The proof of (P3): Suppose the existence of Y ′ and Z ′ stated in (S1) and (S2) for t ∈ Vk.
Since the levels of Y ′ and Z ′ are less than out(t), they respectively lie at the outside of Tt and
at the inside of Tt. Hence the path X ′ = Y ′ ◦ out(t) ◦ Z ′[zt, t] is an alternating path from f to
t. Since Z ′[f, t] is an alternating path of level less than level(out(t)), by Lemma 7(S1) and (S4),
Z ′[f, t] is a shortest γ(t)-alternating path from f to t. Hence X ′ is a γ(t)-alternating path, and
we have |Z ′[zt, t]| ≤ |Z ′| − |Z[f, t]| = distρ(t)(zt) − distγ(t)(t). Also, |Y ′| = distρ(t)(yt) holds. By

Lemma 9(S2), distγ(t)(t) ≥ distρ(t)(zt) + distρ(t)(yt) + 1 − distγ(t)(t) holds. Combining the three

(in)equalities, we conclude |X ′| = |Y ′|+ 1 + |Z ′[zt, t]| ≤ distγ(t)(t).

4.3 Correctness of EXTPATH

For the proof of Lemma 4, we present two auxiliary lemmas.

Lemma 12. For any θ-extendable pair (s, t), every θ-extendable path from s to t has the same
length.

Proof. Let P and Q be two different θ-extendable paths from s to t, and P ′ and Q′ be their θ-
extensions. Since the levels of P ′ and Q′ are both less than out(s), they contain {p(s), s} and do
not contain any outgoing edge of Ts. It implies that P ′[f, p(s)] and Q′[f, p(s)] do not contain any
vertex in Ts, and P ′[s, t] and Q′[s, t] consist only of the vertices in Ts. Suppose for contradiction
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that P = P ′[s, t] and Q = Q′[s, t] have different lengths. Without loss of generality, we suppose
|P ′[s, t]| < |Q′[s, t]|. Since |P ′| = |Q′| holds, we have |P ′[f, p(s)]| > |Q′[f, p(s)]|. It implies that the
path Q′[f, p(s)] ◦ {p(s), s} ◦ Q′[s, t] becomes a θ-alternating path shorter than P ′ and Q′. It is a
contradiction.

For each (s, t, θ) such that (s, t) is θ-extendable, pick a minimum-level θ-extendable path Xs,t,θ

from s to t (with any tie-breaking rule). Let Qi be the set of all tuples (s, t, θ) such that |Xs,t,θ| = i.
Note that Qi to which (s, t, θ) belongs is not affected by the tie-breaking rule for the choice of Xs,t,θ

because of Lemma 12.

Lemma 13. For any i and (s, t, γ(t)) ∈ Qi, {p(t), t} ∈ E(Xs,t,γ(t)) holds.

Proof. If E∗(Tt) is empty, {p(t), t} is a bridge of G separating s and t, and thus Xs,t,γ(t) necessarily
contains {p(t), t}. Suppose that E∗(Tt) ̸= ∅ and for contradiction that {p(t), t} ̸∈ E(Xs,t,γ(t)). Then
Xs,t,γ(t) must contain an edge in E∗(Tt) to reach vertices in Tt. Then we have level(Xs,t,γ(t)) ≥ out(t).
Since level(Xs,t,γ(t)) ≤ level(W ) < level(out(s)) by definition, where W is any γ(t)-extension of
Xs,t,γ(t), it follows level(out(t)) < level(out(s)). Lemma 3(S2) states that there exists an alternating
path Z ′ from f to zt of level less than level(out(t)). Since level(Z ′) < level(out(t)) < level(out(s))
holds and s and t are the ancestors of zt, both s and t are contained in Z ′ by Lemma 7(S1). By
lemma 7(S3), any alternating path from f to t terminating with edge {p(t), t} is a γ(t)-alternating
path. It follows that the subpath of Z ′ from s to t is a γ(t)-extendable path of level less than
level(out(t)) ≤ level(Xs,t,γ(t)), which contradicts the definition that Xs,t,γ(t) is the minimum-level.

Utilizing the lemmas above, we prove Lemma 4.

Lemma 4 (Repeat). For any tuple (s, t, θ) such that (s, t) is θ-extendable, EXTPATH(s, t, θ) outputs
a minimum-level θ-extendable path from s to t.

