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Adversarial Low Degree Testing

Dor Minzer* Kai Zhe Zheng†

Abstract

In the t-online-erasure model in property testing, an adversary is allowed to erase t values of a queried

function for each query the tester makes. This model was recently formulated by Kalemaj, Raskhod-

nikova and Varma, who showed that the properties of linearity of functions as well as quadraticity can

be tested in Ot(1) many queries: O(log(t)) for linearity and 22
O(t)

for quadraticity. They asked whether

the more general property of low-degreeness can be tested in the online erasure model, whether better

testers exist for quadraticity, and if similar results hold when “erasures” are replaced with “corruptions”.

We show that, in the t-online-erasure model, for a prime power q, given query access to a function

f : Fn
q −→ Fq , one can distinguish in poly(logd+q(t)/δ) queries between the case that f is degree at

most d, and the case that f is δ-far from any degree d function (with respect to the fractional hamming

distance). This answers the aforementioned questions and brings the query complexity to nearly match

the query complexity of low-degree testing in the classical property testing model.

Our results are based on the observation that the property of low-degreeness admits a large and ver-

satile family of query efficient testers. Our testers operates by querying a uniformly random, sufficiently

large set of points in a large enough affine subspace, and finding a tester for low-degreeness that only uti-

lizes queries from that set of points. We believe that this tester may find other applications to algorithms

in the online-erasure model or other related models, and may be of independent interest.

1 Introduction

The main purpose of this paper is to further investigate the t-online-erasure model which was recently initi-

ated by Kalemaj, Raskhodnikova, and Varma [13]. The motivation behind this model stems from scenarios

where computations are performed on datasets that may contain erasures which can occur in places that are

chosen by an adversary but are limited in their number. For instance, consider an algorithm aiming to detect

fraud, while an adversarial party deliberately erases data to conceal the fraudulent activity.

The focus of this paper is the problem of low degree testing in the t-online erasure model. In this setting,

an algorithm is given query access to a function f : Fn
q −→ Fq, an erasure parameter t, a distance parameter

δ, and a degree parameter d. At the start of the computation, all entries in f ’s truth table are unerased. An

algorithm may query the value of f(x) for x ∈ F
n
q , but after each query, an adversary is allowed to erase

any t-entries of f ’s truth table. If the algorithm attempts to query an entry f(x) after it is erased, then ⊥ is

returned. The goal of the algorithm is to output accept with probability 1 if f is degree at most d and to output

reject with probability at least 2/3 if f is δ-far from low degree. In the standard property testing literature,

the former stipulation is often referred to as completeness, while the latter is often referred to as soundness.

Algorithms accomplishing this task in the t-online erasure model are called t-online-erasure-resilient.

Low degree testing is one of the most basic and well studied problems in property testing and can be

traced all the way back to Blum, Luby, and Rubinfeld’s seminal work on linearity testing [7]. Linearity
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testing can be thought of as the d = 1 case of low degree testing, and after the work of [7], further low

degree tests were constructed and analyzed over the next decade - first for arbitrary degrees of univariate

polynomials [22], and later for arbitrary degrees of multivariate polynomials [1, 15, 12, 6, 11, 21, 14, 17].

These tests were also relevant within coding theory as polynomials (both univariate and multivariate) over

finite fields are the basis of two of the most well known error-correcting codes - the Reed-Solomon and

Reed-Muller Codes. Due to their efficient query complexity, low degree tests for multivariate polynomi-

als also found many applications elsewhere in theoretical computer science - perhaps most notably to the

construction Probabilistically Checkable Proofs [9, 3, 2, 23, 4]. The extensive work regarding low degree

testing also led to the testing of other properties of functions over finite fields - an area often called algebraic

property testing, [16].

Our work adds to the vast literature on low degree testing by giving the first such algorithms over all

degrees and field sizes in the online erasure model. Previously, the only known results were due to [13] who

gave algorithms for linearity and quadraticity (d = 1, 2) cases over the field F2.

We find that designing a tester in the online-erasure model requires one to depart significantly from

classical testers. To see why, consider what happens when one tries to implement the Blum-Luby-Rubinfeld

linearity tester of [7] over F2. The BLR tester is based on the observation that any linear f : Fn
2 −→ F2

satisfies f(x+ y) = f(x)+ f(y) for any x, y ∈ F
n
2 and proceeds by choosing uniformly random x, y ∈ F

n
2 ,

querying f(x), f(y), f(x+ y), and finally checking if f(x+ y) = f(x) + f(y) is satisfied. The difficulties

that arise in the online erasure model now become clear. After the algorithm queries f(x) and f(y), the

adversary can erase the point f(x+ y) making it impossible to directly carry out the BLR test.

Faced with this difficulty, the authors of [13] noted that one can attempt to “overwhelm” the adversary’s

erasure capacity with volume. One can first query a large number, say m = 100t, of uniformly random

points, x1, . . . , xm so that there are
(m
2

)

> 4000t2 possible xi+xj’s. At this point the adversary could have

erased at most 100t2 of these sums, making it possible to successfully query a random xi +xj , and perform

the check f(xi + xj) = f(xi) + f(xj). This idea is adapted and refined into a tester for linearity over F2

by [13].

Dealing with online erasures becomes significantly more complicated for higher degrees, namely for d >

2. The classical test here proceeds by choosing a d+ 1-dimensional affine space V and then querying f(x)
for any x ∈ V , [1]. Given the large number of points needed as well as the large number of dependencies

between these points, it is no longer clear how to craft enough strategies to obtain an entire d+1-dimensional

affine subspace against an adversary. Indeed, the tester of [13] in the online erasure model is much more

involved, and it is not clear how to generalize it to larger fields or higher degrees.

Our approach. Our algorithm forgoes the task of mimicking the classical low-degree testers by attempting

to query all of the points in a subspace of Fn
q altogether. Instead, we show that given any suitable number

of points inside of a fixed affine subspace of dimension large enough in terms of d and t, one has enough

points to design a degree d tester. Thus, our algorithm circumvents the adversary by querying uniformly

random points inside of some suitably large affine subspace. As it turns out, the adversary cannot foil our

plan if there is no plan.

