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Tight Lower Bound on Equivalence Testing in Conditional
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Abstract

We study the equivalence testing problem where the goal is to determine if the given two unknown
distributions on [n] are equal or ε-far in the total variation distance in the conditional sampling model
(CFGM, SICOMP16; CRS, SICOMP15) wherein a tester can get a sample from the distribution con-
ditioned on any subset. Equivalence testing is a central problem in distribution testing, and there has
been a plethora of work on this topic in various sampling models.

Despite significant efforts over the years, there remains a gap in the current best-known upper bound
of Õ(log log n) [FJOPS, COLT 2015] and lower bound of Ω(

√

log log n)[ACK, RANDOM 2015, Theory of
Computing 2018]. Closing this gap has been repeatedly posed as an open problem (listed as problems 66
and 87 at sublinear.info). In this paper, we completely resolve the query complexity of this problem by
showing a lower bound of Ω̃(log log n). For that purpose, we develop a novel and generic proof technique
that enables us to break the

√

log log n barrier, not only for the equivalence testing problem but also for
other distribution testing problems, such as uniblock property.
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1 Introduction

Probability distributions play a central role in modern data science, and consequently, the past few years
have witnessed sustained interest from theoreticians and practitioners alike in the broad field of distribution
testing, wherein the central object of study is probability distribution(s). In this work, we focus on the
discrete distributions over the domain of size n. Since the value of n is often too large for distributions of
interest, it is impractical to specify such a distribution. Therefore, one is often interested in quantifying
complexity through the lens of queries to the distributions. The goal in this scenario is to check whether
the input distribution(s) has some particular property or is (are) “ε-far” from satisfying that property, and
doing all these while trying to reduce the number of queries made to the distribution(s).

Initial studies in distribution property testing focused on the model (SAMP) wherein one can only sample
from the given distribution(s). The SAMP model was discovered to be too weak, as evidenced by strong
lower bounds of the form Ω(n1−c), for some constant c ≥ 0, for testing some of the most exciting properties.
Such strong lower bounds necessitated the need to allow more powerful queries, and over the past decade,
several models have been proposed. Among such proposals, the conditional sampling model (COND) –
that allows drawing samples from the input distribution(s) conditioned on any arbitrary subset – is the
most well-studied model in theory as well as in practice. From a theoretical perspective, various other
distribution testing problems have been studied under the COND model [FJO+15, KT19, Nar21] and certain
variants of it like subcube conditioning model [BC18, CCK+21, CJLW21]. Furthermore, the COND model
and its variants have recently found applications in the areas like formal methods and machine learning
(e.g., [CM19, MPC20, GJM22]).

In this paper, we focus on the equivalence testing problem, one of the central problems in the field of
distribution testing. In particular, we want to determine whether two distributions D1 and D2 are equal or
ε-far from each other in the total variation distance under the COND model. Equivalence testing is arguably
the most celebrated problem in distribution testing. In the SAMP model, the equivalence testing is well
understood, and its query complexity is Θ(max(n2/3/ε4/3,

√
n/ε2)) [CDVV14, BFR+13, Val11].

Analyzing the complexity of equivalence testing has turned out to be more challenging in the context
of the COND model. Despite significant efforts over the years, there remains a quadratic gap between the
current best-known upper bound of Õ(log logn) [FJO+15] and the lower bound of Ω(

√
log logn) [ACK18].

The challenge of closing the gap between the lower and upper bounds has been a recurring open problem,
which has been raised multiple times at various workshops and conferences, including the 2014 Bertinoro
Workshop on Sublinear Algorithms and the FOCS 2017 Frontiers of Distribution Testing. This problem has
also been discussed on open problem forums such as sublinear.info (listed as problems 66 and 87).

The main difficulty in bridging the gap stems from the limitations inherent in the current approach that
was used to establish the lower bound of Ω(

√
log logn). This limitation was best highlighted by the authors

of [ACK18]: “There appear to be conceptual barriers to strengthening our result, which would require new
ideas”.

The primary contribution of this paper is to develop a novel and generic technique that overcomes the
limitations of previous proof techniques and enables us to go past the Ω(

√
log logn) lower bound barrier for

not just equivalence testing but for several other problems in distribution testing.

1.1 Our Lower Bound Result on Equivalence Testing

The main contribution of this paper is to prove an (almost) tight lower bound on the query complexity in the
COND query model for the equivalence testing of distributions (see Definition 2.1 for the formal definition).
In the COND query model, the tester can specify a subset A ⊆ [n] and then samples each j ∈ A according
to the distribution D conditioned on the set A, i.e., with probability D(j)/D(A) (see Definition 2.3). Let us
now state our main result.

Theorem 1.1. Any (randomized) adaptive tester for testing equivalence between two distributions over [n]
must make Ω̃(log logn) COND queries. (The tilde hides a poly(log log logn) factor.)
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We prove this result by introducing a weaker query model called the WCOND query model that is easier
to analyze, then proving the query lower bound in that weaker model, and finally showing that this weaker
model is (roughly) equivalent to the COND model at least for the equivalence testing problem. We discuss
this approach in more detail in Section 3. We believe that our proof technique is very generic and can be
used for other distribution testing problems in the COND query model. Indeed, the same technique helps us
establish a query complexity lower bound for another class of problems - testing label invariant properties.

1.2 Our Lower Bound Result on testing Label Invariant properties

A property of a distribution that is invariant under relabeling of the universe (on which the distribution is
defined) is called label-invariant. For a label-invariant property P , the goal is to check if a given distribution
satisfies the property P or ε-far (in the total variation distance) from satisfying the property P . One crucial
difference between the problem of testing equivalence and the problem of testing any label invariant property
is that in the former, two distributions are given as input, and both have to be accessed using queries, while
in the latter, the input is only one distribution that has to be accessed using queries.

CFGM [CFGM16] showed a universal tester to test any label invariant property in poly(log n, 1/ε) queries.
More precisely, there exists a tester that, for any label invariant property P , given COND-access to a
distribution D as input, makes poly(logn) queries and with high probability, returns ACCEPT if D satisfies
the property P and REJECT if D is ε-far in total variation distance from any distribution having property
P . They also defined a label invariant property, called even uniblock property, and showed a lower bound of
Ω(

√
log logn) on the query complexity. The significance of this lower bound is that now we cannot hope to

show a universal tester that can test any label invariant property in o(
√
log log n) queries.

In this paper, we improve this lower bound to Ω̃(log logn).

Theorem 1.2. There exists a label invariant property such that any (randomized) adaptive tester for that
property must make Ω̃(log logn) COND-queries.

We follow the same approach that we take for showing a lower bound for the equivalence testing - via
the WCOND query model. While this improves the lower bound by a quadratic factor, the exact bound on
the query complexity of label-invariant properties remains unknown.

1.3 Related Work

The equivalence testing problem has been studied extensively [BFR+00, Val11, CDVV14] and a tight bound
of Θ(max(n2/3/ε4/3,

√
n/ε2)) on the query complexity is known in the basic SAMP model. There has been

considerable recent interest in several alternative powerful query models that allow tremendous savings in the
number of required samples. [CRS15] showed an upper bound of O(log5 n/ε4) in the COND model which was
subsequently improved to Õ( log logn

ε5 ) by [FJO+15]. On the other hand, [ACK18] showed that Ω(
√
log logn)

queries are necessary for the COND model, leaving a quadratic gap (in the dependence on the domain size)
between the upper and lower bound, which we settle in this work. In terms of ε, a lower bound of Ω(1/ε2) is
known [CR14], and finding the true dependency on ε in the query complexity is an exciting open problem.

Onak and Sun [OS18] considered a natural extension of SAMP model called the probability-revealing
sample model (in short, PR-SAMP), wherein in addition to returning a sample, the oracle also returns the
exact probability of the sample. An even more powerful model of interest is DUAL [CR14, BDKR02] where
we have access to two oracles – SAMP that, as mentioned earlier, provides a sample from the distribution,
and EVAL that returns the exact probability of any specified element1. Cannone and Rubinfield [CR14]
showed that O(1/ε) queries are necessary and sufficient for the equivalence testing in the DUAL model.

Another fundamental distribution testing problem is the support size estimation problem, where given
a distribution D, the goal is to estimate the support size |{x | D(x) > 0}|. Very recently, Chakraborty,
Kumar, and Meel (CKM) [CKM23] showed a tight lower bound of Ω(log logn) on the query complexity for

1Note that the PR-SAMP oracle can only provide the probability of the sampled element, whereas the EVAL oracle can
give the probability of any arbitrary specified element.
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the support-size estimation problem in the COND model. However, the lower bound for the support size
estimation does not imply any lower bound on the equivalence testing. Two distributions can have the same
support size but can be arbitrarily far apart. Similarly, two distributions can be arbitrarily close to each
other, but their support sizes can differ by an arbitrarily large value. For instance, consider distribution
P = (1, 0, · · · , 0) and Q = (1− ε, ε/K, · · · , ε/K) where ε is any arbitrary small value and K is an arbitrarily
large integer. It is straightforward to see that the total variation distance between P and Q is 2ε (a small
value), but their support size differs by a factor of K (an arbitrarily large number). Furthermore, the proof
technique of CKM does not yield any lower bound for the equivalence testing. It is also worth noting that
the hard instance of CKM allows inverse exponential probability mass on an element in the distribution to
achieve the lower bound, which is most often not allowed in the distribution testing setup (where we are
concerned with additive error). We want to emphasize that by applying our new proof technique, we obtain
a similar lower bound for the support size estimation problem, which, more importantly, holds even when it
is promised that all the elements with non-zero probability have mass at least 1/n and thus strengthen the
lower bound result of CKM (see Section 3.5 for a brief discussion on this).

Organisation of the paper. In Section 2, we provide the necessary notations, definitions, and important
theorems that we use in the rest of the paper. In Section 3, we provide the technical overview of our results.
We first discuss the previous techniques and how we improve upon them for our results and then present
a sketch of our proof technique in this section. In Section 4 and in Section 5, we present the proofs of
Theorem 1.1 and Theorem 1.2 respectively. We conclude with a discussion on the limitation of our technique
in Section 6.

2 Notations and Preliminaries

In this paper, we assume that all the distributions are defined over the set [n]. For any distribution D over
[n] and for any s ∈ [n], we will denote by D(s) the probability weight of s according to the distribution D.
Similarly, for any A ⊆ [n], we denote by D(A) the probability mass of the set A according to the distribution
D. In other words,

D(A) =
∑

a∈A

D(a).