Proof. We prove the lemma for any i and (s, t, θ) ∈ Qi following the induction on i. In the following
argument, let Y and Z be the paths computed in EXTPATH(s, t, θ) (see Algorithm 1), and W be
any θ-extension of Xs,t,θ.
(Basis) For i = 0, the algorithm returns the path of length zero, and thus the lemma obviously
holds.
(Inductive step) Suppose as the induction hypothesis that the lemma holds for any i′ < i and
(s′, t′, θ′) ∈ Qi′ , and consider a tuple (s, t, θ) ∈ Qi. We divide the proof into two cases according to
the value of θ:
(Case 1) θ = γ(t): First, we prove (s, p(t), θ) ∈ Qi−1. By Lemma 13, p(t) is on the path Xs,t,θ,
and thus on the path W . Then W [f, p(t)] is a shortest θ-alternating path from f to p(t) of

level(W ) < level(out(s)) because of the equality |W [f, p(t)]| = |W | − 1 = distθ(t) − 1 = distθ(p(t))
derived from the definition of alternating base trees. It implies that W [f, p(t)] is an θ-extension of
(s, p(t)), i.e., (s, p(t)) is θ-extendable. In addition, Xs,t,θ[s, p(t)] is a θ-extendable path from s to
p(t) of length |Xs,t,θ| − 1, i.e., (s, p(t), θ) ∈ Qi−1.

By the induction hypothesis, Y = EXTPATH(s, p(t), θ) is a minimum-level θ-extendable path
from s to p(t). By Lemma 7(S2), Y does not contain t. Thus P = Y ◦ {p(t), t} = EXTPATH(s, t, θ)
is an alternating path from s to t. It is necessarily a minimum-level θ-extendable path: We have
already shown that Xs,t,θ[s, p(t)] is a θ-extendable path from s to p(t). Since Y is the minimum-
level, level(Y ) ≤ level(Xs,t,θ[s, p(t)]) holds. The levels of Xs,t,θ and P are respectively decided by
the levels of their prefixes Xs,t,θ[s, p(t)] and P [s, p(t)] = Y (recall that any edge in T has level
(0, 0)). Hence we can conclude level(Xs,t,θ) = level(Xs,t,θ[s, p(t)]) ≥ level(Y ) = level(P ). Since
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level(P ) < level(out(s)) holds, P lies at the inside of Ts. Then P ′ = W [f, s] ◦ P becomes an
alternating path of length |W | because |Y | = |W [s, p(t)]| holds by Lemma 12, i.e., P admits a
θ-extension P ′ and thus is a θ-extendable path.
(Case 2) θ = γ(t): By Lemma 7(S3), W does not contain {p(t), t}. Applying Lemma 7(S1),
we obtain level(out(t)) ≤ level(W ) < level(out(s)). Let X ′, Y ′, and Z ′ be the alternating paths
defined in Lemma 3. Two alternating paths Y ′ ◦ {yt, zt} and Z ′ from f to zt have levels at
most level(out(t)) < level(out(s)). Since s is an ancestor of t and thus that of zt, s ∈ V (Y ′)
holds by Lemma 7(S1). Then Y ′ and Z ′ are respectively ρ(t)-extensions of (s, yt) and (t, zt), and
Y ′[s, yt] and Z ′[t, zt] are the corresponding ρ(t)-extendable paths. Since X ′ is also a θ-extension
of (s, t), X ′[s, t] is a θ-extendable path from s to t. It follows |Y ′[s, yt]| + |Z ′[t, zt]| = |Xs,yt,ρ(t)| +
|Xt,zt,ρ(t)| < |X ′[s, t]| = |Xs,t,θ|, where the first and last equalities come from Lemma 12. It
implies |Y ′[s, yt]| < |Xs,t,θ| and |Z ′[t, zt]| < |Xs,t,θ|, i.e., (s, yt), (t, zt) ∈

