arXiv:2301.06457v2 [cs.DC] 11 Apr 2023

A Distributed Palette Sparsification Theorem

Maxime Flin Mohsen Ghaffari Magnts M. Halldorsson
Reykjavik University MIT Reykjavik University
maximef@ru.is ghaffari@mit.edu mmh@ru.is
Fabian Kuhn Alexandre Nolin
University of Freiburg CISPA
kuhn@cs.uni-freiburg.de alexandre.nolin@cispa.de
Abstract

The celebrated palette sparsification result of [Assadi, Chen, and Khanna SODA’19] shows
that to compute a A+ 1 coloring of the graph, where A denotes the maximum degree, it suffices
if each node limits its color choice to O(logn) independently sampled colors in {1,2,..., A+ 1}.
They showed that it is possible to color the resulting sparsified graph—the spanning subgraph
with edges between neighbors that sampled a common color, which are only O(n) edges—and
obtain a A + 1 coloring for the original graph. However, to compute the actual coloring, that
information must be gathered at a single location for centralized processing. We seek instead a
local algorithm to compute such a coloring in the sparsified graph. The question is if this can
be achieved in poly(logn) distributed rounds with small messages.

Our main result is an algorithm that computes a A + 1-coloring after palette sparsification
with O(log2 n) random colors per node and runs in O(log2 A + log® log n) rounds on the spar-
sified graph, using O(logn)-bit messages. We show that this is close to the best possible: any
distributed A 4 1-coloring algorithm that runs in the LOCAL model on the sparsified graph,
given by palette sparsification, for any poly(logn) colors per node, requires Q(log A/loglogn)
rounds. This distributed palette sparsification result leads to the first poly(logn)-round algo-
rithms for A + 1-coloring in two previously studied distributed models: the Node Capacitated
Clique, and the cluster graph model.
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1 Introduction

The Palette Sparsification Theorem of Assadi, Chen, and Khanna (ACK, henceforth) [ACK19]
is a beautiful and powerful sparsification result for the A + 1-coloring problem: the problem of
assigning a color c¢(v) € {1,...,A + 1} to each node v € V of an n-node graph G = (V, E)
such that adjacent nodes u,v € V, for which uv € E, receive different colors. Here, A is the
maximum degree of the graph. ACK show that we can A + 1-color any graph G, by list-coloring
a sparse sub-graph C~¥, which has only O(n) edges. Their theorem led to several breakthroughs
for sublinear algorithms, including graph streaming algorithms, sublinear query algorithms, and
massively parallel computation algorithms.

More precisely, the theorem states that for any graph G, if we independently sample random
a list L(v) of O(logn) colors for each vertex v € V, with high probability, the graph G is L-list-
colorable. That is, there exists a coloring of G where each v is assigned a color c¢(v) € L(v). To
compute a A + 1-coloring of GG, one then computes an L-list-coloring of the sub-graph G retaining
only edges uv € E where L(u) n L(v) # @&. A simple argument shows that G is sparse and has
maximum degree O(log2 n), thereby giving the aforementioned sub-linear algorithms.

The ACK result gives rise to the hope that there might be an ultimately scalable (distributed)
solution for the A + 1 coloring, where each graph node needs to interact and coordinate with
only poly(logn) of its neighbors. However, all known applications of the palette sparsification
theorem require gathering the sparsified subgraph G in one location, and solving the resulting
list-coloring problem in a centralized fashion. This is prohibitively expensive in distributed models
with restrictive communication, e.g., if each node can send/receive only poly log n bits per round.

In this paper, we remedy this problem by giving a nearly-optimal distributed version of the
palette sparsification theorem. Informally, we show that there is a fast distributed algorithm for
coloring the sparsified subgraph, and using communications only on the sparsified graph (mod-
ulo a small relaxation in the graph’s degree, compared to ACK). This leads to the first poly-
logarithmic randomized algorithms in constrained settings studied in the distributed literature
[RGH'22, GKK*15, GH16, GK13, GZ22, AGG'19).

1.1 Background and State of the Art

Distributed Coloring. The A + 1-coloring problem has been one of the central problems in
the study of distributed graph algorithms [PS97, Joh99, SW10, FHK16, BEPS16, HSS18, CLP20,
GGR21, HKMT21, GK21, HKNT22]. In fact, this was the main problem studied by Linial in his
celebrated paper introducing the LOCAL model [Lin92]. In this model, we have a communication
network between processors, abstracted as an undirected graph, and this is also the graph for which
we want to compute a vertex coloring. FEach vertex is equipped with a O(log n)-bit unique identifier
(where n = |V]) and communicates in synchronous rounds with its neighbors. The variant of this
model with O(logn)-bit messages is known as the CONGEST model [Pel00].

In recent years, there has been exciting progress on sublogarithmic time randomized algorithms
[BEPS16, HSS18, CLP20, GK21, HKNT22, HNT22, GG23] culminating in state-of-the-art com-
plexities of O(log3logn) in CONGEST and a(log2 logn) in LOCAL. In fact, when A > Q(log*n)
— which is the interesting range for [ACK19] — the best round complexity known is O(log* n)
[HKNT22, HNT22].

In constrained distributed models such as cluster graphs and the node congested clique (see
Section 1.3), where nodes can effectively send/receive only polylogn bits per rounds (or more
generally, poly log n bit aggregate summaries of the messages), no poly log n algorithm is known. A
major impediment is this: all known algorithms work by computing the coloring gradually, and in
the intermediate steps, nodes need to learn which colors are already used by their neighbors. This



forces communications that need Q(A) bits.

The palette sparsification theorem of [ACK19] reduces the problem of A + 1-coloring G to a
list-coloring problem on a graph G with O(log2 n) maximum degree. Hence, it seemingly opens the
road for ultimately scalable distributed algorithms, where each node sends/receives only poly(log n)
bits. However, that hinges on whether G can be colored fast distributively. Unfortunately, the
proof of [ACK19] is intrinsically centralized (for reasons explained in Section 2.1). All applications
of [ACK19] use centralization to compute the A + 1-coloring. The research question at the core of
our paper is to investigate the discrepancy between the locality of the A + 1-coloring problem and
the locality of the induced list-coloring problem on the sparsified graph.

Can the sparsified graph be colored locally?

1.2 Our Results

Our answer is two-fold. We design an algorithm for A + 1-coloring such that the color of a vertex
v depends only on its O(log? A)-hop neighborhood in G (when A > Q(log?n)), and we concretely
give efficient distributed algorithms with small messages to compute such a coloring. Conversely,
we show that no algorithm can achieve a locality smaller than SNZ(log A). We next state the results
in a more formal manner.

We present a CONGEST algorithm to list-color the sparsified graph in O(log? A) rounds when
A > Q(log'n). When A < O(log? n), the input graph G is sparse already and can be colored by
the O(log® log n)-round state-of-the-art CONGEST algorithm [HKNT22, HNT22, GK21].

Theorem 1. [Distributed Palette Sparsification Theorem] Suppose that each node in
a graph G samples ©(log? n) colors u.a.r. from [A+1]. There is a distributed message-
passing algorithm operating on the sparsified graph, that computes a valid list-coloring
in O(log? A +log®logn) rounds, using O(logn)-bit messages. In particular, each node
needs to communicate with only O(log4 n) different neighbors.

Our Techniques in a Nutshell. We shall give an overview of our algorithm in Section 2. For now,
we merely mention three aspects in which our algorithm differs significantly from both streaming
and distributed algorithms.

1. Contrary to [ACK19], we cannot afford to color dense clusters sequentially. In particular,
when we color a cluster, we cannot assume that colors on the outside are adversarial. We
give an algorithm that functions as long as conflicting colors with the outside are only a small
fraction of the color space. To ensure that this property holds, we precondition clusters. That
is, we reduce the number of connections between clusters beforehand, so that, later in the
algorithm, random decisions on the outside only harm a small enough fraction of nodes on the
inside. This preconditioning might be useful in other applications of palette sparsification.

2. We introduce a new technique of augmenting trees to distributively color dense clusters of
the graph. It consists of O(log A) steps for growing trees rooted at uncolored nodes such that
if a leaf can recolor itself, we can color the root. We show that a constant fraction of the
uncolored nodes are colored by this process, resulting in the O(log2 A) runtime.

3. To reach the nearly-optimal O(log2 A) runtime, we need this process to succeed with high
probability even when o(logn) nodes remain uncolored. We overcome this issue by locally
amplifying probabilities and using that only few nodes remain to resolve contentious efficiently.



Lower Bound. We give evidence that this round complexity is in the right ballpark, by show-
ing that Q(log A/loglogn) rounds are needed to compute a valid coloring after sparsification of
neighborhoods by uniformly random palette sparsification.

Theorem 2. Any LOCAL algorithm that operates on the sparsified graph and computes

a (A + 1)-coloring with at least a constant probability of success needs Q(lolgign)
rounds. This holds even if the original graph is a (A + 1)-clique, even if the distributed
algorithm running on the sparsified graph uses unbounded messages, and even if each

node samples a large poly logn number of colors in the sparsification.

1.3 Corollaries for Other Models

Distributed Streaming. The semi-streaming model — where we skim through the (very large)
set of edges of the graph and store only polylogn bit of memory per node before solving the
problem — has been studied extensively [AMS96, BJKT02, CCF02, CM04, AGM12, ACK19]. A
frequent technique in this setting is (distributed) sketching [AGM12, KLM ™14, GMT15, ACK19]:
nodes locally compress their neighborhoods to poly log n-bit sketches before combining all of them
centrally. We find it helpful to think of our algorithm in the following similar setting: first, nodes
look at their edges in one streaming pass, using only poly log n memory; nodes then communicate in
a distributed fashion using only edges they stored locally. We emphasize, however, that it is crucial
for our applications that nodes communicate only with polylogn nodes per round. Contrary to the
semi-streaming model, it does not suffice to reduce the problem to 6(71) edges: each neighborhood
must contain at most polylogn edges. See Appendix C.1 for a more precise definition.

Coloring Cluster Graphs. A natural situation that arises frequently in distributed graph al-
gorithms is that of cluster graphs, as we explain next (this appears under various names, see e.g.,
[RGH22, GKK'15, GH16, GK13, GZ22]). Suppose that in the course of some algorithm, the
nodes have been partitioned into vertex-disjoint (low-diameter) clusters. The corresponding clus-
ter graph is an abstract graph with one node for each cluster, where two clusters are adjacent if
they contain neighboring nodes. Note that this corresponds to (graph-theoretically) contracting
each cluster, an operation that is easy centrally but has no meaningful distributed counterpart.
In distributed settings with such cluster graphs, we often need to solve certain graph problems on
this cluster graph to facilitate other computations. Distributed computation on the cluster graph
assumes we have a low-depth cluster tree that spans each cluster and can be used for broadcast
and convergecast in the cluster. One round of communication on the cluster graph involves: (1)
broadcasting a poly(log n)-bit message from the cluster center to all its nodes; (2) passing informa-
tion on the edges between neighboring clusters; (3) convergecasting any poly(logn)-bit aggregate
function from the cluster nodes to the center.

Prior to our work, it remained open whether one can compute a A + 1-coloring in polylogn
rounds of communication on the cluster graph. Here, A denotes the maximum number of clusters
that are adjacent to a cluster. The more traditional approaches to A + 1-coloring (e.g., [Lin92,
Joh99, BEPS16]) fall short of this poly logn round complexity goal as they usually need to learn
the colors remaining available to one cluster, after some partial coloring of other clusters, and that
may require gathering A bits at the cluster center. Our distributed palette sparsification theorem
resolves this and gives the first efficient distributed A + 1-coloring on cluster graphs, as we state
informally next. See Appendix C.2 for definitions and the actual result.

Coloring in the Node Capacitated Clique. Another immediate consequence of our work is
the first poly log n-round Node Capacitated Clique algorithm for A + 1-coloring. This model was



introduced by [AGGT19] to capture peer-to-peer systems in which nodes have access to global
communication in the network while being restrained to O(logn)-bit messages to O(logn) nodes
within one communication round. To identify the edges to use in the sparsified graph, we assume
the nodes have access to shared randomness; alternatively, as we show in Appendix C.3, this can
be replaced by an existential construction’.

1.4 Related Work and Problems

The groundbreaking palette sparsification theorem of Assadi, Chen, and Khanna [ACK19] showed
that A + 1-coloring was possible in the semi-streaming model, even in dynamic streams. The
sparsification property was fundamental, as it allowed also for optimal algorithms in two, seemingly
unrelated models: a sublinear-time algorithm in the query model, and a two-round algorithm in
the Massively Parallel Computation model with O(n) memory per machine. The theorem was
extended to several more constrained coloring problems in [AA20], such as O(A/log A)-coloring
triangle-free graphs, and to deg +1-list coloring in [HKNT22|. It was also a crucial ingredient in
the recent semi-streaming algorithm for A-coloring [AKM22].

Palette sparsification is a form of a sampling technique that holds in the restrictive distributed
sketching model. The latter corresponds to multi-party communication with shared blackboard
model and vertex partitioned inputs, as well as to the broadcast congested clique (though the
congested clique term usually refers to the case that the message size is O(logn)). Starting with
the seminal work of [AGM12], many graph problems have been solved with distributed sketching.
Though, notably, the problems of maximal independent set and maximal matching—which are
closely related to A + 1-coloring—have been shown to require much larger space [AKZ22], even if
allowed multiple rounds of writing to the shared blackboard.

Coloring plays a central role in distributed algorithms as a natural approach to breaking sym-
metry and scheduling access to exclusive resources. In particular, the original work of Linial
[Lin92] introducing local algorithms and the LOCAL model was specifically about the A + 1-
coloring problem. Since then, there has been a lot of work on local coloring algorithms, both
randomized [Joh99, BEPS16, SW10, HSS18, CLP20, HKMT21, HKNT22] and deterministic (e.g.,
[Bar15, BEG18, MT20, GK21, GG23]).

The Node-Capacitated Clique model was introduced in [AGG ™ 19] to model distributed systems
built on top of virtual overlay networks. They gave algorithms for the maximal independent set
problem and O(a)-coloring, with time linear in a, where a is the arboricity of the graph. The
question of efficient A + 1-coloring has remained open.

Many models of distributed computing, both in theory and in nature, are much more restrictive
than LOCAL or CONGEST, both in terms of communication abilities and processing power: e.g.,
beeping model [CK10], wireless (ad-hoc, unstructured...), programmable matter [DDG™14], net-
worked finite-state machines [EW13]. These often capture distributed features of the natural and
physical world. A logical direction is therefore to identify models that strongly limit the power of
the nodes, yet allow for fast distributed computation. Few features are as fundamental as limiting
the amount of space available.

A recent work by [FGH™ 23] uses some (of the earlier) subroutines from our work to A + 1-color
graphs in the broadcast congest model of distributed computing. In that model, per round, each
node must send the same O(logn)-bit message to all of its neighbors. They adapt Algorithms 9
and 10 to compute an almost-clique decomposition and a colorful matching in O(1) rounds. How-

'We believe that our algorithm can be implemented using poly log n-wise independent random bits to sample each
of the poly log n colors in the lists. It would be at the cost of a higher poly log n round complexity and possibly larger
poly logn number of colors in lists. As this is not a major contribution and requires a significant amount of extra
technicalities, we reserve this for future work.



ever, we emphasize that the core technical challenges and contributions in the two works are
different.

2 Technical Introduction

In this section, we outline the techniques we use to prove Theorems 1 and 2. Our algorithm builds
on existing literature, both streaming [ACK19, AA20, AKM22] and distributed [SW10, EPS15]. It
differs nonetheless from both in key aspects. On the one hand, streaming algorithms [ACK19, A A20]
require a global view of the sparsified graph — which we avoid by computing the coloring in a
distributed fashion. On the other hand, existing distributed algorithms [BEPS16, HSS18, CLP20,
HEKNT22] require that nodes communicate with all of their neighbors — which we avoid since nodes
communicate only on the sparsified graph.

In Section 2.1, we review the palette sparsification theorem of [ACK19] and explain why it does
not extend to our setting. Then, in Section 2.2, we outline the technical novelties in our algorithm.
Finally, in Section 2.3, we describe an overview of our lower bound result.

2.1 Comparison with Palette Sparsification

The proof of [ACK19] relies on a variant of the sparse-dense decomposition introduced by [Ree98].
Variants of this decomposition were used in earlier distributed coloring algorithms [HSS16, CLP18].
This decomposition partitions the graph into a set of “locally sparse” vertices and a collection of
“almost-cliques”. For intuition, consider a (somewhat degenerate) example of a sparse node: a
vertex of degree A/2. If we try to color this vertex with a color from [A + 1] uniformly at random,
it has probability 1/2 to succeed (no matter what colors its neighbors choose). Repeating this
process iteratively O(logn) times is enough to color all such vertices with high probability. It
was observed by [EPS15] that this reasoning extends to sparse vertices (with a more involved
analysis). It is worth noting that such randomized color trials are easily implemented in LOCAL
(and CONGEST) and form a core component of fast randomized distributed coloring algorithms
[Joh99, BEPS16, CLP20]. Indeed, the part of the algorithm of [ACK19] for coloring sparse vertices is
also already distributed. Theorem 1 improves the O(log n)-round algorithm of [ACK19] to O(log A)
by using the faster algorithm of [SW10] to color sparse nodes, but we do not have any significant
technical novelty in that part.

In [ACK19], most of the effort (and novelty) goes into the handling of almost-cliques. They
iterate over almost-cliques sequentially and color each one assuming the coloring on the outside
is adversarial. Clearly, in our setting, we cannot afford to process almost-cliques one by one.
Furthermore, to achieve the O(log? A) runtime claimed by Theorem 1, for reasons expounded in
Section 2.2.3, we cannot assume the outside colors to be adversarial. When we color each almost-
clique, we must carefully resolve contentions with the outside, including other almost-cliques that
are getting colored in parallel.

To color a fixed almost-clique C, [ACK19] looks for a perfect matching in the bipartite graph
with vertices of C' on the one side, colors in [A + 1] on the other and an edge between v € C
and ¢ € [A 4+ 1] if ¢ is in L(v) and not used by an outside neighbor. If |C| < A + 1, classic
results from random graph theory (e.g., [Bol98, Section VII.3|) show that, with high probability, a
perfect matching exists, and therefore a list-coloring is possible. While the mere existence of the
matching is enough for [ACK19], Theorem 1 provides a distributed algorithm to compute it. Note
that learning the full topology of C'in O(log A) rounds of LOCAL to then decide on a matching does
not work because it does not account for conflicts with concurrent almost-cliques. Furthermore, our
algorithm uses O(log n)-bit messages, which prohibit centralization approaches. Our main technical
contribution is the design of an O(log? A)-round algorithm using O(log n)-bit messages to compute
this matching in almost-cliques in parallel (see Section 6), while also managing outside conflicts.