To the best of our knowledge, our low degree tester using uniformly random points is new, even in the

setting without erasures, and we believe that it may have other applications and be of independent interest.

1.1 Our Results

We present our testers for low degree polynomials over prime fields and non-prime fields separately. Al-

though the testers are essentially the same, the analysis in the non-prime field case requires more care and
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must be handled separately. This also leads to slightly different parameters for our two testers. Formally,

our main theorems are the following.

Theorem 1.1 (Prime Field Case). Let f : Fn
p −→ Fp be the input function over a prime-field vector space,

d be the degree parameter, and δ be the distance parameter. Then for t 6 δ
30p

n/(20d), there is a t-online-

erasure resilient tester with query complexity O

(

(log3d+3(t/δ))
δ

)

satisfying:

• Completeness: If f is degree d then the algorithm outputs accept with probability 1.

• Soundness: If f is δ-far from degree d then the algorithm outputs reject with probability at least 2/3.

Theorem 1.2 (Non-Prime Field Case). Let f : Fn
q −→ Fq be the input function, d be the degree parameter,

and δ be the distance parameter. Then for t 6 δ
100q

n
100(d+q)

−1
, there is a t-online-erasure resilient tester

with query complexity
qO(1)

δ O
((

log3d+3q(t/δ)
))

satisfying:

• Completeness: If f is degree d then the algorithm outputs accept with probability 1.

• Soundness: If f is δ-far from degree d then the algorithm outputs reject with probability at least 2/3.

In the p = 2 and d = 1 case, our algorithm is essentially the same as that of [13]. Furthermore, we

remark that our testers also hold with two sided error in the t-online corruption model with two sided error.

In this model, the adversary may change the value of points f(x) instead of erasing them. Our algorithms

are still effective in the online-corruption because no matter what points the adversary chooses to erase,

the probability that our algorithm queries a corrupted point is bounded by a small constant. Therefore

the corruptions only induce a small additive error to the completeness and soundness cases. Our result

for corruptions follows from a reduction from [13], showing that online erasure-resilience implies online

corruption-resilience if the probability of querying a corrupted point is small (see [13, Lemma 1.8] for a

precise statement).

Theorem 1.3. The algorithms of Theorems 1.1 and 1.2 are also t-online-corruption resilient and satisfy:

• Completeness: If f is degree d then the algorithm outputs accept with probability 2/3.

• Soundness: If f is δ-far from degree d then the algorithm outputs reject with probability at least 2/3.

In the online corruption model, one can never hope for perfect completeness as there is always a nonzero

probability that a large enough number of queries made are corrupted, and there is no way for the algorithm

to tell if a query has been corrupted or not. In contrast, in the erasure model, the algorithm can always tell if

a query is erased as ⊥ is returned.

1.2 Proof Overview

The starting point of our algorithm is the observation that the degree of a function when restricted to a k-

dimensional affine subspace can be tested using any set of points of size only polynomial in k. This result

is obtained by considering inner product testers and reviewing properties of linear affine-invariant functions

[16], which are explained in Section 2. Specifically, we rely on the fact that a degree d tester for functions

over prime fields is sound if there exists even a single degree d + 1 monomial that it can reject. Thus our

task now becomes designing a tester that accepts all degree at most d monomials while rejecting at least
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one degree d + 1 monomial. The view of testing as taking the inner product with functions that are dual

to the desired property, as in is done in [21, 17], turns out to be useful for this task. This further reduces

our algorithm to the following algebraic observation: for any S ⊂ F
k
q of size roughly kd, there is a function

h : Fk
q −→ Fq whose support is contained within S such that the inner product of h with any monomial of

degree at most d is 0, and the inner product of h with some specific degree d + 1 monomial is nonzero.

This fact follows essentially follows by counting arguments/ dimension arguments, and armed with it the

algorithm follows rather naturally.

The case of non prime fields is a bit harder but is very similar in spirit. Here, we once again show that

testing low-degreeness over Fq admits a versatile and large enough family of inner product testers, enough

so that we can fit a test through every large enough set of points.

1.3 Related Work

Prior to this work, the t-online erasure model was presented and studied in [13]. In [13], it is shown that

the query complexity of linearity testing over F2 with erasure parameter t is Θ(log(t)), and that quadratic-

ity testing can be accomplished using a number of queries that is doubly exponential in t. As such, the

quadraticity testing result only applies for constant t and furthermore does not apply in the online corruption

model. Other properties including the sorted and lipschitz properties of sequences are also considered in

[13] as examples that cannot be tested in the online-erasure model, even for t = 1.

The online erasure model we study is also similar to the offline erasure model of Dixit, Raskhodnikova,

Thakurta, and Varma [8] where all erasures are made by the adversary at the start of the computation, as well

as the tolerant testing model, where there is the additional requirement that functions close to the desired

property should be accepted with constant probability [18].

In a concurrent work, Ben-Eliezer, Kelman, Meir and Raskhodnikova [5] investigate the online erasure

model in the q = 2 case. Of interest to this paper are the following results. For linearity testing (d = 1),

they obtain a tester with query complexity matching the lower bound in [13]. For general degree, d, they

show that any tester requires at least Ω
(

logd(t)
)

queries.