The total variation distance between two distributions D1 and D2 over [n], denoted by dTV(D1, D2), is
defined as 1

2

∑

s∈[n] |D1(s)−D2(s)|. If the dTV distance between two distributions is 0, then they are equal.

Definition 2.1 (Equivalence Testing). The equivalence testing problem is that, given sample access to two
(unknown) distributions D1 and D2 over [n], and an ε > 0, decide whether

• YES : D1 and D2 are equal, or

• NO : dTV(D1, D2) ≥ ε

while drawing as few samples as possible.

Throughout this paper, for the purpose of proving the lower bound, we consider ε = 1/4.
The problem of equivalence testing of distributions is one of the most fundamental problems in statistics

and property testing and has been studied under various sampling models. In this paper, our main sampling
model is the COND model. To define this formally, we first need to define the conditional distribution.

Definition 2.2. For a distribution D over [n] and a subset A ⊆ [n], the conditional distribution over A,
denoted by D|A, is defined as the distribution over A where for each a ∈ A the probability mass is set to be
D(a)/D(A) if D(A) > 0, and 1/|A| if D(A) = 0.

Definition 2.3 (COND Query Model). In the COND query model (or simply COND model), the sampling
algorithm/tester specifies a subset A ⊆ [n] and draws a sample according to the conditional distribution D|A.
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We denote such a conditional query by CONDD(A). Note that, in the case of an adaptive algorithm, at any
point in time, the subset A may depend on the samples the algorithm has previously obtained.

In this paper, we deal with adaptive algorithms.

Hypergeometric Distribution

The hypergeometric distribution(n,K,N) is a probability distribution that describes the number of successes
(drawn item has a specified feature) when n items are drawn without replacement from a population of
size N containing K objects with that feature. Note that when items are drawn with replacement, the
distribution becomes Binomial(n,K,N).

If X ∼ Hypergeometric(n,K,N) then like binomial distribution, we have E[X ] = nK
N . Further, Chernoff

bound for hypergeometric distribution holds similar to binomial distributions.

Lemma 2.4. Let X ∼ Hypergeometric(n,K,N) then µ = E[X ] = nK
N and

Pr [|X − µ| ≥ λµ] < 2exp

(

−λ2µ

3

)

, for any 0 ≤ λ ≤ 1.

Extension of Yao’s Lemma

One useful tool for proving the lower bound on the query complexity of various problems is the extension
of Yao’s lemma (formally proved in [Fis01]). Let IYES and INO be two distributions over the YES-instances
and NO-instances respectively. We use the notation x ∈R IYES (resp., x ∈R INO) to denote that x is drawn
uniformly at random from IYES (resp., INO). Let a single query return an element from the set [n]. For a
deterministic query algorithm A that makes q adaptive queries2 note that all the answers to the q queries is
an element of [n]q. From now on, we consider a tiny constant δ = 1/100.

Theorem 2.5 ([Fis01]). If for a deterministic algorithm A that makes q adaptive queries to test a property
P, and for an event Bad(A, x) (that depends on the algorithm A and the input) the following holds

1. Prx∈RIYES
[Bad(A, x)] + Prx∈RINO

[Bad(A, x)] ≤ δ/2

2. For all σ ∈ [n]q,

Pr
x∈RIYES

[

the answers to the q queries made by A(x) is σ | Bad(A, x)
]

≤3

2
Pr

x∈RINO

[

the answers to the q queries made by A(x) is σ | Bad(A, x)
]

,

then the adaptive query complexity of the property P is Ω(q).

3 Technical Overview

3.1 Previous Approach

In the context of distribution testing, the COND model is known to be significantly more powerful than the
SAMP model. Consequently, establishing a lower bound for the COND model is an immense challenge. One
of the reasons it is so difficult to capture a tester’s power in this model is that it allows the conditioning of
arbitrary-sized sets in an adaptive manner. To overcome this challenge, [CFGM16] introduced the concept

2We can assume without loss of generality that an adaptive algorithm that makes at most q queries actually makes exactly
q queries.
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of core-adaptive testers for label-invariant properties. Roughly speaking, these testers do not consider the
samples’ labels into account when making decisions; instead, they rely on relations between the samples,
such as whether two samples are the same or different. Quite surprisingly, they showed that the class of
core-adaptive testers is as powerful as general testers in terms of testing label invariant properties.

Later, [ACK18] further built upon this idea by considering two classes of pairs of distributions. The first
class consists of pairs in which both distributions are identical (YES-instance), while the second class consists
of pairs that are far apart in terms of the total variation distance (NO-instance). The authors proved that
any core-adaptive tester must make at least q = Ω(

√
log logn) queries; otherwise, the distributions from

the YES and NO instances become indistinguishable from the tester’s point of view. The idea of the core-
adaptive tester essentially helps in upper bounding the size of the corresponding decision tree R by 2O(q2).
[ACK18] argued that to distinguish between the YES and NO instances, the number of nodes present in R
must be Ω(

√
logn), and as a consequence, q ≥ Ω(

√
log logn). While this lower bound does not match the

current best upper bound, it is optimal with respect to the proof technique, which is also emphasized in the
survey [Can20] as:

“The fact that both the lower bounds are similar is not a coincidence, but rather inherent to the technique
used. Indeed, the core adaptive tester approaches both proofs rely on cannot get past this

√
log log n barrier,

which derives from the size of the decision tree representing the tester (namely, 2O(q2) for a q-query tester)”.
Our primary contribution lies in developing a novel and generic technique that overcomes the limitations

of previous proof techniques and enables us to break the
√
log logn barrier in the CONDmodel. Our technique

does not only apply to the equivalence testing problem, but we believe it can be applied to various other
problems as well. For instance, we show that it also provides Ω̃(log logn) lower bound to the problem of
testing another label-invariant property called the even-uniblock property, introduced by [CFGM16].

3.2 Core-adaptive testers

As in previous approaches, core-adaptive testers also play a crucial role in our proof technique. Thus let us
start by describing the core-adaptive testers. Any general algorithm/tester for equivalence testing between
two distributions D1 and D2 that makes at most q COND queries, at any step 1 ≤ i ≤ q, chooses k ∈ {1, 2},
a set Ai ⊆ [n] and places the conditional query CONDDk

(Ai), and then receives a sample si ∈ Ai drawn
according to the conditional distribution Dk|Ai

. Note that if the algorithm queries both distributions D1

and D2 on a set A, then we count it as two separate queries.
In [CFGM16], it is shown that without loss of generality, a general algorithm/tester for a label invariant

property (such as equivalence testing) can be assumed to belong to a smaller class of testers called core-
adaptive testers. To formally define these testers, we first give a few definitions.

Definition 3.1 (Atom). Given a family of sets A = {A1, . . . , Ai}, the atoms generated by A, denoted by
At(A), are (at most) 2i distinct sets of the form ∩i

j=1Cj where Cj ∈ {Aj , [n] \Aj}.

For example, if i = 2, then At(A1, A2) = {A1 ∩ A2, A1 \ A2, A2 \ A1, A1 ∪ A2}. Given a sequence of
query-sample pairs ((A1, s1), . . . , (Ai, si)), all the label invariant information about the sample si can be
captured by the configuration of si, defined below.

Definition 3.2 (Configuration of si). Given a sequence of query-sample pairs ((A1, s1), . . . , (Ai, si)), a
configuration of si with respect to ((A1, s1), . . . , (Ai, si)), denoted by ci, consists of 2(i − 1) bits, indicating
for each 1 ≤ ℓ < i whether

1. si = sℓ or si 6= sℓ, and

2. si ∈ Aℓ or not.

Note that a configuration of si contains all the label-invariant information about si – whether collisions
have happened (and if yes, then with which sample) and which unique atom in At(A) contains the sample
si.
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Definition 3.3 (Core-Adaptive Tester). A core-adaptive tester for a pair of distributions is an algorithm
T that does the following:

1. Fixes k ∈ {1, 2} (fixes the distribution D1 or D2 on which to perform the conditional sampling query).

2. To make i-th query, based only on its own internal randomness and the configuration of the previous
samples (c1, . . . , ci−1), T provides:

(a) A (non-negative) integer kAi for each A ∈ At(A1, . . . , Ai−1) between 0 and |A\{s1, . . . , si−1}| (how
many fresh – not already seen – elements of each particular atom should be included in the next
query),

(b) A set Oi ⊆ {s1, . . . , si−1} (which of the samples s1, . . . , si−1 will be included in the next query).

3. Based on these specifications, the tester T constructs the i-th query set Ai by

(a) Drawing uniformly at random, a set Ui from the set

{

U ⊆ [n] \ {s1, . . . , si−1} | ∀A ∈ At(A1, . . . , Ai−1), |Ui ∩ A| = kAi
}

(1)

i.e., among all the sets containing only “fresh elements”, whose intersection with each atom con-
tains exactly as many elements as T specifies (at Step 2a).

(b) Ai := Oi ∪ Ui.

4. Samples from CONDDk
(Ai).

After q = q(ε, n) queries, the tester T returns ACCEPT or REJECT based on the configurations (c1, . . . , cq).

From now on, for brevity, we denote

At(Ui) := {Ui ∩ A | A ∈ At(Ai−1)} .

It is easy to observe that the conditional sampling queries made by a core-adaptive tester can be viewed
in an equivalent way as follows.

Observation 3.4. For any distribution Dk (k ∈ {1, 2}) and i-th query set Ai = Oi∪Ui (i ∈ [q]), the sample
obtained from CONDDk

(Ai) can be viewed as:

1. First, pick an element e ∈ Oi ∪ {Ui} (where Oi ∪ {Ui} is the set consisting the elements of Oi and

the set Ui itself) such that each j ∈ Oi is picked with probability Dk(j)
Dk(Oi∪Ui)

and {Ui} is picked with

probability Dk(Ui)
Dk(Oi∪Ui)

.

2. If e ∈ Oi, then the sample obtained from CONDDk
(Ai) is e.

3. Otherwise (i.e., if e = {Ui}), then pick s′ ∼ CONDDk
(Ui), and s′ is the sample obtained from

CONDDk
(Ai). Note that this is equivalent to

(a) First picking an atom V ∈ At(Ui) with probability
Dj(V )
Dj(Ui)

, and

(b) Then returning a sample s′ ∼ CONDDk
(V ).

It was shown in [CFGM16] that general testers are equivalent to core-adaptive testers in terms of testing
a label invariant property.

