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Abstract

We give an algorithm for testing uniformity of distributions supported on hypergrids [m1]×· · ·×
[mn], which makes Õ(poly(m)

√
n/ϵ2) many queries to a subcube conditional sampling oracle with

m = maxi mi. When m is a constant, our algorithm is nearly optimal and strengthens the algorithm
of [CCK+21] which has the same query complexity but works for hypercubes {±1}n only.

A key technical contribution behind the analysis of our algorithm is a proof of a robust version
of Pisier’s inequality for functions over hypergrids using Fourier analysis.
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1 Introduction

Much of today’s data can be thought of as samples from an unknown probability distribution over a large
and high-dimensional sample space. Testing global properties of a distribution [CDVV14, VV14, Pan08,
DK16, DKN14] on such a space, however, is known to be intractable under the classical statistical
model where an algorithm can only draw independent samples from the unknown distribution. This
holds even for testing the property of uniformity1, for which we know that Θ(

√
|Σ|/ϵ2) samples are

both sufficient and necessary [Pan08, VV14]. So for high-dimensional sample spaces such as {±1}n or
[m1]×· · ·× [mn], the number of samples needed under the classical statistical model scales exponentially
in n. To circumvent the intractability, recent work has proceeded by either restricting the class of input
distributions (e.g., restricting p to be a product distribution [CDKS16]), or by allowing stronger oracle
access to p. The goal of both approaches is to develop algorithms that scale polynomially or even
sublinearly in the dimension n under certain well-motivated assumptions.

One of the most natural models in the latter direction is the subcube conditioning model, which is
particularly suitable for high-dimensional distributions [CRS12, BC17, CCK+21, CJLW20]. The model
was suggested in [CRS12] and first studied in [BC17] (more discussion on the model and related work
can be found in Section 1.3). For the general space of [m1]×· · ·× [mn], subcube conditional query access
allows algorithms to specify a subgrid of [m1]× · · · × [mn] by giving a restriction ρ with ρi ∈ [mi] ∪ {∗}
for each i ∈ [n] and requesting a sample from the distribution conditioned2 on the sample lying in the
subgrid specified by ρ (i.e., the set of x ∈ [m1]× · · · × [mn] with xi = ρi for all i ∈ [n] such that ρi ̸= ∗).

Recently, [CCK+21] gave an algorithm for testing uniformity over hypercubes {±1}n, which makes
Õ(

√
n/ϵ2) queries to a subcube conditional sampling oracle. The algorithm is nearly optimal (given the

Ω(
√
n/ϵ2) lower bound of [CDKS16, DDK16] for testing uniformity of product distributions under the

classical statistical model, which was observed in [BC17] to carry over to subcube conditional sampling).
A drawback of their algorithm, however, is that it only works for hypercubes {±1}n.

In this paper, we study the problem of testing uniformity of distributions over the general hypergrid
domain [m1] × · · · × [mn] under the subcube conditioning model. There are a number of compelling
reasons to study this problem. From a practical perspective, testing algorithms for hypercubes are not
applicable in scenarios when the variables / features are not Boolean. And natural attempts to reduce
the problem over [m1]× · · · × [mn] directly to that over hypercubes do not seem to work either because
the total variation distance is not preserved or the subcube conditional oracle does not cope with the
reduction. (For the latter consider the reduction from [4]n to {±1}2n by encoding each entry of [4] using
two bits. While the total variation distance is preserved, subcube conditional oracles for distributions
over {±1}2n cannot be simulated using those for [4]n. The former corresponds to a more powerful oracle
where an algorithm can, e.g., fix a coordinate to be in {1, 3}.)

From a theoretical perspective, the problem is well-motivated due to a number of obstacles that one
needs to be overcome to generalize the prior work of [CCK+21] from hypercubes to hypergrids. (More
discussion and a comparison of our work with that of [CCK+21] can be found in Section 1.2.) One of
the primary challenges is that their analysis of correctness crucially relies on a robust version of Pisier’s
inequality. The latter is an inequality from convex analysis that relates the ℓs-norm of a function f over
{±1}n to its ith coordinate Laplacian operator Lif (see definition below), and it was not known whether
a similar inequality holds for functions over hypergrids [m1]× · · · × [mn].

1.1 Our Contributions

We study uniformity testing over hypergrids [m1]×· · ·× [mn] with mi ≥ 2 for all i. Let m = maxi∈[n] mi.
Our main result is an algorithm that makes Õ(poly(m)

√
n/ϵ2) many subcube conditional queries:

Theorem 1 (Uniformity Testing). There is an algorithm which, given n,m1, . . . ,mn and subcube condi-
tional query access to a distribution p supported on [m1]×· · ·× [mn] and a distance parameter ϵ ∈ (0, 1),
makes Õ(m21

√
n/ϵ2) queries and can distinguish with probability at least 2/3 between the case when p is

uniform, and when p is ϵ-far from uniform in total variation distance.

Our algorithm improves the algorithm of [CCK+21] which only works for hypercubes, and is nearly
optimal when m is a constant. For general m, the best-known lower bound for the problem is Ω(

√
nm/ϵ2)

1Given an unknown distribution p over a sample space Σ, accept with probability at least 2/3 when p is uniform over
Σ and reject with probability at least 2/3 when p is ϵ-far from the uniform distribution in total variation distance.

2When conditioned on a subcube with zero support, one may consider models where the oracle returns either a uniform
sample or outputs “error.” We note that our algorithm will never run into this scenario.
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[BGKV21] (again, via the connection to uniformity testing of product distributions under the statistical
model). While we believe that the polynomial m21 in Theorem 1 can be improved by tightening up our
analysis, it remains an important open question to pin down the complexity as a function of n,m and ϵ.

We sketch the proof of Theorem 1 in Section 1.2. One of the main contributions of our paper is the
proof of a robust version of Pisier’s inequality for functions over hypergrids, which plays a crucial role in
the analysis of the main algorithm and may be of independent interest. (We review and compare with
the original Pisier’s inequality [Pis06] in Section 1.2.1.) We need some notation to state the inequality.
Since Fourier analysis will be used heavily in the proof of the inequality, from now on we will always use

ZM := Zm1
× · · · × Zmn

,

where M = (m1, . . . ,mn), to denote the hypergrid. Given x ∈ ZM , i ∈ [n] and a ∈ Zmi
, let x(i)→a denote

the vector obtained from x by replacing xi with a. Given any function f : ZM → C, the ith coordinate
Laplacian operator is defined as

Lif(x) = f(x)− Ea∼Zmi

[
f(x(i)→a)

]
.

For each j ∈ [n], let Z∗
mj

= {1, . . . ,mj − 1}, and let ωj = e2πi/mj be the primitive mj-th root of unity.
We are ready to state the new Pisier’s inequality for hypergrids. The robust version is more involved;

we state and discuss it later in Section 1.2.1.

Theorem 2 (Pisier’s Inequality for Hypergrids). Let f : ZM → C be a function with Ex∼ZM
[f(x)] = 0.

Then, for any s ∈ [1,∞) we have

(
Ex∼ZM

[
|f(x)|s

])1/s
≤ O(log n) ·

Ex,y∼ZM

∣∣∣∣∣∣
∑
i∈[n]

Lif(x)
∑

a∈Z∗
mi

ω−ayi

i ωaxi
i

∣∣∣∣∣∣
s1/s

.

One should interpret Pisier’s inequality as providing a way of connecting the ℓs-norm of the function
f to its Laplacian operators. Within the context of how the inequality is used in this paper, Laplacian
operators capture the difference in the function value along edges of the hypergrid (that is, between x
and x(i)→a). The extension of Pisier’s inequality to hypergrids could have applications in other problems
where the ℓs-norm needs to be connected to edge-wise differences of a function defined over ZM .

1.2 Proof Overview and Comparison with Previous Work

First we recall the notion of restrictions and projections of a distribution. Given a restriction ρ with ρi
∈ Zmi

∪ {∗} for each i ∈ [n], we write stars(ρ) to denote the set of i ∈ [n] with ρi = ∗ and denote by p|ρ
the distribution of xstars(ρ) with x drawn from p conditioned on xi = ρi for every i /∈ stars(ρ). The other
operation on distributions is projections: Given S ⊆ [n], pS denotes the distribution of xS with x ∼ p.

Definition 3 (Random Restrictions). Given σ ∈ [0, 1], we let Sσ denote the distribution supported on
subsets of [n] where S ∼ Sσ includes each i ∈ [n] independently with probability σ. Given a distribution p
supported on ZM , we use Dσ(p) to denote the following distribution of restrictions: to draw a restriction
ρ ∼ Dσ(p), we first sample a set S ∼ Sσ and an x ∼ p; then, ρi for each i ∈ [n] is set to be

ρi =

{
∗ if i ∈ S

xi if i /∈ S
. (1)

Given a distribution p over ZM , we define the following bias vector that generalizes the mean vector
of a distribution over {−1, 1}n:

Definition 4 (Bias Vector). Let p be a distribution over ZM , i ∈ [n] and c, d ∈ Zmi
. We define

µc,d
i (p) =

Prx∼p[xi = c]− Prx∼p[xi = d]

Prx∼p[xi = c] + Prx∼p[xi = d]
.

When Prx∼p[xi = c] = Prx∼p[xi = d] = 0, the bias µc,d
i (p) is set to be 0 by default. We also allow c = d

for notational convenience, in which case µc,d
i (p) = 0 trivially.

Moreover, we write µ(p) to denote the bias vector of p: µ(p) has
∑

i∈[n] m
2
i entries µc,d

i (p) and thus,

∥∥µ(p)∥∥
2
=

√√√√∑
i∈[n]

∑
c,d∈Zmi

(
µc,d
i (p)

)2
.
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The intuition behind our uniformity testing algorithm is similar to the algorithm of [CCK+21], which
is inspired by Lemma 5 and Theorem 6 below:

Lemma 5. Let p be a distribution over ZM . Then for any σ ∈ [0, 1], we have3

dTV (p,U) ≤ ES∼Sσ

[
dTV (pS ,U)

]
+ Eρ∼Dσ(p)

[
dTV (p|ρ,U)

]
.

Theorem 6. Let p be a distribution over ZM . Then for any σ ∈ [0, 1], we have

Eρ∼Dσ(p)

[∥∥µ(p|ρ)∥∥2] ≥ σ

m7.5 · polylog(nm)
· Ω̃
(
ES∼Sσ

[
dTV (pS ,U)

]
− 2e−min(σ,1−σ)n/10

)
.

Lemma 5 extends a corresponding lemma from [CCK+21] for distributions supported on {−1, 1}n
to distributions supported on hypergrids. The proof can be found in Appendix A. Theorem 6, on the
other hand, is the main technical result of the paper, which we discuss in the rest of the subsection. But
before that, assuming Lemma 5 and Theorem 6, our main uniformity testing algorithm SubCondUni
proceeds as follows (see Section 2 for details): consider a distribution p over ZM with dTV (p,U) ≥ ϵ and
let σ be sufficiently small; it will be set to be 1/polylog(1/ϵ) in the proof. Then by Lemma 5, one of the
following two cases must hold:

1. Eρ∼Dσ(p)[dTV (p|ρ,U)] ≥ ϵ/2: In this case, a typical draw of ρ ∼ Dρ(p) satisfies the property that
dTV (p|ρ,U) remains large and the dimension |stars(ρ)| of p|ρ is much smaller than n (i.e., ≈ σn).
This case is handled using recursive calls to SubCondUni on p|ρ with ρ ∼ Dρ(p).

2. ES∼Sσ [dTV (pS ,U)] ≥ ϵ/2: Theorem 6 implies that a typical ρ ∼ Dρ(p) has a bias vector with a
large ℓ2-norm. This case is handled by ProjectedTestMean, a subroutine we give in Section 5
to decide whether a given distribution is uniform or has a bias vector with a large ℓ2-norm.

The performance guarantee of ProjectedTestMean is summarized in the following theorem:

Theorem 7. There is an algorithm ProjectedTestMean which, given n, M = (m1, . . . ,mn), ϵ > 0
and sample access to a probability distribution p over ZM , draws

O
(
m4 log(mn)

)
·max

{
1

ϵ2
√
n
,
1

ϵ

}
.

many samples x ∼ p and satisfies the following properties:

1. If p is the uniform distribution, the algorithm outputs accept with probability at least 2/3; and

2. If p satisfies ∥µ(p)∥2 ≥ ϵ
√
n, the algorithm outputs reject with probability at least 2/3.

ProjectedTestMean generalizes the MeanTester algorithm of [CCK+21] to work on distribu-
tions over hypergrids instead of just hypercubes. While it essentially reduces the task to the same task
over hypercubes and passes it down to MeanTester, a few new ingredients are needed for the reduction
to work. These include a preprocessing step (using a so-called CoarseTest) and a method to project
the input distribution over ZM to a small number of distributions over the hypercube, on which we run
MeanTester. We present ProjectedTestMean and its analysis in Section 5.

We discuss the proof of Theorem 6 in the rest of the overview.

1.2.1 A Robust Pisier’s Inequality for Hypergrids

The most important ingredient we need in the proof of Theorem 6 is a robust version of Pisier’s inequality
for hypergrids. Pisier’s inequality was first introduced in the paper [Pis06], and is an important result
within the realm of convex analysis:

Theorem 8 (Pisier’s inequality [Pis06]). Let f : {±1}n → R be a function with Ex[f(x)] = 0. Then,

Ex∼{±1}n

[
|f(x)|

]
≤ O(log n) · Ex∼{±1}n

∣∣∣∣∣∣
∑
i∈[n]

yixiLif(x)

∣∣∣∣∣∣
 .

