
Fully Scalable Massively Parallel Algorithms
for Embedded Planar Graphs

Yi-Jun Chang
National University of Singapore

Da Wei Zheng
University of Illinois Urbana-Champaign

Abstract

We consider the massively parallel computation (MPC) model, which is a theoretical abstrac-
tion of large-scale parallel processing models such as MapReduce. In this model, assuming the
widely believed 1-vs-2-cycles conjecture, solving many basic graph problems in O(1) rounds with
a strongly sublinear memory size per machine is impossible. We improve on the recent work of
Holm and Tětek [SODA 2023] that bypass this barrier for problems when a planar embedding
of the graph is given. In the previous work, on graphs of size n with O(n/S) machines, the
memory size per machine needs to be at least S = n2/3+Ω(1), whereas we extend their work to
the fully scalable regime, where the memory size per machine can be S = nδ for any constant
0 < δ < 1. We thus give the first constant round fully scalable algorithms for embedded planar
graphs for the problems of (i) connectivity and (ii) minimum spanning tree (MST).

Moreover, we show that the ε-emulator of Chang, Krauthgamer, and Tan [STOC 2022] can
be incorporated into our recursive framework to obtain constant-round (1 + ε)-approximation
algorithms for the problems of computing (iii) single source shortest path (SSSP), (iv) global
min-cut, and (v) st-max flow. All previous results on cuts and flows required linear memory
in the MPC model. Furthermore, our results give new algorithms for problems that implicitly
involve embedded planar graphs. We give as corollaries of our result the constant round fully
scalable algorithms for (vi) 2D Euclidean MST using O(n) total memory and (vii) (1 + ε)-
approximate weighted edit distance using Õ(n2−δ) memory.

Our main technique is a recursive framework combined with novel graph drawing algorithms
that allow us to compute smaller embedded planar graphs in constant rounds in the fully scalable
setting.

ar
X

iv
:2

30
4.

07
44

1v
2

 [
cs

.D
S]

 2
7

O
ct

 2
02

3

Contents

1 Introduction 1
1.1 Our contributions . 2
1.2 Technical overview . 5
1.3 Additional related work . 8
1.4 Roadmap . 8

2 Preliminaries 9

3 MPC algorithm for separators in embedded planar graphs 12
3.1 Sublinear and MPC algorithms for constructing cuttings 13
3.2 Cutting-divisions . 13
3.3 MPC algorithm for computing cutting-divisions . 16

4 Graph drawing 17
4.1 Compatible triangulations and graph morphing . 19
4.2 Scaffold graphs for a polygonal region . 20
4.3 Boundary routing of nested polygons . 21
4.4 Redrawing a polygonal embedding as a triangular polygonal embedding 23
4.5 Gluing planar graphs together . 23
4.6 Handling degenerate polygonal regions . 25

5 MPC algorithms for embedded planar graphs 26
5.1 Redrawing a graph . 26
5.2 Connected components . 27
5.3 Minimum spanning forest . 29
5.4 Computing emulators . 30
5.5 Shortest cycle . 32
5.6 Single source shortest path . 33
5.7 All-pairs shortest paths . 34
5.8 Drawing the primal-dual overlay graph . 36
5.9 Min-cut and max-flow . 39

6 Edit distance 40

7 Open questions 44

A Proof of sublinear time algorithm for constructing cuttings 46

B Deterministic cuttings in the MPC model 47

1 Introduction

We consider the massively parallel computation (MPC) model introduced by Karloff, Suri, and
Vassilvitskii [KSV10], which is a theoretical abstraction of large-scale parallel processing models
such as MapReduce [DG04]. In comparison to the classical PRAM model of parallel computing,
the MPC model allows a substantial amount of local computation in each round, making it a more
realistic model for practical parallel computation. The MPC model has received much attention in
recent years [ANOY14, ASS+18, BDE+19, BLM+23, CC22, CDP21c, CFG+19, CLM+20, DDK+20,
EMMZ22, GGK+18, GKU19, IMS17].

In the MPC model, the input is initially partitioned into machines with a memory of Θ(S)
words. The total memory size is linear in the size of the input. For example, if the input is a
graph with n vertices and m edges and n = Θ(m), then each word in the memory stores O(log n)
bits and the total number of machines is O

(
m
S
)
. The machines communicate with each other in

synchronous rounds. In each round, each machine can send and receive O(S) messages of O(log n)
bits. After communicating with other machines, each machine can perform a local computation of
poly(S) time. The main complexity measure is the number of rounds needed to solve the problem
under consideration.

Our focus in this paper is on the fully scalable regime, where the local memory size can be an
arbitrarily small polynomial, i.e., S = nδ for any constant δ > 0. Designing algorithms for this
regime is considerably more difficult than the setting where S is a fixed polynomial of n, and it has
been the explicit goal of many recent papers, including [ASS+18, ASZ19, CC22, CDP21c, EMMZ22,
GU19].

This paper considers planar graphs with a given embedding. We assume that each vertex is
assigned a coordinate in the plane, and edges are represented by straight lines without crossings,
although our approach can also accommodate edges with few crossings and more complex families
of curves. This assumption is commonly observed in various applications where embeddings are
readily available. For instance, real-world map data includes GPS coordinates and descriptions of
roads. Often, the only way we know that a graph is planar is when we have an explicit planar
embedding of the graph on the plane

In sequential models of computation, it usually does not matter if we are given an embedding
or not, as there are known algorithms (e.g. [Sch89]) to find a straight-line embedding in linear
time. Surprisingly, in the MPC model, there are conditional lower bounds that indicate a sepa-
ration between whether or not we have an embedding. The widely believed 1-vs-2-cycles conjec-
ture [BKS17, KLM+14, KSV10, RMCS13, RVW18], states that distinguishing between an n-vertex
cycle and two (n/2)-vertex cycles (both planar graphs) requires Ω(log n) rounds in the MPC model
if the local memory size S is at most nδ for any 0 < δ < 1. Assuming this conjecture, many basic
graph problems, including minimum spanning tree (MST) and counting connected components,
cannot be solved in constant rounds in the MPC model in the fully scalable regime, even for planar
graphs.

Such a barrier can be bypassed for some geometric problems. In particular, Andoni, Nikolov,
Onak, and Yaroslavtsev [ANOY14] showed that for any constant d and ε, a (1 + ε)-approximate
solution for the Euclidean MST problem on n points in Rd can be computed in O(1) rounds in the
MPC model in the fully scalable regime.

In contrast, for general graphs, even for the problem of computing connected components,
the state-of-the-art algorithm in the MPC model in the fully scalable regime requires O(logD) +
O(logm/n log n) rounds [BDE+19], where D is the diameter of the input graph. It is unlikely that

1

this bound can be significantly improved due to the Ω(logD) conditional lower bound based on the
1-vs-2-cycles conjecture [BDE+19].

On the other hand, for planar graphs with a given straight-line embedding, the recent work
of Holm and Tětek [HT23] obtained constant-round MPC algorithms for connected components,
minimum spanning tree (MST), and O(1)-approximation of st-shortest path, diameter, and radius
for the case where the local memory size is S = n2/3+Ω(1). This work showed that it is possible
to bypass the 1-vs-2-cycle conjecture if we had an explicit planar embedding of a graph and had
n2/3+Ω(1) space per machine. Their work left one major open question:

Do there exist O(1)-round MPC algorithms for embedded planar graphs in the fully
scalable regime where the local memory size is S = nδ for any constant δ > 0?

We answer this question in the affirmative by presenting a new framework for embedded planar
graphs that solves a large class of problems in the fully scalable regime. Using this framework,
we give the first constant-round algorithm for connected components and MST in this regime.
Furthermore, we are able to improve the approximation factor to (1 + ε) for st-shortest path, and
obtain (1 + ε) approximations for more challenging fundamental graph problems such as single
source shortest path (SSSP), all-pairs shortest path (APSP), max-flow, and min-cut. Prior work
on (1 + ε)-approximate distances, cuts, and flows required at least linear local memory S = Ω(n).
Our work presents the first constant-round algorithm for these fundamental problems in this more
challenging memory regime.

Our main idea is to leverage the power of recursion by reducing a problem on an embedded planar
graph into a problem on a smaller embedded planar graph. We use a combination of geometric
cuttings and r-divisions to partition the graph into regions with few edges crossing the boundary
of each region. Our key new ingredient is a novel two-round nested recursive framework where we
first use one outer round of recursion to reduce the graph size in each region. We then use a second
layer of recursion on the graph we obtain by gluing the smaller graphs from each region together.
In order to facilitate the recursion, our framework employs graph drawing algorithms to compute
explicit embeddings of graphs when the graphs are small enough, and to glue graphs together in
each (outer) recursive step.

1.1 Our contributions

The approach of Holm and Tětek [HT23] is only applicable to machines with local memory S =
n2/3+Ω(1). This lower bound is due to the fact that the computation of the r-division has to be
done in one machine, and there is a tradeoff between the local memory size and the total number
of boundary vertices. The bound S = n2/3+Ω(1) is the result of balancing the two quantities. It
was asked in [HT23, Open question 5] whether it is possible to extend their framework to the case
where S = n2/3−Ω(1). Our first contribution is to resolve this problem by developing a new recursive
framework, which allows us to extend the results in [HT23] to the fully scalable regime where we
are allowed to set S = nδ for any constant δ > 0. Furthermore, our recursive framework can be
made completely deterministic, while the algorithms of Holm and Tětek were randomized.

Theorem 1.1 (Connected Components). There is an algorithm that returns the number of con-
nected components of an embedded planar graph G with n vertices in O(1) rounds using Θ(S) space
per machine and O(n/S) machines where S = nδ for any constant δ > 0.

2

Problem Total space
Memory

per machine Source

Embedded
planar
graphs

Connected Components O(n) n2/3+Ω(1) [HT23]
O(n) nδ Theorem 1.1

Minimum Spanning Tree O(n) n2/3+Ω(1) [HT23]
O(n) nδ Theorem 1.2

O(1)-approx. SSSP O(n) n2/3+Ω(1) [HT23]
(1 + ε)-approx. SSSP O(n) nδ Theorem 1.5
(1 + ε)-approx. APSP O(n2) nδ Theorem 1.7

(1 + ε)-approx. global min cut O(n) nδ Theorem 1.9
(1 + ε)-approx. st-max flow O(n) nδ Theorem 1.10

2D
Euclidean

MST

(1 + ε)-approx. O(n) nδ [ANOY14]
Exact O(n) n2/3+Ω(1) [HT23]
Exact O(n) nδ Corollary 1.3

Edit
Distance

(3 + ε)-approx. Õ(n(9−4δ)/5) nδ [BGS21]
(1 + ε)-approx. Õ(n2−δ) nδ [HSS19]

(1 + ε)-approx. weighted Õ(n2−δ) nδ Theorem 1.11

Table 1: Highlights of this work in comparison to prior work. SSSP stands for single source shortest
paths, and APSP stands for all pairs shortest paths. All entries take O(1) rounds.

Theorem 1.2 (Minimum Spanning Forest). There is an algorithm that returns a minimum spanning
forest of an embedded planar graph G with n vertices in O(1) rounds using Θ(S) space per machine
and O(n/S) machines where S = nδ for any constant δ > 0.

Since Delaunay triangulations can be computed in O(1) rounds [Goo97], we obtain the first
constant-round Euclidean MST algorithm for R2 that works in the fully scalable regime.

Corollary 1.3 (Euclidean MST). There is an algorithm that computes the Euclidean MST of a set
P of n points in R2 in O(1) rounds using Θ(S) space per machine and O(n/S) machines where
S = nδ for any constant δ > 0.

Shortest paths. Our second contribution is to show that our framework can be combined with
the recent ε-emulator of Chang, Krauthgamer, and Tan [CKT22], and this allows us to design O(1)-
round MPC algorithms for (1 + ε)-approximation, for any constant ε > 0, of single-source shortest
paths (SSSP) and shortest cycle with local memory size S = nδ, for any constant δ > 0. These results
improve the distance computation algorithms in [HT23], which only achieve an approximation ratio
of a fixed constant. This result resolves [HT23, Open question 6], which asks whether a better
distance approximation is possible.

Theorem 1.4 ((1+ε)-approximate Shortest Cycle). There is an algorithm that computes the length
of a (1+ε)-approximate shortest cycle of an embedded planar graph G with n vertices in O(1) rounds
using Θ(S) space per machine and O(n/S) machines where S = nδ for any constant δ > 0.

3

Theorem 1.5 ((1+ε)-approximate SSSP). There is an algorithm that computes (1+ε)-approximate
single source shortest paths of an embedded planar graph G with n vertices in O(1) rounds using
Θ(S) space per machine and O(n/S) machines where S = nδ for any constant δ > 0.

As a corollary, we immediately obtain a constant-round MPC algorithm for (2+ε)-approximation
for both radius and diameter in the fully scalable regime, as it is well-known that the longest shortest
path distance from any given source vertex gives a 2-approximation of both radius and diameter.

Corollary 1.6 ((2 + ε)-approximate diameter and radius). There is an algorithm that computes
(2 + ε)-approximate diameter and radius of an embedded planar graph G with n vertices in O(1)
rounds using Θ(S) space per machine and O(n/S) machines where S = nδ for any constant δ > 0.

Using the same ideas and O(n2) total space, we can solve the (1 + ε)-approximate all-pairs
shortest paths (APSP) problem. While this uses significantly more space than the size of the graph,
Ω(n2) total space is required to output the answer.

Theorem 1.7 ((1 + ε)-approximate APSP). There is an algorithm that computes a (1 + ε)-
approximate shortest path for all pairs of vertices of an embedded planar graph G with n vertices in
O(1) rounds using Θ(S) space per machine and O(n2/S) machines where S = nδ for any constant
δ > 0.

As a corollary, this gives a method for finding (1 + ε)-approximate diameter and radius, albeit
using quadratic instead of linear total memory.

Corollary 1.8 ((1 + ε)-approximate diameter and radius). There is an algorithm that computes a
(1 + ε)-approximate diameter and radius of an embedded planar graph G with n vertices in O(1)
rounds using Θ(S) space per machine and O(n2/S) machines where S = nδ for any constant δ > 0.

Planar duals. Our third contribution is to show that a graph that contains as a minor the dual
graph of the given embedded planar graph can be constructed in O(1) rounds in the fully scalable
regime. The total space needed is O(n). This dual graph construction, together with our shortest
cycle algorithm, implies that a (1 + ε)-approximation of minimum cut and maximum flow can also
be computed in O(1) rounds in the fully scalable regime. This result resolves [HT23, Open question
3], which asks for an MPC algorithm for the minimum cut problem in embedded planar graphs.

