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Abstract

We study the minority-opinion dynamics over a fully-connected network of n nodes with binary opinions.
Upon activation, a node receives a sample of opinions from a limited number of neighbors chosen uniformly
at random. Each activated node then adopts the opinion that is least common within the received sample.

Unlike all other known consensus dynamics, we prove that this elementary protocol behaves in dramatically
different ways, depending on whether activations occur sequentially or in parallel. Specifically, we show that
its expected consensus time is exponential in n under asynchronous models, such as asynchronous GOSSIP.
On the other hand, despite its chaotic nature, we show that it converges within O(log2 n) rounds with high
probability under synchronous models, such as synchronous GOSSIP.

Finally, our results shed light on the bit-dissemination problem, that was previously introduced to model
the spread of information in biological scenarios. Specifically, our analysis implies that the minority-opinion
dynamics is the first stateless solution to this problem, in the parallel passive-communication setting, achieving
convergence within a polylogarithmic number of rounds. This, together with a known lower bound for
sequential stateless dynamics, implies a parallel-vs-sequential gap for this problem that is nearly quadratic
in the number n of nodes. This is in contrast to all known results for problems in this area, which exhibit a
linear gap between the parallel and the sequential setting.

1 Introduction

1.1 Dynamics and Consensus In distributed computing, the term dynamics is used to refer to distributed
processes in which each node of a network updates its state on the basis of a simple update rule applied to
messages received in the last round of communication; furthermore, the network is anonymous, meaning that
nodes do not have distinguished names and incoming messages lack any identification of the sender.

The study of dynamics, of their global properties and of their applications is an active research topic that
touches several scientific areas [2, 6, 7, 16, 18, 27]. Among other applications, dynamics are suitable to model the
restrictions on computation and communication of IoT protocols, and to study the way information spreads and
groups self-organize in biological models and in models of animal behavior.

In this paper we consider opinion dynamics. These are dynamics in which every node has an opinion, which is
an element of a finite set, and possibly, additional state information. Over time, these opinions are affected by the
information exchanged by nodes. Typically, one is interested in whether all nodes eventually reach a consensus
configuration in which they all share the same opinion, and in how quickly this happens.

The consensus problem is a fundamental task in distributed computing [3, 15, 17, 29] and a problem of
considerable interest in the study of dynamics. We provide the definition of a basic version of the problem.

Definition 1. (Consensus Problem) We say that a dynamics in which every node, in every round, holds an
opinion solves the consensus problem if

• For every initial configuration of opinions, the dynamics reaches with probability 1 a configuration in which
all nodes have the same opinion, and such opinion was held by at least one node in the initial configuration;

∗Sapienza University of Rome, Rome, Italy. becchetti@diag.uniroma1.it. Supported by the ERC Advanced Grant 788893

AMDROMA, PNRR MUR project PE0000013-FAIR”.
†Tor Vergata University of Rome, Rome, Italy. clementi/pasquale@mat.uniroma2.it. Partially supported by Spoke1 “FutureHPC

& BigData” of the Italian Research Center on High-Performance Computing, Big Data and Quantum Computing (ICSC) funded by

MUR Missione 4 Componente 2 Investimento 1.4: Potenziamento strutture di ricerca e creazione di “campioni nazionali” di R&S
(M4C2-19) - Next Generation EU (NGEU).

‡Bocconi University, Milan, Italy. l.trevisan/isabella.ziccardi@unibocconi.it. This project has received funding from the European

Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 834861).
§CNRS, IRIF, Paris, France. rvacus@irif.fr.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4155

D
ow

nl
oa

de
d 

04
/1

9/
24

 to
 1

51
.1

00
.5

9.
19

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



• Once all nodes have the same opinion, the configuration of opinions does not change in subsequent rounds.

The number of rounds until all nodes share the same opinion for the first time is called convergence time. For
every initial configuration, convergence time is a random variable over the randomness of the dynamics.

Since dynamics are meant to capture agents with very limited computational and communication abilities,
several models have been defined and analyzed that place restrictions on how communication takes place (e.g.
LOCAL, various versions of GOSSIP, POPULATION PROTOCOL, etc. [4, 28, 31]). All dynamics we consider
in this paper operate in a standard model in which communication in each round is restricted, so that each active
node (that is, each node that updates its opinion in that round) is only able to receive messages from k randomly
chosen neighbors (where k is a parameter of the model). This is called k-uniform GOSSIP PULL in the literature
[12, 13, 31] and we will refer to it as k-PULL in the remainder.

Moreover, we will always assume that the underlying communication network is the complete graph on n
nodes. We will be interested in two well-studied variants of this model [12], which differ for the schedule with
which nodes are activated: in the asynchronous sequential k-PULL, in each round exactly one node becomes
active, while in the synchronous parallel k-PULL, all nodes are active and their updates are simultaneous in each
round.

In both settings described above, a solution to the consensus problem is given by the voter model [1, 25, 28],
which is the dynamics in which each active node receives the opinion of one random neighbor and then adopts
that opinion as its own (thus the voter model operates as a 1-PULL dynamics).

It is known that, for every initial Boolean configuration of opinions, the voter model’s expected convergence
time is Θ(n2) in the asynchronous sequential setting [1, 25] and Θ(n) in the synchronous parallel setting [21].

In the k-majority dynamics, each active node receives the Boolean opinions of k random neighbors (k odd)
and updates its opinion to the majority opinion among those k. This is a k-PULL dynamics, and the voter
model can be seen as implementing 1-majority. It is easy to see that k-majority also provides a solution to
the consensus problem for every odd k, and it is known [16] that, for odd k ≥ 3, in the synchronous parallel model,
for every initial configuration, convergence time is at most O(log n) both in expectation and in high probability1.
It is folklore that for odd k ≥ 3, the convergence time in the asynchronous sequential model is O(n log n). The
k-majority dynamics has other desirable properties, such as being fault-tolerant and such that the consensus
opinion is likely to be the majority, or close to the majority, of the original opinions. Moreover, bounds on the
convergence time of 3-majority have been derived for the case of non-binary opinions in [6, 7, 10, 16, 19].

We note that in both above examples above, there is a Θ(n) gap between parallel and sequential convergence
times. Moreover, a Θ̃(n) gap on the convergence time holds between sequential and parallel communication
models for other forms of consensus as well [2, 7, 20].

This is natural, because we are applying the same update rule, but n times simultaneously in each round in
the parallel case, and once per round in the sequential case. Indeed, in all the dynamics for which we have tight
bounds both in the sequential and parallel models we see a Θ̃(n) gap between them. Because of synchronicity of
the updates however, one round in the parallel model might potentially have different effects than n rounds in
the sequential model, and we will return to this point in our main results.

1.2 The bit-dissemination problem More recently, inspired by the study of distributed biological systems,
a variant of consensus, called the bit-dissemination problem has been considered in [11, 5, 23, 8].

Definition 2. (Bit-Dissemination Problem) In the bit-dissemination problem, every node, at every round,
holds an opinion. One of the nodes, called the source, holds an opinion that it knows to be correct, and never
changes it. The other nodes update their opinions according to the update rule and do not know the identity of
the source. We say that a dynamics solves the bit-dissemination problem if:

• For every initial configuration, with probability 1, the dynamics eventually reaches a configuration in which
all nodes share the same opinion as the source;

• Once all nodes have the same opinion as the source, the configuration of opinions does not change in
subsequent rounds.

1We say that an event holds with high probability if it holds with probability 1− nΩ(1).
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The number of rounds until all nodes have the same opinion as the source for the first time is called the convergence
time.

This information-dissemination problem finds its main motivations in modeling communication processes
that take place in biological systems [4, 32], where the correct information may include, e.g., knowledge about a
preferred migration route [22, 26], the location of a food source [14], or the need to recruit agents for a particular
task [30].

In these applications, it is well motivated to restrict to dynamics that use passive-communication, meaning
that the only kind of message that a node can receive from a neighbor is the neighbor’s current opinion. Note that
the voter model and the k-majority dynamics that we described above are examples of passive-communication
opinion dynamics.

Another desirable property in these applications is for dynamics to be self-stabilizing. This means that not
only does the dynamics converge to the desired stable configuration for every initial configuration of the opinions,
but it also converges regardless of the initial contents of any additional state that the update rule relies on. The
reason that this is called a self-stabilizing property is that if, at some point, an adversary corrupts the internal
state of some nodes, convergence is still assured (because we could take the round in which this corruption happens
as the first round).

We call an opinion dynamics stateless if the update rule by which an active node updates its opinion depends
only on the messages received in that round, and if nodes do not keep any additional state information except for
their opinions. Note that a stateless dynamics is always self-stabilizing because there is nothing for an adversary
to corrupt. The voter model and k-majority dynamics are examples of stateless dynamics.

In [23], Korman and Vacus discuss the difficulty of developing passive-communication and self-stabilizing
dynamics for the bit-dissemination problem. To see why passive-communication is difficult to achieve for the
bit-dissemination problem, consider that if, at some round, the opinion of the source is in the minority, then we
want to use an update rule that increases the number of nodes with the minority opinion. On the contrary, if the
opinion of the source is in the majority, then we want an update rule that decreases the number of nodes with
the minority opinion. These two scenarios, however, are indistinguishable to nodes that are only allowed to see
other nodes’ opinions and that do not know the identity of the source.