Theorem 3.5 ([CFGM16]). If there exists a q-query general tester for any label invariant property, then
there also exists a q-query core adaptive tester.

6



A core adaptive tester T , for any i ≤ q, maps a sequence of configurations (c1, . . . , ci−1) of the received
samples so far, via a function fT , to a pair (Oi, Ui) (where Oi ⊆ {s1, . . . , si−1} and Ui ⊆ [n] \ {s1, . . . , si−1})
which determines the i-th query set Ai = Oi ∪ Ui.

In a natural way, a tester T can be fully described by a decision tree R. Formally, (the edges of) a path
(from root) to any node v at depth i is associated with a sequence of configurations (c1, . . . , ci), and the node
v is labeled with a pair (Ov, Uv) = fT (c1, . . . , ci−1) (where Ov ⊆ {s1, . . . , si−1} and Uv ⊆ [n]\ {s1, . . . , si−1})
which determines the next query set Av = Ov ∪Uv. Further, for every possible value of the configuration ci
of the sample from Av, there is a corresponding child of the node v, and the corresponding edge is labeled
by the value of the configuration ci. Finally, the leaves of R are labeled by either ACCEPT or REJECT.

We now define a few notations that we will use throughout the paper. We will use (Ov, Uv) for the label
of a node v and Av = Ov ∪ Uv for the corresponding query set. Let the nodes of the path from the root to
the node v be v1, . . . , vi where v1 is the root, and vi is the node v. We will use Av = (Av1 , . . . , Avi) for the
sequence of the query sets corresponding to the nodes in this path and Sv = (sv1 , . . . , svi) to denote the set
of samples obtained in the node from the root to v. Further, At(Av) := At(Av1 , . . . , Avi). Note that the set
of all the relevant atoms for the tester (described by a decision tree R) is ∪v∈RAt(Av), which we will denote
by At(R).

3.3 High-level framework

To demonstrate a lower bound, one of the standard approaches (using Yao’s minimax lemma) is, to begin
with, two sets of pairs of distributions. The first set, YES instances, contains pairs of identical distributions.
The second set, called NO instances, has pairs of distributions separated by a (total variation) distance of at
least 1/4 in the total variation distance. The YES and NO instances that we consider in this paper (formally
defined in Section 4.1, informally later in this subsection) are slight modifications of the instances considered
in [ACK18].3 To prove a lower bound on the number of COND queries of Ω(log logn), it suffices to show
that no tester can successfully differentiate between whether an input pair of distributions are drawn from
the YES and NO instances (with a high probability) unless the tester makes at least Ω(log logn) queries.
In other words, we need to show that if the input pair of distributions are drawn from the YES and NO

instances, the respective distributions on the leaves of the tester are close to each other in the total variation
distance if the number of queries made is q < o(log logn).

Recall, as mentioned in Section 3.2, we only focus on proving lower bounds concerning the core-adaptive
testers. We need to understand how the path traversed by the tester on the (corresponding) decision tree
R depends on the input pair of distributions from YES and NO cases. Note the height of R is the number
of queries made, i.e., q. At any given node v, the next node the tester reaches depends on the outcome of
the COND query associated with that node. Suppose we can prove that for any node v, the distributions
(for YES and NO cases respectively) over the outcomes are η-close in total variation distance. In that case,
the overall total variation distance can be at most qη since q is the height of the decision tree. We refer to a
node v as good if the distributions over the outcomes are close in total variation corresponding to YES and
NO cases, and bad otherwise (more details on good and bad nodes are provided later in this subsection).

As highlighted in Section 3.1, by [ACK18], the probability that there exists a bad node in R when input

is drawn from either YES or NO instances is |R|
√
logn

logn = o(1) only when |R| = o(
√
logn). Since we have

|R| = 2q
2

, if q = o(
√
log logn), then there are no bad nodes (with high probability). If there are no bad

nodes, indistinguishability follows.
Thus, the bottleneck to show a stronger lower bound will be to reduce |R| (in terms of q), which is

impossible since the bound is already tight. This is where our novel idea of ”decision tree specification”
using weaker COND queries comes into play.

3The change is to simplify our proof, and our proof technique works for their exact instances as well, albeit with certain
modifications.
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Decision Tree Sparsification using WCOND query

Let us introduce a new weaker query model called WCOND query.

Definition 3.6 (WCOND query model). For any i, given the i-th query set Ai = Oi ∪ Ui and k ∈ {1, 2},
the weak conditioning query WCONDDk

(Ai) does the following:

1. It picks an element e in Oi ∪ {Ui} (elements of Oi and the set Ui itself) with probability
Dj(e)

Dj(Oi∪Ui)
.

2. If e ∈ Oi, then the i-th sample si = e.

3. Otherwise (i.e., if e = {Ui}), then

(a) An atom V ∈ At(Ui) is picked with probability |V |
|Ui| .

(b) The sample si is generated by the si ∼ CONDDk
(V ).

Notice the difference between a WCOND and COND query is only in Step 3a (see Observation 3.4).

In COND, an atom V ∈ At(Ui) is picked with probability Dk(V )
Dk(Ui)

whereas in WCOND, it is picked with

probability |V |
|Ui| (which is independent of input distributions).

Fix a decision tree R. Let T (COND) and T (WCOND) denote the tester T that uses the decision tree
R (to determine the next node/query) when given access to COND and WCOND queries, respectively. We
compare the behaviors of these two testers. Before doing so, we would like to emphasize that whether a node
is good or bad depends solely on R and the input distributions, it does not depend on oracle access of tester
T (we describe the good and bad nodes in the next subsection).

For T (COND), the randomness in picking at atom V ∈ At(Ui) (in Step 3a) is external (i.e., depends on the
distribution), whereas, for T (WCOND), this randomness is internal. Thus a randomized tester with WCOND

oracle can simulate this internal randomness. Any randomized algorithm can be seen as a distribution over
its (deterministic) instantiations (obtained by fixing its random choices). Hence, the tester T (WCOND) can
be seen as a distribution over a set of deterministic algorithms such that in each deterministic algorithm, the
tester picks a fixed atom V ∈ At(Ui) for each query i ∈ [q]. The crucial aspect is that now, the number of
possible outcomes (at each node) is at most |Oi| ≤ q (as compared to the previous 2q that has COND access,

one for each possible atom in Ui) resulting in at most qq nodes (instead of 2q
2

) in the decision tree. Thus,
for each decision tree, we can show that if q = o(log log n), there are no bad nodes with high probability.
Since the original tester is a distribution over these deterministic counterparts, it is easy to argue that the
T (WCOND) does not pass through a bad node either with high probability if q = o(log logn). Note that this
does not contradict what we said earlier that the previous analysis is tight — we show that “the tester does
not pass through a bad node with high probability” as opposed to “there are no bad nodes”.

However, so far, we argue the results for T (WCOND), but ultimately we want it to hold for T (COND).
Surprisingly we show that the distributions of the run of a tester are close in total variation distance for
both cases. The following theorem is the heart of our proof.

Lemma 3.7 (Informal Statement of Lemma 4.10). For the instances we consider, the distributions on leaves
of the decision tree R are close in total variation distance, for the cases when the tester is provided access
to COND queries and WCOND queries respectively, unless q = Ω̃(log log n).

The above theorem is pivotal because, by only an additional o(1) probability, we can show that even
T (COND) does not pass through a bad node. Finally, in Lemma 4.9, we show that conditioned on the event
that the tester does not pass through a bad node, the YES and NO instances are indistinguishable unless
q = Ω̃(log logn).

Lemma 3.8 (Informal Statement of Lemma 4.9). The distributions on leaves of the decision tree R are close
in total variation distance for YES and NO instances in T (COND) unless q = Ω̃(log logn).
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On our YES and NO instances

We informally explain our YES and NO instances (formally defined in Section 4.1). For YES instances,
we consider a pair of identical distributions (Q1, Q1). On the other hand, for NO instances, we consider a
pair of 1/4-far distributions (Q1, Q2). For both Q1 and Q2, the support of the distributions is randomly
partitioned into Θ(

√
logn) buckets, with each successive bucket increasing geometrically (more specifically,

by a factor of exponential in
√
logn) in size; however, the probability mass of each bucket remains the same

(Figure 1). In other words, if we compare the probability of two elements from two different buckets, they
differ (slightly) sub-polynomially (in n). We leverage this property crucially in our lower-bound argument.
The distributions Q1 and Q2 differ within each bucket. Inside any bucket, Q1 is uniform on its elements. In
contrast, in Q2, a random half of elements have probability a constant factor times the other random half
of elements (see Figure 2). Let us refer to these two random partitions of buckets as sub-buckets.

It is important to note that if we could get two random samples, say s and s′, from any particular
bucket, it would be easy to distinguish between the two cases. The reason is that s and s′ would be in two
different sub-buckets with constant probability. Then for Q1, we have Q1(s) = Q1(s

′) whereas for Q2, we
have Q2(s)/Q2(s

′) = Ω(1) so a COND(s, s′) query would detect whether the input pair of distributions is
(Q1, Q1) or (Q1, Q2). Indeed, if the support size is known to the tester, then in O(1)-query, it is possible to
pick two random samples from the same bucket. That is why our instances’ support size is also set randomly.

Good and Bad nodes

Now we explain the good and bad nodes in detail. Ideally, we want to say a node is good if the outcomes are
close in the total variation distance for YES and NO instances. It happens if three conditions are satisfied
(see Definition 4.3), which we summarize below.

In any atom A ∈ At(R), the expected number of items from the j-th bucket is |A|bρj

n . We would like
that the actual number is concentrated tightly around this expectation for all atoms and all buckets. By
an application of standard concentration inequalities, this would happen if this expected value is either too
large or too small compared to 1 (see Lemma 4.5). Next, we also want that an atom to either intersects a
large number of buckets (at least poly(log logn)) – such atoms are called large atoms – or not intersect with
any bucket (such atoms are called small atoms). This condition would be pivotal to argue that with high
probability, no two samples can be from the same bucket (first item of Definition 4.7). Finally, we want the
probability mass of Uv (at a node v) to be too heavy or too light compared to the probability mass of any
single sampled element (second item of Definition 4.7). If none of the above three conditions holds, we call
such a node a bad node.

It is worth noting that our definition of a node being good or bad is (almost) equivalent to that of
ACK [ACK18]. Our main ingenuity lies in (i) considering the event “the tester does not pass through a bad
node with high probability” as opposed to “there are no bad nodes”, and (ii) introducing the weaker query
model WCOND (and showing equivalence to COND) to analyze the event “the tester does not pass through
a bad node with high probability”.