Theorem 1.9 ((1 + ε)-approximate global min-cut). There is an algorithm to compute the global
min-cut of an embedded planar graph G with n vertices in O(1) rounds using Θ(S) space per machine
and O(n/S) machines where S = nδ for any constant δ > 0.

Theorem 1.10 ((1 + ε)-approximate st-max-flow). There is an algorithm to compute a (1 + ε)-
approximate maximum flow between two vertices of any embedded planar graph G with n vertices in
O(1) rounds using Θ(S) space per machine and O(n/S) machines where S = nδ for any constant
δ > 0.

The computations of distances, cuts, and flows are difficult problems in the MPC model in that
all existing works on this topic require a local memory of at least linear size: S = Ω(n) [BFKL21,
HKN21, GN18, GN20]. Our work is the first one that solves these problems in the fully scalable
regime.

4

The list of problems presented here is not exhaustive, as our recursive framework is very versatile.
With this framework, we can find algorithms for variants of the problems that we discuss (e.g.,
computing labels for connected components, recovering shortest paths, flows, and cuts) and for
problems beyond the ones presented (e.g., verifying that the embedding is planar and finding a
bipartition of the graph).

Work efficiency. Although our work mainly focuses on solving problems in the MPC model with
constant round complexity, we emphasize that all our algorithms are extremely work-efficient. The
randomized variants of our algorithms perform nearly linear total work of O(n log n) for an input
n-vertex embedded planar graph G, except for (1+ ε)-approximate APSP and its related problems,
which require quadratic work. The deterministic variants of our algorithm only require slightly
more work, O(n1+α) for any constant α > 0.

An application to edit distance. Surprisingly, we are able to show that our techniques for
planar graphs have implications for string algorithms. Our new SSSP algorithm implies a new
(1 + ε)-approximate edit distance algorithm in the MPC model whose performance matches the
state of the art [HSS19]. The computation of edit distance is one of the most fundamental problems
in pattern matching, due to its wide range of applications in computational biology, natural language
processing, and information theory.

The first MPC algorithm for approximate edit distance was given in [BEG+21], which ran in
O(log n) rounds and has an approximation ratio of 3 + ε. The subsequent work [HSS19] showed
that an (1 + ε) approximation of the edit distance between two strings of length at most n can
be computed in O(1) rounds in the MPC model with Õ(nδ) memory per machine and O(n2−2δ)
machines.

By a reduction to planar SSSP, we present a new edit distance algorithm in the MPC model
matching the result obtained in [HSS19]. Moreover, our result gives the first MPC algorithm for
weighted version of the (1 + ε)-approximate edit distance. Prior work [HSS19] heavily relied on the
cost of insertion, deletion, and substitutions being equal. Our algorithm works for the weighted
version of the edit distance problem, as long as the weight function is symmetric in the sense that
the edit distance from any string s to any string t is the same as the edit distance from t to s.

Theorem 1.11 (Edit distance). There exists an algorithm that given as input two strings s and t of
length n and a symmetric weight function w, computes a (1 + ε)-approximate edit distance between
s and t in O(1) rounds doing Õ(n2) work using Õ(S) space per machine and Õ(n2/S2) machines
where S = nδ for any constant δ > 0.

1.2 Technical overview

Technical barriers. As discussed earlier, the reason that the approach of Holm and Tětek [HT23]
is only applicable to machines with local memory S = n2/3+Ω(1) is that they need to make sure that
the total number of boundary vertices is at most S, as the size of the compressed graph is linear
in this number and they need to process this graph in one machine. We begin by explaining the
technical barriers that their algorithm runs into when S = nδ. The first is that with less memory,
the decomposition that we compute and distribute to all machines needs to be much smaller, around
nδ in size. This means that the number of boundary vertices is much larger, on the order of n1−O(δ),
so we cannot hope to store all the boundary vertices on one machine. This is not immediately an

5

issue, as it may be possible to use recursion to repeatedly decompose the graph into smaller pieces
until they are small enough to solve on one machine, so we need to return some sort of compressed
representation of the graph whose size is proportional to the number of boundary vertices, put the
graph together somehow, and then use recursion to solve the smaller problem. However, the main
difficulty of doing recursion in this way is that we require the input graph to be a planar graph
with a straight-line drawing. Thus we need to overcome two main obstacles to doing so: We need
our base case to return a planar straight-line drawing, and we need a mechanism to glue together
planar straight-line drawings. We develop new sequential graph drawing algorithms to handle the
base case, and new distributed graph drawing techniques to glue together smaller problems.

There are more technical issues that arise when applying the framework of Holm and
Tětek [HT23]: Their framework partitions edges based on the location of one of the endpoints
of the edge, even if the edge actually crosses many polygonal regions in the decomposition. Every
region crossed by the edge needs to be aware of the existence of this edge when we recurse in order
to guarantee that the drawing that is output has no crossings. If we directly use the partitioning
construction of Holm and Tětek, the total sum of the sizes of the subproblems, including these edges
that cross multiple regions, would increase by a factor of O(log n). We show how to avoid this extra
factor in space with an improved divide-and-conquer scheme.

We also need to develop graph drawing algorithms to return planar straight-line embeddings of
small pieces of graphs in polygonal regions found by our recursion. This itself is very challenging as
these polygonal regions can have polygonal holes and degeneracies, and a straight-line embedding
may not be possible. We can instead relax this constraint to a drawing with O(1) bends per edge,
and we allow ourselves to move vertices around. This is still not easy, as some vertices of the planar
graph needed to be drawn are constrained to be placed on certain points in the boundary of the
polygonal region. If the polygonal region has O(s) sides, then we may need O(s) bends to draw
each edge of the planar graph. This turns out to be far too large for our purposes. To overcome
this issue, we will instead allow the algorithm to modify the polygonal region into one with O(1)
sides. However, this adds difficulties in the recursive step, where we now have to glue these modified
polygons together. We overcome these difficulties by using what we call the scaffold graph which
provides a way to glue our subproblems together.

Overview of the algorithm. For a graph G with n vertices and m edges, we use a (1/mδ)-
cutting algorithm to partition the plane into O(mδ) polygonal regions where each polygon has O(1)
sides and each polygon intersects at most O(n1−δ) edges of the input graph. For each intersection
between an edge of the input graph and an edge in the cutting, we add a virtual degree-2 vertex
at the intersection point to subdivide the edge. We will bound the number of such subdivisions we
perform. Given the cutting Ξ, let GΞ be defined by the vertices and edges of the polygonal regions
of Ξ. As |E(GΞ)| = O(mδ), we can fit GΞ into the local memory of a machine.

An r-division of a graph G is a collection of O(n/r) pieces, where each piece is a subgraph of G
with at most r vertices and O(

√
r) boundary vertices. We find an n2δ/3-division of GΞ. We call this

a cutting-division, as this is a partition by a division of a cutting. Each piece of the cutting-division
corresponds to a subgraph of the old graph G, after the subdivision discussed above, with O(n1−δ/3)
vertices and O(n1−2δ/3) boundary vertices. As there are nδ/3 pieces, the total number of boundary
vertices is O(n1−δ/3). We note that the idea of taking planar separators of cuttings is not new, it
was used in many papers before, e.g. [EGS10, CS11, Har14, HT23].

We recurse on each piece, and the recursive call returns a solution for the piece and compresses

6

the piece into a graph whose size is linear in the number of boundary vertices of the piece. We
combine all the compressed graphs into a graph G̃. Due to the above bound on the number of
boundary vertices, the size of G̃ is O(n1−δ/3). We also recurse on this graph. For this recursion to
be possible, we need a straight-line drawing of G̃. For the base case, drawing a graph in a h-holed
polygon with boundary complexity c may require edges to be drawn with O(ch) bends per edge.
Intuitively, this is due to the fact that the given graph topology may require some edges to be drawn
with complicated homotopies that wind around all the holes. To make the drawing straight-line,
each bend will be replaced with a degree-2 vertex. The complexity O(ch) is unacceptable if either
c or h is non-constant. To ensure that h is constant, we will use a version of r-division [KMS13]
which ensures that each region has O(1) topological holes. To ensure that c is constant, we require
that each of the h holes forms a triangle. We devise a new algorithm for drawing the graph so the
inside holes lie on a specific predetermined triangular boundary. This involves building a scaffold
graph that we can draw as a planar straight-line drawing, and fix it so that boundary vertices lie
on triangular boundaries of the polygonal region. This fixing is done by routing paths through an
intermediate portal vertex that is an intermediary between the triangular boundary, and the points
that lie on the boundary.

Extensions of the framework. To extend our framework to give (1 + ε)-approximation for
SSSP and shortest cycles, we use the ε-emulator of Chang, Krauthgamer, and Tan [CKT22]. Given
a planar graph G with a set of terminals T , an ε-emulator is a planar graph G′ that contains all
terminals in such a way that the distances between terminals in G′ are (1+ε)-approximation of their
distances in G. It was shown in [CKT22] that such an ε-emulator of size |V (G′)| = Õ(|T |/εO(1))
exists and can be computed efficiently. We show that we can compute ε-emulators in O(1) rounds
in the MPC model, even though we cannot store all the terminals on one machine. We do so by
applying our recursive framework.

To solve the shortest cycle problem, we categorize the cycles into ones that are confined to
a single piece and ones that cross multiple pieces. The first type of cycle can be handled solely
by recursion to each piece. The second type of cycle can be handled by recursion to the graph
resulting from combining what we call inside sparsifiers, a compressed graph whose size is nearly
linear in the number of boundary vertices such that the distances between the boundary vertices
in the compressed graph are good approximations of their distances within the piece. Observe that
ε-emulators are exactly what we need for inside sparsifiers.

To solve SSSP, we will consider the following modified recursive framework where we recurse on
each piece twice. First, we recurse to find inside sparsifiers for each piece by constructing ε-emulators
in parallel. Now we will solve the problem for the vertices of each piece in parallel. For each piece,
we will build an outside sparsifier on the vertices lying on the boundary of the piece from all the
inside sparsifiers we already computed. We join the outside sparsifier to the old unsparsified graph
within each piece and recurse to compute the shortest path from s.

It is well-known that the global minimum cut problem in a plane graph can be reduced to the
shortest cycle problem in its dual graph. A similar reduction exists for the st-max-flow problem,
which is equivalent to finding the shortest cycle separating two faces s∗ and t∗ in the dual. While
the dual graph construction is straightforward in the centralized setting, it is nontrivial in the MPC
model as a face can have a complicated structure and as many as O(n) sides. The main difficulty
in implementing this reduction in our setting is that in order to apply the tool sets that we have,
it is required that the input graph is given a straight-line drawing. To circumvent the difficulty

7

of constructing a straight-line drawing of the old dual graph, we consider a relaxed version of the
problem where we allow each vertex in the dual graph to be represented by a connected subgraph,
and we show that in this case, an O(1)-round construction algorithm in the MPC model is possible.
This relaxed version is sufficient for the reduction discussed above. Our dual graph construction
allows us to obtain an O(1)-round algorithm for the global minimum cut problem when combined
with our shortest cycle algorithm.

The st-max-flow problem is more challenging, as we need to maintain the faces of s∗ and t∗ in
the dual. Instead of maintaining the entire face, which can be of arbitrary complexity, we will store
a point in the faces corresponding to s∗ and t∗. Then, we use a similar type of recursion as we
did for SSSP. When computing sparsifiers, we avoid sparsifying the piece that contains s∗ and t∗ to
avoid changing the topology of paths relative to s∗ and t∗.

1.3 Additional related work

The 1-vs-2-cycles conjecture plays a central role in the computational complexity theory for the
MPC model. Nanongkai and Scquizzato [NS22] demonstrated a large class of problems that are
all equivalent to the 1-vs-2-cycles conjecture and studied the relation of this conjecture and other
hardness assumptions. For example, 1-vs-2-cycles, planarity testing, minimum cut, bipartiteness,
and counting connected components are equivalent in the sense that if any one of these problems
can be solved in O(1) rounds with S = n1−Ω(1), then all of these problems can be solved in O(1)
rounds with S = n1−Ω(1).

Ghaffari, Kuhn, and Uitto [GKU19] showed that assuming the 1-vs-2-cycles conjecture, for
any graph problem, any Ω(T) lower bound for the round complexity in the LOCAL model implies
an Ω(log T) lower bound for the round complexity of any algorithms in the MPC model with
S = n1−Ω(1) that are component-stable, which means that the output in a connected component is
independent of all other connected components. This transformation of LOCAL lower bounds into
MPC lower bounds has been successful in showing the conditional optimality of many existing MPC
algorithms [BLM+23, CFG+19, CDP21b, GGJ20]. The component-stability assumption needed in
the transformation was shown to be necessary by Czumaj, Davies, and Parter [CDP21a].

To the best of our knowledge, [HT23] is the only prior work that focuses on planar graphs in
the MPC model. For the related LOCAL and the CONGEST models of distributed computing, there
has been a large body of research designing distributed algorithms in planar networks: depth-first
search [GP17], planarity testing [GH16a, LMR21], separators [GP17], diameter [LP19], reachabil-
ity [Par20], low-congestion shortcuts [GH16b], and dominating set [AJ20, BCGW21, LPW13].

1.4 Roadmap

Here we describe the organization of the rest of the paper. In Section 2 we give the preliminaries.
In Section 3 we describe our construction of cutting-divisions in the MPC model that function
as separators for embedded planar graphs. After that, we present the necessary graph drawing
operations we need in Section 4, first by presenting an algorithm to draw the graph in the base case
in a polygonal region of low complexity, and then a method of gluing graphs drawn in polygons of
low complexity together. In Section 5 we use our cutting-divisions and our graph drawing tools to
build algorithms for embedded planar graphs. In Section 6, we demonstrate an application of our
results to edit distance computation. To conclude, we end with some open questions in Section 7.

8

2 Preliminaries

Massively parallel computing. In the MPC model, the input m-edge n-vertex graph is initially
partitioned into machines with a memory of Θ(S) words of O(log n) bits. We will focus on the case
where S = nδ for any constant δ ∈ (0, 1). The total number of machines is M = O

(
m
S
)
. We assume

that these machines have unique identifiers in [M]. These machines communicate with each other
in synchronous rounds. For any routing task where each machine is the source and the destination
of at most O(S) messages of O(log n) bits, all the messages can be delivered to their destinations
in one round of communication.