In large almost-cliques |C| = A + 1, such a perfect matching cannot exist. To deal with those,
[ACK19] shows the existence of a colorful matching. Namely, they color pairs of anti-neighbors in
C' (pair of nodes that are not connected by an edge) using the same color so that the number of
uncolored nodes decreases twice as fast as the number of free colors. We give a fast distributed
version of the sequential algorithm of [ACK19] (see Section 2.2.2). While this is not the main
technical contribution of our work, we think this procedure itself might find applications in future
distributed coloring algorithms.

Another noteworthy challenge for us is regarding probability amplification. Contrary to the
centralized setting, we cannot afford algorithms with a constant probability of success. Indeed,
amplifying success probability with O(logn) independent repetitions would exceed our O(log? A)
runtime. We deal with this issue by increasing the number of colors sampled, compared to [ACK19],
such that we always have concentration on large enough quantities, i.e. at least Q(logn). Naturally,
trying more colors creates more conflicts, which must be resolved.

2.2 Our Approach and New Ideas
2.2.1 Step 1: Preconditioning of Almost-Cliques

Like [ACK19], our algorithm heavily relies on an e-almost-clique decomposition. More formally,
it decomposes the graph into a set Vipase 0f locally sparse nodes and a collection Cfi,...,C; of
almost-cliques. An e-almost-clique is a cluster |C| < (1 + ¢)A such that each node v € C has
IN(v) n C| = (1 —¢)A neighbors in C' (see Definition 4). The preconditioning step strengthens
the properties of our almost-cliques. More precisely, it computes a partial coloring such that all
uncolored nodes are clustered in almost-cliques and have O(A/logn) connections to uncolored
nodes in other almost-cliques, compared to the usual eA (see Theorem 3 for a formal definition).
This property is key to ensure, later in our algorithm, that random decisions outside of a cluster
cannot seriously impede its progress on the inside (see Lemmas 6.1 and 7.1). We now give further
details on that aspect. Readers that are not familiar with palette sparsification results may skip
the remainder of this subsubsection on the first reading.

The key property of cliques that our algorithm uses is that when k nodes are uncolored, there
are k “available colors” that are used by no one in the clique. The colorful matching (Section 2.2.2)
allows us to extend this to almost-cliques. However, we still need to ensure that if a node (re)colors
itself with one of these k available colors, it will not create a conflict with an external neighbor.
For the sake of concreteness, assume only one node is left to color in almost-clique C, i.e., k = 1.
In our algorithm, a constant fraction of C' samples K logn colors for some large enough K > 0.
This way, the probability that at least one node in this almost-clique finds that one available
color is at least 1 — (1 — 1/A)KAlen > 1 1/poly(n). Having nodes sample more colors has a
drawback: it increases the competition for colors. If a node v € C' has €A external neighbors in
active almost-cliques, the probability that at least one of them blocks the one color that v is looking
for is 1 — (1 — 1/A)sKA8™ > 1 — 1/poly(n) (as eK € ©(1)). During preconditioning, we ensure
that nodes in active almost-cliques have at most A/(K logn) external neighbors in other active
almost-cliques. The probability that an external neighbor blocks the one color that v is looking for

becomes 1 — (1 — 1/A)%§"n ~ 1 —1/e. Therefore, only a small fraction of C' is affected by the
randomness outside of C'. This argument is made formal in Lemma 6.1.

To precondition almost-cliques, we use an idea from distributed coloring algorithms [SW10,
EPS15, HKMT21]. Namely, nodes that have Q(A/logn) connections to nodes in other almost-
cliques are Q(A/log n) sparse. By coloring nodes in a carefully chosen order, we get Theorem 3. As
it only uses well-known techniques from distributed coloring, we defer the analysis to Appendix B.2.
While the preconditioning algorithm in itself is not a major contribution of our work, we believe it



could find further use in the (distributed) coloring literature.
2.2.2 Step 2: Distributed Colorful Matching

A colorful matching is defined as a matching in the complement graph of the almost-clique such that
endpoints of a matched edge are colored the same (Definition 6). Intuitively, this reduces the size
of the clique: if one merges matched nodes, one reduces the number of nodes in the almost-clique
while maintaining a proper coloring of the original graph. In an almost-clique of (1 + £)A nodes,
finding €A such pairs essentially reduces the coloring problem to that of coloring a clique. This
technique was introduced by [ACK19] in the first palette sparsification theorem to deal with that
exact issue and we claim no novelty in its use. In [ACK19], however, only the existence of a large
enough matching is proven, whereas we also need to compute it efficiently in a distributed setting.

We define d¢ as the average anti-degree in C: such that d¢|C|/2 is the number of anti-edges.
When nodes try a random color in [A+1], an anti-edge is monochromatic with probability 1/(A+1).
Therefore, the expected number of monochromatic edges is ddc for some small constant § > 0,
because a node can retain its color with constant probability. Using tools similar to [EPS15], one
can show this random variable is concentrated near its mean with probability 1 — e~ ®(dc) Tt
implies that in cliques with dc > Q(logn), for any constant K = O(1/¢), we can accumulate Kd¢
anti-edges in the colorful matching in O(K /) rounds (Lemma 7.3).

We use a different approach when dc < O(logn). Note that when d¢ is smaller than some
constant, nodes have hardly any anti-edges. Hence we can also assume dc > €(1); meaning the
previous algorithm succeeds with constant probability. Instead of trying a single color, nodes
try ©(logn) colors at the same time. Clearly, a large enough colorful matching exists: using the
sampled colors, the previous process can be implemented in O(logn) rounds. To find that matching
efficiently (in O(log A) rounds), we capitalize on the fact that there are few non-edges in the clique
(Lemma 7.3). Since the probability of a non-edge having both endpoints sample a common color
is O(logZn/A), only O(dclog®n) = O(log®n) potential monochromatic non-edges are sampled.
By taking advantage of the high expansion property of the sparsified clique, we can disseminate
the list of O(log®n) sampled monochromatic edges in O(log A) rounds to all nodes in the clique,
which can then compute the colorful matching locally. Because 2(A) colors are available in the
clique, the concurrent coloring of external neighbors can block at most a small fraction of the colors
(Lemma 7.1).

2.2.3 Step 3: Augmenting Trees

To color almost-cliques, we take advantage of the fast expansion of the sparsified almost-clique
to find many augmenting paths. Our definition of augmenting path corresponds precisely to the
one for computing maximal matching in the random bipartite graphs induced by the random lists
of colors [HK73, Mot94]. We emphasize, however, that general-purpose algorithms for maximal
matching do not directly apply in our setting because of conflicts between concurrent almost-
cliques. Furthermore, computing an eract maximum matching is a global problem, and in fact
requires at least 2(y/n) rounds of CONGEST in general, even in low-diameter graphs [AKO18].
We now explain how we color all almost-cliques in O(log? A) rounds. The algorithm runs
O(log A) iterations of the following process. Suppose k is number of uncolored nodes in C' at the
current iteration. We say that color ¢ is available to a node v if ¢ is neither used in C' nor by external
neighbors of v that were colored during the preconditioning step (these nodes will never change
colors). In each iteration, we grow a forest of augmenting paths (Definition 8). An augmenting
path is a path ug,u1,...u; in the sparsified almost-clique such that 1) wug is the only uncolored
node, 2) each uj_; for j € [i] can (re)color itself with the color of u; and 3) the last node u; of
the path knows an available color ¢. Provided with such a path, we can recolor u; with ¢ and each



uj—1 with the color of u;, thereby coloring the uncolored endpoint ug. Our algorithm builds on
the following idea: if we have a path wug,...,u; verifying 1) and 2) but not 3), then u; samples a
uniform color ¢ € [A + 1] and finds an available one with probability Q(k/A).

The two prior steps of our algorithm are key to ensure u; has probability Q(k/A) to find an
available color that it can adopt. The colorful matching ensures (almost) all nodes of C' will have
k colors available (Lemma 5.1). On the other hand, the argument sketched in Section 2.2.1 shows
that because of the preconditioning step, with high probability over the randomness outside of C,
at least (A) nodes in C can adopt k/2 of the colors available to them. We say of nodes that
cannot adopt k/2 available colors that they are spoiled (Definition 10). Since they represent a
small fraction of C' and the path explores the almost-clique randomly, we are unlikely to fail due
to spoiled nodes (Lemma 6.4).

This simple algorithm colors ug with probability Q(k/A). To color each uncolored node with
constant probability, even when k& « A, we grow A/(ak) paths verifying 1) and 2) from each
uncolored nodes for some large enough constant « > 1. The expected number of paths to find an
available color is A/(ak) - Q(k/A) = Q(1/a). Therefore, we color Q(k/a) nodes in expectation.
Since we must avoid collisions between paths from different uncolored nodes, we find it helpful to
further restrict paths to grow trees. See Fig. 1 for a high-level description of one iteration.

AUGMENTING PATH ALGORITHM

Let k£ be the number of uncolored nodes.

Growing the forest. The uncolored nodes are the roots of the forest.
Repeat O(log %) times:

1. Each leaf samples a set S, of O(logn) colors.

2. Remove from S,, the colors used by external neighbors, nodes in the forest, or sampled
by other leaves.

3. For each ce€ S, find v., € C colored ¢ and connect them to v in the forest.

Harvesting the trees.

1. If k = Q(logn), each leaf tries one random color in [A + 1]. If a leaf can retain its color,
we recolor the path connecting it to the root, root included.

2. If k < O(logn), each leaf tries O(logn) random colors in [A + 1]. The roots learn (k)
colors with which leaves in their trees can recolor themselves. They disseminate this list
in O(log A) rounds to all nodes of C. Nodes then compute a color-leaf matching and
recolor the corresponding paths.

Figure 1: High level description of one iteration.

An iteration has two phases: the growing phase (Algorithm 4), where we grow the trees, and
the harvesting phase (Algorithms 5 and 6), where we try to recolor augmenting paths. The growing
phase needs O(log %) rounds because each time we increase the number of paths by a constant
factor. The harvesting phase differs depending on k. That is because when k£ < O(logn), we cannot
show progress with high probability with a simple concentration on k. See Section 6.1 for a more
detailed description.



2.3 Lower Bound

We complement our upper bound with a lower bound on the distributed complexity of coloring
a graph after random palette sparsification. The lower bound applies even if the graph prior to
the palette sparsification was simply a complete graph. Concretely, the lower bound states the
following. Assume that we have a complete graph K, on n nodes V = {1,...,n} that we want to
color with n = A+1 colors. Every node v € V samples a random subset S, of colors C' = {1,...,n}
as follows. For each node v € V and each color x € C, x is included in S, independently with
probability p = f(n)/n, where f(n) = clnn for a sufficiently large constant ¢ and f(n) < polylogn.
Recall that the sparsified graph is the graph induced by all edges of K,, between nodes u,v € V
with S, N S, # . We prove that any distributed message passing algorithm on the sparsified
graph requires (logn/loglogn) rounds to properly color the K, in such a way that each node v
is colored with a color from its sample S,,. This holds even if the message sizes are not restricted.

Relation to perfect matching on random bipartite graphs. Note that this is equivalent
to the following bipartite matching problem. Define a bipartite graph B = (V u C, Ep), where
C = {1,...,n} represents the set of colors. There is an edge between nodes v € V and = € C
whenever x € S,,. A wvalid coloring of the nodes in V' then corresponds to a perfect matching in the
bipartite graph B. Note that if p = clnn/n for a sufficiently large constant ¢ > 0, then the bipartite
graph B has a perfect matching with high probability. This (in even sharper versions) is well known
in the random graph literature (e.g., [Bol98, Section VIL.3]) and can be proven by checking Hall’s
condition for any non-empty subset of V. Our lower bound essentially shows that distributedly
computing a perfect matching in the random graph B requires (logn/loglogn) rounds with at
least constant probability, even in the LOCAL model (i.e., even if the nodes in B can exchange
arbitrarily large messages). Note that the sparsified subgraph of K,, and the bipartite graph B can
simulate each other with only constant overhead in the distributed setting. Any 7T-round algorithm
on the sparsified graph can be run in O(T') rounds on B and any T-round algorithm on B can be
run in O(T') rounds in the sparsified subgraph of K, (in the second case, each color node z € C
can be simulated by one of the nodes v € V for which = € S,,).

Lower bound on computing a perfect matching in random bipartite graphs. In general,
it is not too surprising that computing a perfect matching of a graph is a global problem where
nodes at different ends of the graph need to coordinate. Consider for example the problem of
computing a perfect matching of a 2n-node cycle. There are exactly two such perfect matchings
and deciding which of the two matchings to choose cannot be decided without global coordination
within the cycle. However, the case of a random bipartite graph needs much more care.

Our lower bound is based on the following observation regarding perfect matchings in bipartite
graphs. Let vy be some node of a bipartite graph H and for each d = 0, let V; be the set of nodes
of H that are at hop distance exactly d from vy. Since H is bipartite, a node in a set V; can only
be connected to nodes in sets V1 and Vgyq. Clearly, |[Vo| = 1 and, because vy must be matched,
there must be exactly one matching edge between nodes in 1V and nodes in V4. Further, since
every other node of V; must be matched to nodes in Vs, there must be exactly |Vi| —1 = [Vi| —|W]
matching edges between nodes in V; and nodes in Vo. With a similar argument, the number of
matching edges between nodes in V5 and nodes in V3 is exactly |Va| — |V1| + |[Vo|. By extending
this argument, one can see that for every d, the number of matching edges between V; and Vy 4
depends on the sizes of all the sets Vp, ..., V. Changing the size of a single one of those sets also
changes the number of matching edges between V; and Vg, 1.

For the lower bound proof, we now proceed as follows. Assume that there is a T-round dis-
tributed algorithm that computes a perfect matching of the random bipartite graph B. We con-
sider some node vy in the random bipartite graph B and two integers £ and h such that ¢ > 0



and h — ¢ > T. We consider the decisions of the assumed distributed perfect matching algorithm
for nodes in V},. Note that in T rounds, nodes in V}, do not see nodes at distance more than T,
and in particular, they do not see nodes in V;. However, by the above observation, the number
of matching edges between nodes in V}, and nodes in V}1 depends on the knowledge of |Vy|. If T’
is sufficiently small and a large fraction of the graph is outside the T-hop neighborhoods of nodes
in V},, then even collectively, the nodes in V}, have significant uncertainty about the value of |V,|.
Therefore, they cannot determine the number of matching edges between Vj, and V41 (and thus
their matching edges) with reasonable probability. The actual proof that formalizes this intuition
is somewhat tedious. The details appear in Section 8.

3 Preliminaries

Notation. For any integer k > 1, we write [k] for the set {1,2,...,k}. For a tuple X =
(X1,Xs,...,X%) and some i € [k], we define X¢; = (X3,...,X;). For a graph G = (V, E) and
any set S < V, we denote by Ng(S) = {v e V\S : Ju € S and uv € E} the neighborhood of S.
Moreover, for any sets S1,S5, € V, let Eg(S1,52) = E n (S; x S2) be the set of edges between
nodes of S and Ss.

A partial (A + 1)-coloring is a function from the nodes V to [A + 1] u {L} that assigns colors
in [A 4 1] or no colors (in the form of the null color 1) to vertices, such that adjacent vertices have
different colors in [A + 1] (but they may both have color L). For some partial (A + 1)-coloring of
the graph and any set S € V', we denote by S the uncolored nodes of S and by S the colored ones.

When we say that an event happens “with high probability”, we mean it occurs with probability
1 — 1/poly(n) for a suitably large polynomial in n to union bound over polynomially many such
events.

3.1 Distributed Coloring

A standard technique in distributed coloring used by randomized algorithms is to have each node
repeatedly try a color picked uniformly at random in its palette: the set of colors not already used
by its neighbors. It was introduced by [Joh99] and is used in all efficient distributed algorithms
[BEPS16, CLP20, HKNT22]. We introduce this notion here for further use.

Definition 1 (Palette). The palette ¥, of a node v with respect to some coloring of the nodes is
the set of colors that are not used by its neighbors.

Definition 2 (Slack). The slack of v is the difference between the size of its palette and its uncolored
degree.

If nodes have slack proportional to their degree, they can be colored in O(log* n) rounds of
LOCAL by trying random colors. The following result has origins in [SW10] and was generalized
by [CLP20]. It is straightforward to see that the proof of [HKNT22] extends to our setting.

Lemma 3.1 (Lemma 1 in [HKNT22]). Consider the (deg +1)-list coloring problem where each node
v has slack s(v) = Q(d(v)). Let 1 < smin < min, s(v) be globally known. For every k € (1/Smin, 1],
there is a randomized LOCAL algorithm SLACKCOLOR(Spmin) that in O(log* smin + 1/k) rounds
properly colors each node v w.p. 1 — exp(—Q(srlr{i(r}Jm))) — Ae=20min) - epen conditioned on arbitrary
random choices of nodes at distance = 2 from v. Using O(logn)-bit messages, it requires O(log A)

rounds of communication, and requires nodes to sample up to @(5”1%) colors in [A + 1].
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3.2 Sparse-Dense Decomposition

We use a decomposition of the graph into locally sparse nodes, which have many non-edges from
in their neighborhood, and dense clusters called almost-cliques (also informally called cliques).
Almost-clique decomposition was first introduced in graph theory by [Ree98] and has been used
extensively in streaming [ACK19, AW?22] and distributed [HSS18, CLP20, HKNT22] algorithms.

Definition 3 (Sparsity). The sparsity of a node v is the value ¢, = % <(§) - |E(N(v))|> We say
a node is (-sparse if ¢, > ¢, otherwise it is (-dense.

Definition 4 (Almost-Clique Decomposition). For ¢ € (0,1/3), a e-almost-clique decomposition is
a partitioning of the vertices into sets Viparse, C1, - - ., Ck, for some k such that:

1. All v € Viparse are Q(e2A)-sparse.
2. For any i € [k], almost-clique C; has the following properties:

(a) |Ci] < (1 +e)A;
(b) IN(v) nC| = (1 —¢)A for all nodes v € C;.
For a dense node v in some almost-clique C', we call its external degree e, the number of
neighbors v has outside of its almost-clique, i.e. e, = |[N(v)\C|, and its anti-degree a, the number

of non-neighbors in C, i.e. a, = |C\N(v)|. We denote by dc = >, . a»/|C| the average anti-degree
of C.

4 Palette Sampling and The Sparsified Graph

Parameters. We assume that A > Q(log4 n) as otherwise nodes can store all their adjacent edges
and simply run the CONGEST algorithm of [HKMT21]. We define the following parameters® for
our algorithm:

def

a = 500: quantify the number of leaves that an augmenting tree must have,
o |C'logn]| : used to bound the number of sampled colors, (1)
def —8

e =10"°: a small enough constant.

The constant C' in f is sufficiently large for high probability events to hold, even when we union
bound over polynomially many events. It is independent of the constants a and €. We use the
following relation between our parameters:

e <1/a? and 20 < 1/(18¢) . (2)

4.1 Palette Sampling

Similar to [ACK19], we see the lists of random colors L(v) in our algorithm as a source of fresh
random colors. Whenever a node samples a color in [A + 1], it reveals a new color from its list.
To simplify the analysis, we partition L(v) into sub-lists, each used for a different purpose in the
algorithm. The main difference with [ACK19] is that lists are larger: O(log?n) colors instead of
O(logn).

