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Abstract

According to the classic Chvátal’s Lemma from 1977, a graph of minimum degree δ(G)
contains every tree on δ(G)+1 vertices. Our main result is the following algorithmic “extension”
of Chvátal’s Lemma: For any n-vertex graph G, integer k, and a tree T on at most δ(G) + k
vertices, deciding whether G contains a subgraph isomorphic to T , can be done in time f(k)·nO(1)

for some function f of k only.
The proof of our main result is based on an interplay between extremal graph theory and
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1 Introduction

In the Tree Containment problem we are given an n-vertex graph G and a tree T . The
task is to identify whether G has a subgraph isomorphic to T .1 For the very special case of T
being an n-vertex path, solving Tree Containment is equivalent to deciding whether G contains
a Hamiltonian path and thus is NP-complete. Our work on Tree Containment is strongly
motivated by the recent advances in algorithmic “extensions” of the classic theorems of extremal
combinatorics [FGSS22a, FGSS22b, HK20].

For example, the classic theorem of Dirac states that every 2-connected graph contains a cycle
(and thus a path) of length at least min{2δ(G), n}, where δ(G) is the minimum degree of G.
In [FGSS22a], we gave an FPT algorithm for parameterization “above Dirac’s bound”—an algorithm
that for any k ≥ 1, decides whether a connected G contains a path of length at least 2δ(G) + k in
time f(k) · nO(1) for some function f of k only.

The question of how to impose conditions on vertex degrees of the host graph G to guarantee
that it contains a certain tree T as a subgraph is a fundamental question in extremal graph theory.
However, compared with path and cycle containments, tree containment is much more challenging.
For example, the theorem of Erdős and Gallai [EG59] from 1959 asserts that every graph of average
degree > d contains a cycle with at least d+1 vertices. Similarly, Erdős and Sós [Erd64] conjectured
in 1963 that every graph with average degree > d contains any tree on d+1 vertices. This conjecture
remains open.

The starting point of our algorithmic study of Tree Containment is the following cute result
first published by Chvátal.

Lemma 1 (Chvátal’s Lemma [Chv77]). If G is a graph of minimum degree δ(G), then G contains
every tree on δ(G) + 1 vertices.

From the combinatorial point of view the result of Lemma 1 is tight: a δ-regular graph does not
contain a star of degree δ(G) + 1. The proof of Lemma 1 is constructive and it yields a polynomial
time algorithm computing a subtree in G isomorphic to a tree T on δ(G) + 1 vertices. Whether
Lemma 1 is tight from the algorithmic point of view, that is, whether it is possible to decide in
polynomial time if a tree on δ(G) + k vertices, for some fixed constant k > 1, is in G, was open
prior to our work. Our main result is the following “algorithmic extension” of Chvátal’s Lemma.

Theorem 1. For any n-vertex graph G, integer k, and a tree T on at most δ(G) + k vertices,
there is a randomized algorithm deciding with probability at least 1

2 whether G contains a subgraph

isomorphic to T in time 2k
O(1) · nO(1). The algorithm is with one-sided error and reports no false-

positives.

In other words, Tree Containment Above Minimum Degree admits a randomized FPT
algorithm. We state Theorem 1 for the decision variant of the problem. However, the proof of
the theorem is constructive and if it exists, the corresponding subgraph isomorphism can also be
constructed in the same running time.

It is useful to compare and contrast Theorem 1 and the algorithm “above Dirac” from [FGSS22a]
that decides whether a connected graph contains a path of length at least 2δ(G) + k in time
f(k) · nO(1). On the one hand, the statement of Theorem 1 holds for any tree, not only paths.
On the other hand, the “combinatorial threshold” in the “above Dirac” algorithm is 2δ(G) and
in Theorem 1 it is δ(G). While in the statement of Chvátal’s Lemma the value δ(G) cannot be

1Let us remark that in computational biology the name tree containment is used for a different problem of deciding
whether a phylogenetic network displays a phylogenetic tree over the same set of labeled leaves.
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replaced by (1 + ε)δ(G) for ε > 0, it is not clear a priory that the threshold δ(G) in Theorem 1
cannot be increased. Our next theorem rules out this option.

Theorem 2. For any ε > 0, Tree Containment is NP-complete when restricted to instances
(G,T ) with |V (T )| ≤ (1 + ε)δ(G).

Related Work Tree Containment plays an important role both in graph theory and in graph
algorithms.

Extremal Graph Theory. According to Maya Stein [Ste20]: “One of the most intriguing open
questions in the area is to determine degree conditions a graph G has to satisfy in order to ensure
it contains a fixed tree T , or more generally, all trees of a fixed size.” While the conjecture of
Erdős and Sós [Erd64] about the average degree remains open, various other conditions have been
suggested that might ensure the appearance of all trees or forests of some fixed size [BD05, Bra94,
HRSW20, KSS95, LLP13, EFLS95]. We refer to the survey of Stein [Ste20] for a comprehensive
overview of the area.

Our work is also closely related to stability theorems in extremal combinatorics. Informally,
a stability theorem establishes that an “almost nice” extremal structure can always be obtained
by slightly modifying a “nice structure”. For example, coming back to Dirac’s and Erdős-Gallai
theorems, there is a significant amount of literature devoted to sharper versions of these classic
results [FKV16, FKLV18, MN20, LN21, Kop77, ZGH+22]. The typical statement of such results
is that when we weaken the condition on the minimum vertex degree or an average degree of a
graph, the graph contains a long cycle (or path) unless it possesses a very specific structure. To
prove Theorem 1, we have to establish several stability variants of Chvátal’s Lemma.

Algorithms. Tree Containment is the special case of Subgraph Isomorphism, where the guest
graph T is a tree. Matula in [Mat78] gave a polynomial time algorithm for Tree Containment
when the host graph G is also a tree. According to Matoušek and Thomas [MT92], Tree Con-
tainment is NP-complete when all vertices of T but one are of degree ≤ 3 and G is a treewidth 2
graph and all vertices of G but one are of degree ≤ 3. The result of Matoušek and Thomas shows a
sharp difference in the complexity of Tree Containment and the Longest Path, which is FPT
parameterized by the treewidth of G. The exhaustive study of Subgraph Isomorphism by Marx
and Pilipczuk [MP13] establishes several hardness results about Tree Containment for different
classes of graphs G and trees T . There is a broad literature in graph algorithms on a related problem
of finding a spanning tree in a graph with specified properties, see e.g. [PY82, FR92, Goe06].

The seminal work of Alon, Yuster, and Zwick on color coding [AYZ95] shows that Tree Con-
tainment is FPT parameterized by the size of T . In other words, deciding whether G contains a
tree T of size t could be done in time 2O(t)nO(1). Let us remark that in the setting of Theorem 1,
the color coding method provides an algorithm of running time 2O(δ(G)+k)nO(1), which is not FPT
in k.

Several results in the literature provide FPT algorithms for long paths, and cycles parame-
terized above some degree conditions. Our work is an extension of this line of research to more
general subgraph isomorphism problems. Fomin, Golovach, Lokshtanov, Panolan, Saurabh, and
Zehavi [FGL+20] gave FPT algorithms for computing long cycles and paths above the degener-
acy of a graph. The tractability of these problems was extended by the authors in [FGSS22b]
above the so-called Erdős-Gallai bound, which is above the average vertex degree of a graph. In
[FGSS20, FGSS22a], we established that finding a cycle above Dirac’s bound is FPT. In other
words, we gave an algorithm of running time 2O(k) · nO(1) deciding whether a 2-connected graph
G contains a cycle of length at least min{2δ(G), n} + k. The ideas and methods used to prove
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all the above results about cycles and paths are quite different from those we use in the proof of
Theorem 1.

From a more general perspective, Theorem 1 belongs to a rich subfield of Parameterized Com-
plexity concerning parameterization above/below specified guarantees [AGK+10, CJM+13, GP16,
GvIMY12, LNR+14, MRS09, JKN19]. We refer to the recent survey of Gutin and Mnich [GM22]
for an overview of this area. In particular, the parameterized complexity of finding an (s, t)-path
above the distance between vertices s and t, the Detour problem, attracted significant attention
recently [BCDF19, FGL+21, FGL+22, HMPS23, JWZ23].

2 Definitions and preliminaries

For a positive integer t, we define [t] = {1, . . . , t}.
We use standard graph-theoretic notation and refer to the textbook of Diestel [Die17] for non-

defined notions. We consider only finite simple undirected graphs. We use V (G) and E(G) to
denote the sets of vertices and edges of a graph G, respectively; n and m are used to denote the
number of vertices and edges if this does not create confusion. A vertex v is a non-neighbor of
u if v ̸= u and uv /∈ E(G). For a graph G and a subset X ⊆ V (G) of vertices, we write G[X]
to denote the subgraph of G induced by X. We use G − X to denote the graph obtained by
deleting the vertices of X, that is, G −X = G[V (G) \X]; we write G − v instead of G − {v} for
a single element set. For a vertex v, NG(v) = {u ∈ V (G) | vu ∈ E(G)} is the open neighborhood
of v and NG[v] = NG(v) ∪ {v} is the closed neighborhood. For a set of vertices X, NG(X) =(⋃

v∈X NG(v)
)
\X and NG[X] =

⋃
v∈X NG[v]. We use degG(v) = |NG(v)| to denote the degree of a

vertex v; ∆(G) = maxv∈V (G) degG(v) is the maximum degree of G and δ(G) = minv∈V (G) degG(v)
is the minimum degree. In the above notation, we may omit subscripts denoting graphs if this
does not create confusion. We write P = v1 − · · · − vk to denote a (simple) path in a graph G
with k vertices v1, . . . , vk of length k − 1; v1 and vk are the end-vertices of G and we say that
P is an (v1, vk)-path. The diameter of G, denoted diam(G), is the maximum length of a shortest
(u, v)-path in G over all u, v ∈ V (G). Two vertices u and v compose a diametral pair if the distance
between them, i.e. the length of the shortest path, is diam(G).

An isomorphism of a graph H into a graph G, a bijective mapping φ : V (H) → V (G) such that
uv ∈ E(H) for u, v ∈ V (H) if and only if φ(u)φ(v) ∈ E(G). A subgraph isomorphism of H into
G is an injective mapping σ : V (H) → V (G) such that uv ∈ E(H) for u, v ∈ V (H) if and only if
φ(u)φ(v) ∈ E(G). In words, this means that G contains H as a subgraph. We use Imσ to denote
σ(V (H)).

Throughout our paper, we use the following specific notions.

Definition 1 (Maximum leaf-degree ld(T )). The leaf-degree of a vertex v in T is the number of
leaves of T that are neighbors of v. The maximum leaf-degree of T , ld(T ), is the maximum of the
leaf-degrees over all vertices of T .

Definition 2 (Neighbor deficiency νk (v)). For a graph G, an integer k ≥ 0 and a vertex v ∈ V (G)
we define the neighbor deficiency of v as

νk (v) = max{(δ(G) + k − 1) − degG(v), 0}.

If νk (v) = 0, we say that v is non-deficient.

Definition 3 (q-escape vertex). For a graph G and integer q, a vertex v in G is an q-escape vertex,
if degG(v) ≥ δ(G) + q or the maximum matching size between N [v] and V (G) \ N [v] in G is at
least q.
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Definition 4 (size-q-separable). We say that a tree T is size-q-separable if there is an edge in T
whose removal separates T into two subtrees consisting of at least q vertices each.

The following simple lemma about relation between the size of the tree, its diameter, and the
number of leaves will be useful.

Lemma 2 (folklore). Let T be a non-empty tree with |V (T )| ≥ q · diam(T ), for some integer q.
Then T has at least q leaves.

Proof. We show the statement by induction on q. For q = 1, any non-empty tree has at least one
leaf. Assume the statement already holds for q, and consider a tree T with |V (T )| ≥ (q+1)·diam(T ),
we argue that it has at least (q + 1) leaves. Let ℓ be an arbitrary leaf of T , and let P be a maximal
path in T that starts with ℓ and contains only degree-two vertices of T as internal vertices; let v
be its other endpoint. Now consider the tree T ′ obtained by removing the vertices of V (P ) \ {v}
from T . Clearly, |V (P ) \ {v}| ≤ diam(T ), thus |V (T ′)| ≥ |V (T )| − diam(T ) ≥ q · diam(T ′). By
induction, T ′ has at least q leaves. Observe that v is either the only vertex of T ′, or not a leaf of
T ′, otherwise the path P is not maximal. Therefore all leaves of T ′ remain leaves in T , and T has
at least q + 1 leaves, including ℓ.

Finally, we give here the following extension of Chvátal’s Lemma (Lemma 1). While Chvátal’s
Lemma indeed provides the guarantee of δ(G) + 1 for Tree Containment Above Minimum
Degree, throughout the proof of the main theorem, we often need a more general statement. Its
proof repeats the original proof of Chvátal, and we provide it here for completeness.

Proposition 1 ([Chv77]). Let G be a graph and let T be a tree on at most δ(G) + 1 vertices. Let
σ′ : V (T ′) → V (G) be a subgraph isomorphism mapping a connected subtree T ′ of T into G. Then
there is a subgraph isomorphism σ : V (T ) → V (G) mapping T into G such that σ is an extension
of σ′.

Proof of Proposition 1. The proof is constructive. Let T0, T1, . . . , Tq be a sequence of trees such
that q = |V (T )| − |V (T ′)|, T0 = T ′, Tq = T , and for each i ∈ [q], Ti−1 = Ti − ℓi, where ℓi is a leaf
of Ti that is not present in T ′. One way to construct the sequence in reverse order is to start from
Tq := T . Then, to obtain Ti−1 from Ti for each consecutive i in {q, q − 1, . . . , 1}, we just delete a
leaf of Ti that does not belong to T ′. Since T ′ is a connected subtree of Ti, such a leaf always exists
in Ti.

We then construct a series of subgraph isomorphisms σ0, σ1, . . . , σq, such that for each i ∈
{0, . . . , q}, σi is a subgraph isomorphism of Ti into G. We start from σ0 = σ′. Then consecutively
for each i ∈ [q], σi is obtained by extending σi−1 on ℓi. The leaf ℓi has only one neighbor si in
Ti. Then the image of ℓi in σi should be the neighbor of σi−1(si). Since | Imσi−1| ≤ δ(G), and
σi−1(si) ∈ Imσi−1, Imσi−1 contains at most δ(G)−1 neighbors of σi−1(si) in G. Then at least one
neighbor of the image of si is not occupied by σi−1. We obtain σi from σi−1 by extending mapping
ℓi to such a neighbor.

The procedure produces the subgraph isomorphism σq of Tq = T into G.

3 Main ideas and structure of the proof of Theorem 1

In this overview, we will provide some intuition on how several various structural cases for G
and T guarantee that G contains T . In several situations, we push the structural analysis to the
limit. In the remaining cases, when the structural analyses (or stability theorems) cannot be pushed
further, the obtained structural properties allow to design algorithms. Such a WIN/WIN approach
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results is a randomized FPT algorithm running in time 2k
O(1) · nO(1). The order of presentation of

the case analysis in the overview slightly disagrees with the order of the section in the main part
of the paper. In the overview, we aimed to make the presentation more intuitive while in the main
part of the paper, we put parts using the same techniques and ideas closer to each other. The
summary of the case analysis in the main part is given in Section 9.

The natural way to proceed above the Chvátal’s δ(G)+1 guarantee is to ask whether G contains
an arbitrary T of size at most δ(G) + 2. The answer to this question appears to be quite simple,
yet it settles the starting point of our work. We state it as Proposition 2. While this result is not
explicitly used in the proof of the main theorem, its proof exposes the key ideas we use to prove
the main theorem.

Proposition 2. Every connected graph G contains every tree on at most min{|V (G)|, δ(G) + 2}
vertices, unless G is δ(G)-regular and T is isomorphic to the star graph K1,δ(G)+1 with δ(G) + 1
leaves.

Proof of Proposition 2. Note that the only case that has to be proved above Chvátal’s Lemma is
when |V (T )| = δ(G) + 2.

We have that G is connected and has at least δ(G) + 2 vertices. Let T be an arbitrary tree on
exactly δ(G) + 2 vertices. Clearly, if T has a vertex of degree δ(G) + 1 but the maximum degree of
G equals δ(G) then G does not contain T as a subgraph. This is equivalent to T being isomorphic
to K1,δ(G)+1 and G being δ(G)-regular. It is left to show that in any other case, G contains T .

Assume first that G has a vertex of degree at least δ(G) + 1. Denote this vertex by u. Since T
has at least two vertices, there is a vertex in T adjacent to a leaf. Denote this vertex by t and its
adjacent leaf by ℓ. We start constructing a mapping of T into G by mapping t to u. Since T − ℓ is
a tree consisting of exactly δ(G) + 1 vertices, we apply Proposition 1 and extend mapping t → u to
a subgraph isomorphism σ of T − ℓ into G. The size of NG[u] is at least δ(G) + 2. Hence, at least
one vertex in NG[u] is not used by σ. We extend σ by mapping ℓ to this vertex. Then σ becomes
a subgraph isomorphism of T into G. That is, if G has a vertex of degree at least δ(G) + 1 then G
contains T .

The remaining case is when all vertices of G are of degree δ(G) but T is not isomorphic to a
star. Again, we take a leaf ℓ and its neighbor vertex t in T . Since T is not a star, there is a neighbor
of t in T that is not a leaf. Denote this neighbor by x. Then x has at least one neighbor distinct
from t, denote it by y.

We have a path on three vertices t − x − y in the tree T − ℓ and we map this path into G as
follows. Take an arbitrary vertex u in G. Since G is connected and |V (G)| > δ(G) + 1 = |NG[u]|,
there is at least one edge vw ∈ E(G) such that v ∈ NG[u] and w ∈ V (G) \ NG[u]. We have
that u − v − w is a path in G where u is not adjacent to w. We initiate the construction of a
subgraph isomorphism of T into G by mapping t, x, y into u, v, w respectively. Then, by making
use of Proposition 1, we extend this mapping into a subgraph isomorphism σ of T − ℓ into G.

In contrast to the previous case, the closed neighborhood of u, NG[u] is of size δ(G) + 1. But
we ensured that σ uses at least one vertex outside NG[u] by mapping y to w initially. Hence,
NG[u] \ Imσ is not empty. Therefore, we can extend σ by mapping ℓ to an arbitrary vertex in
NG[u] \ Imσ. The obtained mapping is a subgraph isomorphism of T into G. The proof of the
proposition is complete.

Let us highlight and discuss the key ideas of the proof above.