Indistinguishability between YES and NO

Assuming that the tester does not pass through a bad node, we show that the input pair of distributions from
the YES and NO instances are indistinguishable. As we argued before, we need to show that the induced
distributions on the leaves of the decision tree are close in the total variation distance for both cases.

The main challenge is that even if we assume the testers do not pass through a bad node, the decision to
choose the next node by the tester depends not only on the previous traversed nodes but also on the bucket
distribution of the seen samples (that is, which buckets the seen samples belong to). Note that the bucket
distributions are not part of configurations. That is why we argue that the bucket distributions, as well as
the distributions of the next configuration for both YES and NO cases, are close in total variation distance
at every step. We formally argue this in Section 4.5.
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3.4 Applying our technique to testing label-invariant property

Firstly, note that our lower bound of Ω(log logn) for equivalence testing will not directly give a lower bound
on a label invariant property. In the equivalence testing problem, the input is a pair of distributions, while the
testing of a label invariant property has only one distribution as input. One may fix one of the distributions
in the equivalence testing and regard the other distribution as the input. Interestingly, in this case, the
number of required queries becomes independent of n [FJO+15].

To obtain a lower bound on testing a label invariant property, we proceed along the path already charted
by CFGM [CFGM16]. They defined a property called even uniblock property and used it to prove the lower
bound of

√
log logn. In fact, for our lower bounds, we even use the same hard instances as defined in

[CFGM16]. The crucial point where we do better than the previous attempts is that, like in the equivalence
testing problem, our “Bad event” is when a run of the algorithm passes through a “Bad node” compared to
the previous attempts where the “Bad event” was defined as when there is some “Bad node” in the decision
tree. Of course, this crucial difference is significant as we can show via the WCOND model that if the
number of queries is Ω(log logn), the Bad event happens with very low probability. Our proof, as in the case
of the lower bound of equivalence testing, has three parts: (a) showing that a run of the WCOND model
algorithm does not pass through a bad node with high probability if q = o(log logn), (b) showing that the
total variation distance between the distribution on leaves of the decision tree for the WCOND model and
the COND model is small, (c) assuming that a run of the algorithm does not pass through a bad node, the
total variation distance over leaves is small for YES and NO cases.

3.5 Corollary to the support size estimation

We show that if we can know the support size of the given distribution, then in O(1) queries, we can
distinguish between our YES and NO instances constructed for the equivalence testing problem (as we
mentioned before, it is for this reason that we randomly set the support size in our instances). Therefore,
the lower bound for the equivalence testing in Theorem 1.1 also holds for the support size estimation.

We quickly recap the informal construction of our YES and NO instances (see section 4.1 for the formal
definition). For YES instances, we consider a pair of identical distributions (Q1, Q1). On the other hand, for
NO instances, we consider a pair of 1/4-far distributions (Q1, Q2). For both Q1 and Q2, the support of the
distributions are the same and randomly partitioned into Θ(

√
logn) buckets, with each successive bucket

increasing geometrically (by a factor of exponential in
√
logn, to be precise) in size. The distributions Q1

and Q2 differ within each bucket. Inside any bucket, Q1 is uniform on its elements. In contrast, in Q2,
a random half of elements have probability a constant factor times the other random half of elements (see
Figure 2). These two random partitions of buckets are called sub-buckets.

Let (D1, D2) be the pair of distributions provided to the tester (which could be either (Q1, Q1) or
(Q1, Q2)). Note that by our construction, distributions D1 and D2 have the same support size (say s).
Assume that the support size s is known. Let c be a large constant. We construct a set S by including each
element i ∈ [n] with probability c/s. Thus on expectation, there will be c elements from the support in S.

Note that the size of each successive bucket differs by a factor of 2
√
logn. Hence on expectation, there will be

O(1)(≈ c/2) elements from both the sub-buckets of the largest bucket (as both the sub-buckets are of equal
size) and o(1) elements from the rest of the buckets. Therefore, with a high probability, there will be O(1)
elements from both the sub-buckets of the largest bucket and no elements from the rest of the buckets. Since
there are only O(1) elements from the support in S, it is possible to identify these elements using only O(1)
queries. Finally, for each pair s, s′ among these elements, we perform CONDD2 ({s, s′}) queries. We note
that in the YES instance, for each pair s, s′, CONDD2 ({s, s′}) is a uniform distribution on {s, s′} whereas in
the NO instance, for at least one pair s, s′ (when s and s′ belongs to different sub-buckets), CONDD2(s, s

′)
assigns probability 3/4 to one and 1/4 to another. Hence, using overall O(1) queries (assuming the support
size is known), one can distinguish the YES and NO instances.

Corollary 3.9. Any (randomized) adaptive tester for estimating the support size of a distribution to a 4/3-
multiplicative factor must make Ω̃(log logn) COND queries even when it is promised that the probability of
any element in the support is at least 1/n.

10



4 Ω̃(log logn) lower bound for Equivalence testing

In this section, we prove Theorem 1.1. We will eventually use Theorem 2.5 to prove our theorem. For that
purpose, we start with defining the hard-to-distinguish YES and NO instances in Section 4.1. Then we define
the Good event in Section 4.2. The proof of Theorem 1.1 follows from two crucial lemmas - namely that the
Good event happens with high probability and that if Good event happens, then the YES and NO instances
are hard to distinguish. Lemma 4.8 proves that the Good event happens with high probability, and this is
proved in Section 4.4. Lemma 4.9 states that if the Good event happens, then YES and NO instances are
indistinguishable, and this is proved in Section 4.5.

4.1 Distributions over the YES and NO instances

Let us start by describing a distribution IYES over the YES-instances and a distribution INO over the NO-
instances. We describe them by describing the process using which an element of the YES-instances (and
NO-instances respectively) is produced.

We will now present a randomized procedure to generate a pair of distributions (Q1, Q2). The YES

instance will have both distributions as Q1, whereas the NO instance will have the two distributions as Q1

and Q2.

1. An integer κ ∈
{

0, 1, . . . ,
⌊

logn
2

⌋}

is chosen uniformly at random. We set b = 2κ, ρ = 2
√
logn,

τ =
√
log n
4 , and let m = b(ρ+ ρ2 + · · ·+ ρτ ).

2. A pair of distributions (Q1, Q2) is constructed as follows (see Figure 1 and 2):

• We randomly choose a subset of size m from [n] that forms the support of both distributions Q1

and Q2.

• We then randomly partition the support into τ buckets (for both Q1 and Q2) B1, . . . , Bτ such
that |Bj | = bρj and assign the probability 1/τ to each bucket.

• In distribution Q1, the probability distribution is uniform in each bucket, i.e., for all j ∈ [τ ], and
i ∈ Bj , we have Q1(i) =

1
τbρj .

• In distribution Q2, each bucket Bj is randomly partitioned into two subbuckets Bh
j and Bℓ

j of

equal size (=
|Bj |
2 ) such that Q2(B

h
j ) =

3
4τ and Q2(B

ℓ
j) =

1
4τ and distribution is uniform in each

sub-buckets. In other words, for all j ∈ [τ ], we have

Q2(i) =

{

3
2τbρj if i ∈ Bh

j
1

2τbρj if i ∈ Bℓ
j

By the construction of the NO instance (Q1, Q2), it follows immediately that

Observation 4.1. dTV(Q1, Q2) =
1
2

∑

i∈[τ ]
1

2τbρj · bρj = 1
4 .

4.2 The Good Event

For any adaptive algorithm A and input x (which is a pair of distributions D1, D2; recall, from the previous
section that for YES instance D1 = D2 = Q1, and for NO instance D1 = Q1 and D2 = Q2), let us first
define the Good event that we will use with Theorem 2.5 to prove Theorem 1.1.

We will assume (from Theorem 3.5) the algorithm A is a core-adaptive algorithm. We will define events
Good1(A, x), Good2(A, x) and Good3(A, x) and finally we will have an event Good(A, x) = Good1(A, x) ∧
Good2(A, x) ∧ Good3(A, x).

Throughout the rest of the paper, we will assume

γ = (log logn)9, α = (log n)(log logn)2 , φ = (log logn)20.
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B1 B2 Bτ

Figure 1: For both Q1 and Q2, |Bj | = bρj and Q1(Bj) = Q2(Bj) =
1
τ

Bl
j Bh

j

Q1

Q2

Figure 2: Bl
j and Bh

j are random partition of Bj such that |Bl
j | = |Bh

j |. We have Q1(i) =
1

τbρj for all i ∈ Bj

whereas Q2(i) =
3

2τbρj for i ∈ Bh
j and Q2(i) =

1
2τbρj for i ∈ Bl

j .

Further, recall that as mentioned in Section 4.1,

ρ = 2
√
logn, τ =

√
logn

4
, b = 2κ

where κ is chosen uniformly at random from
{

0, 1, . . . ,
⌊

logn
2

⌋}

.

The Good1(A, x) event: We start with defining φA associated with each atom A.

Definition 4.2. For any atom A, φA is the smallest integer △ ∈ {0, 1, . . . , τ − 1} such that |A|bρτ−△

n < 1/α
and if such an integer does not exist then φA = τ .

Note that the expected size of the intersection of atom A with bucket Bτ−△ is |A|bρτ−△

n . Thus, φA is the
number of buckets with which A has a large intersection in expectation.

Definition 4.3 (Good and Bad node). For a node v of the decision tree R, recall that Av = (Av0 , . . . , Avi)
is the set of all queries made in the path from the root to the node v in the decision tree. The node v is called
good for x if it satisfies all of the following conditions.

1. For any atom A ∈ At(Av), we have for every bucket j ∈ [τ ], either |A|bρj

n ≥ α or |A|bρj

n ≤ 1
α .

2. For any atom A ∈ At(Av), we have either |A|bρτ−φ

n ≥ α or |A|bρτ

n ≤ 1/α. If the former condition holds,
we say atom A is large, and if the latter condition holds, we say A is small,

3. For all Uvℓ (ℓ ≤ i), we have for all j ∈ [τ ], either

∑
A∈At(Uvℓ

) φA|A|
τn ≥ γ

τbρj or

∑
A∈At(Uvℓ

) φA|A|
τn ≤ 1

γτbρj .

A node v is called bad for x if it is not good for x.