2which we have not attempted to optimize.
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Algorithm 1. Palette Sampling for a node v.

e L;(v): sample O(log® n) colors independently and uniformly at random in [A + 1].

o Ly(v) = {La;(v),for i e [O(1/e)]} v {L5(v)}: for each i € [O(1/¢)], sample each color in
L ;(v) independently with probability ﬁ. Sample each color independently in L3 (v) with
probability ~ - g for some constant v = ©(1/2) defined in Lemma 7.4.

o L3(v) = {L3;i(v) = ng( ) U L3Hl( ), for i € [B]} where we sample each color ¢ € [A + 1] in

ng and LH 3; independently with probability 20’3

By union bound, a fixed color ¢ € [A + 1] is included in Ly (v) with probability 0(62%) and in

Ls(v) with probability O(%z). Since each color is included in Ly independently, a simple Chernoff
bound proves the following claim:

Claim 4.1. With high probability, |Ls(v)| < O(logn/e?) and |L3(v)| < O(log*n) for all v e V.
Furthermore, each Lgi(v) and LgH’Z-(v) contains at least 63 different colors.

Our algorithm will color each v € V' with a color from its list L(v). Following the observation
of [ACK19], edges between nodes with non-intersecting lists can be dropped. A standard argument
shows the induced subgraph is sparse with high probability.

Definition 5 (The Sparsified Graph). For a graph G = (V, E) and lists L(v) such as described in
Algorithm 1, let G = (V, E) be the subgraph of G with edges uv € E such that L(u) n L(v V) # .
We call G the sparsified graph. For any set S € V', we denote by S the induced subgraph G[S]

Claim 4.2 ([ACK19, Lemma 4.1]). For any graph G, w.h.p., the sparsified graph G has mazimum
degree O(log* n).

4.2 Decomposition and Properties

Similarly to other distributed algorithms [HSS18, CLP20, HKNT22] our algorithm needs to know
the almost-clique decomposition in order to compute the coloring. However, existing CONGEST al-
gorithms require communication with » poly log n nodes [HKMT21, HNT22]. Building on [HNT22],
we give a CONGEST algorithm where nodes need only to communicate on a sparse subgraph of G.
Algorithm 2 gives an overview of the communication needed.

We emphasize that Algorithm 2 uses a sparse subgraph of GG that is independent of the sparsified
subgraph induced by the random lists (Definition 5). We found it simpler to state our algorithm this
way. Observe, however, that Algorithm 2 could be implemented using edges sampled from random
lists. We briefly explain why. Two nodes u and v adjacent in the sparsified graph share at least
one color ¢. To know if they share a large fraction of their neighborhood — i.e., if they are friends
(Definition 11) — notice that the number of nodes in N(u) n N(v) that sample ¢ is concentrated,
and therefore provides an unbiased estimator for the size of this set. Using a bandwidth compression
technique introduced by [HNT22], u and v can compare their neighborhoods in O(1) rounds using
O(log n) bandwidth. To know if v has many friends — i.e., if it is popular (Definition 12) — notice
that its neighboring edges are sampled independently in the sparsified graph. Therefore, a node
will detect a lot of friendly edges in the sparsified graph if and only if it is sufficiently popular.
We prefer the following less technical and more general algorithm that does not depend on the
sparsified graph and could be of independent interest.

12



Algorithm 2. High-level algorithm computing e-almost-clique decomposition.
Input: the sparsified graph G= (V, E)
Output: an e-almost-clique decomposition of G.

1. Each node v samples a value r(v) € [©(A/e)] using public randomness.
2. Each node v with degree at least A/2 computes

e the set F(v) = {r(u) :ue N(v),r(u) < o} where 0 = O(logn/et).

e aset Fs(v) of O(logn/c?) random edges.

3. (Communication Phase) After O(1/e?) rounds of communication using edges Es(v) and
O(log A) rounds of communication on G, each v knows if it is sparse or dense as well as
the unique identifier of its cluster if it is dense.

Remark 4.3. Some important remarks about Algorithm 2.

1. Note that F(v) depends on the randomness of the entire neighborhood of v. This is not an
issue for any of our applications as it can easily be computed on a stream with O(logn/e*)
local memory, with public randomness in the Node Congested Clique and with aggregation of
a single O(logn/e*)-bitmap in cluster graphs.

2. Nodes sample edges that might not belong to G. Nonetheless, we assume they can communicate
along these edges. To remove this assumption, one could encode the sampling of Es(v) within
the palette sampling process. Observe that adding Es(v) does not affect the sparsity of G3.
We phrase it this way for simplicity.

Lemma 4.4. There is a O(log A)-round algorithm computing an e-almost-clique decomposition. It
only broadcasts O(logn/e*)-bit messages and samples O(logn/c?) edges per node.

Since Lemma 4.4 is a rather straightforward extension of [HNT22], we defer its proof to the
appendix (see Appendix B.1).

Useful properties of the sparsified clique. Let C be an e-almost-clique. The spar51ﬁed clique
C is a random graph on (almost) A nodes where edges are sampled with probability O(log*n/A).
As such, the graph C has typical properties of random graphs.

Lemma 4.5 (Expansion). Let C be an almost-clique, and assume A = B*. With high probability,
for all subsets S < C' of size at most |S| < 3A/4,

|Ex(S,C\S)| = |S|8*/40 and IN&(S) N (C\S)| = Q(]S]).

Proof. We show that for any fixed set S < C, the edge expansion property (|Ex(S,C\S)| =
|5|3%/40) holds w.p. 1 — exp(—Q(|S|B)). Since there are at most |C|* = exp(O(xlog A)) subsets
S < C of size z, this allows us to claim by union bound that, w.h.p., the edge expansion property
holds for all subsets S © C'. The vertex expansion property then follows easily.

Let us consider a fixed subset S < C, and set S = C\S and L < max< 78] B) We partition
the colors into (A + 1)/L groups of size L. Let B; € [A + 1] be the colors of bucket number i. We
introduce several random variables.

3This is the reason we sample F, (v) only for high-degree nodes; nodes of degree less than A/2 will be sparse
anyway.
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e For each color c € [A+1] and e = uv € Eg[S x S], let X.. be the indicator random variable
for whether e’s S-endpoint node v sampled color c. Let X., = Zveg:uveE[ng] Xeuw and

XC = ZUES Xc7u'

e For each color c € [A+1] and e = uv € Eg[S x 5], let Y be the indicator random variable for
whether both of e’s endpoint nodes u and v sampled color c¢. Note that X.. =0= Y., = 0.

Let YVCJ’ = ZueS:uveE[Sx?] }/Cﬂ“’ and Y. = ZUES YVCU - ZEEE[ng] }/c,e-

o For each i € [A/L],let Zi = X, Decpsx5)(Xee Ye,e) be the contribution of bucket number
i to the number of edges between S and S.

Note that the random variables Z; are defined with multiplicity, i.e., possibly counting each edge
multiple times. We will fix that soon.

A node v € S has at least [Ng(v) n'S| = |S| —eA > (1/4 — ¢)A > A/5 neighbors in S before
sparsification — and at most A. In total, Eg[S x S] contains between |S|A/5 and |S|A edges. We
have

E[Xce] = 82/(A+1), E[X]e[8%5]/5,8°S[), and E[Z]e[LB%S|/5,LE%|S]].

s Yoo Zi, and related quantities in a manner
that avoids the issue of overcounting. We reveal the colors in increasing order, and for each color c,
let G. be the event that smaller colors already sampled |S|3%/20 distinct edges into the sparsified
graph. Note that G. is fully determined by the randomness of earlier colors. Let Xé,e = Xee
and Y/, = Y. when G, holds. When G. does not hold, let X/, and Y/, always equal 0 if both
endpomts of e sampled an earlier color, and otherwise let X, = X, and Y’ = Y. as before.

= DeeB; DuecE st](X/ -Y/,). Since 1S|8%/10 < |S|A/10 there are always at least |S|A/10

edges for which E[X; ] > 0 and E[Y_ ] > 0. We have

Let us now define auxiliary random variables X/ ., Y/

E[X] € [°[S]/10,%|S]], and E[Z;] € [LF?]S]/10,L5%|S]].

Consider a bucket B;. We now make all random decisions regarding whether each node in S
samples each color ¢ € B;. Consider the summation ;g %X /. Tt has an expected value of at least
L-B2|S|/(10A), and is a sum of random variables X/ whose sampling spaces are contained in the
range [0, 1]. Hence, >, .5 X; > L-32]5|/20 w.p. at least 1—exp(—Q(L-32|S|/A)) = 1—exp(—Q(B))
by Lemma A.2 (Chernoff bound), i.e., w.h.p. Furthermore, for each v € S and color c € [A + 1], at
most O(S?) of its neighbors in S sample ¢, w.h.p.

Let us now make all random decisions regarding whether nodes in S sample each color in B;.
Let us analyze the summation

=3 D (XY= ) N (K Y |

cEB; e E[Sx 5] c€B; yeS \ueS:uve E[SxS)]

Z; has an expected value of at least L - 34S]/(10A). As random choices where fixed in S s.t.
each vertex v € S has at most O(3?) of its neighbors in S sample each color ¢, the inner term

<Zu€5:uveE[SX§] (Xtuw - Y )) is distributed in [0, O(32)], i.e., the decision of any given v € S for

C,uv
each color impacts the sum by at most O(5%). We can thus divide the sum by O(5?) in order to get
random variables distributed in [0,1] and apply Lemma A.2. This gives that Z! > L - 34|S|/(20A)

w.p. at least 1 — exp(—Q((L - B4[S|/A)/B?)) = 1 — exp(—(B)).
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Hence, each bucket contributes at least L - 3%S|/(20A) to the overall sum Z' = Y i e [A/L]Z!,
w.h.p., regardless of the choices of previous buckets. Let us analyze the probability that A/(2L) or
more buckets fail to have this good contribution. Consider a specific set of A/(2L) buckets. The
probability that they all fail to have a good contribution is exp(—Q(SA/L)). There are less than
28/L ways to choose A/(2L) buckets out of A/L, so by union bound the probability that less than
A/(2L) buckets have a good contribution is at most 22/% - exp(—Q(BA/L)) = exp(—Q(BA/(2L))).
Finally, exp(—Q(B8A/L)) = exp(—Q(min(BA,|S|8%))) < exp(—Q(]S|B)), so the sparsified graph
contains at least 54|S]/40 edges w.p. at least 1 — exp(—(|S|3)).

This small failure probability exp(—£(|S|3)) allows us to union bound over all choices of S,
using 3 a large enough Q(logn). Hence, w.h.p., the edge expansion property holds. The vertex

expansion follows from Claim 4.2. Since the maximum degree in G is O(3%), the number of nodes

in S is at least %@ = Q(|S]). |

Lemma 4.5 implies the following result as any two nodes can reach more than half of the clique
in O(log A) hops.

Corollary 4.6. The sparsified almost-clique C' has diameter O(log A).

Also, observe that two nodes from the same almost-clique that sampled the same color must be
within distance 2 in the sparsified graph.

Claim 4.7. For a clique C, let w and v be two nodes of C' and ¢ € [A + 1] be an arbitrary color.
Then, with high probability, there exist at least 23%/5 nodes w € Ng(u) n Ng(v) n C that sample
c € L(w). In particular, if c € L(u) n L(v) then u and v are at two hops from each other in the
sparsified graph G.

Proof. Let ¢ & %2. Nodes u and v share at least (1 — 2¢)A neighbors in C' and each w € Ng(u) n
N¢g(v) n C sampled the color ¢ with probability (at least) ¢. In expectation, at least (1 —2¢)A-q >
(4/5)3% such w sampled c. Since each w samples its color independently, the classic Chernoff
bound applies. At least (2/5)3% shared neighbors sampled ¢ with probability 1 — exp(—Q(32)) »

1—1/poly(n). |

5 The Distributed Palette Sparsification Theorem

In this section, we give the CONGEST algorithm for our main theorem. Again, we assume A >
Q(log* n) and show a runtime of O(log? A).

Theorem 1. [Distributed Palette Sparsification Theorem] Suppose that each node in a graph
G samples O(log?n) colors w.a.r. from [A + 1]. There is a distributed message-passing algorithm,
operating on the sparsified graph, that computes a valid list-coloring in O(log2 A+log? log n) rounds,
using O(logn)-bit messages. In particular, each node needs to communicate with only O(log* n)
different neighbors.

Step 1: Preconditioning Almost-Cliques

When we compute the colorful matching or build augmenting trees, nodes might sample ©(logn)
random colors within a round. If a node has Q(A) neighbors, this might result in all colors being
blocked by its external neighbors. To circumvent this issue, we use standard techniques from dis-
tributed coloring to strengthen guarantees given by the almost-clique decomposition (Definition 4).
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Theorem 3. Let e € (0,1/3) be a constant independent of n and A, and n be any number (possibly
depending on n and A) such that A/n = Klogn for a large enough constant K > 0. There exists
an algorithm computing a partial coloring of G where all uncolored nodes are partitioned in almost-
cliques Cy,...,Cy for some t such that for any i € [t], almost-clique C; is such that:

1. |CZ‘ < (1 +e)A;

2. IN(v) nCi| = (1 —¢e)A for all nodes v € C;;
3. IN() A Ui Cil < emax = A/n

Furthermore, the algorithm runs in O(log A + logn) rounds, uses O(nlogn) colors from lists
Ly, and samples O(nlogn) edges per node.

Note that the bound on the external degree given by Property 3 is much stronger than the one
from the classical almost-clique decomposition. Henceforth, we assume we are given the coloring
and decomposition of Theorem 3 with maximum external degree

emax = A/n where 7 < max(160a8, Lmax/c) (3)
where Lyax = O(logn) is the upper bound on the size of lists Lo of Claim 4.1. As this uses only
standard techniques from distributed coloring, we sketch the algorithm here and defer the complete
proof to Appendix B.2.

Proof Sketch. Compute an (¢/3)-almost-clique decomposition in O(log A) rounds (by Lemma 4.4).
We use the fact that nodes with external degree A/n are Q(A/n)-sparse; hence receive permanent
slack from randomized color trials (Lemma B.4).

To ensure Property 3, we divide cliques of the almost-clique decomposition into two categories:
introvert cliques, with at most (2¢/3)A nodes of high external degree; and extrovert cliques, where
more than (2¢/3)A nodes have high external degree. We begin by generating slack in Viparse and
extroverted cliques. We next color nodes of low-external-degree in extroverted cliques using the
(/3)A temporary slack provided by their inactive neighbors of high external degrees. We color
sparse nodes and high-external-degree nodes in introverted cliques using their permanent slack. By
Lemma 3.1, this takes O(log A) rounds. We finish by coloring the high-external-degree nodes in
extroverted cliques in two steps: first O(loglogn) rounds of randomized color trials to reduce their
degree to O(A/logn), then O(log A) rounds using their permanent slack. What remains uncolored
are then only the low-external-degree nodes in introverted cliques.

To detect nodes of high external degree, we use random edge samples. As we sample O(nlogn) =
O(log2 n) edges per node, it is not an issue for our applications: nodes communicate to only
O(log? n) nodes during this step. |

Step 2: Colorful Matching

The remaining uncolored nodes are very dense (more than A/n-dense). We find a large matching
of anti-neighbors in each clique and color (the endpoints of) each such node-pair with a different
color. Such matchings are called colorful and were introduced by [ACK19] in the original palette
sparsification theorem.

Definition 6 (Colorful Matching). For any partial coloring of the nodes, a matching M in C
(anti-edges in C') is colorful if and only if the endpoints of each edge in M are colored the same.

If a clique has a colorful matching, the set of colors that are not used in the clique approximates
well the palette of nodes with small anti-degree. We call this set of colors the clique palette.
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Definition 7 (Clique Palette). For an almost-clique C, the clique palette W (w.r.t. a valid coloring
of the vertices) is the set of colors not used by nodes of C.

The following lemma formalizes the idea that W¢ and ¥, are similar (for most nodes v). Recall
that C' and C' denote respectively the set of uncolored and colored nodes of C.

Lemma 5.1. Let C be an almost-clique with a colorful matching M and fiz any partial coloring of
the nodes. We say v € C is promising (with respect to M ) if it satisfies a, < |M|, and otherwise it
s unpromising. For each promising node v, we have

Ve n 0, = |0

Proof. Let C, M and v be as described above. We have |U¢| > A — |C| + | M| because U¢ loses
at most one color per colored node but saves one for each color used by the colorful matching.
Since nodes are either colored or uncolored, i.e. |C| = |6’ | + |(v§' |, we can lower bound the number
of colors in the clique palette by |[U¢| > |C| + A — |C| + |M]|. On the other hand, observe that
A = |[N(v)nC|+e, and |C| = |N(v) nC|+a,. Hence, we have |V¢| = |C|+|M|+e,—ay, = |Cl+ey,
using that v is promising. The lemma follows as |Ve N W, | = |Ve| — e, = |6’| |

In our setting, the existence of such a matching is not enough; we must compute it in few
rounds. In Section 7, we describe how to compute a colorful matching of O(K - d¢) anti-edges in
O(K) rounds for any K = O(1/¢).

Theorem 4. Let K > 0 be a constant such that K < 1/(18¢). There is a O(log A)-round algorithm
computing a colorful matching of size at least K -dc with high probability in all cliques C' of average
anti-degree do = 1/(2a).

Corollary 5.2. After Step 2, there are at most A/a unpromising nodes in C.

Proof. In a clique C with do < 1/(2a), at most |C|/(2c) nodes have anti-degree at least 1, by
Markov inequality. In a clique C' with dc > 1/(2a), we compute a colorful matching M with
2a - de edges. By Markov inequality, at most |C|/(2a) nodes have anti-degree more than |[M|. In
both cases, at most (1 + ¢)A/2a < 2A/(2a) = A/a nodes are unpromising. |

Step 3: Coloring Dense Nodes

Reducing the number of uncolored nodes. When nodes try colors from their palettes, they
get colored with constant probability. In our setting, nodes cannot directly sample colors from
their palette as they must use colors from the lists they sampled in Algorithm 1. If they have large
enough palette though, (uninformed) sampling O(logn) colors in [A + 1] is enough to find one in
their palette with constant probability.

Lemma 5.3. There exists a O(loglogn)-round algorithm such that, with high probability, the num-
ber of uncolored nodes in each almost-clique is afterwards at most A/(af). Furthermore, nodes only
use O(logn - loglogn) fresh random colors.