Idea I. Saving space for mapping leaves starts from mapping their neighbors.
In the proof of Proposition 2, we cut off a leaf ℓ of T and decide where it will be mapped later.
Since the pruned tree has exactly δ(G) + 1 vertices, we can map it into G by Lemma 1. However,
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we have to make sure that the removed leaf can be mapped to a free vertex. To achieve that, we
initially set the image of its neighbor t to a specific vertex in G. If G has a vertex of degree more
than δ(G) then any such vertex will do as an image of t. This is because the isomorphism can
occupy at most δ(G) of its neighbors, so one of them is always vacant to host ℓ. The other case
occurs when G is regular and hence has no vertex of a large degree. This brings us to the next key
idea.

Idea II. Saving space for leaves is achieved by mapping outside specific sets.
When we deal with the case of a regular graph G, we map t to an arbitrary vertex u of degree δ(G).
Now a subgraph isomorphism of T − ℓ into G can occupy all δ(G) neighbors of u. If this happens,
then the isomorphism uses no vertex outside NG[u] since already δ(G) + 1 vertices are occupied.
Thus, if we force the subgraph isomorphism to use at least one vertex outside NG[u], then at least
one vertex in NG[u] would be saved. This is exactly what we do in the proof of Proposition 2. We
initially map a path of three vertices in T starting in t into a path of three vertices in G starting in
u making sure that the last vertex of this path in G is not a neighbor of u. When this isomorphism
is extended onto T−ℓ, it automatically leaves at least one neighbor of u in G unused. This neighbor
finally becomes the image of ℓ.

These two ideas bring to a polynomial time algorithm for finding trees of size δ(G) + 2 in a
graph G. It appears that we can push the applicability of these ideas further. However, it does
not come without additional effort. Let us provide some intuition on how the two ideas could be
extended to the case when T is a tree on δ(G) + k vertices for k ≥ 3.

3.1 Saving neighbors of a single vertex

Let T be a tree on δ(G) + k vertices for k ≥ 3. The first question arising when we try to adapt
Proposition 2 to T is the following: If there is a vertex t in T with at least k−1 adjacent leaves, can
we shave off k − 1 leaves t and repeat the same arguments to map the shaved tree and save k − 1
neighbors of the image of t? This would allow us to map the shaved leaves into the saved neighbors
and obtain the subgraph isomorphism of T into G. According to the notion of the maximum-leaf
degree (see Definition 1), the existence of a vertex t in T is equivalent to the condition ld(T ) ≥ k−1.
Section 4 of our work is devoted to this particular case. We continue the current subsection with
a discussion of this case as well.

Note that different possible images of t can require different numbers of saved neighbors. For
example, if degG(u) ≥ δ(G)+k−1, where u is the image of t, then saving neighbors is not required
at all, as k−1 neighbors of u remain vacant after mapping the shaved tree of size δ(G)+1. The less
the degree of u is, the more vertices are required to be mapped outside NG[u]. We use νk (u), the
neighbor deficiency of u, to denote the number of vertices to map outside NG[u] (see Definition 2).

In the proof of Proposition 2, we initially mapped a path of three vertices in order to map one
vertex outside NG[u]. Lemma 6, the major auxiliary result of Section 4, pushes the applicability
of this method further. It shows that mapping a path of length 3k (starting from t in T ) initially
can save νk (u) neighbors of some vertex u in G. This is achieved by mapping the path in T into a
path in G starting in u that has roughly every third vertex outside NG[u]. The choice of u depends
drastically on the structure of G. The sufficient requirement for u is having enough vertices in
NG[u] that have more than k − 1 neighbors outside NG[u].

If such a choice of u is not possible, the regular “map every third outside” procedure is not
possible. In this case, we show that the minimum vertex degree of graph G −NG[u] is at least k.
Such a graph has a path of length at least k starting in an arbitrary vertex. Then we construct a
path in G that starts in u, goes to some vertex v in V (G) \NG[u] through an intermediate vertex
in NG(u), and ends by following a path of length k − 2 inside G−NG[u]. This path is of length k
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and has its last k − 1 vertices outside NG[u]. It is easy to see that mapping the first k + 1 vertices
of the path in T into the constructed path in G saves k− 1 ≥ νk (u) neighbors of u. This concludes
the overview of Lemma 6.

However, Lemma 6 is not applicable when (i) T has no path of length at least 3k starting
in t or (ii) the minimum degree of G is in O(k2). In each of these cases, containment of T
in G is not guaranteed and requires an algorithmic approach. We handle each case separately.
The second case is easier than the first: It guarantees that the size of T is bounded by O(k2).
Since Tree Containment can be solved in 2O(|V (T )|) · nO(1) running time using the color-coding
technique of Alon, Yuster and Zwick [AYZ95], we achieve a time 2O(k2) · nO(1) algorithm for the
case δ(G) = O(k2). We highlight this idea for further use in the overview.

Idea III. Color-coding applies for graphs of minimum degree bounded by kO(1).

It remains to discuss case (i) when T has no path of length at least 3k starting in t. The
algorithm for this case also involves color-coding. The initial step towards the algorithm here is to
note that T has a bounded diameter and so does every subtree of T . For the previous cases, we
constructed a path-to-path isomorphism that hits enough vertices in V (G) \NG[u], where u is the
fixed2 image of t. In this case, T has no path of enough length starting in u. However, we know that
if T is isomorphic to a subgraph of G, then the subgraph isomorphism of T into G occupies at least
νk (u) vertices outside NG[u]. Thus, solving the problem is equivalent to finding an isomorphism of
a connected subtree of T containing t into G that maps t to u and also maps at least νk (u) vertices
of T to vertices in G that are outside NG[u].

We aim to find such a subtree of minimum size, the existence of such a tree is equivalent to the
containment of T in G. By minimality, the leaves of such a subtree are necessarily mapped to either
t or into V (G) \NG[u]. Then by the minimality, this tree should have at most νk (u) + 1 leaves, so
the size of any minimal subtree is at most diam(T ) · (νk (u) + 1) ≤ k ·diam(T ). The obtained bound
allows us to use color-coding to find the required subtree in G. We color G with k · diam(T ) colors
uniformly at random and use the coloring to find a subgraph of G that is (a) isomorphic to the
required subtree of T , (b) the isomorphism maps t to u, and (c) the isomorphism occupies νk (u)
vertices in V (G) \NG[u]. This is done via dynamic programming in time 2O(k·diam(T )) · nO(1). As
there is no vertex at a distance at least 3k from t in T , we have that diam(T ) = O(k). Hence the
overall running time of the algorithm is 2O(k2) · nO(1), similar to the case (ii).

This algorithm is important not only for the particular case ld(T ) ≥ k − 1—we shall recall
it once again in the overview in a slightly more general setting. Section 4.1 is dedicated to the
corresponding problem which we call Annotated Hitting Subtree Containment. In this
problem, it is allowed to have an arbitrary starting mapping from T into G and have multiple sets
in G that are required to be hit by the isomorphism. Our algorithm for this problem works in time
2k

O(1)·diam(T ) · nO(1), if the total number of vertices to hit by the isomorphism is bounded by kO(1).
The above arguments bring us to an algorithm for Tree Containment running in time 2O(k2) ·

nO(1), where k = |V (T )|−δ(G), for the special case ld(T ) ≥ k−1. This is the main result of Section 4
formulated in Theorem 3.

3.2 Filtering out yes-instances

We still have to consider the case of the maximum-leaf degree ld(T ) < k − 1. As in the case
ld(T ) ≥ k−1, we first filter out some structural properties of G and T that guarantee G containing
T . Taking the success of the complement case into account, a good candidate for being filtered out

2The choice of the vertex u in G is fixed in the outer loop of the algorithm. Thus, the algorithm considers every
possible vertex in G as a candidate for the image of t.
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first is the case of T having less than k − 1 leaves (that actually stops us from applying Idea II by
shaving leaves).

In this case, T can be covered by at most k− 3 (the number of leaves minus one) paths starting
in the same arbitrary leaf of T and ending in pairwise distinct leaves of T . Each of these paths
consists of at most diam(T ) + 1 vertices. Since these paths share at least one common vertex, we
obtain |V (T )| ≤ 1 + (k − 3) · diam(T ) < k · diam(T ). It follows that diam(T ) is at least δ(G)/k.
As we can handle small values of δ(G) by making use of Idea III, we need to look only at trees of
large diameter.

Up to this point, we still did not introduce any mechanism of constructing isomorphisms of T
into G other than mapping outside a neighborhood of a specific vertex. To avoid keeping track of
this, we discover that it is possible to save neighbors of all vertices of G simultaneously. Moreover,
path-to-path isomorphisms are very suitable for this purpose. This is the next idea in the proof of
the main result

Idea IV. Shortest paths are very good for saving neighbors.
Assume that G has a shortest (s, t)-path that consists of at least k + 2 vertices. On the one hand,
each vertex of G that does not belong to this path cannot have more than three neighbors belonging
to this path (otherwise we can make the (s, t)-path shorter). On the other hand, each vertex of the
(s, t)-path cannot have more than two neighbors inside the path for the same reason. Then every
vertex in G has at least k − 1 non-neighbors in the path. Hence, if we map a path of T into the
(s, t)-path initially, we can extend this mapping to a subgraph isomorphism of T into G without
any additional work following Idea II. Due to that for each u ∈ V (G), we have at least k−1 ≥ νk (u)
non-neighbors in the isomorphism initially.

The idea above is the basis for an alternative mechanism that is the core part of Section 6. Idea
IV allows to deal with G for the case diam(G) ≥ k + 1 automatically and the additional work is
required only to deal with the case diam(G) ≤ k. We turn this upper bound on the diameter of G
into our advantage. In fact, we are able to take any set S of size o(δ(G)) and construct a path of size
O(k · |S|) that traverses all vertices of S. We do this iteratively by connecting consecutive vertices
in S by a shortest path in G. Since we do not want such segments to intersect, we have to remove
the prefix of the path from G before finding the shortest path to the next vertex of S. If during
this process the diameter of G becomes even greater than 2k, we make good use of it (following
Idea IV with additional arguments) and construct a path that contains enough non-neighbors of
each vertex of G.

The rest of Section 6 is devoted to finding the appropriate set S in G. This set is required to
contain at least νk (u) non-neighbors for every vertex u ∈ V (G). If the size of the graph is slightly
above δ(G), that is, |V (G)| ≤ (1 + ϵ) · δ(G), the existence of a small S is hardly possible. For this
reason, we dedicate a separate Section 7 that especially deals with this case for arbitrary ϵ ≤ 1

4k .
The main result of this section, Theorem 6, states that if δ(G) = Ω(k2), |V (G)| ≤ (1 + ϵ) · δ(G) and
ld(T ) < k, then G contains T as a subgraph. The proof is based on extending a partial isomorphism
of T into G using unoccupied vertices. This is always possible to do because the vertices outside
the partial isomorphism in G should have many neighbors inside it. It grants many options for an
outer vertex to be inserted between the vertices of the isomorphism, and at least one option will
always suffice for extension.

By achieving the lower-bound |V (G)| ≥ (1 + ϵ) · δ(G), we are able to construct the set S
of bounded size. We use the probabilistic method here. For simplicity, we slightly increase the
lower bound for the number of vertices up to |V (G)| ≥ (1 + ϵ) · δ(G) + kΩ(1) · log δ(G). (The
increase is achieved by lowering the value of ϵ.) Each vertex u in G with νk (u) > 0 has at least
|V (G)| − δ(G) > ϵ · δ(G) non-neighbors in G. For a fixed u ∈ V (G), a random choice of a vertex in

10



V (G) gives a non-neighbor of u with probability at least ϵ
1+ϵ . Then the expected value of deficient

vertices u ∈ V (G) that are not neighbors of a random vertex of G is at least ϵ
1+ϵ · |V (G)|, so there

should be a single vertex in G that is non-neighbor to at least ϵ
1+ϵ ratio of all deficient vertices.

We find such vertex in G and put it inside S. With a careful analysis, we show that repeating this
step for O(log δ(G)/ϵ) times results in a set S having at least one non-neighbor for each deficient
vertex of G. We have to repeat the whole process k− 2 times and obtain the required set S of size
O(k · log δ(G)/ϵ). Note that the additive part of the lower bound is required for maintaining the
probability ϵ

1+ϵ during the consecutive choices of distinct vertices into S. The value of ϵ we use

throughout Section 6 is of the form 1
kΘ(1) , so the final bound on the size of S is kO(1) · log δ(G).

The vertices of S are finally tied into a path in G of length at most kO(1) · log δ(G) as discussed
above, and a path of sufficient length in T is mapped to the path in G. The discussion sums up
into the main result of Section 6, Theorem 5. It filters out trees of diameter kΩ(1) · log δ(G), and
the gap between this bound and the desirable kO(1) still remains.

3.3 Shaving off leaves from distinct neighbors

The results discussed above leave us with a tree T satisfying ld(T ) < k − 1 and diam(T ) ≤
kO(1)·log δ(G). The number of leaves in T , in this case, is at least kΩ(1) (following the δ(G)/ diam(T )
lower bound discussed before). Then we can choose at most k − 1 vertices in T , such that in total
they have at least k − 1 adjacent leaves. We denote this set by W . The strategy we want to
implement in this case is to use Idea II and to construct a mapping of a connected subtree of
T containing the vertices of W into G such that at least νk (w) non-neighbors of each w ∈ W
are occupied by this mapping. This is done in Section 8. The formal proof encapsulates several
methods of constructing a mapping that hits non-neighbors of W by exploiting the structure of T
and G. This is the final step of filtering out yes-instances before applying the last (and the most
involved) of the algorithms we use to prove the main theorem.

The first obstacle encountered here is that the mapping we require to construct should map all
vertices of W (as we should know their respective images in G in order to collect non-neighbors).
To our advantage, the choice of W can vary (while NT (W ) has at least k − 1 leaves) and we will
make this choice depending on the structure of T .

The initial step here (in Section 8.1) filters out the case of T with diam(T ) ≥ Ω(k4). First, W
is chosen in a way that it contains two vertices on distance exactly diam(T )− 2. Then we consider
the minimum spanning tree TW of W in T . Its leaves form a subset of T , so the number of leaves
in TW is at most k − 1. Since TW has large diameter, there exist long paths in TW consisting of
degree-2 vertices, which we refer to as trivial path. We further shrink TW by contracting edges of
each long trivial paths down until its length reaches 2k. The shrank tree T ′

W has at most O(k2)
vertices and we initialize the mapping with an arbitrary subgraph isomorphism of T ′

W into G.
The rest of the work is to transform this isomorphism to the isomorphism of TW into G by

embedding vertices of G into trivial paths of the isomorphism image. We exploit the existence of
a trivial path of length Ω(k3) and embed a set S (containing k − 1 non-neighbors for the image of
each w ∈ W ) into the image of this path. The technical work here is done using the arguments of
Section 6 that we discussed already. If it cannot be done at some moment, then Idea IV helps us
to construct a mapping in an alternative way.

The case of diam(T ) ≥ Ω(k4) is now dealt with yet. To proceed further, we cannot rely on
path-to-path isomorphisms anymore since T has no very long paths. Then we focus more on the
structure of G. This is when we put the notion of q-escape vertices into play (see Definition 3).
At the beginning of Section 8.2, we start with an isomorphism of TW into G and show how a
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kΩ(1)-escape vertex helps in embedding the isomorphism with non-neighbors of W . This, however,
requires a vertex of degree kΩ(1) in T .

The rest of Section 8.2 partially resolves this issue by making additional assumptions of the
structure of T . Lemma 17 shows an alternative (to exploiting an escape vertex) mechanism to
extend a mapping of TW with enough non-neighbors of W . If this mechanism fails, it produces
a separator of G of size kΩ(1). Finally, Lemma 18 allows to use this separator to map a size-
kO(1)-separable tree T (see Definition 4) inside G. This exhausts the discussion of constructions of
Section 8 used to prove its main result Theorem 7.

3.4 Solving remaining case algorithmically

We move on to the remaining case of Tree Containment Above Minimum Degree: G
contains no kΩ(1)-escape vertices and T is not size-kΩ(1)-separable, while δ(G) ≥ kΩ(1). The main
result of Section 5, Theorem 4, states that there is a randomized algorithm solving such cases in
2k

O(1) · nO(1) running time. In the rest of the current part of the overview, we discuss the main
parts of the proof of this result.

Following Idea II, the first part addresses hitting non-neighbors of images of vertices in W (the
set of leaf-adjacent vertices in T ) similarly to the previous part of the overview. Before we used
it for proving that G contains T as a subgraph. That was achieved by occupying at least νk (w)
non-neighbors of the image of w in G for each w ∈ W . But this is only a sufficient condition. In
fact, not all vertices in W require so many saved neighbors. For example, if W has exactly k − 1
vertices then we require exactly one vacant neighbor when it comes to mapping the leaf to the
neighbor of the image of w ∈ W . Then if we have one vacant neighbor for w1, two vacant neighbors
for w2, three vacant neighbors for w3, and so on, the extension of the isomorphism is guaranteed
to be possible.

The paragraph above suggests that a necessary condition should be discovered. This is exactly
what we do in Section 5.1. We prove that if the mapping of W into G is known initially then
the existence of a subgraph isomorphism of T into G respecting this mapping is equivalent to the
existence of a mapping that hits specific sets in G. The details of this are quite complex, so we
refer the reader to the statement of Lemma 7. It automatically provides a one-to-many reduction
to Annotated Hitting Subtree Containment. Since the diameter of T is at most kO(1), we
obtain an algorithm that runs in 2k

O(1) · nO(1) time and correctly decides the containment of T in
G, provided the mapping of W into G is given.

The first part alone does not provide any clue on how to choose the mapping of W into G.
Trivial enumeration of all possible mappings gives |V (G)||W | < |V (G)|k possible options and yield
only an XP-algortihm for Tree Containment parameterized by k. The second part of Section 5
resolves this issue. It allows to reduce the situation when a set W guessed by making use of a
random sampling. Its central result, Lemma 8 can be turned into a polynomial-time randomized
procedure that takes G, T , W and a single vertex u ∈ V (G) as input and produces a mapping of W

into G. If T is contained in G as a subgraph then with probability at least 2−kO(1)
, this mapping

is a restriction of some subgraph isomorphism of T into G. This is the only source of randomness
in our algorithm which we do not know how to derandomize. Combining the results of two parts
we obtain a (one-sided error) randomized algorithm for the specific case of Tree Containment

with running time 2k
O(1) · nO(1).

12



4 Vertex of high leaf-degree

In this section, we make the first step toward the proof of the main result of the paper. It
concerns the case when T has a vertex adjacent to many leaves. One of the trivial cases of the
problem is when a tree T on δ(G) + k vertices is a star—we guess where the center of the start
could be mapped and then check whether there is enough space to map the leaves. The main result
of this section extends such arguments to the case when T has a vertex of high-leaf degree.

Theorem 3. Let G be an n-vertex graph, k an integer, and T a tree on δ(G) + k vertices and
with ld(T ) ≥ k − 1. There is an algorithm deciding whether G contains T as a subgraph in time
2O(k2) · nO(1).