For constant distance parameter δ, in the q = 2 case, our tester in Theorem 1.1 achieves query complex-

ity O(log3d+3(t)). Thus, when compared to the lower bound of [5] the polynomial dependence in logd(t)
is optimal, but improving the exponent to match the lower bound is an intriguing open question. We remark

that we did not attempt to optimize the query complexity of our testers and instead focused on obtaining

a tester with poly(logd(t)) query complexity that also worked for all degrees and field sizes. Optimizing

just the analysis in this paper, however, will not close the gap to the lower bound. Instead, what appears

to be missing is an “optimal analysis” of the soundness of our basic tester (see Algorithm 1), that makes

O(logd+1(t)) queries. In this paper, we rely on a generic result from [16] to obtain soundness roughly

Ω( 1
log2d+2(t)

), which in turn requires us to repeat the basic test O(log2d+2(t))-times in order to obtain con-

stant soundness. This ultimately results in O(log3d+3(t)) queries. If instead, we had an optimal analysis,

similar to what is achieved for the testers in [17], then the soundness of the basic test would be Ω(1), and

only O(1) repetitions would be needed. Unfortunately the analysis of [17] does not apply to our testers.
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2 Preliminaries

2.1 Notations

For a prime power q = pℓ, let Fq denote the finite field with q elements and F
∗
q denote the nonzero elements

of Fq. When ℓ = 1, then q = p and we refer to Fq = Fp as a prime field. For a fixed field, Fq, let Tn,k
denote the set of affine transformations T : Fn

q −→ F
k
q . Though the definition of Tn,k also depends on a

field parameter q, we will often drop it from the notation and it will always be clear from the context. For

T ∈ Tn,k let f ◦ T denote the function over Fk
q given by f ◦ T (x) := f(T (x)), for x ∈ F

k
q .

For α ∈ F
n
q , and e ∈ {0, . . . , q − 1}n, let αe =

∏n
i=1 α

ei
i , where αi and ei are the ith coordinates of

α and e respectively. Let xe denote the monomial
∏n

i=1 x
ei
i where the xi’s are variables and the number

of variables parameter n will be clear from context. The degree of xe is deg(xe) = |e|1 =
∑n

i=1 ei. For

a function f : Fn
q −→ Fq, recall that it has a unique polynomial expression, f(x) =

∑

e∈{0,...,q−1}n Cex
e,

where each coefficient Ce ∈ Fq. The degree of f is the maximum degree of a monomial appearing in

its expansion, or equivalently deg(f) = maxe:Ce 6=0 |e|1. For each Ce 6= 0, we say that the monomial xe

appears in f or that f contains xe.
As mentioned, the set of degree d polynomials is often referred to as the degree d Reed-Muller Code.

We use the notation RM[n, q, d] = {f : Fn
q −→ Fq | deg(f) 6 d}. The notion of distance that we use is

fractional hamming distance. That is, for two functions f, g over Fn
q , define δ(f, g) = Prx∈Fn

q
[f(x) 6= g(x)].

The distance of f to degree d, is δd(f) = ming∈RM[n,q,d] δ(f, g), and we say that f is δ-far from degree d if

δd(f) > δ.

2.2 Properties of Linear Affine Invariant Families

We require a few basic facts about linear, affine invariant families of functions, which we present in this

section. These results can all be found or derived from [16]. For a family of polynomials F , let

supp(F) = {xe | e ∈ {0, . . . , q − 1}n, ∃f ∈ F containing xe}

denote the set of monomials that appear in at least one of these polynomials. It is well known that these

monomials form a basis for F if F is linear and affine-invariant. These notions are defined as follows.

Definition 1. A family of functions, F ⊂ {f : Fn
q −→ Fq} is linear if

• 0 ∈ F , where 0 is the constant zero function.

• For any α, β ∈ Fq, if f, g ∈ F , then α · f + β · g ∈ F .

Definition 2. A family of functions, F ⊂ {f : Fn
q −→ Fq}, is called affine invariant if it is closed under

compositions with affine transformations. That is, if f ∈ F and T ∈ Tn,n, then f ◦ T ∈ F .

Linear, affine-invariant function families have the following nice properties. Towards this end, given a

family of function F , we denote by supp(F) the set of monomials that appear in some function in F . The

following property asserts that affine invariant codes are defined by a set of monomials .

Lemma 2.1 (Monomial Extraction Lemma [16]). If F is a linear, affine-invariant family of polynomials

then F = span(supp(F)).

5



The next property is called p-shadow closed, and requires some additional notions. For two integers

a, b ∈ {0, . . . , q − 1}, let a =
∑k−1

i=0 piai and b =
∑k−1

i=0 pibi be their base p representations. We say a is in

the p-shadow of b if ai 6 bi for i = 0, . . . , k − 1, and denote this by a 6p b. Then for two exponent vectors

e = (e1, . . . , en) and e′ = (e′1, . . . , e
′
n), we say e 6p e′ if ei 6p e′i for every i. Linear, affine-invariant

families of polynomials have the following shadow closed property.

Lemma 2.2. Let F = span(supp(F)) be a linear, affine invariant family of polynomials. If e 6p e′ and

e′ ∈ supp(F), then e ∈ supp(F) as well.

In the case where q = p, the shadow lemma simplifies to the following statement.

Lemma 2.3. Let F = span(supp(F)) be a linear, affine invariant family of polynomials over a prime field

vector space. If xe ∈ supp(F) and each entry of e− e′ is nonnegative, then xe
′

∈ supp(F).

Finally, we will need the following lemma which will allow us to go from one monomial in F to another

with the same degree, but with the distribution of the individual degrees shifted.

Lemma 2.4. Suppose xe ∈ F and suppose m 6p e2. Then xe
′

∈ F , where e′ = (e1 + m, e2 −
m, e3, . . . , en).

Proof. Let T be the affine transformation T (x) = (x1, x1 + x2, x3, . . . , xn). Then,

xe ◦ T = xe11 (x1 + x2)
e2

n
∏

j=3

x
ej
j =

(

d2
∑

i=0

(

d2
i

)

xe1+i
1 xe2−i

2

)

n
∏

j=3

x
ej
j .

By Lucas’s Theorem and the assumption m 6p e2,
(

d2
m

)

6= 0 in Fq, and so xe◦T = xe11 (x1+x2)
e2
∏n

j=3 x
ej
j

contains the monomial xe
′

. The result then follows from Lemma 2.1.

Clearly Lemma 2.4 also holds with the indices 1 and 2 replaced by arbitrary, distinct indices i and j.

2.3 Functions over Finite Fields

We now present some additional facts about functions over finite fields. These facts will lead to the inner-

product view of testing which was used to construct low-degree tests in [21, 17]. For two functions f, g :
F
n
q −→ Fq, define their inner product as

〈f, g〉 =
∑

α∈Fn
q

f(α)g(α).