Proof. Consider a clique C' with k¥ = A/(af) uncolored nodes. By Lemma 5.1, every node has
o N W,| > k colors in its palette. A node is set as active (independently) with probability 1/4.
For a node v, denote its uncolored degree by c?v. If (fv < |¥,|/2, a random color in ¥, cglors
v with probability 1/2. Otherwise, by the classic Chernoff bound, with probability 1 — e RUdv) >
1—e~¥*) > 1-1/poly(n), node v has at most d, /2 active neighbors. Therefore, for any conditioning
on the colors tried by active neighbors, v retains a uniform random color ¢ € ¥,, with probability 1/2.
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If v samples t = a3 colors in [A + 1] independently, it fails to find at least one color from its palette
with probability (1—|¥, nU¢e|/A) < (1-1/(aB))! < exp(—t/(aB)) < 1/2. Overall, a fixed node v
retains a color with probability 1/4 x 1/2 x 1/2 = 1/16. So the expected number of uncolored nodes
E[|C|] in C decreases by constant factor each round. By Chernoff with domination Lemma A.2, it
holds with probability 1 — e~2I¢D = 1 —1/poly(n) at each round (because A > Q(log*n)). After
O(log(a8)) = O(loglog n) rounds, with high probability, |C| < A/(af). |

Finishing the coloring with augmenting paths. Now that the number of uncolored nodes is
small, we resort to the new technique of coloring with augmenting paths outlined in Section 2.2.3.

Theorem 5. Assume all cliques have at most A/(af) uncolored nodes and at most A/« unpromis-
ing nodes. There is a O(log A)-round algorithm AUGPATH that colors a constant fraction of the
nodes in each clique with high probability.

Before giving a detailed description and proof of the AUGPATH algorithm in Section 6, we
conclude this section with the proof of our main theorem.

Proof of Theorem 1

If A = O(log*n), nodes can store all their adjacent edges and color the graph in O(log?logn)
rounds of CONGEST [BEPS16, GK21].

Assume now A > Q(log?n). We precondition almost-cliques (using Theorem 3) with n =
O(logn) (Eq. (3)) in O(log A) rounds and using O(log? n) random colors. The colorful matching
requires O(log A) rounds (Theorem 4) and almost-cliques have at most A/a unpromising nodes
(Corollary 5.2). For O(loglogn) = O(log A) rounds, nodes try random colors from their palettes.
All cliques are left with A/(af) uncolored nodes (by Lemma 5.3). We run AUGPATH for O(log A)
times. Each time, the number of uncolored nodes decreases by a constant factor with high proba-
bility (Theorem 5). Overall, we use O(log2 A) rounds to complete the coloring. B ricorem 1

6 Augmenting Paths
This section is dedicated to the central argument of Theorem 1.
Theorem 5. Assume all cliques have at most A/(af) uncolored nodes and at most A/a unpromis-

ing nodes. There is a O(log A)-round algorithm AUGPATH that colors a constant fraction of the
nodes in each clique with high probability.

We first give a high-level description of the complete algorithm in Section 6.1. Section 6.2
contains the proofs related to the first part of the algorithm: growing the augmenting trees. We
call the phase of recoloring augmenting paths harvesting the trees and address it in Section 6.3.
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6.1 Detailed Description of the Algorithm

Algorithm 3. AucPATH.

Input: A partial coloring such that each almost-clique has ]6’ | < A/(af) uncolored nodes, at
most A/a unpromising nodes, and each v € C is connected to at most ey, nodes in other
almost-cliques.

For each almost-clique C, do in parallel:
1. Count the number of uncolored nodes k = ]6’ |.
2. F = GROWTREE (Algorithm 4).
3. if k = B, run HARVEST(k, F') for high k (Algorithm 5).

4. if k < B, run HARVEST(k, F) for small k (Algorithm 6).

Definition 8 (Augmenting Path). Let P = ujug,...,u; be a path in C' where u; is uncolored and
u; has color ¢; for each 2 < ¢ < t. We say it is an augmenting path if u;, the colored endpoint of
P, knows a color ¢ # ¢; such that if we recolor each node u; using color ¢;; for i € [t — 1] and w
using ¢, the coloring of the graph remains proper.

From an uncolored node © = wuy in a clique with one uncolored nodes. Start with the path
P = u; and as long as P = wuq,...,u; is not augmenting, do the following: u; samples a color
c € [A + 1], if ¢ is not used in the clique P is an augmenting path; if ¢ is used by a node u;11 € C,
add u;,1 to the end of P and repeat this process. Unfortunately, this algorithm is not fast enough
as each time we extend P, we find an augmenting path with probability 1/A. Hence, we need to
spend Q(A) rounds exploring the clique before finding the one available color. To speed-up this
process, we grow a tree of many augmenting paths.

Definition 9 (Augmenting Tree/Forest). An augmenting tree is a tree such that each root-leaf
path is augmenting, provided the leaf finds an available color. An augmenting forest is a set of
disjoint augmenting trees.

Say we computed an augmenting forest such that all trees have Q(A/k) leaves. Since a leaf
finds an available color in ¥¢ with probability Q(k/A), each tree contains an augmenting path
with constant probability.

Technical challenges. This process can fail in several ways.

1. We need to show a constant probability of progress for each uncolored node. It is not enough
to have that all leaves in C recolor their path with probability Q(k/A). We need to show that
(with constant probability) each tree finds a leaf with which it can recolor its root. Moreover,
trees connecting to different roots must be disjoint.

2. Consider a tree T and one of its leaves v € T'. If v has a high anti-degree, it has few available
colors among the ones available in the clique (Lemma 5.1). Similarly, it is possible that all
external neighbors of v block the k colors it has available. We call such nodes spoiled and
must ensure that they only represent a small fraction of every tree.

19



3. Assuming all trees have ©(A/k) unspoiled leaves, the leaves used to recolor augmenting paths
in each tree have to use different colors. We say that we harvest the trees. When k& is Q(logn),
if each leaf try one color, w.h.p., the number of conflicts between trees is small, so the issue
is merely to detect them. When k is O(logn), as leaves try O(logn) colors (to ensure to be
successful w.h.p.), many conflicts may arise.

Growing balanced augmenting trees. To overcome Technical Challenge 1, when growing
the trees, we ensure they all grow at the same speed. More precisely, the GROWTREE algo-
rithm (Algorithm 4) takes as input a forest F' and finds exactly 8 children for each leaf in F'
for [logg(A/(ak))] rounds so that each tree has Q(A/Bk) leaves. Nodes then sample a precise
number of colors to ensure that w.h.p. the majority of them finds enough leaves to grow trees to
O(A/k) leaves (Lemma 6.4).

Bounding the number of spoiled nodes. When a leaf v attempts to recolor its path to some
uncolored node, it must sample colors in Vo n W,. This might be a problem for two reasons.
First, if v is unpromising (Lemma 5.1). The second possibility is it that its k colors in Uo n ¥,
are blocked by external neighbors. The latter eventuality demands more caution. In particular,
if we allow adversarial behavior on the outside, it might be that external neighbors block the one
remaining color in ¥ for all nodes.

Definition 10 (Spoiled Node). We say a node v € C'is spoiled if | Vo N, | < k/2 after conditioning
on the outside.

We deal with Technical Challenge 2 in two ways. We previously computed a colorful matching
(Definition 6) of size ©(d¢) for a large enough constant to reduce the number of unpromising nodes
to a sufficiently small fraction of C' (Corollary 5.2). Second, we show that it is very unlikely that
nodes outside of C' block more than k/2 colors for a large fraction of C. It stems from the two
following observations

e external neighbors in other cliques try O(logn) uniform colors in [A + 1], and

e the preconditioning of almost-cliques reduced the external degree to emax = O(A/logn).
(Theorem 3)

So, with high probability, Q(A) nodes in C have (k) available colors in W¢. More precisely, in
Lemma 6.1, we show that with high probability over the randomness outside of C', at most 3A/«
nodes are spoiled in C. Then, Lemma 6.4 show that with high probability over the randomness
inside C, all trees have O(A/k) unspoiled leaves.

Harvesting trees. While Technical Challenge 2 was about the conflict with external neighbors,
Technical Challenge 3 is about the conflicts inside the clique. Say leaves sample one color. For a
fixed tree T, and one of its unspoiled leaves v, the expected number of colors blocked in ¥ N W,
by sampling in other trees is (k — 1) - ©(A/ak) - k/A = O(k/a). When k = Q(logn), we get
concentration and show that w.h.p. a constant fraction of the leaves still have ©(k) colors available,
even after revealing the randomness in other trees. Therefore, as long as k = Q(logn), HARVEST
colors a constant fraction of the uncolored nodes with high probability (Lemma 6.6).

When k£ = O(logn), leaves sampling ©(log n) colors ensure w.h.p. that every leaf has ©(logn)
colors to choose from. The drawback to such intensive sampling is that we must resolve conflicts
between trees. Using the high expansion property of the sparsified graph, it is possible to deliver
to every node in the clique the list of ©(logn) available colors to each of the k uncolored nodes.
Conflicts are then resolved locally (by every node).
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6.2 Growing the Trees

Algorithm 4. GROWTREE (for the /-th iteration of AUGPATH).
Input: An almost-clique C' with |C| = k < A/(af) uncolored nodes, a colorful matching M of
size at most 2« - do and at most A/a unpromising nodes.

Define d = [loglg ﬁj and Uy = C.
For i =0 to d,

(G1) If i < d, let © = 5.

For i = d, nodes compute the exact size of |Uy| in O(d) rounds and set z = [a%‘le.

Each u € U; picks a set S, of x fresh random colors from L3 ,(u).

(G2) For each active node u € U;, let S;, < S, be the colors ¢ that are

i) unused by colored external neighbors of u and ¢ ¢ L ¢(| o C' 0 N(u));

ii) unused by nodes of B; = Ug; U M;

iii) uniquely sampled: ¢ ¢ UveUi\{u} Sy; and

)
)
i)
)

iv) used by a colored node v, . € N(u) nC

(G3) For each u € Uj;, choose y, arbitrary colors ci,...,¢,, € S where
B ifi<d
o=V 18| iti=d

Define v, ; as the node of (IN(u) n C)\B; with color ¢; for all j € [y,].

Let Uiy1 = Uyev{vut, -+, Vuy,} and m(vy ;) = u for all j € [y,] and u € U;.

Bounding Conflicts with the Outside. In the next lemma, we bound the number of spoiled
nodes in C' (Definition 10). Note that the probability is taken only over the randomness of nodes
outside of C.

Lemma 6.1. Consider an almost-clique C. With high probability over Ls ,(V\C'), almost-clique C
contains at most 3A /o spoiled nodes.

Proof. By Corollary 5.2, the clique contains at least |C| — A/a = (1 —¢ — 1/a)A = (1 — 2/a)A
promising nodes, and each such node v has at least k colors in ¥¢o n W,,. Let us focus on a set S of
exactly (1 —2/a)A promising nodes. For each selected promising node v € S, we focus on exactly
k colors ¥ < Ue n U,,. We consider the k|S| pairs (¢,v) where v € S is selected promising node
and c is a color ¢ € ¥/ from its selected colors.

Let us denote by Nexi(v) = N(v) n Ug ~c C', the external neighbors of v that might get
(re)colored. Let B = | J,cg Next(v) the set of vertices that are external neighbors of at least one
node in S. Recall that, by Theorem 3, for each v € C | Next(v)| < €max. For each u € B and color
ce [A+1], let X, . be defined as*:

N h that v
Nop — |{v € S n N(u) such that ce U }| e e 3 ()]

emax

“where I[£] is the indicator r.v. of some event &
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counting how many times a u € B is in conflicting with the selected nodes S over a selected color
¢, re-scaled by 1/emax s0 Xy, is distributed in [0, 1].

Let X = > cp Zce[AH] X.. Each edge between v € S and u € B contributes 1/ey,x to X
for each color ¢ € W, such that ¢ € L3y(u). There are at most |S|emax such edges, and each
color ¢ € W) is sampled in Lj,(u) with probability at most 205/A. By linearity of expectation,
E[X]<|S|-k- % = O(kp) because |S| = ©(A). Note epayx cancelling itself.

Random variables X, . are independent, since each color is sampled independently. By Chernoff
Bound (Lemma A.2), Pr[X > 2E[X]] < exp(—E[X]/3) < 1/poly(n). Therefore, there are at most

€max ° 40% 151 < k|S|/(4cr) conflicts between the selected colors of nodes in S and the colors sampled

by their external neighbors (by Eq. (3)). Therefore, at most % < A/a node are left with

fewer than k/2 colors in ¥,, n Y. |

Growing the Forest. Henceforth, we fix the random lists L3 ,(V\C) such that C' contains at
most 3A/a spoiled nodes, which holds w.h.p. by Lemma 6.1. Let U = |J, U; and 7 be the values
produced by Algorithm 4, the graph F' = (U, E(F')) with E(F) = {uw(u) : u € Uso} is a forest.
Suppose that at each Step (G3), each u satisfies |S,| = y,. Then F' is a forest of S-ary trees of
depth d + 1 and at most 6A/(ak) leaves. We reveal the randomness inside C' as we grow the tree,
conditioning at each growing step on arbitrary randomness from nodes that are already in the
forest. The following lemma shows that it is unlikely that nodes sample bad colors.

Lemma 6.2. Let 0 < i < d. Then, for any lists in ng(Ugi), if a node u samples a fresh color c,
we have
Pr [c violates a condition in Step (G2)| Ug;] < 12/a .
ce[A+1]

Proof. For a fixed i < d, we have |U;| < k3". We bound the number of colors ¢ might be conflicting
with for each item in Step (G2):

i) Node u has at most €A colored external neighbors (Theorem 3, Property 2). The number of
colors in L3 ¢([erzc C' N N(u)) is at most 40Bemax < A/ by Eq. (3).

ii) For i < d, the number of nodes in Ug; is Z?:o U;| < 2kB% < 2A/a. Adding the colorful
matching, at most A/a+2adc < (1/a+2ea)A < 3A/a nodes are colored in B; (by Eq. (2)).

iii) The number of colors sampled (and thus blocked) by active nodes is z|U;| = 2k3" < 6k3% <
6A /o where the first inequality comes from i < d.

iv) The number of uncolored nodes in C' is at most A/af; hence, the number of colors used in
N(u) n C is be at least® (1 —e)A — A/aB = (1 —2/a)A by Eq. (2).

Summing all failure probabilities with an union bound, we get the claimed bound. |
Since nodes sample Q(logn) colors when i < d, Lemma 6.2 implies the following corollary.
Corollary 6.3. With high probability over LS((U@), for each i < d and u e Uy, |5 = 8L y..

Because of rounding in d, trees might not contain enough leaves after d growing steps. Further-
more, we also need to show that most leaves are unspoiled.

5Note that, apart for the colorful matching, each node in C uses a different color
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Lemma 6.4. Let Uy be the set given by Algorithm 4. With high probability over ng(Ud), the
number of unspoiled nodes in Ugyq is at least Ao

Proof. For each node u € Ug_1, define a random variable X, ; for each of its sampled color i € [z].
Let X, ; be one if and only if the i-th color it samples 1) has no conflict in Step (G2) and 2) the
corresponding v, . is unspoiled. The analysis is similar to Lemma 6.2 but has to be a bit more
careful. Namely, failures caused by i), ii) and iv) remain unchanged but the number of colors
sampled by active nodes is different. Furthermore, we now have to filter out spoiled nodes.

e Spoiled nodes are easily dealt with by Lemma 6.1. Indeed, there are at most 3A/a spoiled
nodes in C. Since each such node blocks one color, they only amount to a small fraction.

e Since nodes try z = [6A/(a|Uy|)] colors, the total number of colors sampled by active nodes
is z|Uy| < 6A/a.

If we union bound over all possible failures for a random color ¢ € [A + 1], we get Pr[X, . =
1|U\{u}] < 15/a < 1/25. By Markov inequality, a node u € U, samples more than z/5 bad
colors w.p. at most gz % = 1/5. Giving priority to nodes of lowest ID, the martingale inequality

—Q(|Ual)

(Lemma A.2) shows that, w.p. 1—e , at most |Uy|/4 nodes sample more than x/5 bad colors.

Note that, by definition of d,

A

af

Therefore, 1 — e~ ¥Val) > 1 — ¢=%A/8) > 1 — poly(n) (because A € Q(log?n)) and the previous

claim holds with high probability. That means that w.h.p. the number of unspoiled nodes in Uy
is at least

|Ud| _ k‘ﬁd > kﬁlogﬁ(A/ak)—l >

|Ud‘ 4x ‘Ud‘ 6A def | GA
-5 > 5 \alug 1 (because z = [alUle)
Ao — A
_ 84/a — |Udl > — (because |Uy| < A/a)
5 o
which concludes the proof of the Lemma. |

6.3 Harvesting the Trees

In the previous section, we argued that there were A/« unspoiled leaves. In this section, we argue
that enough of these leaves find good colors to color a constant fraction of uncolored nodes. While
in Lemma 6.4, we bound from below the total number of unspoiled nodes, because all trees have
roughly the same size (at most 6A/ak each), a simple counting argument gives the following claim.

Claim 6.5. There are at least 0.9k trees with A/(2ak) unspoiled leaves.

Henceforth, we will be focusing on those trees with many unspoiled leaves. Note that at
Step (G2) of Algorithm 4, we ensure that if a leaf finds a color, each node on its path to the root
can change its color without creating conflicts. Hence, this section focuses on counting successful
leaves in each tree.

When £ is large. Assume first that k£ > Q(logn).
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Algorithm 5. HARVEST (for k greater than Q(logn)).
Input: the forest F' of augmenting trees computed by Algorithm 4.

(H1) Leaves v € F try one fresh color ¢, € L§(v). We call v successful if it can adopt c,, and
thereby recolor the path in F' connecting v to its uncolored root. Leaves can learn if they
are successful in O(d) rounds.

(H2) Each leaf can learn in O(1) rounds if a leaf from another tree sampled the same color
(by Claim 4.7). We call a tree successful if it has at least one successful leaf that is not
conflicting with leaves from other trees.

(H3) If a tree is successful, it can recolor the path from its root to its successful leaf in O(d)
rounds.

Lemma 6.6. Let C be a clique with 5 < k < A/(af) uncolored nodes. In Step (HS3), with high
probability over L3H7£(C), we color at least Q(k/a) uncolored nodes.

Proof. Let k' = 0.9k and T4, ..., Ty be k' trees with at least A/(2ak) successful paths to unspoiled
leaves. For each such tree, let us only consider exactly A/(2ak) selected unspoiled leaves. For each
selected leaf v, let us focus on a subset of size k/2 of its palette ¥ n ¥, which we call its selected
colors.