In simple terms, if the algorithmA is currently at a good node v, then so far (1) for all atoms, the expected
intersection size with all buckets is either large (at least α) or small (at most 1/α). This will help in showing
tight concentration bounds (Lemma 4.5) as, by Chernoff bound, the actual value is tightly concentrated to
its expected value if the expectation is large or small, (2) any atom either has a large intersection with at
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least φ buckets (such atoms are large atoms) or a small intersection with all buckets (such atoms are small
atoms), (3) the expected probability mass of any unseen query set is ‘incomparable’ to the probability of
any element in the entire distribution, that is, their ratio is either at least γ or at most 1/γ.

Definition 4.4. The event Good1(A, x) is defined as “the run of the algorithm A on input x does not pass
through a bad node.”

Before we give the definition of the events Good2 and Good3, we prove concentration bounds for the good
nodes.

Lemma 4.5. With probability at least 1− 1
poly(log logn) , for all good nodes v and for all atoms A ∈ At(Av) ,

if j ≤ τ − φA then |Bj ∩ A| = 0, and, (2)

if j ≥ τ − φA + 1 then |A ∩Bj| ∈
[

1− 1

γ
, 1 +

1

γ

] |A|bρj
n

. (3)

Proof. If |A|bρj

n ≤ 1
α for any atom A and j ∈ [τ ] then by Markov’s inequality Pr[|A ∩ Bj | > 0] ≤ 1

α . Taking

union bound over all atoms corresponding to all good nodes (which can be at most 2q+q2 ≤ (logn)log log n)
and all j ∈ [τ ], with probability at least 1− 1

poly(log logn) ,

for any atom A and j ≤ τ − φA, we have |Bj ∩ A| = 0. (4)

Now note that if j ≥ τ − φA + 1 then E
[

|Bh
j ∩A|

]

= |A|bρj

2n ≥ α/2. Therefore, by Lemma 2.4,

Pr

[

|A ∩Bh
j | 6∈

[

1− 1

γ
, 1 +

1

γ

] |A|bρj
2n

]

≤ O(exp(−α/γ2)).

Similarly,

Pr

[

|A ∩Bℓ
j | 6∈

[

1− 1

γ
, 1 +

1

γ

] |A|bρj
2n

]

≤ O(exp(−α/γ2)).

Hence

Pr

[

|A ∩Bj | 6∈
[

1− 1

γ
, 1 +

1

γ

] |A|bρj
n

]

≤ O(exp(−α/γ2)). (5)

From Lemma 4.5, we deduce the following useful lemma.

Lemma 4.6. With probability at least 1− o(1), for all good nodes v and for all atoms A ∈ At(Av),

if j ≤ τ − φA then D1(A ∩Bj) = D2(A ∩Bj) = 0, and, (6)

if j ≥ τ − φA + 1 then D1(A ∩Bj), D2(A ∩Bj) ∈
[

1− 1

γ
, 1 +

1

γ

] |A|
τn

. (7)

Hence, D1(A), D2(A) ∈ [1− 1/γ, 1 + 1/γ]φA|A|
τn . Therefore, for any query set Uvℓ (ℓ ≤ i), we have

D1(Uvℓ), D2(Uvℓ) ∈
[

1− 1

γ
, 1 +

1

γ

]

∑

A∈At(Uvℓ
) φA|A|

τn
.

Proof. From Equation 2 and 3 in Lemma 4.5 we have

Dk(A) =
∑

j

|A ∩Bj |
bτρj

∈
[

1− 1

γ
, 1 +

1

γ

]

∑

j:≥r−φA+1

|A ∩Bj |
bτρj

=

[

1− 1

γ
, 1 +

1

γ

]

φA|A|
τn

.
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The Good2(A, x) event: The input x (we are concerned about) is drawn according to the INO or IYES.
Let b(si) denote the index of the bucket to which the seen element si belongs to. Recall the notation
Si = (s1, . . . , si). We will use B(Si) for (b(s1), . . . , b(si)).

Definition 4.7. Let Good2(A, x) be the event defined as:

1. For all i ∈ [q], for any s, s′ ∈ Si with Dk(s), Dk(s
′) 6= 0 for any k ∈ {1, 2}, we have b(s) 6= b(s′).

2. For all i ∈ [q], the ratio Dk(Ui)
Dk(s)

for any k ∈ {1, 2} and s ∈ Si is not in [ 1
3γ , 3γ].

The Good3(A, x) event: An eh ∈ Oi ∪ {Ui} is called the unique heaviest element in Oi ∪ {Ui} if
Dk(eh) > Dk(e) for all k ∈ {1, 2} and e ∈ Oi ∪ {Ui} such that e 6= eh. Let Good3 be the event that for all
i ∈ [q], the outcome of CONDDk

(Oi ∪ {Ui}) is the unique heaviest element in Oi ∪ {Ui} for all i ∈ [q].

The Good(A, x) event: We define the event

Good = Good1 ∧ Good2 ∧ Good3. (8)

4.3 Proof of Theorem 1.1

We will use Theorem 2.5 to prove Theorem 1.1. The event Bad(A, x) is the event Good(A, x), where
Good(A, x) is the event defined in Definition 8. So we note that Theorem 1.1 follows from the following two
lemmas (Lemma 4.8 and 4.9).

Lemma 4.8. For any deterministic core-adapative tester A that makes q ≤ log logn
100 log log logn queries,

1. Prx∈RIYES
[Good(A, x)] ≥ 1− δ/2,

2. Prx∈RINO
[Good(A, x)] ≥ 1− δ/2.

Lemma 4.9. For any deterministic core-adapative tester A that makes q ≤ log logn
100 log log logn queries, for any

σ ∈ [n]q

Pr
x∈RIYES

[ the answers to the q queries made by A(x) is σ | Good(A, x)]

≤3

2
Pr

x∈RINO

[ the answers to the q queries made by A(x) is σ | Good(A, x)].

We will prove Lemma 4.9 in Section 4.5 and the proof of Lemma 4.8 in Section 4.4.

4.4 Proof of Lemma 4.8

Each of the parts of Lemma 4.8 can be proved in three steps. First, we will prove that Good1 happens with
probability at least (1−δ/6). Then we show that assuming Good1, the event Good2 happens with probability
at least (1− δ/6). and finally assuming Good1 and Good2 then the event Good3 will happen with probability
at least (1− δ/6).

The lower bound on the probability of Good1 is a main technical lemma, and we present the precise
statement given in Lemma 4.10. The proof of Lemma 4.10 is presented in Section 4.4.1.

Lemma 4.10. If the number of adaptive queries made by the algorithm A is q ≤ log logn
100 log log logn , then

1. Prx∈RIYES
[Good1(A, x)] ≥ 1− δ

6 ,

2. Prx∈RINO
[Good1(A, x)] ≥ 1− δ

6 .
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We will now prove that conditioned on the event Good1 holds the event Good2 holds with high probability.
Let us consider the case where x is drawn according to INO. We note that the equivalent statement holds
for the case when x is drawn according to IYES.

We will bound the probability that si falls in the same bucket corresponding to some previous samples.
The seen element (with non-zero probability) can only come from the query CONDDk

(W ) for some large
atom W for any k ∈ {1, 2}. Note that for any large atom W , we have for all k ∈ {1, 2}, Dk(W ∩ Bj) ∈
[1− 1

γ , 1 +
1
γ ]

|W |
τn for all j ≥ r − φW + 1 and Dj(W ∩Bj) = 0 for j ≤ r − φW . Therefore,

Pr [ the sample from CONDDk
(W ) is in bucket Bj ] =

{ ∈ [1− 1/γ, 1 + 1/γ] 1
φW

if j ≥ r − φW + 1

= 0 if j ≤ r − φW

Consider the inductive hypothesis - for all i ∈ [q], with probability at least 1− i2

φ , we have b(s) 6= b(s′) for

all s, s′ ∈ Si. Assuming the inductive hypothesis true for i− 1, the probability that the i-th sample si falls

into any bucket in B(Si−1) is at most (1+1/γ) i−1
φW

≤ (1+1/γ) i−1
φ ≤ 2(i−1)

φ . In other words, with probability

at least 1 − (i−1)2

φ − 2(i−1)
φ ≥ 1 − i2

φ , we have b(s) 6= b(s′) for all s, s′ ∈ Si, i.e., the induction hypothesis is

true for i as well. Hence the first point of event Good2 happens with probability at least 1− q2/φ.
Now we show that the second point happens with high probability assuming that the first point happens.

Assuming Good1 happens, for all Ui, we have for all j ∈ [τ ],

• Either
∑

A∈At(Ui)
φA|A|

τn ≥ γ
τbρj ≥ 2Dk(si)

3γ ,

• Or
∑

A∈At(Ui)
φA|A|

τn ≤ 1
γτbρj ≤ 2γDk(si).

Further by Lemma 4.6, we have

Dk(Ui) ∈
[

1− 1

γ
, 1 +

1

γ

]

∑

A∈At(Ui)

φA|A|
τn

.

Therefore,

Dk(Ui) ≤ (1 + 1
γ ) · 2γDk(si) ≤ 3γDk(si) or Dk(Ui) ≥ (1− 1

γ ) ·
2Dk(si)

3γ ≥ Dk(si)
3γ . (9)

Thus, we have

Pr
x∈RINO

[Good2(A, x) | Good1(A, x)] ≥ 1− δ

6
and Pr

x∈RIYES

[Good2(A, x) | Good1(A, x)] ≥ 1− δ

6
. (10)

Now let us assume that the event Good2 happens. Note that ρ >> γ and thus if b(s) 6= b(s′), we have

either Dk(s)
Dk(s′)

≥ ρ ≥ γ or Dk(s)
Dk(s′)

≤ 1/ρ ≤ 1/γ. (11)

Let eh be the unique heaviest element in Oi ∪ {Ui}. From Equation 9 and 11 we note that

∑

e∈(Oi∪{Ui})\eh

Dk(e) ≤
Dk(eh)

γ
+

Dk(eh)

γ2
+ · · · ≤ 2Dk(eh)/γ.

Therefore, with probability at least (1− 2/γ), the outcome of the conditional query CONDDk
(Oi ∪ {Ui}) is

eh ∈ Oi ∪ {Ui}. Thus,

Pr
x∈RINO

[Good3(A, x) | Good1(A, x) ∧ Good2(A, x)] , Pr
x∈RIYES

[Good3(A, x) | Good1(A, x) ∧ Good2(A, x)] ≥ 1− δ

6
.