3We write U to denote the uniform distribution, and dTV to denote the total variation distance.
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Alternative proofs of Pisier’s inequality can be found in [NS02, BM87]. Before this work we are not
aware of any generalization of Pisier’s inequality beyond the domain of hypercubes. The flow of our proof
of Theorem 7, Pisier’s inequality over hypergrids, at a high level follows that of [NS02]. The challenge
lies in careful considerations required when moving from the use of Fourier analysis on hypercubes,
where functions in the basis are {±1}-valued, to Fourier analysis on hypergrids, where functions in the
basis take complex values that are roots of unity. In particular, more intricate expressions needed to be
discovered (e.g., in Lemma 14) in order to obtain cancellations that help connect the ℓs-norm of f with
its Laplacian operators.

As mentioned earlier, Theorem 2 is not sufficient for our purpose of proving Theorem 6 but we need
a more powerful, robust version of Pisier’s inequality for hypergrids. Additional definitions are needed to
state the inequality so we delay it to Section 3 (Theorem 11) where it is proved. The notion of robustness
is the same as in [KMS18] and [CCK+21]: in the original Pisier’s inequality such as Theorem 8 and 2,
difference in the function value along each edge {x, x(i)→a} is accounted twice on the RHS, once at x and
once at x(i)→a; in the robust version, imagine that an adversary gets to pick any orientation of edges and
the same inequality still needs to hold when each directed edge (x, x(i)→a) (oriented by the adversary
from x to x(i)→a) is only accounted once at x (but not at x(i)→a). This robustness will be crucial when
we apply the inequality to prove Theorem 6, which we discuss in Section 1.2.2.

The key observation behind the proof of our robust Pisier’s inequality for hypergrids is similar to that
of [CCK+21] for hypercubes: at one point of the proof of the original inequality, the expectation where
every edge of the hypergrid is accounted twice (once for each of its vertices) can be replaced by a similar
expectation where every edge is accounted once with respect to a given orientation of edges. Again, the
need to work with Fourier analysis over ZM and deal with roots of unity makes the analysis much more
demanding. Indeed the inequality we prove takes a more complex form on the RHS compared to Theorem
2; in contrast, the robust Pisier’s inequality for hypercubes of [CCK+21] looks identical to Theorem 8.

1.2.2 Proof of Theorem 6

We start with some notation. Let S(t) be the uniform distribution supported on all subsets of [n] of size
t. Given a distribution p over ZM , we let D(t, p) be the following distribution over restrictions: to draw
ρ ∼ D(t, p), we first sample y ∼ p and S ∼ S(t) and then set ρ to be ρi = ∗ if i ∈ S and ρi = yi if i /∈ S.

We are now ready to state the main technical lemma, which is proved in Section 4:

Lemma 9. Let p be a distribution over ZM , t ∈ [n− 1], and denote

α := ET∼S(t)

[
dTV (pT ,U)

]
≥ 0.

Then we have

Eρ∼D(t,p)

[ ∥∥µ(p|ρ)∥∥2 ]+ Eρ∼D(t+1,p)

[ ∥∥µ(p|ρ)∥∥2 ] ≥ t

n
· α

m7.5 · polylog(nm/α)
. (2)

A significant portion of the paper is dedicated to proving Lemma 9 in Section 4. Once Lemma 9 is
proven, it only requires a short proof to obtain Theorem 6. The proof of Theorem 6 assuming Lemma 9
is very similar to an argument used in [CCK+21], except for a minor change. It is included in Appendix
A for completeness. Below we sketch the proof of Lemma 9 and compare it with [CCK+21].

The key step of the proof of Lemma 9 is the construction of a family of directed graphs that is used
to connect dTV (pT ,U) of T ∼ S(t) with ∥µ(p|ρ)∥2 of either ρ ∼ D(t, p) or ∼ D(t+1, p). In more details,
let T ⊂ [n] be a set of size t and let K = MT (so pT is a distribution over the hypergrid ZK). Let H(T )
denote the undirected graph over ZK with undirected edges {x, x(i)→b} for all x ∈ ZK , i ∈ T and b ̸= xi.
Using values of pT (x), we classify edges of H(T ) into those that are uneven and even. Roughly speaking,
an edge {x, y} of H(T ) is uneven if

max
(
pT (x), pT (y)

)
≫ min

(
pT (x), pT (y)

)
and is even otherwise. The most important step of the proof is the construction of an orientation G(T )
of H(T ), where different strategies are used to orient uneven edges and even edges.

Once the directed graphs G(T ) for each T is in place, the proof of Lemma 9 proceeds as follows:

1. In Section 4.1, we apply the robust Pisier’s inequality on s = 1 and f over ZK set to be

f(x) = pT (x)
∏
j∈T

mj − 1
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so the expectation of f is 0 and the LHS of the inequality is exactly dTV (pT ,U). Orienting the
edges using G(T ), the inequality implies that either the expectation of√

number of outgoing uneven edges of x (3)

or the expectation of √
number of outgoing even edges of x (4)

when x ∼ pT is large in terms of dTV (pT ,U).

2. On the other hand, in Section 4.3, 4.4 and 4.5, we connect G(T ) with ∥µ(p|ρ)∥2 by showing that
when either the expectation of (3) or the expectation of (4) is large for a typical T ∼ S(t), it
implies that ∥µ(p|ρ)∥2 is large for a typical ρ drawn either from D(t, p) or D(t+ 1, p). The two
cases of (3) and (4) are handled separately in Section 4.4 and 4.5, respectively.

Compared to that of a similar lemma in [CCK+21], our proof of Lemma 9 differs significantly in the
construction of directed graphs G(T ) due to the simple fact a vertex in H(T ) has multiple edges along the
same variable (while in hypercubes, every vertex has a unique edge along each variable). In particular,
the orientation of even edges needs to be handled with a more delicate strategy. In [CCK+21], uneven
and even edges are oriented separately; in contrast, the orientation of even edges here crucially depends
on that of uneven edges (uneven edges are handled first, followed by even edges). The analysis in Case 2
(Section 4.5), which becomes more involved compared to [CCK+21], only works with the new orientation
strategy for even edges.

1.3 Background and Related Work

Distribution testing: Distribution testing — initially studied in [GR11], [BFR+00], and [BFR+13] —
is concerned with determining whether a distribution satisfies a certain property or is far from satisfying
the property. Sample-optimal algorithms are known for a range of problems in distribution testing in the
standard setting, where samples are drawn independently from the probability distribution that is being
tested. For example, [CDVV14, VV14, Pan08, DK16, DKN14] give algorithms for testing with optimal
sample complexity. The sample complexity lower bounds for many such problems have a polynomial
dependence on the domain size, which in the high-dimensional setting leads to an exponential dependence
on the dimension. Therefore, in this setting, newer models of sampling or testing are needed to achieve
an improved (ideally sublinear) dependence on the dimension.

Property testing on extended high-dimensional domains: Property testing on extended high-
dimensional domains [m]n, also known as hypergrids, is fruitful to study due to its potential to yield
sample complexity bounds that depend explicitly on both the alphabet size m and the dimension n. The
goal of this research is typically to construct algorithms with a polynomial (or even sublinear) dependence
on n and a polynomial dependence on m. Many of the algorithms or sample complexity lower-bounds
for testing properties of functions or distributions over hypergrids rely on Fourier analysis. For example,
in [BRY14], Blais, Raskhodnikova, and Yaroslavtsev utilize a set of Walsh functions, a canonical Fourier
basis for functions on the line [m], in their analysis. Other papers such as [BCS17] and [HY20] also apply
Fourier analysis by using Walsh functions over [m]n. One advantage of Walsh functions is that they are
{±1}-valued. However, Walsh functions can only be used as a Fourier basis if m is a power of 2. In this
paper, we consider the high-dimensional domain Zm1 ×· · ·×Zmn and use certain powers of the primitive
m-th root of unity to form the Fourier basis, which allows us to avoid this restriction to powers of 2.

Other papers on testing properties over hypergrids [m]n include [CS13, CS12, ADK15, AJMR12].

Subcube conditioning: As mentioned earlier, under the standard sampling model,
√

|Σ|/ϵ2 samples
are needed for testing uniformity [Pan08, VV14]. To circumvent this issue under the high-dimensional
setting, one may choose to consider distributions with more structure; for example, product distributions
[CDKS16]. On the other hand, one may study query models with stronger access to the distribution.
The subcube conditioning oracle model was studied with the latter purpose, and was first introduced in
[CRS12] and studied in [BC17].

In [CCK+21], the authors give a nearly-optimal uniformity testing algorithm for distributions sup-
ported on hypercubes {±1}n under the subcube conditioning model. The subcube conditioning oracle
model has also been used in studying the problems of learning and testing junta distributions on {±1}n
with respect to the uniform distribution [CJLW20].

7



The subcube conditioning model is a theoretical model, but not an artificial model. Subcube condi-
tional samples provide stronger access to the underlying distribution that is also potentially practically
realizable. Subcube conditioning has received recent attention beyond the field of property testing, for
example in [BLMT23]. In [BLMT23], the authors study how subcube conditioning can be used to con-
vert PAC learning algorithms that work under the uniform distribution into ones that works under an
arbitrary and unknown distribution.

Other recent papers have used variations of the subcube conditioning model to study the problem of
identity testing. In [BCŠV22], the authors prove that if approximate tensorization holds for the visible
distribution µ over [k]n, then there is an efficient identity testing algorithm for any hidden distribution
π using Õ(n/ϵ) queries to the so-called coordinate oracle. The latter is similar to the subcube oracle,
with the added restriction that all but one coordinate must be fixed when taking a random restriction.

More broadly, the subcube conditioning model is an adaptation of the conditional sampling model.
The original and more general conditional sampling model [CFGM13, CFGM16, CRS14, CRS12] allows
for the algorithm to specify an arbitrary subset of a domain and receive a sample that is conditioned
on it lying in the subset. This conditional sampling model has been applied to a range of problems in
distribution testing and beyond in order to circumvent lower bounds in the standard sampling model.

1.4 Notation

We use Õ(f(n)) to denote O(f(n) · polylog(f(n))) and Ω̃(f(n)) to denote Ω(f(n)/(1+ |polylog(f(n))|)).
We write f(n) ≲ g(n) if, for some constant c > 0, f(n) ≤ c · g(n) for all n ≥ 0. ≳ is defined similarly.

Given M = (m1, . . . ,mn), we write ZM to denote Zm1
× · · · × Zmn

. We will occasionally denote

×
i∈[n]

[mi] := [m1]× · · · × [mn] and ×
i∈[n]

Zmi := Zm1 × · · · × Zmn .

Given x ∈ {−1, 1}n, we write x(i) to denote the string that is identical to x but with coordinate i flipped,
i.e. x

(i)
j = xj for all j ̸= i and x

(i)
i = −xi. Given x ∈ ZM , i ∈ [n] and a ∈ Zmi , we let x(i)→a denote the

vector that is identical to x but with coordinate i set to a, i.e. x
(i)→a
j = xj for all j ̸= i and x

(i)→a
i = a.

2 The Algorithm

In this section we present our main testing algorithm, SubCondUni, and use it to prove Theorem 1. It
is presented as Algorithm 1 and uses ProjectedTestMean as a subroutine.

This algorithm proceeds in a similar fashion as the SubCondUni algorithm in [CCK+21]. Let p be
a distribution over ZM with M = (m1, . . . ,mn) (where each mi ≥ 2). Let

σ := σ(ϵ) =
1

C0 · log4(16/ϵ)
(5)

where C0 > 0 is a sufficiently large constant to be specified later. If n and ϵ violate

e−σn/10 ≤ ϵ/8, (6)

i.e., ϵ is tiny, we use a result from [BCŠV22]. Given the violation of (6), we have

n = O

(
1

σ
· log

(
1

ϵ

))
= O

(
log5

(
1

ϵ

))
. (7)

It follows from Theorem 4.1 and Lemma 4.20 of [BCŠV22] that uniformity can be tested with Õ(n
√
m/ϵ2)

samples in this case. (To use Theorem 4.1 and Lemma 4.20 in [BCŠV22], note that the uniform distri-
bution is ν = (1/m)-balanced and satisfies approximate tensorization of entropy with constant C = 1.)

From now on we focus on the general case where n and ϵ satisfy (6). To better understand how the
algorithm works, consider the case when dTV (p,U) ≥ ϵ. Lemma 5 implies that either

ES∼Sσ

[
dTV (pS ,U)

]
≥ ϵ/2 or Eρ∼Dσ(p)

[
dTV (p|ρ,U)

]
≥ ϵ/2. (8)

Assuming ES∼Sσ [dTV (pS ,U)] ≥ ϵ/2, using e−σn/10 ≤ ϵ/8 and σ = 1/polylog(1/ϵ), Theorem 6 gives

Eρ∼Dσ(p)

[
1

m
√
n

∥∥µ(p|ρ)∥∥2] ≥ Ω̃

(
ϵ

m8.5
√
n

)
. (9)
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Algorithm 1 SubCondUni(n,M, ϵ, p)

Require: Dimension n, M = (m1, . . . ,mn), subcube access to distribution p over ZM , and ϵ ∈ (0, 1/2]
1: if n and ϵ violate (6) then
2: Run an algorithm (Lemma 4.20) from [BCŠV22]) and return the same answer
3: end if
4: StartMainCase ▷ Main case: (6) satisfied
5: Let m = maxi mi and let L = L(n, ϵ) be as defined in (10)
6: for j = 1, 2, . . . , ⌈log 2L⌉ do ▷ Handle the first case of (8)
7: Sample sj = 8L log(2L) · 2−j restrictions from Dσ(p)
8: for each restriction ρ sampled with |stars(ρ)| > 0 do
9: Run ProjectedTestMean(|stars(ρ)|,Mstars(ρ), 2

−j , p|ρ) for r = O(log(nm/ϵ)) times
10: return reject if the majority of calls return reject
11: end for
12: end for
13: for j = 1, 2, . . . , ⌈log(4/ϵ)⌉ do ▷ Handle the second case of (8)
14: Sample s′j = (32/ϵ) log(4/ϵ) · 2−j restrictions from Dσ(p)
15: for each restriction ρ sampled that satisfies 0 < |stars(ρ)| ≤ 2σn do
16: Let Mstars(ρ) = (mi1 ,mi2 , . . . ,mi|stars(ρ)|) where each ik ∈ stars(ρ)

17: Run SubCondUni(|stars(ρ)|,Mstars(ρ), 2
−j , p|ρ) for t = 100 log(16/ϵ) times

18: return reject if the majority of calls return reject
19: end for
20: end for
21: return accept
22: EndMainCase

This is handled in the first for-loop of the main case, where ProjectedTestMean is used as a sub-
routine to tell whether p|ρ is uniform or has a bias vector with a large ℓ2-norm. (Note that subcube
conditional query access to p is used to simulate sample access to p|ρ needed by ProjectedTestMean.)
The parameter L used in this for-loop is defined as the inverse of the RHS of (9) so L satisfies

L := L(n, ϵ) = Õ

(
m8.5

√
n

ϵ

)
. (10)

For the other case when Eρ∼Dσ(p)[dTV (p|ρ,U)] ≥ ϵ/2, note that a typical draw of ρ ∼ Dρ(p) satisfies
both that dTV (p|ρ,U) remains large and that the dimension |stars(ρ)| of p|ρ is much smaller (i.e., ≈ σn).
Intuitively this case is handled using recursive calls to SubCondUni in the second for-loop. (Note that
subcube conditional query access to p can be used to simulate subcube conditional query access to p|ρ
needed by recursive calls to SubCondUni.)