For each i € [k], let X; be the indicator random variable for the event that (1) tree ¢ contains
exactly one selected leaf that samples a selected color, and (2) no other node in the almost-clique
tried the same color as this selected leaf. Note that X; may be expressed as the difference between
two random variables Y; and Z;, where Y; corresponds to the event that at least one selected leaf
of T; tries one of its selected colors, and Z; corresponds to at least two selected leaves trying a
selected color or a selected leaf trying a selected color but failing to keep it. We have:

AJ(2ak) 1 6A/a
Pr[Xi:1]>A'£- 1—ki/2+1 . 1_i
20k 2A A A

The first term (A/(2ak)) corresponds to doing a sum over all selected nodes in T; of their
probability of being the selected node that succeeds. The second term (k/(2A)) corresponds to the
probability that each selected node samples one of its selected colors. Call this color c¢. The third
term corresponds to all other selected leaves of T; sampling neither one of their selected colors nor c.
The last term corresponds to all leaves not trying c¢. Using 1—2/2 > e~ for x € [0, 1] (Lemma A.1),
Pr[X; = 1] = e %% /(4q). Let X = Zf;lloo X;, by linearity E[X] = K - e~ 1%?/(4a) = Q(k/a).

Consider similarly the random variables Y; and their sum Y. We have:

) 1
- {1=1-(1- 2 >
Prlyy =1] =1 <1 2A> “ 8a+1

Therefore, E[X] and E[Y] are both of order ©(k/a). Additionally, Y is 1-Lipschitz and 1-
certifiable, and Z = Y — X is 2-Lipschitz and 2-certifiable. Hence, by Lemma A.4, Pr[X <
kK -e=12/% /(8a)] < exp(—Q(k/a)). Since X is a lower bound on the number of trees that successfully
recolor their root, at least 2(k/a) uncolored nodes get colored, w.h.p. |}

Coloring the last nodes. Assume now that only £ = O(logn) uncolored nodes remain.
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Algorithm 6. HARVEST (for k£ smaller than O(logn)).
Input: the forest F' of augmenting trees computed by Algorithm 4.

(L1) Leaves try (8 fresh colors. A leaf keep its color if it not used by any colored neighbor nor
tried by external neighbors.

(L2) Via simple aggregation on the augmenting tree, each uncolored node v learns a list S, of
up to O(k) candidate colors that its leaves could use to recolor themselves.

(L3) After some routing, the whole almost-clique knows about all of {S,,v € C }. All nodes then
locally compute the same matching of size (k) in the graph with vertices C' U [A + 1] and
edges (v,c) iff c € S,.

Sending the sets {S,,v € C} in Step (L3) is done by RANDOMPUSH.

Algorithm 7. RANDOMPUSH.
Input: An almost-clique C' with = messages.

For each node v that knows at least one message and each incident edge, v picks a random
message that it knows and sends it along the edge.

Lemma 6.7. Let z < 3% messages of O(logn) bits each known by exactly one node in the sparsified
almost-clique C. After O(log A) iterations of RANDOMPUSH, each node in the sparsified almost-
clique learns all © messages, with high probability.

The proof of Lemma 6.7 follows easily from the expansion of the sparsified almost-clique (see
Lemma 4.5), and we defer it to Appendix B.3.

Lemma 6.8. Let C be a clique with k < 8 uncolored nodes. At the end of Step (L3), with high
probability over Lgva(C), we color at least Q(k/a) uncolored nodes.

Proof. There exist k' = 0.9k uncolored nodes with at least A/(2ak) successful paths to unspoiled
leaves.

Let us now argue that an uncolored node v with this many successful paths in its tree has them
find at least k/4 distinct colors, w.h.p. Let us associate to the ith such leaf a random variable X;
such that:

e If previous leaves discovered k/4 distinct colors already, then X; = 1 w.p. 1,

e If previous leaves discovered fewer than k/4 distinct colors, then X; = 1 iff leaf number ¢
discovers a new color.

When previous leaves have discovered fewer than k/4 distinct colors, since the i-th leaf is
unspoiled, it still has at least k/4 colors it can discover. The probability that it finds one of them
is at least:

E\? 1 kB kB
EXZ'=1— 11— — >1-— = >
%] ( 4A> 1+ kB/(4A)  4A+EkB ~ BA
where we used Lemma A.1 for the first step and the last comes from A > 2 > kf3.
Therefore, E[Y ), X;] = ﬁ-g—g = /(10c). The series of X; satisfy the conditions of Lemma A.2,
hence it has value at least 3/(20c), w.h.p. By definition of {X;}, if 5/(20a) > k/4, this gives
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that at least k/4 colors are found in the tree, while if 3/(20c) < k/4, we only get that at least
B/(20a) = k/(20cx) colors are found in the tree (as g = k).

We now argue that our algorithm has the claimed runtime. Nodes can share their sampled
colors with nodes in other cliques in O(log A) rounds as the total amount of bits to communicate
is O(logn - log A).

In each tree, the root learns a subset of the colors its leaves can pick in O(log A) rounds as
follows: in each round, each node that knows about an available color that it has not yet sent
towards the root sends as many such colors that it can towards the root (with a maximum of
log A/logn colors per round). In O(log A + k - log A/logn) rounds, the root learns about a set S,
of Q(k) colors, if that many are available in the tree.

Each root v crafts a message of the form (ID,,c) for each of the colors ¢ € S, and selects
a subset of k of them if it has more than k. The almost-clique then runs RANDOMPUSH with
O(k?) = O(B?) messages for O(log A) rounds with the selected messages. Note that the bipartite
graph with vertices C' U [A + 1] and edges (v,c) such that ¢ € S, is now known to all nodes in
C. Moreover, this graph has Q(k?) edges and maximum degree k. Therefore, it has a matching of
size (k) (which can be computed locally by a simple deterministic greedy algorithm). It follows
that all nodes compute the same matching without extra communication and recolor the path
corresponding to each edge in the matching in O(d) rounds. Therefore, at least Q(k) nodes get
colored. |}

7 Colorful Matching

In this section, we show the following theorem:

Theorem 4. Let K > 0 be a constant such that K < 1/(18¢). There is a O(log A)-round algorithm
computing a colorful matching of size at least K -dc with high probability in all cliques C' of average
anti-degree do = 1/(2a).

Throughout this section, we fix a clique C and fix the colors used and sampled outside of C
adversarially. At the beginning of this step, nodes of C' are uncolored. For a set D of colors,
define availp(e) to be the number of colors that an anti-edge e can adopt in D without conflicting
with external neighbors. This includes all possible colors in Lo that external neighbors might
use to color themselves. If D contains a single color ¢, we abuse notation and denote availp(e)
by avail.(e) € {0,1}. By extension, for a set F of anti-edges availp(F) = ), pavailp(e). A
similar quantity was introduced by [ACKI19]. A major difference with [ACK19] is that colors
become unavailable if an uncolored external neighbor merely samples it in Ly. In particular, one
uncolored external neighbor blocks ©(logn) colors. We can afford to lose so many colors because
of preconditioning and (in contrast to Section 6), at this stage Q(A) colors are still available in the
almost-clique. The following lemma states that, at the beginning of this step, many edges have
many available colors regardless of conditioning of random variables outside of C.

Lemma 7.1. Let D = [A+1] and F be the set of all anti-edges in C'. For any (possibly adversarial)
conditioning outside of C, we have availp(F) = dcA?/3.

Proof. For a fixed edge e € F', we bound from below its number of available colors. Each colored
neighbor blocks at most one color. Observe that to compute a colorful matching, uncolored nodes
use only colors sampled in Ly ; for i € [O(1/¢)] and Lj. By Claim 4.1, an uncolored neighbor in
another clique blocks at most Ly.x = O(logn) colors. Since a node in C has at most €A colored
neighbors (necessarily outside C') and at most ey,ax = A/ neighbors in other cliques (by Property 3

26



of Theorem 3 and Eq. (3)), we have availp(e) = A —eA — Lpax - A/ = (1 — 2¢)A. Summing over
all edges, we get

(1-20)A>dcA?/3. |

availp(F) = ZavailD(e) >
e

To compute a colorful matching, we greedily add same-colored anti-edges to M. Each time we

do so, we remove the color of that edge from D, which then becomes unavailable to other edges,
and we remove the matched edge as well as all its adjacent edges from F. We argue that as long
as the total number of available colors is large, there must be colors available to many edges. We
call a color ¢ heavy if avail.(F) > dcA/20. The following claim is immediate from the limited
contributions to availp(F') from both all non-heavy colors and from each heavy color individually.

Claim 7.2. As long as availp(F) > dcA?/6, there are at least A/10 heavy colors in D.

When d¢ is large. We first run the following algorithm. It produces a large enough matching in
cliques with d¢ > S.

Algorithm 8. MATCHING.
Input: a constant 0 < K < 1/(18¢). B )
Output: a colorful matching M¢ of size K - d¢ in each almost-clique such that do = 5.

Initially, Mo = & for each almost-clique C.
For i =1to 5-10%- K, in each almost-clique C in parallel:

1. Each uncolored v € C is active. It samples each ¢ € [A + 1] independently into L ;(v) with
probability p = 1/(4A).

2. Each v € C sampling less or fewer than 1 color (|La;(v)| # 1) becomes inactive.

3. Each v € C sampling a single color ¢ becomes inactive if ¢ is used by a colored external
neighbor, by an anti-edge in M, or is sampled by an external neighbor of v.

4. Fach active node retains its color if it has an active anti-neighbor with this color. If the
same color is used by two or more anti-edges, we keep the anti-edge with the smallest ID.

Lemma 7.3. Let K > 0 be a constant such that K < 1/(18¢). W.p. 1 —exp(—Q(dc)) over the
randomness in Ly(C), the set Mc produced by MATCHING is a colorful matching in C of size at
least K - d¢.

Proof. Suppose availp(F) > dcA?/6. For each color ¢, define A, as the indicator random variable of
the event that at least one anti-edge in C' samples ¢. For a heavy color ¢ € D, we bound Pr[A4, = 1]
from below by the probability that exactly one anti-edge samples c:

Pr[A. =1] = Z Pr[endpoints of e are the only nodes to sample c|
ecF
> avail.(F) - p* - (1 —p)
- deA 1
20 16A?
> o
320eA

IC]—2

-exp(—2p|C) (because c is heavy)

(because |C] < (1 +¢)A)
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By Claim 7.2, there exist at least A/10 such heavy colors in D. Therefore, E[A] = E[Y, ., Ac] >
dc/320e. Since each color is sampled independently, random variables A. are independent and we
can apply the classic Chernoff bound. With probability 1 — exp(—Q(d¢)), we have A > d¢/640e.

Random variable A is not the number of anti-edges we can insert in M because we do not
account for nodes sampling more than one color (Step 2). We emphasize that nodes can adopt any
color available to them: by definition of avail it cannot be conflicting on the inside nor with colored
nodes in M. Let B, be the random variable equal to one if and only if at exactly one anti-edge
sampled ¢ (i.e., A. = 1) and at least one endpoint becomes inactive in Step 2. Condition on A, =1
and let e be the anti-edge that sampled c¢. Since an endpoint samples each color independently
with probability p, it only samples ¢ with probability (1 —p)® = exp(—1/2) = 3/5 (by Eq. (11)).
Therefore, the probability that one endpoint of e sampled more colors is at most 2 x (1—3/5) = 4/5.
We overestimate the number of anti-edges inserted in M by B = )., B. which, in expectation,
is E[B] = > .pE[B:A. = 1]E[A.;] < (4/5) - E[A]. Random variable B is 2-Lipschitz. It is
also 2-certifiable, because to certify that B, = 1 we can point at two colors sampled by one of
the endpoints. By Talagrand inequality (Lemma A.4), with probability 1 — exp(—Q(dc¢)), we add
A—-B>E[A-B]/2> % anti-edges to the colorful matching.

This shows that as long as availp(F) > dcA?/6, we add % anti-edges to the matching at
each iteration. Hence, after 5-10% - K iterations, the matching has K - d¢ anti-edges. Observe that
when we insert an anti-edge in Mg, we remove one color ¢ from D and at most 2¢A anti-edges
from F. Color ¢ contributed at most avail.(F) < dcA < eA? to availp(F) and each anti-edge
at most A. Inserting an anti-edge in M¢ decreases availp(F) by at most 3eA2. If, after some
iterations, the number of available colors drops below dcA2/6, we must have inserted at least

JgaA;/G =dc/(18¢) > K - d¢ anti-edges into M. |

When d¢ is small. If dc < O(logn), Lemma 7.3 fails to compute a colorful matching with high
probability. In this section, we explain how to compute a large enough matching in cliques with
small anti-degree. Note that nodes can count the number of anti-edges in the matching in O(log A)
rounds. If they find fewer than K/ anti-edges, it must be that dc < 3. We then uncolor all nodes
in C and run Algorithm 9.

Intuitively, since do > (1), if we repeat the previous procedure ©(logn) times, we would get

. . _o(d ©doen) o .
a failure probability of (e (dc )> = 1/poly(n). This implies that even when d¢ is a small

constant, a colorful matching of size ©(d¢) exists. This was, in fact, already shown in the first
palette sparsification theorem.

Lemma 7.4 ([ACK19, Lemma 3.2]). Let C be a e-almost clique, D < [A + 1] and F a subset of
anti-edges in C. Fix any partial coloring given by Theorem 3 where nodes of C' are uncolored and
availp(F) = dcA?/3. Suppose each node sample colors in [A + 1] independently with probability
¢ yg for some constant y(e) = v > 0 (depending on € but not n nor A). Then there exists a
colorful matching of size at least dc/(414¢€) with high probability.

Note that our definition of avail is stronger than the one of [ACK19] because it removes colors
sampled by active external neighbor. Regardless of that, Lemma 7.1 shows that we have a large
number of available colors, which is the only requirement for the proof of [ACK19].
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Algorithm 9. MATCHING (for almost-cliques C with do < 3 in parallel).

1. Each v € C samples each ¢ € [A + 1] into L3 (v) independently with probability g S fy%.

2. Each node computes S, & L% (v)\L3(V\C), the set of colors that do not collide with those
of external neighbors.

Let 8! < {ce S, : Jue C\N(v) such that ¢ € S,} be the colors of v sampled by at least
one anti-neighbor.

3. We count the number of candidate anti-edges in C: the number of pairs (uv, ¢) where uv is

an anti-edge and ¢ € S/ N S/, If there are more than U = 442K d¢3? candidate anti-edges,

we select a set of colors D such that the number of candidate edges with that color is at

least D and at most O(3%). If there are less than U candidate edges, we let D = [A + 1].
4. Each node v forms messages (ID,,c) for each c € S, n D.

Use RANDOMPUSH to disseminate all messages (ID,,c) within C.

Each node v with ¢ € S, n D forms a message (ID,, ID,,c) for each anti-neighbor u with
ceS, nD.

Use RANDOMPUSH to disseminate all messages (ID,,, ID,,c) within C.

5. Compute locally the colorful matching using anti-edges disseminated in the previous step.

Lemma 7.5. Let K € (0,1/(18¢)) be a constant. Consider all cliques with 1/(2a) < do < .
If nodes sample each color independently with probability q = 7% where v is the constant from
Lemma 7.4, then in each clique C, with high probability, there exists a colorful matching that does
not conflict with nodes on the outside. Moreover, Algorithm 9 finds this matching in O(log A)

rounds.

Proof. We first explain how nodes compute S]. Each node v starts by broadcasting Lj(v) in
O(log A) rounds (since |L3(v)] = O(logn)). We run a BFS for each color; two hops suffice by
Claim 4.7. To learn S, we count the number of nodes that sample each color using the BFS trees.
A node needs to communicate over an edge only if both endpoints sampled the same color. Hence,
we send at most O(logn -log A) bits on an edge for each round of the BFS. In O(log A) rounds, all
nodes v € C know for each ¢ € S, how many other nodes u € C have ¢ € S,,. If this is more nodes
than they know from their neighborhood, they must have an anti-neighbor with that color.

A candidate edge is a pair (uv,c) where u and v are anti-neighbor and ¢ is a color such that
ce S! n S!,. Namely, we could add edge uv to the colorful matching using color c. For each color,
we elect a leader amongst nodes that sampled that color. Using aggregation on 2-hops BFS trees,
each leader learns the number of candidate edges for its color in O(log A) rounds. We then run a
BF'S in the whole clique C' and aggregate the total number of candidate edges.

Suppose that the number of candidate edges is at most U o 44?2 . Kdcp? = O(B?). For each
candidate edge (uv,c), we craft two messages (ID,,c) and (ID,,c). Note that a node can be
in O(B?) anti-edges. The total number of messages is O(3%); hence, can be disseminated to all
nodes in O(log A) rounds by RANDOMPUSH (Lemma 6.7). After this step, a node v knows all
candidate edges it belongs to. We run one extra RANDOMPUSH for all nodes to know all candidate
edges. By Lemma 7.4, a colorful matching of size K dc must exist, and nodes can find it with local
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computations.

Suppose now that the number of candidate edges is more than U. By the same argument
as in Claim 4.2, each node is contained in at most 2v?3? candidate edges with high probability.
Therefore, the colorful matching can be computed by a simple greedy algorithm from any set F' of
at least U candidate edges: start with an empty matching; as long as the matching has not size
Kdc, insert an arbitrary edges from F' into the matching and remove adjacent candidates edges
from F. When we add an edge to the matching, we remove at most 47?32 edges from F. Since we
assumed I contained U = 442 - Kdg3? anti-edges, the algorithm always finds a colorful matching
of Kdg edges. To select and disseminate a set F' of anti-edges, we select a subset D of the colors,
enough to have U candidate edges but small enough to be able to disseminate the candidate edges
with RANDOMPUSH. Using the same process as when the number of candidate edges is small, but
using only colors of D, we can disseminate all selected candidate edges in O(log A) rounds and
compute the colorful matching locally.

A simple recursive algorithm on the BFS tree spanning C' selects a subset D of the colors such
that the number of candidate edges with that color is at least U and at most O(3%). Recall that
each color has a unique leader which knows the number of candidate edges for its color. We say a
subtree holds candidate edges with color c if the leader for color ¢ belongs to this subtree. Note that
when we compute the total number of candidate edges, each node learns the number of candidate
edges held their subtree. Let v be the root of the BFS tree spanning C' and z1, ..., z; the number
of candidate edges held by each subtree. Let i be the smallest index in [t] such that j<i%i = U.
We select all colors whose leaders are in subtrees 0 to i — 1. We selected Y. _, z; candidate edges.

We recursively run the algorithm on the i-th subtree to find U — (Z

clear that we select at least U candidate edges. We do not select more than O(/3?) edges because
each color group contains at most O(3%) edges. It is easy to see that the algorithm explore the
tree top to bottom once as information can propagate independently in each subtree. In O(log A)
rounds each leader knows if its color was selected. Each leader relays the information to nodes of
its group in O(log A) rounds. At this point each v € C' knows which color belongs to a selected
candidate edge, i.e., colors such that c€ S, n D. |

7 <t

j<i xj) candidate edges. It is

8 Lower Bound

As discussed in Section 2.3, at its core, our lower bound result is based on proving a lower bound
for distributed computing a perfect matching in a random bipartite graph. More concretely, let B
be a bipartite graph on nodes V' x C, where V models n nodes and C' models n colors. B contain
each of the n? possible edges between V and C with probability polylogn/n. In the following,
we show that computing a perfect matching of B by a distributed message passing algorithm on
B requires 2(logn/loglogn) rounds, even in the LOCAL model (i.e., even if the nodes in B can
exchange arbitrarily large messages with their neighbors in B). We start with a simple observation
regarding the structure of perfect matchings in bipartite graphs.