(12)
From Lemma 4.10 and Equation 10 and 12 we have Lemma 4.8.
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4.4.1 Proof of Lemma 4.10

In this subsection, we prove Lemma 4.10, i.e., Good1(A, x) happens with high probability (when A has an
access to a COND query model).

Informally speaking, we first argue that if A had access to a WCOND oracle (instead of COND), then
Good1(A, x) would happen with high probability. Let us consider the event G1 that denotes the run of an
algorithm A having access to WCOND oracle, on input x does not pass through a bad node. It is worth
highlighting the difference between the Good1 and G1 event: The first one is defined for A having access to
COND oracle, whereas the latter is defined for A having access to WCOND oracle. In Lemma 4.11, we claim
that G1 happens with a high probability. Then we show that given the event G1 happens, Good1 happens
with a high probability. As a consequence, we conclude that Good1 happens with a high probability, which
completes the proof of Lemma 4.10.

Lemma 4.11. If an algorithm A makes q ≤ log logn
100 log log logn adaptive WCOND queries, then

1. Prx∈RIYES
[G1(A, x)] ≥ 1− o(1),

2. Prx∈RINO
[G1(A, x)] ≥ 1− o(1).

Proof. First, observe that for any WCOND query, Step 3a (of Definition 3.6) does not depend on the input
distribution (on which the WCOND query is placed). Thus a randomized algorithm can simulate this step
without accessing the input distribution (by picking an atom V ∈ At(Ui) with probability |V |/|Ui|). Let
A′ be the new (randomized) algorithm that simulates Step 3a. One can think of the randomized algorithm
A′ as a distribution over a set of algorithms A′

1,A′
2, · · · , where each A′

r is an instantiation of A′ by fixing
internal randomness that is used to simulate Step 3a. Thus each A′

r can be represented as a decision tree
where each node denotes access (of the form either Step 3a or Step 3b) to the input distribution. Since
the original algorithm A makes q WCOND queries, each decision tree has a height at most 2q. Recall, by
our assumption, A is a core-adaptive tester. Thus for any node at the i-th level, the number of children is
|Oi|+ 1 (follows from Step 1), which in turn is upper bounded by q + 1 (since A makes q WCOND queries,
by the definition of Oi in Definition 3.3, |Oi| ≤ q). So the number of nodes present in each such decision
tree is at most (q + 1)2q.

We now use the following claim that helps us in bounding the probability of a node being bad (see
Definition 4.3) in a decision tree.

Claim 4.12. Irrespective of whether the input x ∈R IYES or x ∈R INO, the probability that a node of a

decision tree is bad is at most O
(

2q(log logn)20√
logn

)

.

The proof of the above claim is an adaptation of the arguments used in [ACK18] and is provided at the
end of this subsection. For now, we assume the above claim holds and continue with the proof. Now, by
taking a union bound over all the nodes in the decision tree, the probability that at least one of the nodes

is bad is at most (q + 1)2q · O
(

2q(log logn)20√
logn

)

. Thus when q ≤ log logn
100 log log logn , for each A′

r,

Pr
x∈RIYES

[A′
r reaches a bad node on input x] = o(1).

Since the randomized algorithm A′ can be thought of as a distribution over the set of algorithms A′
1,A′

2, · · · ,
we get that

Pr
x∈RIYES

[A′ reaches a bad node on input x] = o(1).

By the construction of A′, for every input x, the probability of reaching a bad node by A and A′ are the
same. Hence, Prx∈RIYES

[G1(A, x)] ≥ 1 − o(1). A similar argument holds for x ∈R INO. This concludes the
proof.
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From now, throughout the rest of this subsection, we use ACOND and AWCOND to denote the core-
adaptive tester A (with the corresponding decision tree R) having access to the COND and WCOND oracle
respectively. Next, for any i ≤ q, let us consider the following two distributions: LCOND(i) and LWCOND(i)
are the distributions of nodes at the i-th level of the decision tree associated with ACOND and AWCOND

respectively.
Let G2 be the event of Lemma 4.6, i.e., for all good nodes v and for all atoms A ∈ At(Av), we have

D1(A), D2(A) ∈ [1 − 1/γ, 1 + 1/γ]φA|A|
τn . Now, we upper bound the total variation distance between the

distribution over the nodes of R at any depth i ≤ q, for ACOND and AWCOND, conditioned on event G2.

Lemma 4.13. Given the event G1 ∧G2 happens, for each i ≤ q, the total variation distance between the two
distributions LCOND(i) and LWCOND(i) is at most 4i/γ.

Proof. Consider an i ≤ q. We denote the total variation distance between the two distributions LCOND(i) and
LWCOND(i) (conditioning on the event G1 ∧ G2) by tv(i). Note that if a node is bad, then all its descendants
are also bad. For any node v, let R(v) denote the subtree (of R) rooted at the node v. Let R′ be the tree
obtained from R by iteratively pruning R(v) \ v (i.e., removing the subtree rooted at v while only keeping
the node v) for all the bad nodes v in R, starting from the lowest level. Observe, in R′, no internal node is
bad. Furthermore, the probability of reaching a bad node in R′ is the same as that in R. So it suffices to
argue with the distribution of nodes at any level i of the tree R′.

Consider any good node v at depth i. We upper bound the total variation distance between distributions
over children of v for ACOND and AWCOND, conditioned on the fact that the run of the tester is currently at
the node v. It is not hard to see that if, for each node v, the total variation distance between distributions
over children of v for ACOND and AWCOND is upper bounded by η (for some η ≥ 0), then

tv(i+ 1) ≤ tv(i) + η. (13)

Now, since AWCOND only differs at Step 3a (of the WCOND oracle) with ACOND (see Observation 3.4), it
suffices to upper bound the total variation distance for distributions over the atoms of Uv. If Uv has no large
atom, then φUv

= 0, and thus by Lemma 4.6, we have D1(Uv) = D2(Uv) = 0 (conditioned on the event G2).
In this case, the total variation distance is zero. So let us assume that Uv has at least one large atom. Let
Vm be the largest atom in At(Uv) (breaking ties arbitrarily). Hence,

φVm
≥ φ. (14)

Also, by Lemma 4.6, conditioning on G2, for all k ∈ {1, 2} and V ∈ At(Uv), we have

Dk(V )

Dk(Uv)
= θV · φV |V |

∑

W∈At(U) φW |W |

where θV ∈ [1− 2/γ, 1 + 2/γ]. Thus the total variation distance is equal to

∑

V ∈At(Uv)

∣

∣

∣

∣

∣

θV φV |V |
∑

W∈At(Uv)
φW |W | −

|V |
|Uv|

∣

∣

∣

∣

∣

=
∑

V ∈At(Uv):|V |<Vm
ρ

∣

∣

∣

∣

∣

θV φV |V |
∑

W∈At(Uv)
φW |W | −

|V |
|Uv|

∣

∣

∣

∣

∣

+
∑

V ∈At(Uv):|V |≥Vm
ρ

∣

∣

∣

∣

∣

θV φV |V |
∑

W∈At(Uv)
φW |W | −

|V |
|Uv|

∣

∣

∣

∣

∣

(15)

Now, since Vm is the largest atom in At(Uv) for any V such that |V | < Vm

ρ , both φV |V |∑
W∈At(Uv) φW |W | and

|V |
|Uv | are in

[

0, 1
ρ

]

. Since At(Uv) contains at most 2q ≤ logn atoms,

∑

V ∈At(Uv):|V |<Vm
ρ

∣

∣

∣

∣

∣

θV φV |V |
∑

W∈At(Uv)
φW |W | −

|V |
|Uv|

∣

∣

∣

∣

∣

≤ (1 + 1/γ) logn

ρ
. (16)
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Now, it directly follows from the Definition 4.2 that

For any V,W ∈ At(Uv) such that
|Vm|
ρ

≤ |V |, |W | ≤ |Vm|, |φV − φW | ∈ {0, 1}.

Therefore,
(

φVm
− 1

φVm

)

· |V |
|Uv|

≤ φV |V |
∑

W∈At(Uv)
φW |W | ≤

(

φVm

φVm
− 1

)

· |V |
|Uv|

and hence
∣

∣

∣

∣

∣

θV φV |V |
∑

W∈At(Uv)
φW |W | −

|V |
|Uv|

∣

∣

∣

∣

∣

≤
(

1

γ
+

1

φVm

)

· |V |
|Uv|

≤ 2

γ
· |V |
|Uv|

(17)

where the last inequality follows from Equation 14. Hence, by combining Equation 15, 16, and 17, the total
variation distance is bounded above by

(1 + 1/γ) logn

ρ
+

2

γ
≤ 4

γ
.

Then by Equation 13,
tv(i + 1) ≤ tv(i) + 4/γ.

So we conclude that for each i ≤ q, tv(i) ≤ 4i/γ.

Now, we are ready to finish the proof of Lemma 4.10.

Proof of Lemma 4.10. It directly follows from Lemma 4.13 that the probability that ACOND reaches a bad
node (on the input x) is at most

q
∑

i=1

4i/γ + Pr[G1] + Pr[G2] ≤ 2q2/γ + Pr[G1] + Pr[G2].

Then by Lemma 4.11 and Lemma 4.6,

Pr
x∈RIYES

[

Good1(A, x)
]

≤ 2q2/γ + o(1) ≤ δ/6

where the last inequality follows for q ≤ log logn
100 log log logn . The same argument also holds for Prx∈RINO

[

Good1(A, x)
]

,

and that concludes the proof.

So it only remains to prove Claim 4.12.

Proof of Claim 4.12. Note that b = 2κ. Fix a node v. Let

K1 =
⋃

j∈[τ ],A∈At(Av)

{

κ : log

(

n

α|A|ρj
)

< κ < log

(

nα

|A|ρj
)}

be all the possible values of κ for which the first item of Definition 4.3 can get violated. We have

|K1| ≤ τ · |At(Av)| · log
nα

|A|ρj

n
α|A|ρj

≤ τ2q+1 logα.

Let

K2 =
⋃

A∈At(Av)

{

κ : log

(

n

α|A|ρτ
)

< κ < log

(

nαρφ

|A|

)}

18



be all the possible values of κ for which the second item of Definition 4.3 can get violated. We have

|K2| ≤ |At(Av)| · log
nαρφ

|A|
n

α|A|ρτ

≤ 2q(2 logα+ φ log ρ).