⋃
i′<iQi′ . By the induction

hypothesis, Y = EXTPATH(s, yt, ρ(t)) and Z = EXTPATH(t, zt, ρ(t)) are respectively the minimum-
level ρ(t)-alternating paths from s to yt and from t to zt. Since Y and Z are the minimum-
level, their levels are respectively upper bounded by level(Y ′[s, yt]) and level(Z ′[t, zt]), and here,
less than level(out(t)). Since we have already shown level(out(t)) < level(out(s)), it also follows
level(Y ) < level(out(s)) and level(Z) < level(out(s)). Then Y and Z do not contain any edge in
E∗(Ts) ∪ E∗(Tt), i.e., Y lies at the inside of Ts but the outside of Tt, and Z lies at the inside of
Tt. Consequently, P = Y ◦ {yt, zt} ◦ Z returned by the algorithm is an alternating path of level
level(out(t)) lying at the inside of Ts. By Lemma 12, we have

distθ(t) = |X ′|
= |X ′[f, s]|+ |X ′[s, yt]|+ 1 + |X ′[zt, t]|
= |X ′[f, s]|+ |Y |+ |Z|+ 1

= |X ′[f, s]|+ |P |.

That is, X ′[f, s]◦P is a shortest θ-alternating path from f to t. The level of X ′[f, s]◦P is bounded
as follows:

level(X ′[f, s] ◦ P ) = max{level(X ′[f, s]), level(P )}
≤ max{level(X ′), level(Y ), level(Z), level({yt, zt})}
= level(out(t))

< level(out(s)),

where we already see level(X ′) = level({yt, zt}) = level(out(t)), level(Y ) ≤ level(out(t)), and level(Z) <
level(out(t)). It implies X ′[f, s] ◦ P is a θ-extension of (s, t), and thus P is a θ-extendable path
of level at most level(out(t)). Since W does not contain {p(t), t} and s is at the outside of Tt,
W [s, t] = Xs,t,θ must contain at least one outgoing edge of Tt. Then level(Xs,t,θ) ≥ level(out(t))
holds and thus the constructed path P is of the minimum-level.

4.4 Running-Time Analysis of Distributed Implementation

Lemma 5 (Repeat). For any γ(t)-extendable pair (s, t), let Z be a ρ(t)-extendable path of (t, zt)
and Y be a ρ(t)-extendable path of (s, yt). Then |Rt,zt | ≤ |Z| and |Rt,zt | ≤ |Y | hold.

Proof. By Lemma 7(S4), distγ(t)(t) ≥ distγ(p(t))(p(t)) + 1 holds for any t ∈ V (G) \ {f}. It implies
|Rt,zt | ≤ distγ(zt)(zt) − distγ(t)(t). Let Z ′ be a shortest ρ(t)-alternating path from f to zt of

level less than level(out(t)) by Lemma 3. Then |Z ′| ≥ distγ(zt)(zt) holds. Since Z ′[t, zt] is a ρ(t)-
extendable path, its length is equal to |Z| by Lemma 12. Since level(Z ′) < level(out(t)) holds,
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Z ′[f, t] must terminate with {p(t), t} by Lemma 7(S1), and thus it is a γ(t)-alternating path by
Lemma 7(S3). Then Lemma 7(S5) implies |Z ′[f, t]| = distγ(t)(t) because if it does not hold one can
obtain a ρ(t)-alternating path from f to zt shorter than Z ′ by replacing the prefix Z ′[f, t] of Z ′

with the shortest γ(t)-alternating path from f to t. Putting all the inequalities together, we obtain
|Rt,zt | ≤ distγ(zt)(zt)− distγ(t)(t) ≤ |Z ′| − |Z ′[f, t]| = |Z ′[t, zt]| = |Z|.

Next, we consider the second inequality. Let Y ′ be a shortest ρ(t)-alternating path from f to yt of
level less than level(out(t)) by Lemma 3. Since it lies at the outside of Tt, Y

′◦{yt, zt} is an alternating
path from f to zt. Then distγ(zt)(zt) ≤ distρ(t)(yt) + 1 holds. Since Y ′[s, yt] is a ρ(t)-extendable
path, its length is equal to |Y |. Similarly, we obtain |Y ′[f, s]| = distγ(s)(s). Since s is an ancestor of
t, we obtain distγ(s)(s) < distγ(t)(t) by Lemma 7(S4). Putting all the inequalities together, we have
|Y | = |Y ′[s, yt]| = |Y ′|−|Y ′[f, s]| = distρ(t)(yt)−distγ(s)(s) > distγ(zt)(zt)−1−distγ(t)(t) ≥ |Rt,zt |−1.
That is, |Y | ≥ |Rt,zt | holds.