We can build a rooted tree T over the M machines so that each vertex of the tree has at most S
children and the tree height is O(1/δ) = O(1). Using this tree T , many tasks that require Ω(log n)
rounds to solve in CRCW PRAM can be solved in O(1) rounds in the MPC model. For example,
any machine can broadcast a message of O(S) words to all other machines in O(1) rounds by first
sending the messages to the root of T and then broadcasting messages along the tree edges. To do
so, we explain how a machine u can send S words w1, w2, . . . , wS to its S children v1, v2, . . . , vS in
two rounds, as follows. In the first round, for each i ∈ [S], u sends wi to vi. In the second round,
for each i ∈ [S] and each j ∈ [S], vi sends wi to vj . By the end of the second round, all machines
v1, v2, . . . , vS have received all words w1, w2, . . . , wS .

Moreover, given that each machine holds O(S) items, it is possible to sort all these items in
O(1) rounds using T [GSZ11] in such a way that the first machine holds the O(S) smallest items,
the second machine holds the O(S) smallest items among the remaining items, and so on.

Planar graphs, subdivisions, and vertex splits. In this paper, we will only consider undi-
rected planar graphs G. We will let V (G) denote the vertices of G and E(G) denote the edges of
G. Often we will consider weighted graphs, meaning that for every edge e ∈ E(G), it has weight
w(e). If e = (u, v), we will also write the weight as w(u, v). We will often also refer to this as the
length of an edge.

We will let n = |V (G)| and m = |E(G)|. The planar graphs we consider may not be simple.
They may have multi-edges between two vertices. We will assume that the graphs we consider have
no isolated vertices, so by a simple counting argument n ≤ 2m. For simplicity, we will assume
n = Θ(m) as well. For all of the problems we will consider (e.g., connected components, minimum
spanning forest, and shortest paths) isolated vertices are trivial to detect and handle separately.

A subdivision of an edge e ∈ E(G) where e = (u, u′) for u, u′ ∈ V (E) is the deletion of e,
followed by an insertion of a vertex ve with the two edges e1 = (u, ve) and e2 = (ve, u

′). When we
perform an edge subdivision, we will treat one of the edges, say e1, as a canonical edge. This means
that w(e1) = w(e), and we will often set w(e2) = 0. This way, the length of paths taking e1 and e2
is equal to the lengths of paths taking e. This also preserves the value of the minimum spanning
forest if all weights are positive. Furthermore, an edge is in the minimum spanning forest of the old
graph if and only if the canonical edge is in the minimum spanning forest of the subdivided graph.

We will also consider performing vertex splits of a vertex v ∈ V (G). If v has incident edges (v, u1),
(v, u2), . . ., (v, uk) ∈ E(G), we partition the vertices ui into two sets U1 and U2. Then we delete
v and all its edges, and replace with two vertices v1 and v2, and add the edges {(v1, u) | u ∈ U1}
and {(v2, u) | u ∈ U2} and the edge (v1, v2). We will treat one of the vertices, say v1, as the
canonical vertex. Furthermore, we set w(v1, v2) = 0 and w(v1, u1) = w(v, u1) for u1 ∈ U1 and
w(v2, u2) = w(v, u2) for u2 ∈ U2. This way, the length of paths with v as an intermediate vertex is

9

preserved, as well as the value of the minimum spanning forest.

Polygonal regions and polygonal embeddings. A polygonal region with holes P or polygonal
region for short, is a connected planar polygon with one exterior boundary and zero or more interior
boundaries. We will call every connected region that is not the interior of P a hole. In particular,
we call the connected region bounded by the external boundary of P the exterior hole, and the
connected region bounded by one interior boundary an internal hole. We say P is an h-holed
polygonal region if P has 1 exterior hole and h − 1 interior holes. The boundary of P , denoted by
∂(P), is the union of the boundary of each hole of P . The boundary complexity of P , denoted by
|∂(P)|, is the sum of the number of edges on the holes of P . If every hole of P has exactly 3 sides,
we say P is a triangular polygonal region.

We allow the polygons to be degenerate. In particular, a single boundary can touch itself, and
boundaries between holes can touch, as long as the polygon remains connected. This requirement
stems from our use of planar separators. See Figure 1 for an illustration.

Given a plane graph G drawn in a polygon P with h holes, and some vertices ∇(G) ⊆ V (G) that
lie on the boundary of P that we refer to as terminals, we say the triple (G,∇(G), P) is a h-holed
polygonal embedding (or simply polygonal embedding). All graphs considered in this paper will be
drawn with straight-line edges unless otherwise specified. We will sometimes deal with edges with
bends. To handle these, we will add an additional vertex at every bend by subdividing the edge.

Planar separators. Let G be an n-vertex planar graph. For any integer r ≤ n, an r-division
with few holes [Fre87, KMS13] (or simply, r-divisions) is a collection of pieces that are connected
subgraphs of G meeting the following conditions:

• Each edge of E(G) is in at least one piece.

• There are O(n/r) pieces in the r-division.

• Each piece has at most r vertices and O(
√
r) boundary vertices (i.e., vertices that are also in

some other piece).

• Any edge that is in two pieces is on a topological hole (i.e., a face of a piece that is not a face
of G) of each of them.

• Every piece has O(1) topological holes.

This is the standard r-division of Klein, Mozes, and Sommer [KMS13]. They showed that it is
possible to compute r-divisions in linear time for any r.

Theorem 2.1 (r-divisions, Klein–Mozes–Sommer [KMS13]). Let G be a biconnected embedded pla-
nar graph, and r = Ω(1). There is a linear time algorithm that computes an r-division of G with
few holes.

In the definition of r-divisions, topological holes are topological features of the pieces in relation
to the old planar graph. We illustrate their connection to the geometric notion of holes for polygonal
regions. Observe that if G is an embedded planar graph with each edge drawn as a straight line,
then the union of the faces of a piece R of a r-division that are faces of G (i.e., not topological holes)
forms a polygonal region with holes that we denote by PR. The holes of PR correspond exactly to

10

Figure 1: (Left) An r-division of a planar straight-line drawing inducing polygonal regions. Polyg-
onal regions are allowed to be degenerate, like the blue region depicted, but they are guaranteed
to be connected. The purple piece has one yellow topological hole, which is also a polygonal hole.
(Right) A vertical decomposition VD(S) of a set S of non-crossing line segments. The line seg-
ments in S are drawn in red.

the topological holes of R, and |∂(PR)| = O(
√
r). Note that these holes may not necessarily be

simple, and may in fact be degenerate which we allow in our definition of polygonal regions. See
Figure 1 for an illustration of this connection.

Vertical decomposition and cuttings. We say a pair of line segments cross if they intersect at
a point that is not an endpoint of both line segments. Otherwise, we say that they are non-crossing.
Let S be a set of line segments. The vertical decomposition of S (also known as the trapezoidal
decomposition of S), denoted by VD(S), is constructed by adding the maximal possible vertical
line segment that passes through the endpoint of each line segment and the intersection of a pair
of line segments but does not intersect any of the other line segments. Observe that the VD(S)
partitions the plane into (possibly unbounded and degenerate) vertical trapezoids. See Figure 1 for
an illustration of VD(S) when S is a non-crossing set of line segments.

Definition 2.2 ((1/r)-cuttings). For a set S of n non-crossing line segments, a (1/r)-cutting of
S, denoted by Ξ(S), is a partition of R2 into (possibly infinite) polygons P1, ..., Pk ∈ Ξ(S) with a
constant number of sides such that each Pi intersects at most n/r line segments of S. The size of a
(1/r)-cutting is k, the number of polygons.

The next theorem about cuttings follows immediately from the ε-net theorem of Haussler and
Welzl [HW87]. Holm and Tětek [HT23] showed that one can implement this in the MPC model.

Theorem 2.3 (Haussler–Welzl [HW87]). Let S be a set of n non-vertical non-crossing line segments
and 0 < δ < 1. Let R ⊆ S be a random sample of size m = O(r(log r + log δ−1)). Then with
probability at least 1− δ, VD(R) gives a (1/r)-cutting of S.

Optimal-sized cuttings were first presented by de Berg and Schwarzkopf [dBS95]. They consid-
ered the case where the line segments may cross. The general idea is to take a vertical decomposition
of a random sample of the desired cutting size, then refine the vertical trapezoids that have too many
line segments crossing with a second round of sampling. We show in Appendix A an implementation
of this result in the MPC model.

Theorem 2.4 (Cuttings for line segments, de Berg–Schwarzkopf [dBS95]). Let H be a set of n line
segments that intersect at α points. There is a randomized algorithm to construct a (1/r)-cutting of

11

S of size O(r+αr2/n2) in time O(n log r+αr/n). The algorithm can be made deterministic at the
expense of increasing the runtime to poly(n).

For a set S of n non-crossing line segments, the number of intersection points is at most n, so
theorem 2.4 gives an O(n log r) time algorithm to construct a (1/r)-cutting of size O(r). Note that
by definition any (1/r)-cutting must have size at least Ω(r), so these cuttings are optimal in size up
to constant factors.

Graph drawing. The problem of finding a straight-line embedding for planar graphs is well-
studied. The first algorithm was presented by Tutte [Tut63] in 1963. Given a planar graph G
with n = |V (G)| vertices, we will focus on drawings that place vertices on an O(n)× O(n) grid as
these will keep the bit complexity of our embeddings low. Schnyder [Sch89, Sch90] was the first to
discover a construction of a straight-line drawing of any planar graph in such a grid.

Theorem 2.5 (Schnyder [Sch90]). Any plane graph G with n ≥ 3 vertices has a straight-line
embedding in an (n− 2)× (n− 2) grid. Furthermore, we can compute the drawing in O(n) time.

ε-emulators. For a weighted undirected connected planar graph G with a special set of vertices
T called terminals, we refer to (G,T) as an instance. We call an instance a planar instance if the
graph G is planar. A planar instance is a h-hole instance for an integer h > 0 if the terminals lie on
at most h faces in the embedding on G. We will also refer to these faces as topological holes. Given
an instance (G,T), an ε-emulator for (G,T) is a planar instance (G′, T) such that for all x, y ∈ T :

distG(x, y) ≤ distG′(x, y) ≤ (1 + ε) · distG(x, y).

Chang, Krauthgamer, and Tan [CKT22] proved that ε-emulators can be computed in near-linear
time Õ(n)1 for constant ε > 0.

Theorem 2.6 (Theorems 1.1 and 5.8, Chang–Krauthgamer–Tan [CKT22]). For every instance
(G,T) and a parameter 0 < ε < 1 with n = |V (G)| and k = |T |, an ε-emulator (G′, T) of size
|V (G′)| = Õ(k/εO(1)) can be computed in Õ(n/εO(1)) time. Furthermore, if (G,T) is an h-hole
instance, (G′, T) is also an h-hole instance, and G and G′ have the same order of vertices around
each topological hole.

3 MPC algorithm for separators in embedded planar graphs

In this section, we show how to construct a version of a separator for embedded planar graphs. These
separators will be constructed from graph divisions on geometric cuttings that we call cutting-
divisions. We begin by presenting a sublinear-time algorithm for constructing a cutting of line
segments in Section 3.1. Then we show how this randomized sublinear-time algorithm implies a
method of computing cuttings from a random sample in Section 3.2. Afterward, we describe how
we put these cuttings together with graph divisions to construct a cutting-division that functions
as a separator in Section 3.3.

1In this paper we use Õ(·) to suppress polylogarithmic factors.

12

Figure 2: (Left) An embedded planar graph G and a polygonal region P . (Middle) GP , the
P -induced subgraph of G. The vertices marked by red squares form ∇(GP). (Right) A Π-induced
subdivision of G for a partition Π. The places where edges are subdivided are marked by red
squares.

3.1 Sublinear and MPC algorithms for constructing cuttings

It is possible to compute (1/r)-cuttings for a set S of n non-crossing line segments in sub-linear
time. The details are technical but standard, so we defer the proof to Appendix A.

Theorem 3.1 (Sublinear time (1/r)-cuttings of size O(r)). Let S be a set of n non-crossing line
segments and 0 < δ < 1. Let R ⊆ S be a random sample of size m = O(r(log r + log δ−1)). Then
there exists a randomized algorithm that takes as input the sample R, constructs a (1/r)-cutting
of S of size O(r) in time O(m log r) and succeeds with probability at least 1 − δ. In particular, a
(1/r)-cutting of S of size O(r) can be constructed from a sample of size O(r log n) in O(r log n log r)
time with high probability.

Remark. This result on cuttings applies even if the line segments cross. The proof of Theorem 3.1
easily extends to any family of line segments (or even general curves) with a dependency on the
number of crossings given by Theorem 2.4. These results also extend beyond line segments to
reasonably “nice” families of objects with the number of crossings between every pair of objects
bounded by a constant, as the cuttings of Theorem 2.4 can be adapted to any such objects with
bounded VC-dimension. These techniques easily extend to the differentiable curves with bounded
total curvature considered by Holm and Tětek [HT23]. We opt to abstain from presenting precise
bounds, as the technical intricacies and particular proofs are contingent upon the specific types of
objects under consideration.

3.2 Cutting-divisions

Let G be an embedded planar graph, and P be a polygonal region. We define the geometrically
induced subgraph of G by P (or P -induced subgraph) to be the graph GP obtained by restricting G
to P . To be precise GP consists of all edges of E(G) that lie completely in P , and for every edge
e ∈ E(G) that crosses the boundary of P , we add a vertex at every location where the edge crosses
P , and add an edge between consecutive vertices along the edge in the interior of P . Note that

13

the old endpoints of the edge in G may not lie in P . Also, a single edge of G may be divided into
multiple pieces even if G is a 1-holed polygon.

Let Π be a partition of the plane into polygonal regions P1, P2, ..., Pk. We define the partition
induced subdivision of G by Π (or Π-induced subdivision) as the graph GΠ obtained by taking the
union of Gi the Pi-induced subdivisions of G for all i = 1, ..., k. See Figure 2 for an illustration of
these definitions.

For a polygonal embedded graph (G,∇(G), P), a partition Π of P induces polygonal embedded
graphs (Gi,∇(Gi), Pi) where Gi is the Pi-induced subgraph of G. Due to subdivisions, a geomet-
rically induced subgraph Gi might not be a subgraph of G in general (see Figure 2), but Gi is a
subgraph of GΠ.

In the subsequent discussion, we will define (s, 1/r)-cutting-divisions for O(1)-holed polygonal
embeddings (G,∇(G), P) with n vertices and m edges. The name is derived from the fact that they
are s-divisions of a graph constructed from (1/r)-cuttings where 0 < s ≤ r ≤ m. After that, we
will describe the construction from a random sample of size O(r log n) in detail in Lemma 3.3 and
show how to do this in O(1) rounds in the MPC model in Lemma 3.4.