Indeed, previous protocols for this problem exploit non-passive forms of communication and/or do not achieve
self-stabilizing bit-dissemination [9, 11, 5]. Korman and Vacus [23] develop and analyze a protocol for bit-
dissemination in the synchronous parallel k-PULL with passive communication in which every node, at every
round, sees the opinion of k = Θ(log n) random nodes (that is, communication follows the k-PULL model), and

they show that their protocol converges with high probability in O(log5/2 n) rounds. Their protocol is not stateless,
as it involves a trend-following update rule: roughly speaking, each node adopts the opinion whose number of
occurrences in the messages of the current round has increased compared to the previous round, breaking ties
arbitrarily. This requires each node to store the number of opinions of either type seen in the previous round,
which take log k = log log n + O(1) bits of storage. Their protocol is self-stabilizing, and so it converges even
if, in the first round, nodes start with adversarially chosen “false memories” of a previous round. Their work
leaves open whether convergence in poly log n rounds for the bit-dissemination problem can be achieved, in the
synchronous parallel k-PULL, by a passive-communication stateless dynamics, as is possible for the consensus
problem.

Becchetti et al. [8] show that in the asynchronous sequential k-PULL, there exists an Ω(n2) lower bound
for the expected convergence time of any passive-communication stateless dynamics for the bit-dissemination
problem. This result holds under the even stronger model that, in every round, the active node is given full access
to the opinions of all other nodes.

Given that there is typically a Θ̃(n) gap between the convergence time of stateless passive-communication
dynamics in the parallel versus sequential model, it would seem natural to conjecture a Ω̃(n) lower bound for the
convergence time of bit-dissemination in the synchronous parallel passive-communication k-PULL for stateless
dynamics, and that the memory of the past round used by Korman and Vacus would be essential to achieve
poly log n convergence time. A bit surprisingly however, we show this is not the case, as we discuss below.

1.3 Our results We study the minority update rule, that defines a stateless dynamics in the passive-
communication setting in the k-PULL communication model.
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Definition 3. (k-minority Dynamics2) In each round, each active node, upon seeing the opinions of k random
neighbors, updates its opinion to the minority opinion among those held by the k neighbors. Ties are broken
randomly.

We will only consider binary opinions and, for simplicity, odd k, so that ties never occur. According to this
rule, if a node sees unanimity among its k sampled neighbors, it adopts those neighbors’ unanimous opinion.
Otherwise, it adopts whatever opinion is held by the fewer neighbors.

In the consensus problem, for any initial configuration, this dynamics eventually, with probability 1, reaches
a configuration in which all the nodes have the same opinion, and, in the bit-dissemination problem, it reaches
with probability 1 the configuration in which all nodes agree with the source. This is because, in the Markov
chain that describes the change of the configuration of opinions over rounds, the only absorbing states are those
in which all nodes agree, and such configurations are reachable from any initial configuration.

Concerning the speed with which such convergence happens, consider the sequential setting first. In the
asynchronous sequential model, if we start from a balanced configuration in which each opinion is held by 50% of
the nodes, it is very difficult for the k-minority dynamics to make progress, because as soon as an opinion gains
more followers than the other, in subsequent rounds there will be a bias toward adopting the minority opinion and
the configuration will drift back towards the initial 50%-50% configuration. Indeed, we can prove an exponential
lower bound for the round complexity of k-minority.

Theorem 1.1. There exist initial configurations from which the expected convergence time of k-minority in the
asynchronous sequential k-PULL is 2Ω(kn).

In the synchronous parallel communication model, the k-minority dynamics exhibits chaotic behavior. If, for
example, the dynamics starts from a balanced configuration, in the next round we may expect a slight imbalance
due to random noise, let’s say slightly more 0s than 1s. In the subsequent round, this will cause a drift in the
opposite direction, and we will see more 1s than 0s, with an increased imbalance. The majority value will keep
alternating, and the imbalance will keep increasing, until a round in which the imbalance becomes such that the
minority opinion is held by ≪ n/k nodes. At that point the number of nodes with the minority opinion will grow
by about a factor of k each time, and then the majority value will start alternating again, and so on.

The main technical contribution of this paper is that, despite this chaotic behavior, when k = Ω(
√
n log n),

we are able to analyze the behavior of the minority dynamics, by dividing the set of possible configurations into a
finite number of ranges, and by understanding how likely it is for the configuration to move across these ranges.

Our analysis shows that k-minority converges in polylogarithmic time in the parallel setting, both when
all nodes follow the protocol (consensus problem) and when one node is a source that never changes its opinion
(bit-dissemination problem).

Theorem 1.2. If 185
√
n log n ≤ k ≤ n

2 , then, in the synchronous parallel k-PULL, k-minority solves the

consensus and its convergence time is O(log n) in expectation and O(log2 n) rounds w.h.p.

This also provides an efficient (i.e. in a polylogarithmic number of rounds) solution to the bit-dissemination
problem via a stateless passive-communication dynamics, answering a question left open by the work of Korman
and Vacus [23].

Theorem 1.3. If 185
√
n log n ≤ k ≤ n

2 , then, in the synchronous parallel k-PULL, k-minority solves the bit-

dissemination problem and its convergence time is O(log n) in expectation and O(log2 n) rounds w.h.p.

We mentioned above that for all the dynamics for which we have a tight analysis there is a Θ̃(n) gap between
the sequential and parallel convergence time, at least in the context of stateless opinion dynamics with passive-
communication.

Our results show a natural example of a dynamics for which this gap is exponential in n, going from O(log2 n)
to 2Ω(kn). Moreover, we have a natural problem, the bit-dissemination problem, for which there is a nearly-
quadratic gap between parallel passive-communication stateless solutions, for which we show an O(log2 n) upper
bound, and sequential passive-communication stateless solutions, for which an Ω(n2) lower bound was known.
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Roadmap The rest of this paper is organized as follows. Section 2 introduces notation and notions that will
be used throughout the paper and then provides a self-contained overview of the main technical part, proving
poly-logarithmic convergence time of k-minority for the consensus and bit-dissemination problems. In more
detail, in Section 2.2, we provide the high-level proofs of Theorem 1.2 and Theorem 1.3, we state our main
technical lemmas, we discuss the main ideas in our proofs, and we describe the main technical challenges that we
have to overcome. Full proofs of all technical results above are given in Section 3, presented in the same order
as in Section 2.2. Section 4 presents the proof of Theorem 1.1, based on the analysis of the birth-death chain of
k-minority. Finally, Section 5 discusses some technical or more general questions that this work leaves open and
that in our opinion deserve further investigation.

2 k-Minority in the Parallel Model

In this section, we analyze the k-minority dynamics in the synchronous parallel communication model, over the
complete graph Kn. We consider the case in which the sample size parameter k depends on n, i.e. k = k(n) and
we prove Theorem 1.2 and Theorem 1.3 stated in the previous section.

2.1 Notation and preliminaries We use the following Markov chain to describe the evolution of the k-
minority dynamics on Kn. Its state space is {0, . . . , n

2 } × {0, 1}, and, at every round t ≥ 0, the state of the
process at round t is given by the size {mt}t and the opinion {Ot}t of the minority. To get some intuition about
the key quantities that govern the evolution of the process, we introduce the following notions.

Definition 4. (Wrong Nodes) We say node v is wrong in round t if and only if: i) mt > 0, and ii) v adopts
the majority opinion at time t + 1. Observe that, if mt > 0, the following events may cause v to be wrong in
round t:

At(v) = {v samples more than k
2 nodes holding the minority opinion}

Bt(v) = {v samples k nodes holding the majority opinion}.

We define Wt =
∑

v∈V 1At(v) as the r.v. counting the number of nodes that sample more than k
2 nodes with

the minority opinion in round t, and Ut =
∑

v∈V 1B(v) as the r.v. counting the number of nodes that sample a
unanimity of nodes holding the majority opinion in round t.

The following is a simple fact that relates mt+1 to the number of wrong nodes in the previous round:

Fact 2.1. We deterministically have that

mt+1 =

{
Wt + Ut, if Wt + Ut < n/2,

n−Wt − Ut, otherwise.

Moreover, Ot+1 = 1−Ot in the first case and Ot+1 = Ot in the second.

Proof. In the first case, n−Wt − Ut >
n
2 nodes will correctly assess and adopt the minority opinion, which will

thus become majoritarian in the next round. The remaining (wrong) Wt + Ut nodes will adopt the majority
opinion, which will become minoritarian in round t + 1. I.e., mt+1 = Wt + Ut and Ot+1 = 1 − Ot in this case.
The second case is similar, this time with mt+1 = n−Wt − Ut ≤ n

2 and Ot+1 = Ot.

The next lemma clarifies that the events introduced in Definition 4 play distinct roles in different regimes of
the process. More precisely, they are almost mutually exclusive, in the sense that the probability that two nodes
u and v exist, such that both At(u) and Bt(v) occur in any given round t, is essentially negligible.

Lemma 2.1. Assume k ≥ 5 log n. The following holds: i) if mt ≤ n
2 − n

√
1.5 logn

k , then Wt = 0 w.h.p.; ii) if

mt ≥ 3n logn
k , then Ut = 0 w.h.p.

Lemma 2.1 is proved as part of Lemma 3.1 (points (c) and (d)), while we next discuss some consequences.
First, in every round t, w.h.p. we have eitherWt = 0 or Ut = 0, which implies that the processmt can essentially be
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described by one of the two random variables Ut orWt. Moreover, it implies that if 3n logn
k ≤ mt ≤ n

2−n
√

1.5n logn
k ,

then k-minority achieves consensus in round t+ 1, w.h.p. We call the above safe range for mt the green area.
Thanks to the behaviour of variables Ut and Wt discussed above, we can identify a constant number of areas

(see Figure 1), each defined by a specific range for mt, showing that with constant probability, k-minority reaches
the green area (and thus achieves consensus in the next round w.h.p.) within a logarithmic number of rounds:
This is the the basic strategy towards proving Theorem 1.2. From this, the same bound can be shown for the
bit-dissemination problem (Theorem 1.3).