It is clear that this inner product is bi-linear. A key part of our testing algorithm is the observation that the

presence of high degree monomials can be “detected” by using inner products with polynomials of relatively

sparse support. In order to see this, we will first need a couple of basic facts about finite fields. First, it is a

well known fact that F∗
q has a multiplicative generator. From this, we can deduce the following two lemmas.

Lemma 2.5. For any prime power q and integer i ∈ {0, . . . , q − 1},

∑

α∈Fq

αi =

{

−1, if i = q − 1,

0, otherwise.
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Proof. If i = q−1, then αi = 1 for all α 6= 0, while 0i = 0. Therefore, the sum is one summed up q−1 times

which is −1 in Fq. For i ∈ {1, . . . , q − 2}, recall that F∗
q has a generator γ. That is, F∗

q = {1, γ, . . . , γ
q−2}.

Since γi 6= 1, we may write

∑

α∈Fq

αi =

q−2
∑

j=0

(γi)j =
(γi)q−1 − 1

γi − 1
=

1− 1

γi − 1
= 0.

On the other hand, if i = 0 then the sum on the left hand side of the lemma is equal to
∑

α∈Fq
α0 =

∑

α∈Fq
1 = q = 0.

Lemma 2.6. For e, e′ ∈ {0, . . . , q − 1}n, suppose that xe
′′

= xe · xe
′

where xe
′′

is reduced so that its

individual degrees are in {0, . . . , q − 1}.

〈xe, xe
′

〉 =

{

(−1)n, if e′′ = (q − 1, . . . , q − 1),

0, otherwise,

Proof. This is a straightforward application of Lemma 2.5. By definition

〈xe, xe
′

〉 =
∑

(α1,...,αn)∈Fn
q

n
∏

i=1

αei
i =

n
∏

i=1

∑

α∈Fq

αe′′i .

The result follows from Lemma 2.5.

Lemma 2.6 suggest one method for using inner products to test low degree. Suppose that q = 2 and we

want to detect if f contains the degree d + 1 monomial x1 · · · xd+1. Then by Lemma 2.6 this is equivalent

to checking whether or not 〈f, xd+2 · · · xn〉 is nonzero.

2.4 Local Characterizations and Testing

Using the ideas from the last section, we can first attempt to find functions h : Fk
q −→ Fq that are local

characterizations of RM[n, q, d]. These are defined as follows.

Definition 3. For h : Fk
q −→ Fq, define Fn(h) = {f : Fn

q −→ Fq | 〈f ◦ T, h〉 = 0,∀T ∈ Tn,k}. We call h a

local characterization for Fn(h).

Whenever we use the notation Fn(h), the field size q will be clear from context. Once we are able to

construct a local characterization, h, a candidate test becomes clear. Choose a random T ∈ Tn,k, and accept

if and only if 〈f ◦ T, h〉 = 0. Carrying out this test requires querying f ◦ T (x) for every x ∈ supp(h). It is

clear from the definition of local characterization that this test satisfies completeness, while for soundness

we may appeal to a general result from [16]. For our purposes, this lemma states the following.

Theorem 2.1 (Lemma 2.9 [16]). For any local characterization h : Fk
q −→ Fq and function f : Fn

q −→ Fq,

we have

Pr
T∈Tn,k

[〈f ◦ T , h〉 6= 0] >
δ

4Q2
,

where Q = supp(h) and δ = δ(f,Fn(h)).
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3 The Prime Field Case: Proof of Theorem 1.1

Fix a degree parameter d, a prime field size q = p, and an erasure parameter t. In this section we prove

Theorem 1.1 by describing and analyzing a t-erasure-resilient degree d tester for functions over Fn
p . For

distance parameter δ, our test is t-online-erasure resilient for all t 6 δ
30p

n/(20d).

3.1 A Local Characterization for RM[n, p, d]

To start, we give a sufficient condition for a function h to be a local characterization RM[n, p, d]. This

requires the following Corollary of Lemma 2.4 applied to the prime field case.

Lemma 3.1. Let F be a linear affine invariant family of functions over F
n
p and suppose xe ∈ F for some

e ∈ {0, . . . , p− 1}n. Then xe
′

∈ F for any e′ ∈ {0, . . . , p− 1}n such that |e′|1 6 |e|1,

Proof. Note that for a, b ∈ {0, . . . , p − 1} the relation a 6p b is equivalent to a 6 b. Thus, by repeatedly

apply Lemma 2.4, it is clear that xv ∈ F for every v ∈ {0, . . . , p − 1}n such that |v|1 = |e|1. In particular,

there exists a v such that e′ 6p v and xv ∈ F . By Lemma 2.2, it follows that xe
′

∈ F .

Broadly, Lemma 3.1 states that in order for h to be a local characterization for RM[n, p, d], it is sufficient

for h to detect any monomial of degree d+ 1. This idea is formalized in the lemma below.

Lemma 3.2. For any k > ⌈d+1
p−1⌉, if h : Fk

p −→ F2 satisfies deg(h) = k(p − 1) − (d + 1) then, h is a local

characterization for RM[n, p, d]. Equivalently RM[n, p, d] = Fn(h).

Proof. Let h : Fk
p −→ Fp have degree k(p− 1)− (d+ 1). We show that RM[n, p, d] = Fn(h).

By Lemma 2.6, RM[n, p, d] ⊆ Fn(h). Indeed, for any f ∈ RM[n, p, d] and any affine transformation

T ∈ Tn,k, we have the degree of f ◦ T is at most d. Thus if xe is a monomial appearing in f ◦ T and xe
′

is a monomial appearing in h, then |e + e′|1 6 k(p − 1) − (d + 1) + d 6 k(p − 1) − 1. It follows that

e+ e′ 6= (q− 1, . . . , q− 1), and by Lemma 2.6, 〈xe, xe
′

〉 = 0. Since this holds for every pair of monomials

appearing in f ◦ T and h, by the bilinearity of the inner product, 〈f ◦ T, h〉 = 0 for every T ∈ Tn,k.