Lemma 8.1. Let H = (Vg, Ey) be a bipartite graph, let vog € Vi be a node of H, and for every
integer d = 0, define Vg < Vi be the set of nodes at distance exactly d from vg in H. Then, if
H has a perfect matching, for every perfect matching M of H and for every d = 0, the number of
edges of M between nodes in Vy and nodes in Vi1 is equal to

i

Sd £ Z(—l)i : |Vd|-

1=0
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Proof. We prove the statement by induction on d. For d = 0, we have V) = {vp} and thus clearly
the number of matching edges between Vj and V4 must be Sy = |Vy| = 1. Let us, therefore, consider
d > 0 and assume that the statement holds for all d’ < d. First note that for all d > 0, we have
Sq = |V4|—S4-1. Note that all neighbors of nodes in V; are either in V;_; or in V;,1. Because every
node in V; must be matched, the number of matching edges between V; and V1 must be equal to
|V4| minus the number of matching edges between V;_1 and V. By the induction hypothesis, the
number of matching edges between V;_; and Vj is equal to S;_1. The number of matching edges
between V; and V.1 is therefore equal to Sy = |Vy| — S4_1 as claimed. |

Note that Lemma 8.1 essentially states that the bipartite perfect matching problem is always
a global problem in the following sense. In order to know the number of matching edges in a
perfect matching between two sets V; and Vy,1, one must know the sizes of all the sets Vg, ..., Vy.
As sketched in Section 2.3, we can use this observation to prove an Q(logn/loglogn)-round lower
bound for computing a perfect matching in the random bipartite graph B. The formal details are
given by the following theorem.

Theorem 6. Let B = (V uC, Eg) be a random bipartite 2n-node graph with |V| = |C| = n that is
defined as follows. For every (v,c) € V x C, edge {v,c} is in Ep independently with probability p,
where p < polylog(n)/n and p = aln(n)/n for a sufficiently large constant o > 0. Any distributed
(randomized) LOCAL algorithm that succeeds in computing a perfect matching of B with probability
at least 2/3 requires at least Q(logn/loglogn) rounds.

Proof. First note that if p > a/In(n)/n and the constant « is chosen sufficiently large, then B has
a perfect matching w.h.p. This is well-known [Bol98, Section VIL.3] and can be seen by verifying
Hall’s condition.

Let T & n-lnn/Inlnn for a sufficiently small constant n > 0 that will be determined later
and assume that there exists a T-round randomized distributed perfect matching algorithm for
the random graph B. We assume that after T" rounds, every node outputs its matching edge such
that with probability > 2/3, the outputs of all nodes are consistent, i.e., the algorithm computes a
perfect matching of B. Consider some node vg € V u C' and for every integer d > 0, let V; be the
set of nodes at distance exactly d from vyg. We next fix two parameters ¢ = T and h = ¢+ T +2. To
prove the lower bound, we concentrate on the nodes in V}, and the computation of their matching
edges. In a T-round algorithm, a node v can only receive information from nodes within T" hops,
and therefore the output of a node v must be a function of the combination of the initial states of
the nodes of the T-hop neighborhood of v (when assuming that all the private randomness used by
a node v is contained in its initial state). Assume that the initial state of a node contains its ID,
as well as the IDs of its neighbors. Then, v’s output of a T-round algorithm is a function of the
subgraph induced by the (7" + 1)-hop neighborhood of v. The outputs of the nodes in V}, therefore
only depend on nodes in V; forde {¢+1,...,h+T + 1} and on edges between those nodes. And it
in particular means that nodes in V}, do have to decide about their matching edges without knowing
anything about nodes in V.

In the following, we assume that nodes in V}, can collectively decide about their matching edges.
We further assume that to do this, the nodes in V}, have the complete knowledge of the subgraph of
B induced by (Vo u- - uVi_1) U (Vesp U+ U Viyryr). That is the nodes in Vj, have the complete
knowledge of the graph induced by the nodes that are within distance h + T + 1 = £ + 2T + 3 of
vy, with the exception of the nodes in V; and all their edges. Because we want to prove a lower
bound, assuming coordination between the nodes in V}, and assuming knowledge of parts of the
graph that are not seen by nodes in V}, can only make our result stronger. Note that by Lemma 8.1,
the number of matching edges between level V}, and Vj, 1 is equal to Sj, = Z?ZO(—l)i|Vh_,~|, which
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is an alternating sum that contains the term |Vj| (either positively or negatively, depending on
the parity of h — ¢). Hence, given the knowledge of the subgraph induced by (Vp u -+ u V1) U
(Vi1 -+ U Vhiri1), the number of matching edges between nodes in Vj, and nodes in Vj,;1 isin a
one-to-one relation with the number of nodes in V. Without knowing |V;| exactly, the nodes in V},
can therefore not compute their matching edges. Therefore, in order to prove the lemma, we need
to prove that from knowing the subgraph induced by (Vo u - - U Vp_1) U (Vigr U=+ U Vigiri1), the
size of Vj can at best be estimated exactly with probability 2/3.

For this, we define several random variables. Let X, = |V}| be the number of nodes in V%,
i.e., Xy is the random variable that the nodes in V} need to estimate exactly in order to compute
their matching edges. If we define I to be a random variable that describes the knowledge that is
provided to the nodes in V}, to determine X, then we intend to estimate

Dest, K < maxPr (Xg =x¢|K = K)
Z‘e>0

Clearly, if K is the actual state of the subgraph induced by (Vou---uVy_1)u(Vizr U0 Vhirit),
the nodes in Vj, can determine the exact value of X, with probability at most pest,x. To prove
the theorem, we will show that with high probability, K takes on a “good” state K for which
Pest. Kk < 1/2 4+ o(1). For estimating X, correctly, we then either need to have a “bad” K, which
happens with probability o(1) or we need to have a “good” K and estimate X, correctly, which
happens with probability 1/2 4+ o(1). Overall, the probability for estimating X, correctly is then at
best 1/2 + o(1) < 2/3 for sufficiently large n. In order to estimate the probability of X, = z, given
the knowledge of the nodes in V}, we first look at the conditioning on X = K more closely. First
note that by symmetry, the probability Pr(X, = x| = K) only depends on the topology of the
subgraph induced by (Vo u -+ U Vy_1) U (Vog1 U+ U Vyiry1) and not on the set of node IDs that
appear in the part of the graph known by V},. Further, the probability also does not depend on the
edges of the induced subgraph known by V},. The size of X, only depends on the additional edges
of the nodes in X, 1 and X;,1. The probability Pr(X, = z|K = K) therefore only depends on the
sizes of the sets Vp,..., Vo1 and Vpi1,..., Vagrat.

We first introduce the necessary random variables and some notation to simplify our calculation.
For each d € {0,...,h + T + 1}, we define a random variable Xy = |V,|. For convenience, for
every d, we define Vo>q = V; U Vg1 U ... to be the set of nodes at distance at least d from vyp.
Throughout the calculations, we will concentrate on some fixed knowledge of the nodes in V},. We
therefore consider some values xg, x1,...,xp+7+1 and for each d, we define Xy as a shortcut for the
event {X; = x4} that the random variable X, takes the value x4. For convenience, we also define
X4 S Xon--nXyq, Xeg = Xcgn &y, Xoyg S Xgi1n- N Xparat, aswell as g4 def To+- - +Tg_1
and r<q = T<q + 4. Note that for every d > 0, if Vy,..., V41 are fixed and no randomness of
the edges connecting the remaining nodes V>4 to Vi1 U V54 is revealed, then the size X4 of Vjy is
binomially distributed with parameters |V 4| and qq4 Ly - (1 — p)¥a-1. For all d > 1, we therefore
have

n—=x e
Pr(Xq = 24| X<q) = < g <d> ~qzt - (1= gq)" "<, where g = 1 — (1 — p)*e-1. (4)
Let us first look at the probability of seeing a concrete assignment of values xq, ...,z 711 to the

random variable X, including the value of xy for the random variable X, the nodes in V}, need to
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estimate. By applying (4) iteratively, we obtain

Pr(Xcpir1) = Pr(Xegn Xp=x0 A Xoy)
h+T+1
= Pr(Xo)- H Pr(X; = ;| X<;)

ha T4l
= Pr(¥<)- [] ( -<Z> gt (L) T (5)

We next analyze what happens to the above probability if the number of nodes in V is only z, — 1
instead of zy. Our goal is to show that this only changes the probability by a 1 —o0(1) factor. If this
is true for the most likely value x,, this will imply that the nodes in V}, can exactly estimate the
value of X, at best with probability 1/2 4+ o(1). To analyze the above probability if X, = xy — 1,
for all d > 1, we define the even X’ d as follows. If d < ¢, we have X” ' x_yandifd > £, we have

X EXyn{Xp=20—1} N ﬂz €+1{Xi = x;}. We also define A’ ; analogously. We then have

h+T+1
Pr(Xly 1) = Pr(Xeg) - Pr(Xe = zp — 1| Xg) - [] Pr(Xs =] XL)).
i=0+1

In order to compare Pr(X<pi7y1) and Pr(AL, . ,), we therefore need to compare Pr(X, =
xe| X<p) and Pr(X, = xp — 1| X<y), as well as Pr(X; = z;|X<;) and Pr(X; = z;|XZ;) for all
i >{+1. We have

n— Ty _ -
PI"(X(ZJ}@—1|X<@) = <$£_§>.qch 1.(1_q£)" Tgot+l

(n—x<z) q?Z 1 (1_q£)n7m<g+1

zp—1

(n w<z) qZ . (1 _ qé)n—:cge

_ ¢ (1—qu) Pr(X) = &
a (n—$<z+1)'qé PriXe = o¢| X<e). ©

Pr(Xy =z | Xyp)

For the following calculation, we define ¢, ; =1 — (1 — p)*t e, qy,, is the probability that a
node outside Vp U - -+ U V; is connected to Vp, if we assume that Xy = 2y — 1 (instead of Xy = ).
We obtain

Pr(Xp =2 | Xpyy) = Pr(Xepr = 2og1 | Xao A X = 20— 1)

n—=rg—1 g
- ( ) ) ' (q2+1)gc‘Z+1 (1 =qpq)" Tetritl

Ty41

(n—ftge—l) d Top1 1—¢ n—r<pp1+l

_ nmfgl . < Z+1> . <¢> . Pl“(Xg_,_l = Ty41 | Xogn Xy = :Ef)
( muf‘) qo+1 L — e
/ Te+1 n—rg<e41+1

n—Tge — Totl qz+1> < 1 >

_ . | Pr(Xepr = 2o [ Xapn). (7)
n—=Irgy <‘J€+1 1-p -

Finally, for ¢ > ¢ + 1, we have

n—=re +1 ) o
Pr(X; =x; | XL,) = ( ;Z ) g (1 — )it
(2

n—=r+1
= ——— (1—q) -Pr(X; =x;| X).
oy () Pr(X = i ) (8)
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Recall that our goal is to show that if the random variables X1,..., Xy_1 and Xyy1,..., Xpni7a1
that are known to the nodes in V}, are close enough to their expectation, then for all reasonable
values xzy, when conditioning on the values of Xi,...,Xp_1 and Xpy1,..., Xpi741, X¢ = ¢ and
Xy = zy—1 have almost the same probability. We call an instance of the random graph in which the
values of X1,...,Xp_1 and Xyy1,...,Xpi741 are close enough to their expectation well-behaved
and we formally denote this by an event W. We next define the event W that specifies what it
means that an instance is well-behaved.

We assume that the probability p that determines the presence of the individual edges is equal
to p = f(n)/n, where f(n) > 32Inn and f(n) < polylogn. The event W is defined as follows. For
all de {1,...,h+ T + 1}, it must hold that

[ Xq— f(n) - Xq1| /T f(n) - Xq_1-Inn. 9)

Note that condition (9) and the assumption that f(n) > 32Inn directly imply that Xy < 1.5f(n) -
Xg4-1 (even if X4 1 = 1). Therefore in well-behaved instances, X;/X 1 is at most polylogn. We
choose the parameter 7' = O(Iln(n)/Inln(n)) small enough such that in well-behaved instances,
X0 4 -+ + Xpirs1 < n'/3. Similarly, (9) implies that Xy > 0.5f(n) - X4—1 and thus for any
d = (log n/loglogn), we have X; > n” for some constant v > 0. We next show that a given
instance (i.e., the neighborhood of a fixed node vp in a given random bipartite graph B) is well-
behaved with probability > 1 — 1/n.

To see this, consider a given value d > 1. We know that once X; = z1,...,Xq.1 = 241 is
given, X is binomially distributed with parameters n —z 4 and g4 = 1— (1 —p)®d-1. By a standard
Chernoff bound, for any ¢ € [0, 1], we therefore know that

Pr(| Xy — E[XalXog]| > 6 - E[Xg|Xoa] | Xeg) < 2e70/3E XL (10)

We will see that (10) implies that for every d, Inequality (9) holds with probability at least 1—2/n?.
To achieve this, we first have to understand what the value of E[X 4| X_4] is. We first have a look
at the probability g4 of the binomial distribution underlying X;. We have

gg = 1—(1—-p)" ' <p-xz41 and
- Tg—1 —pTa—1 2 f(n)
@ = 1-—(1—-p* 1 >1-e¢ Zp @a-1— (P ta)” Zprra1 (1= o5 )
We used that for any real value y € [0,1] and any k > 1, we have (1 —y)* > 1 —kyand 1 —y <

Y < 1—y+y> In the last inequality, we have further used that in well-behaved executions,
Tg_1 < n/3. We have E[X4|X<q] = g4 - (n — x~4). We therefore have

E[X4|X<q) < pra—1-n=f(n) x4,
E[Xq|lXea] = < - %) “prg—1-(n — n1/3) = (1 — 2;5;?) ~f(n) - xg-1.

Let & denote the maximum absolute deviation from the expectation that is still guaranteed to be
well-behaved by (9). We can lower bound ¢ as follows

VTf(n) x4y -Inn — 2f2(/7;) S f(n) - zq_1
n
2
VTE[Xg|X<g] - Inn — 2{;15?)
6lnn
\/6E[Xd‘X<d] -Inn = m . E[Xd‘X<d]
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The last inequality holds if n > ng for a sufficiently large constant ng. Together with (10), this
now implies that for all d, (9) holds with probability larger than 1 — 2/n?. Note that there are
less only O(logn/loglogn) different d-values. If n > ng for a sufficiently large constant ng, the
number of different d-values can therefore for example be upper bounded by In(n)/2. In this case,
a union bound over all d-values implies that the probability that an instance is well-behaved is at
least 1 — In(n)/n2.

Let us now assume that we have a well-behaved instance (i.e., that W holds). Consider some

assignment to the random variables X1,..., Xy_1 and Xy q,..., Xpi 741 that are consistent with
(9). Given the values of those random variables, the nodes in V}, have to guess the value of Xj,.
Note that there are extreme cases where the values of Xy,..., Xy 1 and Xy4q,..., Xpype1 only

allow one single value of X, such that (9) is satisfied. We need to show that even when conditioning
on W, this only happens with a very small probability. Let us therefore define an even W < W
as an instance in which replacing X, by X, — 1 or X, + 1 still satisfies (9). Note that the above
analysis has enough slack to ensure that also Pr(W’) > 1—1In(n)/n? if n > ny for a sufficiently large
constant ng. The same analysis for example also works if the fixed constant 7 in (9) is replaced by
any smaller fixed constant that is larger than 6. We therefore have

Pr(W nW)  Pr(W) Inn
Pr(W = = >P 1-—.
VI = =5om ~ Beowy 2 DOV 21
We use z1,...,xy_1 and xy11,...,Thpr7+1 to denote the concrete values of those random vari-

ables. We further define z, to be an arbitrary value such that the values xy, and zy — 1 are both
valid values for X, to make the instance well-behaved. Note that if W’ holds, there is at least
one such value z; and we have seen that even conditioning on W, the probability of W' is still at
least 1 — In(n)/n%. Because we are assuming W, we know that the value z, satisfies the following
condition.

xg=x¢_1-np+0, where |0 € O~/ xy_1f(n)logn) =0 ( W) S Tp_1.
-1

We first look at the ratio between Pr(X, = xy — 1| Xy) and Pr(X, = 24| X~¢). By Equation
zg-(1—gp)
(n—z<¢+1)-q¢

T<pire1 </, we can then bound p; as follows.

2 (1—gq) _ f(n) -z (1+0(Vf(n)log(n)/wa1)) _ 142

,01= S 5SS + Q)"
(n—z<e+1) a (1—#)‘71-])95371'(1—]995571) n®

(6), this ratio is equal to . In the following, we denote this ratio by p;. By using that

In the last inequality, we used that z; = zy_; - np, that z,_; < n'/3, and that zy_; > n* for some
constant x > 0. Similarly, we have

oz (T—qr) 1+ (1=0(\/f(n)log(n)/zq—1)) - (1 — pxe—1) 1
oL = > 7 >1——
(n—rcr+1)-q n - Ppre_q nf1)

We next look at the ratio between Pr(X,, 1 = 241 | XL, ;) and Pr(Xpyq = 241 [ Xopyr). We
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denote this ratio by ps. By Equation (7), p2 can be written as

AN - +1
) n— xéf — T4t <qZ+1> +1 < 1 >n T<l+1
T . R
n— Ty qo+1 I-p

D (xz _ 1) et 1 n—rgot1+1
(P’w'(l—l)’xz)) .<1—p>

< (o) (o) (eity)

< (1 + O(f(”))) ) e*mzl . enp+0(np2)

/3

< (1 N M) . o+ O/ T osm/an) < 1 4 -

nl/3 nf(1)

In the last inequality, we used that because W holds, we have zyp11 < 2 - np + O(y/ f(n)xelogn)
and that xy = n” for some constant v > 0. We can similarly lower bound py as follows.

1/3

o B () ()
- (1 - %) ' (1 - x%) (1+p)"
= (1 — %) .e*mfc;l . (1 — :E%>rz+1 ePm (1 _p2)n
> (1 — O(ff%’)» : (1 — “f;1> (1 — p?n) - enp—rp—O(/nplog(n)/ay)
n 2
o (- (- 242) 1o () 21ty

In the third inequality, we use that for y € [—1,1], it holds that 1 +y > e¥ - (1 — y?). In the last
inequality, we again used that z,_; and x, are both of size = n" for some constant v > 0.

Finally, let us look at the ratio between the probabilities Pr(X; = z; | XZ,) and Pr(X; = z; | X;)
for i > £+ 1. We denote this ratio by p3;, and by using Equation (8), we can bound ps3; as follows.

f(n) on—ag+l ' f(n)
1—O<W <p3,z—m‘(1—%)<1+0 m .