In this paper we will typically have r = Sα for a suitably small constant 0 < α < 1, s = r2/3,
and S = nδ for some δ > 0. These parameters are chosen so that we can construct cutting-divisions
in one machine. An (s, 1/r) cutting-division Γ is a partition of P into O(1)-holed polygonal regions
P1, ..., Pk. There are k = O(r/s) polygonal regions, each of which has a relatively small boundary.
Each region balances the number of edges of G that lie in the region to be O(m/k), and has a much
smaller number of edges that cross the boundary. The polygons themselves have a fairly small
number of total sides so that they can be distributed to all machines.

The following definition may look quite complicated, but is in fact a list of the combined prop-
erties of the division and the cutting.

Definition 3.2 ((s, 1/r)-cuttings). Let s and r be two parameters with s ≤ r. An (s, 1/r)-cutting-
division Γ of a O(1)-holed polygonal embedding (G,∇(G), P) with n vertices and m edges is a
partition of P into disjoint polygonal regions P1, P2, . . . , Pk ∈ Γ. This gives a Γ-induced subdivision
GΓ and the polygonal embedded graphs (Gi,∇(Gi), Pi) for i = 1, ..., k with these properties:

• The number of polygonal regions is k = O(r/s).

• Each polygonal region Pi ∈ Γ has O(1) holes.

• |∂(Pi)| ≤ |∂(P)|+O(
√
s) for each region Pi ∈ Γ.

•
∑k

i=1 |∂(Pi)| = |∂(P)|+O(r/
√
s).

• |E(Gi)| ≤ ms/r.

•
∑k

i=1 |∇(Gi)| = |∇(G)|+O(m/
√
s).

• |V (GΓ)| = n+O(m
√
s/r), i.e., we introduce at most O(m

√
s/r) vertices from subdivisions.

The above definition is very similar to the definition of pseudodivisions used by Holm and Tětek
[HT23]. We point out the differences in these definitions. The biggest difference is that we subdivide
edges at every intersection of the edge with the partition Γ. This is necessary for us, as we will
recurse in each polygonal region and the recursive calls produce drawings. If there are edges that
are not considered in the recursive case, then it is very difficult to avoid crossings when adding

14

Figure 3: (Left) Construction of cutting-division by constructing a cutting. (Middle) Clipping the
cutting to the polygon and taking a vertical decomposition. (Right) An illustration of a division
with few holes.

them back. Furthermore, the subdivision does not increase the number of edges m in the graph
by too much. To be precise, with the sublinear time cutting algorithm of Theorem 3.1 producing
optimally sized cuttings, the total number of edges due to subdivisions can be upper bounded by
O(m). Another difference is that we do not take the dual when computing the division. Instead,
we directly apply divisions to the graph formed by the cutting and subdivide every edge for every
boundary that it crosses. Note that doing so will not significantly increase the number of edges in
the graph, as long as we do not have too many boundaries. The number of boundaries we will have
is relatively small, and the cutting guarantees that not too many edges are in each region, and thus
not too many edges cross each boundary.

We show that we can construct (s, 1/r)-cutting-divisions of polygonal embeddings.

Lemma 3.3 ((s, 1/r)-cutting-division construction). Let (G,∇(G), P) be a polygonal embedding
of a planar graph with m edges and let s and r be parameters with s ≤ r and |∂(P)| ≤ O(r).
There exists an algorithm, that given P and a sample of O(r logm) edges from G, constructs Γ an
(s, 1/r)-cutting-division of (G,∇(G), P).

Proof. Begin by constructing a (1/r)-cutting of the edges of G from the O(r logm) sample as well
as the edges of ∂(P) by using Theorem 3.1 and let Ξ0 denote the cutting that results from the
theorem. Clip regions that extend outside of P and take the vertical decomposition of the clipped
regions. Let this resulting cutting be Ξ which has size O(r) since Ξ0 and ∂(P) have size O(r).

Consider the cutting Ξ as an embedded planar straight-line drawing of a graph GΞ with vertices
at the endpoint of every line segment of Ξ, and edges between vertices connected by line segments.
Note that |E(GΞ)| = O(r) since Ξ had size O(r). Using Theorem 2.1, we can construct Γ an
s-division of GΞ.

We claim that Γ is an (s, 1/r)-cutting-division as desired. First, we view Γ as a partition of P ,
and use the fact that it was constructed from a s-division of Ξ. There are k = O(r/s) polygonal
regions P1, ..., Pk ∈ Γ, each of which is constructed from pieces that have at most s internal vertices
and O(

√
s) boundary vertices, and O(1) holes. This implies that each piece has O(s) trapezoids of

the cutting Ξ and O(
√
s) boundary edges by a simple application of Euler’s formula to each piece.

Note that this does not count the boundaries of P which may be a part of any of the Pi regions.
This gives us the bound of |∂(Pi)| ≤ |∂(P)|+O(

√
s), and

∑k
i=1 |∂(Pi)| = |∂(P)|+O(r/

√
s).

Now we use the fact that the underlying graph Ξ is a (1/r)-cutting of P . Since each piece
corresponding to Pi has at most O(s) trapezoids in the interior and O(

√
s) boundary edges, and

15

each trapezoid or edge of the cutting intersects at most O(m/r) edges of G, this means that Pi

contains or intersects at most O(ms/r) edges of G.
Now let us bound ∇(Gi) the number of vertices of Gi, the Pi-induced subgraph of G that lies

on the boundary of Pi. The boundary of Pi consists of at most O(r/
√
s) edges of GΞ, each of

which has at most n/r edges of G crossing, or was part of ∂(P) which overall had ∇(G) vertices.
This implies that the number of total boundary vertices, summed across all Gi is

∑k
i=1 |∇(Gi)| =

|∇(G)| + O(m/
√
s). Furthermore, we subdivide edges crossing the edges of GΞ used by Γ, so we

subdivide O(m/
√
s) edges and increase the number of vertices and edges by that much. Note that

when we have edges G on the boundary of Γ, we can arbitrarily assign it to the region that lies
below (though the endpoints will still be boundary vertices in all adjacent regions).

Remark. We remark that it is possible to strengthen the definition of (s, 1/r)-cutting-divisions.
This can be done by modifying the s-division theorem of Klein–Mozes–Sommer [KMS13] that al-
ternate between finding cycle separators that decrease the size of the boundary, decrease the num-
ber of holes, and decrease the number of vertices in each piece of the division. For instance, we
could guarantee that |∂(Pi)| ≤ O(

√
s), provided that ∂(P) ≤ O(r/

√
s) by also alternating be-

tween finding cycle separators that decrease the boundary of ∂(P). We can also guarantee that
|∇(Gi)| ≤ O(m/

√
s), provided that ∇(G) ≤ O(m/

√
s) by also alternating between finding cycle

separators that decreases the size of ∇(G). This is not needed for our algorithms but may be of
independent interest and may be useful in other applications.

3.3 MPC algorithm for computing cutting-divisions

The following theorem is a consequence of plugging in our modified r-cutting construction in the
algorithm of Holm and Tětek [HT23] with some differences. For completeness, we describe the
entire algorithm.

Lemma 3.4 (MPC algorithm for constructing cutting-divisions). Let (G,∇(G), P) be a polygonal
embedding with n vertices, m edges. Let our parameters r and s satisfy s ≤ r, |∂(P)| ≤ O(r),
and that a (s, 1/r)-cutting-division fits in S memory, then there exists an algorithm that takes
(G,∇(G), P) as input computes an (s, 1/r)-cutting-division Γ such that the layout of edges in mem-
ory satisfies that:

(1) each edge that crosses a boundary is subdivided into contiguous pieces

(2) each machine stores edges from one polygonal region, and the polygonal region itself

(3) each region is stored in consecutive machines

(4) the first machine stores the range of machines that each region is stored in

The algorithm uses O(S) space per machine, O(n/S) machines, and performs O(1) rounds in ex-
pectation and with high probability.

Proof. Each machine samples its stored edges with probability O(r logm/m) and sends them to
machine 1. Machine 1 can compute a (s, 1/r)-cutting-division of Γ by Lemma 3.4, and can broadcast
the Γ to all machines.

Each machine needs to subdivide the edges that cross boundaries of Γ. However, since each
machine stores O(S) edges, and each edge may cross O(r) boundaries, we cannot do the subdivision

16

on one machine as that may result in as many as O(rS) total edges. Instead, each machine will
first count for each edge e ∈ E how many regions that edge intersects ℓe with an algorithm we will
describe in the following paragraph. Then, it will request for t = O(

∑
ℓe/S) machines and perform

a weighted partition of the edges among the t machines so each machine can hold O(S) edges after
the subdivision. This can be done in O(1) rounds.

To detect how many times a collection of O(S) line segment intersects the O(r) boundaries of
Γ is exactly counting bichromatic intersections between red and blue line segments where there are
no red/red or blue/blue intersections (except at endpoints). This can be done in O(S logS) time
and O(S) storage for O(S) red and O(S) blue line segments using the algorithm of Theorem 3.12

of Chazelle–Edeslbrunner–Guibas–Sharir [CEGS94].
Each machine can build the point location data structure of Kirkpatrick [Kir83] that can de-

termine which region each edge lies in O(log r) time, using O(r) total storage. Using this data
structure, the machines can now sort the edges so that consecutive machines store edges for one
region. This sort can be done in O(1) rounds.

We note that the above theorem can be made deterministic by derandomizing the cutting con-
struction. This can also be done using standard techniques which we give a proof of in Appendix B.

Theorem 3.5 (Deterministic MPC Cuttings). There exists a deterministic MPC algorithm for
computing a (1/r)-cutting of n line segments S for r = Sα for a sufficiently small α > 0 that
uses O(1) rounds with O(n/S) machines with O(S) memory per machine where S = nδ for some
constant δ > 0.

4 Graph drawing

In this section, we prove various graph drawing lemmas that we need to compute explicit graphs
in order to use recursion in our MPC algorithms. Throughout this section, we will assume that
the input polygonal regions are non-degenerate. However, we cannot give this guarantee as the
polygons resulting from our cutting-divisions may be degenerate. With more care, we can reduce
the degenerate case to the non-degenerate case, which we will discuss in Section 4.6.

We list our main two objectives of this section and illustrate them in Figure 4. The first objective
is for the base case of the recursion of our MPC algorithms. The second objective is for handling
the recursive case.

1. Redrawing. Draw a polygonal embedded graph (G,∇(G), P) in a triangular polygonal region
Q with the same number of holes as P . (Lemma 4.4)

2. Gluing. Given a partition Π of a polygonal embedded graph (G,∇(G), P) and the induced parti-
tion into (Gi,∇(Gi), Pi) for i = 1, ..., k, as well as a collection of graphs G = {(G′

i,∇(Gi), Qi) |
i = 1, ..., k} with the same boundary vertices but possibly different graphs drawn in different
polygonal regions, glue the boundary vertices of each graph of G that correspond to copies of
the same vertex in GΠ, i.e., connect them with edges. (Lemma 4.5)

2Technically the theorem states that it is possible to count the total number of intersections but can be easily
adapted to count the number of intersections for each line segment.

17

P
Q

Figure 4: (Top) Objective 1: Drawing of a graph (G,∇(G), P) into a polygonal region Q.
(Bottom) Objective 2: Given a collection of graphs, one for each polygonal region, we need to glue
the boundary vertices corresponding to the same vertex of GΠ together with an edge (possibly with
bends).

To accomplish the first objective, we show that if P and Q are triangular polygonal regions (a
polygonal region where each boundary is a triangle) with O(1) holes, then we can find a piecewise
linear transform that allows us to obtain (G,∇(G), Q) from (G,∇(G), P) while adding a constant
number of edges to each straight-line edge. This algorithm is easily made parallel as the same
transform is applied to each edge independently. For this result to be useful, we prove the Redrawing
Lemma in Section 4.4, which shows that if P is not a triangular polygonal region, then we can redraw
a graph (G,∇(G), P) as (G,∇(G), Q) where Q is a triangular polygonal region. This algorithm is
purely sequential and used in the base case of our MPC algorithms. For the second objective, we
need some mechanism of gluing together pieces of graphs we obtain from applying recursion with
(s, 1/r)-cutting-divisions. To accomplish this, we prove the Gluing Lemma in Lemma 4.5 that says
we can do so while adding O(1) bends and subdividing O(1) edges. Furthermore, we can do this in
the MPC model in O(1) rounds.

Challenges. We illustrate the challenges faced in trying to solve the first objective. There are
known graph drawing algorithms like Tutte embeddings [Tut63] that allow us to pick any convex
placement of the vertices of the outer face and draw the rest of the edges of the planar graph with
non-crossing straight lines. However, such graph drawing methods do not allow for any control for
us to draw the interior holes. In particular, there is no way to guarantee that the interior holes are
on the edges of a triangle, especially if there are many vertices on that interior hole. To do this we
need to allow for some number of bends in the edges. We also need to output exact coordinates
with bounded bit complexity that we will use later.

The second objective also comes with its own challenges. We need to ensure that we compute

18

the entire gluing all at once, since we need to implement this algorithm in the MPC model with O(1)
rounds. However, the partition can have polygonal regions arbitrarily nested, boundary vertices of
high degree, or polygonal regions adjacent to many other polygonal regions. Simultaneously, we are
limited in the operation we are allowed to do since we cannot store the entire graph on one machine,
and we also need to be careful with the bit complexity of the coordinates since the amount of total
memory we have is bounded.

Our techniques. At a high level, we will handle both of these objectives with the same method:

old polygonal embedding → Scaffold graph → New polygonal embedding

The scaffold graph is an abstract planar graph that will facilitate our transition from the old polyg-
onal embedding to a new one.

We will describe this in more detail for the first objective. For simplicity, we will slightly relax
the goal of computing the drawing (G,∇(G), Q), and instead compute (G′,∇(G), Q) for a graph
G′ that contains G as a minor3 (i.e., there exists a set of edges of G′ that can be contracted to get
G). We describe how we construct a scaffold graph from this graph. The idea is that we will insert
three points arranged in a triangle T on the inside of every hole H of P . This will eventually form
the sides of the triangular boundary of a triangular polygonal embedding Q. However, we need to
ensure that we have some mechanism of connecting points on the actual hole H to points along T .
To do so, we add what we call portal vertices between H and T and connect them to the vertices
of H and T with edges. Then we prove the Boundary Routing Lemma in Lemma 4.3 to show that
we can draw non-crossing paths with at most 3 bends from anywhere on H to the corresponding
location on T . Thus this scaffold graph provides the necessary portal vertices to allow us to draw
G′ and is described in Section 4.3.