To complete the proof we show that Fn(h) ⊆ RM[n, p, d]. Suppose
∏k

i=1 x
ei
i is one of the degree

k(p− 1)− (d+ 1) monomials in h. Let e′i = p− 1− ei and define

e′ = (e′1, . . . , e
′
k, 0, . . . , 0) ∈ {0, . . . , p − 1}n.

Let T be the affine transformation that is identity on the first k-coordinates and sends all other coordinates to

0, i.e. T (x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0). By Lemma 2.6, 〈xe
′

◦T, h〉 6= 0 it follows that xe
′

/∈ Fn(h).
Since |e′|1 = d+1 Lemma 3.1 it follows that Fn(h) contains no monomials of degree greater than d. Thus,

Fn(h) ⊆ RM[n, p, d].

3.2 An Erasure Resilient Low Degree Tester

In order to design a low degree tester that works in the presence of online erasures, we would like to have

that has as little dependency between the points as possible. To this end, we show that simply choosing

≈ kd uniformly random points in a k-dimensional tester for k > d + 1 to be determined later suffices for

low degree testing. To make this tester t-online-erasure resilient, we pick k sufficiently large relative to the

erasure budget t.

8



Lemma 3.3. For every dimension k > d+ 1 and every S ⊆ F
k
p such that |S| >

(d+k+1
k

)

+ 1, there exist a

function h : Fk
p −→ Fp such that

• deg(h) = k(p − 1)− (d+ 1)

• supp(H) ⊂ |S|

Proof. LetH be the set of functions from F
k
p −→ Fp whose support is contained in S. Then

|H| > p|S| > p(
d+k+1

k )+1.

On the other hand, the number of monomials over Fk
p of degree at least k(p − 1) − (d + 1) is

(d+k+1
k

)

.

To see this, we can bound the number of e ∈ {0, . . . , p − 1}k such that
∑k

i=1 p − 1 − ei 6 d + 1. The

number of linear combinations of such monomials over Fp is at most p(
d+k+1

k ). By the pigeonhole principle

there must exist distinct h1, h2 ∈ H that have the exact same coefficient for each monomial of degree at

least k(p − 1) − (d + 1). Set h′ = h1 − h2, so that all of these monomials are cancelled out in h′. Then,

deg(h′) 6 k(p− 1)− (d+1). If this inequality is in fact an equality, then we are done. Otherwise, let xe be

a maximum degree monomial appearing in h′. Let xv be a monomial of minimum degree such that xe · xv

has degree k(p− 1)− (d+1). Such a monomial indeed exists and we can take h = h′ ·xv to get the desired

function. Indeed, xe · xv is a maximum degree monomial of h and supp(h) ⊆ supp(h′) ⊆ S.

Combining Lemmas 3.3 and 3.2, we get that on any set S ⊆ F
k
p of size

(d+k+1
k

)

+ 1, there is a local

characterization h whose support is contained inside S. This motivates the basic tester described in Algo-

rithm 1. We will analyze Algorithm 1 ignoring erasures. Thus, we give a lower bound on its rejection when

assuming that no points are erased. To deal with erasures, we note that each query is uniformly random in a

k-dimensional affine subspace. Hence by choosing k large enough later, we can give an upper bound on the

probability that any query we make is erased. For the remainder of this section, fix

Q(k) =

(

d+ k + 1

k

)

+ 1.

Lemma 3.4. Let f : F
n
p −→ Fp be a function. If deg(f) 6 d, then Algorithm 1 outputs accept with

probability 1. If f is δ-far from degree d, Algorithm 1 outputs rejects with probability at least δ
4Q(k)2

.

Proof. We begin with the completeness of the tester, and towards this end assume that f has degree at most

d. Since deg(h) 6 k(p− 1)− (d+1) for all h ∈ H, and deg(f ◦ T ) 6 deg(f), it follows from Lemma 2.6

and the bilinearity of inner product that 〈f ◦ T, h〉 = 0 for all T .

We move on to the second part of the lemma. For h ∈ H, let Pr(h) denote the probability that h is

chosen in step 3 and let rejh(f) denote the probability over T ∈ Tn,k that 〈f ◦ T, h〉 6= 0. Notice that the

random T and h in Algorithm 1 induce a product distribution over Tn,k × H where the distribution of Tn,k
is uniform. Conditioned on any arbitrary h ∈ H being chosen in line 9, T is uniform over Tn,k and the test

rejects with probability at least rejh(f). By Theorem 2.1, for every h ∈ H, rejh(f) >
δ

4| supp(h)|2
>

δ
4Q(k)2

.

Thus, by generating the distribution over T and h by first choosing h ∈ H with probability Pr(h) and

then choosing T ∈ Tn,k uniformly. This makes it clear that Test 1 rejects with probability at least

∑

h∈H

Pr(h) rejh(f) >
δ

4Q(k)2
.

9



Algorithm 1 A Basic Low Degree Tester over Fp

1: procedure RANDOMPOINTS(f, d, k)

2: Choose T ∈ Tn,k uniformly at random.

3: Choose S ⊆ F
k
q of size Q(k) uniformly at random.

4: Query f ◦ T (x) for each x ∈ S.

5: H(S)← the set of h with support contained in S that satisfy RM[n, p, d] = Fn(h).
6: if H(S) is empty then

7: return Accept.

8: end if

9: Choose h ∈ H(S) uniformly at random.

10: if 〈f ◦ T , h〉 = 0 then

11: return Accept.

12: end if

13: if 〈f ◦ T , h〉 6= 0 then

14: return Reject.

15: end if

16: end procedure

In order to output reject with probability at least 2/3 in the far from degree d case, we will repeat

Algorithm 1. Henceforth, set k = 20d logp(30t/δ). We will show that the resulting tester, described in

Algorithm 2, is t-online-erasure resilient. Before showing completeness and soundness, we give a bound on

Q(k) which will be helpful for calculations,

Q(k) 6 (3k/d)d+1
6 (60 logp(30t/δ))

d+1 .

By the bound on t stated at the start of the section, we have k 6 n, so our tester is valid, in that f ◦ T is

always well defined for T ∈ Tn,k.