The total running time is bounded as follows:

Lemma 6 (Repeat). Let g(h) be the worst-case round complexity of EXTPATH(s, t, θ) over all
(s, t, θ) admitting a θ-extendable path from s to t of length h. For any 0 ≤ h ≤ ℓ, g(h) ≤ 2h holds.

Proof. We first see that any message transmitted in the algorithm does not suffer edge congestion,
i.e., any two recursive invocations simultaneously executed do not simultaneously send two different
messages through the same link with the same direction. A simple inductive argument shows
that only vertices in V (Ts) sends a message in the run of EXTPATH(s, t, θ). Given two recursive
invocations EXTPATH(s, t, θ) and EXTPATH(s′, t, θ), V (Ts) and V (Ts′) intersect if and only if s and
s′ have the ancestor-descendant relationship, which can occur only in the case of EXTPATH(s′, t, θ)
is called at the inside of EXTPATH(s, t, θ) or vice versa. That is, they never simultaneously run,
and thus any two invocations simultaneously running do not send two messages from the same
vertex.

We prove the time bound claimed in the lemma following the observation above. Specifically,
we bound the running time of EXTPATH(s, t, θ) by 2h for any (s, t, θ) admitting a θ-extendable
path from s to t of length h. The proof is based on the induction on h.
(Basis) The case of h = 0, the lemma obviously holds.
(Inductive Step) Suppose as the induction hypothesis that g(h′) ≤ 2h′ holds for any 0 ≤ h′ < h.
We consider the following two cases:
(Case 1) For (s, t, θ) such that θ = γ(t) holds: By the correctness of EXTPATH, (s, p(t)) admits
a θ-extendable path of length less than h. The induction hypothesis bounds the running time of
the recursive call EXTPATH(s, p(t), θ) by 2(h − 1) rounds. Adding the cost of transmitting the
triggering message (one round), we upper bound the running time of EXTPATH(s, t, θ) by 2h.
(Case 2) For (s, t, θ) such that θ = γ(v) holds: By the correctness of EXTPATH, (s, yt) and (t, zt)
admit ρ(t)-extendable paths Y and Z respectively, which satisfy |Y | + |Z| + 1 = h. Then, by the
induction hypothesis, EXTPATH(s, yt, ρ(t)) and EXTPATH(t, zt, ρ(t)) respectively run within 2|Y |
and 2|Z| rounds. Since they run in parallel, the running time for the recursive calls is bounded
by 2max{|Y |, |Z|}. By Lemma 5, the length of Rt,zt ◦ {yt, zt}, which is the cost for transmit-
ting the triggering message, is at most min{|Y | + 1, |Z| + 1}. The total running time is at most
2max{|Y |, |Z|}+min{|Y |+ 1, |Z|+ 1} ≤ 2(|Y |+ |Z|+ 1) = 2h.

5 Concluding Remarks

In this paper, we presented a nearly linear-time exact algorithm for the maximum matching
problem in the CONGEST model. This algorithm substantially improves the current best up-
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per bound. To construct our algorithm, we proved a new structural lemma of alternating base
trees (Lemma 3), which yields a very simple recursive construction of shortest augmenting paths
in a fully-decentralized manner. We believe that this is a promising tool toward further improved
algorithms.

Finally, we close this paper with a short remark on designing further improved (i.e., sublinear-
time) algorithms. A major open problem following our result is to develop an algorithm of finding
an augmenting path of length ℓ within O(ℓ1−δ) rounds for a small constant δ > 0. Since the
iterative improvement of matchings can occur Θ(n) times, a straightforward application of such an
algorithm does not yield any sublinear-time algorithm. Fortunately, this issue is resolved by the
(1−ϵ)-approximate matching algorithm by Fischer, Slobodan, and Uitto running in poly(1/ϵ, log n)
rounds: We first run it with ϵ = n−α for a sufficiently small α > 0 such that its running time
becomes sublinear. Starting from the output of the algorithm, we apply the sequential iterative
improvement by augmenting paths. Due to the guarantee of (1− ϵ)-approximation, the number of
iterations is bounded by O(n1−α). If one can utilize an O(ℓ1−δ)-round augmenting path algorithm,
the running time of whole iterative improvement process is sublinearly bounded. In summary,
any O(ℓ1−δ)-round algorithm of finding an augmenting path of length ℓ derives a sublinear-time
CONGEST algorithm for the exact maximum matching problem.
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A Proof Outline of Lemmas 1 and 2

A.1 Lemma 1

Let A(M, ℓ) be a CONGEST algorithm with the following property:

For any graph G = (V,E) and matchingM ⊆ E, A(M, ℓ) finds a nonempty set of vertex-
disjoint augmenting paths with high probability within O(ℓ) rounds if (G,M) has an
augmenting path of length at most ℓ. Each vertex u ∈ V (G) outputs the predecessor
and successor of the output augmenting path to which u belongs (if it exists).