Surprisingly, these two lemmas are the only ingredients necessary to accomplish the second
objective and allow us to prove the Gluing Lemma of Lemma 4.5. In this case, we need to compute
a scaffold graph for a cutting-division that we define in Section 4.5. The main idea is for every
polygonal region in the cutting division, we replace each of its boundaries with a triangle on the
inside of the region (along with the portal vertices). Using this scaffolding, if we had redrawings of
each polygonal region into a triangular region, we can essentially glue the graphs of each redrawing
together. We explain this in detail in Section 4.5.

4.1 Compatible triangulations and graph morphing

Given a polygonal region P with holes and a homeomorphic polygonal region Q (a region with
the same number of holes, and each boundary having the same number of sides), we say that the
triangulations TP and TQ of P and Q respectively are compatible triangulation if there is a bijection
f from the vertices of TP to the vertices of TQ such that (p, p′, p′′) is a triangle of TP if and only
if (f(p), f(p′), f(p′′)) is a triangle of TQ. Babikov, Souvaine, and Wenger [BSW97] showed the
following result.

3This is not actually necessary: With more care, it is possible to transform a drawing of G′ into G by adding con-
stantly many more bends per edge. However our MPC algorithms already involve subdividing edges and performing
vertex splits, so this does not make a difference to us.

19

Figure 5: (Left) Inside scaffolding Sin(P). (Right) Outside scaffolding Sout(P).

Theorem 4.1 (Babikov–Souvaine–Wenger [BSW97]). Let P and Q be two homeomorphic labeled
polygonal regions with holes with vertex sets {p1, ..., pn} and {q1, ..., qn} such that there is a home-
omorphism from P to Q mapping pi to qi. Compatible triangulations and piecewise-linear homeo-
morphisms of P and Q matching pi and qi can be constructed in O(n2) time using O(n2) triangles.

This allows us to prove the following theorem.

Lemma 4.2 (Triangular morphing lemma). Given an embedded planar graph (G,∇(G), Q′) where
Q′ is a triangular polygonal region, and another triangular polygonal region Q with the same number
of holes, we can compute the embedded planar graph (G,∇(G), Q) by applying a piecewise linear
homeomorphism ϕ from Q to Q′ to each edge. If Q′ had O(h) holes, ϕ decomposes into O(h2) linear
pieces and each edge of G becomes an edge with at most O(h2) bends.

Proof. By Theorem 4.1, we can compute a compatible triangulation between Q′ and Q and a linear
homeomorphism ϕ of size O(h2). When we apply this linear homeomorphism to G′, each straight-
line edge e ∈ E′ drawn on S′, results in ϕ(e) drawn on S as straight-line edges with at most O(h2)
bends.

4.2 Scaffold graphs for a polygonal region

Let P be a h-holed polygonal region. We will want to map the boundary of P to an h-holed
polygonal region Q which has a much simpler boundary. In particular, the boundary of each hole
of Q will be a triangle. To do so, we will define a graph Gin

S (P) (or Gout
S (P)) as the inside (outside)

scaffold graph of P , a graph where we place triangles inside (outside) of P for each boundary hole
of P . In addition, we will define a mapping between the boundaries so we can apply Lemma 4.3
to route points between the boundaries. We will see uses for outside scaffold graphs in redrawing a
graph in Section 4.4 and inside scaffold graphs for constructing scaffold graphs of cutting-divisions
in Section 4.5.

In the subsequent section, we will define the construction of Sout(P). The construction of Sin(P)
is similar, except we put points and edges on the interior of the polygon instead of the exterior. See
Figure 5 for an example of this. For hole i = 1, 2, . . . , h of P we will define edges and vertices of a
graph:

20

P P

Figure 6: (Left) Outside scaffold graph for one hole. (Right) The darker blue boundary of the
outer polygon maps to the edge of the inner triangle. The red edge of the outer polygon maps to
one part of the boundary of the triangle.

• Let V (i)
P be a collection of vertices defined by ith hole, and E

(i)
p the edges connecting boundary

of V (i)
P .

• place three vertices V
(i)
H on the exterior of the ith hole (the exterior of the outer hole is the

outside), and join in a triangle by three edges Ei
H . This 3-cycle of vertices (V (i)

H , E
(i)
H) we will

call a hole triangle.

• between the boundary of P and the triangle formed by (V
(i)
H , E

(i)
H) we will place another three

vertices in a triangle (V
(i)
O , E

(i)
O) inside the hole (or on the outside of P for the outer hole).

V
(i)
O will be portal vertices.

• Partition the boundary edges E
(i)
P into three non-empty contiguous parts (arbitrarily), and

map each contiguous part to one side of the ith hole triangle. We add a set of scaffolding
edges E(i)

S between all boundary vertices of one part of the partition, one of the portal vertices
of hole i, and the two endpoints of the hole triangle that we mapped to such that everything
remains planar. See Figure 6 for an illustration of this for one hole.

Letting V (Sout(P)) =
⋃h

i=1(V
(i)
P ∪V (i)

H ∪V (i)
O) and E(Sout(P)) =

⋃h
i=1(E

(i)
P ∪E(i)

H ∪E(i)
O ∪E(i)

S), we see
that Sout(P) is planar, and there is a mapping from every old boundary edge to some hole triangle
edge of Q =

⋃h
i=1E

(i)
H . If there are k boundary edges mapping to the same hole triangle edge, as

the boundary edges must be contiguous, we can subdivide the hole triangle edge into k equal parts
and map each boundary edge into one of the subdivisions. See Figure 6 for an illustration of this.

4.3 Boundary routing of nested polygons

Next, we will prove a lemma that provides a method for routing polygonal paths between two
given polygons, where the path is guaranteed to avoid intersections with other paths and consists
of straight-line segments with few bends.

Consider a polygon region with one hole, where the outer boundary is a polygon P and the
inside boundary is a polygon Q. Furthermore, consider if we identified every point on the boundary
of P with a different point on the boundary of Q in a circular fashion. Formally that means we have

21

p
p′ p′′

f(p)
f(p′)

f(p′′)

x
Cx

Q

P
p

p′ p′′

f(p)
f(p′)

f(p′′)
Q

P

x
Tx

f(p1)

f(p2)

p1

p2

ε

ε

Figure 7: (Left) Routing a point p, p′, and p′′ through the portal x via circle Cx. (Right) Routing
a point p, p′, and p′′ through the portal x via triangle Tx.

a continuous homeomorphism f : ∂(P) → ∂(Q). Suppose for a partition of ∂(P) into s intervals at
the points p1, ..., ps, and we had a set of s vertices L of s points x1, ..., xs lying strictly in the interior
of P \Q such that the xi can see all points of ∂(P) between pi and pi+1 as well as all points of ∂(Q)
between f(pi) and f(pi+1) (where we take ps+1 = p1). We call L a set of partition respecting portal
vertices. Note that when we say that xi sees pi, we mean that the straight line between xi and pi
does not cross the boundary of P or Q. We can show the following lemma:

Lemma 4.3 (Boundary routing lemma). Given two nested polygons P and Q and a homeomorphism
f : ∂(P) → ∂(Q) identifying each point on ∂(P) to ∂(Q), and the boundary of P partitioned at
p1, ..., ps and a set of partition respecting portal vertices L, then for every point p ∈ ∂(P), we can
find a path from p to f(p) that can be drawn with straight lines with at most 3 bends. Furthermore,
for any two paths corresponding to different points on ∂(P), the paths do not cross.

Proof. We will describe how we draw paths from points on the boundary of P between p1 and p2.
This section of the boundary has a corresponding portal x = x1 ∈ L. Let p and p′ and p′′ be any
three different points on the boundary of P between p1 and p2 such that p lies between p′ and p′′.
Note that we would like to choose the path that is the straight line from p to x followed by the
straight line from x to f(p) which would have at most one bend, and similarly for p′. However, if
we did that, the paths for p, p′, and p′′ would intersect at x.

Instead, let us consider a circle Cx of radius ε around x for some sufficiently small radius ε > 0
that does not contain any point of the boundary of P or Q. Note that we can always find an ε as
x1 lies in the interior of P \Q. Let Cx(y) denote the point of intersection between Cx and the line
from x to y. We will instead let the path connecting p to f(p) to be the straight line from p to
Cx(p) to Cx(f(p)) to f(p) as in Figure 7. Note that by the homeomorphism f , the paths defined
by p′ and p′′ will not intersect the one for p.

Remark. Note that computing the intersection of a line with a circle involves computing a square
root. It is possible to avoid this by replacing the circle Cx with a carefully chosen triangle Tx so that
no point p and f(p) lie on the same side of the triangle. Consider if we are trying to map the section
along the boundary p1 to p2 to the section f(p1) to f(p2). Note that the lines formed by straight lines
from the boundary sections of at least one of them must define an angle of at most 180◦, without
loss of generality let that be the boundary section from f(p1) to f(p2). Let Tx denote the triangle
formed by a line parallel to the line between f(p1) and f(p2) of distance ε ≈ 1/NO(1) away from x

22

(where N is the total number of points of P and Q) and a third point at a distance of ε in the other
direction as depicted in Figure 7. If all input points were rational coordinates representable with
O(logN) bit numerators and denominators, it is clear that this polygon has rational coordinates
that are representable in O(logN) bits, and all intersections with the boundary of this triangle also
have rational coordinates representable in O(logN) bits.

4.4 Redrawing a polygonal embedding as a triangular polygonal embedding

As an application of our scaffold graph, we will show in the following theorem that we can redraw
any (G,∇(G), P) to a polygonal domain Q where the boundary of each hole of Q is a triangle.

Lemma 4.4 (Redrawing lemma). Given an h-holed embedding (G,∇(G), P) it is possible to find a
polygonal embedding (H,∇(G), Q) where G is a minor of H, Q is a triangular polygon, all vertices
of ∇(G) are on the boundaries of Q, and all edges are drawn in an O(n)×O(n) grid as a straight
line lying in Q with O(h2).

We can do this even if we are only given a combinatorial description of (G,∇(G), P) instead of
an explicit embedding.

Proof. We may assume P is a polygon with vertices at every vertex of ∇(G) (if not, we may subdivide
edges on the boundary of P). We begin by constructing the outside scaffold graph Sout(P). Let
G′ = Sout(P) ∪G be the union of the scaffolding graph of the polygon and our planar graph. Note
that this graph is planar. Use a known algorithm to draw G′ with the special 3 outer vertices of
Sout(P) in an O(n)×O(n) grid. This can be done using Theorem 2.5.

Now, this drawing induces a polygonal region Q with holes defined by the triangles for each hole.
We can view G′ as a graph drawn on Q. Let’s consider the ith hole of P . There is a hole triangle
defined by (V

(i)
H , E

(i)
H) Consider a vertex x ∈ V

(i)
P corresponding to a vertex of ∇(G), that should

be at a location x′ on some edge of E(i)
H . By the Boundary Routing Lemma of Lemma 4.3, for each

such x, we can draw a polyline ex between x and x′ with at most O(1) bends such that none of the
polylines for any vertex cross by routing through the corresponding portal vertex. Let this resulting
graph be H. By contracting these bends and other auxiliary edges added in the scaffold graph, it
is clear that H contains G as a minor.

Note that we only used local features of (G,∇(G), P) to construct the scaffolding graph. It
suffices if we are given a combinatorial description of a planar embedding (G,∇(G), P).

4.5 Gluing planar graphs together

Suppose we are given a polygonal embedding (G,∇(G), P) where G has n edges and P has O(1)
holes and an (s, 1/r)-cutting-division Γ of (G,∇(G), P). Let (Gi,∇(Gi), Pi) be the induced graphs
in each region Pi ∈ Γ.

Suppose we want to change each Gi to some graph Hi and reduce the complexity of each
polygonal region from Pi to Qi, a polygonal region with the same number of holes and each hole
with 3 sides. Afterward, we would want to join these graphs (Hi,∇(G), Qi) into a single graph
embedded graph (H,∇(G), Q) where Q is a polygonal region that has the same number of holes as
P with each side a triangle and for every vertex of

⋃k
i=1∇(Gi) that correspond to the same point

in multiple boundaries are joined by an edge with O(1) bends. We will call H the glued graph,
and (H,∇(G), Q) the glued embedding of (Hi,∇(Gi), Qi). Formally we state the lemma we aim to
prove.

23

Lemma 4.5 (Gluing Lemma). Suppose we have an O(1)-holed embedded planar graph (G,∇(G), P)
and an (s, 1/r)-cutting-division Γ that induces polygonal embeddings (Gi,∇(Gi), Pi). Suppose
for every i we are given another polygonal embedded graph with the same boundary vertices
(Hi,∇(Gi), Qi) where Qi is a triangular polygon with the same number of holes as Pi. Then
we can glue together the (Hi,∇(Gi), Qi) to form a polygonal embedding with (H,∇(G), Q) where
|E(H)| = O(|∇(G)| +

∑k
i=1 |Hi|) and Q is a triangular polygon with the same number of holes as

P .
Furthermore, we can do this in the MPC model of computation in O(1) rounds with O(|E(G)|/S)

machines where each machine uses O(S) storage as long as |Γ| ≤ S1−Ω(1).

We briefly describe why this is not an easy task to do in the MPC model. Our cutting-division
Γ has size roughly nδ for some constant δ > 0, and can have arbitrarily complicated topology, but
we need to do the gluing in O(1) rounds. For example, we may have polygonal regions nested (i.e.,
completely contained) in another polygonal region, but also adjacent to another nested polygonal
region. The polygonal embeddings we need to glue together have triangular boundaries, it is not
obvious how to connect the boundaries up together. For nested polygonal embeddings, they may be
arbitrarily deeply nested, so we cannot use recursion to draw each nested region, since that would
take O(nδ) rounds, instead, we need a method of drawing the entire graph in one go. Another issue
is that we need to compute precise coordinates for every point we are gluing together, so we have
to be careful to not increase the bit complexity of our drawings by too much. One last issue that
we will need to be concerned about is that we can also have many polygonal regions that all share
one single vertex. We do not want to add too many extra edges or bends, and we can only add a
number proportional to the number of points on the boundary.

Thus, it is necessary to do the entire gluing in one single step so that we only take O(1) rounds
of communication. To do so we will use a scaffold graph for cutting-divisions that we will define
below. At a high level, the scaffold graph provides us a place for us to put each of the triangular
embeddings Qi (hence it serves as a scaffold) and gives a way for us to connect the boundaries of
the Qi to the boundary of Γ in the scaffold graph. This resolves the issue of a boundary vertex that
is on many polygonal regions, as there will be one copy of the vertex on the scaffold graph that each
polygonal region will route to independently.