Let

K3 =
⋃

i′∈[i],j∈[τ ]







κ :
n

γρj
< 2κ

∑

A∈At(Uv
i′
)

φA|A| <
γn

ρj







be all the possible values of κ for which the third item of Definition 4.3 can get violated. Observe that
∣

∣

∣

∣

∣

∣







κ :
n

γρj
< 2κ

∑

A∈At(Uv
i′ )

φA|A| <
γn

ρj







∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

{

κ :
n

γρj
< 2κ <

γn

ρj

}∣

∣

∣

∣

.

So we have |K3| ≤ 2qτ log γ. Therefore,

|K1|+ |K2|+ |K3| ≤
(

2q+1 logα+ 2q (2 logα+ φ log ρ) + 2qτ log γ
)

.

In both YES and NO instances, since κ is drawn uniformly from {0, 1, . . . , ⌊ logn
2 ⌋}, the probability that any

given node v is bad is at most
(

2q+1 logα+ 2q (2 logα+ φ log ρ) + 2qτ log γ
)

logn
≤ O

(

2q(log logn)20√
logn

)

.

4.5 Proof of Lemma 4.9

Let V YES
i be the node reached by A after i queries when the input is drawn from the YES instance. And let

BYES(si) be the bucket in which the ith sample belongs. Similarly, we define V NO
i and BNO(si).

Conditioned on the event Good we will prove that for any node vi (at depth i) and (b1, . . . , bi) ∈ [τ ]i,

Pr
[

V YES

q = vq, (B
YES(s1), . . . , B

YES(sq)) = (b1, . . . , bq)
]

≤
(

1 +
100i

γ

)

Pr
[

V NO

q = vq, (B
NO(s1), . . . , B

NO(sq)) = (b1, . . . , bq)
]

We prove it by induction on i. Let the parent of the node vi be vi−1. For brevity, we use BYES(Si) for
(

BYES(s1), . . . , B
YES(si)

)

and Bi for (b1, . . . , bi).

Pr
[

V YES

i = vi,BYES(Si) = Bi

]

=Pr
[

V YES

i = vi, V
YES

i−1 = vi−1,BYES(Si) = Bi

]

=Pr
[

V YES

i = vi, B
YES(si) = bi|V YES

i−1 = vi−1,BYES(Si−1) = Bi−1] · Pr[V YES

i−1 = vi−1,BYES(Si−1) = Bi−1

]

≤Pr
[

V YES

i = vi, B
YES(si) = bi|V YES

i−1 = vi−1,BYES(Si−1) = Bi−1

]

·
(

1 +
100(i− 1)

γ

)

Pr
[

V NO

i−1 = vi−1,BNO(Si−1) = Bi−1

]

=

(

1 +
100(i− 1)

γ

)

Pr
[

V YES

i = vi, B
YES(si) = bi | V YES

i−1 = vi−1,BYES(Si−1) = Bi−1

]

·

Pr
[

V NO

i−1 = vi−1,BNO(Si−1) = Bi−1

]
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Fixing the node vi−1 fixes the next query CONDk(Ovi−1 ∪ {Uvi−1}) irrespective of the YES or NO instances.
Since we are conditioning on the event Good3, the unique heaviest element e ∈ Ovi−1 ∪ {Uvi−1} will be the
outcome of this query and is same for both instances. We have two cases to consider.

1. If e ∈ Ovi−1 then the value of V YES
i and V NO

i is same which is (with probability 1) the child of vi−1

with the corresponding edge labeled by e. Obviously, there is no new seen element in this case, i.e., as
e ∈ Ovi−1 so we have si = sj for some j ∈ [i − 1] and hence BYES(si) = BNO(si) = bj . Hence, in this
case, we have

Pr
[

V YES

i = vi, B
YES(si) = bi | V YES

i−1 = vi−1, BYES(Si−1) = Bi−1

]

= Pr
[

V NO

i = vi, B
NO(si) = bi | V NO

i−1 = vi−1,BNO(Si−1) = Bi−1

]

2. Now consider e = {Uvi−1}. In this case, by Lemma 4.6 in both YES and NO instances, each atom

W ∈ At(Uvi−1) is picked with probability whose value is in [1− 1/γ, 1 + 1/γ] |W |
|Uvi−1

| . Note that each

atom U in one to one manner corresponds to a child of the node vi−1. Thus we have

Pr
[

V YES

i = vi | V YES

i−1 = vi−1,BYES(Si−1) = Bi−1

]

≤
(

1 + 1/γ

1− 1/γ

)

Pr
[

V NO

i = vi | V NO

i−1 = vi−1,BNO(Si−1) = Bi−1

]

From Lemma 4.5, we have for all k ∈ {1, 2}, Dk(W ∩Bj) = 0 if j ≤ r − φW and
[

1− 1
γ , 1 +

1
γ

]

|W |
τn if

j ≥ r − φW + 1. Therefore, for any k ∈ {1, 2}, the index of the bucket b(si), when si ∼ CONDk(W ),

takes any particular value in {r − φW + 1, r − φW + 2, . . . , r} with probability
[

1− 1
γ , 1 +

1
γ

]

1
φW

and

any value in {1, 2, . . . , r − φW } with probability 0.

Pr
[

BYES(si) = bi | V YES

i = vi, V
YES

i−1 = vi−1,BYES(Si−1) = Bi−1

]

≤
(

1 + 1/γ

1− 1/γ

)

Pr
[

BNO(si) = bi | V NO

i = vi, V
NO

i−1 = vi−1,BNO(Si−1) = Bi−1

]

Hence, in this case, we have

Pr
[

V YES

i = vi, B
YES(si) = bi | V YES

i−1 = vi−1,BYES(Si−1) = Bi−1

]

≤
(

1 + 1/γ

1− 1/γ

)2

Pr
[

V NO

i = vi, B
NO(si) = bi | V NO

i−1 = vi−1,BNO(Si−1) = Bi−1

]

Since
(

1+1/γ
1−1/γ

)2

(1 + 100(i− 1)/γ) ≤ (1 + 100i/γ), the induction hypothesis is true for i as well.

Fixing any vq and summing the inequality in for all possible values of (b1, . . . , bq), we get the result.

5 Ω(log logn) lower bound for testing Label Invariant Property

In this section, we prove Theorem 1.2. We will prove that there is a label invariant property testing which
takes Ω̃(log logn) COND queries. CFGM [CFGM16] defined a label invariant property (called Even uniblock
property) and show a lower bound of Ω(

√
log logn) on the query complexity. We will improve this lower

bound to Ω̃(log logn).

Even uniblock property: A distribution on [n] is called even uniblock if and only if it is uniform over
some subset U ⊆ [n] of size 22κ for some logn

8 ≤ κ ≤ 3 logn
8 . Note that a distribution D on [n] is said to be

uniform on set S ⊆ [n] if we have D(i) = 1/|S| for all i ∈ S and 0 otherwise.
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Odd uniblock property: A distribution on [n] is called odd uniblock if and only if it is uniform over
some subset U ⊆ [n] of size 22κ+1 for some logn

8 ≤ κ ≤ 3 log n
8 . Note that a distribution D on [n] is said to

be uniform on set S ⊆ [n] if we have D(i) = 1/|S| for all i ∈ S and 0 otherwise.

Observation 5.1 ([CFGM16]). For any distribution De satisfying even uniblock property and any distribu-
tion Do satisfying odd uniblock property, we have dTV (De, Do) ≥ 1

2 .

To prove Theorem 1.2 we will use the same hard instances (explained in Section 5.1) as defined in
[CFGM16]. Then, in Section 5.2, we define our Good event, and in Section 5.3, we prove (using the WCOND

model) the Good event happens with high probability. Finally, in Section 5.4 we prove Theorem 1.2 using
Theorem 2.5.

5.1 Distributions over Even uniblock and Odd uniblock properties

We now consider two distributions IEVEN and IODD, over distributions satisfying even uniblock property and
over distributions satisfying odd uniblock property, respectively. Note that these are the same distributions
considered in [CFGM16].

1. Uniformly choose an integer κ such that logn
8 ≤ κ ≤ 3 logn

8 .

2. Uniformly pick a set Se of size 22κ and a set So of size 22κ+1.

3. The distribution IEVEN is a uniform distribution on Se while IODD is a uniform distribution on So

5.2 The Good event

Definition 5.2 ([CFGM16]). We call a number b large with respect to Se if b|Se|
n ≥ 2

√
logn and small

with respect to Se if b|Se|
n < 1

2
√

log n
. We have an analogous definition for So. Note that |Se| = 22κ and

|So| = 22κ+1.

Definition 5.3. A node v of the decision tree R (recall that Av = (Av0 , . . . , Avi) is the set of all queries
made in the path from the root to the node v in the decision tree.) is called good if for all atoms A ∈ At(Av),
|A| is large with respect to both Se and So or small with respect to both Se and So. A node v is called bad if
it is not good.

We now show the following lemma that helps us in bounding the probability of a node being bad in a
decision tree. The proof of the following lemma is an adaptation of the arguments used in [CFGM16].

Lemma 5.4. Irrespective of whether the input x ∈R IEVEN or x ∈R IODD, the probability that a node of a
decision tree is bad is at most 8·2q√

logn
.

Proof. An atom A is neither large nor small with respect to Se if n2−
√
logn < |A||Se| < n2

√
logn where

|Se| = 22κ and κ is chosen uniformly such that logn
8 ≤ κ ≤ 3 logn

8 . Therefore, for a fixed |A|, there are
at most

√
logn values of κ, which will make it neither large nor small with respect to Se. So there are at

most 2
√
logn values of κ, which will make it neither large nor small with respect to both Se and So. Since

the range of κ is logn/4 (in both µe and µo), with probability at most 8√
logn

, the atom A will be neither

large nor small. Since there are at most 2q atoms corresponding to a node, the statement of the lemma
follows.

From now on, fix

β = 2
√

log n
4 .

Lemma 5.5. With probability at least 1− o(1), for all good nodes v and for all atoms A ∈ At(Av):

1. If |A| is large, we have |A ∩ Se| ∈ [1− 1/β, 1 + 1/β] |A||Se|
n and |A ∩ So| ∈ [1− 1/β, 1 + 1/β] |A||So|

n .
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2. If |A| is small, we have |A ∩ Se| = |A ∩ So| = 0.

Proof. If E [|Se ∩ A|] = |A||Se|
n ≤ 1

2
√

log n
for any atom A then by Markov’s inequality Pr[|A∩Se| > 0] ≤ 1

2
√

log n
.