Algorithm 2 A t-online-erasure resilient tester over Fp.

1: procedure ERASURERESILIENT(f, d, δ)

2: Set k = 100d log
(

100dt
δ

)

+ q.

3: for i = 1→ 100Q(k)2

δ do

4: Run RandomPointsTest(f, d, k)
5: If Reject is outputted, return Reject.

6: end for

7: return Accept.

8: end procedure

The following result shows completeness and soundness for Algorithm 1 and hence proves Theorem 1.1

Theorem 3.1. Given f : Fn
p −→ Fp, a degree parameter d, a distance parameter δ, and an erasure parameter

t, Algorithm 2 accepts f with probability 1 if deg(f) 6 d and rejects f with probability at least 2/3 if f is

δ-far from degree d. The number of queries made is O

(

(

log(t/δ)
δ

)3d+3
)

.

Proof. It is clear from Lemma 3.4 that if deg(f) 6 d, then f is accepted with probability 1.

10



Now suppose that f is δ-far from degree d. By Lemma 3.4, with probability at least 3/4, there is at least

one iteration where the basic tester outputs reject, so it remains to bound the probability that any queried

point is erased. The total number of erased points is at most
100Q(k)3t

δ and each query is uniformly random

in some k-dimensional affine subspace. Therefore by a union bound, the probability that any individual

query is erased is at most,

100Q(k)3t

δpk
·
Q(k)3t

δ
6

100t2(30 logp(60t/δ))
6d+6

δ2(30t/δ)20d
6

1

100
.

Overall, this shows that if f is δ-far from degree d then Algorithm 4 outputs rejects with probability at least

3/4 − 1/100 > 2/3.

4 The Non-Prime Field Case

Our algorithm for low degree testing over non-prime fields follows the same outline as that of the prime

field case, but its analysis includes a few more complications. For the remainder of this section, write

d + 1 = s · (q − q/p) + r for an integer s and an integer 0 6 r < q − q/p. For distance parameter δ, our

test is t-online-erasure resilient for all t 6 δ
100q

n/(100(d+q))−1.

4.1 Local Characterizations for RM[n, q, d]

Our first goal is to show the following lemma which gives sufficient conditions for h : Fk
q −→ Fq to be a

local characterization. Its proof has appeared before, first in [21] and later restated closer to the language

used here in the appendix of [17]. We include it below for completeness.

Lemma 4.1. If h : Fk
q −→ Fq satisfies

• deg(h) 6 (q − 1) · k − (d+ 1).

• h contains the monomial
(

∏s
i=1 x

q/p−1
i

)

xq−1−r′

s+1

(

∏k
j=s+2 x

q−1
j

)

for all r 6 r′ 6 q − 1,

then RM[n, q, d] = Fn(h).

We split the proof of Lemma 4.1 into two claims. Fix h : Fk
q −→ Fq to be a function satisfying the

conditions above.

Claim 4.2. RM[n, q, d] ⊆ Fn(h).

Proof. This is a direct application of Lemma 2.6 and the same as the first part of the proof of Lemma 3.2

Claim 4.3. Fn(h) ⊆ RM[n, q, d].

Proof. Suppose for the sake of contradiction that there is g ∈ Fn(h) with degree greater than d and let xe

be a maximum degree monomial of g. By Lemma 2.1, xe ∈ Fn(h). Take the smallest index i such that

e1 + · · ·+ ei > d, and let e′ = (e1, . . . , ei, 0, . . . , 0) ∈ {0, . . . , q − 1}k . Then, e′ 6p e so xe
′

∈ Fn(h), and

|e′|1 > s(q − q/p) + r′ for some r 6 r′ 6 q − 1.

11



Next we will repeatedly use Lemma 2.4 to obtain a monomial in Fn(h) where each of the first s indi-

vidual degrees are at least q − q/p. To this end, define

c(e) =

s
∑

i=1

max(0, (q − q/p)− ei).

We will abuse notation and still refer to the monomial as xe
′

after each application of Lemma 2.4. If e′ is

not of the desired form, then one of the following must be true:

• There is j > s such that ej > 0, in which case we simply find some pm 6p ej and apply Lemma 2.4

to obtain the monomial xei+pm

i x
ej−pm

j in place of xeii x
ej
j ,

• There is j 6 s such that ej > q − q/p. In this case we can find pm such that ej − pm > q − q/p, and

apply Lemma 2.4 to obtain the monomial xei+pm

i x
ej−pm

j in place of xeii x
ej
j .

In either case, c(e′) strictly decreases, while |e′|1 does not change, so we will eventually end up with e′ such

that e′i > q−q/p for 1 6 i 6 s, and |e′|1 = s(q−q/p)+r′. At this point
∑s

i=1 e
′
i−(q−q/p)+

∑k
i=s+1 e

′
i =

r′ 6 q − 1 so we may apply Lemma 2.4 to shift all degree above q − q/p in the first s coordinates, and all

degree in the s+ 2 through kth coordinates, onto e′i, to obtain the monomial

(

s
∏

i=1

x
q−q/p
i

)

xr
′

s+1,

where r 6 r′ 6 q − 1. As we only applied Lemma 2.4, this monomial must be in Fn(h). However, by the

second condition of Lemma 4.1 and Lemma 2.6, this monomial and h have nonzero inner product, leading

to a contradiction. It follows that Fn(h) does not contain any functions of degree greater than d, completing

the proof.

4.2 An Erasure Resilient Low Degree Tester

We now describe our t-erasure resilient degree d tester. Similar to the prime field case, we show that a

set of random points contains a local characterization, and then we repeat this tester to reject with constant

probability in the far from degree d case.

Fix a dimension k to be determined later. Set e⋆ ∈ {0, . . . , q − 1}k such that

• e⋆i = q − q/p for 1 6 i 6 s,

• e⋆s+1 = q − 1,

• e⋆j = 0 for j > s+ 2.

Let d⋆ = |e⋆|1, let G = {g : Fk
q −→ Fq | deg(g) 6 d⋆−1}, and let E = {e ∈ {0, . . . , q−1}k | |e|1 6 d⋆−1}.