As simple as it may seem, implementing the above strategy is not straightforward. The reason is that the
evolution of mt is highly non-monotonic, exhibiting a behaviour that strongly depends on the area mt belongs
to. In particular, the process might jump over non-contiguous areas and might, in principle, jump back and forth
between any two of them. Moreover, the presence of two fixed points for E [mt+1 | mt] highlights the existence of
two (unstable, as we shall see) equilibria, in which the process might get stuck. We also remark that in principle,
one might attempt a proof strategy that differs from the one outlined by Figure 1(a). However, while this may be
possible, it does not seem a trivial endeavour, since Figure 1 actually seems to summarize “preferred” (or more
likely) state transitions in the global Markov chain that describes the process.

2.2 Proof of main results In this section, we prove Theorem 1.2 and Theorem 1.3. For the sake of the
analysis, we partition the set of all possible configurations into a small, constant number of areas, that in the
sequel will be named colors, each of them identified by a specific interval of the range {0, 1, . . . , n

2 } of possible
values for the random variable mt. Informally, the warmer the color, the slower the convergence will be from the
corresponding subset, as illustrated in Figure 1. Formally, they are defined as follows:

Blue1 =

{
m ∈ N : 1 ≤ m ≤ n log 2

k −
√

n log 2
k

}
Red =

{
m ∈ N : n log 2

k −
√

n log 2
k ≤ m ≤ n log 2

k +
√

n log 2
k

}
Blue2 =

{
m ∈ N : n log 2

k +
√

n log 2
k ≤ m ≤ n

k log
(

k
4 logn

)}
Yellow =

{
m ∈ N : n

k log
(

k
4 logn

)
≤ m ≤ 3n logn

k

}
Green =

{
m ∈ N : 3n logn

k ≤ m ≤ n
2 − n

√
2 logn

k

}
Orange =

{
m ∈ N : n

2 − n
√

2 logn
k ≤ m ≤ n

2

}
In order to understand the behaviour of the process in the different areas, it is useful to consider the function f

represented on Figure 1 (b). Informally, f can be seen as an approximation of m 7→ E [mt+1 | mt = m]. Formally,
we define it as follows:

• when m ∈ A = Blue1 ∪Red ∪Blue2, we set

f(m) = min{E [Ut | mt = m] , n−E [Ut | mt = m]},

since in this range, Wt = 0 w.h.p.

• when m ∈ B = Green, we set f(m) = 0, since in this range, mt+1 = 0 w.h.p.

• when m ∈ C = Orange, we set f(m) = E [Wt | mt = m], since in this range, Ut = 0 w.h.p.

Using these insights, we will show that, starting from any initial configuration, the process mt follows a short path
over the colored areas, eventually landing into the green area and then consensus within an additional step. This
typical behaviour is summarized by Figure 1 (a). However, this path is somewhat chaotic, in the sense that mt

does not tend to evolve monotonically; instead, it can jump across non-adjacent areas over consecutive rounds.
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0 n
2

n
2

Red

Orange

Yellow

Blue2Blue1

Green

Consensus

≤ log n
rounds

≤ log n
rounds

Green OrangeYellow

Blue and Red

m︸ ︷︷ ︸ ︸ ︷︷ ︸
A C

︸ ︷︷ ︸
B

(a) (b)

Figure 1: (a) Roadmap for the proof of Theorem 1.2. Unless explicitly indicated, transitions occur with constant
probability in a constant number of rounds. Next to self-loops, we give the number of rounds the process spends in
corresponding areas. (b) Function f , satisfying f(m) ≈ E [mt+1 | mt = m], and the colored areas. The red circles are the
fixed points of f(m), i.e. m1 = f(m1) and m2 = f(m2) = n

2
. The red dashed track represent some iteration of f(m),

starting with a configuration close to n
2
– illustrating the non-monotonic, chaotic behavior of the process.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4161

D
ow

nl
oa

de
d 

04
/1

9/
24

 to
 1

51
.1

00
.5

9.
19

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Intermediate Results In order to formalize the aforementioned arguments, we state a few intermediate
lemmas, which we will prove in subsequent sections.

Lemma 2.2. (Red Area) For any t ≥ 1 and m ∈ [n2 ], Pr [mt+1 ̸∈ Red | mt = m] ≥ c, for a suitable positive
constant c.

The proof of Lemma 2.2 uses a simple variance argument relying on the modest width of the red area, and is
deferred to Section 3.1. The next lemma, however, poses some technical challenges.

Lemma 2.3. (Orange Area) For any t0 ≥ 1 and mt0 ∈ Orange, let

T = inf{s > t0 : ms ̸∈ Orange}.

Then, for a suitable positive constant c,

Pr [{T − t0 ≤ log n} ∩ {mT ̸∈ Red ∪Orange} | mt0 = m] ≥ c.

The proof of Lemma 2.3 is given in Section 3.3. The first problem is that the Orange area contains the fixed
point mt =

n
2 . To prove that the process leaves this area within O(log n) rounds, we need to show that it tends

to drift away from n
2 . In Lemma 3.4 and Lemma 3.5, we indeed prove that mt+1 ≤ n

2 − 1.5 α√
n
with probability at

least 1− e−0.1α2 − 1
n2 , whenever mt =

n
2 − α√

n
. This is an exponentially increasing drift occurring with increasing

probability. This fact allows us to show that the process leaves the Orange area with constant probability,
within O(log n) rounds.

The second problem we face is that, upon leaving the Orange area, the process might in principle fall back
to the Red one. In order to prove that this event does not occur with constant probability, we need to proceed
with care, in order to somehow capture two different conditions under which mt may have left the Orange area,
each of which needs a distinct characterization.

Lemma 2.4. (Yellow Area) For any t0 ≥ 1 and mt0 ∈ Yellow, let

T = inf{s > t0 : ms ̸∈ Yellow}.

Then, for a suitable positive constant c,

Pr [{T ≤ log n} ∩ {mt0+T ∈ Blue1 ∪Blue2 ∪Green} | mt0 = m] ≥ c.

The proof of Lemma 2.4, given in Section 3.3, proceeds along lines similar to those of Lemma 2.3, albeit with a
few differences that do not allow a simple reuse of the arguments given for the Orange case. Again, we have
a fixed point m in the Yellow area, but one that we do not compute exactly. This time, the roles of Wt and
Ut are reversed, since we are in a regime in which Wt = 0 w.h.p. Moreover, while in the previous case the
drift was towards decreasing values for mt, the values of mt are considerably smaller (i.e., O(

√
n)) and the drift

potentially harder to characterize in the Yellow area. In particular, while drifting away from m, mt −m can
change sign over consecutive rounds. For this reason, it proved necessary to quantify drift using |mt −m| in the
proof of Lemma 3.6. Finally, some extra care is needed to address the fact that this time, we are interested in
the probability that, upon leaving the Yellow area, the process avoids both the Red and Orange ones.

The two remaining cases address the Blue and the Green area. Their analysis is easy and relies on simple
concentration arguments.

Lemma 2.5. (Blue Area) For any t ≥ 1 and m ∈ Blue1 ∪ Blue2, Pr [mt+1 ∈ Green | mt = m] ≥ c, for a
suitable positive constant c.

Lemma 2.6. (Green Area) For any t ≥ 1, m ∈ Green and ℓ ∈ {0, 1},

Pr [{mt+1 = 0} ∩ {Ot+1 = 1− ℓ} | mt = m,Ot = ℓ] ≥ c,

for a suitable positive constant c.3

3Note that if mt = 0, Ot is the opinion opposite to the majority.
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Proof of Theorem 1.2. Recall that by definition of the protocol, for every agent i, if all samples collected by i in
round t are equal to its opinion, then agent i maintains the same opinion in round t+1. Therefore, if mt = 0, we
have ms = 0 for every s > t, i.e., consensus has been reached permanently. Moreover, Lemmas 2.2 to 2.6 prove
the existence of two constants c1, c2 > 0, such that for every t ≥ 0 and m ∈ [n2 ],

(2.1) Pr [mt+c1 logn = 0 | mt = m] > c2.

Let T = inf{s ∈ N,ms = 0} and x ∈ N. Since (2.1) holds for every t and since {mt}t is a Markov chain, we
have Pr [T < x · c1 log n] > 1 − (1 − c2)

x. We can thus take a constant c3 such that, for x ≥ c3 log n, we have
Pr
[
T < c1c3 log

2 n
]
> 1− 1

n2 , which concludes the proof of Theorem 1.2.
The following Lemma, whose proof is given in Section 3.7, yields Theorem 1.3.

Lemma 2.7. (Bit-Dissemination Problem) If ℓ is the opinion of the source agent, then

Pr [mt+2 = 0 | mt = 1,Ot = ℓ] ≥ c,

for a suitable positive constant c.

Proof of Theorem 1.3. Consider the k-minority dynamics in the presence of a source agent. In this
case, Theorem 1.2 implies the existence two constants c1, c2 > 0 such that, for every t and m ∈ [n2 ],
Pr [mt+c1 logn ≤ 1 | mt = m] > c2. Moreover, Lemma 2.7 implies a constant c3 > 0 for which

Pr [mt+2+c1 logn = 0 | mt = m] > c3.