The proof of Theorem 1 using SubCondUni follows similar arguments used in the proof of Theorem
2.1 of [CCK+21]. We included the proof in Appendix A for completeness.

3 Robust Pisier’s Inequality on Hypergrids

In this section, we prove a robust version of Pisier’s inequality on functions over hypergrids Zm1 × · · · ×
Zmn , for m1, . . . ,mn ≥ 2. This inequality will play a crucial role in the proof of the main technical
lemma, Lemma 9. First, let ZM denote Zm1

× · · · × Zmn
, where M = (m1, . . . ,mn).

Our notion of robustness is similar to that of [CCK+21] and [KMS18], where the inequality holds for
any orientation of an undirected graph H over ZM , which will be defined below.

Given x ∈ ZM , i ∈ [n] and a ∈ Zmi
, we write x(i)→a to denote the vector that satisfies x

(i)→a
j = xj

for all j ̸= i, and x
(i)→a
i = a. Let H be the undirected graph over ZM that consists of undirected edges

{x, x(i)→a} for all x ∈ ZM , i ∈ [n], and a ∈ Zmi
such that xi ̸= a. (Equivalently, {x, y} is an undirected

edge in H if there exists an i ∈ [n] such that xi ̸= yi and xj = yj for all j ̸= i.)
Consider a function f : ZM → C, we recall the definition of the Laplacian operator Lif ([O’D21]):

Definition 10. Let i ∈ [n] and f : ZM → C. The ith coordinate Laplacian operator Lif is defined by:

Lif(x) = f(x)− Ea∼Zmi

[
f(x(i)→a)

]
.

9



Given a ∈ Zmi
, we define La

i f to be

La
i f(x) =

f(x)− f(x(i)→a)

mi
.

So we have Lif(x) =
∑

a∈Zmi
La
i f(x).

For each j ∈ [n], let Z∗
mj

= {1, . . . ,mj −1} and let ωj = e2πi/mj be the primitive mj-th root of unity.
We are now ready to state our robust Pisier’s inequality for functions over ZM :

Theorem 11 (Robust Pisier’s Inequality for Functions over ZM ). Let f : ZM → C be a function with
Ex∼ZM

[f(x)] = 0 and let G be an orientation of H. Then for any s ∈ [1,∞) we have(
Ex∼ZM

[
|f(x)|s

])1/s

≲ log(n) ·

Ex,y∼ZM


∣∣∣∣∣∣∣∣∣
∑
i∈[n]

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

(1− ωad
i )ω−ayi

i ωaxi
i Lxi+d

i f(x)

∣∣∣∣∣∣∣∣∣
s


1/s

.

3.1 Fourier Analysis over Hypergrids

Given M = (m1, . . . ,mn), we will use Fourier analysis over ZM (see [CGS+21, O’D21]). To this end, we
represent any function f : ZM → C using this Fourier basis with the following expression:

f(x) =
∑

u∈ZM

f̂(u) ·
∏
i∈[n]

ωuixi
i ,

where the Fourier coefficients f̂(u) are given by

f̂(u) =

(
n∏

i=1

1

mi

) ∑
x∈ZM

f(x) ·
∏
i∈[n]

ω−uixi
i .

We will use the following fact about the ith coordinate Laplacian operator:

Lif(x) =
∑

u∈ZM :ui ̸=0

f̂(u) ·
∏
i∈[n]

ωuixi
i . (11)

Given ρ ∈ [0, 1] and x ∈ ZM , we write Nρ(x) to denote the following distribution supported on ZM :
To sample y ∼ Nρ(x), for each i ∈ [n] we set yi = xi with probability ρ, and set yi to be a uniform
random number from Zmi

with probability 1− ρ.

Definition 12 (Noise Operator). Given f : ZM → C and ρ ∈ [0, 1], the noise operator Tρ is defined as

Tρf(x) = Ey∼Nρ(x)

[
f(y)

]
.

Given u ∈ ZM , we write

supp(u) = {i ∈ [n] : ui ̸= 0} and #u = |supp(u)|.

The following proposition relates the noise operator to its Fourier expansion. The proposition can be
found in [O’D21] for the case of m1 = · · · = mn.

Proposition 13. Let ρ ∈ [0, 1] and let f : ZM → C. Then, the Fourier expansion of Tρf is given by:

Tρf(x) =
∑

u∈ZM

ρ(#u)f̂(u) ·
∏
i∈[n]

ωuixi
i .

10



Proof. By the definition of Tρ we have

Tρf(x) = Ey∼Nρ(x)

[
f(y)

]
=
∑

u∈ZM

f̂(u) · Ey∼Nρ(x)

∏
i∈[n]

ωuiyi

i

 .

Next, we have

Ey∼Nρ(x)

∏
i∈[n]

ωuiyi

i

 =
∏
i∈[n]

ρ · ωuixi
i +

1− ρ

mi

∑
z∈Zmi

ωuiz
i

 = ρ(#u)
∏
i∈[n]

ωuixi
i .

This is because if ui ̸= 0, then the sum of ωuiz
i is 0 and the i-th coordinate contributes ρ · ωuixi

i to the
product. If ui = 0, the i-th coordinate contributes ρ+ 1− ρ = 1 = ωuixi

i to the product.

Now, for any x, y ∈ ZM and t ∈ [0, 1], consider the distribution Nt,1−t(x, y), supported on ZM , to be
the distribution given by letting z ∼ Nt,1−t(x, y) have each i ∈ [n] set to zi = xi with probability t and
zi = yi otherwise. Given a function g : ZM → C and t ∈ [0, 1], we define

gt,1−t(x, y) = Ez∼Nt,1−t(x,y)

[
g(z)

]
=
∑

u∈ZM

ĝ(u)
∏
i∈[n]

(
tωuixi

i + (1− t)ωuiyi

i

)
, (12)

where the second equation follows from arguments similar to the proof of Proposition 13.
Lastly, for any γ > 0, we let ∆γf be the operator given by:

∆γf(x) =
∑

u∈ZM

f̂(u)(#u)γ
∏
i∈[n]

ωuixi
i . (13)

3.2 Proof of the Robust Pisier’s Inequality over Hypergrids

Our proof follows the proof of [NS02] (Theorem 2). For the robustness part, it adapts the proof strategy
of [CCK+21]. Let M = {m1, . . . ,mn}. We start with the following lemma:

Lemma 14. Let f, g : ZM → C be two functions with Ex∼ZM
[f(x)] = 0. Then we have

∑
u̸=0∈ZM

t(#u)−1(#u)γ+1 · f̂(u)ĝ(u) = 1

1− t
· Ex,y∼ZM

gt,1−t(x, y) ·
∑
i∈[n]

∑
a∈Z∗

mi

ω−ayi

i ωaxi
i Li∆

γf(x)

 .

Proof. We work on the sum

gt,1−t(x, y) ·
∑
i∈[n]

∑
a∈Z∗

mi

ω−ayi

i ωaxi
i Li∆

γf(x). (14)

Replacing gt,1−t(x, y) using the RHS of (12) and Li∆
γf(x) using (11) and (13), (14) becomes ∑

v∈ZM

ĝ(v)
∏
j∈[n]

(
tω

−vjxj

j + (1− t)ω
−vjyj

j

)∑
i∈[n]

∑
a∈Z∗

mi

ω−ayi

i ωaxi
i

∑
u∈ZM :ui ̸=0

(#u)γ f̂(u)
∏
k∈[n]

ωukxk

k

 .

(15)
Next, upon expanding, (15) becomes:

∑
i∈[n]

∑
u∈ZM :ui ̸=0

∑
v∈ZM

f̂(u)ĝ(v)(#u)γ
∑

a∈Z∗
mi

ω−ayi

i ωaxi
i

∏
j∈[n]

ω
ujxj

j

(
tω

−vjxj

j + (1− t)ω
−vjyj

j

) . (16)

Let us take the expectation of this expression over x, y ∼ ZM . By linearity of expectation, we get∑
i∈[n]

∑
u∈ZM :ui ̸=0

∑
v∈ZM

f̂(u)ĝ(v)(#u)γ
∑

a∈Z∗
mi

Ai,u,v,a

=
∑

u∈ZM

∑
i∈[n]:ui ̸=0

∑
v∈ZM

f̂(u)ĝ(v)(#u)γ
∑

a∈Z∗
mi

Ai,u,v,a, (17)

11



where

Ai,u,v,a := Ex,y∼ZM

ω−ayi

i ωaxi
i

∏
j∈[n]

ω
ujxj

j

(
tω

−vjxj

j + (1− t)ω
−vjyj

j

) .

Furthermore, Ai,u,v,a can be written as a product of n expectations. The ith expectation is given by

Exi,yi∼Zmi

[
ω−ayi

i ωaxi
i ωuixi

i

(
tω−vixi

i + (1− t)ω−viyi

i

) ]
.

The ith expectation can be written as the expectation of a sum of two terms. Given that a ̸= 0, the
expectation of the first term is always 0. The expectation of the second term is (1−t) when vi = ui = −a,
and is 0 otherwise. Similarly, the jth expectation, for each j ̸= i, is given by

Exj ,yj∼Zmj

[
ω
ujxj

j

(
tω

−vjxj

j + (1− t)ω
−vjyj

j

)]
,

which is 0 when uj ̸= vj . When uj = vj , the expectation is t if uj = vj ̸= 0 and is 1 if uj = vj = 0.
Given this analysis, we have that for any given i and u such that ui ̸= 0, there is a unique choice for

a (i.e., a = −ui ∈ Z∗
mi

) and v (i.e., v = u) such that Ai,u,v,a is nonzero and is equal to

(1− t) · tnumber of j ̸= i such that uj ̸= 0 = (1− t) · t(#u)−1.

As a result, (17) can be simplified to∑
u∈ZM

∑
i∈[n]:ui ̸=0

f̂(u)ĝ(u)(#u)γ · (1− t) · t(#u)−1 = (1− t) ·
∑

u̸=0∈ZM

f̂(u)ĝ(u)(#u)γ+1t(#u)−1,

from which the lemma follows.

Recall that given two functions f, g : ZM → C, we write

∥f∥s :=
(
Ex∼ZM

[
|f(x)|s

])1/s
and ⟨f, g⟩ := Ex∼ZM

[
f(x)g(x)

]
.

We are now ready to prove Theorem 11:

Proof of Theorem 11. Let ρ = 1−1/(n+1) and q ∈ [1,∞) such that 1
s +

1
q = 1. Given f , let g : ZM → C

be a function with ∥g∥q = 1 satisfying ⟨Tρf, g⟩ = ∥Tρf∥s. We have

(2ρ− 1)n · ∥f∥s ≤ ∥Tρf∥s = ⟨Tρf, g⟩ =
∑

u̸=0∈ZM

ρ(#u)f̂(u)ĝ(u),

where the last equation used the assumption that f̂(0) = 0. Let γ > 0 be a parameter, which will
approach 0 at the end of the proof. By writing

ρ(#u) =
1

Γ(1 + γ)

∫ ρ

0

t(#u)−1(#u)γ+1
(
log(ρ/t)

)γ
dt,

for every u ̸= 0 (in which case #u > 0), we have

(2ρ− 1)n · ∥f∥s ≤
1

Γ(1 + γ)

∫ ρ

0

 ∑
u̸=0∈ZM

t(#u)−1(#u)γ+1f̂(u)ĝ(u)

( log(ρ/t))γdt. (18)

By Lemma 14, the RHS of (18) is

1

Γ(1 + γ)

∫ ρ

0

1

1− t
· Ex,y∼ZM

gt,1−t(x, y)
∑
i∈[n]

∑
a∈Z∗

mi

ω−ayi

i ωaxi
i Li∆

γf(x)

 ·
(
log(ρ/t)

)γ
dt. (19)

Plugging in Lif(x) =
∑

b∈Zmi
Lb
if(x), this equals

1

Γ(1 + γ)

∫ ρ

0

1

1− t
· Ex,y∼ZM

gt,1−t(x, y)
∑
i∈[n]

∑
a∈Z∗

mi

∑
b∈Zmi

ω−ayi

i ωaxi
i Lb

i∆
γf(x)

 ·
(
log(ρ/t)

)γ
dt.
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Since this expression equals ||Tρf ||s, which is real-valued, we can say it is less than its absolute value:

≤

∣∣∣∣∣∣ 1

Γ(1 + γ)

∫ ρ

0

1

1− t
· Ex,y∼ZM

gt,1−t(x, y)
∑
i∈[n]

∑
a∈Z∗

mi

∑
b∈Zmi

ω−ayi

i ωaxi
i Lb

i∆
γf(x)

 ·
(
log(ρ/t)

)γ
dt

∣∣∣∣∣∣
≤ 1

Γ(1 + γ)

∫ ρ

0

1

1− t
·

∣∣∣∣∣∣Ex,y∼ZM

gt,1−t(x, y)
∑
i∈[n]

∑
a∈Z∗

mi

∑
b∈Zmi

ω−ayi

i ωaxi
i Lb

i∆
γf(x)

∣∣∣∣∣∣ · ( log(ρ/t))γdt.
Our next step is to obtain the following:∣∣∣∣∣∣Ex,y∼ZM

gt,1−t(x, y)
∑
i∈[n]

∑
a∈Z∗

mi

∑
b∈Zmi

ω−ayi

i ωaxi
i Lb

i∆
γf(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣Ex,y∼ZM

gt,1−t(x, y)
∑
i∈[n]

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

ω−ayi

i ωaxi
i Lxi+d

i ∆γf(x) ·
(
1− ωad

i

)

∣∣∣∣∣∣∣∣∣ (20)

≤

Ex,y∼ZM


∣∣∣∣∣∣∣∣∣
∑
i∈[n]

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

(1− ωad
i )ω−ayi

i ωaxi
i Lxi+d

i ∆γf(x)

∣∣∣∣∣∣∣∣∣
s


1/s

. (21)

To prove (20) we note that La
i∆

γf(x(i)→a+d) = −La+d
i ∆γf(x(i)→a). This is because

La
i∆

γf(x(i)→a+d) =
∆γf(x(i)→a+d)−∆γf(x(i)→a)

mi
= −La+d

i ∆γf(x(i)→a).