The construction of the algorithm A is discussed in Section 3. The pseudocode of whole algorithm is
presented in Algorithm 2. It basically follows the standard idea of centralized maximum matching
algorithms, i.e., finding an augmenting path and improving the current matching iteratively. In
the i-th iteration, the algorithm A(M, ℓ) runs with ℓ = ⌊2µ̂/(µ̂ − i)⌋. This setting comes from
Theorem 2. The improvement of the current matching by a given augmenting path is simply a
local operation and is realized by flipping the labels of matching edges and non-matching edges on
the path. The correctness and running time of Algorithm 2 are stated as follows:

Lemma 14. Assume that there exists an algorithm A(M, ℓ) specified above. Then Algorithm 2
constructs a maximum matching with high probability in Õ(µ(G)) rounds.

Proof. The running time of the algorithm is bounded as follows (recall µ̂ = O(µ(G))):

O

(
µ̂−1∑
i=0

(⌊
2µ̂

µ̂− i

⌋))
= O

(
µ̂

µ̂∑
i=1

1

i

)
= O(µ̂ log µ̂) = Õ(µ(G)).

We consider the correctness of the algorithm. Let s(i) be the matching size at the beginning of
the i-th iteration. To prove the correctness, it suffices to show that s(µ̂−µ(G)+i+1) > s(µ̂−µ(G)+i)
for any i satisfying s(µ̂ − µ(G) + i) = i < µ(G). As µ̂ ≥ µ(G), this inductively implies that
s(µ̂− µ(G) + i) ≥ i for any 0 ≤ i ≤ µ(G), and hence s(µ̂) = µ(G).

Suppose that s(µ̂−µ(G)+i) = i < µ(G). Then, in the (µ̂−µ(G)+i)-th iteration, there exists an
augmenting path of length at most ⌊2µ(G)/(µ(G)−i)⌋ ≤ ⌊2µ̂/(µ(G)−i)⌋ = ⌊2µ̂/(µ̂−(µ̂−µ(G)+i))⌋
by Theorem 2. Thus the algorithm necessarily finds at least one augmenting path in this iteration,
which implies s(µ̂− µ(G) + i+ 1) > s(µ̂− µ(G) + i).
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Algorithm 2 Constructing a maximum matching in Õ(µ(G)) rounds.

1: for i = 0; i < µ̂; i++ do
2: run the algorithm A(M, ℓ) with ℓ = ⌊2µ̂/(µ̂− i)⌋ for O(ℓ) rounds.
3: if A(M, ℓ) finds a nonempty set of vertex-disjoint augmenting paths within O(ℓ) rounds,

then
4: improve the current matching using the set of vertex-disjoint augmenting paths.

A.2 Lemma 2

Although the original algorithm is designed for the verification of maximum matching, it provides
each vertex with information on the length of alternating paths to the closest unmatched vertex.
The following theorem holds.

Theorem 3 (Ahmadi and Kuhn [1]). Assume that a graph G = (V,E) and a matching M ⊆ E
are given, and let W be the set of all unmatched vertices. There exist two O(ℓ)-round randomized
CONGEST algorithms MV(M, ℓ, f) and PART(M, ℓ) that output the following information at every
vertex v ∈ V (G) with a probability of at least 1− 1/nc for an arbitrarily large constant c > 1.

1. Given M , a nonnegative integer ℓ, and a vertex f ∈ W , MV(M, ℓ, f) outputs the pair
(θ,distθG(f, v)) at each vertex v ∈ V (G) if distθG(f, v) ≤ ℓ holds (if the condition is satis-
fied for both θ = odd and θ = even, v outputs two pairs). The algorithm MV(M, ℓ, f) is
initiated only by the vertex f (with the value ℓ), and other vertices do not require information
on the ID of f and value ℓ at the beginning of the algorithm.