Setting T = inf{s ∈ N,ms = 0} and arguing as in the proof of Theorem 1.2, we have mT = 0 w.h.p. for
some T = O(log2 n).

3 k-Minority in the Parallel Case: Technical Details

We gave an overview of the proofs of Theorem 1.2 and Theorem 1.3 in Section 2. This section contains the
proofs of all technical lemmas that were used there, some of which highlight important properties of the k-
minoritydynamics, some of which are not trivial to capture, due to the chaotic nature of the process.

3.1 Preliminary lemmas We begin by proving a set of simple results describing the behavior of the random
variables Wt and Ut, which will be used throughout the analysis. Our proofs often use two standard probabilistic
tools, namely, Chernoff Bound and the Reverse Chernoff Bound, in the versions presented in Theorem A.1 and
Lemma A.1 of the Appendix, respectively. The following is a general statement that also includes the results
singled out in Lemma 2.1 of Section 2.1.Its proof is deferred to Appendix B.

Lemma 3.1. Assume k ≥ 5 log n. Then, for any m ∈ {0, . . . , n
2 }, we have the following results

(a) n
4 e

−4k( 1
2−

m
n )

2

≤ E [Wt | mt = m] ≤ ne−2k( 1
2−

m
n )

2

;

(b) E [Ut | mt = m] = n
(
1− m

n

)k
;

(c) For any fixed mt = m with m ≥ 3n logn
k , Ut = 0 w.h.p.

(d) For any fixed mt = m with m ≤ n
2 − n

√
1.5 logn

k , Wt = 0 w.h.p.

(e) For any fixed mt = m with m ≤ n
3k , Ut ≥ 0.6n and Ot+1 = Ot w.h.p.

(f) For any fixed mt = m with 2n
k ≤ m ≤ n

2 − n
√

1.5 logn
k , Ut ≤ 0.2n and Ot+1 = 1−Ot w.h.p.

The following lemma is a simple concentration result applied to the variables Ut, n − Ut and Wt, and gives
necessary conditions so that the value of these random variables is close to their expectation.
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Lemma 3.2. Consider an interval I = [a, b] ∩ N such that b ≥ 4a and b ≥ 32 log n and fix a value mt = m.4 Let
X be any of the random variables in {Ut, n−Ut,Wt}. For any m ∈ {0, . . . , n

2 }, if E [X | mt = m] ∈ I, then X ∈ I
with constant probability. Moreover, considered any constant γ ≥ 3

2 , if a ≥ 36 log n then X ∈ γI w.h.p., where
γI = [ aγ , γb] ∩ N.

Proof. We first remark that X can always be written as the sum of n independent Bernoulli random variables.
Let MI be the median point of I, i.e. MI = a + b−a

2 . Note that, since b ≥ 4a and b ≥ 32 log n, we have

MI ≥ b
2 ≥ 16 log n. We consider two cases and, without loss of generality, we prove the lemma for γ = 3

2 .
First, assume that E [X | mt = m] ≤ MI . In this case, the use of Chernoff’s Bound implies that

Pr [X ≤ 1.5MI | mt = m] ≥ 1 − e−MI/8 ≥ 1 − 1
n2 , since MI ≥ 16 log n and b ≥ 4a, 1.5MI ≤ b. If

a ≥ 36 log n, we further have Pr
[
X ≥ 2

3E [X | mt = m] | mt = m
]

≥ 1 − e−a/18 ≥ 1 − 1
n2 . If no condi-

tion on a is given, the reverse Chernoff bound guarantees the existence of a constant c > 0, such that
Pr [X ≥ a] ≥ Pr [X ≥ E [X | mt = m] | mt = m] ≥ c, where the first inequality follows from the assump-
tion E [X | mt = m] ∈ I. Therefore, in the absence of constraints on a, we have Pr [X ∈ I | mt = m] ≥
Pr [a ≤ X ≤ 1.5MI | mt = m] > c − 1

n2 . If, on the other hand, a ≥ 36 log n, then Pr
[
X ∈ 3

2I | mt = m
]
≥

Pr
[
2
3E [X | mt = m | mt = m] ≤ X ≤ 1.5MI | mt = m

]
≥ 1− 2

n2 .
Next, assume that E [X | mt = m] ≥ MI . Similarly to the previous case, Chernoff bound gives

Pr [X ≥ 0.5MI ] ≥ 1 − e−MI/8 ≥ 1 − 1
n2 and, since b ≥ 4a, we have 0.5MI ≥ a. Moreover, since b ≥ 32 log n, we

also have Pr
[
X ≤ 3

2b
]
≥ 1 − e−MI/8 ≥ 1 − 1

n2 . In addition, the reverse Chernoff bound gives the existence of a
constant c′ > 0, such that Pr [X ≤ b] ≤ Pr [X ≤ E [X | mt = m]] > c′, where the first inequality follows from the
fact that E [X | mt = m] ∈ I. In conclusion, we have Pr [X ∈ I] ≥ Pr [0.5MI ≤ X ≤ E [X | mt = m]] ≥ c′ − 1

n2

and Pr
[
X ∈ 3

2I | mt = m
]
≥ Pr

[
0.5MI ≤ X ≤ 3

2b | mt = m
]
≥ 1− 2

n2 .

3.2 The red area The width of the Red area is small enough that given mt, mt+1 ̸∈ Red with at least constant
probability. The following result formalizes this idea and relies on a simple anti-concentration result.

Lemma 3.3. Let X be any random variable in {Ut, n − Ut,Wt, n − Wt}. For any value m ∈ {0, . . . , n
2 }, if

E [X | mt = m] ∈ Red then X ∈ Blue1 ∪Blue2 with constant probability.

Proof. We first remark that X can always be written as a sum of n i.i.d. Bernoulli random variables and, since
E [X | mt = m] ∈ Red, we have E [X | mt = m] ≤ n

2 , thus meeting the assumptions of the reverse Chernoff

bound applied to X under the conditioning mt = m. Moreover, since k ≤ 0.5n, we have n log 2
k ≥ 1. By

definition, the Red area has width 2
√

n log 2
k approximately, so that E [X | mt = m] lies within distance at most√

E [X | mt = m] from the border of Red. For this reason, the reverse Chernoff bound implies that X can deviate

at least
√

E [X | mt = m] from its expectation, with constant probability. This concludes the proof.

The proof of Lemma 2.2 is a simple application of previous results.

Proof of Lemma 2.2. Assume that, for mt = m, E [X | mt = m] ∈ Red for a random variable X ∈
{Ut, n − Ut,Wt, n − Wt}. Then, Lemma 3.3 implies X ∈ Blue1 ∪ Blue2 with constant probability. This,
together with Lemma 3.1(c) and Lemma 3.1(d), implies mt+1 ∈ Blue1 ∪Blue2 with constant probability.

Next, suppose that E [X | mt = m] ̸∈ Red for every choice of X ∈ {Ut, n − Ut,Wt, n − Wt}. Consider
X̄ = argminX∈{Ut,n−Ut,Wt,n−Wt}E [X | mt = m]: we obviously have E

[
X̄ | mt = m

]
≤ n

2 and E
[
X̄ | mt = m

]
̸∈

Red. We can thus apply Lemma 3.2 to the intervals I1 = Blue1 and I2 = Blue2 ∪ Yellow ∪ Green ∪
Orange. This, together with Lemma 3.1(c) and Lemma 3.1(d), proves that Pr [mt+1 ̸∈ Red | mt = m] ≥
Pr
[
X̄ ∈ I1 ∪ I2 | mt = m

]
> c, for a constant c > 0.

3.3 The orange area The goal of this section is to prove Lemma 2.3. In this area, we have the presence of the
fixed point n

2 for the expectation of the process, so that E
[
mt+1 | mt =

n
2

]
= n

2 . In the remainder of this section,
we prove that the aforementioned fixed point is unstable. The main ingredients of our proof are the following:
i) first, even if mt =

n
2 , mt+1 can deviate by Ω(

√
n) from its conditional expectation (n2 ) thanks to the variance

4To the purpose of our analysis, we are interested in the case I ⊆ [0, n], but the result is more general.
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of the process; ii) assuming instead that mt = n
2 − Ω(

√
n), we are able to show a drift in the process, proving

that with constant probability, it leaves the Orange area within an at most logarithmic number of steps. The
following lemma quantifies the drift mentioned in point ii) above.

Lemma 3.4. Let m = n
2 − α

√
n, where 1 ≤ α ≤

√
n
4 . Then, E [Wt | mt = m] ≤ n

2 − 1.8α
√
n.

Proof. Fix an agent i and consider the random variable X indicating the number of agents sampled by i and
holding the minority opinion. Our goal is to prove that Pr

[
X > k

2 | mt =
n
2 − α

√
n
]
≤ 1

2 −
α

1.1
√
n
. For simplicity,

we omit the conditioning in the rest of the proof. We have from Claim 2,

Pr
[
X =

⌈
k
2

⌉]
≤ Pr

[
X =

⌊
k
2

⌋]
≤
(

k

⌊k
2 ⌋

)(
1

2

)k

≤ 4k/2√
π(k/2) · 2k

≤ 1√
k
.(3.2)

Denote by Y the number of agents sampled by i that hold the majority opinion, so that Y = k − X. Since
X ∼ Bin

(
k, 1− m

n

)
and Y ∼ Bin

(
k, m

n

)
, it is easy to see that

Pr
[
X ≥

⌈
k
2

⌉
+ 1
]
≤
( m

n

1− m
n

)2

Pr
[
Y ≥

⌈
k
2

⌉
+ 1
]
.