Taking a union bound over all the atoms corresponding to all the good nodes (which can be at most

2q+q2 ≤ (logn)log log n), with probability at least 1− o(1),

for any small atom A, we have |Se ∩A| = 0. (18)

Now note that for any large atom, E [|Se ∩A|] = |A||Se|
n ≥ 2

√
logn. Therefore, by Chernoff bound,

Pr

[

|A ∩ Se| 6∈
[

1− 1

β
, 1 +

1

β

] |A||Se|
n

]

≤ O
(

exp
(

−2
√
log n/β2

))

≤ O
(

exp
(

−2
√
logn/2

))

.

The proof analogously holds for So.

Definition 5.6. The event Good(A, x) is defined as “the run of the algorithm A on input x does not pass
through a bad node.”

5.3 The event Good(A, x) happens with high probability

In this subsection, we will prove the following lemma.

Lemma 5.7. For any core-adaptive tester A that makes q ≤ log logn
100 log log logn queries,

1. Prx∈RIEVEN
[Good(A, x)] ≥ 1− o(1)

2. Prx∈RIODD
[Good(A, x)] ≥ 1− o(1)

5.3.1 Proof for WCOND oracle

Let us consider the event G1 that denotes the run of an algorithm A having access to WCOND oracle, on
input x does not pass through a bad node. In Lemma 5.8, we claim that G1 happens with a high probability.
Then we show that given the event G1 happens, Good happens with a high probability. As a consequence,
we conclude that Good happens with a high probability, which completes the proof of Lemma 5.7.

Lemma 5.8. If an algorithm A makes q ≤ log logn
100 log log logn adaptive WCOND queries, then

1. Prx∈RIEVEN
[G1(A, x)] ≥ 1− o(1),

2. Prx∈RIODD
[G1(A, x)] ≥ 1− o(1).

Proof. First, observe that for any WCOND query, Step 3a (of Definition 3.6) does not depend on the input
distribution (on which the WCOND query is placed). Thus, a randomized algorithm can simulate this step
without accessing the input distribution (by picking an atom V ∈ At(Ui) with probability |V |/|Ui|). Let
A′ be the new (randomized) algorithm that simulates Step 3a. One can think of the randomized algorithm
A′ as a distribution over a set of algorithms A′

1,A′
2, · · · , where each A′

r is an instantiation of A′ by fixing
internal randomness that is used to simulate Step 3a. Thus, each A′

r can be represented as a decision tree
where each node denotes access (of the form either Step 3a or Step 3b) to the input distribution. Since
the original algorithm A makes q WCOND queries, each decision tree has a height at most 2q. Recall, by
our assumption, A is a core-adaptive tester. Thus for any node at the i-th level, the number of children is
|Oi|+ 1 (follows from Step 1), which in turn is upper bounded by q + 1 (since A makes q WCOND queries,
by the definition of Oi in Definition 3.3, |Oi| ≤ q). So the number of nodes present in each such decision
tree is at most (q + 1)2q.

Now, by Lemma 5.4 and taking a union bound over all the nodes in the decision tree, the probability

that at least one of the nodes is bad is at most 8·2q·(q+1)2q√
logn

. Thus when q ≤ log logn
100 log log logn , for each A′

r,

Pr
x∈RIEVEN

[A′
r reaches a bad node on input x] = o(1).
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Since the randomized algorithm A′ can be thought of as a distribution over the set of algorithms A′
1,A′

2, · · · ,
we get that

Pr
x∈RIEVEN

[A′ reaches a bad node on input x] = o(1).

By the construction of A′, for every input x, the probability of reaching a bad node by A and A′ are the
same. Hence, Prx∈RIEVEN

[G1(A, x)] ≥ 1− o(1). A similar argument holds for x ∈R IODD. This concludes the
proof.

5.3.2 The total variation distance is small for testers given access to COND and WCOND oracle

From now on, throughout the rest of this subsection, we use ACOND and AWCOND to denote the core-
adaptive tester A (with the corresponding decision tree R) having access to the COND and WCOND oracle
respectively. Next, for any i ≤ q, let us consider the following two distributions: LCOND(i) and LWCOND(i)
are the distributions of nodes at the i-th level of the decision tree associated with ACOND and AWCOND

respectively.
Let G2 be the event of Lemma 5.5, i.e., for all good nodes v and for all atoms A ∈ At(Av), we have

|A ∩ Se| ∈ [1− 1/β, 1 + 1/β] |A||Se|
n and |A ∩ So| ∈ [1− 1/β, 1 + 1/β] |A||So|

n . Now, we upper bound the total
variation distance between the distribution over the nodes of R at any depth i ≤ q, for ACOND and AWCOND,
conditioned on the event G1 ∧ G2.

Lemma 5.9. Given the event G1 ∧ G2 happens, for each i ≤ q, the total variation distance between the two
distributions LCOND(i) and LWCOND(i) is at most 2i/β.

Proof. Consider an i ≤ q. We denote the total variation distance between the two distributions LCOND(i) and
LWCOND(i) (conditioning on the event G1 ∧ G2) by tv(i). Note that if a node is bad, then all its descendants
are also bad. For any node v, let R(v) denote the subtree (of R) rooted at the node v. Let R′ be the tree
obtained from R by iteratively pruning R(v) \ v (i.e., removing the subtree rooted at v while only keeping
the node v) for all the bad nodes v in R, starting from the lowest level. Observe in R′ no internal node is
bad. Furthermore, the probability of reaching a bad node in R′ is the same as that in R. So, it suffices to
argue with the distribution of nodes at any level i of the tree R′.

Consider any good node v at depth i. We upper bound the total variation distance between distributions
over children of v for ACOND and AWCOND, conditioned on the fact that the run of the tester is currently at
the node v. It is not hard to see that if, for each node v, the total variation distance between distributions
over children of v for ACOND and AWCOND is upper bounded by η (for some η ≥ 0), then

tv(i+ 1) ≤ tv(i) + η. (19)

Now, since AWCOND only differs at Step 3a (of the WCOND oracle) with ACOND, it suffices to upper bound
the total variation distance for distributions over the atoms of Uv. If Uv has no large atom, by Lemma 5.5,
we have |Uv ∩ Se| = |Uv ∩ So| = 0 (conditioned on the event G2). In this case, the total variation distance is
zero. So, let us assume that Uv has at least one large atom.

Further, as we are conditioning on G2, we have both
De(V )
De(Uv)

and Do(V )
Do(Uv)

= θV
|V |
|Uv | where θV ∈ [1−2/β, 1+

2/β]. In this case, the total variation distance is at most

∑

V ∈At(U)

∣

∣

∣

∣

θV |V |
|U | − |V |

|U |

∣

∣

∣

∣

≤ 2

β
.

Then by Equation 19,
tv(i+ 1) ≤ tv(i) + 2/β.

So we conclude that for each i ≤ q, tv(i) ≤ 2i/β.
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5.3.3 Good happens with high probability

Proof of Lemma 5.7. It directly follows from Lemma 5.9 that the probability that ACOND reaches a bad node
(on the input x) is at most

q
∑

i=1

2i/β + Pr[G1] + Pr[G2] ≤ q2/β + Pr[G1] + Pr[G2].

Then by Lemma 5.8 and Lemma 5.5,

Pr
x∈RIEVEN

[

Good(A, x)
]

≤ q2/β + o(1) = o(1)

where the last inequality follows for q ≤ log logn
100 log log logn . The same argument also holds for Prx∈RIODD

[

Good(A, x)
]

,

and that concludes the proof.

5.4 Proof of Theorem 1.2

Lemma 5.10 ([CFGM16]). Given the event Good happens, consider the resulting distributions over the set
of leaves reached by the algorithm. These two distributions, under IEVEN compared to under IODD, are at

most 23q+1
√
logn

apart (in the total variation distance) from each other.

We want to point out that in [CFGM16], the event Good in the above lemma stands for “none of the
nodes in the decision tree is bad”. However, the proof only uses the fact that none of the nodes encountered
by the run of the algorithm is bad. Hence, the lemma remains valid for our definition of the event Good (as
in Definition 5.6) as well.

Now consider a decision tree of the A and feed to it either µe or µo. Unless the queries made by A
is Ω̃(log logn), in both cases, the event Good happens with 1 − o(1) probability (Lemma 5.7). Further,
conditioned on the event Good, the total variation distance between the resulting distribution over the leaves
is at most o(1) (Lemma 5.10). Hence, the (unconditional) total variation distance between the resulting
distribution over the leaves is at most o(1) + o(1) = o(1). This means the A cannot distinguish between µe

and µo (unless q = Ω̃(log logn)).

6 Conclusion

In this paper, we introduce the WCOND model and show how this model can be used to obtain improved
lower bounds for the seemingly stronger COND model. The concept of the core-adaptive tester was crucially
used in previous works to prove the previous best lower bounds. In our paper, we kind of show that the
core-adaptive tester with COND queries is similar to the WCOND samplers. In this context, we want to leave
with an important question:

Are core-adaptive testers equivalent to a further restricted class of testers?

We believe this question is important for understanding exactly where the power of COND lies. Suppose
we restrict the definition of the configuration (Definition 3.2) of the i sample by removing the Condition 2,
i.e., now the configuration c′i is the information whether si = sj for which j ≤ i − 1. Consider a restricted
class of core-adaptive testers where, for any i ∈ [q], the i-th query Ai is

1. Either of the form CONDDk
(U) where U is the set of unseen elements (and in this case, we get a sample

si ∼ CONDDk
(U)),

2. Or of the form CONDDk
(Oi) where as before Oi is some subset of previously seen elements.
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Further, the next query set Ai+1 is decided by the configurations of the previous samples.
In simplest words, at any step, the tester from this restricted class has the power to (i) sample s ∼

COND(U) for any set of unseen elements U , (ii) can determine the value of j ≤ i− 1 such that sj = s where
s ∼ COND(O). One can also say that this class of testers does not consider the unique atoms to which the
samples belong for any decision. It is easy to see that this restricted class of testers is the same as the tester
when given access to WCOND queries.

This seems like a big restriction, and indeed the size of the decision tree for testers in this class is qq as
compared to 2q

2

before. Interestingly, to the best of our knowledge, all the testers for any label invariant
property in the literature belong to this restricted class. Further, our work shows that the power of testers
from this restricted class is the same as that of general core-adaptive testers in the context of equivalence
and even uniblock testing. This raises an important question.

For what subset of label invariant properties does this restricted class of testers have the same power as
general core-adaptive testers?
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