4.1 Hitting sets with isomorphism

Before we move on to the main result of this section, we first show auxiliary algorithms for
finding small-sized tree containments. We use the following result of Alon, Yuster, and Zwick
[AYZ95].

Proposition 3 (Theorem 6.1, [AYZ95]). Let G be an n-vertex graph and T be a tree. It can be
determined in time 2O(|V (T )|) · nO(1) whether G contains T as a subgraph.

In the rest of this section, and especially in the later section, a variant of Proposition 3 with
additional constraints will be used. First, it is helpful to fix the images of some vertices, e.g., the
root of the tree. Second, in the view of upcoming in the later sections structural properties of
the solution, it is required to find partial isomorphisms of T “hitting” certain subsets of V (G). A
generalized problem encapsulating the properties above is defined next.

Input: Graph G, tree T , an injection κ : S → V (G) for some S ⊂ V (T ), a family
of r sets F1, F2, . . . , Fr ⊂ V (G), and r non-negative integers k1, k2, . . . , kr.

Task: Determine whether there exists a connected subgraph T ′ of T , and sub-
graph isomorphism σ : V (T ′) → V (G) from T ′ into G respecting κ, such
that V (T ′) ⊃ S and | Imσ ∩ Fi| ≥ ki for each i ∈ [r].

Annotated Hitting Subtree Containment

First we observe that just as the original Tree Containment, Annotated Hitting Subtree
Containment is in FPT parameterized by the size of the tree T , by an application of color coding.
We show this for the case when the target subtree T ′ is equal to the whole tree T , in order to use
later as a blackbox when the subtree achieving the isomorphism is already fixed.

Lemma 3. There is an algorithm that determines whether the desired isomorphism of the tree
T ′ = T into G in an instance of Annotated Hitting Subtree Containment exists in time
2O(|V (T )|+k) · nO(1), where k =

∑r
j=1 kj.

Proof. When the size of the tree is a parameter, accounting for the additional constraints of the
Annotated Hitting Subtree Containment problem is a straightforward extension of the
color-coding technique of Proposition 3. For the color-coding step, we use |V (T )| colors, where
|S| colors are assigned to the images of the vertices of S under κ, and the remaining ones are
picked randomly and independently throughout the rest of the graph. The dynamic programming
then computes, whether for every rooted subtree T ′ of T there exists a colorful solution with the
given characteristics: the partial isomorphism uses precisely the colors among the set C, and it hits
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exactly k′j elements in each Fj , for a given composition (k′1, . . . , k
′
r), where 0 ≤ k′j ≤ kj for each

j ∈ [r].
For a fixed solution, random coloring makes it colorful with probability at least 2−Ω(|V (T )|),

and the dynamic programming runs in time 2O(|V (T )|) · nO(1), since there are 2|V (T )| choices for the
set of colors C, and 2O(k) choices for the composition (k′1, . . . , k

′
r). The total running time is thus

2O(|V (T )|+k) · nO(1). The algorithm can also be derandomized in the standard fashion.

Finally, we show the main result of this subsection: that Annotated Hitting Subtree
Containment is efficiently solvable as long as the total size of “special” targets for the isomorphism
and the diameter of T are bounded.

Lemma 4. Annotated Hitting Subtree Containment admits an algorithm running in time
2O(p·diam(T )) · nO(1), where p = |S| +

∑r
i=1 ki.

Proof. It suffices to show that a sufficient set of choices for T ′ may be enumerated in the desired
time, and then use Lemma 3 to determine whether the desired isomorphism exists for a fixed choice
of T ′.

Let T ′′ be the unique minimal subtree of T containing all vertices of S, clearly T ′′ is also a
subtree of any T ′ such that the desired isomorphism of T ′ into G exists. We may assume that S
and T ′′ are non-empty, as otherwise we can branch on an arbitrary vertex in T ′ and its image in
polynomial time.

The algorithm tries all possible choices to extend T ′′ to T ′. Namely, let k = k1 + k2 + . . . + kr,
t = |V (T ′′)|, and let V (T ′′) = {w1, w2, . . . , wt}. First the algorithm branches on all compositions
of the value of at most k into t terms a1, . . . , at, i.e., k ≥ a1 + · · ·+ at, where for every i ∈ [t], ai is
a nonnegative integer. Intuitively, for every i ∈ [t], ai is the number of preimages in T ′ among the
required k vertices in

⋃r
j=1 Fj , that are not in T ′′ but are “rooted” in wi with respect to T ′′. Then

for every i ∈ [t], the algorithm branches on the choice of a rooted tree T ′
i that has ai leaves each

at depth at most diam(T ); if ai = 0 then T ′
i is the one-vertex tree. Intuitively, T ′

i describes exactly
how the selected ai vertices are connected to wi in T . Finally, the resulting tree T ′ is obtained from
T ′′ by rooting the tree T ′

i at wi, for every i ∈ [t].
The algorithm then verifies whether the constructed tree T ′ is a subtree of T such that each

vertex in S keeps its place under the isomorhism from T ′ into T . For every i ∈ [t], let Ti be the
subtree of T rooted at wi that avoids T ′′. More formally, Ti is the connected component of wi in
T after removing the edges of T ′′, that is additionally rooted in wi.

It is easy to observe that T ′ admits the desired isomorphism into T if and only if for each
i ∈ [t], T ′

i is a rooted subtree of Ti. The algorithms verifies the latter by invoking the algorithm of
Proposition 3 on T ′

i and Ti. If there exists i ∈ [t] such that T ′
i is not a rooted subtree of Ti, the

algorithm rejects the choice of T ′.
Finally, for every choice of T ′ that passes the procedure above, the algorithm invokes Lemma 3

to determine whether the desired isomorphism exists from T ′ into G. The algorithm reports that
the given instance admits a solution if for at least one choice of T ′ such an isomorphism exists.

We next verify the correctness of the algorithm. Clearly, if the algorithm finds a subtree T ′ of T
for which the desired isomoprphism from T ′ into G exists, then the given instance is a yes-instance.
Thus, it only remains to verify that the considered set of candidate subtrees T ′ is sufficient. Let
T ∗ be a minimal subtree of T such that the desired isomorphism σ∗ : V (T ∗) → V (G) exists. We
show that in this case there also exists a subtree T ′ of T considered by the algorithm, for which
the desired isomorphism also exists.

Similarly to Ti and T ′
i , for each i ∈ [t] let T ∗

i be the subtree of T ∗ rooted at wi that avoids
other vertices of T ′′. Consider a leaf ℓ ̸= wi of T ∗

i , by minimality of T ∗ there exists j ∈ [r] such
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that σ∗(ℓ) ∈ Fj , and moreover, |σ∗(V (T )) ∩ Fj | = kj , otherwise removing ℓ from T ∗ would still
give a valid solution. This implies that the total number of leaves in {T ∗

i }i∈[t] that are not in T ′′

is at most k = k1 + · · · + kr. Let a∗i be the number of leaves in T ∗
i not counting wi, by the above

a∗1 + · · · + a∗t ≤ k. Therefore at a certain step the algorithm considered the same composition
(a1, . . . , at), i.e., for each i ∈ [t], ai = a∗i . Since T ∗

i is a tree with ai leaves, and the distance from
each to the root does not exceed diam(T ), as T ∗

i is a subtree of T , the algorithm also considered the
choice T ′

i = T ∗
i , for each i ∈ [t]. At this step of the algorithm, the constructed tree T ′ is exactly T ∗,

and since T ∗
i is a subtree of T rooted at wi and avoiding T ′′, the verification correctly determined

that T ′ is a valid choice for a subtree. Thus the algorithm of Lemma 3 is queried with the subtree
T ′ at the respective step of the algorithm, and since σ∗ is an isomorphism of T ∗ = T ′ into G with
the desired properties, the algorithm correctly identified the given instance as a yes-instance.

It remains to analyze the running time of the algorithm. Since T ′′ is the minimal subtree of
T containing the selected |S| vertices, its size t is at most |S| · diam(T ). The number of choices
for the composition a1 + · · · + at ≤ k is at most 2O(k+t). The rooted tree T ′

i has ai leaves and
at most ai · diam(T ) + 1 vertices, thus the number of choices is at most 2O(ai·diam(T )), resulting in
2O(p·diam(T )) · nO(1) choices for the tree T ′, as p = |S| + k. Verifying that the tree T ′

i is a rooted
subtree of Ti takes time 2O(ai·diam(T )) by Proposition 3, which is still under 2O(p·diam(T )) · nO(1)

in total. Finally, the size of T ′ is at most |V (T ′′)| +
∑t

i=1 ai · diam(T ) ≤ p · diam(T ), thus the
algorithm of Lemma 3 takes time 2O(p·diam(T )) ·nO(1). Therefore, the total running time is bounded
by 2O(p·diam(T )) · nO(1).

4.2 Extending isomorphism of k − 1 leaves

As the next preparatory step, we show another general tool for constructing isomorphisms.
Namely, if we manage to find a partial isomorphism of a subtree of T that contains k − 1 leaves,
while leaving sufficiently many neighbors of the leaves’ parents unoccupied, such an isomorphism
can always be extended to the isomomorphism of the whole tree T .

Lemma 5. Let G be a graph and T be a tree on δ(G) + k vertices. Let L be a set of k − 1 leaves
of T and let W := NT (L) be the set of vertices adjacent to L in T . Let T ′ be a subtree of T such
that W ⊆ V (T ′) ⊆ V (T − L). If there exists a subgraph isomorphism σ : V (T ′) → V (G) such that
for each w ∈ W

| Imσ \NG[σ(w)]| ≥ νk (σ(w)),

then G contains T as a subgraph.

Proof. We first extend σ to an isomorphism of T−L into G. This is always possible by Proposition 1
since |V (T −L)| = δ(G) + 1. Now we have an isomorphism of T −L into G, and it remains to map
the k − 1 vertices of L.

Let vertices in L be ℓ1, ℓ2, . . . , ℓk−1 and let the only neighbour of ℓi in T be wi ∈ W . Since the
isomorphism occupies at least νk (σ(wi)) non-neighbours of σ(wi) in G, at least k − 1 neighbours
of σ(wi) are not occupied, for each i ∈ [k − 1]. First, take any of the free neighbours of σ(w1) as
the image of ℓ1. Each σ(wi) still has at least k − 2 neighbours that are not occupied; take any of
the free neighbours of σ(w2) as the image of ℓ2. Repeat this process for each j ∈ {3, . . . , k − 1}:
at the j-th step, each σ(wi) has at least k − j non-occupied neighbours, so there is always a free
neighbour for the image of ℓj .
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4.3 Tree Containment when there is a vertex with many leaves

Finally, we work directly towards the proof of Theorem 3. We state the main combinatorial
observation behind the theorem next.

Lemma 6. Let G be a graph and T be a tree on δ(G) + k vertices. Suppose that T contains a
vertex s ∈ V (T ), such that s has k − 1 leaf neighbors, and such that there is a path of length 3k in
T starting with s. If δ(G) ≥ 11k2, and |V (G)| ≥ |V (T )|, then G contains T as a subgraph.

Intuitively, if the conditions of the lemma are not satisfied, then either δ(G) and so |V (T )|
are bounded by O(k2), or the diameter of T is bounded by O(k). In this case Proposition 3 or
Lemma 4 can be used to find a suitable (partial) isomorphism of T , thus Lemma 6 is the main
obstacle towards showing Theorem 3.

Proof of Lemma 6. By Lemma 5, it suffices to find a suitable subtree T ′ of T . If there is a vertex
v ∈ V (G) of degree at least δ(G) + k− 1, then T ′ is the subtree containing the single vertex s, and
the isomorphism maps s to v. Since νk (v) = 0 in this case, Lemma 5 is immediately applicable.
Thus in the following we assume ∆(G) < δ(G) + k − 1.

We now consider two cases based on whether there is a vertex in G that has a good “expansion”
out from its neighborhood. For a vertex v ∈ G, we call a vertex in NG(v) expanding if it has at
least k− 1 neighbors outside of NG(v). Intuitively, if we have sufficiently many expanding vertices
in NG(v), we can always embed the long path of T into G by mapping s to v and then going outside
of NG(v) sufficiently often. In the complement case, we have that no vertex has many expanding
vertices and thus the neighborhood of every vertex is extremely dense, which is helpful for finding
a suitable embedding in a different way. We now move on to the details of both cases.

Expanding case. Let v be a vertex in G that has at least 3k expanding vertices in NG(v).
Let P = p0 − p1 − · · · − pt be a path in T where t = 3k and p0 = s. We construct a (partial)
isomorphism σ : P → G that we will later use to invoke Lemma 5 on. We start by setting σ(p0) = v,
and then continue defining σ inductively. Let i ∈ {0, 1, . . . , t− 1}, we consider three cases based on
σ(pi):

Outer σ(pi) /∈ NG(v), then we set σ(pi+1) to be an arbitrary neighbor of σ(pi) that is not yet used
by σ;

Non-expanding σ(pi) ∈ NG(v) and σ(pi) is not expanding in NG(v), then we set σ(pi+1) to be
an arbitrary neighbor of σ(pi) in NG(v) that is expanding and not previously used by σ;

Expanding σ(pi) ∈ NG(v) and σ(pi) is expanding in NG(v), then we set σ(pi+1) to be an arbitrary
neighbor of σ(pi) outside of NG(v) that is not previously used by σ.

In case the respective rule out of the above is not applicable (i.e., a suitable next vertex does not
exist), we stop the procedure and let t′ be the last index such that pt′ is assigned by σ; we also let
P ′ = p0p1 . . . pt′ be the respective subpath of P . By construction, σ is an isomorphism of P ′ into
G. We now argue that σ maps at least k − 1 vertices of P ′ outside N [v].

First, by construction of σ, every Expanding vertex is necessarily followed by an Outer vertex,
and every Non-expanding vertex is followed by an Expanding vertex. Thus, at least every third
vertex in the sequence is Outer, and starting from i ≥ 1 none of them coincide with v. Therefore,
if t′ = t, then the claim holds as t ≥ 3k. Otherwise, t′ < t and the respective rule is not applicable
to σ(pt′). Observe that σ(pt′) is not Outer as any neighbor of σ(pt′) can be chosen in this case,
and deg σ(pt′) ≥ δ(G) ≥ 3k + 1 = |V (P )|. Assume σ(pt′) is Expanding, then there are no more
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neighbors of σ(pt′) outside of NG(v) not taken by σ. By definition of expanding vertices, there are
at least k − 1 such neighbors and thus σ maps at least k − 1 vertices outside of N [v], fulfilling the
claim. Finally, assume σ(pt′) is Non-expanding. Then all of its expanding neighbors in NG(v)
are taken by σ. There are at least δ(G) neighbors of σ(pt′) in G, and at least δ(G)− k + 1 of them
are in NG(v), since σ(pt′) is not expanding. In total, there are at most δ(G) + k − 2 vertices in
NG(v) and at least 3k of them are expanding, thus the number of expanding neighbors of σ(pt′) is
at least k − 1. Since all of them are taken by σ and each is followed by a vertex outside of N [v], σ
takes at least k − 1 vertices outside of N [v] in this case as well.

It remains to observe that invoking Lemma 5 on σ gives the desired isomorphism, as at least
k − 1 ≥ νk (v) vertices outside of N [v] are taken by the constructed partial isomorphism.

Dense case. Since the conditions for the expanding case are not satisfied, we can assume
that for every v ∈ V (G), there are less than 3k expanding vertices in NG(v). By the pigeon-hole
principle, this implies that every non-expanding vertex in NG(v) has at least δ(G) − 4k non-
expanding neighbors in NG(v), as it has at least δ(G) neighbors in total, at most k − 1 outside of
NG(v) since it is not expanding, and less than 3k expanding vertices exist in NG(v). We further
subdivide the dense case into two subcases depending on the diameter of G.

Diameter of G is at least 3. Consider vertices u, v ∈ V (G) at distance 3 from each other. Take
vertices a ∈ NG(u), b ∈ NG(v) with ab ∈ E(G), i.e., u−a− b−v is the shortest (u, v)-path. Denote
by B the set of non-expanding neighbors of v, observe that NG(v)∩NG(u) = ∅, as otherwise there
is a shorter path between u and v, thus B ∩ NG(u) = ∅. Also, by the starting assumption of the
dense case, δ(G[B]) ≥ δ(G) − 4k ≥ k. Let P ′ be the prefix of P on k + 1 vertices, i.e., P ′ is also
a path in T starting with s. Construct the isomorphism σ : V (P ′) → V (G) in the following way.
First, map s to u, the second vertex of the path to a, and the third vertex to b. Then greedily
map the remaining k − 2 vertices inside B, since δ(G[B]) ≥ k and exactly k − 1 vertices are to be
mapped inside B, finding the next unoccupied neighbor is always possible. Finally, by Lemma 5,
σ can be extended to an isomorphism of the whole tree T into G.

Diameter of G is at most 2. First, assume there exist two non-adjacent vertices u, v ∈ V (G)
with |NG(u) ∩ NG(v)| < 6k. Under this assumption, we always find an isomorphism similarly to
the previous case of diam(G) ≥ 3. Let B be the set of non-expanding vertices in NG(u). Again,
δ(G[B]) ≥ δ(G) − 4k, and since |NG(u) ∩ NG(v)| < 6k, δ(G[B \ NG(v)]) > δ(G) − 10k ≥ k. We
constuct an isomorphism of P ′, a prefix of P with k + 1 vertices, to G by mapping s to v, the next
vertex to an arbitrary common neighbor of u and v, the third vertex to u, and then procceding
greedily inside B \NG(v). Since the last k − 1 vertices of P ′ are all outside of N [v], by Lemma 5,
we can extend this partial isomorphism to an isomorphism of T .

Otherwise, for every two non-adjacent u, v ∈ V (G), there exists a vertex w ∈ NG(u) ∩ NG(v)
that is non-expanding for both u and v. Let u ∈ V (G) be the vertex achieving deg u = δ(G), and
let v ∈ V (G) be another vertex that is non-adjacent to u. We can assume v exists since otherwise
|V (G)| = deg u + 1 = δ(G) + 1 < |V (T )| which contradicts the conditions of the lemma. Let w be
a non-expanding vertex in NG(u) ∩NG(v) for both u and v. This means that |NG(w) ∩NG(u)| ≥
δ(G) − k and |NG(w) ∩NG(v)| ≥ δ(G) − k. Also, |NG(u)|, |NG(v)| ≤ ∆(G) < δ(G) + k, thus both
|NG(u) \NG(w)| and |NG(v) \NG(w)| are at most 2k. Therefore, |NG(w)| ≥ |NG(u)∪NG(v)|− 4k,
and since |NG(w)| ≤ ∆(G) < δ(G) + k, |NG(u) ∪ NG(v)| < δ(G) + 5k. Since |NG(v)| ≥ δ(G), we
get |NG(u) \NG(v)| < 5k.