Scaffold graph for cutting-divisions. Let Γ be an (s, 1/r)-cutting-division of an O(1)-hole
embedded planar graph (G,∇(G), P). Recall that Γ partitions P into k = O(r/s) disjoint regions
defined by polygonal regions P1, ..., Pk. We define the scaffold graph of Γ to be a graph S(Γ) with
inside scaffolding for each polygonal region Pi and outside scaffolding for each hole of P . Formally,
we let S(Γ) be the graph with vertices at Pi and edges defined as the edges of each Pi, together
with the inside scaffold Sin(Pi) for each i = 1, ..., k as well as Sout(P).

Proof of Lemma 4.5. Construct the scaffold graph for a cutting-division S(Γ). We can compute a
straight-line drawing of the scaffold graph S(Γ) by Theorem 2.5 in an N×N grid where N = O(|Γ|+
|∇(P)|). For each (Hi,∇(Gi), Qi), we can embed in the corresponding polygonal region Q′

i ∈ S(Γ)
by the Triangular Morphing Lemma of Lemma 4.2. Then we can apply the Boundary Routing
Lemma (Lemma 4.3) to connect vertices to the old boundary edges of P1, ..., Pk. Furthermore,
observe that each application of the Boundary Routing Lemma only increases the number of bends
per edge by O(1). The Triangular Morphing Lemma increases the number of bends by O(1) as each
region has O(1) holes.

24

Figure 8: For degenerate polygons with boundary vertices we can imagine the degenerate regions
being slightly separated and duplicate boundary vertices on each side being connected by an edge.

To show that we can do this in the MPC model of computation, it suffices to show that we
can apply the Boundary Routing Lemma and the Triangular Morphing Lemma in the MPC model.
First, observe that as |Γ| ≤ S1−Ω(1), the cutting-division can be distributed to all machines. The
Triangular Morphing Lemma is simple to implement in the MPC model since Qi and Q′

i are trian-
gular polygonal regions with O(1) holes and thus the linear homeomorphism between the two have
O(1) complexity and thus can be computed locally whenever necessary and applied to each edge.
On the other hand, the Boundary Routing Lemma may need to be applied to many edges. However,
the routing is deterministic and can be computed for each machine independently. In particular, we
can deterministically and in parallel compute the locations of vertices on the boundary of Γ. Thus
each machine can compute how to route the edges that are stored on it, and the Boundary Routing
Lemma will guarantee that no two edges cross.

4.6 Handling degenerate polygonal regions

To handle degenerate input polygons, we will describe a way to remove the degeneracy at a small
cost of adding a few more edges into our graph (proportional to the number of boundary vertices).
This has the added benefit of guaranteeing that the output polygonal region of an embedding has
no degeneracies.

For every degenerate section of the polygonal region, we can treat them as very slightly to treat
it as a non-degenerate polygon. There may be boundary vertices of ∇(G) on these degenerate
regions. For these, we will duplicate the boundary vertices so they are on both boundaries and
add an edge connecting them, and treat this as a vertex split. Note that in reality, these duplicate
boundary vertices will be at the same location, and this edge joining the two boundaries has zero
length. This is illustrated in Figure 8 where we have slightly expanded the degenerate regions for
illustrative purposes. We can do this as soon as we detect that we have a degenerate section of
the boundary as we construct degenerate polygons in the cutting-division. These extra degenerate
edges can be constructed in parallel, as all machines are aware of the cutting-division.

25

5 MPC algorithms for embedded planar graphs

We show in this section how to construct O(1) round algorithms for fundamental problems on
embedded planar graphs using (s, 1/r)-cutting-divisions. The high-level plan is to use cutting-
divisions to break our problem into smaller parts so we can recurse on each part. We recurse until
the problem is small enough to be solved on one machine. There is often part of the problem that
remains unsolved involving boundary vertices because the problems involve the rest of the graph.
Thus we will “compress” the graph to have size roughly on the order of the number of boundary
vertices. We will end we can glue together the compressed graphs to get a slightly smaller graph, so
we can use recursion. The exact details of how we do this vary depending on the specific problem
at hand.

To begin, we will illustrate how we can redraw a polygonal embedded graph so that the bound-
ary is a triangular polygonal region. Recall that triangular polygonal regions have all holes being
triangles so such a triangular polygonal region has O(1) boundary complexity. This is a useful sub-
routine as when we glue graphs together in O(1) rounds, we need to have embeddings in triangular
polygonal regions. Afterward, we will describe algorithms for connected component and minimum
spanning forest. Next, we describe algorithms for (1 + ε)-approximate path type problems that
require computing ε-emulators. After this, we describe algorithms for finding st-shortest paths,
shortest cycle, single source shortest path (SSSP), and all-pairs shortest path (APSP). Finally, we
will describe how we can draw a primal-dual overlay graph, a graph containing both the old primal
graph and the dual graph. Using this, we will show how we can compute st-max-flows and min-cuts.

We note that we will cover the most fundamental problems that we hope is enough to illustrate
the power of our recursive framework. There are many more problems and variations of problems
we will refrain from discussing, like how to label vertices of each connected component with the
same label or computing a bipartition, which are straightforward applications of our framework.
For the (1 + ε)-approximate path type problems like shortest paths, cycles, and flows, we can also
recover the answer by running our algorithm backward from the final compressed graph.

Throughout this section, we will use n = |V (G)| to denote the number of vertices of the graph,
and m = |E(G)| to denote the number of edges of the graph. Note that for planar graphs without
isolated vertices m = Θ(n), so we sometimes use m and n interchangeably. Isolated vertices can
easily be detected and handled depending on the problem we are aiming to solve.

5.1 Redrawing a graph

As a warmup, we will illustrate one of the more simple consequences of the gluing lemma to redraw
an O(1)-holed polygonal embedded graph (G,∇(G), P) into a triangular polygonal region Q with
the same number of holes as P . In this proof, we will carefully analyze the bit complexity of the
algorithm, and discuss the cyclic ordering of vertices along the boundaries of each hole. In later
proofs, these details were omitted for the sake of brevity. Bit complexity is important when working
in the MPC model because each machine is bounded to O(S) words of space, if the bit complexity
blows up, we may not be able to do recursion without using more total space.

Lemma 5.1 (MPC Redrawing Lemma). Let r = Sα for a sufficiently small constant α > 0. There
exists an algorithm that takes as input a O(1)-holed polygonal embedded graph (G,∇(G), P) with n
vertices and m edges with |∂(P)| = O(r1/3) and returns a polygonal embedded graph (H,∇(G), Q)
satisfying these properties:

26

• Q is a triangular polygonal region with the same number of holes as P

• V (H) ⊇ V (G)

• H contains G as a minor

• Each edge e ∈ E(H) is drawn with a straight line

• |E(H)| = O(m)

• The coordinates of V (H) and Q are stored as rationals with O(log n) bit complexity.

• The cyclic ordering of the vertices of ∇(G) around each hole in (H,∇(G), Q) is the same as
in (G,∇(G), P).

The algorithm runs in O(1) rounds in expectation and with high probability using Θ(S) space per
machine and O(n/S) machines where S = nδ for any constant δ > 0.

Proof. We give a recursive algorithm.

Base case. If m ≤ S, we can solve the problem directly on one machine using Lemma 4.4. The
drawing output by the lemma has vertices stored as rationals with O(logm) bit complexity.

Recursive case. Otherwise, if |G| > S, we apply Lemma 3.4 to construct a (r2/3, 1/r)-
cutting-division. This decomposes the problem into k = O(r1/3) polygonal embeddings
(G1,∇(G1), P1), ..., (Gk,∇(Gk), Pk) where for each 1 ≤ i ≤ k, |Gi| ≤ O(m/r1/3), |∂(Pi)| =

O(|∂(P)|+
√
r2/3) = O(r1/3).

Note that as we have O(r1/3) problems each with O(n/r1/3) edges and total boundary size
O(S1/3). We can solve all the recursive subproblems in O(1) rounds in parallel by recursion after
partitioning edges and subdividing edges to get graphs (Hi,∇(Gi), Qi) where each graph has coor-
dinates as rationals with O(logm) bit complexity and the cyclic ordering around each hole matches
that in (Gi,∇(Gi), Pi). Thus we can apply the Lemma 4.5 to glue together (Hi,∇(Gi), Qi) from the
recursive calls to get a single graph (H,∇(G), Q). Note that the gluing lemma will apply piecewise
linear transformations to each (Hi,∇(Gi), Qi), but these transformations can be expressed as linear
functions on the coordinates with coefficients as rationals with O(logm) bit complexity, so the total
bit complexity of any coordinate does not increase by more than a constant.

It remains to analyze the number of rounds this algorithm takes. Let Tdraw(m) denote the
number of rounds for an m edge polygonal embedded graph. Then it is clear that this algorithm
follows the recurrence:

Tdraw(m) = Tdraw(m/r1/3) +O(1)

Since r = Sα = nαδ = Θ(mαδ) the recurrence solves to Tdraw(m) = O(1/(αδ)) = O(1).

5.2 Connected components

Let cc(G) denote the number of components in the graph.

Theorem 1.1 (Connected Components). There is an algorithm that returns the number of con-
nected components of an embedded planar graph G with n vertices in O(1) rounds using Θ(S) space
per machine and O(n/S) machines where S = nδ for any constant δ > 0.

27

To prove this theorem, we prove the following claim.

Claim 5.2. Let r = Sα for a sufficiently small constant α > 0. There exists an algorithm that given
a O(1)-holed polygonal embedded graph (G,∇(G), P) with m = |G| edges where |∂(P)| = O(r1/3),
returns an embedded graph (H,∇(G), Q) and an integer ℓ satisfying these properties:

• Q is a triangular polygonal region

• V (H) ⊇ ∇(G)

• |H| < c0|∇(G)| for some constant c0

• cc(G) = cc(H) + ℓ

• two vertices in ∇(G) are connected in H iff they are connected in G.

The algorithm runs in O(1) rounds using Θ(S) space per machine and O(n/S) machines where
S = mδ for any constant δ > 0.

Proof. We give a recursive algorithm.

Base case. If m ≤ S, we can solve this problem directly on one machine. To do so, we can
compute ℓ the number of connected components not connected to any boundary vertices, and find
a collection of disjoint paths on ∇(G) that has the same connectivity as ∇(G). Concretely, this can
be done by computing a minimum spanning forest on ∇(G), then letting the path be the sequence
of vertices of ∇(G) visited on an Euler tour of the MST for each component. This collection of
disjoint paths is clearly planar and can be drawn in the polygon Q with O(1) bends per edge.

Recursive case. If m < c0|∇(G)| then we can simply redraw G with Lemma 5.1, and return H
as the redrawn G, and ℓ = 0.

Otherwise m ≥ c0|∇(G)|. As in Lemma 5.1 we construct a (r2/3, 1/r)-cutting-division. This
splits the problem into subgraphs G1, ..., Gk for k = O(r1/3). We can apply recursion to each
subproblem to get Hi and ℓi for each subproblem. Let ℓ =

∑k
i=1 ℓi. We can use the Gluing Lemma,

Lemma 4.5, to draw each Hi in a triangular polygonal region Qi and glue the polygonal embeddings
together to get (H,∇(G), Q).

We will recurse on H. To show that our algorithm terminates, we need to ensure that |E(H)| <
m. Suppose that the Gluing Lemma adds at most c1 bends to each edge. Then:

|E(H)| ≤ c1

(
|∇(G)|+O

(
k∑

i=1

|∇(Gi)|

))
= c1|∇(G)|+O(m/r1/3)

We can assume O(m/r1/3) ≤ m/3 since r = Θ(mαδ). Thus if c0 = c1/3 it follows that |E(H)| ≤
2m/3 < m. This means we can recurse on the polygonal embedding (H,∇(G), Q) to get a polygonal
embedding (H ′,∇(G), Q′) with |H ′| = O(|∇(G)|) and some ℓ′. Now we can simply return ℓ + ℓ′

along with this embedding.
It remains to argue that this algorithm terminates within O(1) rounds. Let Tcc(n) denote the

total number of rounds it takes to solve the problem in the claim with n edges. The number of

28

rounds that this algorithm takes is given by this recursion.

Tcc(m) = max

(
Tdraw(m), Tcc(|H|) + max

i=1,...,k
Tcc(|Gi|) +O(1)

)
= max

(
Tdraw(m), Tcc(m/r1/3) +O(1)

)
Since Tdraw(m) = O(1) and r = Θ(mαδ), this recursion solves to Tcc(m) = O(1).

Remark. Instead of counting, we can put a label on each edge and vertex such that every con-
nected component has a different label, and two edges/vertices have the same label iff they are in
the same connected component. This is easy to do in the base case on one machine. To do this
for the recursive step, after we get connected components of the compressed graph, we need to
modify the labels of the uncompressed components. This can be done in parallel in O(1) rounds by
“uncompressing” the graph. Formally proving this is somewhat cumbersome, so we will omit the
proof for brevity.

5.3 Minimum spanning forest

Without loss of generality, we may assume that the edge weights of the tree are unique by breaking
ties by the unique identifiers of edges. This means the minimum spanning forest is unique. Fur-
thermore, we can assume all edge weights are positive (if not, we can add a large positive number
to each edge).

Theorem 1.2 (Minimum Spanning Forest). There is an algorithm that returns a minimum spanning
forest of an embedded planar graph G with n vertices in O(1) rounds using Θ(S) space per machine
and O(n/S) machines where S = nδ for any constant δ > 0.

To prove the theorem we use the following lemma about minimum spanning trees. The following
lemma is folklore.

Lemma 5.3. Let G be a connected graph and let TG be the minimum spanning tree for G. Let e be
an edge in TG. Let G′ be G after contracting e and TG′ be the minimum spanning tree for G′. Then
TG = T ′

G ∪ {e}.

We now outline the algorithm. We will apply our cutting-division and recurse on each component
until the problem size is small enough, as we did for counting connected components. To solve small-
sized problems we will compute a minimum spanning forest for the small instance and use the above
lemma to contract all vertices that do not lie on the boundary of the problem. As planar graphs
remain planar upon contraction, we will have a much smaller planar graph with number of edges
proportional to the number of boundary vertices. This reduces the size of the graph so we can apply
recursion.

To prove Theorem 1.2, we prove the following claim. Theorem 1.2 follows, as if we let B be a
large enough square, then we can apply the claim to (G,∅, B) to get a minimum spanning forest.