In the summation, we group terms corresponding to edges of H according to the orientation G:

Ex,y∼ZM

gt,1−t(x, y)
∑
i∈[n]

∑
a∈Z∗

mi

∑
b∈Zmi

ω−ayi

i ωaxi
i Lb

i∆
γf(x)


= Ex∼ZM

[ ∑
i∈[n]

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

Ey∼ZM

[
gt,1−t(x, y) · ω−ayi

i ωaxi
i Lxi+d

i ∆γf(x)

+ gt,1−t(x(i)→xi+d, y) · ω−ayi

i ω
a(xi+d)
i Lxi

i ∆γf(x(i)→xi+d)

]]

= Ex∼ZM

[ ∑
i∈[n]

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

Ey∼ZM

[
gt,1−t(x, y) · ω−ayi

i ωaxi
i Lxi+d

i ∆γf(x)

− gt,1−t(x(i)→xi+d, y) · ω−ayi

i ω
a(xi+d)
i Lxi+d

i ∆γf(x)

]]
. (22)

Next, for a fixed x, i, a and d, we have the following:

Ey∼ZM

[
gt,1−t(x, y) · ω−ayi

i ωaxi
i Lxi+d

i ∆γf(x)− gt,1−t(x(i)→xi+d, y) · ω−ayi

i ω
a(xi+d)
i Lxi+d

i ∆γf(x)
]

= (1− ωad
i ) · Ey∼ZM

[
gt,1−t(x, y) · ω−ayi

i ωaxi
i Lxi+d

i ∆γf(x)
]
. (23)

This equation follows because when expanding the terms in

gt,1−t(x, y) = Ez∼Nt,1−t(x,y)

[
g(z)

]
and gt,1−t(x(i)→xi+d, y) = Ez′∼Nt,1−t(x(i)→xi+d,y)

[
g(z′)

]
,
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the LHS of (23) becomes

Ey∼ZM ,z,z′

[
g(z) · ω−ayi

i ωaxi
i Lxi+d

i ∆γf(x)− g(z′) · ω−ayi

i ω
a(xi+d)
i Lxi+d

i ∆γf(x)
]
,

where z and z′ are drawn using the natural coupling that z ∼ Nt,1−t(x, y) and z′ is set to be z if zi = yi
and z′ is set to be z(i)→xi+d if zi = xi. Consider the following two cases:

1. Either zi = yi in which case z′ = z and thus, the contribution of the second term is always the
contribution of the first term scaled by −ωad

i ;

2. Or, zi = xi. In this case, both terms are independent of yi and thus, have an overall contribution
of zero, as Eyi∼Zmi

[ω−ayi

i ] = 0 given that a ̸= 0.

This finishes the proof of (20).
To obtain (21) from (20), we note that ∥gt,1−t∥q ≤ ∥g∥q = 1 and apply Hölder’s inequality.
We proceed by substituting (21) into (18). For ρ = 1− 1/(n+ 1), we have when γ approaches 0,

1

Γ(1 + γ)

∫ ρ

0

log(ρ/t)γ

1− t
dt ≲ log n.

So we obtain:

(2ρ− 1)n∥f∥s ≲ log n ·

Ex,y∼ZM


∣∣∣∣∣∣∣∣∣
∑
i∈[n]

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

(1− ωad
i )ω−ayi

i ωaxi
i Lxi+d

i ∆γf(x)

∣∣∣∣∣∣∣∣∣
s


1/s

As γ → 0, the RHS approaches the desired quantity, while the LHS is independent of γ.

4 Proof of Lemma 9

We prove Lemma 9 in this section. We follow the high-level strategy used in Section 3 of [CCK+21] but
need to overcome a number of obstacles that are unique to hypergrids.

Let t ∈ [n− 1] be the parameter from Lemma 9. For this section, let T denote a subset of [n] of size
t, and let S denote a subset of [n] of size t+ 1.

The steps of the proof of Lemma 9 are as follows. First, we apply the robust Pisier’s inequality
over hypergrids to connect the total variation distance dTV (pT ,U), for a given t-subset T of [n], to the
average

√
outdegree of a collection of directed graphs over ZK , where K := MT = (mi : i /∈ T ) defines

a hypergrid ZK of dimension k := n − t. Next we connect these graphs with the bias vector µ(p|ρ) of
either ρ ∼ D(t, p) or ρ ∼ D(t+ 1, p) to finish the proof.

4.1 Connecting Total Variation Distance to Directed Graphs

Fix any t-subset T of [n] and let K = MT of length k = n − t. Let ℓ be a probability distribution over
ZK . (Later on in the proof of Lemma 9, we will let ℓ be pT . We refer to pT as ℓ in this subsection for
notational convenience.) Recall that m = maxi∈[n] mi and thus, m ≥ maxi∈T mi.

Let H denote the undirected graph over ZK consisting of undirected edges {x, x(i)→b}, for each
x ∈ ZK , i ∈ T , and b ∈ Zmi

with b ̸= xi. Next, we assign weights to edges of H as follows.

Definition 15. An undirected edge {x, x(i)→b} ∈ H is a zero edge if ℓ(x) = ℓ(x(i)→b). For each nonzero
edge {x, x(i)→b} ∈ H, let its weight be defined as:

w({x, x(i)→b}) := |ℓ(x)− ℓ(x(i)→b)|
max{ℓ(x), ℓ(x(i)→b)}

.

The weight of a nonzero edge is always in (0, 1]. A nonzero edge is called uneven if its weight is at least
m/(m+ 1). Otherwise (any nonzero edge with weight smaller than m/(m+ 1)), we say it is an even
edge. An even edge is at scale κ for some integer κ ≥ 1 if:

m−κ < w
(
{x, x(i)→b}

)
≤ m−κ+1.
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We partition edges of H to define three undirected graphs H[z],H[u],H[e] according to their weights:

1. H[u] (where u stands for “uneven”): Add all uneven edges of H to H[u].

2. H[z] (where z stands for “zero”): Add all zero edges of H to H[z]; and

3. H[e] (where e stands for “even”): Add all even edges of H to H[e].

Next we assign orientations to edges in H[u] and H[z] to obtain directed graphs G[u] and G[z]:

1. G[u]: For each uneven edge {x, y} ∈ H[u], orient the edge from x to y if ℓ(x) > ℓ(y) and from y to
x if ℓ(y) > ℓ(x). Note that ℓ(x) ̸= ℓ(y) since it is not a zero edge so the directions are well defined.

2. G[z]: Orient each zero edge {x, y} ∈ H[z] arbitrarily.

Orientations of even edges are trickier. Notably our construction below is significantly different from
that of [CCK+21]. We partition and orient even edges into directed graphs G[κ] for each κ ≥ 1 and G[r],
where each G[κ] contains orientations of a subset of even edges at scale κ and G[r] (where r stands for
“remaining”) contains orientations of even edges not included in G[κ]’s:

1. G[κ], for each κ ≥ 1: First we define H[κ] to be the undirected graph over ZK that includes all
even edges {x, y} ∈ H of scale κ if y = x(i)→b for some i and b (so the edge is along the i-th
direction) satisfies that neither x nor y has any outgoing edges in G[u] along the i-th direction.

We then orient edges in H[κ] to obtain the directed graph G[κ] as follows. For each κ ≥ 1, find an
ordering of vertices in ZK as a bijection ρκ : ZK → [

∏
j∈T mj ] (i.e., x is the ρκ(x)-th vertex in the

ordering) such that ρκ satisfies the following property: For each i ∈ [
∏

j∈T mj − 1], the degree of
ρ−1
κ (i) is the largest out of all vertices in the subgraph of H[κ] induced by {ρ−1

κ (j) : j ≥ i}.
Starting with i = 1, one can construct such a bijection ρκ by deleting vertices one at a time from
H[κ], at each step deleting the vertex with the largest degree in the remaining undirected graph,
making it ρκ(i) and setting j = j + 1. Ties can be broken arbitrarily.

We now use ρκ to orient the edges in H[κ] to obtain the directed graph G[κ]: For each undirected
edge {x, y} in H[κ], orient the edge from x to y if ρκ(x) < ρκ(y), and orient the edge from y to x
otherwise. This ensures that every directed edge (x, y) ∈ G[κ] satisfies ρκ(x) < ρκ(y).

2. G[r]: For every even edge {x, y} in H that was not included in H[κ]’s (which means that one of its
vertices has at least one outgoing edge in G[u] along the same direction), add (x, y) to G[r] if x
has at least one outgoing edge in G[u] along the same direction and add (y, x) to G[r] if y has at
least one outgoing edge along the same direction, breaking ties arbitrarily.

In the analysis proving Lemma 9, we will utilize the following fact about the directed graph G[κ] (this
fact, over hypercubes, can be found in [CCK+21]):

Lemma 16. Let U be a set of vertices in ZK and let v ∈ ZK \U . If the outdegree of every vertex u ∈ U
in G[κ] is bounded from above by a positive integer g, then the number of directed edges (u, v) from a
vertex u ∈ U to v in G[κ] is also at most g.

Proof. Consider the vertex s that is ranked the highest (i.e., smallest value) in ρκ among U ∪ {v}. If
s is v, then all undirected edges between U and v are oriented from v to U so the number of directed
edges (u, v) is 0. If s ∈ U , then the assumption implies that the subgraph of H[κ] induced by U ∪ {v}
has maximum degree at most g, including the degree of v, from which the lemma follows trivially.

With G[z], G[u], G[κ] for each κ ≥ 1, and G[r] defined, we then define G to be the union of these
directed graphs, which is an orientation of H over ZK .

We now apply Theorem 11 (the robust Pisier’s Inequality over hypergrids) in a way that connects
dTV (ℓ,U) to the directed edges of G. To do so, define the function f : ZK → [−1,∞) as follows: For
each y ∈ ZK ,

f(y) =

∏
j∈T

mj

 · ℓ(y)− 1. (24)

Note that Ey∼ZK
[f(y)] = 0. Setting s = 1, the left-hand side of the robust Pisier’s inequality gives

Ey∼ZK

[
|f(y)|

]
= 2 · dTV (ℓ,U).

We use the robust Pisier’s inequality to prove the following lemma:
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Lemma 17. For any probability distribution ℓ over ZK , we have

dTV (ℓ,U)
m1.5 log2 n

≲ Ex∼ZK


√√√√√
∑
i∈T

∑
b∈Zmi

(x,x(i)→b)∈G

(
Lb
if(x)

)2
 .

Proof. A direct application of the robust Pisier’s inequality (Theorem 11) with s = 1 gives

dTV (ℓ,U)
log n

≲ Ex,y∼ZK


∣∣∣∣∣∣∣∣∣
∑
i∈T

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

(1− ωad
i )ω−ayi

i ωaxi
i Lxi+d

i f(x)

∣∣∣∣∣∣∣∣∣


For convenience, we write Bx,i,a,d to denote

Bx,i,a,d := (1− ωad
i )ωaxi

i Lxi+d
i f(x).

Then the RHS of the inequality above becomes

Ex,y∼ZK


∣∣∣∣∣∣∣∣∣
∑
i∈T

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

ω−ayi

i Bx,i,a,d

∣∣∣∣∣∣∣∣∣

 . (25)

Let R(z) and I(z) denote the real and imaginary parts of a complex number z ∈ C. Then we have∣∣∣∣∣∣∣∣∣
∑
i∈T

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

ω−ayi

i Bx,i,a,d

∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣
∑
i∈T

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

R(ω−ayi

i )R(Bx,i,a,d)

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
∑
i∈T

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

R(ω−ayi

i )I(Bx,i,a,d)

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
∑
i∈T

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

I(ω−ayi

i )R(Bx,i,a,d)

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
∑
i∈T

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

I(ω−ayi

i )I(Bx,i,a,d)

∣∣∣∣∣∣∣∣∣
and we can now analyze real-valued random variables. We analyze the first of the four terms:

Ey∼ZK


∣∣∣∣∣∣∣∣∣
∑
i∈T

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

R(ω−ayi

i )R(Bx,i,a,d)

∣∣∣∣∣∣∣∣∣

 , (26)

noting that the same analysis will apply to each of the other terms. Define the random variable

Xi = R(ω−ayi)
∑

a∈Z∗
mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

R(Bx,i,a,d)
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and note that the expectation of Xi is 0 over y ∼ ZK . Let

t := 100 log n ·

√√√√√√√√√
∑
i∈T

 ∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

R(Bx,i,a,d)


2

≤ O(log n) ·
√√√√√
∑
i∈T

m2
∑

a∈Z∗
mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)
∈G

(
R(Bx,i,a,d)

)2

≤ O(m1.5 log n) ·
√√√√√
∑
i∈T

∑
b∈Z∗

mi

(x,x(i)→b)∈G

(
Lb
if(x)

)2
.