Letting γ = 2α√
n
and β =

(
1−γ
1+γ

)2
, we can rewrite the inequality above as follows

Pr
[
X ≥

⌈
k
2

⌉
+ 1
]
≤ β ·Pr

[
Y ≥

⌈
k
2

⌉
+ 1
]
.

Since X = k − Y , Pr [Y ≥ x] = Pr [X ≤ k − x] for every x ∈ [k], so that

Pr
[
X ≥

⌈
k
2

⌉
+ 1
]
≤ β ·

(
1−Pr

[
X ≥

⌈
k
2

⌉]
−Pr

[
X =

⌊
k
2

⌋])
.

Moreover, (3.2) and the above inequality imply

Pr
[
X ≥

⌈
k
2

⌉]
≤ β ·

(
1−Pr

[
X ≥

⌈
k
2

⌉])
− β ·Pr

[
X =

⌊
k
2

⌋]
+Pr

[
X =

⌈
k
2

⌉]
≤
(
1− γ

1 + γ

)2

·
(
1−Pr

[
X ≥

⌈
k
2

⌉])
+Pr

[
X =

⌊
k
2

⌋]
(1− β)

≤ β ·
(
1−Pr

[
X ≥

⌈
k
2

⌉])
+

1√
k
(1− β)

≤ β ·
(
1−Pr

[
X ≥

⌈
k
2

⌉])
+

6γ√
k
,

where the last inequality holds whenever γ < 0.3 (which, in our case, is true since γ = 2α√
n
and α <

√
n
4 ). Finally,

simple calculus yields

Pr
[
X ≥

⌈
k
2

⌉]
≤

(
1−γ
1+γ

)2
+ 6γ√

k

1 +
(

1−γ
1+γ

)2 ≤ 1

2
− γ

1.1
+

6γ√
k
≤ 1

2
− 0.92γ ≤ 1

2
− 1.8 · α√

n
.

where the first inequality holds whenever γ < 0.3. Hence, noting that E [Wt | mt = m] = n · Pr
[
X ≥

⌈
k
2

⌉]
the

claim follows.

Lemma 3.5. For any t0 ≥ 1 and m ∈ Orange, let

T = inf{s > t0 : ms ̸∈ Orange}.

Then, Pr [T − t0 ≤ log n] | mt0 = m ≥ c, for a suitable positive constant c.
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Proof. For every t, define αt so that mt =
n
2 − αt

√
n, i.e., αt =

(
n
2 −mt

)
1√
n
. Note that, if mt ∈ Orange, then

αt ∈
[
0,
√

2n logn
k

]
. We can prove the following:

(i) If αt0 ≤ 3, then αt0+1 ≥ 3 with constant probability.

(ii) For every t > t0 and 3 ≤ α ≤
√
n
4 , we have Pr [αt+1 > 1.5α | αt = α] ≥ 1− e−0.1α2 − 1

n2 .

We prove (i) and (ii) below, after showing that they imply Lemma 3.5.
Assume (i) and (ii) hold. We define the events Et = {t ≥ T} ∪ {αt+1 > 1.5αt}, F = {αt0+1 ≥ 3} and

E =
⋂t0+1+logn

t=t0+1 Et
⋂
F . We note that, conditioning on mt0 = m, we have {T ≤ log n} ⊆ E . Indeed, this follows

since, if αt0+1 ≥ 3 and αt+1 > 1.5αt for every t = t0 + 1, . . . , t1, then a straightforward calculation shows that

αt1 ≥
√

2n logn
k for t1 < log n. Recalling that (i) implies Pr [F ] > c1 for a suitable constant c1 we have

(3.3) Pr [T − t0 ≤ log n | mt0 = m] ≥ Pr [E | mt0 = m] ≥ c1

t0+1+logn∏
t=t0+1

Pr
[
Et | ∩t−1

j=t0+1Ej ∩ F ,mt0 = m
]
.

Now note that, from our definition of the Et’s, we have Pr
[
Et | ∩t−1

j=t0+1Ej ∩ F ,mt0 = m
]
= 1 if T = t′ for

some t′ ∈ {t0 + 1, . . . , t − 1}, while Pr
[
Et | ∩t−1

j=t0+1Ej ∩ F ,mt0 = m
]

≥
(
1− e−0.1α2 − 1

n2

)
if t′ < T for

t′ ∈ {t0 + 1, . . . , t− 1} and αt = α. To finish the proof, define βt = 3 · (1.5)t−t0−1. Then, for every t

Pr
[
Et | ∩t−1

j=t0+1Ej ∩ F ,mt0 = m
]
≥ Pr

[
αt+1 > βt+1 | ∩t−1

j=t0+1αj+1 > 1.5αj , t < T
]

≥ 1− e−0.1β2
t − 1

n2
,

where the first inequality follows since ∩t−1
j=t0+1αj+1 > 1.5αj implies αt > βt, while the second follows from this

fact and from (ii). Finally, (3.3) and the inequality above give

Pr [T − t0 ≤ log n | mt0 = m] ≥ Pr [E | mt0 = m] ≥ c1

t0+1+logn∏
t=t0+1

(
1− e−0.1β2

t − 1

n2

)

≥ c1

(
1−

t0+1+logn∑
t=t0+1

e−0.1β2
t − 1

n

)
≥ c1

(
1− e−0.1·9 −

+∞∑
t=1

3−t − 1

n

)
≥ c,

for a suitable positive constant c, with the third inequality following from the definition of βt.
Proof of (i) We consider two cases. Assume first that E [Wt | αt0 = α] ≤ n

2 − 3
√
n. In this case, Lemma 3.2

implies that with constant probability, we Wt0 ≤ n
2 − 3

√
n, whence mt0+1 ≤ n

2 − 3
√
n and αt0+1 ≥ 3. Assume

next that n
2 − 3

√
n ≤ E [Wt | αt0 = α] ≤ n

2 . In this case, we apply the reverse Chernoff Bound to show that with

constant probability, Wt0+1 deviates at least 3
√

E [Wt | αt = α] from its expectation, thus giving αt0+1 ≥ 3.
Proof of (ii) By definition, we have that mt =

n
2 − αt

√
n. Now, Lemma 3.4 implies

E [Wt | αt = α] ≤ n

2
− 1.8α

√
n.

Therefore, Chernoff’s bound (Theorem A.1), Lemma 3.1(c) and a union bound give

Pr
[
Ut = 0 and Wt ≤

n

2
− 1.5αt

√
n | αt = α

]
≥ 1− e−0.1α2

t − 1

n2
.

Hence, with the above probability we have mt+1 = Wt, so that

Pr [αt+1 > 1.5α | αt = α] = Pr
[
mt+1 ≤ n

2
− 1.5α

√
n | αt = α

]
≥ 1− e−0.1α2

t − 1

n2
.
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We now proceed with the proof of Lemma 2.3.

Proof of Lemma 2.3. Consider the stopping time T ′ defined as follows:

T ′ = inf{s > t0 : E [Ws | ms] ̸∈ Orange or ms ̸∈ Orange}.

Roughly speaking, T ′ is the first time the expectation of the process, or the process, leaves the Orange area. Of
course, T ′ ≤ T . Considering T ′ instead of T is useful to prove that, at time T = T ′ + 1, mT ̸∈ Orange ∪Red
with constant probability. Consider the events

At = {mt ∈ Orange} ∩ {E [Wt | mt] ∈ Orange} and Bt = {n
3 ≤ Wt ≤ 3n

4 } ∩ {Ut = 0},

and let

Et = (At)
C ∪Bt ∪ {t ≥ T ′}, E1 =

t0+logn⋂
t=t0

Et and E2 = {T ′ − t0 ≤ log n}.

We have:

Pr
[
EC
1 | mt0 = m

]
≤

t0+logn∑
t=t0

Pr
[
EC
t | mt0 = m

]
≤

t0+logn∑
t=t0

Pr
[
(Bt)

C | At, t < T ′,mt0 = m
]

≤ 2 log n

n2
,

where the last inequality follows from Lemma 3.2 applied to the interval I = Orange, by observing that
3
2I ⊆ [n3 ,

3n
4 ] and from Lemma 3.1(c). Since T ′ ≤ T , Lemma 3.5 shows the existence of a constant c2 > 0

such that Pr [E2 | mt0 = m] > c2, whence Pr [E1 ∩ E2 | mt0 = m] > c2 − 1
n > 0. We assume that the event E1 ∩E2

holds in the remainders of the proof, remarking that the event E1 ∩ E2 is independent of what happens during
round T ′ + 1.

We now distinguish two cases, according to the realization of T ′. First, we assume that mT ′−1 = γ ∈ Orange
and that E [WT ′ | mT ′−1 = γ] ̸∈ Orange. If E [WT ′ | mT ′−1 = γ] ̸∈ Red ∪ Orange, Lemma 3.2 applied to
intervals I1 = Blue1 and I2 = Blue2 ∪Yellow ∪Green implies that WT ′ ̸∈ Red ∪Orange and WT ′ ≤ n/2
with constant probability. If otherwise E [WT ′ | mT ′−1 = γ] ∈ Red, Lemma 3.3 implies WT ′ ∈ Blue1 ∪ Blue2
with constant probability. Since mT ′−1 = γ ∈ Orange, the two previous statements, together with Lemma 3.1(c)
implying UT ′ = 0 w.h.p., proving thatmT ′+1 ̸∈ Red∪Orange with constant probability, and hence with constant
probability mT ̸∈ Red ∪Orange and T = T ′ + 1.