Now, assume there exist k − 1 distinct non-neighbors of u, by the above each of them is not
adjacent to less than 5k vertices in NG(u), thus in total less than 5k2 vertices of NG(u) are not
adjacent to some of the selected k−1 non-neighbors of u. This means that the number of expanding
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vertices in NG(u) is at least |NG(u)| − 5k2 + 1 > 3k, since |NG(u)| = δ(G) ≥ 8k2, which is a
contradiction as we assume to not be in the expanding case.

Finally, we get that there are less than k − 1 non-neighbors of u. The whole graph G therefore
contains at most δ(G) + k − 1 vertices, as |NG(u)| = δ(G), which means that |V (G)| < |V (T )| =
δ(G) + k, contradicting the conditions of the lemma.

4.4 Proof of Theorem 3

We now complete the proof of the main result of this section by using Lemma 6.

Proof of Theorem 3. First, if δ(G) < 11k2, then |V (T )| ≤ 11k2 + k, and by using the algorithm
from Proposition 3 , we process the instance in time 2O(k2) · nO(1).

Then, assume there is no path of length 3k starting from s in T , which implies that diam(T ) <
6k. In this case, we reduce the problem to Annotated Hitting Subtree Containment. Specif-
ically, we fix S = {s}, and try all possible variants of the isomorphism κ : {s} → V (G), which is
equivalent to fixing the image v ∈ V (G) of s, i.e., κ(s) = v. We also set F1 = V (G) \ N [v], and
k1 = νk (v). We now invoke the algorithm given by Lemma 4 on the instance (G,T, κ, {F1}, {k1}) of
Annotated Hitting Subtree Containment. We report the yes-instance if for some choice of v
the isomorphism is found, and no-instance otherwise. The running time is bounded by 2O(k2) ·nO(1)

by Lemma 4. It remains to show that this procedure always returns the correct answer.
In one direction, let σ′ : T ′ → V (G) be a solution to (G,T, κ, {F1}, {k1}), i.e., T ′ is a subtree of

T , σ′ is an isomorphism that maps s to v, and at least νk (v) vertices of T ′ are mapped outside of
N [v]. We can assume that T ′ contains no leaves adjacent to s—removing them from T ′ does not
change the property of the solution, i.e., T ′ is still connected and an adjacent leaf of s could not be
mapped outside of N [v]. We now let L be an arbitrary set of k − 1 leaves adjacent to s in T , and
invoke Lemma 5 on σ′. Since by the above | Imσ′ \N [v]| ≥ νk (v), this gives an isomorphism of T
to G.

In the other direction, let σ be an isomorphism of T into G. Let v = σ(s), σ maps at least νk (v)
vertices outside N [v], since degG(v) ≤ |V (T )| − 1 − νk (v) by definition of νk (v). Therefore σ is
a solution to the instance (G,T, κ, {F1}, {k1}) of Annotated Hitting Subtree Containment
constructed for κ(s) = v.

Finally, if neither of the above cases occurs, then δ(G) ≥ 11k2, and there is a path of length 3k
starting with s in T . By Lemma 6, the isomorphism of T to G always exists and can be constructed
in polynomial time.

5 Small diameter trees and separable G

In this section, we prove the following algorithmic result. It allows to handle trees with small
leaf-degree, but the scope of its application is restricted to the specific structure of T and G.

Theorem 4. Let p ≥ 1 and k ≥ 3 be integers. There is a randomized algorithm that for a given
graph G, a tree T on δ(G) + k vertices such that

1. δ(G) ≥ k3p+1,

2. there are no kp-escape vertices in G,

3. ld(T ) < k, and
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4. T is not size-kp-separable,

determines whether G contains T as a subgraph in time 2k
O(p) · nO(1) with probability at least 1

2 .
The algorithm is one-sided error and reports no false-positives.

Before we proceed with the proof of Theorem 4, we establish two key ingredients required for
the proof.

5.1 Extending leaf-adjacent mappings

The main idea of the following lemma is close to Lemma 5. However, Lemma 5 gives only a
sufficient condition for the existence of a subgraph isomorphism. The proof of the following lemma
requires more precise and sophisticated counting neighbors of sets.

Lemma 7. Let G be a graph and let T be a tree consisting of δ(G) + k vertices for k ≥ 1. Let S
be a set of k− 1 leaf-adjacent vertices of T . There is an algorithm that, given G and T , a mapping
κ : S → V (G), determines whether there exists a subgraph isomorphism from T into G respecting

κ. The running time of the algorithm is 2k
O(1)·diam(T ) · nO(1).

Proof. Denote the vertices of S by s1, s2, . . . , sk−1. Let L = {ℓ1, ℓ2, . . . , ℓk−1} be a set of k−1 leaves
of T , such that it contains exactly one neighbor ℓi of si for each i ∈ [k − 1]. By T ′, we denote the
subtree of T without the leaves of L, i.e. T ′ := T −L. We also define ui := κ(si) for each i ∈ [k−1].

To present the algorithm, we first study the parameters of the subgraph isomorphism σ that
extends κ. These parameters can be represented as a sequence of O(k) non-negative integers
bounded by k. Our algorithm will consider every possible combination of the parameters. Based
on a fixed combination, the algorithm tries to reconstruct a subgraph isomorphism satisfying these
properties. In what follows, we show that if σ exists, then our algorithm will successfully construct
a subgraph isomorphism from T into G extending κ, for the choice of parameters corresponding to
σ.

Suppose that there exists a subgraph isomorphism σ : V (T ) → V (G) such that the restriction
of σ onto S equals κ. Let σ′ be the restriction of σ onto V (T ′). The first set of parameters of σ
(in fact, parameters of σ′) is the sequence a1, a2, . . . , ak−1. For each i ∈ [k − 1], we define ai to be
the number of non-neighbors of ui, the image of si, that are occupied by σ′, but capped with the
deficiency of ui. That is,

ai(σ
′) = min{| Imσ′ \NG[ui]|, νk (ui)}.

Thus ai represents the number of free neighbors of ui that can be used for mapping ℓi when
extending σ′ to a subgraph isomorphism of the whole T . Note that ai is formally defined as a
function of σ′, but we will often omit the “(σ′)” argument for simplicity.

If for a subgraph isomorphism of T ′ we have ai = νk (ui) for each i ∈ [k− 1], then by Lemma 5,
the mapping of T ′ could be extended to a subgraph isomorphism of T . When this condition is not
satisfied, it could be that the subgraph isomorphism of T ′ cannot be extended. Even worse, it also
could happen that σ′ might have ai = 0 for some (or even all) i ∈ [k− 1]. This forces us to identify
more properties and parameters of σ′.

Let B be the set of “problematic” (for the extension of σ′) vertices among u1, u2, . . . , uk−1.
That is,

B(σ′) := {ui : i ∈ [k − 1], ai(σ
′) < νk (ui)}.

Another property of a partial isomorphism that is important for analyzing whether it could be
further extended is the number of neighbors of the problematic vertices B(σ′) in G. This brings us
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to the definition of the third parameter of σ′

X(σ′) :=
(
Imσ′ ∩NG(B(σ′))

)
\

⋂
ui∈B(σ′)

NG(ui),

that is, the neighbors of the vertices in B occupied by σ′, except the vertices that are adjacent to
all vertices of B. The following claim bounds the search space for X.

Claim 1. |NG(B) \ ∩ui∈BNG(ui)| < k3 and |X| < k2.

Proof of Claim 1. First note that for each ui ∈ B we have 0 ≤ ai < νk (ui), so degG(ui) < δ(G)+k.
Also | Imσ′ ∩ NG(ui)| ≥ | Imσ′| − ai. Hence, at most ai vertices in Imσ′ are non-neighbors to ui
for each ui ∈ B.

We have that at most
∑

ui∈B ai ≤ |B| · (k−1) vertices in Imσ′ can be a non-neighbor to at least
one ui ∈ B. Hence vertices in B have at least | Imσ′| − |B| · (k− 1) common neighbors. Since none
of the vertices of X is adjacent to all vertices of B inside Imσ′, we have that |X| ≤ |B| ·(k−1) < k2.

For each ui ∈ B, the number of its neighbors that are not the common neighbors of all vertices
of B, is is at most

degG(ui) − (| Imσ′| − |B| · (k − 1)) < (δ(G) + k) − (δ(G) + 1 − |B| · (k − 1)) = (|B| + 1) · (k − 1).

Summing up these bounds over all ui ∈ B, we obtain the bound |B| · (|B| + 1) · (k − 1) < k3,
as required by the statement of the claim. ⌟

The final parameter of σ′ that we consider is the number of vertices occupied by σ′ that are not
related to B, that is,

aB(σ′) := | Imσ′ \NG[B(σ′)]|.

This parameter is very close in meaning to ai, since it represents the number of preserved neighbors
of B in G. Let us quickly bound its value.

Claim 2. aB ≤ min{ai : ui ∈ B}.

Proof of Claim 2. By definition, ai ≤ | Imσ′ \ NG[ui]| for each ui ∈ B. At the same time,
NG[B] ⊃ NG[ui] and, consequently, (Imσ′ \NG[ui]) ⊃ (Imσ′ \NG[B]). Hence, by definition of aB,
ai ≥ aB for each ui ∈ B. ⌟

We have defined all parameters of σ′, that is, a1, a2, . . . , ak−1, B, X and aB. While there could
be nO(|V (T ′)|) different ways for a mapping σ′ to map T ′ into G, the number of possible combinations
of the parameters is significantly smaller. Indeed, the values of ai and aB are integers within the
range {0, . . . , k − 1}. The value of B is derived from a1, a2, . . . , ak−1. To form set X, we have
at most (k3)k

2
possible options depending on B only. We conclude that there are 2O(k2) different

combinations of these parameters. All these combinations are easily enumerated in time, up to a
polynomial factor, proportional to the total number of combinations.

We move on to the core part of the algorithm. The algorithm does not go through all possible
guesses for mapping σ′. Instead, we run the algorithm for every valid choice of the parameters
a1, a2, . . . , ak−1, B, X, and aB. For each choice of the parameters, the algorithm either outputs
an isomorphic embedding of T in G or fails. We will show that when the choice of the parameters
corresponds to σ′, then the algorithm always finds the required subgraph isomorphism of T in G.
Thus, if there exists a subgraph isomorphism σ : V (T ) → V (G) such that the restriction of σ onto
S equals κ and σ′ is the restriction of σ onto V (T ′), then our algorithm constructs an isomorphic
embedding of T into G for the choice of the parameters corresponding to σ′.

20



We assume that we guessed correctly the parameters of σ′. Let us remark that the algorithm
does not recover mappings σ′ and σ. Instead, it uses the parameters of σ′ to compute another
mapping ξ′, and then extends ξ′ to subgraph isomorphism ξ mapping T to G that is also compatible
with mapping κ. We want subgraph isomorphism ξ′ from T ′ to G to satisfy the following conditions:

• ai(ξ
′) ≥ ai(σ

′),

• Im ξ′ ⊃ X(σ′), and

• | Im ξ′ \NG[B(σ′)]| ≥ aB(σ′).

Let us remark that in particular, σ′ satisfies these three conditions.

Claim 3. The subgraph isomorphism ξ′ can be found in 2O(k2)·diam(T ) · nO(1) running time.

Proof of Claim 3. First we find a partial isomorphism from T ′ into G by reducing to Annotated
Hitting Subtree Containment. We choose Fi := NG(ui) and ki := ai(σ

′) for each i ∈ [k − 1].
The next set is Fk := X(σ′) with kk := |X(σ′)|. The final set is Fk+1 := V (G) \ NG[B(σ′)] with
kk+1 := aB(σ′).

The constructed instance of Annotated Hitting Subtree Containment thus is(
G,T ′, κ, (NG(u1), NG(u2), . . . , NG(uk−1), X, V (G) \NG[B]), (a1, a2, . . . , ak−1, |X|, aB)

)
.

This instance’s constraints exactly correspond to the three conditions in the definition of ξ′. This
instance is a yes-instance by our assumption about the existence of σ′, and, hence of ξ′. Apply
algorithm of Lemma 4 to this instance and in time 2O(k2)·diam(T ′) · nO(1) obtain the intermediate
partial isomorphism. Since |V (T ′)| = δ(G) + 1, by Proposition 1, this mapping could be extended
to the subgraph isomorphism ξ′ : V (T ′) → V (G) in polynomial time. ⌟

The last subroutine of the algorithm extends ξ′ : V (T ′) → V (G) into an isomorphism ξ :
V (T ) → V (G). The subroutine here is quite straightforward, since we just need to find a matching
between κ(S) and V (G − Im ξ′) in G saturating every ui ∈ κ(S). Then the edge of the matching
incident with ui gives an image for ℓi. The matching, if it exists, could be found in polynomial
time. Thus what is left is the proof that such a matching always exists.

Claim 4. There is a matching between κ(S) and V (G− Im ξ′) in G saturating κ(S).

Proof of Claim 4. We focus on saturating the vertices in B(σ′), since each ui /∈ B(σ′) has at least
k − 1 neighbours outside Im ξ′. They need not be taken care of, we just saturate them arbitrarily
in the end. In the rest of the proof of the claim, we assume that B(σ′) is not empty.

Define the common neighbors of B as

C(σ′) =
⋂

ui∈B(σ′)

NG(ui).

Observe that by the definition of B,C,X and aB,

| Imσ′| = |B(σ′)| + | Imσ′ ∩ C(σ′)| + |X(σ′)| + aB(σ′),

On the other hand,

| Im ξ′| = |B(σ′)| + | Im ξ′ ∩ C(σ′)| + | Im ξ′ ∩NG(B(σ′)) \ C(σ′)| + | Imσ′ \NG[B(σ′)]|.
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Since | Im ξ′| = | Imσ′|, we have

| Imσ′ ∩ C| + |X| + aB(σ′) = | Im ξ′ ∩ C| + | Im ξ′ ∩NG(B) \ C| + | Im ξ′ \NG[B]|. (1)

We split the vertices in B in three groups depending on how σ maps their neighbors in L. The
first group consists of vertices ui ∈ B such that the image of its leaf ℓi in σ is not occupied by ξ′:

B1 := {ui ∈ B : σ(ℓi) /∈ Im ξ′}.

The second group consists of ui ∈ B such that σ(ℓi) is occupied by ξ′, but is common to all vertices
in B:

B2 := {ui ∈ B : σ(ℓi) ∈ Im ξ′ ∩ C}.

The remaining group is
B3 := {ui ∈ B : σ(ℓi) ∈ Im ξ′ \ C}.

We construct the matching saturating B = B1 ∪ B2 ∪ B3. Denote by L1 := {ℓi : ui ∈ B1} the
set of leaves for B1. For each ui ∈ B1, we add edge uiσ(ℓi) to the matching. This is legitimate
since σ(ℓi) /∈ Im ξ′ for each ℓi ∈ L1.

The rest of the vertices in B, that is, vertices of B2∪B3 we match with vertices from C \(Im ξ′∪
σ(L1)). Since C are the common neighbors of B (B and C induce a complete bipartite subgraph
in G), we only have to prove that C has enough free vertices to match to.

We have to perform some counting to proceed. Since the leaf neighbors of B2 are matched to
C in σ, we have

|C \ (Imσ′ ∪ σ(L1))| ≥ |B2|.

Because X ⊂ Imσ′ and B3 ∩ Imσ′ = ∅, and both X and B3 are subsets of Im ξ′, we have

| Im ξ′ ∩NG(B) \ C| ≥ |X| + |B3|. (2)

Combining Equation (2) and | Im ξ′ \NG[B]| ≥ aB with Equation (1), we conclude that

|C ∩ Im ξ′| ≤ |C ∩ Imσ′| − |B3|.

Therefore,

|C \ (Im ξ′ ∪ σ(L1))| = |C \ σ(L1)| − |C ∩ Im ξ′|
≥ |C \ σ(L1)| − |C ∩ Imσ′| + |B3|
= |C \ (Imσ′ ∪ σ(L1))| + |B3| ≥ |B2| + |B3|.

It means that C has enough free vertices to be matched with B2 ∪ B3. This finishes the proof
of the claim. ⌟

This completes the proof of the correctness of the algorithm for the right choice of the parame-
ters. Note that if our guess of the parameters is incorrect, the algorithm still could find a subgraph
isomorphism, then we stop. Or, if it failed, we move on to the next choice of the parameters. By
Claim 3, the running time of the subroutine for the fixed choice of parameters is 2O(k2)·diam(T ) ·nO(1)

for both correct and incorrect choices of the parameters. Thus the total running time of the algo-
rithm is 2O(k3) · 2O(k2)·diam(T ) · nO(1). This completes the proof of the lemma.

As a side remark, we note that Lemma 7 already provides an XP-algorithm (with parameter k)
for tree containment when a tree is of constant diameter.
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5.2 Guessing a mapping randomly

The second key ingredient of Theorem 4 allows to guess images (in G) of leaf-adjacent vertices
(in T ) efficiently.

Lemma 8. Let G be a graph, p ≥ 1, k ≥ 3 be integers, and T be a tree on δ(G) + k vertices such
that

1. δ(G) ≥ k3p+1,

2. there are no kp-escape vertices in G,

3. ld(T ) < k, and

4. T is not size-kp-separable.

Then there is a set W of 2k
O(p)

leaf-adjacent vertices in T , satisfying the following:
If G has a subgraph isomorphic to T , then there is a vertex u ∈ V (G) and a subgraph isomor-

phism σ from T into G such that with probability at least 1
kp+2 a randomly selected (k − 1)-vertex

set U ⊂ NG(u) has σ−1(U) ⊂ W.

By a randomly selected set U , we mean here a set formed by selecting k− 1 times uniformly at
random (without repetitions) a vertex from NG(u).

Proof. Let r be a vertex in T whose deletion separates T into components of size at most |V (T )|/2.
Suppose that one of the components is of size at least kp. Then the edge between r and this
component separates T into a part of size at least kp and a part of size at least |V (T )|/2 >
δ(G)/2 ≥ kp. This is a contradiction because, by the lemma’s assumption, T is not size-kp-
separable. Therefore, every component of T − r is of size at most kp.

In the rest of the proof, we assume that T is rooted in r. Let the children of r in T be
c1, c2, . . . , cd for d := degT (r). For each i ∈ [r], the subtree Tci rooted in ci has less than kp vertices.

We first note that there are not too many non-isomorphic rooted trees among Tci . In his work
[Ott48], Otter proved that there are at most O(2.95n) non-isomorphic (unrooted) trees on n vertices.
If we move from unrooted to rooted trees, the number of the classes of equivalence grows by at
most the maximum size of the tree, and the bound becomes O(2.95n ·n). Since each Tci consists of
at most kp vertices, we have to sum up this bound over each tree size from 1 to kp. We obtain that
the upper bound on the number of non-isomorphic trees from T − r is O(2.95k

p · kp · kp) = 2k
O(p)

.
We construct the set of leaf-adjacent vertices W via the following process. For each class of

isomorphic trees from Tc1 , Tc2 , . . . , Tcd , we take k − 1 (or all of them, if they are less then k − 1)
representatives of this class. Then for each of the selected trees Tci , we add all leaf-adjacent vertices

in V (Tci) (with respect to the whole T ) to W. The size of W is in 2k
O(p)

.
The construction of W is complete and we proceed with the proof of the probability statement

of the lemma. It is based on the following claim.