Bernstein’s inequality gives us that

Py∼ZK


∣∣∣∣∣∣∣∣∣
∑
i∈T

∑
a∈Z∗

mi

∑
d∈Z∗

mi

(x,x(i)→xi+d)∈G

R(ω−ayi)R(Bx,i,a,d)

∣∣∣∣∣∣∣∣∣ ≥ t

 ≤ 1

n10
.

As a result, we know that (26) is at most(
1− 1

n10

)
· t+ 1

n10
· nt < 2t. (27)

The same series of steps applies to the other three terms and the lemma follows.

Letting G′ be the directed graph that contains the union of edges in G[u], G[r] and G[κ], κ ≥ 1, but
not those in G[z], we can replace the RHS of the Lemma 17 inequality with

Ex∼ZK


√√√√√
∑
i∈T

∑
b∈Zmi

(x,x(i)→b)∈G

(
Lb
if(x)

)2
 = Ex∼ℓ


√√√√√√∑

i∈T

∑
b∈Zmi

(x,x(i)→b)∈G′

(
Lb
iℓ(x)

ℓ(x)

)2

 .

The next lemma connects the quantity in the expectation to the outdegree of x in G[u] and G[κ].

Lemma 18. For every x ∈ ZK , we have

∑
i∈T

∑
b∈Zmi

(x,x(i)→b)∈G′

(
ℓ(x)− ℓ(x(i)→b)

ℓ(x)

)2

≤ m3 · outdeg(x,G[u]) +
∑
κ≥1

4m−2κ+4 · outdeg(x,G[κ]).

Proof. Each edge (x, x(i)→b) ∈ G′ lies in G[u], G[r] or G[κ] for some κ ≥ 1. If (x, x(i)→b) is in G[u], then
by the orientation of edges in G[u], we have ℓ(x) > ℓ(x(i)→b), which implies that the contribution of each
such edge to the sum on the LHS is at most 1.

Next, for each (x, x(i)→b) is in G[κ] for some κ ≥ 1, since it is even, we have ℓ(x), ℓ(x(i)→b) > 0, since
otherwise it is a zero edge or uneven edge. Since w({x, x(i)→b}) < m/(m+ 1), we have:

max{ℓ(x), ℓ(x(i)→b)}
min{ℓ(x), ℓ(x(i)→b)}

< m+ 1.

Consequently, we have

|ℓ(x)− ℓ(x(i)→b)|
ℓ(x)

≤ w({x, x(i)→b}) · max{ℓ(x), ℓ(x(i)→b)}
min{ℓ(x), ℓ(x(i)→b)}

≤ (m+ 1) · w({x, x(i)→b}) ≤ 2m−κ+2.
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Therefore, the contribution of each such edge to the sum on the LHS is at most 4m−2κ+4.
Lastly, assume that (x, x(i)→b) is in G[r]. By our construction, this implies that (x, x(i)→b) is an even

edge and there exists a c ∈ Zmi
\ {xi} such that (x, x(i)→c) ∈ G[u]. This also implies that (x, x(i)→b) is

a level κ edge, for some κ ≥ 1. By a similar argument as above, we have(
ℓ(x)− ℓ(x(i)→b)

ℓ(x)

)2

≤
(
w({x, x(i)→b}) · max{ℓ(x), ℓ(x(i)→b)}

min{ℓ(x), ℓ(x(i)→b)}

)2

≤ m2,

which is at most m2 · (outdegree of x in G[u] with respect to edges in the i -th direction). Summing over
all i ∈ T and b ∈ Zmi

\ {xi} such that (x, x(i)→b) ∈ G[r], we find:

∑
i∈T

∑
b∈Zmi

(x,x(i)→b)∈G[r]

(
ℓ(x)− ℓ(x(i)→b)

ℓ(x)

)2

≤ (m− 1)m2 · outdeg(x,G[u]).

The lemma follows by combining the analysis for edges in G[u], G[r] and G[κ].

Finally, we connect dTV (ℓ,U) with the expected
√
outdegree of x ∼ ℓ:

Lemma 19. Letting β = dTV (ℓ,U), one of the following two conditions must hold:

1. Either the directed graph G[u] of uneven edges satisfies:

Ex∼ℓ

[√
outdeg(x,G[u])

]
≳

β

m3 log2 n
.

2. Or, there exists a κ ∈ [10 log(nm/β)] such that the directed graph G[κ] satisfies:

Ex∼ℓ

[√
outdeg(x,G[κ])

]
≳

mκβ

m3.5 · log2 n · log(nm/β)
.

Proof. It follows from Lemmas 17 and 18 that

β

m1.5 log2 n
≲ Ex∼ℓ

√m3 · outdeg(x,G[u]) +
∑
κ≥1

4m−2κ+4 · outdeg(x,G[κ])


≤ m1.5 · Ex∼ℓ

[√
outdeg(x,G[u])

]
+

10 log(nm/β)∑
κ=1

2m−κ+2 · Ex∼ℓ

[√
outdeg(x,G[κ])

]
+ o

(
β

m1.5 log2 n

)
.

which used the fact that the degrees are always bounded by n(m− 1). The lemma follows.

4.2 Separating into Cases

For each t-subset T of [n], let α(T ) = dTV (pT ,U). Note that the α in the statement of Lemma 9 can be
written as α = ET∼S(t)[α(T )]. For each T , take pT as ℓ in the previous subsection to partition undirected
edges in the undirected graph H(T ) over ZK with K = MT into H[z](T ) (zero edges), H[u](T ) (uneven
edges), and H[κ](T ) (even edges at scale κ ≥ 1). Orient these edges as in the previous subsection to
obtain directed graphs G[u](T ) and G[κ](T ). By applying Lemma 19 on ℓ = pT , we conclude that one of
the following two conditions holds for either G[u](T ) or one of the graphs G[κ](T ), κ ∈ [10 log(nm/α(T ))].
These cases mirror the two cases in the hypercube setting from [CCK+21].

Before stating the two cases, note that since α(T ) ∈ [0, 1], there exists a ζ > 0 such that with
probability at least ζ over T ∼ S(t),

α(T ) ≳
α

ζ log(1/α)
.

Therefore, one of the following cases must hold.
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Case 1: With probability at least ζ/2 over T ∼ S(t), the directed graph G[u](T ) of pT satisfies

Ex∼pT

[√
outdeg(x,G[u](T ))

]
≳

α

ζ log(1/α) ·m3 log2 n
.

Since the out-degree is always between 0 and n(m− 1), there exist two parameters d ∈ [n(m− 1)] and
ξ > 0 such that with probability ζ/(2 log(nm)) over the draw of T ∼ S(t), we have

Pr
x∼pT

[
d ≤ outdeg(x,G[u](T )) ≤ 2d

]
≥ ξ (28)

and ξ satisfies √
d · ξ ≳

α

ζ log(1/α) ·m3 log2 n · log(nm)
. (29)

Case 2: There exists a κ ∈ [O(log(nm/α))] (using ζ ≤ 1) such that with probability at least

Ω

(
ζ

log(nm/α)

)
over T ∼ S(t), the directed graph G[κ](T ) of even edges at scale κ of pT satisfies

Ex∼pT

[√
outdeg(x,G[κ])(T )

]
≳

mκα

ζ log(1/α) ·m3.5 log2 n · log(nm/α)
.

Using a bucketing argument, there exist d ∈ [n(m− 1)] and ξ > 0 such that with probability

Ω

(
ζ

log(nm) · log(nm/α)

)
over the draw of T ∼ S(t), we have

Px∼pT

[
d ≤ outdeg(x,G[κ](T )) ≤ 2d

]
≥ ξ

and ξ satisfies
√
d · ξ ≳

mκα

ζ log(1/α) ·m3.5 log2 n · log(nm/α) · log(nm)
. (30)

4.3 From Directed Graphs to the Bias Vector

Let R be a subset of [n] (which will be either a t-subset T of [n] or a (t + 1)-subset S of [n] in the rest
of the section). Let J = MR. Given a distribution ℓ over ZJ , i ∈ R and c, d ∈ Zmi

, recall the definition
of the bias µc,d

i (ℓ) from Definition 4:

µc,d
i (ℓ) =

Prx∼ℓ[xi = c]− Prx∼ℓ[xi = d]

Prx∼ℓ[xi = c] + Prx∼ℓ[xi = d]

with µc,d
i (ℓ) = 0 with Prx∼ℓ[xi = c] = Prx∼ℓ[xi = d] = 0.

In this subsection we connect directed graphs defined in Section 4.1 and 4.2 to biases of restrictions
p|ρ of p when ρ ∼ D(t+ 1, p). Consider a distribution p supported on ZM and let t ∈ [n− 1].

Let π = (π(1), . . . , π(t + 1)) be an ordered sequence of t + 1 distinct indices from [n]. We let S(π)
denote the corresponding (t+ 1)-subset {π(1), . . . , π(t+ 1)}.

Definition 20. Given π and y ∈ ZM , define a restriction ρ(π, y) ∈×n

i=1
(Zmi ∪ {∗}) as

ρ(π, y)i =

{
∗ i = π(j) for some j ∈ [t+ 1]

yi otherwise.

We will also consider sequences τ = (τ(1), . . . , τ(t)) of t (instead of t + 1) distinct indices from [n].
For such a τ , the corresponding set S(τ) and the restriction ρ(τ, y) given by y ∈ ZM are defined similarly.

As in [CCK+21], we use that the following is an equivalent way of drawing ρ ∼ D(t+ 1, p):
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1. First, sample a sequence of t+ 1 random indices π = (π(1), . . . , π(t+ 1)) uniformly from [n]
without replacements (so the set S(π) can be viewed equivalently as drawn from S(t+ 1)).

2. Then, sample y ∼ p.

3. Finally, return ρ = ρ(π, y).

We will use (π, y) ∼ D′(t + 1, p) to denote the sampling of (π, y) as above, with the understanding
that ρ(π, y) is distributed the same as D(t+ 1, p). Similarly, consider sampling ρ ∼ D(t, p) equivalently
according to the following procedure:

1. First, sample a sequence of t random indices τ = (τ(1), . . . , τ(t)) uniformly from [n] without
replacements (so the set S(τ) can be viewed equivalently as drawn from S(t)).

2. Then, sample y ∼ p.

3. Finally, return ρ = ρ(τ, y).

Similarly we will write (τ, y) ∼ D′(t, p) to denote the sampling of (τ, y) as above.
Fixing any i ∈ [t+1], we let π−i denote the length-t sequence obtained from π after removing its i-th

entry. An important observation is that ρ ∼ D(t, p) can also be drawn as follows:

1. First, sample a sequence of t+ 1 random indices π = (π(1), . . . , π(t+ 1)) uniformly from [n]
without replacements and set τ = π−i. (Note that i is a fixed index in [t+ 1].)

2. Then, sample y ∼ p.

3. Finally, return y and ρ = ρ(τ, y) = ρ(π−i, y).

Given a t-subset T of [n] with K = MT , we will use

(z, i, b) ∈ ZK × T × Zmi

to denote directed edges over ZK : (z, i, b) means the directed edge (z, z(i)→b) so we can talk about, e.g.,
whether (z, i, b) ∈ G[u](T ) and whether (z, i, b) ∈ G[κ](T ). (Note that for notational convenience, we
allow b to be zi, in which case (z, i, b) can never be an edge in these directed graphs.) As an example,
let y ∈ ZM , π be a (t+1)-sequence of distinct elements in [n], and b ∈ Zmπ(i)

for some i ∈ [t+1]. Then,
(y

S(π−i)
, π(i), b) denotes the edge from y

S(π−i)
to y′ where y′ satisfies y′π(i) = b and y′

S(π)
= y

S(π)
.

The following lemma connects the directed graphs to biases of restrictions of p:

Lemma 21. Let π be a (t+ 1)-sequence of distinct indices and y ∈ ZM . For i ∈ [t+ 1] and b ∈ Zmπ(i)
,∣∣∣µb,yπ(i)

π(i) (p|ρ(π,y))
∣∣∣ ≥ m

2(m+ 1)
· 1
{(

y
S(π−i)

, π(i), b
)
∈ G[u](S(π−i))

}
+
∑
κ≥1

1

2mκ
· 1
{(

y
S(π−i)

, π(i), b
)
∈ G[κ](S(π−i))

}
.