Next, assume that, for γ ∈ Orange, E [WT ′ | mT ′−1 = γ] ∈ Orange and mT ′ ̸∈ Orange. In this case,
the event E1 ∩ E2 implies n

3 ≤ WT ′ ≤ 3n
4 and UT ′ = 0. Since mT ′+1 = min{WT ′ , n − WT ′}, this implies that

mT ′+1 ̸∈ Red, concluding that T = T ′ + 1 and so mT = mT ′+1 ̸∈ Red ∪ Orange with constant probability.

3.4 The yellow area The goal of this section is to prove Lemma 2.4. The main difficulty in the analysis of
this area is the presence of a fixed point m̄ ∈ Yellow for the expectation of the process. Notice that, according
to Fact 2.1 and Lemma 2.1, in the whole Yellow area it holds that mt+1 = Ut, w.h.p., for the range of k that
we consider. Hence, we here define m̄ as the point such that E [Ut | mt = m̄] = m̄. In the following lemma, we
show that such a fixed point is unstable: we first estimate the initial deviation from m̄ using the variance of the
process, then we show that the distance between mt and the fixed point grows by a factor Ω(log n) in each round,
with a sufficiently large probability. We use this argument to derive an upper bound on the time it takes the
process to leave the Yellow area.

Lemma 3.6. For any t0 ≥ 1, let T be the random variable indicating the first time larger than t0 such that the
process is out of the Yellow area,

T = inf{s > t0 : ms ̸∈ Yellow} .

For every m ∈ Yellow, it holds that Pr [T ≤ log n | mt0 = m] ≥ c, for a suitable positive constant c.
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Proof. Let f(x) = E [Ut | mt = x] = n
(
1− x

n

)k
+ n

(
x
n

)k
. We have that f is strictly decreasing in Yellow and,

moreover, that f(x) > x if x = n
k log

(
k

4 logn

)
and that f(x) < x if x = 3n logn

k . These three facts imply that f

admits a unique fixed point m̄ ∈ Yellow satisfying f(m̄) = m̄.
Let ∆t = |mt − m̄|. We prove the following in the remainder:

(i) Conditioning on ∆t0 ≤
√

n
k , we have that ∆t0+1 ≥

√
n
k with constant probability.

(ii) For every t > t0, we have Pr
[
∆t+1 > logn

16 ·∆t | ∆t ≥
√

n
k , t < T

]
≥ 1− n− 1

33 .

We prove (i) and (ii) later, while we now show that they imply that {T ≤ log n} with constant probability.

Indeed, if we define Et = {t ≥ T} ∪
{
∆t+1 > logn

16 ∆t

}
, F =

{
∆t0+1 ≥

√
n
k

}
and E =

⋂t0+1+logn
t=t0+1 Et

⋂
F , we have

that, conditioning on mt0 = m, {T ≤ log n} ⊆ E . Indeed, if there exists some t1 such that t0 ≤ t1 ≤ t0 + log n for
which,

∆t1 > max

{
3n log n

k
− m̄, m̄− n

k
log

(
k

4 log n

)}
,

we have mt1 ̸∈ Yellow. Moreover, we have

(3.4) Pr [E | mt0 = m] =

t0+1+logn∏
t=t0+1

Pr
[
Et | ∩t−1

j=t0+1Ej ∩ F ,mt0 = m
]
Pr [F | mt0 = m] .

From (i), we have Pr [F | mt0 = m] > c1 for a suitable positive constant c1, while (ii) implies that, for any t
such that t0 + 1 ≤ t ≤ log n+ t0 + 1,

Pr
[
Et | ∩t−1

j=t0+1Ej ∩ F ,mt0 = m
]
≥ Pr

[
∆t+1 > logn

16 ∆t | ∆t ≥
√

n
k , t < T

]
≥ 1− n− 1

33 .

Hence, from (3.4) and the inequality below, Pr [E | mt0 = m] ≥
(
1− n− 1

33

)logn

· c1 ≥ c, for a suitable positive

constant c.
Proof of (i) First, consider the case in which E [Ut0 | mt0 = m] ≥ m̄ and recall that m ∈ Yellow. From

Lemma 3.1(b) we have E [Ut0 | mt = m] ≤ 4n logn
k and, from the reverse and standard Chernoff bounds we have

that, with constant probability, m̄+
√
m̄ ≤ Ut0 ≤ n

2 . Since m̄ ≥ n
k , this implies mt0+1 ≥ m̄+

√
n
k . Similarly, we

can prove that, when E [Ut0 | mt0 = m] ≤ m̄, we have that mt0+1 ≤ m̄ −
√

n
k with constant probability. Hence,

with constant probability we have ∆t0+1 ≥
√

n
k , which concludes the proof of (i).

Proof of (ii) Since ∆t ≥
√

n
k , we can write ∆t = α

√
n
k , for some α ≥ 1. Note that since m̄ ∈ Yellow and

k ≥ log n
√
n, it satisfies

(3.5) m̄ ≥ n

k
log

(
k

3 log n

)
≥ n log n

3k
.

First, consider the case when mt = ℓ ≥ m̄, i.e., mt = m̄+∆t. We have

E [Ut | mt = ℓ] ≤ m̄ · e− k
n∆t = m̄e−α

√
k
n ≤ m̄ ·max

{
0.3, 1− α

2

√
k
n

}
≤ max

{
0.3m̄, m̄− logn

8 α
√

n
k

}
(3.6)

≤ m̄− log n

8
∆t,(3.7)

where the first inequality follows from the fact that e−
1
x ≤ max{0.3, 1 − 1

2x} for each x ≥ 0 and the inequalities

(3.6) and (3.7) follow from (3.5). Hence, E [m̄− Ut | mt = m] ≥ logn
8 ∆t and so, from using the multiplicative

Chernoff bound, we have

(3.8) Pr

[
m̄− Ut ≤

log n

16
∆t | mt = ℓ

]
≤ e−

log n
64 ∆t ≤ n− 1

32 ,
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where the last inequality follows since k ≤ 0.5n. We proved that Ut ≤ m̄− logn
16 ∆t with probability at least 1−n− 1

32

and, hence, using Lemma 3.1(d) we have mt+1 = Ut with probability at least 1 − n− 1
33 , whence ∆t+1 ≥ logn

16 ∆t

follows.
Now, consider the case in which mt = ℓ ≤ m̄, and hence mt = m̄−∆t. In this case, for each ℓ ∈ Yellow we

have

E [Ut | mt = ℓ] ≥ ne−k ℓ
n−k( ℓ

n )
2

≥ m̄e
k
n∆te−k( ℓ

n )
2

(3.9)

≥ m̄e
1
2α
√

k
n(3.10)

≥ m̄+
m̄α

2

√
k

n
(3.11)

≥ m̄+
log n

6
α

√
n

k
(3.12)

where (3.9) follows from Claim 1, (3.10) follows from the fact that ℓ ∈ Yellow and so k
(
ℓ
n

)2 ≤ 1
2α
√

k
n , (3.11)

follows from the fact that e
1
x ≥ 1+ 1

x for any x > 0. Finally, (3.12) follows from (3.5). Next, from the multiplicative
Chernoff bound we have

(3.13) Pr

[
Ut − m̄ ≤ log n

8
∆t | mt = ℓ

]
≤ e−

log n
16 ∆t ≤ n− 1

8 ,

where the last inequality follows since k ≤ 0.5n. Moreover, from the definition of Yellow, Lemma 3.1(f) implies
that Ut ≤ 0.2n w.h.p. From a union bound with (3.13), we have that m̄+ logn

8 ∆t ≤ Ut ≤ 0.2n with probability at

least 1−n− 1
9 . Hence, from Lemma 3.1(d) we have mt+1 = Ut w.h.p., so that mt+1 ≥ m̄+ logn

8 ∆t with probability

at least 1 − n− 1
10 . We thus conclude that, also in this case, ∆t+1 > logn

16 ∆t with probability at least 1 − n− 1
32 .

We now proceed with the proof of Lemma 2.4.

Proof of Lemma 2.4. In order to prove the lemma, we introduce the stopping time T ′ ≤ T , which can be seen (in
some situations) as the time just before T :

T ′ = inf{s > t0 : E [Us | ms] ̸∈ Yellow or ms ̸∈ Yellow} .

In other words, T ′ is the first time the expectation of the process, or the process itself, leavesYellow. Considering
T ′ instead of T is helpful to prove that, with constant probability, the minority does not land in the Red area in
round T = T ′ + 1. Consider the following events

At = {mt ∈ Yellow} ∪ {E [Ut | mt] ∈ Yellow},

Bt = {Ut ∈ Blue2 ∪Yellow ∪Green} ∩ {Wt = 0},
and

Et = (At)
C ∪Bt ∪ {t ≥ T ′}, E1 =

t0+logn⋂
t=t0

Et and E2 = {T ′ ≤ log n}.

We have

Pr
[
EC
1 | mt0 = m

]
≤

t0+logn∑
t=t0

Pr
[
EC
t | mt0 = m

]
≤

t0+logn∑
t=t0

Pr
[
(Bt)

C | At, t < T ′,mt0 = m
]

≤ 2 log n

n2
,
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where the last inequality follows from Lemma 3.2 taking the interval I = Yellow and noticing that 2I ⊆
Blue2 ∪Yellow ∪Green, from Lemma 3.1(d) and a union bound.