2. The algorithm PART(M, ℓ) outputs a family of disjoint subsets V 1, V 2, . . . , V N of V (G) (as
the label i for each vertex in V i) such that (a) the subgraph Gi induced by V i contains exactly
two unmatched vertices f i and gi and an augmenting path between f i and gi of length at most
ℓ, (b) for every vertex v ∈ V i, the length of the shortest alternating path from f i to v is at
most ℓ (and hence the diameter of Gi is O(ℓ)), and (c) every vertex in V i knows the ID of
f i.

While the original paper [1] only presents a single algorithm returning the outputs of both
MV and PART, in a slightly weaker form, it is very straightforward to extend the result to the
algorithms above (see [19] for the details of this extension). It is easy to transform any algorithm
A′ of Lemma 2 to the algorithm A satisfying the specification of Lemma 1. The transformation
just follows (1) running PART(M, ℓ) and (2) executing the algorithms MV(M, ℓ, f) and A′ at each
subgraph Gi independently.

B Precomputing Phase of Distributed Implementation

We recall the precomputed information required by EXTPATH:

• The parent and children of u in T , and the value of γ(u).

• The IDs of two endpoints of out(u) (if out(u) is not virtual).

• Let Rv,zv be the shortest path from v to zv in T . If u ∈ V (Rv,zv), u has the information
for routing messages from v to zv. More precisely, u knows the pair (zv, u

′), where u′ is the
successor of u in Rv,zv .
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The alternating base tree T is constructed within O(1) rounds by exchanging the information of
distodd(·) and disteven(·) between every neighboring vertex pair, because each vertex can determine
its parent in T from the exchanged information. We refer to the height of T as ℓ′. Obviously
ℓ′ = O(ℓ) holds.

The information of out(u) is obtained by the pipelined broadcast and aggregation over T : First,
each node u constructs the list of all its ancestors. This task is implemented by the pipelined
(downward) broadcast in T , which takes O(ℓ) rounds. Then the constructed list is exchanged
through every non-tree edge e = {x, y}. More precisely, x and y exchange the information of the
ancestor list, distodd(·), and disteven(·). Since the list size is bounded by the height of T , i.e., O(ℓ),
this information exchange also finishes within O(ℓ) rounds. Then x and y can compute the level
of e, and the ID of the least common ancestor of x and y (denoted by lca(e)). We define Fi as
the set of non-tree edges e such that the depth of lca(e) in T is i. Note that each node u can
decide if e ∈ Fi ∩ E∗(Tu) holds or not only from the information of lca(e) and its depth, because
e ∈ Fi ∩E∗(Tu) holds if and only if the depth of lca(e) is i and lca(e) is an ancestor of u. For each
0 ≤ i ≤ ℓ′ − 1, the algorithm informs each vertex u of the minimum-level edge in Fi ∩E∗(Tu) by a
single-shot tree aggregation over T . The behavior of each vertex u in the i-th aggregation process
is explained as follows:

• The vertex u is a leaf: u chooses the minimum-level edge in I(u)∩(Fi∩E∗(Tu)) = Fi∩I(u). If
Fi ∩ I(u) is empty, the dummy edge of level (∞,∞) is chosen. If two or more minimum-level
edges exist, an arbitrary one of them is chosen.

• The vertex u is internal: Let X be the set of edges received from its children. The vertex
u chooses the minimum-level edge in (X ∪ I(u)) ∩ (Fi ∩ E∗(Tu)). If two or more minimum-
level edges exist, the edge incident to u has a higher priority. For two edges with the same
priority (i.e., two edges incident to u, or two edges not incident to u), we use an arbitrary
tie-breaking rule. Let {v, w} be the chosen edge, where w is the vertex in Tu. If w ̸= u holds,
the information of {v, w} comes from a child vertex u′ of u, and thus u stores the routing
information (w, u′).

By the standard pipeline technique, one can finish the tasks for all i in O(ℓ) rounds. Finally,
each vertex u computes its minimum outgoing edge as follows:

out(u) = minedge

(⋃
i

Fi ∩ E∗(Tu)

)

= minedge

(⋃
i

minedge (Fi ∩ E∗(Tu))

)
,

where minedge(F ′) is the minimum-level edge in F ′, and the tie-breaking rule respects the rule of
choosing canonical MOEs in Section 3.2.
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