Claim 5. There are at least δ(G)
kp leaf-adjacent vertices (excluding r) in T .

Proof of Claim 5. Since ld(T ) < k, at most k − 1 subtrees among Tci are single-vertex trees.
Each of the other subtrees Tci contains at least one leaf-adjacent vertex in T . The total number of
vertices in these subtrees is at least |V (T )| − 1 − (k − 1) = δ(G). Since the size of each of them is

at most kp, at least δ(G)
kp vertices in total are leaf-adjacent vertices. ⌟
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Let σ : V (T ) → V (G) be the subgraph isomorphism from T into G. Put u := σ(r). Since there
are no kp-escape vertices in G, at most kp distinct Tci have at least one vertex mapped outside
NG(u) by σ, i.e.

σ(V (Tci)) ̸⊂ NG(u)

holds for at most kp distinct values of i. Also degG(u) < δ(G) +kp, again since u is not a kp-escape
vertex. Since each |V (Tci)| is at most kp, we have that | Imσ \ NG[u]| ≤ k2p. Pipelining with
Claim 5, we deduce that at least

δ(G)

kp
− k2p ≥δ(G)

kp
− δ(G)

kp+1
≥ δ(G) · (k − 1)

kp+1

≥δ(G) + δ(G)

kp+1
>

δ(G) + kp + kp+2

kp+1
>

degG(u)

kp+1
+ k

(3)

vertices in NG(u) are images of leaf-adjacent vertices with respect to σ.
The set U is formed via iterative random selection of a (not previously selected) vertex in

NG(u). There are k − 1 iterations. By Equation (3), in each iteration with probability at least
1

kp+1 the selected vertex is an image of a leaf-adjacent vertex. Hence, with probability at least
( 1
kp+1 )k−1 > 1

kp+2 , a random subset U ⊂ NG(u) consists of k − 1 distinct images of leaf-adjacent
vertices of T with respect to σ. We refer to such a choice of U as to a good choice. It remains to
show that for each good choice of U , there is some subgraph isomorphism σ′ from T to G with
property σ′(W) ∩ U = U .

Let U be a fixed good choice, i.e. a subset of NG(u) of size k− 1 such that σ−1(U) consists only
of leaf-ajacent vertices in T . We now modify the isomorphism σ and obtain another isomorphism
σ′ with (σ′)−1(U) ⊂ W.

Recall that W consists of a union of leaf-adjacent vertices in some subtrees of c1, c2, . . . , cd, i.e.
Tci for i ∈ I for some I ⊂ [d]. On the other hand, σ−1(U) is a subset of a union of leaf-adjacent
vertices of at most k− 1 subtrees of c1, c2, . . . , cd, i.e. Tcj for j ∈ J for some J ⊂ [d] of size at most
k − 1. Therefore, if J ⊂ I, then σ is the required isomorphism for U .

Otherwise, we modify σ. Take a j ∈ J \ I. The leaf-adjacent vertices of Tcj are not in W.
However, by the construction of W, there is i ∈ I \ J such that Tci is isomorphic to Tcj , as W
contains leaf-adjacent vertices of at least k representatives of the isomorphism-equivalence class of
Tcj . We modify σ by interchanging the images of Tci and Tcj . This modification reduces the size
of J \ I by exactly one.

We repeat such modifications until we reach J ⊂ I, and hence an isomorphism σ′ for U satisfying
the required condition. This completes the proof of the lemma.

5.3 Proof of Theorem 4

Proof of Theorem 4. The algorithm is a Monte-Carlo algorithm that uses Lemma 7 as its subrou-
tine. Since every tree T is size-(diam(T )/2)-separable, it is guaranteed that diam(T ) ≤ kp

2 , so the

running time of a single call of Lemma 7 is 2k
O(p) ·nO(1). It only remains to find a suitable mapping

κ to call Lemma 7. From now on, we assume that G contains T as a subgraph, since Lemma 7
never reports false-positives.

We iterate several values of κ using Lemma 8. Constraints on G and T imposed by Theorem 4
allow to apply Lemma 8. We obtain a set W of leaf-adjacent vertices of T and pick a random set
U of k − 1 leaf-adjacent vertices in T (excluding r). By Lemma 8, with probability at least k−p−2,
there is a subgraph isomorphism σ from T into G with σ−1(U) ⊆ W.

To produce the mapping κ for a single run of the subroutine of Lemma 7, we use W and U .
That is, κ is a mapping from a subset of W into U , and we iterate over all |W||U | = 2k

O(p)
possible
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such mappings. For each fixed mapping, we run the subroutine of Lemma 7. The total running
time is bounded by 2k

O(p) · nO(1). If the guess of U was good, at least one of the runs correctly
reports that G contains T . In this case, the algorithm reports that G contains T and stops.

We have shown so far that a single guess of U provides a correct answer with probability at
least k−p−2 in time 2k

O(p) · nO(1). To amplify the probability, we repeat this procedure (guess of U
and iterating κ) 2kp+2 times in total. By the standard arguments, the probability that at least one

of the 2kp+2 guesses of U is correct is at least 1
2 . The total running time is 2k

O(p) · nO(1).
If at every run of the subroutine the algorithm reports that G does not contain T , the algorithm

reports that G does not contain T . This happens with probability 1 if G does not contain T as a
subgraph, and with probability at most 1

2 otherwise. The proof is complete.

6 Large diameter and preserving paths

In this section, we show that G contains T if the diameter diam(T ) is sufficiently large and n is
at least slightly above δ(G). The proof also yields a polynomial-time algorithm that constructs a
subgraph isomorphism from T into G. More formally, the main result of the section is the following
combinatorial result.

Theorem 5. Let k ≥ 3 and let G be a connected graph with at least n ≥ (1 + 4
k4

) · δ(G) vertices
and of minimum vertex degree δ(G) > k16. Then G contains as a subgraph every tree T on at most
δ(G) + k vertices and of diameter diam(T ) ≥ 8k6 · log δ(G).

We start the proof of Theorem 5 by preparing auxiliary results in Sections 6.1 and 6.2. The
final step of the proof is given in Section 6.3. While we state Theorem 5 and all lemmata in this
section as combinatorial results—under certain conditions, the graph contains a certain object—all
these proofs are constructive and imply polynomial time algorithms computing the corresponding
objects in polynomial time. In particular, the subgraph isomorphism of tree T in Theorem 5 could
be constructed in polynomial time.

6.1 Preserving paths and how to use them

In this subsection we define preserving sets and preserving paths. Recall that by νk (v) we
denote the neighbor deficiency of vertex v, that is, max{δ(G) + k − 1 − degG(v), 0}. Let us also
remind that for a set S ⊆ V (G) and vertex v ̸∈ S, the non-neighbors of v in S are the vertices of
S that are not adjacent to v.

Definition 5 (Preserving path). For a graph G and integer k ≥ 0, we say that S ⊆ V (G) is
k-neighbor-preserving, or simply k-preserving, if each vertex v ∈ V (G) \ S has at least νk (v) non-
neighbors in S. If P is a path in G such that V (P ) is preserving, we say that P is a preserving
path in G.

The following lemma shows that a k-preserving path in G guarantees a tree on δ(G)+k vertices
of large enough diameter in G.

Lemma 9. Let G be a graph, k ≥ 0 be an integer, and let P be a k-preserving path in G. If
δ(G) ≥ k, then G contains every tree T on δ(G) + k vertices with diam(T ) ≥ 2|V (P )| − 1.

Proof. Let T be a tree satisfying the conditions of the lemma. We construct an embedding of T
into G by making using the preserving path P .
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Q

≤ 1
2
|V (T )|

R

Figure 1: Construction of Q and R; Q is shown by a thick line and R is shown in red.

Let Q be a path in T with exactly 2|V (P )| − 1 edges. Such a path exists because the diameter
of T is at least 2|V (P )| − 1. Removal of the middle edge of the path Q splits T (and Q) into
two parts. One of these parts of T consists of at most |V (T )|/2 vertices. We denote by R the
subpath of Q belonging to this part of T . Let us remark that R is also a path in T and that
|NT [V (R)]| ≤ |V (T )|/2 + 1 = (δ(G) + k)/2 + 1 ≤ δ(G) + 1. (See Figure 1.)

We start constructing isomorphism σ by mapping path R into path P . Then we map all
remaining neighbors of R in T , i.e. NT (V (R)), into the neighbors of their images in G. Since
|NT [V (R)]| ≤ δ(G) + 1, such a mapping is always possible.

Thus, so far σ maps NT [V (R)] into NG[V (P )]. For the remaining vertices of V (T ) \NT [V (R)]
we extend σ by repeating the following procedure. We pick up an edge xy ∈ E(T ) such that x is
already mapped and y is not mapped. Let v := σ(x). We claim that at least one neighbor of v in G
is not in Imσ yet; thus we can extend σ by mapping y into this free neighbor. Since all neighbors
of R in T are already mapped, we have that x, which is adjacent to unmapped vertex y, is not in
V (R). Hence v /∈ V (P ). Because P is a preserving path, vertex v has at least νk (v) non-neighbors
in V (P ) ⊆ Imσ. This means that v is adjacent to at most | Imσ|−1−νk (v) vertices occupied by σ.
At least one vertex of T , namely y, is not mapped yet, and thus | Imσ| ≤ |V (T )|−1 = δ(G)+k−1.
Concluding, we have that the number of v occupied by σ is at most

| Imσ| − 1 − νk (v) ≤ δ(G) + k − 2 − νk (v) = ((δ(G) + k − 1) − νk (v)) − 1 ≤ degG(v) − 1,

and thus v has a free neighbor.
The resulting isomorphism σ is the subgraph isomorphism from T into G.

The rest of this subsection shows a way to construct a preserving path from a preserving set.
We start with a lemma showing how to convert a “diameter modulator” into a preserving set.

Lemma 10. Let G be a connected graph and k ≥ 1. If there is a vertex set S ⊆ V (G) such that
diam(G − S) ≥ 2k and δ(G) ≥ |S| + k − 1, then G contains a k-preserving path of length at most
4k − 2 + |S| in G.

Proof. We start the proof with the case when G − S is connected. In this case, we select any
two vertices in G − S such that the distance between them in G − S is exactly 2k. Let P be a
shortest path connecting these two vertices. Because P is a shortest path, each vertex in V (G) \ S
has at most three neighbors in P . Since |V (P )| = 2k + 1, each vertex v ∈ V (G) \ S has at least
(2k + 1) − 3 = 2(k − 1) ≥ νk (v) non-neighbors in V (P ).

Let us remark that P is not yet k-preserving because some vertices of S could have less than νk
non-neighbors in V (P ). We make P k-preserving by inserting some vertices of S. More formally,
if a vertex u ∈ S has two consecutive neighbors v, w in P , we add u to P by inserting it between
v and w. We repeat this iteratively until either S is exhausted or none of the vertices from S
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v2v1

Figure 2: The case when G− S is not connected; Q is shown in red.

can be inserted into P . Note that every vertex that remained in S has at least ⌊|V (P )|/2⌋ ≥ k
non-neighbors in V (P ). Hence, P is a preserving path in G of length at most 2k + |S|.

Now consider the case when G−S is not connected (see Figure 2). We assume that diam(G) <
2k, otherwise we can take S := ∅ and proceed as in the connected case of the proof. Let
C1, C2, . . . , Cp be connected components of G − S, p ≥ 2. Then δ(Ci) ≥ δ(G) − |S| ≥ k − 1
for each i ∈ [p].

In graph G, we take a shortest path Q between V (C1) and V (C2). Since the diameter of G is
less than 2k, we have that the length of Q is at most 2k − 1. Let v1 and v2 be the endpoints of Q
such that vi ∈ V (Ci), i ∈ {1, 2}. For each i ∈ {1, 2}, we construct a path Ri of length exactly k− 1
inside Ci starting from vi. Such path always exists in Ci since k−1 ≤ δ(Ci)

3. Paths R1 and R2 are
disjoint and for each i ∈ {1, 2}, Ri and Q have only one common vertex, namely vi. We obtain path
P by concatenating paths R1, Q,R2. The length of P is at least 2k−1 (the lengths of R1 and R2 are
exactly k − 1 plus the length of Q is at least one) and at most 4k − 3. Since P contains k vertices
of C1, it has at least k > νk (v) non-neighbors for each v ∈ V (G) \ (S ∪ V (C1)) =

⋃p
i=2 V (Ci).

Symmetrically, it contains k vertices of C2, so it also covers the deficiency of vertices of C1. Hence,
only vertices in S can have less than k non-neighbors in P . For such vertices, we use exactly the
same trick as in the connected case: Since |V (P )|/2 ≥ k, we can repeatedly insert such vertices of
S into P . The resulting path P is k-preserving and its length is at most 4k − 3 + |S|.

We finally show how to construct a preserving path from a preserving set in G using the lemma
above.

Lemma 11. Let G be a connected graph and k ≥ 1. If G contains a k-preserving set S such that
δ(G) ≥ (2k − 1) · |S|, then G also contains a k-preserving path of length at most (2k − 1) · |S|.

Proof. The preserving path is found by joining all vertices of S in some order via shortest paths.
Let s1, s2, . . . , st be the vertices of S in an arbitrary order, t = |S|. We construct a sequence

of paths P1, P2, . . . , Pt, such that for each i ∈ [t], Pi is a path between s1 and si with V (Pi) ∩ S =
{s1, s2, . . . , si}.

We start with the path P1 that consists only of a single vertex s1. To obtain Pi+1 from Pi,
we do the following. If diam(G − V (Pi − si)) < 2k, we concatenate Pi with the shortest path
between si and si+1 in G − V (Pi − si). We repeat this process (t − 1) times unless the condition
diam(G − V (Pi − si)) < 2k fails. If we succeed, then we have a path P = Pt of length at most
(t− 1) · (2k − 1). Since S ⊆ V (P ), P is a preserving path in G.

Suppose that for some 1 < i < t, we succeed to construct Pi but we cannot proceed further
because diam(G−V (Pi− si)) ≥ 2k. The length of Pi is at most (i−1) · (2k−1) ≤ (t−2) · (2k−1).

3A path of length k − 1 is a tree on k vertices. By Proposition 1, Ci contains it as a subgraph even if we fix an
arbitrary starting vertex.
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Then |V (Pi− si)| ≤ (t− 2) · (2k− 1). By Lemma’s assumption, we have δ(G) ≥ (2k− 1) · |S|, hence
δ(G) ≥ |V (Pi − si)| + k. By applying Lemma 10 to G and V (Pi − si), we obtain a preserving path
of length at most |V (Pi − si)| + 4k − 2 ≤ (2k − 1) · (|S| − 2) + 4k − 2 = (2k − 1) · |S| in G.

6.2 Finding preserving sets of order log δ(G)

We first need the technical lemma about the properties of vertices with degrees below some
threshold in sufficiently large graphs. Informally, the lemma says that for the set A of vertices of
degrees at most (1 + ϵ) · δ(G), it is possible to select sufficiently small vertex set S such that no
vertex of A dominates all vertices of S.

Lemma 12. Let G be an n-vertex graph with δ(G) ≥ 2. Let ϵ ∈ (0, 1) be a given number such that
n ≥ (1 + ϵ)2 · δ(G). Then there exists a set S ⊆ V (G) such that S has at least one non-neighbor for
each vertex in A and |S| < 4 log δ(G)/ log(1 + ϵ) + 1, where A is the set of vertices in G of degree
less than (1 + ϵ) · δ(G).

Proof. We construct the set S starting from S = ∅. Fix arbitrary v ∈ A. By choosing a vertex
u ∈ V (G) uniformly at random, the probability that u is adjacent to v is

degG(v)

n
<

(1 + ϵ)δ(G)

n
.

Hence, the expected number of vertices in A adjacent to a random u ∈ V (G) is at most

(1 + ϵ) · δ(G)

n
· |A|.

Therefore, there exists u1 ∈ V (G) such that all vertices of A except at most (1 + ϵ) · δ(G)
n · |A|

vertices are non-neighbors of s1. We add s1 to S. Let A1 ⊆ A be the set of vertices that are
adjacent to s1. Now apply the arguments above to A1 instead of A. There is a vertex s2 ∈ V (G)
that is non-adjacent to all but at most

(1 + ϵ) · δ(G)

n
· |A1|

vertices of A1. Then A2 is defined as a subset of vertices of A1 that are adjacent to s2. We add s2
to S.

By repeating this process until we arrive at At = ∅, we obtain the family {A = A0, A1, . . . , At}
of subsets of A. For every v ∈ A, there is i ∈ {0, . . . , t− 1}, such that v ∈ Ai \Ai+1, and thus v is
non-adjacent to si.

It remains to show the upper bound on the size of S. Observe that

|Ai| ≤ (1 + ϵ)i ·
(
δ(G)

n

)i

· |A|.

To show that At = ∅ for t := ⌈4 log δ(G)/ log(1 + ϵ)⌉, it is enough to show that

(1 + ϵ)t ·
(
δ(G)

n

)t

<
1

n
,

or, equivalently,

(1 + ϵ)−t ·
(

n

δ(G)

)t

> n. (4)
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Since t < 4 log δ(G)/ log(1 + ϵ) + 1, it follows that (1 + ϵ)t < δ(G)4 · (1 + ϵ) < δ(G)5. It also
holds that t ≥ 5 since δ(G) > 1 + ϵ.

We split the proof of Equation (4) in two cases. The first case is when n ≥ δ(G)4. Then

(1 + ϵ)−t ·
(

n

δ(G)

)t

>
1

δ(G)5
·
(
n3/4

)5
>

1

n5/4
· n15/4 > n,

and Equation (4) follows. For n < δ(G)4, we use the condition of the lemma that n > (1+ϵ)2 ·δ(G).
Then

(1 + ϵ)−t ·
(

n

δ(G)

)t

> (1 + ϵ)−t · (1 + ϵ)2t = (1 + ϵ)t > (1 + ϵ)4 log δ(G)/ log(1+ϵ) = δ(G)4 > n.

This completes the proof of Equation (4). Hence, |At| < 1
n · |A| < 1 and therefore, |S| ≤

⌈4 log δ(G)/ log(1 + ϵ)⌉.

We now use Lemma 12 for extracting a k-preserving set from G.

Lemma 13. Let G be a n-vertex graph and k, p > 1 be two integers. Let q = 4kp · log δ(G). If
n ≥ (1 + 3

kp ) · δ(G) + qk and δ(G) ≥ qk · (kp + 1), then G contains a k-preserving set S of size at
most qk.