Note that d⋆ 6 d+ q, s 6 ⌈ d+1
q−q/p⌉, |E| 6

(

k+d⋆

d⋆

)

, and |G| 6 q(
k+d⋆

d⋆ ). Now construct the following system

of equations over the variables {zα}α∈S :

• For each e′ ∈ E , include the equation
∑

α∈S zαα
e′ = 0.

• Include the equation
∑

α∈S zαα
e⋆ = 1.

12



We first claim that over uniformly random S ⊆ F
k
q of size Q(k) = 2qs+1 log(q)

(k+d⋆

d⋆

)

, this system of

equations is solvable with high probability. To show this, we first state the following simple observation,

which can also be seen through the Schwartz-Zippel lemma or combinatorial nullstellensatz.

Lemma 4.4. For any g ∈ G,

Pr
α∈Fk

q

[g(α) 6= xe
⋆
(α)] >

1

qs+1
.

Proof. For any (αs+2, . . . , αk) ∈ F
k−s−1
q the s + 1-variate polynomial obtained by setting xi = αi for

s + 2 6 i 6 k into g(x) − xe
⋆

is nonzero as it contains the monomial
∏s+1

i=1 x
e⋆i
i . Thus for any set-

ting of the last k − s − 1 variables, there exists (α1, . . . , αs+1) such that g(x) − xe
⋆
6= 0 for x =

(α1, . . . , αs+1, αs+2, . . . , αk) and the lemma follows.

Lemma 4.5. Choose S ⊆ F
k
q uniformly at random of size Q(k). Then the probability that the above system

of equations over {zα}α∈S has no solution is at most q−(
k+d⋆

d⋆ ).

Proof. The system will have a solution as long as the coefficients in the last equation are not in the span of

the coefficients of the other equation. In other words, if

(αe⋆)α∈S /∈ span{(αe′)α∈S}e′∈E .

However, the span on the right side is simply the set {(g(α)α∈S | g ∈ G}. Therefore the above event will

happen if for every g ∈ G there exists at least one α ∈ S such that g(α) 6= αe⋆ . By Lemma 4.4, for any

individual g, we have

Pr
S
[g(α) = αe⋆ ,∀α ∈ S] 6 (1− q−(s+1))Q(k)

6 e−q−(s+1)Q(k).

Therefore, by a union bound, the probability that there is at least one g ∈ G equal to xe
⋆

on all of S is at

most

|G|e−q−(s+1)Q(k)
6 e− log(q)(k+d⋆

d⋆ ) 6 q−(
k+d⋆

d⋆ ).

Finally, we note that if the system of equations we constructed is solvable, then there exists h : Fk
q −→ Fq

with support contained in S that satisfies the conditions of Lemma 4.1, and is thus a local characterization

of RM[n, q, d].

Lemma 4.6. Choose S ⊆ F
k
q uniformly at random of size Q(k). Then with probability at least 1−q−(

k+d⋆

d⋆ ),

there exists h : Fk
q −→ Fq with support contained in S such that RM[n, q, d] = Fn(h).

Proof. By Lemma 4.5 with probability at least 1− q−(
k+d⋆

d⋆ ) the previously described system of equations is

solvable. Suppose this is the case, and abusing notation, let {zα}α∈S denote the solution. Define h1 : F
k
q −→

Fq so that h1(α) = zα if α ∈ S and h1(α) = 0 if α /∈ S. Then each of the previous equations states the

value of an inner product involving h1. In particular we have 〈h, xe〉 = 0 for all e ∈ {0, . . . , q − 1}k such

that |e|1 6 d⋆ − 1 and 〈h, xe
⋆
〉 = 0. By Lemma 2.6, h1 contains the monomial

∏s
i=1 x

q/p−1
i

∏k
j=s+2 x

q−1
j

and all other monomials in h1 are degree at most (q − 1) · k − (d⋆ + 1). We may write,

h1(x) =

s
∏

i=1

x
q/p−1
i

k
∏

j=s+2

xq−1
j + g(x),
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where deg(g) 6 k(q − 1)− (d⋆ + 1).
To complete the proof, take

h = h1 ·

(

q−1
∑

r′=r

xq−1−r′

s+1

)

.

From
∏s

i=1 x
q/p−1
i

∏k
j=s+2 x

q−1
j

(

∑q−1
r′=r x

q−1−r′

s+1

)

we get each of the monomials in the second condition

of Lemma 4.1 and these cannot get cancelled out by g(x)
(

∑q−1
r′=r x

q−1−r′

s+1

)

. Moreover the highest degree

monomial of h is
(

s
∏

i=1

x
q/p−1
i

)

xq−1−r
s+1

k
∏

j=s+2

xq−1
j ,

and its degree is precisely k(q − 1)− (d+ 1), so the first condition is satisfied as well.

Therefore we show that with probability at least 1 − q−(
k+d⋆

d⋆ ) over S, there exists h with support con-

tained in S such that RM[n, q, d] = Fn(h).

We are now ready to present our basic tester, described in Algorithm 3. Henceforth, we will fix

k = 100d⋆ logq

(

100tq

δ

)

.

For t 6 δ
100q

n/(100d⋆)−1, we have k 6 n and our basic tester is valid. The following bound on Q(k) will be

helpful for computations:

Q(k) 6 2q
d+1

q−q/p
+1

log(q)

(

300 logq

(

100tq

δ

))d⋆

.

Algorithm 3 A Basic Tester over Fq

1: procedure GENERALRANDOMPOINTS(f, d, k)

2: Choose T ∈ Tn,k uniformly at random.

3: Choose S ⊆ F
k
q of size Q(k) uniformly at random.

4: Query f ◦ T (x) for each x ∈ S.

5: H(S)← the set of h with support contained in S that satisfy RM[n, q, d] = Fn(h).
6: if H(S) is empty then

7: return Accept.

8: end if

9: Choose h ∈ H(S) uniformly at random.

10: if 〈f ◦ T , h〉 = 0 then

11: return Accept.

12: end if

13: if 〈f ◦ T , h〉 6= 0 then

14: return Reject.