(31)

Proof. We let ℓ denote p|ρ(π,y) and c denote yπ(i). Writing

Prb = Pr
x∼p

[
xπ(i) = b, x

S(π)
= y

S(π)

]
and Prc = Pr

x∼p

[
xπ(i) = c, x

S(π)
= y

S(π)

]
,

we have that the LHS of (31) is ∣∣∣µb,c
π(i)(ℓ)

∣∣∣ = ∣∣∣∣∣Prb − Prc

Prb + Prc

∣∣∣∣∣ .
Let z be the string with z

S(π)
= y

S(π)
and zπ(i) = c, and z′ be with z′

S(π)
= y

S(π)
and z′π(i) = b. Then

w(z, z′) =
|Prc − Prb|

max{Prc,Prb}
≤ 2 ·

∣∣∣µb,c
π(i)(ℓ)

∣∣∣ .
If (z, π(i), b) ∈ G[u](T ) is uneven, then the weight is at least m/(m+ 1); if (z, π(i), b) ∈ G[κ](T ) for some
κ ≥ 1, then the weight is at least m−κ. This finishes the proof of the lemma.
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4.4 Case 1: Graph with Uneven Edges

We assume there are parameters ζ ′, ξ, and d ≥ 1 such that with probability at least ζ ′ over T ∼ S(t),

Pr
x∼pT

[
d ≤ outdeg(x,G[u](T )) ≤ 2d

]
≥ ξ. (32)

Notice that ζ ′ = ζ/(2 log(nm)) (see Case 1 of Section 4.2), so that (29) implies:
√
d · ξ ≳

α

ζ ′ log(1/α) ·m3 log4(nm)
. (33)

We define (τ, y), where τ is a t-sequence and y ∈ ZM , to be t-contributing or (t+ 1)-contributing:

Definition 22. Let τ be a t-sequence of distinct indices from [n] and let y ∈ ZM . We say the pair (τ, y)
is t-contributing if the restricted distribution p|ρ(τ,y) satisfies∥∥∥µ (p|ρ(τ,y)) ∥∥∥

2
≥ 1

m
·
√

d

32
,

and we say (τ, y) is (t+ 1)-contributing otherwise.

Lemma 9 would follow if there are many t-contributing pairs (τ, y). The next lemma gives us the tool
we need to obtain t-contributing pairs:

Lemma 23. Let π be a (t+ 1)-sequence of distinct indices from [n], and y ∈ ZM be in the support of p.
If there are distinct i1, ..., id+1 ∈ [t+ 1] such that for each k ∈ [d+ 1] there is a bk ∈ Zmπ(ik)

such that(
y
S(π−ik

)
, π(ik), bk

)
∈ G[u] (S(π−ik)) ,

then (π−ik , y) is a t-contributing pair for at least one of the indices k ∈ [d+ 1].

We begin by proving the following claim.

Claim 24. Let π be a (t+ 1)-sequence of distinct indices from [n], and let y ∈ ZM be in the support of
p. If there are i ̸= j ∈ [d+ 1], bi ∈ Zmπ(i)

and bj ∈ Zmπ(j)
such that(

y
S(π−i)

, π(i), bi

)
∈ G[u] (S(π−i)) and

(
y
S(π−j)

, π(j), bj

)
∈ G[u] (S(π−j)) ,

then there must exist either a ci ∈ Zmπ(i)
or cj ∈ Zmπ(j)

such that either∣∣∣µci,yπ(i)

π(i)

(
p|ρ(π−j ,y)

)∣∣∣ ≥ 1

4m
or

∣∣∣µcj ,yπ(j)

π(j)

(
p|ρ(π−i,y)

)∣∣∣ ≥ 1

4m
.

Intuition behind the proof: We proceed by contradiction and assume for all ci and cj , we have∣∣∣µci,yπ(i)

π(i)

(
p|ρ(π−j ,y)

)∣∣∣ < 1

4m
and

∣∣∣µcj ,yπ(j)

π(j)

(
p|ρ(π−i,y)

)∣∣∣ < 1

4m
. (34)

Then all the probabilities

Pr
x∼p

[
xπ(i) = ci, xπ(j) = yπ(j), xS(π)

= y
S(π)

]
and Pr

x∼p

[
xπ(i) = yπ(i), xπ(j) = cj , xS(π)

= y
S(π)

]
must be close to the probability

Pr
x∼p

[
xπ(i) = yπ(i), xπ(j) = yπ(j), xS(π)

= y
S(π)

]
.

In particular, this implies that

Pr
x∼p

[
xπ(i) = bi, xπ(j) = yπ(j), xS(π)

= y
S(π)

]
≈ Pr

x∼p

[
xπ(i) = yπ(i), xπ(j) = yπ(j), xS(π)

= y
S(π)

]
. (35)

However, this leads to a contradiction since we can use

Pr
x∼p

[
xπ(i) = yπ(i), xπ(j) = cj , xS(π)

= y
S(π)

]
≈ Pr

x∼p

[
xπ(i) = yπ(i), xπ(j) = yπ(j), xS(π)

= y
S(π)

]
.

and the unevenness of the edge (
y
S(π−i)

, π(i), bi

)
to show that the LHS of (35) is smaller than its RHS, a contradiction.
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Proof of Claim 24. Suppose towards a contradiction that (34) holds. Also for notational convenience we
assume that π(i) = 1 and π(j) = 2. From the first part of (34) we have∣∣∣∣∣Prx∼p[x1 = y1, x2 = y2, xS(π)

= y
S(π)

]− Prx∼p[x1 = ci, x2 = y2, xS(π)
= y

S(π)
]

Prx∼p[x1 = y1, x2 = y2, xS(π)
= y

S(π)
] + Prx∼p[x1 = ci, x2 = y2, xS(π)

= y
S(π)

]

∣∣∣∣∣ < 1

4m
.

Letting γ := Prx∼p[x1 = y1, x2 = y2, xS(π)
= y

S(π)
] > 0 (note that γ > 0 because we assumed that y is

in the support of p), this implies for any ci ̸= y1, we have

γ ·
1− 1

4m

1 + 1
4m

< Pr
x∼p

[
x1 = ci, x2 = y2, xS(π)

= y
S(π)

]
< γ ·

1 + 1
4m

1− 1
4m

. (36)

Similarly, for any cj ̸= yπ(j), we have

γ ·
1− 1

4m

1 + 1
4m

< Pr
x∼p

[
x1 = y1, x2 = cj , xS(π)

= y
S(π)

]
< γ ·

1 + 1
4m

1− 1
4m

. (37)

In particular, setting ci = bi, we have

Pr
x∼p

[
x1 = bi, xS(π)

= y
S(π)

]
≥ Pr

x∼p

[
x1 = bi, x2 = y2, xS(π)

= y
S(π)

]
> γ ·

1− 1
4m

1 + 1
4m

. (38)

On the other hand, given that (
y
S(π−i)

, π(i), bi

)
∈ G[u] (S(π−i)) ,

we have
|Prx∼p[x1 = y1, xS(π)

= y
S(π)

]− Prx∼p[x1 = bi, xS(π)
= y

S(π)
]|

max{Prx∼p[x1 = y1, xS(π)
= y

S(π)
],Prx∼p[x1 = bi, xS(π)

= y
S(π)

]}
≥ m

m+ 1
.

By the orientation of uneven edges, we have

Pr
x∼p

[
x1 = y1, xS(π)

= y
S(π)

]
≥ Pr

x∼p

[
x1 = bi, xS(π)

= y
S(π)

]
.

As a result, we have

Pr
x∼p

[
x1 = bi, xS(π)

= y
S(π)

]
≤ 1

m+ 1
· Pr
x∼p

[
x1 = y1, xS(π)

= y
S(π)

]
. (39)

Finally, using (37), we have

Pr
x∼p

[
x1 = y1, xS(π)

]
≤ γ

(
1 + (m2 − 1) ·

1 + 1
4m

1− 1
4m

)
≤ γ

(
1 + (m− 1) ·

1 + 1
4m

1− 1
4m

)
This together with (38) and (39) lead to a contradiction.

We are now ready to prove Lemma 23.

Proof of Lemma 23. Suppose there are d+1 distinct indices i1, ..., id+1 ∈ [t+1] such that for each index
k ∈ [d+ 1] there exists a bk ∈ Zmπ(ik)

such that(
y
S(π−ik

)
, π(ik), bk

)
∈ G[u] (S(π−ik)) .

By Claim 24, for each pair i, j of the d+ 1 indices, there exists ci or cj such that either∣∣∣µci,yπ(i)

π(i)

(
p|ρ(π−j ,y)

)∣∣∣ ≥ 1

4m
or

∣∣∣µcj ,yπ(j)

π(j)

(
p|ρ(π−i,y)

)∣∣∣ ≥ 1

4m
. (40)

Construct a graph G as follows. Let its vertex set be i1, . . . , id+1. For each pair i, j, create a directed
edge from i to j if the second part of (40) holds and create a directed edge from j to i if if the second
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part of (40) holds. If both inequalities hold, orient the edge between i and j arbitrarily. So G a directed
version of the complete undirected graph over i1, . . . , id+1.

It is easy to show that G has a vertex with out-degree ≥ d/2; otherwise the total number of edges
is < (d + 1) · (d/2), a contradiction. To finish the proof, let k be an index among i1, . . . , id+1 that has
out-degree at least d/2. Then we have∥∥∥µ (p|ρ(π−k,y)

) ∥∥∥2
2
≥ 1

(4m)2
· d
2
,

and the lemma follows.

We now use Lemma 23 to prove Case 1 of Lemma 9. We will need to lowerbound the expectation of
∥µ(p|ρ(π,y)|)∥2 as (π, y) ∼ D′(t+ 1, p). For each i ∈ [t+ 1], let Xi be the indicator random variable that
is set to 1 when the following event holds:{(

y
S(π−i)

, π(i), b
)
∈ G[u] (S(π−i)) for some b ∈ Zmπ(i)

and (π−i, y) is (t+ 1)-contributing
}
. (41)

First, combining Lemma 21 and the first part of the event above gives us the following inequality:∥∥∥µ (p|ρ(π,y)) ∥∥∥
2
≥ m

2(m+ 1)
·
√

X1 + · · ·+Xt+1.

This is because Lemma 21 implies that∥∥∥µ (p|ρ(π,y)) ∥∥∥2
2
≥

∑
i∈[t+1]

∑
c∈Zmπ(i)

(
m

2(m+ 1)

)2

· 1
{(

y
S(π−i)

, π(i), c
)
∈ G[u] (S(π−i))

}

≥
(

m

2(m+ 1)

)2

·
(
X1 + · · ·+Xt+1

)
.

Second, we can use Lemma 23 and the second part of (41) to see that X1 + · · ·+Xt+1 is at most d
with probability 1. Therefore, we can obtain the following expression:

E(π,y)

[∥∥∥µ (p|ρ(π,y)) ∥∥∥
2

]
≳ E(π,y)

[
X1 + · · ·+Xt+1

]
· 1√

d
· m

2(m+ 1)
,

where (π, y) ∼ D′(t+ 1, p).
What remains is bounding the probability of Xi = 1 for each i ∈ [t + 1]. The proof of this part is

exactly the same as in [CCK+21], and we include it for completeness. We claim that for each i ∈ [t+1],

Pr
(π,y)

[
Xi = 1

]
≥
(
ζ ′ξ − Pr

(π,y)

[
(π−i, y) is t-contributing)

])
· d

nm
. (42)

Let us consider drawing π and y by drawing y and π−i first and then π(i). We define event F over y
and π−i as follows:

Event F : S(π−i) as T and y
S(π−i)

as x satisfy (32) and (π−i, y) is (t+ 1)-contributing.

From our assumption at the beginning of Case 1, the first part of F occurs with probability at least ζ ′ξ.
Therefore, the probability of F is at least

ζ ′ξ − Pr
(π,y)

[
(π−i, y) is t-contributing

]
.

Conditioning on π−i and y satisfying F , π(i) (together with π−i and y) leads to Xi = 1 if there exists b
such that (y

S(π−i)
, π(i), b) ∈ G[u](S(π−i)). The probability of this is at least d/(n(m− 1)).

Continuing from (42), next we can observe that the probability of (π−i, y) being t-contributing is the
same as (τ, y) being t-contributing, where (τ, y) ∼ D′(t, p). Putting everything together yields

E(π,y)

[∥∥∥µ (p|ρ(π,y)) ∥∥∥
2

]
≳

1√
d
· (t+ 1) ·

(
ζ ′ξ − Pr

(τ,y)

[
(τ, y) is t-contributing

])
· d

nm
. (43)
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Thus, either the probability of (τ, y) being t-contributing is at least ζ ′ξ/2, in which case we have

E(τ,y)∼D′(t,p)

[∥∥∥µ (p|ρ(τ,y)) ∥∥∥
2

]
≳ ζ ′ξ ·

√
d

m
≳

α

m4 · log4(nm) log(1/α)

using (33) for the last inequality, from which (2) follows as t+ 1 ≤ n. Or, (43) can be lowerbounded by:

1√
d
· (t+ 1) · ζ ′ξ · d

nm
≳

t

n
· α

m4 · log4(nm) log(1/α)
.

This finishes the proof of Case 1.

4.5 Case 2: Graph with Even Edges

From Case 2 of Section 4.2, we assume that there are parameters κ ∈ [O(log(nm/α))], ζ ′, ξ, and d such
that with probability at least ζ ′ over the draw of T ∼ S(t), we have:

Px∼pT

[
d ≤ outdeg(x,G[κ](T )) ≤ 2d

]
≥ ξ,

where (30) implies that:

√
d · ξ ≳

mκα

ζ ′ log(1/α) ·m3.5 · log2 n log2(nm) log2(nm/α)
.

We introduce a notion of t-contributing and (t+ 1)-contributing restrictions:

Definition 25. Let γ ≥ 1 be a parameter to be fixed later. (We will set γ to be d at the end but we
keep it as a parameter for now.) A restriction ρ with t stars is said to be t-contributing if∥∥∥µ (p|ρ) ∥∥∥

2
≥

√
γ

mκ+1
,

and we say that ρ is (t+ 1)-contributing otherwise.

Lemma 26. Let π be a (t+ 1)-sequence of distinct indices from [n] and let y ∈ ZM be in the support of
p. If i ∈ [t+ 1] satisfies that ρ(π−i, y

(π(i))→a) is (t+ 1)-contributing for all a ∈ Zmπ(i)
, then

∑
j∈[t+1]\{i}

∑
c,d∈Zmπ(j)

(
µc,d
π(j)

(
p|ρ(π,y)

))2
<

γ

m2κ+2
.