We therefore have htT+1
Pr(X/<h+T+1 W) it

< — . . = 14+ o0(1).

Pr(X<piri1) | W) e H " o

i=0+2
Recall that XSh-ﬁ-T-ﬁ-l = X<g N {Xg = :Eg} N X>g and X/Sh+T+l = X<g N {Xg = Ty — 1} N X>g. We
therefore have

Pr(Xgpiri1 |W) = Pr(Xp=a¢|Xepn Xog 0 W) - Pr(Xop 0 Xog W) and
Pr(Xcpiri1 | W) = Pr(Xp=a2,—1|Xepn XL, W) -Pr(Xop n XL, W)

and thus
Pr(Xp =z — 1| Xeg 0 X, 0 W) Pr(Xg gy V) o(1)
PI‘(X[ = Ty ‘ X<g (@) X>g M W/) Pr(X<h+T+1) ‘ W/) o '
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However, this means that if W’ holds, the interval of possible values for X, contains at least
two values and for any two adjacent values, the conditional probability that this is the correct
guess is equal up to a 1 + o(1) factor. Hence, even for the possible value z} that maximizes
Pr(X, =z} | Xop 0 Xop n W), we have Pr(X; = 2} | Xy n Xop n W) < 1/2 4 0(1). Thus, if W
holds, the nodes in V}, exactly estimate X, with probability better than 1/2 + o(1). Because W’
holds with probability 1 —o0(1), even if the nodes in V}, always succeed in case W’ does not hold, the
probability that V}, can correctly guess Xp is still at best 1/2 4 o(1). If the number of nodes n = ng
for a sufficiently large constant ng, this is at most 2/3, which proves the claim of the theorem. |

We note that the success probability of 1/3 could be boosted significantly in several ways.
First, note that it would not be hard to adapt the proof so that for some constant v > 0, W
allows n” different values for X, and that the probabilities for the n” most likely values are all
approximately the same. This reduces the success probability to n=(1). Further, instead of
looking at one neighborhood in the graph, we could look at polynomially many independent and
disjoint neighborhoods and thus make the success probability even exponentially small in n” for
some constant v > 0.

Given the lower bound on computing a perfect matching in a random bipartite graph, our main
lower bound theorem now follows in a relatively straightforward fashion. The following is a more
precisely phrased version of Theorem 2.

Theorem 7. Assume that each node v of a complete graph K, on n nodes uniformly and inde-
pendently computes a subset S, of the colors {1,...,n} as follows. Each color x is included in S,
independently with probability f(n)/n, where f(n) = cln(n) for a sufficiently large constant ¢ and
f(n) < polylogn. Let G be the subgraph of K,, defined by all n nodes and the set of edges between
nodes u and v with S, N S, # &. Any randomized LOCAL algorithm on G to properly color K,
with colors from the sets S, requires Q(logn/loglogn) rounds. The lower bound holds even if the
algorithm only has a success probability of 2/3.

Proof. We define a bipartite graph B between the set of nodes V' = {1,...,n} and the set of color
C = {1,...,n}. There is an edge between v € V and x € C iff x € S,. We note that since for
every color x and every node v, Pr(x € S,) = f(n)/n and those probabilities are independent for
different pairs (v, x), the bipartite graph on V and C contains each possible edge between V' and
C' independently with probability p = f(n)/n. Further, a valid n-coloring of K, is a one-to-one
assignment between nodes and colors. Therefore, each valid n-coloring of K, that respects the
sampled color set corresponds to a perfect matching in the bipartite graph B between V and C' and
vice versa. Also note that clearly, in the LOCAL model, any LOCAL algorithm on B can be run on
G with only constant overhead, and vice versa (when simulating B on G, each color node = has to
be simulated by one of the nodes v for which x € S,). Hence, any distributed coloring algorithm
for K, that runs on the sampled graph G implies a perfect matching algorithm on B with the same
asymptotic round complexity. The theorem therefore directly follows from Theorem 6. |

References

[AA20] Noga Alon and Sepehr Assadi. Palette sparsification beyond (A + 1) vertex coloring.

In Approzimation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM), volume 176 of LIPIcs, pages 6:1-6:22. LZI, 2020.
4,5

[ACK19]  Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (A + 1) vertex
coloring. In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms

37



[AGG*+19]

[AGM12]

[AKM22]

[AKO18]

[AKZ22]

[AMS96]

[AW?22)

[Bar15]

[BEG18]

[BEPS16]

[BIK*02]

(SODA), pages T67-786, 2019. Full version at arXiv:1807.08886. 1,2, 3,4, 5, 6, 7, 11,
12, 16, 26, 28, 43, 44

John Augustine, Mohsen Ghaffari, Robert Gmyr, Kristian Hinnenthal, Christian Schei-
deler, Fabian Kuhn, and Jason Li. Distributed computation in node-capacitated net-
works. In The 31st ACM Symposium on Parallelism in Algorithms and Architectures,

pages 69-79, 2019. 1, 4

Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via
linear measurements. In SODA, pages 459-467. SIAM, 2012. 3, 4

Sepehr Assadi, Pankaj Kumar, and Parth Mittal. Brooks’ theorem in graph streams: a
single-pass semi-streaming algorithm for A-coloring. In STOC, pages 234-247. ACM,
2022. 4,5

Mohamad Ahmadi, Fabian Kuhn, and Rotem Oshman. Distributed approximate max-
imum matching in the congest model. In 32nd International Symposium on Distributed
Computing (DISC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 7

Sepehr Assadi, Gillat Kol, and Zhijun Zhang. Rounds vs communication tradeoffs for
maximal independent sets. arXiv preprint arXiv:2209.09049, 2022. 4

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. In Gary L. Miller, editor, Proceedings of the Twenty-FEighth
Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania,
USA, May 22-24, 1996, pages 20-29. ACM, 1996. 3

Sepehr Assadi and Chen Wang. Sublinear time and space algorithms for correlation
clustering via sparse-dense decompositions. In Mark Braverman, editor, 13th Innova-
tions in Theoretical Computer Science Conference, ITCS 2022, January 31 - February
3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 10:1-10:20. Schloss Dagstuhl
- Leibniz-Zentrum fir Informatik, 2022. 11

L. Barenboim. Deterministic (A + 1)-coloring in sublinear (in A) time in static, dy-
namic and faulty networks. In Proc. 34th ACM Symposium on Principles of Distributed
Computing (PODC), pages 345-354, 2015. 4

Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-Iterative Distributed
(A + 1)-Coloring below Szegedy-Vishwanathan Barrier, and Applications to Self-
Stabilization and to Restricted-Bandwidth Models. In the Proceedings of the ACM
Symposium on Principles of Distributed Computing (PODC), pages 437-446, 2018. 4

Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality
of distributed symmetry breaking. Journal of the ACM, 63(3):20:1-20:45, 2016. 1, 3,
4, 5,10, 18

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Count-
ing distinct elements in a data stream. In José D. P. Rolim and Salil P. Vadhan,
editors, Randomization and Approximation Techniques, 6th International Workshop,
RANDOM 2002, Cambridge, MA, USA, September 13-15, 2002, Proceedings, volume
2483 of Lecture Notes in Computer Science, pages 1-10. Springer, 2002. 3

38



[Bol9s]

[CCFO02]

[CK10]

[CLP18§]

[CLP20]

[CMO4]

[DDG+14]

[Doe20]

[DPOY]

[EPS15]

[EW13]

[FGH™* 23]

[FHK16]

Béla Bollobds. Random graphs. In Modern graph theory, pages 215-252. Springer,
1998. 5, 9, 31

Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items
in data streams. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno,
Matthew Hennessy, Stephan J. Eidenbenz, and Ricardo Conejo, editors, Automata,
Languages and Programming, 29th International Colloquium, ICALP 2002, Malaga,
Spain, July 8-13, 2002, Proceedings, volume 2380 of Lecture Notes in Computer Science,
pages 693-703. Springer, 2002. 3

Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In
International Symposium on Distributed Computing, pages 148-162. Springer, 2010. 4

Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (A+1)-coloring
algorithm?  In the Proceedings of the ACM Symposium on Theory of Computing
(STOC), pages 445-456, 2018. 5

Yi-Jun Chang, Wenzheng Li, and Seth Pettie. Distributed (A +1)-coloring via ultrafast
graph shattering. SIAM Journal of Computing, 49(3):497-539, 2020. 1, 4, 5, 10, 11, 12

Graham Cormode and S. Muthukrishnan. An improved data stream summary: The
count-min sketch and its applications. In Martin Farach-Colton, editor, LATIN 200/:
Theoretical Informatics, 6th Latin American Symposium, Buenos Aires, Argentina,
April 5-8, 2004, Proceedings, volume 2976 of Lecture Notes in Computer Science, pages
29-38. Springer, 2004. 3

Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Schei-
deler, and Thim Strothmann. Amoebot — A new model for programmable matter. In
Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architec-
tures, pages 220-222, 2014. 4

Benjamin Doerr. Probabilistic Tools for the Analysis of Randomized Optimization
Heuristics, pages 1-87. Springer International Publishing, 2020. 41

Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009. 42

Michael Elkin, Seth Pettie, and Hsin-Hao Su. (2A — 1)-edge-coloring is much easier
than maximal matching in the distributed setting. In Proceedings of the Twenty-Sizth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 355370, 2015. 5, 6, 7

Yuval Emek and Roger Wattenhofer. Stone age distributed computing. In Proceedings
of the 2013 ACM symposium on Principles of distributed computing, pages 137-146,
2013. 4

Maxime Flin, Mohsen Ghaffari, Magnis M. Halldorsson, Fabian Kuhn, and Alexandre
Nolin. Coloring fast with broadcasts. To appear at SPAA’23, 2023. 4

Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local Conflict Coloring. In
the Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages
625—634, 2016. 1

39



[GG23]

[GGR21]

[GH16]

[GK13]

[GK21]

[GKK*15]

[GMT15]

[GZ22]

[HK73]

[HKMT21]

[HKNT22]

[HNT?22]

[HSS16]

Mohsen Ghaffari and Christoph Grunau. Faster deterministic distributed MIS and
approximate matching. In ACM Symposium on Theory of Computing (STOC), pages
to appear, arXiv:2303.16043, 2023. 1, 4

Mohsen Ghaffari, Christoph Grunau, and Véclav Rozhon. Improved deterministic net-
work decomposition. In the Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2021. 1

Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks
ii: Low-congestion shortcuts, mst, and min-cut. In Proceedings of the twenty-seventh
annual ACM-SIAM symposium on Discrete algorithms, pages 202-219. STAM, 2016. 1,
3, 47

Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approximation. In
International Symposium on Distributed Computing, pages 1-15. Springer, 2013. 1, 3,
47

Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler,
faster, and without network decomposition. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10,
2022, pages 1009-1020. IEEE, 2021. 1, 2, 4, 18

Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz
Patt-Shamir. Near-optimal distributed maximum flow. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, pages 81-90, 2015. 1, 3, 47

Sudipto Guha, Andrew McGregor, and David Tench. Vertex and hyperedge connectiv-
ity in dynamic graph streams. In Tova Milo and Diego Calvanese, editors, Proceedings of
the 34th ACM Symposium on Principles of Database Systems, PODS 2015, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, pages 241-247. ACM, 2015. 3

Mohsen Ghaffari and Goran Zuzic.  Universally-optimal distributed exact min-
cut. In ACM Symposium on Principles of Distribtued Computing, pages to appear,
arXiv:2205.14967, 2022. 1, 3, 47

John E Hopcroft and Richard M Karp. An n"5/2 algorithm for maximum matchings
in bipartite graphs. SIAM Journal on computing, 2(4):225-231, 1973. 7

Magnis M. Halldérsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan. Efficient
randomized distributed coloring in CONGEST. In the Proceedings of the ACM Sym-
posium on Theory of Computing (STOC), pages 1180-1193. ACM, 2021. Full version
at CoRR abs/2105.04700. 1, 4, 6, 11, 12, 45

Magnts M. Halldérsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan. Near-
optimal distributed degree+1 coloring. In STOC, pages 450-463. ACM, 2022. 1, 2, 4,
5, 10, 11, 12, 42

Magnus M. Halldérsson, Alexandre Nolin, and Tigran Tonoyan. Overcoming congestion
in distributed coloring. In the Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), pages 26-36. ACM, 2022. 1, 2, 12, 13, 43

S. G. Harris, J. Schneider, and H.-H. Su. Distributed (A + 1)-coloring in sublogarithmic
rounds. In Proc. 48th Symp. on the Theory of Computing (STOC), 2016. 5

40



[HSS18] David G. Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (A + 1)-coloring
in sublogarithmic rounds. Journal of the ACM, 65:19:1-19:21, 2018. 1, 4, 5, 11, 12

[Joh99] Ojvind Johansson. Simple distributed A + 1-coloring of graphs. Inf. Process. Lett.,
70(5):229-232, 1999. 1, 3, 4, 5, 10

[KLM*14] Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sid-
ford. Single pass spectral sparsification in dynamic streams. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 201/, Philadelphia, PA, USA,
October 18-21, 2014, pages 561-570. IEEE Computer Society, 2014. 3

[Lin92] Nati Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193-201, 1992. 1, 3, 4

[Mot94] Rajeev Motwani. Average-case analysis of algorithms for matchings and related prob-
lems. Journal of the ACM (JACM), 41(6):1329-1356, 1994. 7

[MT20] Yannic Maus and Tigran Tonoyan. Local conflict coloring revisited: Linial for lists.
In the Proceedings of the International Symposium on Distributed Computing (DISC),
pages 16:1-16:18, 2020. 4

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. STAM, 2000. 1

[PS97] Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring
via an extension of the Chernoff-Hoeffding bounds. SIAM J. Comput., 26(2):350-368,
1997. 1

[Ree9s| Bruce A. Reed. w, A, and x. J. Graph Theory, 27(4):177-212, 1998. 5, 11

[RGH'22] Véclav Rozhon, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li.
Undirected (1+ ¢)-shortest paths via minor-aggregates: near-optimal deterministic par-
allel and distributed algorithms. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, pages 478-487, 2022. 1, 3, 47

[SW10] Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry
breaking. In the Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 257-266. ACM, 2010. 1, 4, 5, 6, 10

[Tal95] Michel Talagrand. Concentration of measure and isoperimetric inequalities in prod-
uct spaces. Publications Mathématiques de I’Institut des Hautes Etudes Scientifiques,
81(1):73-205, 1995. 42

A Concentration Bounds

Some useful inequalities. We use the following classic inequalities:

Lemma A.1 ([Doe20]). For z € [0,1] and y > 0, we have

1
1+ay

l—z<e®<1- and (1—-x)¥ <

(11)

|8

Chernoff bound with domination. The classical version of the Chernoff bound shows concen-
tration for sum of binary random variables and assumes independence between each variable. We
use a more general form allowing for some dependencies and non-binary variables.
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Lemma A.2 (Martingales). Let {X;}/_; be random variables distributed in [0,1], and X =Y, X;.
Suppose that for all i € [r] and (x1,...,2;_1) € {0,1}1 with Pr[X; = z1,...,X, = x;_1] > 0,
Pr[X;=1|X1=x1,...,X;1 =2;-1] < ¢ <1, then for any 6 > 0,

Pr[ (1+90) qul exp< min(9 ; ) (12)

Suppose instead that Pr[X; = 1| X1 = x1,...,X;-1 = x;—1] = ¢;, q; € (0,1) holds fori,zy,...,x;—1
over the same ranges, then for any 0 € [0,1],

Pr[ Z qZ] exp < 522 iqi> : (13)

Talagrand inequality. A function f(x1,...,x,) is c-Lipschitz iff changing any single x; affects
the value of f by at most ¢, and f is r-certifiable iff whenever f(x1,...,x,) > s for some value s,
there exist r- s inputs x;,, ..., x;, , such that knowing the values of these inputs certifies f > s (i.e.,
f = s whatever the values of x; for i ¢ {i1,...,i,.s}).

Lemma A.3 (Talagrand’s inequality [Tal95, DP09]). Let {X;}!'; be n independent random vari-
ables and f(Xy,...,X,) be a c-Lipschitz r-certifiable function; then fort > 1,

Pr[\f—E[f]\ >t + 30c r-E[f]] < 4'eXP<—8¢%?E[f]>

In the next lemma, [x denotes the indicator random variable of an event X.

Lemma A.4 ([HKNT22]). Let {X;};—, be n independent random variables. Let {Aj}§:1 and

{B; }J 1 be two families of events that are functions of the X;’s. Let f = Z i la,, 9= Zje[k] ]IAijj,
and h = f—g be such that [ and g are c-Lipschitz and r-certifiable w.r.t. the X s, and E[h] = o E[f]
for some constant a € (0,1). Let § € (0,1). Then for E[h] large enough:

Pr[|h — E[h]| > 0 E[h]] < exp(—Q(E[h])).

B Omitted Proofs
B.1 Computing the Almost-Clique Decomposition

In this section, we show the following lemma:

Lemma 4.4. There is a O(log A)-round algorithm computing an e-almost-clique decomposition. It
only broadcasts O(log n/e)-bit messages and samples O(logn/e?) edges per node.
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Algorithm 10. Algorithm computing a e-almost-clique decomposition.
Parameters. Define

e 16A 38443
(5 = E, A= T and g = (5—4

When sparsifiying the input graph. Each node v samples a value r(v) € [A] uniformly at
random. Each node v then computes

e the set F'(v) containing all values r(u) for neighbors u € N(v) such that r(v) < o.
e aset F,(v) of O(logn/§?) random edges using reservoir sampling.
Communication Phase. Each v performs the following algorithm:

1. Send F'(v) to each neighbor in E4(v).
If |F(v) n F(u)| = (1 —§)Ac/A, then u and v are friends.

2. By counting its number of friends in F4(v), v learns if it is popular.

Definition 11 (Friendly edges). For any § € (0,1), we say that nodes u and v are friends if they
are connected, i.e., uv € F, and share a (1 — §)-fraction of their neighborhood, i.e., |[N(u) n N(v)| =

(1—8)A.

To detect friendly edges, the approach of [ACK19] was to sample nodes with probability O(lg’QgA" )

and, for each sampled edge uv, compare the set of nodes sampled in N(v) to that of N(u). This ap-
proach requires nodes to communicate O(log? n) bits with their neighbors (O(log n)-bits identifiers
for O(logn) sampled neighbors); hence, it exceeds the bandwidth requirements of our model.

In recent work, [HNT22] proposed a CONGEST algorithm for solving this task in O(1) rounds.
They devise an algorithm ([HNT22, Algorithm 1]) using families of pseudo-random hash functions to
estimate up to A precision the similarities of two ©(A)-sized sets. They observed it could be used
to compute ACD in a rather straightforward way by using this primitive to compare neighborhoods.
The main obstacle to implement this algorithm in our model are memory constraints: their families
of hash function are non-constructive and of size poly(n).