Claim 5.4. Let r = Sα for a sufficiently small constant α. There exists an algorithm that given
an O(1)-holed polygonal embedded graph (G,∇(G), P) with m edges and n vertices where |∂(P)| =
O(r1/3), returns an embedded graph (H,∇(G), Q) and a set ET ⊆ E(G) of edges satisfying:

29

• Q is a triangular polygonal region

• V (H) ⊇ ∇(G)

• |H| < c0|∇(G)| for some constant c0

• Let EG denote the edges of the minimum spanning forest of G. Let EH denote the canonical
edges of G in the minimum spanning forest of H. Then EG = ET ∪ EH .

The algorithm runs in O(1) rounds using Θ(S) space per machine and O(n/S) machines where
S = nδ for any constant δ > 0.

Proof. Note that throughout our algorithm our graph will subdivide edges and split vertices apart
and connect them by an edge. We will view these added edges (and vertices) as virtual edges (and
virtual vertices). They will have weight 0 (so will be added into a minimum spanning forest at 0
cost. On vertex splits, all added edges will be virtual. On subdivision of a non-virtual edge e into
two edges e1 and e2, we will arbitrarily let e2 be a virtual edge, and let e1 be the canonical edge
storing information about the old edge in G. Observe that any minimum spanning forest will use
the old subdivided edge e, if and only if it uses both e1 and e2. Since e2 is a virtual edge with
weight 0, we will always include it in our minimum spanning forest. Thus this does not impact
the correctness of our solution, we will take the canonical edge e1 for the minimum spanning forest
of the graph after subdivision if and only if we took e for the minimum spanning forest in the old
graph.

Base case. If m ≤ S, we can solve this problem directly on one machine. For any component that
is not connected to ∇(G) we may use any minimum spanning tree algorithm on that component.
Compute a minimum spanning tree T on every other component. Repeatedly contract edges that
do not join two vertices of ∇(G) which we can do by Lemma 5.3 and add the contracted edge to
ET if it were a canonical edge. Note that planar graphs remain planar on edge contraction (though
we may no longer have an embedding). Computing the minimum spanning tree can be done in
O(m logm) time. Afterward, we are left with a planar graph H on the vertices of ∇(G) that we
can embed in a triangular polygonal region Q by the Lemma 4.4.

Recursive case. The recursive case is exactly the same as for our algorithm for connected com-
ponents of Claim 5.2 except instead of returning ℓ, we mark edges of G as in ET .

5.4 Computing emulators

To solve (1+ ε)-approximate problems involving shortest paths we will construct ε-emulators in the
MPC model. The algorithm is very similar to our algorithm for redrawing the graph. The main
difference is in the base case, we will instead construct the ε-emulator using the algorithm of Chang,
Krauthgamer, and Tan [CKT22]. However, if the graph we have already has size roughly equal to
the size of the boundary (up to polylogarithmic factors), we do not need to recurse, and instead it
suffices to redraw the graph, which we know we can do in O(1) rounds. One might wonder why
we need to redraw the graph at all. The reason is that we require the boundary polygon for each
region to have O(1) boundary for the Gluing Lemma.

30

Lemma 5.5 (MPC (1 + ε)-emulator). Let r = Sα for a sufficiently small constant α. There exists
an algorithm that given as input an O(1)-holed polygonal embedded graph (G,∇(G), P) with m edges
and n vertices where |∂(P)| = O(r1/3), returns an embedded graph (H,∇(G), Q) satisfying:

• Q is a triangular polygonal region

• V (H) ⊇ ∇(G)

• (H,∇(G)) is an ε-emulator of (G,∇(G)).

• |H| < c0|∇(G)| logD(|∇(G)|) for some constant c0 and integer D

The algorithm runs for O(1) rounds in expectation and with high probability using Θ(S) space per
machine and O(n/S) machines where S = nδ for any constant δ > 0.

Proof. We present a recursive algorithm. The base case is a sequential algorithm. Throughout the
algorithm, we subdivide edges and split vertices. Recall that when subdividing an edge e into e1
and e2, we choose e1 to be the canonical edge and let w(e1) = w(e) and w(e2) = 0. When splitting
a vertex v into u1 and u2 by an edge e = (u1, u2), we set w(e) = 0. Note that this does not change
the distances between vertices (or copies of vertices). This means that if (G,∇(G)) is an ε-emulator,
then for any graph H constructed by subdividing edges and splitting vertices of G in this manner,
we will have that (H,∇(G)) is also an ε-emuulator.

Base case. We run the base case if m ≤ S. Observe that the ∇(G) lies on topological holes of
(G,∇(G)). We compute an ε-emulator of (G,∇(G)) using the algorithm of Chang, Krauthgamer,
and Tan [CKT22] stated in Theorem 2.6 to get a (H,∇(G)) with H having the same number
of topological holes as G where |E(H)| = O(|∇(G)| polylog(|∇(G)|)). Using Lemma 4.4 we can
compute (H,∇(G), Q) for a triangular region Q.

Recursive case. The recursive case follows almost exactly as in our previous recursive algorithms,
the extra polylogarithmic factors in the size of the ε-emulators do not make a difference. For
completeness, we present the full proof.

If m ≤ c0|∇(G)| logD(|∇(G)|), then we can redraw the graph G as H using Lemma 5.1. Note
that (H,∇(G)) is an exact distance emulator of (G,∇(G)).

Otherwise m ≥ c0|∇(G)| logD(|∇(G)|). As in Lemma 5.1 we construct a (r2/3, 1/r)-cutting-
division. This splits the problem into subgraphs G1, ..., Gk for k = O(r1/3). We can apply recursion
to each subproblem to get Hi for each subproblem. We can use the Gluing Lemma, Lemma 4.5, to
draw each Hi in a triangular polygonal region Qi and glue the polygonal embeddings together to
get (H,∇(G), Q).

We will recurse on H. To show that our algorithm terminates, we need to ensure that |E(H)| <
m. Suppose that the Gluing Lemma adds at most c1 bends to each edge. Thus observe that if we
choose c0 = 3c1:

|E(H)| ≤ c1

(
|∇(G)|+O

(k∑
i=1

|∇(Gi)|
))

≤ c1|∇(G)|+ Õ
(m

r1/3

)
≤ c0

3
|∇(G)|+ Õ

(m

r1/3

)
.

We can assume Õ(m/r1/3) ≤ m/3 since r = Ω(mαδ). Thus it follows that |E(H)| ≤ 2m/3 < m.
This means we can recurse on the polygonal embedding (H,∇(G), Q) to get a polygonal embedding
(H ′,∇(G), Q′) with |H ′| = O(|∇(G)|).

31

It remains to argue that this algorithm terminates within O(1) rounds. Let Temu(m) denote
the total number of rounds it takes to solve the problem in the claim with m edges. Clearly, the
number of rounds that this algorithm takes follows the recursion:

Temu(m) = max

(
Tdraw(m), max

i=1,...,k
Temu(|E(Gi)|) + Temu(|E(H)|) +O(1)

)
= max

(
Tdraw(m), Temu

(
Õ
(m

r1/3

))
+O(1)

)
Since Tdraw(m) = O(1/δ), this recursion solves to Temu = O(1) as r = Θ(mαδ).

st-shortest paths. The following Corollary 5.6 about st-shortest paths easily follows from
Lemma 5.5. For a graph G and vertices s, t,∈ V (G), consider a large enough bounding box with two
punctures (small holes) at s and t. Call this punctured box B. Apply Lemma 5.5 to (G, {s, t}, B)
to get a graph (H, {s, t}, Q′) of size Õ(1) such that (H, {s, t}) is a (1 + ε)-emulator. Here we can
easily compute a shortest path between s and t in H on a single machine however we’d like, and
get a (1 + ε)-approximate shortest path between s and t.

Corollary 5.6 ((1+ ε)-approximate st-shortest paths). Given an embedded planar graph G with m
edges and n vertices and two vertices s, t ∈ V (G). There is an algorithm that computes the length of
a (1 + ε)-approximate shortest path between s and t in O(1) rounds using Θ(S) space per machine
and O(n/S) machines where S = nδ for any constant δ > 0.

5.5 Shortest cycle

An application of ε-emulators also allows us to find a (1 + ε)-approximate shortest cycle in an
embedded planar graph. Doing so is fairly simple. If we partition the graph geometrically, either
the shortest cycle lies completely in one piece of the partition or crosses a boundary vertex of some
partition. Thus either we can find the shortest cycle on recursion, or we can compute an ε-emulator
on the boundary vertices and apply recursion.

Theorem 1.4 ((1+ε)-approximate Shortest Cycle). There is an algorithm that computes the length
of a (1+ε)-approximate shortest cycle of an embedded planar graph G with n vertices in O(1) rounds
using Θ(S) space per machine and O(n/S) machines where S = nδ for any constant δ > 0.

Proof. We give a recursive algorithm.

Base case. If m ≤ S we can compute a (1 + ε) approximate shortest cycle on one machine. The
fastest algorithm for doing so takes Oε(n) using ε-emulators as sketched in [CKT22].

Recursive case. Let B be a large bounding box that contains all of G. We construct a (r2/3, 1/r)-
cutting-division Γ for r = Sα for a sufficiently small α > 0 that splits (G,∅, B) into k = O(r2/3)
polygonal embedded graphs (Gi,∇(Gi), Pi) for i = 1, ..., k.

We can apply recursion to each Gi independently to get the shortest cycle within Gi, discarding
the outer boundary Pi. Let the length of the shortest cycle returned by this part be ℓ1.

Let 0 < ε′ < ε be a parameter we will choose later. We can also compute an ε′-emulator
(Hi,∇(Hi), Pi) for each (Gi,∇(Gi), Pi) using Lemma 5.5 glue them together with the Gluing Lemma

32

of Lemma 4.5. This gives a graph (H,∅, B) with Õ(m/r1/3) edges. We now apply recursion to H
to find a (1 + ε′)-approximate shortest cycle of H. Call the length of the shortest cycle returned
be ℓ2. Since H approximates distances between vertices up to a distortion of (1 + ε′), ℓ2 is a
(1 + ε′)2 = (1 +O(ε′))-approximate length of some (not necessarily simple or shortest) cycle in G.
Choose ε′ = ε/C for a large enough constant C so that ℓ2 is actually a (1 + ε)-approximation for
the cycle.

We claim the length of the shortest cycle is min(ℓ1, ℓ2). Now we consider two cases of where the
shortest cycle can be. Either it is completely contained in some graph Gi, in which case ℓ1 will be
the shortest cycle. Otherwise, the shortest cycle must cross the boundary of Γ. The vertex where it
crosses Γ is a vertex of ∇(Gi), and hence, a vertex of H, so ℓ2 will be the length of a shortest cycle.

Note that at each level of the recursion, the ε we choose decreases by a factor of 1/C. In the
bottom level of the recursion, we are computing an ε′-emulator with ε′ = ε/2O(1/δ). This is fine as
δ is a constant.

It remains to analyze the round complexity of this algorithm. Let T◦(m) denote the round
complexity of finding the shortest cycle in an m edge graph. We obtain the following recurrence.

T◦(m) = T◦

(m

r1/3

)
+ Temu

(m

r1/3

)
+ T◦

(
Õ
(m

r1/3

))
+O(1)

As Temu(m) = O(1), this recurrence solves to T◦(m) = O(1) for r = Θ(mαδ).

5.6 Single source shortest path

With some additional ideas, it is actually possible to get all shortest paths from a source vertex
s ∈ V (G). From Lemma 5.5 we saw that it was possible to construct inside emulators for each
polygonal region, a graph that approximates all shortest paths inside the polygonal region. The key
idea is that we can actually construct outside emulators for each polygonal region of the cutting-
division after computing the inside ones. For one polygonal region Pi, the outside consists of O(1)
connected regions that we can construct an ε-emulator for from the other inside emulators that are
outside Pi. This idea is generally useful for many shortest path type problems. This allows us to
prove the following theorem:

Theorem 1.5 ((1+ε)-approximate SSSP). There is an algorithm that computes (1+ε)-approximate
single source shortest paths of an embedded planar graph G with n vertices in O(1) rounds using
Θ(S) space per machine and O(n/S) machines where S = nδ for any constant δ > 0.

Proof. We will prove the theorem by a recursive algorithm. Without loss of generality, we may
assume 0 < ε < 1.

Base Case. If m ≤ S, we can use any sequential algorithm for computing approximate single
source shortest paths. The fastest algorithm runs in O(m) time using ε-emulators (in fact, it solves
a more general problem of multiple-source shortest paths) [CKT22].

Recursive case. We cannot use our standard choice of s = r2/3 for our cutting-divisions, as we
will get extra polylogarithmic factors from emulator constructions (for reasons we will shortly see).
We instead choose a slightly larger value of s = r4/5 (though we could have chosen any exponent
larger than 2/3).

33

Let B be a sufficiently large bounding box that contains all of G with a small hole at s. We
construct a (r4/5, 1/r)-cutting-division Γ for r = Sα for a sufficiently small α > 0 that splits
(G,{s}, B) into k = O(r1/5) polygonal embedded graphs (Gi,∇(Gi), Pi) for i = 1, ..., k. Without
loss of generality, let G1 contain s and that s ∈ ∇(G1). Note that s is on the boundary of some
polygonal region because it was on the boundary of B. In parallel, we apply Lemma 5.5 on each
polygonal embedded graph to get the inside emulators (Hi,∇(Gi), Qi) where each (Hi,∇(Gi)) are
ε′-emulators for (Gi,∇(Gi)) for some parameter 0 < ε′ < ε we will choose later.

Next, we will show how to construct the outside emulators. Consider the region defined by
B \Pi, this decomposes into ℓ connected polygonal regions R1, ..., Rℓ. Each Rj for j = 1, ..., ℓ has at
most 2 holes, since B had 2 holes, one outside hole and one for s. Let GRj denote the Rj induced
subgraph of G. For all Rj , we will compute a distance emulator for (GRj ,∇(GRj), Rj) from the
ε′-emulators (Hi′ ,∇(Gi′), Qi′) for i′ ̸= i that we have already computed. To do so, we observe that
Rj is the union of some collection of Pi′ for i′ ∈ I, so we can view our cutting-division Γ restricted
on Rj that we denote by ΓRj . Thus, we can apply the Gluing Lemma, and apply Lemma 5.5 on
the glued graph to get a graph (HRj ,∇(GRj), QRj) which is an ε′-emulator for (GRj ,∇(GRj , Rj).
This can be done for all regions Rj in parallel since the total number of edges in Hi′ for i′ ∈ I is
Õ(m/r2/5). In fact we can do this for all i in parallel since the total memory used by all k = O(r1/5)
graphs is only k · Õ(m/r2/5) = Õ(m/r1/5).