Proof. Let
Pr(a) := Pr

x∼p

[
xπ(i) = a |x

S(π)
= y

S(π)

]
for each a ∈ Zmπ(i)

. We note that for any j ̸= i and c, d ∈ Zmπ(j)
,

µc,d
π(j)

(
p|ρ(π,y)

)
=

∑
a∈Zmπ(i)

Pr(a) · µc,d
π(j)

(
p|ρ(π−i,y(π(i))→a)

)
.

By Jensen’s inequality, we have∑
j∈[t+1]\{i}

∑
c,d∈Zmπ(j)

(
µc,d
π(j)

(
p|ρ(π,y)

))2
≤

∑
j∈[t+1]\{i}

∑
c,d∈Zmπ(j)

∑
a∈Zmπ(i)

Pr(a) ·
(
µc,d
π(j)

(
p|ρ(π−i,y(π(i))→a)

))2
Since we assume each pair (π−i, y

(π(i))→a) is (t+ 1)-contributing, we have∑
j∈[t+1]\{i}

∑
c,d∈Zmπ(j)

(
µc,d
π(j)

(
p|ρ(π−i,y(π(i))→a)

))2
<

γ

m2κ+2

for each such ρ(π−i, y
(π(i))→a). The lemma follows using

∑
a Pr(a) = 1.
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Similar to Case 1 we would like to lowerbound the expectation of ∥µ(p|ρ(π,y))∥2 as (π, y) ∼ D′(t+1, p).
Let us introduce the following indicator random variable Xi for each i ∈ [t + 1]. Xi equals 1 when the
following event Fi holds:

Event Fi on (π, y) ∼ D′(t+ 1, p): There exists a b ∈ Zmπ(i)
such that(

y
S(π−i)

, π(i), b
)
∈ G[κ] (S(π−i)) ,

and for all c ∈ Zmπ(i)
, we have that ρ(π−i, y

π(i)→c) is (t+ 1)-contributing.

Combining Lemma 21 and the first part of the event Fi gives us∥∥∥µ (p|ρ(π,y)) ∥∥∥
2
≥ 1

2mκ
·
√

X1 + · · ·+Xt+1.

Combining this inequality with Lemma 26 and the second part of Event Fi implies that X1 + · · ·+Xt+1

is at most ⌈8γ/m2⌉ with probability 1. This is because if the sum is more than ⌈8γ/m2⌉, there are two
Xi = Xj = 1, from which Lemma 26 implies that

1

4m2κ
· (X1 + · · ·+Xt+1) ≤

∥∥∥µ (p|ρ(π,y)) ∥∥∥2
2
=

∑
i∈[t+1]

∑
c,d∈Zmπ(i)

(
µc,d
π(i)

(
p|ρ(π,y)

))2
< 2 · γ

m2κ+2
,

which implies that X1 + · · ·+Xt+1 < 8γ/m2. As a result, we have

E(π,y)

[∥∥∥µ (p|ρ(π,y)) ∥∥∥
2

]
≳

1

mκ
· E(π,y)

[
X1 + · · ·+Xt+1

]
·

√
1

⌈8γ/m2⌉
.

What remains is bounding the probability that Xi = 1.
To do so, we will need to introduce some notation. Let T be a size-t subset of [n] and let z ∈×i∈T

Zmi
.

We write ρ(z) to denote the restriction ρ ∈×n

i=1
(Zmi

∪ {∗}) with ρi = zi for all i ∈ T and ρi = ∗ for all
i ∈ T . Define the following two disjoint subsets for each size-t subset T :

AT =

{
z ∈×

i∈T

Zmi
: d ≤ outdeg

(
z,G[κ](T )

)
≤ 2d and ρ(z) is (t+ 1)-contributing

}

BT =

{
w ∈×

i∈T

Zmi
: ρ(w) is t-contributing

}
.

It is not hard to see that the probability of Xi = 1 (i.e. the event Fi on (π, y) ∼ D′(t+ 1, p)) is at least
the probability of the following event E, where we first draw a t-subset T of [n] uniformly at random,
then z ∼ pT , and finally draw i from T uniformly at random:

Event E : ∃ b ∈ Zmi : (z, i, b) ∈ G[κ](T ), z ∈ AT , and ∀ c ∈ Zmi : z
(i)→c ̸∈ BT .

We now lowerbound the probability of E over T, z and i. First, we write the probability as follows:

Pr
T,z,i

[
E
]
= Pr

T,z,i

[
∃ b ∈ Zmi : (z, i, b) ∈ G[κ](T ) and z ∈ AT

]
(44)

− Pr
T,z,i

[
∃ b ∈ Zmi : (z, i, b) ∈ G[κ](T ), z ∈ AT and ∃ c ∈ Zmi : z

(i)→c ∈ BT

]
.

The first probability on the right hand side of (44) is at least:(
ζ ′ξ − Pr

T,z

[
ρ(z) is t-contributing

])
· d

(n− t)m
.

To see this, we first draw T and z and then impose the condition that z ∈ AT . Similarly to the Case 1
arguments, the probability of such an event is at least:

ζ ′ξ − Pr
T,z

[
ρ(z) is t-contributing

]
.
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We then draw i from T . The probability of getting an (z, i, b) ∈ G[κ](T ) for some b is at least

d

(n− t)(m− 1)
>

d

(n− t)m
.

Next we upperbound the probability that is being subtracted in (44). It can be written as:

1(
n
t

) ∑
T∈P(t)

∑
z

Pr
x∼pT

[x = z]
∑
i∈T

1

|T |
· 1
{
∃ b ∈ Zmi : (z, i, b) ∈ G[κ](T ), z ∈ AT ,∃ c ∈ Zmi : z

(i)→c ∈ BT

}
,

where the sum of z is over z ∈×i∈T
Zmi

. By a union bound, we can write this as:

1(
n
t

)
(n− t)

∑
T∈P(t)

∑
z

Pr
x∼pT

[x = z]
∑
i∈T

∑
b∈Zmi

∑
c∈Zmi

1

{
(z, i, b) ∈ G[κ](T ) ∧ z ∈ AT ∧ z(i)→c ∈ BT

}
=

1(
n
t

)
(n− t)

∑
T∈P(t)

∑
i∈T

∑
a∈Zmi

∑
z:zi=a

∑
b∈Zmi

∑
c∈Zmi

Pr
x∼pT

[x = z] · 1
{
(z, i, b) ∈ G[κ](T ) ∧ z ∈ AT ∧ z(i)→c ∈ BT

}
We apply a change of variables. Instead of summing over all a and all z ∈×i∈T

Zmi : zi = a, we sum
over all c ∈ Zmi , and all w ∈×i∈T

Zmi : wi = c. Observe that the original variable z changes to w(i)→a,
and z(i)→c becomes w. This yields the following expression:

1(
n
t

)
(n− t)

∑
T

∑
i∈T

∑
c∈Zmi

∑
w:wi=c

∑
a,b∈Zmi

Pr
x∼pT

[x = w(i)→a] · 1
{
(w(i)→a, i, b) ∈ G[κ](T ) ∧ w(i)→a ∈ AT ∧ w ∈ BT

}
.

Observe that if (w(i)→a, w(i)→b) is not an edge in G[κ](T ), then the corresponding indicator variable
above equals zero. Otherwise, if it is an edge in G[κ](T ), by our construction of G[κ](T ), we must have
(w(i)→a, w(i)→d) ̸∈ G[u](T ) for all d ∈ Zmi

. Therefore, we have

Pr
x∼pT

[
x = w(i)→a

]
≤ (m+ 1) · Pr

x∼pT

[
x = w(i)→d

]
for all d ∈ Zmi . Therefore, the expression can be bounded from above by

(m+ 1)(
n
t

)
(n− t)

∑
T

∑
i∈T

∑
c∈Zmi

∑
w:wi=c

∑
a,b∈Zmi

Pr
x∼pT

[x = w] · 1
{
(w(i)→a, i, b) ∈ G[κ](T ) ∧ w(i)→a ∈ AT ∧ w ∈ BT

}
=

(m+ 1)(
n
t

)
(n− t)

∑
T

∑
w∈BT

Pr
x∼pT

[x = w]
∑
i∈T

∑
a,b∈Zmi

1

{
(w(i)→a, i, b) ∈ G[κ](T ) ∧ w(i)→a ∈ AT

}
.

Next, considering the sum of the indicator over all i ∈ T and all a ∈ Zmi yields all possible ways to
get to w(i)→b from AT in G[κ](T ). Thus our expression equals:

(m+ 1)(
n
t

)
(n− t)

∑
T∈P(t)

∑
w∈BT

Pr
x∼pT

[x = w]
∑

b∈Zmi

[
number of edges from AT to w(i)→b in G[κ](T )

]
.

Because each vertex in AT has out-degree at most 2d in G[κ](T ), we may apply Lemma 16 to conclude
that the number of edges from AT to the string w(i)→b is at most 2d, for each b. We can therefore say
that the probability we subtract is bounded from above by:

2dm(m+ 1)(
n
t

)
(n− t)

∑
T∈P(t)

∑
w∈BT

Pr
x∼pT

[x = w] =
2dm(m+ 1)

n− t
· Pr
T,z

[
z ∈ BT

]
.

As a result we have

Pr
(π,y)

[
Xi = 1

]
≥

(
ζ ′ξ −

(
1 + 4m3

)
· Pr
T,z

[
ρ(z) is t-contributing

])
· d

(n− t)m
.

To conclude the proof of Lemma 9 for Case 2, we set γ = d. Then we either have

Pr
T,z

[
ρ(z) is t-contributing

]
≥ ζ ′ξ

8m3
,
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Algorithm 2 CoarseTest(n,M, p)

Require: Dimension n, M = (m1, . . . ,mn) and sample access to a distribution p over ZM

1: Draw N = O(m log(mn)) samples x from p.
2: if any i ∈ [n] and a ∈ [mi] satisfy (# samples with xi = a is > 2N/mi or < N/(2mi)) then
3: return reject
4: else
5: return accept
6: end if

Algorithm 3 ProjectedTestMean(n,M, ϵ, p)

Require: Dimension n, M = (m1, . . . ,mn), ϵ > 0 and sample access to a distribution p over ZM

1: CoarseTest(n,M, p) and return reject if it returns reject
2: for all k ∈ [m2] do
3: Run MeanTester(n, p(k), ϵ/2m) for O(logm) many times
4: return reject if the majority of calls return reject
5: end for
6: return accept

which implies that

Eρ∼D(t,p)

[∥∥∥µ (p|ρ) ∥∥∥
2

]
≳

ζ ′ξ

m3
·

√
d

mκ+1
≳

α

m7.5 · log(1/α) log2 n log2(nm) log2(nm/α)
.

Or we have

E(π,y)

[∥∥∥µ (p|ρ(π,y)) ∥∥∥
2

]
≳

t+ 1

mκ
· 1√

d
· dζ ′ξ

(n− t)m
≳

t

n
· α

m4.5 · log(1/α) log2 n log2(nm) log2(nm/α)
.

This finishes the proof of Lemma 9.

5 Mean Testing over Hypergrids

ProjectedTestMean is presented as Algorithm 3. It uses a preprocessing subroutine calledCoarseTest
which is presented as Algorithm 2. It also uses MeanTester from [CCK+21]. To state the performance
guarantee of MeanTester, we note that the bias vector µ(p) of a distribution p over {−1, 1}n has the
following simpler form:

µi(p) := Pr
x∼p

[
xi = 1

]
− Pr

x∼p

[
xi = −1

]
.

Theorem 27 (MeanTester [CCK+21]). There is an algorithm (MeanTester) which, given n, sam-
ple access to a distribution p over {−1, 1}n, and a parameter ϵ ∈ (0, 1], draws

O

(
max

{
1

ϵ2
√
n
,
1

ϵ

})
many samples from p and has the following performance guarantee:

1. If p is the uniform distribution, the algorithm outputs accept with probability at least 2/3; and

2. If p satisfies ∥µ(p)∥2 ≥ ϵ, the algorithm outputs reject with probability at least 2/3.

The main idea behind ProjectedTestMean is to reduce the mean testing of p over ZM to that of
the following collection of m2 distributions over {−1, 1}n.

Definition 28. Fix an arbitrary ordering of pairs (c, d) ∈ Z2
mi

for each i ∈ [n] (so that we can refer to
them as the k-th pair, k = 1, . . . ,m2

i ). Let p be a distribution over ZM . Given any k ∈ [m2], we define
a distribution p(k) over {−1, 1} as follows. For each i ∈ [n], let (ci, di) be the min(k,m2

i )-th pair in Z2
mi

.

To draw z ∼ p(k), we first draw x ∼ p and then set zi for each i ∈ [n] to be 1 if xi = ci, −1 if xi = di,
and an independent and uniformly random bit from {−1, 1} if xi /∈ {ci, di}.
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We note that sample access to p(k) for any k can be simulated easily, sample by sample, using sample
access to p. The following simple lemma helps connects ∥µ(p)∥22 with

∑
k ∥µ(p(k))∥22.

Lemma 29. Suppose that p satisfies

1

4mi
≤ Pr

x∼p

[
xi = a

]
≤ 4

mi
(45)

for all i ∈ [n] and a ∈ Zmi
. Then we have∑

k∈[m2]

∥∥∥µ(p(k))∥∥∥2
2
≥ 1

4m2
·
∥∥µ(p)∥∥2

2
.

Proof. Note that every term in ∥µ(p)∥22 appears at least once on the LHS, except that it is multiplied
by |Prx∼p[xi = c] + Prx∼p[xi = d]|2 for some i ∈ [n] and c, d ∈ Zmi

. The latter (without squaring) is at
least 1/(2mi) ≥ 1/(2m) given the assumption, and the lemma follows.

The assumption (45) of Lemma 29 can be easily checked by CoarseTest (Algorithm 2). The proof
of its performance guarantee below is standard using the Chernoff bound.