We note, however, that for this specific use, we can sample a truly random function. To sample
a random function r mapping nodes to values in [A], it is enough if each node v samples a value
r(v) € [A] independently. By [HNT22, Claim 1], the induced random function has few enough
collisions for nodes to estimate the size of their shared neighborhood with sufficient accuracy with
high probability. Furthermore, to do so, nodes need only to know the hash value of their neighbors.
The parameters of Algorithm 10 are set to match the ones of [HNT22, Algorithm 1] with up to
(0/2)A error.

Lemma B.1 (Detecting Friendly Edges, [HNT22, Claim 1 + Lemma 2]). Let ¢ € (0,1/10). For
every pair of adjacent nodes uwv, with high probability, we have that

e if u and v are d-friends, we have |F(v) n F(u)] = (1 — 1.56)Ac/\; and
e if u and v are not 20-friends, we have |F(v) n F(u)| < (1 — 1.56)Ac/A.
The other primitive required to compute the almost-clique decomposition is for distinguishing

between §-popular nodes and those that are not 24-popular.
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Definition 12 (Popular Nodes). For any 6 € (0,1/10), we say u is d-popular if it has (1 — 0)A
friendly edges.

The following lemma states that by sampling edges with probability ©(logn/62A) edges in its
neighborhood, a node can distinguish between it being §-popular and it not being 2J-popular. It
follows directly from the Chernoff bound (Lemma A.2) as the number of sampled edges allows us
to estimate w.h.p. the number of friendly edges up to (6/2)A by sampling.

Lemma B.2 (Detecting Popular Nodes). Let § € (0,1/10). If edges are sampled in Es with
probability p = O(logn/(62A)), then, with high probability, for every node u, we have that

o if u is d-popular, it samples at least (1 — 1.56)Ap o-friendly edges in Es(u);
e if u is not 25-popular, it samples fewer than (1 — 1.58)Ap 26-friendly edges in Es(u).
Lemmas B.1 and B.2 are sufficient to find a d-almost-clique decomposition.

Lemma B.3 ([ACK19]). Let H be the subgraph of G with 26-popular nodes. Let Cq,...,Cy be
the connected components of H with at least one §/2-popular node and Viparse = V'\ UZE C This
decomposition is a 128-almost-clique decomposition.

We are now ready to prove Lemma 4.4.

Proof of Lemma 4.4. Let Viparse, C1, ..., C; be the decomposition described in Lemma B.3. Con-
sider a cluster C; for some i € [t]. By Lemma B.2, nodes can tell if they are ¢/2-popular. Moreover,
the subgraph H (C) of C;, consisting of the sampled edges in Es(-), is a random graph where edges
are sampled with probability O(logn/A). This means that H(C) has a constant rate vertex ex-
pansion (see Lemma 4.5 for a proof of a similar fact). Therefore, in O(log A) rounds, every node
v in the connected component C; knows it belongs to an almost-clique, as well as the identifier of
the 0/2-popular node in C; with minimal ID (used as identifier for the clique) and which edges in
E4(v) are connecting it to Cj. [ |

B.2 Preconditioning Almost-Clique

Theorem 3. Let e € (0,1/3) be a constant independent of n and A, and n be any number (possibly
depending on n and A) such that A/n = Klogn for a large enough constant K > 0. There exists
an algorithm computing a partial coloring of G where all uncolored nodes are partitioned in almost-
cliques Cy,...,Cy for some t such that for any i € [t], almost-clique C; is such that:

1. |CZ‘ < (1 +e)A;
2. IN(v) nCi| = (1 —¢)A for all nodes v € Cj;
3. [N(v) n U]¢ZC| emax = A/n

Furthermore, the algorithm runs in O(log A + logn) rounds, uses O(nlogn) colors from lists
Ly, and samples O(nlogn) edges per node.

Assume we computed an &’-almost-clique decomposition using Algorithm 10 for ¢/ = ¢/3. In
this section, we use this decomposition to compute the partial coloring described in Theorem 3.

Sparse nodes receive slack after a single randomized color trial. Intuitively, this happens because
each non-edge in the neighborhood of a (-sparse node v has both its endpoints colored the same
with probability ©(1/A). Since it has A¢ such non-edges in E(N(v)) (see Definition 3), it receives
Q(() slack in expectation. Formally, this gives the following lemma.
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Lemma B.4 ([HKMT21, Lemma 6.3]). Let v be a (-sparse node. After a random fraction of its
neighbors try colors, it has slack Q(() with probability 1 —e ) Furthermore, if v is a dense node,

it receives slack Q(e,) with probability 1 — e~

In Theorem 3, we want to get rid of high external degree nodes. By Lemma B.4, if a node has
a high external degree, it should also have a lot of slack. Algorithm 11 carefully generates slack to
color all nodes of high external degree.

First, we claim that high-external-degree nodes can be easily detected by randomly sampling
edges.

Claim B.5. There is an algorithm partitioning the dense modes into two classes: extroverted
nodes of external degree at most A/n, and introverted nodes of external degree at least A/(2n).
The algorithm samples O(nlogn) edges per node.

def

Proof. Let epax = A/n. During the streaming phase, a node samples edges with probability p = %.
Once the nodes have computed the almost-clique decomposition, they know which edges connect
them to external neighbor. If a node sampled fewer than 0.758 edges to external neighbors, it
classify itself as introvert; otherwise, as extrovert.

e Consider a node with external degree at most enmax/2. In expectation, it samples pepax/2 <
B/2 edges to external neighbors. By Chernoff, it samples fewer than 0.758 edges with high
probability. Nodes with external degree less than e, /2 are classified as introverts.

e Consider an extroverted nodes, i.e., with external degree at least enax. In expectation, it
samples at least penax = B edges to external neighbors. By Chernoff, it samples at least 0.753
edges with high probability. All nodes with external degree more than e, are classified as
extrovert, w.h.p.

Nodes with external degree between enax/2 and epax can be arbitrarily classified as introvert or
extrovert. |

Definition 13 (Extrovert/Introvert). An almost-clique is extrovert if it has more than 2¢’A ex-
troverted nodes, and introvert otherwise.

Algorithm 11. The algorithm preconditioning almost-cliques.
Input: an ¢’-almost-clique decomposition Viparse, C1, - - ., Ct for some t.

1. In each clique Cj, let W; < C; be its set of extroverted nodes. Each clique learns if it
is introvert or extrovert in O(log A) rounds by aggregating the size of W; on a BFS tree.
Denote by J the set of indices ¢ € [¢] such that C; is extrovert.

2. (Generate Slack) With probability 1/20, sparse nodes and dense nodes from extroverted
cliques Vsparse U ;s Ci independently try a random color.

3. Let V! = Viparse U in Wi U ;s (Ci\W;) be the set containing sparse nodes, extroverted
nodes from introverted cliques and introvertednodes from extroverted cliques. All nodes in
V' have slack Q(¢”?A) and can be colored in O(log A) rounds by SLACKCOLOR.

4. Run randomized color trial for O(logn) rounds in extroverted cliques. The number of
uncolored nodes left in each W; for i € J is at most O(A/n). Complete the coloring of
extroverted cliques using SLACKCOLOR.
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Proof of Theorem 3. After Step 2, nodes in Viparse have Q(g’ 2A) permanent slack and extroverted
nodes have Q(emax) = Q(A/n) permanent slack (by Lemma B.4). Let J < [t] the set of extroverted
cliques. In Step 3, we color nodes of V' where

V' = Vsparse U U Wz U U(CZ\WZ) .
i&J ieJ

Dense nodes of V' receive slack from their inactive neighbors in V\V".

e An extroverted nodes v € W; in some introverted clique C; with i ¢ J has |[N(v) n (C\W;)| =
(1 — 3¢’)A introverted neighbors in C;. Note that none of them was colored in Step 2.

e A introverted node v € C' in an extroverted clique C; with ¢ € J has at least [N (v) n W;| >
(2¢/ — ')A = &' A extroverted neighbors in C;. Each such neighbor gets colored in Step 2
with probability at most 1/20; hence, w.h.p. at least 0.9¢’A are uncolored.

Adding sparse nodes, all nodes in V' have slack Q(A) for a small enough universal constant.
Hence, by Lemma 3.1, we can color all nodes in V’ in O(log A) rounds and O(logn) fresh colors
with high probability.

After Step 3, the only extroverted nodes to remain uncolored are in extroverted cliques. We
now explain how we color these nodes. Nodes have Q(A/n) slack. By an argument similar to
Lemma 5.3, w.h.p., we reduce the degree of each node by a constant factor. After O(logn) rounds,
each node has uncolored degree O(A/n). It samples O(nloglogn) colors. Nodes now have slack
proportional to their degree and can be colored by SLACKCOLOR in O(log A) rounds and using
O(nlogn) colors.

We now prove that our coloring verifies the properties of Theorem 3. The cruz is that the only
uncolored nodes remaining are introverted nodes in introverted almost-cliques. For each introverted
almost-clique C' in the ’-almost-clique decomposition, we get an e-almost-clique C’ with the claimed
properties by simply removing colored nodes. This is because C’ is an &’-almost-cliques from which
we removed at most 2¢’A extroverted nodes. Hence, the upper bound |C'| < (1 +&)A < (1+¢)A
trivially holds (recall &' = £/3) and for all v € C’, we have |[N(v) n C'| = (1 — 3¢")A = (1 — ¢)A.
Furthermore, all nodes of C” are introverted, therefore they are connected to at most A/n nodes
in other cliques. Note however that they can be connected to €A colored nodes (as they include
sparse nodes and extroverted nodes from C). [ |

B.3 Analysis of RandomPush

Lemma 6.7. Let z < 3% messages of O(logn) bits each known by exactly one node in the sparsified
almost-clique C. After O(log A) iterations of RANDOMPUSH, each node in the sparsified almost-
clique learns all x messages, with high probability.

Proof. Consider a particular message, and for each i € [O(log A)], let S; be the set of nodes in the
almost-clique that know this message before iteration i. Let S; = C\S;.

Initially, |S1| = 1. Each node has degree ©(5*), w.h.p., by Claim 4.2. Thus, nodes forward the
message to (f) of its neighbors, so |Sa| = B, w.h.p. We now show that S; grows geometrically
while |S;| < 3A/4, then afterwards S; decreases geometrically.

By Lemma 4.5, while |S;| < 3A/4, there are at least |S;|34/40 edges between S; and S;. For an
uninformed node v in S;, let dJ = |N, &(v) N Si| be its number of informed neighbors. Letting X,
be the event that v learns the message in this iteration, we have that

aJi S

1\ 1 d
Pr[Xv]:1—<1——> >1- = —"=
x 1+dyi/x  x+dy
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where we used Lemma A.1. Hence, the expected number of nodes that learn the message is at least

3 dy A S8
_g;+d§i/x+ﬁ 8A

UES@

> Q(|Sil)

since by concavity of the function f(y) = y/(x + y), this sum is minimized when the degrees d> are
as unevenly distributed as possible, with % nodes satisfying do = A and the rest satisfying
ds = 0.

Since the X, are independent, by Lemma A.2 (Chernoff bound) it holds w.h.p. that |S;y1| >
(1 4+ €(1))]S;| while |S;| € [5,3A/4]. Therefore, after i € ©(log A) iterations, |S;| < 3A/4.

The rest of the argument is similar. The nodes in S; have at least |S;|3%/40 edges with S;.
In expectation, ©(|S;|) of them get colored in each iteration in expectation, and this holds w.h.p.
while [S;| > 8. When [S;| drops below O(3%), each node in S; is adjacent to (3%) nodes in S;.
Therefore, it receives the message () times in expectation, and thus receives it w.h.p. |

C Corollaries for Other Models
C.1 Coloring in Distributed Streaming

Definition 14 (Local Streaming Model). In the LocalStream model, there are n nodes with
unique O(log n)-bit identifiers and p(n) = poly(logn) bits of local space. The nodes have no initial
information but have a limited source of randomness. There are two phases: a streaming phase
and a communication phase.

e (Streaming Phase) Nodes receive their incident edges in the graph G as a stream. Attached
to each edge are (some of the) random variables of the incident vertices. Le., each node v
receives a sequence (v, u;, 8;);, where s/ is the random bits of neighbor u; in iteration j 6,

¢ (Communication Phase) The nodes communicate in synchronous rounds with their neigh-
bors with O(log n) bit messages (as in the CONGEST model). They can only send a message
to a neighbor whose ID they have stored, and we additionally limit them to send/receive
poly log n messages per rounds.

At the end of the computation, each node outputs its color, which together should form a valid
A + 1-coloring. The objective is to minimize the total number of communication rounds.

Corollary C.1. There exists a LocalStream algorithm wusing O(log4 n) memory per node and
O(log? A) rounds of communication.

C.2 Coloring in the Cluster Graph Model

We first define the cluster graph model (a variant appears in [GKK " 15] and similar concepts appear
in other places in the literature, see e.g., [RGH 22, GH16, GK13, GZ22]). Then, we state our result.

Definition 15 (Cluster graph model). Consider a cluster graph defined as follows: Given a
graph G = (V,E), suppose that the nodes have been partitioned into vertex-disjoint clusters.
Definite the cluster graph as an abstract graph with one node for each cluster, where two clusters
are adjacent if they include two nodes that are neighboring each other in G. Furthermore, for
each cluster, we are given a cluster center and cluster tree that spans from the cluster center to
all nodes of the cluster. One round of communication on the cluster graph involves the following
three operations:

5An alternative would be to supply the nodes with shared randomness. Then the ID of the other node would
suffice to learn its random bits.
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e (Intra-cluster broadcast) Each cluster center starts with a poly(logn)-bit message and
this message is delivered to the nodes in its cluster.

e (Inter-cluster communication) For each edge e = {v,u} for which v and u are in two
different clusters, node v can send a poly(log n)-bit message and this message is delivered to
u, simultaneously for all such inter-cluster edges.

e (Intra-cluster convergecast) Each node can start with a poly(logn)-bit message and, in
each cluster, we deliver a poly(logn)-bit aggregate of the messages of the cluster’s nodes
to the cluster center. The aggregate function can be computing the minimum, maximum,
summation, or even gathering all messages if there are at most poly(logn) many. These
suffice for our application. More generally, this intra-cluster convergecast operation can be
any problem that can be computed in O(h) rounds of the CONGEST model communication
on a given tree of depth h and using poly(log n)-bit messages.

Theorem 8. There is a distributed randomized algorithm that computes a A + 1-coloring in
poly(logn) rounds of the cluster graphs model.

Proof Sketch. The proof follows essentially directly from our distributed palette sparsification the-
orem, stated in Theorem 1. We just need to discuss how the cluster graph computes and simulates
the corresponding sparsified graph.

Each cluster center samples the poly(logn) colors of its node in the palette sparsification the-
orem. Then, via intra-cluster broadcast, the cluster center delivers these colors to all nodes of its
cluster. Afterward, via inter-cluster communication, each node sends the colors of its cluster to all
neighboring nodes in other clusters. Each node v in a cluster C that notices a neighboring cluster
C’ that sampled a common color remembers the cluster identifier of C’, as a neighboring cluster in
the sparsified variant of the cluster graph. We then perform one intra-cluster convergecast, where
each node starts with the neighboring clusters that it remembered as neighboring clusters in the
sparsified graph, and we gather all of these neighboring cluster identifiers to the cluster center.
Since each cluster has poly(log n) neighboring clusters after the sparsificaiton, this can be done as
a poly(log n)-bit aggregation.

In the course of this process, we could also elect for each pair of neighboring clusters C and C’
in this sparsified graph one physical edge from node v € C to a node u € C’. For instance, that can
be the edge (v, u) with the highest ID tuple. Again, this fits easily as a poly(logn)-bit aggregation.

At this point, each cluster center knows all its poly(log n) neighboring clusters and has identified
a physical edge connected to each neighboring cluster. Hence, the cluster graph model can simulate
one round of the CONGEST model communication on the sparsified graph. Therefore, to compute
a A + 1 coloring of the cluster graph, it suffices to invoke Theorem 1. |

C.3 Coloring in the Node Capacitated Clique

We show, in fact, that any 1-pass LocalStream algorithm with polylogn memory and bandwidth
can be turned into a poly logn rounds NCC algorithm.

Theorem 9. Let A be a randomized LocalStream algorithm using one streaming pass and T-
communication rounds. If it has bandwidth B and communication with at most D different neighbors
within a round, then there is an algorithm emulating A with high probability in the NCC model in

O(logn + Ci')g L) communication rounds.

Consider an arbitrary communication round of LocalStream. In the worst case, a node must
send B bits to D nodes. Since in the NCC model, a node can only communicate O(logn) bits to
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O(logn) nodes in G within a round, it can emulate one communication round of LocalStream in
O(BD/logn) rounds. Note that this upper bound can be improved in some specific cases, e.g.,
if the algorithm only broadcast messages, but we ignore such optimizations here. This gives the
following claim:

Claim C.2. If nodes know the poly log n random bits of their neighbors, then emulating A requires
o(T:BD)
logn :

The only information missing to nodes in order to run the LocalStream algorithm is the initial
state of their neighbors. As nodes have no memory restriction in NCC, we are free to use pseudo-
random initial states. For a function S mapping nodes to polylogn bits binary strings, we write
A[S] for the algorithm A where each node u has the string S(u) as random bits.

Lemma C.3. For any fixed n, there is a family S of poly(n) functions mapping nodes to initial
states such that for any n-node graph input, if we run A on a random function in S, the streaming
18 correct with high probability.

Proof of Lemma C.3. Fix a n-node graph G. Sample ¢ functions Sy, ..., S; assigning poly log n-bits
binary string to nodes.

Since A is correct with high probability, it means that on a random S;, algorithm A[S;] fails
with probability at most 1/n. For a fixed G, call X; the random variable equal to one iff algorithm
A[S;] fails on G with probability more than 1/n. In expectation, the number of bad assignments

is E[Zie[t] Xu] < t/n. Samples are independent; hence, by Chernoff, we get

2t 2t
Pr Z X;i>—| < exp<—3—>. (14)
n n

i€[t]

We conclude the proof by using the union bound on all n nodes graphs. There are at most on’
input graphs G on n nodes. Therefore, for some large enough t = Q(n?), the bound in Eq. (14) is
strictly less than 1; hence, there is a family S = {S1,..., S} such that the probability that A[S;]
fails for a random i € [t] is at most 2/n for all n-nodes graphs. |

Proof of Theorem 9. For a fixed n-sized network. Nodes can locally compute the family S described
in Lemma C.3 (recall there is not memory or local time constraints on nodes in the NCC model). The
node of minimum ID then sample a random index ¢ € [|S|] and broadcast it. Since |S| < poly(n),
index i can be described in O(logn) bits. Broadcasting a message to every one takes O(logn)
rounds.

Nodes then know the randomness of every node in G as well as their adjacency list. They can
therefore run the streaming phase without any communication. Once this is done, they can emulate
A in O(TBD/logn) rounds. By Lemma C.3, it fails with probability 1/ poly(n). |
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