From Lemma 3.6 and noticing that T ′ ≤ T , we have that there exists a constant c2 > 0 such that
Pr [E2 | mt0 = m] ≥ c2. Hence, we have Pr [E1 ∩ E2 | mt0 = m] ≥ c2 − 1

n > 0, whenever n is sufficiently large. In
the rest of the proof, we assume that the event E1 ∩ E2 holds. We remark that the event E1 ∩ E2 is independent
of what happens in round T ′ + 1.

We now consider two cases, according to the realization of T ′. First, we assume that mT ′−1 = γ ∈ Orange
and that E [UT ′ | mT−1 = γ] ̸∈ Yellow. In this case, we note that, since γ ∈ Yellow, from Lemma 3.1(c) and
the strong Markov property, we have

1

n2
≤ E [UT ′ | mT ′−1 = γ] ≤ 3n log n

k
.

Since we assumed E [UT ′ | mT ′−1 = γ] ̸∈ Yellow, it follows that E [UT ′ | mT ′−1] ∈ Blue1 ∪ Red ∪ Blue2 ∪
Green. We first consider the case in which E [UT ′ | mT ′−1 = γ] ∈ Red. From Lemma 3.3, we have
UT ′ ∈ Blue1 ∪Blue2 with constant probability, while Lemma 3.1(d) implies that mT ′+1 ∈ Blue1 ∪Blue2, thus
proving that, in this case, T = T + 1 and that mT ′+1 = mT ∈ Blue1 ∪ Blue2 with constant probability. Now
assume that E [UT ′ | mT ′−1] ∈ Blue1 ∪Blue2 ∪Green. We can apply Lemma 3.2 to the intervals I1 = Blue1,
I2 = Blue2 and I3 = Green, obtaining that, with constant probability, UT ′ ∈ Blue1 ∪ Blue2 ∪ Green.
Considering also Lemma 3.1(d), we have that T = T ′+1 and that UT ′ = mT ′+1 = mT ∈ Blue1∪Blue2∪Green.

Suppose next that T ′ is such that mT ′−1 = γ ∈ Yellow, E [UT | mT ′−1 = γ] ∈ Yellow but mT ′ ̸∈ Yellow.
In this case, the event E1 ∩ E2 implies that T = T ′ + 1 and UT ′ = mT ′+1 = mT ∈ Blue1 ∪Green.

3.5 The blue area In this section, we prove Lemma 2.5.

Proof of Lemma 2.5. We first assume that m ∈ Blue1. From Lemma 3.1(b) and since m ≤ n log 2
k −

√
n log 2

k , we

obtain the following bound:

E [Ut | mt = m] ≥ e−km
n −k(m

n )
2

≥ n

2
e
√

k log 2
n e

−k
(

log 2
k −

√
log 2
kn

)2

(3.14)

≥ n

2
e

1
2

√
k log 2

n

≥ n

2
+

n

4

√
k log 2

n
,(3.15)

where (3.14) follows from Claim 1, and (3.15) follows from the fact that e
1
x ≥ 1 + 1

x for any x > 0. On the

other side, from Lemma 3.1(b), we have that, since mt ≥ 1, E [Ut | mt = m] ≤ ne−
k
n ≤ n − k

3 ≤ n − n logn
k ,

since k ≥ 185
√
n log n. Hence, we proved that E [n− Ut | mt = m] ∈ Green and, from Lemma 3.2 applied to

I = Green and Lemma 3.1(d), we have that mt+1 = n− Ut ∈ Green with constant probability.

We now assume that m ∈ Blue2, and hence n log 2
k +

√
n log 2

k ≤ m ≤ n
k log

(
k

4 logn

)
. In this case, from

Lemma 3.1(b), we have that

E [Ut | mt = m] ≤ ne−
k
nm ≤ n

2
e−

√
k log 2

n +
1

n2

≤ n

2
− n

5

√
k log 2

n
,

where the last inequality follows since e−1/x ≤ 1− 1
2x for any x ≥ 1. On the other side,

E [Ut | mt = m] ≥ ne−km
n −k(m

n )
2

≥ 4n log n

k
e− log2( k

4 log n )
1
k

≥ 3n log n

k
,

Hence, E [Ut | mt = m] ∈ Green and, from Lemma 3.2 applied to the interval I = Green and Lemma 3.1(d),
we have that mt+1 = Ut ∈ Green with constant probability.
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3.6 The green area
Proof of Lemma 2.6. By definition of Green, we can apply Lemma 3.1(c) and Lemma 3.1(d), obtaining that
mt+1 = 0 w.h.p. We notice that, in this case, Ot+1 = 1 − Ot, since every node adopts the ex-minority opinion.

3.7 The Bit-Dissemination problem
Proof of Lemma 2.7. By assumption, mt = m = 1 and the opinion of the source agent is ℓ = Ot. Since, from
the fact that k ≤ 0.5n, we have that m = 1 ≤ n

3k , we have from Lemma 3.1(e) Ot+1 = Ot = ℓ w.h.p. and, from
Lemma 2.5, that mt+1 ∈ Green with constant probability. Finally, from Lemma 2.6, we have that mt+2 = 0 and
that Ot = 1− ℓ, and therefore the opinion of the majority is the same opinion of the source.

4 k-Minority in the Sequential Communication Model

In this section, we analyze the k-minority process on the uniform-random sequential model, proving Theorem 1.1.

4.1 Proof of Theorem 1.1 In this section, we will denote by Xt the number of agents with opinion 1 in
round t. In addition, we will use the following notations for birth-death chains on {0, . . . , n}:

pi = Pr [Xt+1 = i+ 1 | Xt = i] ,

qi = Pr [Xt+1 = i− 1 | Xt = i] ,

ri = Pr [Xt+1 = i | Xt = i] , and

τi,j = E [inf {t ∈ N, Xt = j} | X0 = i] .

We start by recalling a classical lower bound on the expected time needed for a birth-death chain to travel from
state 0 to n.

Lemma 4.1. Consider any birth-death chain on {0, . . . , n}. For 1 ≤ i ≤ j ≤ n, let ai = qi/pi−1 and

a(i : j) =
∏j

k=i ak. Then, τ0,n ≥
∑

1≤i<j≤n a(i : j).

Proof (for the sake of completeness). Let w0 = 1 and for i ∈ {1, . . . , n}, let wi = 1/a(1 : i). The following result
is well-known (see, e.g., Eq. (2.13) in [24]). For every ℓ ∈ {1, . . . , n},

τℓ−1,ℓ =
1

qℓwℓ

ℓ−1∑
i=0

wi.

Thus,

τℓ−1,ℓ =
1

qℓ

ℓ−1∑
i=0

a(1 : ℓ)

a(1 : i)
=

1

qℓ

ℓ∑
i=1

a(i : ℓ) ≥
ℓ∑

i=1

a(i : ℓ).

Eventually, we can write

τ0,n =

n∑
ℓ=1

τℓ−1,ℓ ≥
∑

1≤i<j≤n

a(i : j),

which concludes the proof of Lemma 4.1.
Next, we identify some regions of the configuration space where k−minority has a very strong drift toward

the balanced configuration Xt = n/2.

Lemma 4.2. Let α, β such that 0 < α < β < 1/2. There exists a constant c = c(α, β) > 0, such that for every n
large enough, for every i ∈ [αn, βn],

Pr [Xt+1 = i+ 1|Xt = i] ≥ 1− β

2
and Pr [Xt+1 = n− i− 1|Xt = n− i] ≥ 1− β

2
;

and

Pr [Xt+1 = i− 1|Xt = i] ≤ exp (−c k) and Pr [Xt+1 = n− i+ 1|Xt = n− i] ≤ exp (−c k) .
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Proof. Let i ∈ [αn, βn]. Let At the event: “In round t, the activated agent sees a unanimity of 0”. Since i ≥ αn,

Pr [At | Xt = i] ≤ (1− α)k.

Let Bt the event: “In round t, the activated agent sees a minority of 0”. Let Y be a random variable following a
binomial distribution with parameters (k, β). Since i ≤ βn, by the additive Chernoff bound (Theorem A.1),

Pr [Bt | Xt = i] ≤ Pr [Y ≥ k/2]

= Pr [Y ≥ βk + k(1/2− β)]

≤ exp

(
−2k2(1/2− β)2

k

)
= exp

(
−2k (1/2− β)

2
)
.

Let Ct the event: “In round t, the activated agent adopts opinion 0”. By construction of the Minority protocol,
Ct ⊆ At ∪Bt. Taking the union bound, we get

Pr [Ct | Xt = i] ≤ (1− α)k + exp
(
−2k (1/2− β)

2
)
.

By setting

c = min

{
log

(
1

1− α

)
, 2

(
1

2
− β

)2
}

> 0,

we obtain
Pr [Ct | Xt = i] ≤ 2 exp (−c k) .

Therefore, we have

Pr [Xt+1 = i− 1 | Xt = i] =
i

n
·Pr [Ct | Xt = i] ≤ β · 2 exp (−c k) ≤ exp (−c k) .

Moreover, for k large enough,

Pr [Xt+1 = i+ 1 | Xt = i] =
n− i

n
· (1−Pr [Ct | Xt = i]) ≥ (1− β) (1− 2 exp (−c k)) ≥ 1− β

2
.

By symmetry of k−minority, we obtain the same bounds for the case Xt = n− i, which concludes the proof of
Lemma 4.2.

Eventually, we can combine the above results into a lower bound on the convergence time of k−minority in
the sequential setting.

Proof of Theorem 1.1. Let m = n/6. Let Z = (Zs) be a birth-death chain on {0, . . . ,m}, defined as follows: for
every δ ∈ {−1, 0, 1}, for every i ∈ {1, . . . ,m− 1},

Pr [Zs+1 = i+ δ | Zs = i] = Pr
[
Xt+1 =

n

2
+m+ i+ δ | Xt =

n

2
+m+ i

]
.