Lemma 30. There is an algorithm (Algorithm 2: CoarseTest) which, given n,M = (m1, . . . ,mn),
and sample access to a distribution p over ZM , draws O(m log(mn)) samples x ∼ p and satisfies:

1. If p is the uniform distribution, the algorithm outputs accept with probability at least 1− 1/n.

2. If there exists an i ∈ [n] and an a ∈ Zmi such that either

Pr
x∼p

[xi = a] <
1

4mi
or Px∼p [xi = a] >

4

mi
,

then the algorithm outputs reject with probability at least 1− 1/n.

We are now ready to finish the proof of Theorem 7 on ProjectedTestMean:

Proof of Theorem 7. The number of samples used by ProjectedTestMean is

O
(
m log(mn)

)
+O

(
m2 logm

)
·max

(
1√
n
· 4m

2

ϵ2
,
2m

ϵ

)
.

When p is the uniform distribution, it follows by Lemma 30 that it is rejected by CoarseTest with
probability on(1). Given that p(k) is uniform for every k ∈ [m2], by setting the constant hidden in the
O(logm) large enough, it follows from Theorem 27, Chernoff bound and a union bound over all k ∈ [m2]
that it is rejected by calls to MeanTester with probability on(1).

When p satisfies ∥µ(p)∥2 ≥ ϵm
√
n, we consider two cases. If there exist i ∈ [n] and a ∈ Zmi

such
that either Prx[xi = a] < 1/(4mi) or Prx[xi = a] > 4/mi, then p is rejected by CoarseTest with
probability at least 1− on(1). On the other hand, if this is not the case, then by Lemma 29, there exists
a k ∈ [m2] such that ∥µ(p(k))∥2 ≥ ϵ

√
n/(2m). It follows from Theorem 27 and Chernoff bound that with

probability at least 1− on(1), the majority of calls to MeanTest reject p(k).

6 Discussion and Open Problems

In this paper, we study uniformity testing over extended high-dimensional domains [m1]×· · ·×[mn] under
the subcube conditional query model. In doing so, we prove a robust version Pisier’s inequality over hy-
pergrids, which is a result of independent interest. We give an algorithm which makes Õ(poly(m)

√
n/ϵ2)

queries to a subcube conditional sampling oracle, where m = maxi mi. This algorithm has nearly
optimal sample complexity when m is a constant. The algorithm is a modification of the algorithm
of [CCK+21], where additional steps are needed in our setting to properly draw the connection to a
subroutine performing mean testing over the hypercube.

We now highlight several compelling open problems related to distribution testing over extended
high-dimensional domains [m1]× · · · × [mn].
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Lower bounds: There is currently a lack of techniques for studying lower-bounds in the subcube condi-
tional query model setting. To the best of our knowledge, all the known lower-bounds in the subcube con-
ditional query model setting are transferred over from lower-bounds in the standard sampling setting. For
example, the lower-bound for uniformity testing in the hypercube setting from [CDKS16, DDK16, BC17]
is a consequence of lower-bounds for testing uniformity of product distributions. This lower-bound, which
matches the upper-bound given in [CCK+21] up to poly-logarithmic factors, utilizes the fact that sub-
cube conditional queries do not provide stronger access to product distributions than standard samples
do. In the hypergrid setting considered in this paper, the best known lower-bound is also carried over
from the standard sampling setting.

Dependence on m: It remains an interesting question to pin down the dependency on m in the
query complexity of uniformity testing of distributions over hypergrids. In this paper, we did not op-
timize the dependency on m. We imagine that, with some work, the exponent in the dependency on
m could be brought down to around half of its current value (for example, from m21 to m10, perhaps).
It remains an interesting open question to obtain tight dependence on m, and a more challenging open
question to obtain tight bounds on all three parameters n, m and ϵ. Although m21 may not be optimal,
the polynomial dependence on m is a meaningful step in analyzing distribution testing over extended
domains. Our analysis demonstrates how to extend and modify techniques from the hypercube domain,
reveals new technical challenges, and develops new technical lemmas like the extended Pisier’s inequality
suitable for the hypergrid domain.

Identity testing in high dimensions with subcube conditional queries: There is no direct
reduction from identity testing of product distributions or general distributions to uniformity testing.
While identity testing in high dimensions has been explored under weaker oracle assumptions ([BCŠV22]),
query complexity bounds for identity testing in the subcube conditional setting are unknown. This is
true even for distributions over hypercubes.
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A Additional Proofs

Proof of Lemma 5. : Fix any subset S ⊆ [n] of size t. Given u ∈×i∈S
Zmi , we write p|ρ(S,u) to denote

the distribution supported on×i∈S
Zmi

given by drawing x ∼ p conditioned on xS = u.
We expand the definition of total variation distance to obtain the following expressions:

2dTV (p,U)

=
∑

x∈ZM

∣∣∣∣∣∣p(x)−
∏
i∈[n]

1

mi

∣∣∣∣∣∣
=

∑
u∈×i∈S Zmi

∑
v∈×i∈S Zmi

∣∣∣∣∣∣ Prx∼p

[
xS = u ∧ xS = v

]
−
∏
i∈[n]

1

mi

∣∣∣∣∣∣
=

∑
u∈×i∈S Zmi

∑
v∈×i∈S Zmi

∣∣∣∣∣∣pS(u) · Prx∼p

[
xS = v|xS = u

]
−
∏
i∈[n]

1

mi

∣∣∣∣∣∣
≤

∑
u∈×i∈S Zmi

∑
v∈×i∈S Zmi

∣∣∣∣∣pS(u) · Prx∼p

[
xS = v|xS = u

]
− pS(u) ·

∏
i∈S

1

mi

∣∣∣∣∣
+

∣∣∣∣∣∣pS(u) ·
∏
i∈S

1

mi
−

∏
j∈S

1

mj

 ·

(∏
i∈S

1

mi

)∣∣∣∣∣∣
=

∑
u∈×i∈S Zmi

pS(u) · 2dTV (p|ρ(S,u),U) +
∑

v∈×i∈S Zmi

(∏
i∈S

1

mi

)
· 2dTV (pS ,U)

=
∑

u∈×i∈S Zmi

pS(u) · 2dTV (p|ρ(S,u),U) + 2dTV (pS ,U).

Take the expectation of this inequality over the choice of S ∼ Sσ. We obtain the lemma.

Proof of Theorem 6 assuming Lemma 9. The proof is the same as [CCK+21] except for a minor change.
If σn ̸∈ [5, n− 5], then Theorem 6 is trivially satisfied. Consider 5 ≤ σn ≤ n− 5 and let δ = min(σ, 1−
σ)/2 > 0. For notational simplicity, for each t ∈ [n− 1], we write:

αt := ET∼S(t)

[
dTV (pT ,U)

]
.

Note that we can sample ρ ∼ Dσ(p) by drawing k ∼ Bin(n, σ) and ρ ∼ D(k, p). Let βt be the probability
that k = t, for k ∼ Bin(n, σ). Let

B :=
{
t ∈ [n− 1] : t/n ∈ [σ − δ, σ + δ]

}
.

Using a Chernoff bound, we see that
∑

t∈B βt ≥ 1− 2e−δn/5. Therefore:∑
t∈B

βt · αt ≥ ET∼Sσ

[
dTV (pT ,U)

]
− 2e−δn/5. (46)
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We then can derive the following series of inequalities:

2·Eρ∼Dσ(p)

[∥∥µ(p|ρ)∥∥2]
≥
∑
t∈B

(
βt · Eρ∼D(t,p)

[∥∥µ(p|ρ)∥∥2]+ βt+1 · Eρ∼D(t,p)

[∥∥µ(p|ρ)∥∥2] )
≳
∑
t∈B

βt

(
Eρ∼D(t,p)

[∥∥µ(p|ρ)∥∥2]+ Eρ∼D(t,p)

[∥∥µ(p|ρ)∥∥2] ) (47)

≳
σ

m7.5 log4(nm)
·
∑
t∈B

βt ·
αt

log2(nm/αt) log(1/αt)
(48)

≳
σ

m7.5poly(log(nm))
· Ω̃
(
ES∼Sσ [dTV (pS ,U)]− 2e−min(σ,1−σ)n/10

)
. (49)

To obtain (47), we used t/n ∈ [σ − δ, σ + δ], δ = min(σ, 1− σ)/2 and σ ≥ 5/n. This gives us:

βt+1

βt
=

n− t

t+ 1
· σ

1− σ
≥ (1− σ)/2

(3σ/2) + (1/n)
· σ

1− σ
≳ 1.

To obtain (48) we apply Lemma 9 on each t ∈ B. For (49) we apply Jensen’s inequality (as the function
f(a) = a/(log2(nm/a) log(1/a)) when a ̸= 0 and f(0) = 0 is convex in [0, 1]) and use (46).

We can now conclude that Theorem 6 holds, assuming Lemma 9.

Proof of Theorem 1. Proof of (i) (completeness): For the completeness proof, we prove by induction on
n that, when p is uniform, SubCondUni(n,M, ϵ, p) returns accept with probability at least 2/3. For the
base case when n = 1, since (6) is violated, we just run an algorithm (Lemma 4.20) from [BCŠV22], and
the completeness of the base case comes from the completeness of this algorithm.

Inductively, assume that the statement holds for dimensions 1 through n− 1. If (6) is violated, then
the analysis is trivial. For the case when (6) is satisfied, we note that the restriction p|ρ is uniform for
any ρ. Since the total number of restrictions ρ drawn in line 7 is O(L logL) = Õ(m8.5

√
n/ϵ2), we may

set the constant hidden in the choice of r in line 9 to be sufficiently large so that line 10 returns reject
with probability no larger than 1/6. Using the inductive hypothesis, we can also say that SubCondUni
rejects in line 18 with probability no larger than 1/6. The induction step follows from a union bound.

Proof of (ii) (soundness): Assume that dTV (p,U) ≥ ϵ. We prove by induction on n that SubCondUni
rejects with probability at least 2/3. For the general case of the induction step, we know that either the
first case of (8) holds and thus, (9) holds, or the second case of (8) holds.

For the first case when (9) holds, we recall the choice of L and notice that the LHS of (9) is the
expectation of a random variable with values in [0, 1] while the RHS is 1/L. Using a bucketing argument,
we find that there exists a j ∈ [⌈log(2L)⌉] such that

Pr
ρ∼Dσ(p)

[∥∥µ(p|ρ)∥∥2
m
√
n

≥ 1

2j

]
≥ 2j−1

L⌈log(2L)⌉
≥ 2j

4L log(2L)
.

So, for one of the restrictions ρ ∼ Dσ(p) that we sample, the condition in the event above holds, with
probability at least 1− e−2 > 5/6. When this holds, each of the calls to ProjectedTestMean on line
9 rejects with probability at least 2/3. So on line 10, SubCondUni rejects with probability at least 2/3.

For the second case, using bucketing again, there exists a j ∈ [⌈log(4/ϵ)⌉] such that

Prρ∼Dσ(p)

[
dTV (p|ρ,U) ≥ 2−j

]
≥ ϵ2j

4⌈log(4/ϵ)⌉
≥ ϵ2j

8 log(4/ϵ)
.

Using (6) and Chernoff bound, the probability of |stars(ρ)| > 2σn is at most e−σn/3 < (ϵ/8)3. Therefore,

Prρ∼Dσ(p)

[
dTV (p|ρ,U) ≥ 2−j and 0 < |stars(ρ)| ≤ 2σn

]
≥ ϵ2j

16 log(4/ϵ)
.

Since we set s′j = (32/ϵ) log(4/ϵ)·2−j , the probability that at least one restriction ρ satisfies the condition
above is at least 5/6. The probability that majority of the calls to ProjectedTestMean reject this ρ
is also at least 5/6. Therefore, SubCondUni rejects with probability at least 2/3.
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Query complexity. Let Φ(n,m, ϵ) denote its query complexity. Using induction on n, we will show that

Φ(n, ϵ) ≤ C · m
21
√
n

ϵ2
· logc

(nm
ϵ

)
(50)

for some absolute constants C, c > 0. Pick C1 and c1 to be two constants such that upon running the
algorithm from Lemma 4.20 of [BCŠV22] on n,m, ϵ that violate (6), the query complexity is at most

C1 ·
√
m

ϵ2
· logc1

(
1

ϵ

)
.

Let C2 and c2 be constants such that the complexity of the non-recursive componen of SubCondUni
(line 6 to line 12) is bounded by:

C2 ·
m21

√
n

ϵ2
· logc2

(nm
ϵ

)
.

Recall that L = Õ(m8.5
√
n/ϵ). The expression above follows from the following calculation:

⌈log(2L)⌉∑
j=1

L logL

2j
·
(
O
(
m4 log(mn)

)
·max

{
22j√
n
, 2j
}
.

)
· log

(nm
ϵ

)
= Õ

(
m21

√
n

ϵ

)
.

Finally, set C := 2max(C1, C2) and c := max(c1, c2). We are now ready to prove (50). The base case
of n = 1 is trivial. In the inductive step the case when (6) is violated is also trivial. For the general case,
with our chosen C and c, we have the following bound:

Φ(n, ϵ) ≤ C

2
· m

21
√
n

ϵ2
· logc

(nm
ϵ

)
+

⌈log(4/ϵ)⌉∑
j=1

s′j · 100 log
(
16

ϵ

)
· Φ(2σn, 2−j).

By the inductive hypothesis and the choice of σ, we can write each term in the second sum as:

C · 32
ϵ

· log
(
4

ϵ

)
· 100 log

(
16

ϵ

)
·m21

√
2σn · 2j · logc

(
σnm2j+1

)
≤ C

32
· m

21
√
n

ϵ
· 2j · logc

(nm
ϵ

)
using C0 ≥ (322 · 100)2 · 2 (from the choice of σ in (5)). Lastly, use the following inequality:

⌈log(4/ϵ)⌉∑
j=1

2j < 2⌈log(4/ϵ)⌉+1 ≤ 16

ϵ
.

By induction, we have now proven the query complexity.
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