15: end if

16: end procedure
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Lemma 4.7. Suppose f : Fk
q −→ Fq is δ-far from RM[n, q, d]. Then Algorithm 3 on inputs f, d, k rejects

with probability at least δ
5Q(k)2

.

Proof. Suppose that H(S) is nonempty. Then by Theorem 2.1 combined with an argument identical to

Lemma 3.4, the tester rejects with probability at least δ
4Q(k)2

. The probability that H(S) is empty is at most

q−(
k+d⋆

d⋆ ) 6
δ

q(
k+d⋆

d⋆ )−1
6

δ

q100d+10d log(k)
6

δ

100Q(k)2
.

Hence, we may subtract this probability out and get that f is rejected with probability at least δ
5Q(k)2

.

Finally, repeating our basic tester yields a t-online-erasure resilient tester for RM[n, q, d].

Algorithm 4 A t-online-erasure resilient tester over Fq.

1: procedure GENERALERASURERESILIENT(f, d, δ)

2: Set k = 100dt log
(

100dt
δ

)

+ q.

3: for i = 1→ 100Q(k)2

δ do

4: Run GeneralRandomPointsTest(f, d, k)
5: If Reject is outputted, return Reject.

6: end for

7: return Accept.

8: end procedure

Theorem 4.1. Given f : Fn
q −→ Fq, degree parameter d, and a distance parameter δ in the t-online erasure

model, Algorithm 4 outputs accept with probability 1 if deg(f) 6 d and outputs reject with probability 2/3

if f is δ-far from degree d. The query complexity of Algorithm 4 is
100Q(k)3

δ .

Proof. The query complexity is clear, and it is also clear from Lemma 4.7 that if deg(f) 6 d then Algo-

rithm 4 outputs accept with probability 1.

To see the soundness, note that if every query is obtained successfully, i.e. no queried point is erased,

then by Lemma 4.7, reject is outputted with probability at least 3/4 when f is δ-far from degree d. It remains

to upper bound the probability that any query is erased. The total number of erased points is at most
Q(k)3t

δ
and each query is uniformly random in some k-dimensional affine subspace. Therefore by a union bound,

the probability that any individual query is erased is at most,

Q(k)3t

δqk
·
Q(k)3t

δ
6

100q6d log(q)6(300 logq(100tq/δ))
6d⋆

δ2 (100tq/δ)100d
⋆ 6

1

100
.

Overall, this shows that if f is δ-far from degree d then Algorithm 4 outputs rejects with probability at least

3/4 − 1/100 > 2/3.

5 Online-Corruption Resilient Testers

As noted, our testers also work with two sided error with the same parameters in the t-online-corruption

model, since the probability that a corrupted point is queried at all by our algorithms is at most 1/100.
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Recall that in this model, the adversary is allowed to alter entries of the input function’s truth table, f(x),
and thus one can only hope for testers with two sided error as the probability of a querying a corrupted point

must now be subtracted from both the completeness and the soundness.

A formal reduction from online-erasure resilient to online-corruption resilient testing is given in [13,

Lemma 1.8]. Applying this lemma to our results yields the following theorems.

Theorem 5.1 (Prime Field Case). Let f : Fn
p −→ Fp be the input function over a prime-field vector space,

d be the degree parameter, and δ be the distance parameter. Then for t 6 δ
30p

n/(20d), there is a t-online-

corruption resilient tester with query complexity O
(

(log(t/δ))3d+3

δ

)

satisfying:

• Completeness: If f is degree d then the algorithm outputs accept with probability at least 2/3.

• Soundness: If f is δ-far from degree d then the algorithm outputs reject with probability at least 2/3.

Theorem 5.2 (Non-Prime Field Case). Let f : Fn
q −→ Fq be the input function, d be the degree parameter,

and δ be the distance parameter. Then for t 6 δ
100q

n
100(d+q)

−1
, there is a t-online-corruption resilient tester

with query complexity
qO(1)

δ O
(

(log(t/δ))3d+3q
)

satisfying:

• Completeness: If f is degree d then the algorithm outputs accept with probability at least 2/3.

• Soundness: If f is δ-far from degree d then the algorithm outputs reject with probability at least 2/3.

6 Further Directions

In this work we take a step towards investigating problems in algebraic property testing within the online

erasure model. Regarding further directions, recall the gap in the q = 2 case between our upper bound and

the lower bound of [5] discussed in Section 1.3. Closing this gap is an intriguing avenue for future work.

Another potential direction is to develop testers for other algebraic properties or to show generally that

local characterizations (as defined in Definition 3) yield local tests in the online erasure model. The latter

result in the classical model is the main theorem of Kaufman and Sudan’s seminal work on algebraic property

testing [16]. Their main theorem is restated in this paper as Theorem 2.1.

In our current work, we require there to be many local characterizations so that any large enough set

of points in a k-dimensional affine subspace will contain the support of some local characterization with

probability close to 1. Naively, one could try to make the same kind of argument work for a single charac-

terization and appeal to the Density Hales-Jewett Theorem [10, 19]. This would give that for a fixed local

characterization h and any fraction c > 0 there is some dimension kc such that any set of cqkc points in

a k-dimensional affine subspace will contain the support of h (where h is extended to the entire subspace

in some manner). However, in order for this approach to work even with a constant erasure parameter,

one would need cqkc < qkc/2, and such a statement is far stronger than what is guaranteed by the Density

Hales-Jewett theorem.

Yet another intriguing direction is testing other algebraic properties that are not necessarily affine-

invariant, for example, the dual BCH property which is equivalent to being the trace of a low degree poly-

nomial from Fqn −→ Fq. The set of such functions still has a 2-transitive symmetry group but this group is

much less rich than the affine-invariant symmetries that we work with.

Finally, it may be possible that our techniques can answer other questions regarding Reed-Muller codes

in the online erasure model. For example, it could be interesting to explore analogues of other well studied
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tasks in coding theory like local decoding or local correction for Reed-Muller codes. We remark that local

decoding in an (offline) erasure model appears in [20].
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