Note that, by symmetry, this is also equal to Pr
[
Xt+1 = n

2 −m− i− δ | Xt =
n
2 −m− i

]
. Intuitively, making

one step forward as Zs, corresponds to making one step away from n/2 asXt. In particular, with this construction,
we have that

E [inf{t ∈ N, |Xt − n/2| ≥ 2m} | X0 = n/2] ≥ E [inf{s ∈ N, Zs = m} | Z0 = 0] .

By Lemma 4.2 applied with α = 1/6, β = 2/6, there exists a constant c > 0 such that for every i ∈ {1, . . . ,m}, Z
satisfies pi ≤ exp (−c k) and qi ≥ 1/3. As a consequence, for every i ∈ {1, . . . ,m}, qi/pi−1 ≥ exp (c k) /3. Finally,
by Lemma 4.1,

E [inf{s ∈ N, Zs = m} | Z0 = 0] ≥
∑

1≤i<j≤n

a(i : j) ≥
(
exp (c k)

3

)n−1

= exp (Ω(nk)) ,

which concludes the proof of Theorem 1.1.
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5 Open Questions

We see two main questions that deserve future work. The first question is more technical and concerns the role
of parameter k, i.e. the size of the sample used by nodes to apply the k-minority rule. Despite our proofs
of Theorem 1.2 and Theorem 1.3 require k = Ω̃(

√
n) to achieve O(polylogn) convergence time, preliminary

experimental results suggest that polylog n convergence time is possible even when k = Ω(polylogn), and it would
be interesting to establish such bounds rigorously or prove that actual bounds might actually be worse. So far,
we are able to prove that if k = O(1) then any passive-communication stateless dynamics in the k-PULL model
requires nΩ(1) rounds to solve the bit-dissemination problem.

The second, more general question concerns the gap between the synchronous parallel and the asynchronous
sequential models in consensus dynamics, or possibly in dynamics for other fundamental distributed tasks such as
broadcast. A Õ(n) gap between the two models is so common that, in order to analyze a parallel dynamics with
(presumed) convergence time polylog n, it is common to first analyze its sequential implementation, to establish
an O(npolylog n) bound on converge time, and then to adapt the analysis to the parallel setting. Our results
show a natural, simple dynamics for which the usual linear gap does not hold, showing that it is not possible
to establish a black-box result, whereby results for the asynchronous sequential setting immediately carry over
to the parallel synchronous case. We believe it would be very interesting to derive necessary and/or sufficient
conditions under which a linear gap is guaranteed to exist.

Acknowledgments

The authors wish to thank Amos Korman and Emanuele Natale for very helpful discussions on the topic.

References

[1] David Aldous. Interacting particle systems as stochastic social dynamics. Bernoulli, 19(4):1122–1149, 2013.
[2] D. Angluin, J. Aspnes, and D. Eisenstat. A simple population protocol for fast robust approximate majority.

Distributed Computing, 21(2):87–102, 2008. (Preliminary version in DISC’07).
[3] J. Aspnes. Faster randomized consensus with an oblivious adversary. In Proceedings of the 31st Annual ACM

SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC’12), pages 1–8. ACM, 2012.
[4] James Aspnes and Eric Ruppert. An introduction to population protocols. In Benôıt Garbinato, Hugo Miranda, and

Lúıs Rodrigues, editors, Middleware for Network Eccentric and Mobile Applications, pages 97–120. Springer, Berlin,
Heidelberg, 2009.

[5] Paul Bastide, George Giakkoupis, and Hayk Saribekyan. Self-stabilizing clock synchronization with 1-bit messages.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA ’21), pages 2154–2173. Society
for Industrial and Applied Mathematics, 2021.

[6] L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan. Stabilizing consensus with many opinions. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16). SIAM, 2016.

[7] Luca Becchetti, Andrea Clementi, and Emanuele Natale. Consensus dynamics: An overview. ACM SIGACT News,
51(1):58–104, 2020.

[8] Luca Becchetti, Andrea E. F. Clementi, Amos Korman, Francesco Pasquale, Luca Trevisan, and Robin Vacus. On
the role of memory in robust opinion dynamics. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence (IJCAI ’23), pages 29–37, 2023.

[9] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Fast self-stabilizing byzantine tolerant digital clock synchronization.
In Proceedings of the twenty-seventh ACM symposium on Principles of distributed computing (PODC ’08), pages 385–
394, 2008. Association for Computing Machinery.

[10] Petra Berenbrink, Andrea E. F. Clementi, Robert Elsässer, Peter Kling, Frederik Mallmann-Trenn, and Emanuele
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A Tools

Theorem A.1. (Chernoff’s Inequality) Let X =
∑n

i=1 Xi, where Xi with i ∈ [n] are independently
distributed in [0, 1]. Let µ = E [X] and µ− ≤ µ ≤ µ+. Then:

• for every t > 0

Pr [X > µ+ + t] ≤ e−2t2/n and Pr [X < µ− − t] ≤ e−2t2/n;

• for ε > 0

Pr [X > (1 + ε)µ+] ≤ e−
ϵ2

2 µ+ and Pr [X < (1− ϵ)µ−] ≤ e−
ϵ2

2 µ− .

Lemma A.1. (Reverse Chernoff Bound) Let X1, . . . , Xn be i.i.d. Bernoulli random variables. Let X =∑n
i=1 Xi and let Xi such that E [Xi] = p, and µ = E [X] = np. Then, if p ≤ 1/4, for any t ≥ 0

Pr [X ≥ µ+ t] ≥ 1

4
e−

2t2

µ .

If p ≤ 1/2, then for any 0 ≤ t ≤ n(1− 2p),

Pr [X > t+ µ] ≥ 1

4
e−

2t2

µ .

Furthermore, for any δ ∈ (0, 1
2 ] such that δ2µ ≥ 3,

Pr [X ≥ (1 + δ)µ] ≥ e−9δ2µ and Pr [X ≤ (1− δ)µ] ≥ e−9δ2µ.

Claim 1. If x/n ≤ 0.6, then for n large enough, the following inequalities hold:

exp
(
−2k

x

n

)
≤ exp

(
−k

x

n
− k

(x
n

)2)
≤
(
1− x

n

)k
≤ exp

(
−k

x

n

)
.

Claim 2. (Central Binomial Coefficient) For every large enough n, it holds

1

2
· 4n√

πn
≤
(
2n

n

)
≤ 4n√

πn
.

B Missing Proofs

Proof of Lemma 3.1. We prove each item separately.
Proof of (a). Let X ∈ {0, . . . , k} the number of samples corresponding to the minority opinion that node

i receives in round t. Since mt = m, each sample corresponds to the minority opinion with probability m/n.
Therefore, we have E [X | mt = m] = k · mn = k

2 −k
(
1
2 − m

n

)
. Hence, by Chernoff Bound and the Reverse Chernoff

Bound, we have
1

4
e−4k( 1

2−
m
n )

2

≤ Pr

[
X ≥

⌈
k

2

⌉
| mt = m

]
≤ e−2k( 1

2−
m
n )

2

.

Now, given mt = m, since Wt is the sum of n i.i.d. Bernoulli random variables taking value 1 when {X ≥ ⌈k/2⌉},
we have that (a) holds.

Proof of (b). The generic agent i samples only the majority opinion with probability (1−m/n)k. Summing
over all agents and taking the expectation concludes the proof of (b).

Proof of (c). If mt = m ≥ 3n logn
k , (b) implies that E [Ut | mt = m] ≤ 2

n2 . By Markov’s inequality,
Pr [Ut = 0 | mt = m] ≥ 1− 2

n2 , which concludes the proof of (c).

Proof of (d). Since mt = m ≤ n
2 − n

√
1.5 logn

k , we have
(
1
2 − m

n

)2 ≥ 1.5 logn
k , whence (a) implies

E [Wt | mt = m] ≤ 1
n2 . By Markov’s inequality, Pr [Wt = 0 | mt = m] ≥ 1 − 1

n2 , which concludes the proof
of (d).
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Proof of (e). If mt = m ≤ n
3k , (b) yields E [Ut | mt = m] ≥ n

(
1− m

n

)k ≥ ne−
1.1k
n m ≥ 0.69n. Then, using

Chernoff’s bound we have Pr [Ut ≤ 0.6n | mt = m] ≤ e−2·(0.09)2n ≤ 1
n2 . Moreover, since m ≤ n

3k , (d) gives Wt = 0
w.h.p., with no agent seeing a unanimity that corresponds to Ot. Thus, by definition of the protocol, any agent
seeing unanimity adopts opinion 1 − Ot. Since Ut ≥ 0.6n, this implies that a minority of agents adopt opinion
Ot, hence Ot+1 = Ot, which concludes the proof of (e).

Proof of (f). If mt = m and 2n
k ≤ m ≤ n

2 −n
√

1.5 logn
k , (b) gives E [Ut | mt = m] ≤ ne−

k
nm ≤ 0.15n. Hence,

using Chernoff’s bound we have Pr [Ut ≥ 0.2n | mt = m] ≤ e−2(0.05)2n ≤ 1
n2 . Moreover, from (d) we have Wt = 0

w.h.p. The latter event implies that agents adopt the majority opinion if and only if they sample unanimity.
Hence, conditioning on the fact that Ut ≤ 0.2n, we have that Ot+1 = 1−Ot, which concludes the proof of (f).
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