Proof. Throughout the proof, we employ (q + 1) · (k − 1) = qk + ((k − 1) − q) < qk − k.
Put ϵ := 1

kp . Note that log(1 + 1
kp ) < 1

kp for k > 1. Denote by B the set of all vertices with
non-zero deficiency in G, that is, B := {v ∈ V (G) : νk (v) > 0}. Recall that each vertex from
B that is not the preserving set S should have at least νk (v) = δ(G) + k − 1 − degG(v) ≤ k − 1
non-neighbor vertices in S.

Claim 6. Let X ⊆ V (G) be such that |X| ≤ qk − k. Then for every v ∈ B, degG−X(v) <
(1 + ϵ) · δ(G−X). Also n− |X| ≥ (1 + ϵ)2 · δ(G−X).

Proof of Claim 6. Note that

δ(G−X) ≥ δ(G) − |X| ≥ qk · (kp + 1) − |X| ≥ (|X| + k) · (kp + 1) − |X| > (|X| + k) · kp.

Let v ∈ B. Since νk (v) > 0, degG(v) < δ(G) + k. Observe

degG−X(v) ≤degG(v) < δ(G) + k ≤ δ(G−X) + |X| + k

≤δ(G−X) + δ(G−X)/kp = (1 + ϵ) · δ(G−X).

For the last inequality of the claim, note that (1 + ϵ)2 = 1 + 2ϵ + ϵ2 < (1 + 3ϵ) for ϵ < 1. Then

n ≥
(

1 +
3

kp

)
· δ(G) + qk > (1 + 3ϵ) · δ(G) + |X|

>(1 + ϵ)2 · δ(G) + |X| ≥ (1 + ϵ)2 · δ(G−X) + |X|.

⌟

Claim 6 (with X := ∅) allows to apply Lemma 12 to G and ϵ. By Claim 6, the application
of Lemma 12 gives a set S1 that contains at least one non-neighbor for each vertex in B. Also
|S1| ≤ 4kp · log δ(G) + 1 = q + 1.
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Repeat the application of Lemma 12, but now apply it to G−S1 and ϵ. The obtained set S2 is
of size at most q + 1 and has at least one non-neighbor for each vertex in B \ S2. This application
is legitimate by Claim 6 (with X := S1).

Repeat this k−3 more times to obtain sets S3, S4, . . . , Sk−1. Each time, the set Si+1 is obtained
from Lemma 12 applied to G−(S1∪ . . .∪Si) and ϵ. This is legitimate by Claim 6 (with X of size at
most i · (q+1) < qk−k). So Si+1 has at least one non-neighbor for each vertex in B \ (S1∪ . . .∪Si).

Put S :=
⋃k−1

i=1 Si. Clearly, S has at least k − 1 non-neighbors for each vertex in B \ S. It
follows that S is the required preserving set in G.

6.3 Proof of Theorem 5

Now everything is ready to proceed with the proof of Theorem 5. Generally speaking, we show
that there exists a preserving set in G by Lemma 13 and then transform it into a preserving path
in G using Lemma 11. Then we show that the diameter of T is large enough to apply Lemma 9.

Proof of Theorem 5. Let k ≥ 3 and let G be a connected graph with at least n ≥ (1 + 4
k4

) · δ(G)
vertices and of minimum vertex degree δ(G) > k16. We want to show that G contains as a subgraph
every tree T on at most δ(G) + k vertices and of diameter diam(T ) ≥ 8k6 · log δ(G).

In order to apply Lemma 13, we have to show that G satisfies its conditions for p := 4.

Claim 7. 1. δ(G) ≥ 4k5 · log δ(G) · (k4 + 1);

2. n ≥ (1 + 3
k4

) · δ(G) + 4k5 log δ(G).

Proof of Claim 7. Since k ≥ 3, we have that δ(G) > 316 > 225. Then log δ(G) < δ(G)3/16. Obtain

4k5 · log δ(G) · (k4 + 1) < δ2/16 · δ(G)5/16 · δ(G)3/16 · (δ(G)4/16 + 1) < δ(G)10/16 · δ(G)5/16 < δ(G).

The first part of the claim is proved.
To see that the second part of the claim holds, from the first part obtain 4k5·log δ(G) < δ(G)/k4.

Then, by the constraint imposed by the statement of Theorem 5,

n ≥
(

1 +
4

k4

)
· δ(G) =

(
1 +

3

k4

)
· δ(G) +

δ(G)

k4
>

(
1 +

3

k4

)
· δ(G) + 4k5 log δ(G).

The claim is proved. ⌟

By Claim 7, we can apply Lemma 13 to G and k with p := 4. The size of the obtained preserving
set S is |S| ≤ 4k5 · log δ(G). By Claim 7, δ(G) > 2k · |S|. Lemma 11 implies that for G has a
k-preserving path P of length at most (2k − 1) · |S| < 8k6 · log δ(G).

By Lemma 9, G contains every tree T with |V (T )| ≤ δ(G) + k and diam(T ) ≥ 8k6 · log δ(G).
This completes the proof of the main result of the section.

7 When G has at most (1 + ε)δ(G) vertices.

In this section, we consider graphs with a sufficiently small number of vertices. We show that
such graphs contain all trees of size δ(G) + k whose maximum leaf-degree ld(T ) is less than k. Let
us remind that by the maximum leaf-degree of T , we mean the maximum number of leaf-neighbors
a vertex of T could have. More formally, the main result of this section is the following theorem.
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Theorem 6. Let G be a graph and let k ≥ 1 be an integer such that δ(G)+k ≤ |V (G)| ≤ (1+ε)δ(G)
for ε ≤ 1

4k and δ(G) ≥ 12k2. Let also T be a tree with at most δ(G)+k vertices such that ld(T ) < k.
Then G contains T as a subgraph.

The following combinatorial property of trees is useful for us. We remind that a hitting set for
a family of sets S is a set that contains at least one representative from each set of S.

Lemma 14. Let T be a tree with ℓ leaves. Then any hitting set for the family of the neighborhoods
of its vertices, that is, for the family S = {NT (v) | v ∈ V (T )}, is of size at least 1

2(|V (T )|− 3ℓ+ 6).

Proof. Let V1, V2, and V≥3 be the sets of vertices of degree one, two, and at least three, respectively.
Denote n = |V (T )| = |S|, n1 = |V1| = ℓ, n2 = |V2|, and n≥3 = |V≥3|. We have that

2n1 + 2n2 + 2n≥3 − 2 =2(n− 1) =
∑

v∈V (T )

degT (v)

=
∑
v∈V1

degT (v) +
∑
v∈V2

degT (v) +
∑

v∈V≥3

degT (v)

=n1 + 2n2 +
∑

v∈V≥3

degT (v).

(5)

In particular, Equation (5) implies that n1 + 2n≥3 − 2 =
∑

v∈V≥3
degT (v) ≥ 3n≥3 and, therefore,

n≥3 ≤ n1 − 2. Then
∑

v∈V≥3
degT (v) ≤ 3n1 − 6. Note that a vertex v ∈ V≥3 is included in

degT (v) sets of S. Hence, the vertices of V≥3 hit at most
∑

v∈V≥3
degT (v) sets of S. Any vertex

v ∈ V1 ∪ V2 is included in at most two sets of S. Therefore, any hitting set of S contains at least
1
2(n−

∑
v∈V≥3

degT (v)) ≥ 1
2(n− 3n1 + 6) = 1

2(|V (T )| − 3ℓ + 6) vertices of V1 ∪ V2. This concludes
the proof.

7.1 Proof of Theorem 6

We proceed with the proof of the main result of the section.

Proof of Theorem 6. The proof is by induction on the number of vertices of T . If |V (T )| ≤ δ(G)+1,
then T is a subgraph of G by Lemma 1. Assume that T has δ(G) + p vertices for 2 ≤ p ≤ k and
G contains any tree with δ(G) + p − 1 vertices and the maximum leaf-degree at most k − 1 as a
subgraph. Observe that every vertex x of G has at most |V (G)|−1−δ(G) ≤ εδ(G)−1 non-neighbors
in G.

We argue that T has a leaf u such that ld(T − u) ≤ ld(T ). Let us note that deleting a leaf u
could increase the value ld only if the deletion of u turns its neighbor into a leaf. Hence, if there is
a leaf u such that its neighbor’s degree is at least three, then ld(T − u) ≤ ld(T ).

Now we are in the situation where every leaf of T is adjacent to a vertex of degree two. If there
is a leaf u with a neighbor v, such that the neighbor w of v, w ̸= u, is not adjacent to any leaf of T ,
then ld(T − u) ≤ ld(T ). If w is adjacent to a leaf, then degT (w) = 2 by the assumption that each
leaf is adjacent to a vertex of degree two. This means that T is the path on four vertices. But this
cannot happen because |V (T )| ≥ δ + 2 > 4. Hence there is a leaf u such that ld(T − u) ≤ ld(T ).

Consider an arbitrary leaf u of T such that ld(T − u) ≤ ld(T ) ≤ k − 1 and let v be its unique
neighbor. Let T ′ = T − u. By the inductive assumption, G contains T ′ as a subgraph and we can
assume that V (T ′) ⊆ V (G) and E(T ′) ⊆ E(G). If v is adjacent to a vertex of V (G) \ V (T ′) in G,
then we obtain that T is a subgraph of G. Assume that this is not the case. Then NG(v) ⊆ V (T ′)
and v has at most |V (T )| − 1 − δ(G) = p− 1 ≤ k − 1 non-neighbors among the vertices of T ′.
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Suppose that T has at least (δ(G)ε + k)(k − 1) leaves. Let U be the set of vertices of T that
are adjacent to at least one leaf and let W = U \ {v}. Because ld(T ) ≤ k− 1, |U | ≥ δ(G)ε+ k. For
every vertex of x ∈ W , we choose a leaf ℓx of T adjacent to x in T ′ and define L = {ℓx | x ∈ W}.
Because |L| = |U |− 1 ≥ δ(G)ε+ k− 1 and v has at most k− 1 non-neighbors among the vertices of
V (T ′), v is a adjacent to at least |L|−k+ 1 ≥ εδ(G) vertices of L. Let L′ ⊆ L be the set of vertices
adjacent to v and consider W ′ = {x ∈ W | ℓx ∈ L′}. Because |V (G)| ≥ δ(G) + k > |V (T ′)|, there
is w ∈ V (G) \ V (T ′). Since |W ′| = |L′| ≥ εδ(G) and w has at most εδ(G) − 1 non-neighbors in G,
we have that w has a neighbor x in W ′. Thus v and x are adjacent to ℓx and x is adjacent to w.
Let T ′′ be the subgraph of G with V (T ′′) = V (T ′) ∪ {w} and E(T ′′) = (E(T ′) \ {ℓx}) ∪ {vℓx, xw}.
Note that trees T ′′ and T are isomorphic: the leaf ℓx of x is remapped to w and the leaf u of T is
mapped to ℓx. Hence if T has at least (δ(G)ε + k)(k − 1) leaves, then G contains T .

From now on, we assume that the number of leaves of T is less than (δ(G)ε + k)(k − 1).
Consider the family S = {NT ′(x) | x ∈ V (T ′)} of the neighborhoods of the vertices of T ′ and let
S ′ = {NT ′(x) | x ∈ V (T ′) \ {v} s.t. vx ∈ E(G)}. Because v has at most p − 1 non-neighbors in
V (T ′), we have that |S ′| ≥ |V (T ′)| − p = δ(G) − 1. By Lemma 14, any hitting set for S is of size
at least

1

2
(|V (T ′)| − 3(δ(G)ε + k)(k − 1) + 6) =

1

2
(δ(G) + p− 1 − 3(δ(G)ε + k)(k − 1) + 6)

≥1

2
((1 − 3ε(k − 1))δ(G) − 3k(k − 1)).

(6)

For a vertex w ∈ V (G) \ V (T ′), we consider the set X = {x ∈ V (T ) | xw /∈ E(G)} of its non-
neighbors in V (T ′). Because w has at most εδ(G)−1 non-neighbors in G, by Equation (6), X does
not hit at least

1

2
((1 − 3ε(k − 1))δ(G) − 3k(k − 1)) − εδ(G) + 1 ≥ 1

2
((1 − 3εk)δ(G) − 3k(k − 1))

sets of S. Because |S| = |V (T ′)| ≤ δ(G) + k − 1 and |S ′| ≥ δ(G) − 1, X does not hit at least

1

2
((1 − 3εk)δ(G) − 3k(k − 1)) − k =

1

2
((1 − 3εk)δ(G) − k(3k − 1))

sets of S ′. Since ε ≤ 1
4k and δ(G) ≥ 12k2, we have that (1 − 3εk)δ(G) − k(3k − 1) > 0. Therefore

X does not hit at least one set of S ′. Thus, there is x ∈ V (T ′) \ {v} such that xv ∈ E(G)
and for every y ∈ NT ′(x), yw ∈ E(G). We construct the subgraph T ′′ of G from T ′ by defining
V (T ′′) = V (T ′) ∪ {w} and E(T ′′) = (E(T ′) \ {xy | y ∈ NT ′(x)}) ∪ {wy | y ∈ NT ′(x)} ∪ {vx}.
Observe that T ′′ is a tree isomorphic to T where x ∈ V (T ′) is remapped to w and u is mapped to
x. Thus, G contains T as a subgraph. This concludes the proof.

8 Medium diameter and escape vertices

In this section we prove a combinatorial result (Theorem 7) about containment in G trees on
δ(G) +k vertices and of “medium” diameter kO(1) · log δ(G). Informally, Theorem 7 ensures that G
contains any such medium-diameter tree T if its diameter is at least kΩ(1). Moreover, Theorem 7
collects two other cases when G contains a tree of diameter kO(1) · log δ(G). One case is when G
has a kO(1)-escape vertex. (Recall that a vertex v ∈ V (G) is q-escape, if either its degree is at least
δ(G) + q or there is a matching of size q between N [v] and V (G) \N [v].) The other case is when
T is size-kO(1)-separable, that is, there is an edge in T whose removal separates T into two parts
consisting of at least kO(1) vertices.

More formally, the main result of this section is the following theorem.
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Theorem 7. Let G be a connected graph and T be a tree on δ(G) + k vertices for k ≥ 3. If
|V (G)| ≥ δ(G) + 2k14, ld(T ) < k, δ(G) ≥ k17, diam(T ) ≤ 8k6 · log δ(G) and either

• diam(T ) ≥ 2k11, or

• there is a 4k13-escape vertex in G, or

• T is size-2k14-separable,

then G contains T as a subgraph.

We organize the proof of Theorem 7 in several stages.

8.1 Contracting trivial paths

We start with trees of diameter kΩ(1). The key property in this case is the following: Whenever
we consider a minimal subtree connecting some set of (sufficiently distant) k leaves, the subtree
always contains long trivial paths, defined below.

Definition 6 (Trivial path). An (s, t)-path P in a tree T is a trivial path, if each inner vertex
v ∈ V (P ) \ {s, t} is of degree two, i.e., degT (v) = 2. Additionally, if degT (s) ̸= 2 and degT (t) ̸= 2,
we say that P is a maximal trivial path in T .

We will use long trivial paths to embed non-neighbors of a fixed set of vertices and then extend
such embeddings by making use of Lemma 5. We prove the following.

Lemma 15. Let G be a connected graph and T be a tree on δ(G) + k vertices for k ≥ 3. If
ld(T ) < k, δ(G) ≥ 2k · diam(T ), and diam(T ) ≥ 2k4, then G contains T as a subgraph.

Proof. Note that T has at least k− 1 leaves since |V (T )| > δ(G) > (k− 1) · diam(T ), by Lemma 2.
Construct a set L of k − 1 leaves of T as following. We first put in L a diametral pair of leaves
of T , that is, two leaves such that the distance between these leaves is exactly diam(T ). Then we
extend L by adding arbitrary k − 3 ≥ 0 leaves of T .

Let W := NT (L) be the set of neighbors of these leaves in T , |W | ≤ k − 1. Let TW be the
minimal subtree of T containing all vertices of W . We have that diam(TW ) = diam(T )− 2 and TW

has at most k − 1 leaves.

v = sq

length ≤ 2k

s2 sq−1

P

w1

w2

wp

u = s1

Figure 3: The tree T ′
W for W = {w1, . . . , wp} and the extension of P via s1, . . . , sq; P is shown by a

thick line and the paths that are used for extending P are shown in red. For the sake of illustration,
we identify the respective vertices of T and G under the isomporphism.
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Now obtain a tree T ′
W from TW by the following procedure (see also Figure 3). For each maximal

trivial path P in TW of length more than 2k, we contract some of its inner edges such that the
resulting path is of length exactly 2k. It is important that the endpoints of P are not changed by
the contractions. Note that T ′

W has the same number of leaves as TW (their set is exactly W ). The
endpoints of the maximal trivial paths are preserved in T ′

W as well. If ℓ is the number of leaves
in T ′

W , then T ′
W contains less than 2(ℓ− 1) maximal trivial paths. Since each edge of T ′

W belongs
to exactly one maximal trivial path, |E(T ′

W )| < 2k · 2(k − 2) = 4k2 − 8k. Hence, T ′
W has at most

4k2 − 8k vertices.
Since δ(G) ≥ 4k2 > |V (T ′

W )|, by Chvátal’s Lemma (Lemma 1), there is an isomorphism from T ′
W

into a subgraph of G. Denote this isomorphism by σ′. Our goal is to extend σ′ to an isomorphism σ
of TW into a subgraph of G, ensuring that Imσ has enough non-neighbors of the images of vertices
in W to fit Lemma 5.

Construct the set S of desired non-neighbors by picking arbitrary νk (σ′(w)) ≤ k − 1 non-
neighbors in G for each w ∈ W . After that, remove all vertices of Imσ′ from S, since they are
already used by the isomorphism. The set S consists of at most (k− 1) · |W | ≤ (k− 1)2 vertices of
G. To embed S in the image of σ′, we need to show that there is a sufficiently long trivial path in
TW . All vertices of S will be images of the vertices of this path.

Claim 8. There is a maximal trivial path in TW of length at least 2k3 + 4k2.

Proof of Claim 8. Let D be the path between a diametral pair of leaves in TW . Since TW has at
most k − 1 leaves, D has at most (k − 1) − 2 = k − 3 inner vertices of degree at least 3. Then D
consists of at most k − 2 maximal trivial paths and at least one of these paths is of length at least

diam(TW )

k − 2
≥ diam(T ) − 2

k − 2
≥ 2k4 − 2

k − 2
=

2k4 − 4k3 + 4k3 − 2

k − 2
= 2k3 +

4k3 − 2

k − 2
> 2k3 + 4k2.

⌟

This maximal trivial path is contracted in T ′
W and has length 2k, denote it by P . Therefore

at least (2k3 + 4k2) − 2k > 2k3 edges are contracted. Let uv be an edge of P . We will replace
this edge with a longer (u, v)-path (see Figure 3), which will fall under the “budget” of 2k3 edges.
Its image in G will be a (σ′(u), σ′(v))-path containing all vertices in S. Thus, for convenience we
consider σ′(u) and σ′(v) to be a part of S too.

Let vertices in S be s1, s2, . . . , sq, such that s1 = σ′(u) and sq = σ′(v), and q ≤ (k−1)2+2 ≤ k2.
We first find a path in G that contains all vertices of S. Additionally, this path should avoid all
vertices of I = Imσ′\{σ′(u), σ′(v)}. Let us note that |I| = |V (T ′

W )|−2 ≤ 4k2−8k. The construction
is similar to the one in the proof of Lemma 11: we connect vertices s1, . . . , sq in order via shortest
paths avoiding vertices that are already used (including vertices in I and S), see Figure 3.

We proceed with constructing such a path inductively. Let U1 = I ∪{s3 . . . , sq}. If the distance
between s1 and s2 in G−U1 is at most 2k+1, we find a shortest (s1, s2)-path in G−U1 and denote
it by Q1. For each i ∈ [2, q − 1], let Ui = Ui−1 ∪ V (Qi−1) \ {si+1}. If the distance between si and
si+1 in G−Ui is at most 2k+ 1, we define Qi as the (s1, si+1)-path obtained by appending to Qi−1

a shortest (si, si+1)-path in G−Ui. This construction is not always possible, since at some moment
an (si, si+1)-path might either not exist or it might be too long.

Let i be the smallest index such that there is no (si, si+1)-path of length at most 2k + 1 in
G− Ui for i ≤ q − 1. We have that
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|Ui| ≤|I| + |V (Qi) ∪ S| ≤ (4k2 − 8k) + (2k · i + q)

≤(4k2 − 8k) + (2k · (q − 1) + q) = (4k2 − 8k) + q · (2k + 1)

≤(4k2 − 8k) + k2 · (2k + 1) = 2k3 + 5k2 − 8k

<2k3 + 2k3 − 8k = 4k3 − 8k.

Then we can apply Lemma 10, since δ(G) > 4k5 > |Ui| + (k − 1) and diam(G − Ui) > 2k. Thus
there is a k-preserving path P ′ of length at most 4k − 2 + |Ui| in G. Recall that a path P ′ in G
is k-preserving if any vertex v not on P ′ has at least νk (v) non-neighbors on P ′ (Definition 5).
Observe that the number of vertices in P ′ is at most

4k − 2 + |Ui| + 1 ≤ 4k − 1 + 4k3 − 8k < 4k3 − 4k <
diam(T )

2
,

and hence by Lemma 9, G contains T .
Therefore, in the rest of the proof we can assume that the (s1, sq)-path Qq−1 is constructed

successfully and that its length is at most

(2k + 1) · (q − 1) <(2k + 1) · ((k − 1)2 + 1) = (2k + 1) · (k2 − 2k + 2)

=(2k3 − 4k2 + 4k) + (k2 − 2k + 2)

=2k3 − (3k2 − 2k − 2) < 2k3 − (3k2 − 3k) < 2k3.

Recall that at least 2k3 edges were contracted to obtain the path P from the respective maximal
trivial path, thus the bound above shows that enough “space” was left during the contraction for
the extended isomorphism.

We now transform the isomorphism σ′ using the obtained path Qq−1. First, we transform T ′
W

into a new tree T ′′
W by replacing uv ∈ E(T ′

W ) with a path isomorphic to Qq−1. This corresponds
to reversing some contractions made to obtain T ′

W from TW ; that is, T ′′
W still remains a minor of

TW . To transform the isomorphism σ′ into the corresponding isomorphism σ′′ from T ′′
W , we simply

extend σ′ with the mapping of the inserted uv-path of T ′′
W into the σ′(u)σ′(v)-path Qq−1 in G. At

this point, by the choice of the path Qq−1, the obtained isomorphism σ′′ would satisfy the condition
of Lemma 5. However, T ′′

W is a minor of T , while we need a subgraph of T in order to apply the
lemma.

We further extend the isomorphism σ′′ into the isomorphism σ from TW into G. To achieve
that, we reverse all edge contractions that transform TW into T ′′

W while simultaneously extending
trivial paths in the image of the isomorphism. The only procedure for extension we use here is an
insertion of a single vertex in G between two adjacent vertices in the image of the tree.

Formally, we proceed as follows. Put T0 = T ′′
W and σ0 = σ′′. Then, for each i between 0 and

t− 1, where t = |V (TW )| − |V (T ′′
W )| is the number of vertex insertions we need to make, obtain a

larger tree Ti+1 together with an isomorphism σi+1 from Ti+1 to G by extending the tree Ti and
the isomorphism σi. We always have that |V (Ti)| = |V (T ′′

W )| + i, and Ti is a minor of TW .
In order to construct Ti+1 from Ti, note that since i < t, Ti has at least one maximal trivial path

that is shorter than its original counterpart in TW . Denote this maximal trivial path by Pi. We
want to find a vertex in G− Imσi that has two consecutive neighbors on the path σi(Pi). If such a
vertex exists in G, denote it by vi and “insert” vi between its consecutive neighbors in σi(Pi), with
its preimage in Ti being a new vertex inserted in the corresponding place in Pi. In formal terms,
let Ti+1 be obtained from Ti by inserting a new vertex x between σ−1

i (u) and σ−1
i (w), where u

and w are the consecutive neighbors of vi on σi(Pi), and let σi+1 be obtained by extending σi with
mapping the new vertex x to vi.
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Assume now that on every iteration i ∈ [0, t − 1] the suitable vertex vi exists, therefore we
obtain the tree Tt and the isomorphism σt from Tt to G. Clearly, Tt = TW as Tt is a minor of TW ,
and |V (Tt)| = |V (TW )|; denote σ = σt. We apply Lemma 5 to the tree TW with the isomorphism
σ; by construction, TW contains the set of the leaf neighbors W , and sufficiently many of their
non-neighbors are in Imσ. Thus by Lemma 5, there is also an isomorphism from T to G.

It is left to consider the case where no suitable vertex exists on the step i ∈ [0, t − 1]. Then
V (G) \ Imσi has no vertices with two consecutive neighbors on the path σi(Pi). The length of Pi

is at least 2k by the construction of T ′
W . We take any subpath of σi(Pi) consisting of exactly 2k

vertices and denote it by R. Each vertex in V (G) \ Imσi has at least k − 1 non-neighbors on R.
Hence, R is a k-preserving path for the graph G− (Imσi \ V (R)).

We have
δ(G− (Imσi \ V (R))) >δ(G) − |V (TW )| = δ(G) − |E(TW )| + 1

>δ(G) − diam(TW ) · |W | + 1

≥2k · diam(T ) − diam(TW ) · |W | + 1

>2|W | · diam(TW ) − diam(TW ) · |W | + 1

= diam(TW ) · |W | + 1 ≥ |V (TW )|.
We then argue that TW admits an isomorphism into a subgraph of G−(Imσi\V (R)). Consider any
trivial path D of TW on at least 2k vertices that does not intersect W , which exists, e.g., inside the
long trivial path given by Claim 8. Clearly, there exists an isomorphism from D into R. We extend
this isomorphism to an isomorphism σ from TW into a subgraph of G − (Imσi \ V (R)) greedily
by Proposition 1; this is possible since by the inequality above, δ(G− (Imσi \ V (R))) > |V (TW )|.
Since every vertex in V (G) \ Imσi has at least k − 1 non-neighbors on R, so do the images of W
in G under the newly constructed isomorphism. Therefore by Lemma 5 applied to TW and σ, G
contains T as a subgraph. This completes the proof of the lemma.

8.2 Escaping neighborhoods and separating G

The second tool we use for preserving neighbors is the notion of an escape vertex in G. In the
following lemma, we require T to have a vertex of a large enough degree. We will map this vertex of
T to an escape vertex in G and then use it for embedding non-neighbors into partial isomorphism
in order to further pipeline with Lemma 5. Recall that a vertex u in a graph G is a q-escape vertex
if either degG(u) ≥ δ(G) + q, or the maximum matching size between N [u] and V (G) \N [u] is at
least q (Definition 3).

Lemma 16. Let G be a graph and T be a tree on δ(G)+k vertices for k ≥ 2. Let q = 2k2 ·diam(T ).
If δ(G) ≥ q, ∆(T ) ≥ k2, ld(T ) < k, and G has a q-escape vertex, then G contains T as a subgraph.

Proof. Let u be a q-escape vertex in G and let t be a maximum-degree vertex in T . To prove the
lemma, we take W , the set of neighbors of arbitrary k − 1 leaves of T , and construct a partial
isomorphism of T that fits into Lemma 5 with W .

We start with T ′, the minimal subtree of T containing all vertices of W ∪ {t} in T . Thus
|V (T ′)| ≤ diam(T ) · (|W |+1) ≤ diam(T ) ·k < δ(G). We initialize σ to be an arbitrary isomorphism
from T ′ into a subgraph of G that maps t to u, the q-escape vertex. That is, σ(t) = u; such an
isomorphism can be found greedily by Proposition 1.

Now we expand σ (and T ′ correspondingly) so it occupies at least νk (σ(w)) non-neighbors of
σ(w) for each w ∈ W . We expand T ′ and σ iteratively using the following two claims.

Claim 9. If |V (T ′)| ≤ q
2 − k and νk (σ(w)) > 0, then there is a vertex v ∈ V (G) such that

v /∈ NG(σ(w)) ∪ Imσ and the distance between u and v in G− (Imσ \ {u}) is at most 2.
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Proof of Claim 9. If there is v ∈ NG(u) \ (NG(σ(w))∪ Imσ), then we are done. Clearly this is the
case if degG(u) ≥ δ(G) + q, as |NG(σ(w)) ∪ Imσ| ≤ δ(G) + k − 1 + q

2 − k < δ(G) + q.
Thus we may assume NG(u) ⊆ NG(σ(w)) ∪ Imσ, and there is a matching M of size q between

NG[u] and its complement in G by the definition of a q-escape vertex. Since |NG(u)| ≥ δ(G) and
|NG(σ(w))| < δ(G) + k, we have that u and σ(w) should have at least

δ(G) − | Imσ| ≥ δ(G) −
(q

2
− k
)
> degG(σ(w)) − q

2

common neighbors. Hence, at most q
2 − 1 neighbors of σ(w) lie outside of NG(u).

Now, at least q − | Imσ| = q − |V (T ′)| > q
2 of the edges of M do not have endpoints in Imσ.

At least one of these edges has its endpoint outside of NG(σ(w)), since at most q
2 − 1 neighbors of

σ(w) lie outside of NG(u), and every edge in M has one endpoint outside of NG(u). The distance
between this endpoint and u is two, completing the proof of the claim. ⌟

Initially, T ′ has at most k leaves, and each expansion will add one leaf to T ′. The following
claim provides a vertex in T to expand T ′ with.

Claim 10. If T ′ has at most k2 − k leaves, then there is a non-leaf neighbor x ∈ NT (t) of t such
that x /∈ V (T ′).

Proof of Claim 10. Since ld(T ) < k, the vertex t has more than degT (t) − k ≥ k2 − k non-leaf
neighbors in T . Also degT ′(t) ≤ k2 − k, since T ′ has at most k2 − k leaves. Then at least one
non-leaf neighbor of t in T is not in V (T ′). ⌟

As we noted above each expansion of T ′ adds exactly one leaf to it, and at most
∑

w ∈ W νk (σ(w)) ≤
(k− 1)2 expansions are made in total. Hence, T ′ has less than (k− 1)2 +k = k2−k+ 1 leaves until
the last possible expansion. It follows that |V (T ′)| ≤ (k2 − k) · diam(T ) ≤ q

2 − k. We get that two
claims above can be applied to T ′ at each iteration of the expansion.

y (ii)
t

x (i)

x

Figure 4: The expansion of T ′: the original vertices and edges of T ′ are shown in black and the
added vertices and edges are red.

One iteration of the expansion process is as following (see also Figure 4). Until σ and T ′ satisfy
the conditions of Lemma 5, take a vertex w ∈ W such that σ(w) has less than νk (σ(w)) non-
neighbors in Imσ. By Claim 9, there is a vertex v /∈ NG(σ(w)) ∪ Imσ within distance at most 2
from u, and the shortest path to this vertex does not go through Imσ. Take x given by Claim 10,
and take its neighbor y ∈ NT (x) such that t ̸= y; it exists since x is not a leaf in T . If v is a
neighbor of u, expand T ′ with x, making it adjacent with t, and put σ(x) := v (see case (i) in
Figure 4). Otherwise, expand T ′ with the path t− x− y and map it to the shortest (u, v)-path in
G− Imσ (see case (ii) in Figure 4).

Since expansion is always possible, we reach the situation when Lemma 5 can be applied to T ′

and σ. The proof of the lemma is thus complete.
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We also have to deal with trees without vertices of large degree. The basic idea of the following
lemma is quite similar to the last one, but the mechanism of mapping extension is different. Some-
times the extension is not possible; in this case, we obtain a small vertex separator of G. By small
we mean that its size is significantly smaller than δ(G).

Lemma 17. Let G be a graph and T be a tree on δ(G) + k vertices for k ≥ 2. If ld(T ) < k,
∆(T ) < k2, and δ(G) ≥ k5 · diam(T ), then either

• G contains T as a subgraph, or

• there is a vertex separator of G of size at most 2k · (k − 1) · (diam(T ) + 2).

Proof. The first part and general idea of the proof is similar to the previous lemma: we pick a
set W of neighbors of some k − 1 leaves, a spanning tree T ′ of W and a subgraph isomorphism
σ : V (T ′) → V (G). Then we try to expand σ and T ′ to satisfy the non-neighbor condition on each
w ∈ W .

However, the statement of the current lemma does not guarantee us a vertex of a large enough
degree in T . Therefore, instead of starting from a mapping of one single high-degree vertex and
then extending this mapping to T ′, we use a different strategy. We select distinct vertices for each
single extension iteration. We call this set U , and we require its size to be (k− 1)2 ≥

∑
νk (w). We

first claim that the choice of sets U and W consisting of distinct vertices always exists.
To simplify further arguments, we consider T a rooted tree. We pick as its root an arbitrary

vertex r ∈ V (T ). For each v ∈ V (T ), by Tv we denote the subtree of T rooted in v.

Claim 11. There is a set U ⊂ V (T ) of size (k − 1)2 and a set W ⊂ V (T ) of size k − 1 such that

• U ∩W = ∅;

• For each s ∈ U , the depth of tree Ts is two;

• For each w ∈ W , the depth of tree Tw is one;

• Rooted subtrees of T corresponding to vertices in U ∪W are pairwise disjoint.

Proof of Claim 11. In this proof, by a subtree we mean a rooted subtree Tx for some x ∈ V (T ).
Note that the depth of T is at least 2, since |V (T )| > δ(G) > ∆(T ) + 1.

Assume first that T has at least k2 − k subtrees of depth exactly 2. All these trees are pairwise
disjoint; we pick U as the roots of any (k−1)2 of these subtrees. There are k2−k− (k−1)2 = k−1
depth-2 subtrees left, pick an arbitrary depth-1 subtree from each one of them. The roots of these
depth-1 trees form the set W , and, up to our assumption, the claim follows.

It is left to show that T cannot have less than k2 − k subtrees of depth exactly 2. Targeting a
contradiction, we suppose that T has less than k2 − k such subtrees.

There are three types of vertices in T : (a) roots of subtrees of depth two or greater; (b) roots
of subtrees of depth one; (c) leaves. Consider the subtree Ta of T where all vertices of types
(b) and (c) are removed. The tree Ta thus consists of all type (a) vertices of T , and it has less
than k2 − k leaves, since the leaves are exactly the roots of depth-2 subtrees. By Lemma 2, the
number of vertices in Ta, which is equal to the number of vertices of type (a) in T , is less than
(k2 − k) · diam(Ta) ≤ (k2 − k) · diam(T ).

For vertices of type (b) in T , note that each vertex of type (b) is a neighbor to some vertex
of type (a). So the number of these vertices is at most (k2 − k) · diam(T ) · ∆(T ). Each leaf in T
(vertex of type (c)) has a vertex of type (a) or type (b) as its only neighbor, and each vertex can
have at most ld(k) adjacent leaves.
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We obtain that

δ(G) + k = |V (T )| ≤ (k2− k) · diam(T ) · (1 + ∆(T )) · (1 + ld(k)) ≤ (k2− k) · k2 · k · diam(T ) < δ(G),

which is a contradiction. ⌟

r

Figure 5: The expansion of T ′; the vertices of U are shown is white and the added vertices and
edges are red.

Let U and W be the sets given by Claim 11. We start constructing the subgraph isomorphism
by mapping a minimal subtree T ′ of T containing U ∪ W . Since δ(G) > |V (T ′)|, by Lemma 1,
we can construct an isomorphism σ from T ′ into a subgraph of G. Similarly to the proof of
Lemma 16, we expand the embedding of T ′ in G as follows. Until T ′ and σ satisfy the statement
of Lemma 5, we consider an arbitrary w ∈ W that has not enough non-neighbors in Imσ. If there
is u ∈ U such that there is a vertex v /∈ NG(σ(w)) within a distance at most 2 from σ(u) in the
graph G − (Imσ \ {σ(u)}), then extend T ′ with either one or two vertices from Tu and map the
corresponding path into the (σ(u), v)-path in G (see Figure 5). After that, remove u from U . Note
that U is chosen in such a way that T ′ can always be extended with either one or two vertices.

However, there is a problem that could prevent a successful iteration. It could happen that
none of the u ∈ U is suitable for saving neighbors of any w ∈ W that requires more non-neighbors
in Imσ. To dive into the details, suppose that we arrive at such a situation. Let W ′ be the set of
w ∈ W that does not satisfy the condition of Lemma 5. The set U consists of vertices that were
not yet used in the extension. Since the extension is not possible, none of the neighbors of u ∈ U
suits any of w ∈ W ′. That is,

A :=

(⋃
u∈U

NG(σ(u)) \ Imσ

)
⊆ B :=

⋂
w∈W ′

NG(σ(w)).

Since the extension is not possible, the neighbors of A in G are also not suitable for any w ∈ W ′.
Thus

NG(A) \ Imσ ⊆ B

holds as well. Equivalently, vertex set S := Imσ ∪ (B \A) separates A from the rest of G. But we
know that |A| ≥ δ(G) − | Imσ| while |B| < δ(G) + k. Hence, the size of the vertex separator S is
less then 2| Imσ| + k.

To estimate | Imσ| = |V (T ′)|, note that we start T ′ from a spanning tree with k2 − k leaves,
and each iteration adds at most two vertices to T ′. So | Imσ| < (k2 − k) · diam(T ) + 1 + 2(k− 1)2.

39



Thus the size of the separator S is at most

2| Imσ| + k ≤2(k2 − k) · diam(T ) + 4(k − 1)2 + k

=2(k − 1) · (k · diam(T ) + 2(k − 1)) + k

≤2(k − 1) · (k · diam(T ) + 2(k − 1) + 1)

<2(k − 1) · k · (diam(T ) + 2),

which completes the proof of the lemma.

The last result of this subsection shows a way to employ a small vertex separator of G. Recall
that a tree T is q-separable if there exists an edge whose removal separates T into two subtrees
each of size at least q (Definition 4).

Lemma 18. Let G be a connected graph and let T be a tree on δ(G) + k vertices. Let also S be
a vertex separator of G such that δ(G) ≥ 3|S|. If δ(G) ≥ 15k, ld(T ) < k and T is size-(|S| + k)-
separable, then G contains T as a subgraph.

Proof. Without loss of generality, we assume that S is an inclusion-wise minimal separator of G.
The graph G−S consists of at least two connected components. Let A be the vertex set of one

of them and let B := V (G− S) \A be the vertex set of all other connected components in G− S.
Take arbitrary s ∈ S. Since S is minimal, both G[A ∪ {s}] and G[B ∪ {s}] are connected. In

total, s has at least δ(G) − |S| neighbors in A and B. Without loss of generality, s has at least
1
2(δ(G) − |S|) neighbors in A.

Now consider the edge of T that separates it into two connected parts of size at least |S| + k.
Denote the endpoints of this edge by x and y. Denote the two parts of T by Tx and Ty, such that
they contain x or y respectively. Without loss of generality, we assume that degT (x) ≤ degT (y).

Claim 12. degT (x) ≤ δ(G)
3 .

Proof of Claim 12. The proof is by contradiction. If degT (x) > δ(G)
3 , then degT (y) > δ(G)

3 as well.
Since ld(T ) < k, both x and y have more than δ(G)/3 − k neighbors (other than x and y) in T
that are not leaves.

Hence, in T −{x, y} there at least 2δ(G)/3−2k connected components of size at least two. But
then |V (T )| − 2 ≥ 4δ(G)/3 − 4k ≥ δ(G) + k, which is a contradiction. ⌟

Now we have that both V (Tx) and V (Ty) are of size at most

|V (T )| − (|S| + k) = (δ(G) + k) − (|S| + k) = δ(G) − |S|.

Since δ(G[B]) ≥ δ(G) − |S|, there is a subgraph isomorphism from Ty into G[B]. Construct an
arbitrary such isomorphism using Proposition 1 that maps y to a neighbor of s in G[B].

Now we show how to map Tx into G[A ∪ {s}]. While the minimum degree of G[A ∪ {s}] is
not guaranteed to be at least δ(G) − |S|, s is the only vertex that could break this condition. We
ensured that

degG[A∪{s}](s) ≥
δ(G) − |S|

2
≥ δ(G)

3
≥ degT (x),

so it is possible to map x and its neighbors in Tx into s and its neighbors in G[A∪{s}]. Since each
vertex in G[A] is of degree at least δ(G) − |S|, this partial mapping extends into full isomorphism
of Tx into G[A ∪ {s}] by Proposition 1.

To conclude, we constructed an isomorphism from Tx to G[A∪{s}] and from Ty to G[B]. Since
x is mapped into s and y is mapped into a neighbor of s, the union of these mappings is the required
isomorphism from T to G.
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8.3 Proof of Theorem 7

We combine the results of this section into the proof of its main result.

Proof of Theorem 7. The proof consists of considering several cases.

T has large diameter. Suppose that diam(T ) ≥ 2k11. Since δ(G) ≥ 317 > 216, δ(G) > (log δ(G))4.
Then, as diam(T ) ≤ 8k6 · log δ(G),

δ(G) >(log δ(G))4 >
diam(T )4

84 · k24
> diam(T ) · diam(T )3

38 · k24

≥diam(T ) · 8k33

k32
≥ diam(T ) · 8k > 2k · diam(T ).

Then, by Lemma 15, G contains T . For the remaining part of the proof, we assume that diam(T ) <
2k11.

T is of small max-degree. Suppose now that ∆(T ) < k2 and apply Lemma 17 to G and T . If G
contains T , then we are done. Otherwise, there is a vertex separator S of G of size at most

(diam(T ) + 2) · 2k(k − 1) < (2k11 + 2) · 2k2 < 6k13 ≤ 2k14.

Note that δ(G) ≥ 3|S|.
We now argue that there is an edge in T separating it into sufficiently large parts.

Claim 13. In a tree T with |V (T )| ≥ 2 there exists an edge separating it into two parts of size at

least |V (T )|−1
∆(T ) .

Proof. If ∆(T ) = 1 the statement is trivial since then |V (T )| = 2, hence we assume ∆(T ) ≥ 2.
There exists a vertex v ∈ V (T ) such that each connected component of T − v is of size at most
|V (T )|−1

2 . Consider the largest component, its size is also at least |V (T )|−1
∆(T ) since there are at most

∆(T ) components. The edge from the largest component to v is the desired edge, since the size of

the remaining part is at least |V (T )|+1
2 ≥ |V (T )|−1

∆(T ) , as ∆(T ) ≥ 2.

Note that
|V (T )| − 1

∆(T )
>

δ(G)

k2
≥ k15 > |S| + k.

That is, by Claim 13 T is size-(|S| + k)-separable. Therefore G contains T by Lemma 18. In what
follows we assume that ∆(T ) ≥ k2.

G has an escape vertex. If G has a 4k13-escape vertex, then Lemma 16 can be applied to G and
T , since 4k13 > 2k2 · diam(T ). Then G contains T . We further assume that G has no 4k13-escape
vertices.

T is size-2k14-separable. It is left to consider the case when T is size-2k14-separable. Since G has
no 4k13-escape vertices and n ≥ δ(G) + 2k14 ≥ δ(G) + 6k13 > (δ(G) + k) + 4k13, then G has
vertex separator S of size at most 4k13. Indeed, consider a minimum-degree vertex v ∈ V (G),
degG(v) = δ(G). Since v is not a 4k13-escape vertex, the maximum size of a matching between
NG[v] and V (G) \ NG[v] is less than 4k13. This means that the corresponding bipartite graph
has a vertex cover S of size less than 4k13. Clearly S is a separator since both NG[v] \ S and
V (G) \NG[v] \ S are non-empty: the former since we may assume v /∈ S (v is not adjacent to any
vertex in V (G) \NG[v]), and the latter by n > δ(G) + k + 4k13.

As 2k14 ≥ 6k13 > 4k13 + k, apply Lemma 18 to G,T and S and obtain that G contains T . The
proof is now complete.

41



9 Final proof: Putting it all together

This section finalizes the proof of our main result by combining the previous sections’ main
theorems. We restate the theorem here.

Theorem 1. For any n-vertex graph G, integer k, and a tree T on at most δ(G) + k vertices,
there is a randomized algorithm deciding with probability at least 1

2 whether G contains a subgraph

isomorphic to T in time 2k
O(1) · nO(1). The algorithm is with one-sided error and reports no false-

positives.

Proof. Let G be a non-empty graph and T be a tree on exactly δ(G) + k vertices. We assume that
k ≥ 2 (if k ≤ 1, by Chvátal’s Lemma, T is a subgraph of G). We also assume that |V (G)| ≥ |V (T )|,
otherwise, trivially, G does not contain T .

If G and T satisfy the conditions of Theorem 4 with p := 15, then by Theorem 4, we can identify
in time 2k

O(1) · nO(1) whether T is a subgraph of T . In the rest of the proof, we go through all the
cases when G and T do not satisfy the conditions of Theorem 4.

Case 1: δ(G) < k3p+1. In this case, we use the color coding of Alon et al., see Proposition 3, to
decide whether G contains T . The algorithm works in time 2O(|V (T )|) · nO(1) = 2O(δ(G)+k) · nO(1) =
2k

O(p) · nO(1).

Case 2: k < 3. Since T consists of at least two vertices, its leaf-degree is at least one. Hence, the
case k < 3 is equivalent to ld(T ) ≥ k − 1, which we consider in the next case.

Case 3: ld(T ) ≥ k − 1. In this case, we apply Theorem 3 to decide whether G contains T . The
running time of this algorithm is 2O(k2) · nO(1).

Case 4: |V (G)| ≤ (1 + 1
4k ) · δ(G). We also assume that previous cases are not applicable. Because

δ(G) ≥ k46 > 2k12 and ld(T ) < k, by Theorem 6, G contains T .

Case 5: diam(T ) ≥ 8k6 · log δ(G). As before, we assume that the previous cases are not applicable.
Then k ≥ 3, δ(G) > k16, and |V (G)|/δ(G) ≥ 1 + 1

4k = 1 + 4
16k > 1 + 4

k4
. Then by Theorem 5, G

contains T .

Case 6: There is a kp-escape vertex in G. We want to apply Theorem 7. We assume that the
conditions of the prior cases do not apply. Then |V (G)| > (1+ 1

4k )·δ(G) ≥ δ(G)+ k46

4k > δ(G)+2k14.
As kp = k15 > 4k13, we know that G has a 4k13-escape vertex. Conditions diam(T ) ≤ 8k6 · log δ(G),
ld(T ) < k and δ(G) ≥ k17 also hold because the previous cases are not applicable. Then by
Theorem 7, in this case, G contains T as a subgraph.

Case 7: T is size-kp-separable. In this case, we again use Theorem 7 but with the different condition.
Since kp = k15 > 2k14, we have that T is size-2k14-separable. Then by Theorem 7, G contains T .

We have shown that if G and T do not meet the conditions of Theorem 4, then we either able
to resolve the subtree isomorphism in time FPT in k or use the established combinatorial theorems
to prove that G should contain T . This completes the proof.

10 Why the guarantee cannot be improved

In this section, we prove Theorem 2. The theorem shows that parameterization of Tree
Containment above (1 + ε)δ(G) for any ε > 0 makes the problem

the problem
For any ε > 0, Tree Containment is NP-complete when restricted to instances (G,T ) with

|V (T )| ≤ (1 + ε)δ(G). We restate it here.
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Theorem 2. For any ε > 0, Tree Containment is NP-complete when restricted to instances
(G,T ) with |V (T )| ≤ (1 + ε)δ(G).

Proof. We reduce from the 3-Partition problem. In this problem, we are given a set A of size
m = 3n, a “size” function s : A → Z≥0, and an integer B > 0 such that 1

4B < s(a) < 1
2B for

every a ∈ A and
∑

a∈A s(a) = nB, and the task is to decide whether there is a partition of A
into n disjoint sets S1, . . . , Sn such that for every i ∈ [n],

∑
a∈Si

s(a) = B. This problem is well-
known to be NP-complete in the strong sense [GJ79]. We remind that because of the constraint
1
4B < s(a) < 1

2B, each set Si should contain three elements of A whenever a partition of A with
the required property exists.

b)

r

v1 vm

u1 u∆−m

R1 Rm

x

z1 z∆−m

y
(1)
1 y

(3)
1 y

(1)
n y

(3)
n

w

Ww,1 Ww,δ−B−2

Z
(1)
1

L1 Ln

a)

Figure 6: Construction of T (a) and G (b). In (b), the edges between the vertices y
(h)
i for i ∈ [n]

and h ∈ [3] are not shown. Similarly, the edges between z1, . . . , z∆−m are not shown. Also, we do

not show the edges between y
(h)
i and zj for i ∈ [n], h ∈ [3], and j ∈ [∆ − m], except the edges

incident to y
(1)
1 .

Consider an instance of 3-Partition with A = {a1, . . . , am} and set ℓ =
∑m

i=1 s(ai). We define
δ = max{⌈ ℓ+3

ε ⌉, ℓ + 4n− 2} and ∆ = δ + 2. We construct the following tree T (see Figure 6 (a)).

• For each i ∈ [m], construct a vertex vi, a set Ri of s(ai) vertices, and make vi adjacent to
every vertex of Ri.

• Construct a vertex r and make it adjacent to the vertices v1, . . . , vm.

• Construct ∆ −m vertices u1, . . . , u∆−m and make them adjacent to r.

Next, we construct the graph G as follows (see Figure 6 (b)).

• For every i ∈ [n], construct a set Li of B + 3 vertices and make it a clique, and then select

three vertices y
(1)
i , y

(2)
i , y

(3)
i ∈ Li.

• Construct ℓ(δ − B − 2) copies Ww,i of the complete graph Kδ+1 for all w ∈
⋃n

i=1(Li \
{y(1)i , y

(2)
i , y

(3)
i }) and i ∈ [δ −B − 2].

• For each w ∈
⋃n

i=1(Li \ {y(1)i , y
(2)
i , y

(3)
i }) and i ∈ [δ − B − 2], make w adjacent to one vertex

of Ww,i.

• For all i, j ∈ [n] such that i < j, make y
(h)
i adjacent to y

(1)
j , y

(2)
j , y

(3)
j for each h ∈ [3].
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• Construct a vertex x and make it adjacent to y
(1)
i , y

(2)
i , y

(3)
i for all i ∈ [n].

• Construct ∆ −m vertices z1, . . . , z∆−m, make them pairwise adjacent and adjacent to x.

• Find m pairwise disjoint sets of vertices Z
(h)
i ⊆ {z1, . . . , z∆−m} of size B+1 for i ∈ [n] and h ∈

[3]. For every i ∈ [n] and h ∈ [3], make y
(h)
i adjacent to the vertices of {z1, . . . , z∆−m} \Z(h)

i .

Notice that because ∆−m ≥ ℓ+ n = (B + 1)n, disjoint sets Z
(h)
i ⊆ {z1, . . . , z∆−m} exist. Observe

that for every w ∈
⋃n

i=1(Li \ {y(1)i , y
(2)
i , y

(3)
i }), degG(w) = δ, for every vertex v of each Ww,i,

δ ≤ degG(v) ≤ δ + 1, for each y
(h)
i , degG(y

(h)
i ) = B + ∆ − (B + 1) = ∆ − 1 = δ + 1, for each

zi, ∆ − 1 ≤ degG(zi) ≤ ∆, and degG(x) = ∆. In particular, δ(G) = δ and the maximum degree
∆(G) = ∆.

We show that G contains T as a subgraph if and only if there is a partition of A into n disjoint
sets S1, . . . , Sn such that for every i ∈ [n],

∑
a∈Si

s(a) = B.
Assume that there is a partition of A into n disjoint sets S1, . . . , Sn such that for every i ∈ [n],∑

a∈Si
s(a) = B. We construct the isomorphism σ mapping T into a subgraph of G as follows.

• Set σ(r) = x.

• Set σ(ui) = zi for all i ∈ [∆ −m].

Now we consider each h ∈ [n]. Assume that Sh = {ai, aj , ak}.

• We set σ(vi) = y
(1)
h , σ(vj) = y

(2)
h , and σ(vk) = y

(3)
h .

• Finally, we map the vertices of Ri∪Rj ∪Rk into distinct vertices of Li \{y(1)i , y
(2)
i , y

(3)
i } using

the fact that |Ri| + |Rj | + |Rk| =
∑

a∈Sh
s(a) = B = |Li \ {y(1)i , y

(2)
i , y

(3)
i }|.

The construction of T and G implies that σ is a subgraph isomorphism of T to G.
For the opposite direction, assume T is a subgraph of G, that is, there is a subgraph isomorphism

σ mapping T into a subgraph of G. We have that degT (r) = ∆. From the other side, degG(x) = ∆

and only other vertices of degree ∆ are the vertices of {z1, . . . , z∆−m}\
⋃n

i=1

⋃3
h=1 Z

(h)
i . However, the

latter vertices are true twins with x. Therefore, we can assume without loss of generality that σ(r) =
x. Because degT (r) = degG(x) = ∆, σ bijectively maps NT (r) to NG(x). If the vertex vi for some
i ∈ [m] is mapped to some zj for j ∈ [∆−m], then the vertices of Ri should be mapped to vertices
of NG(x) because NG(zj) ⊆ NG[x]. However, this is impossible because σ−1(NG(x)) = NT (r). This

implies that σ({u1, . . . , u∆−m}) = {z1, . . . , z∆−m}. Thus, σ({v1, . . . , vm}) =
⋃n

h=1{y
(1)
h , y

(2)
h , y

(3)
h }

and the sets S′
h = σ−1({y(1)h , y

(2)
h , y

(3)
h }) for h ∈ [n] form a partition of {v1, . . . , vm}. For each

h ∈ [n], we define Sh = {ai ∈ A | vi ∈ S′
h}. The sets S1, . . . , Sn form a partition of A. We

claim that
∑

a∈Sh
s(a) ≤ B for each h ∈ [n]. To see this, consider some Sh and assume that

σ−1({y(1)h , y
(2)
h , y

(3)
h }) = {vi, vj , vk} for distinct i, j, k ∈ [m]. We have that the vertices of Ri, Rj , and

Rk are mapped by σ to distinct ertices of Lh \ {y
(1)
h , y

(2)
h , y

(3)
h }. Because |Lh \ {y

(1)
h , y

(2)
h , y

(3)
h }| = B,

we have that s(ai) + s(aj) + s(ak) = |Ri| + |Rj | + |Rk| ≤ B. This implies that
∑

a∈Sh
s(a) ≤ B.

Since the inequality holds for every h ∈ [n] and nB =
∑

a∈A s(a), we obtain that
∑

a∈Sh
s(a) = B

for every h ∈ [n].
To complete the proof, notice that |V (T )| = 1+m+

∑m
i=1 s(ai)+∆−m = δ+3+

∑m
i=1 s(ai) =

δ + (3 + ℓ). Because δ ≥ ℓ+3
ε , we have that |V (T )| ≤ (1 + ε)δ(G).

We remark that Theorem 2 is proved for constant ε but the proof works even if ε = 1
nc for any

c > 0 where n is the number of vertices of the input graph.
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11 Conclusion

In our exploration of algorithmic extensions of classical combinatorial theorems, we have demon-
strated that it is possible to determine, in time 2k

O(1) · nO(1), whether a graph G contains a tree
T with at most δ(G) + k vertices as a subgraph. Our algorithm is a one-sided error Monte Carlo
algorithm. This naturally raises two questions. First, can we develop a deterministic algorithm for
this problem? Second, is there room for improvement in the running time? Can the problem be
solved in time 2O(k log k) · nO(1) or even in time 2O(k) · nO(1)?

Another question related to our work. Brandt, in his work [Bra94], extended Chvátal’s Lemma
for forests.

Proposition 4 ([Bra94]). Let G be a graph, and F be a forest such that |V (F )| ≤ |V (G)| and
|E(F )| ≤ δ(G). Then, G contains F as a subgraph.

Is the Forest Containment problem (for a given graph G and forest F , to decide whether
G contains F ) FPT when parameterized by k = |E(F )| − δ(G)?
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