Now we can compute a redrawing of Gi as (G′
i,∇(Gi), Qi) by Lemma 5.1. We can apply the

Gluing Lemma again on the polygonal embeddings (HRj ,∇(GRj), QRj) for j = 1, ..., ℓ along with
(G′

i,∇(Gi), Qi) to get a graph (G′′
i , {s}, B). Note that G′′

i approximates all distances between pairs
of vertices in G by (1 +O(ε′)), and the number of edges in G′′

i is:

|E(G′′
i)| = O(|E(Gi)|) + Õ

 ℓ∑
j=1

|∇(GRj)|

≤ O(|E(Gi)|) + Õ

(
k∑

i=1

|∇(Gi)|

)
= O

(m

r1/5

)
+ Õ

(m

r2/5

)
= O

(m

r1/5

)
Hence, we can use recursion again to get all distances from s in (G′′

i , {s}, B) up to (1+ε′) distortion,
which approximates the distances in G with (1 +O(ε′)) distortion. Note that we can recurse on all
subproblems at once since the total size of all the subproblems is k · O(m/r1/5) = O(m). Choose
ε′ = ε/C for a sufficiently large constant C. This gives (1 + ε)-approximate shortest path distances
for all P ∈ Q.

Now to analyze the round complexity, let Tsssp(m) denote the number of rounds to solve the
SSSP problem with m edges. Then the runtime follows the recursion:

Tsssp(m) = Temu(m/r1/5) + Temu(Õ(m/r2/5)) + Tdraw(m/r2/5) + Tsssp(m/r1/5) +O(1)

As r = Θ(mαδ), Temu(m) = O(1) and Tdraw = O(1), this solves to Tsssp = O(1).

5.7 All-pairs shortest paths

A modification of our algorithm for computing approximate single source shortest path allows us
to compute approximate all-pairs shortest path (APSP) in O(1) rounds, at the expense of using

34

O(n2) total memory for a n vertex planar graph G. Note that this O(n2) total memory is much
larger than the size of the graph which has O(n) edges, but is necessary as we need O(n2) memory
to even store all the pairwise distances.

In our algorithm for SSSP, we performed recursion on every component to compute shortest
paths. The difference for APSP is that we will recurse once for each pair of components.

Theorem 1.7 ((1 + ε)-approximate APSP). There is an algorithm that computes a (1 + ε)-
approximate shortest path for all pairs of vertices of an embedded planar graph G with n vertices in
O(1) rounds using Θ(S) space per machine and O(n2/S) machines where S = nδ for any constant
δ > 0.

Proof. We will prove the theorem by a recursive algorithm. We may assume 0 < ε < 1. Let
m = |E(G)| and n = |V (G)|.

Base case. If m ≤ S, we can use any sequential algorithm for computing approximate all-pairs
shortest paths. This can easily be done in O(n2) time by running the SSSP algorithm in O(n) time
using ε-emulators [CKT22].

Recursive case. Let B be a sufficiently large bounding box that contains all of G. We construct
a (r4/5, 1/r)-cutting-division Γ for r = Sα for a sufficiently small α > 0 that splits (G,∅, B) into
k = O(r1/5) polygonal embedded graphs (Gi,∇(Gi), Pi) for i = 1, ..., k. In parallel, we apply
Lemma 5.5 on each polygonal embedded graph to get the inside emulators (Hi,∇(Gi), Qi) where
each (Hi,∇(Gi)) are ε′-emulators for (Gi,∇(Gi)) for some parameter 0 < ε′ < ε we will choose
later. Note that this step only uses O(m) total memory.

Next, we will construct the outside emulators for every pair of (Gi,∇(Gi), Pi) and
(Gj ,∇(Gj), Pj). Consider the region defined by B \ Pi \ Pj , this decomposes into ℓ connected
polygonal regions R1, ..., Rℓ. Each Rt for t = 1, ..., ℓ has at most 3 holes, since B had 3 holes, one
outside hole and at most two for Pi and Pj . For all Rt, we will compute a distance emulator for
(GRt ,∇(GRt), Rt) from the ε′-emulators (Hi′ ,∇(Gi′), Qi′) for i′ ̸= i, i′ ̸= j that we have already
computed. To do so, we observe that Rt is the union of some collection of Pi′ for i′ ∈ I, so we
can view our cutting-division Γ restricted on Rt that we denote by ΓRt . Thus, we can apply the
Gluing Lemma, and apply Lemma 5.5 on the glued graph to get a graph (HRt ,∇(GRt), QRt) which
is an ε′-emulator for (GRt ,∇(GRt , Rt). This can be done for all regions Rt in parallel since the total
number of edges in Hi′ for i′ ∈ I is Õ(m/r2/5). This can also be done for all O(r2/5) pairs i and j
as this only uses Õ(m) total memory.

Now we can compute a redrawing of Gi and Gj and glue it together with each of the
(HRt ,∇(GRt), QRt), with the emulator of the rest of the graph as (Hij ,∅, B). Note that Gij

approximates all distances between pairs of vertices in G by (1 + O(ε′)), and the number of edges
in Gij is:

|E(Gij)| = O(|E(Gi)|+ |E(Gj)|+ Õ

 ℓ∑
j=1

|∇(GRj)|

 = O
(m

r1/5

)
+ Õ

(m

r2/5

)
= O

(m

r1/5

)
Hence, we can use recursion again to get all distances from s in (Gij ,∅, B) up to (1+ ε′) distortion,
which approximates the distances in G with (1 +O(ε′)) distortion.

35

Figure 9: (Left) A polygonal embedding (G,∇(G), P). (Middle) A primal-dual overlay graph of
one component of the graph. The green square vertices result from subdividing the edges. The
red edges form a subdivision of the dual graph. (Right) The polygonal primal-dual overlay graph
(GPD,∇(G) + ∇(G∗), P) with the parts of the polygon parallel to edges slightly pushed outward
for visual clarity.

Let us analyze the total space used by our algorithm. Let Mapsp(m) denote the memory usage
of our algorithm for a m edge graph G with no isolated vertices. We get the following recurrence.

Mapsp(m) =

k∑
i=1

k∑
j=i+1

M (|E(Gij)|) + Õ(m) = O(r2/5) ·Mapsp

(m

r1/5

)
+O(m)

Along with the base case that Mapsp(S) = O(S2) this solves to Mapsp = O(m2) = O(n2).
Now to analyze the round complexity, let Tapsp(m) denote the number of rounds to solve the

APSP problem with m edges. Then the runtime follows the same recursion as for SSSP:

Tapsp(m) = Temu(m/r1/5) + Temu(Õ(m/r2/5)) + Tdraw(m/r1/5) + Tapsp(m/r1/5) +O(1)

As r = Θ(mαδ), Temu(m) = O(1) and Tdraw = O(1), this solves to Tapsp(m) = O(1).

5.8 Drawing the primal-dual overlay graph

Defining the primal-dual overlay graph. The planar dual of an embedded planar graph G is
the graph G∗ obtained by creating a vertex for every face of G we call a face vertex and connecting
faces that share an edge. Each edge of the primal planar graph G corresponds to exactly one edge
of G∗. Furthermore, each face of G∗ corresponds to a vertex of the primal graph. We will also
define the primal-dual overlay graph to be a graph GPD that combines both the primal and the
dual graph. It can be constructed from an embedded planar graph in this way: Subdivide all the
edges of G creating a vertex ve for every edge e ∈ E(G). We call ve an edge vertex. Place a vertex
f in each face of G and connect f to each subdivided vertex ve that the face shares an edge e with.
Note that this graph is a planar graph that contains both G after subdividing every edge and G∗

after subdividing every edge as subgraphs. Furthermore, if the graph G had n = |V (G)| vertices,
since the number of faces and edges of G is also O(n), observe that |V (GPD)| = O(n). See Figure 9
for an illustration.

We also define the primal-dual overlay of a polygonal embedding (G,∇(G), P). We construct
this graph as follows: Consider each hole of P , and connect all adjacent vertices of ∇(G) with an

36

edge even if one already exists and is parallel to the edge (consider expanding the boundary slightly
outward so the edge is no longer parallel) making a planar multigraph G′. If there are no vertices
on the boundary of the hole, add a phantom vertex on the hole which has a self edge. Construct the
primal-dual overlay graph of G′ and delete all vertices corresponding to holes of H and their incident
edges. The vertices created by subdividing the edges of P we consider as ∇(G∗), the boundary of
the dual graph. We call the graph without the (subdivided) edges of P and phantom vertices,
GPD. The entire polygonal embedding is denoted by (GPD,∇(G)+∇(G∗), P). See Figure 9 for an
illustration of this.

The motivation for this construction is if we had a graph G and partition of the plane Π that
induced polygonal embeddings (Gi,∇(Gi), Pi) for i = 1, ..., k, then the union of the primal-dual
overlay of the polygonal embeddings (GPD

i ,∇(Gi) +∇(G∗
i), Pi) contains GPD as a minor provided

we identify ∇(G∗
i) along the boundaries between adjacent regions.

Computing the primal-dual overlay graph. We can in fact modify our method of redrawing
a graph in Lemma 5.1 to compute a graph H that contains the primal-dual overlay graph GPD as
a minor. We note some properties of H. Our technique of computing a cutting-division may cut
faces (corresponding to a vertex of G∗) into parts. We will create a vertex on the boundary of the
cutting-division for the face that we are cutting. When we glue the faces back together we will
connect the faces together by an edge. This has the effect of doing a more general kind of vertex
split of a facial vertex; it is more general because a single cutting-division may cut up a face into
multiple parts such that all the vertices are connected in a planar manner. A face of G (i.e., a vertex
of G∗) will thus correspond to a connected set of face vertices in H. We note that the edges of H
can be decomposed into two graphs H ′ and H∗, where H ′ is the induced subgraph of H with the
edge vertices and the old vertices of G and thus has G as a minor and H∗ is the induced subgraph
of H with the edge vertices and face vertices and thus has G∗ as a minor. We refer to H ′ as the
primal subgraph of H, and H∗ as the dual subgraph of H.

The high-level idea of how we will construct the primal-dual overlay graph is to find a cutting-
division of the graph, and recursively draw the primal-dual overlay graph of the polygonal subdivi-
sion.

Lemma 5.7 (MPC drawing of the primal-dual overlay graph). Given an embedded planar graph G
with n vertices and m edges, we can compute an embedded planar graph H with O(m) edges that
contains both the primal graph G and the dual graph G∗ as a minor in O(1) rounds using Θ(S)
space per machine and O(n/S) machines where S = nδ for any constant δ > 0.

For a graph G, let B be a sufficiently large bounding box that contains all of a graph G. We
will apply the below claim to (G,∅, B), which immediately proves our theorem.

Claim 5.8. Let r = Sα for a sufficiently small α > 0. There exists an algorithm that given an O(1)-
holed polygonal embedded graph (G,∇(G) +∇(G∗), P) (i.e., the polygonal embedding with isolated
vertices of the primal-dual overlay graph of the polygonal embedding on the boundary) with n vertices
and m edges where |∂(P)| = O(r1/3), returns a polygonal embedded graph (H,∇(G) + ∇(G∗), Q)
satisfying these properties:

• ∇(G∗) is a set of vertices of G∗ to faces of G lying on the boundary of P

• V (H) ⊇ V (G) ∪ V (G∗)

37

• |H| = O(m)

• H contains the primal-dual overlay of the polygonal embedding GPD as a minor

• Each edge e ∈ E(H) corresponds to either a canonical edge of G, a virtual edge from a vertex
split or subdivision of G, the canonical dual edge in G∗, a virtual edge from a vertex split or
subdivision of G∗ and stores this information.

• Each vertex of H corresponds to either the vertex of G, a virtual vertex from a subdivision of
an edge of G, a vertex of G∗ (i.e., a face of G), or is a virtual vertex from a vertex split of G∗

and stores this information.

The algorithm performs in O(1) rounds using Θ(S) space per machine and O(n/S) machines where
S = nδ for any constant δ > 0.

Proof. We will use a recursive algorithm to draw the primal-dual overlay in a manner similar to
how we redrew the graph in Lemma 5.1.

Base case. If m ≤ S, then we can compute the primal-dual overlay on one machine. We can
explicitly compute (H,∇(G) +∇(G∗), P) where H is the primal-dual overlay graph of G. We can
draw in a triangular domain with the Redrawing Lemma (Lemma 4.4).

Recursive case. We construct a (r2/3, 1/r)-cutting-division Γ of (G,∇(G)+∇(G∗), P) with r = S
which induce embeddings (Gi,∇(Gi), Pi). For each i, we can compute ∇(G∗

i), the vertices of G∗
i we

place along the boundary of P explicitly and in parallel for each region. Begin by adding all degree
3 or higher vertices of Γ to the boundaries of all regions (this is to maintain consistency across the
boundaries of the regions). We proceed by sorting ∇(Gi) around each boundary based on distance
along each hole from an arbitrary base point. This can be done in O(1) rounds as all machines
have Γ. Next, for every consecutive vertex u and v of ∇(Gi) on each boundary, we place a vertex
w ∈ ∇(G∗

i) in the exact midpoint between u and v on the boundary. Note that on the other side of
the boundary, some other polygonal region Pj will have put a vertex in the same spot. This vertex
w corresponds to a face vertex of G∗

i . If a boundary hole of Pi has no vertices of ∇(Gi), we can
deterministically place a vertex w ∈ ∇(G∗

i) in a canonical location (say the bottom-left most vertex
of the hole).

Now we can recurse on each (Gi,∇(Gi) +∇(G∗
i), Pi), and glue together the returned polygonal

embeddings. The analysis follows from Lemma 5.1. The runtime analysis is the same as well since
for every component |∇(G∗

i)| = O(|∇(Gi)|+ |Γ|).

Correcting the dual subgraph. We state a few quirks of the dual subgraph H∗ resulting from
our use of constructing H while subdividing edges and faces of G. The vertices corresponding to a
single face of G will be connected but may have cycles. This happens because we may cut up large
faces into many pieces. For long edges that we subdivide many times, we may connect multiple
vertices of H∗ corresponding to the same face of G to different subdivisions of the same edge.

We will do some post-processing on H∗ to recover a more useful representation of the dual
graph. We begin by removing cycles among facial vertices that correspond to the same face of G
by computing a spanning forest for each dual face in O(1) rounds using Theorem 1.2. To handle
face vertices corresponding to the same face connected to edge vertices corresponding to the same

38

edge, we will remove duplicate edges by only keeping the edge from the face vertex to the edge
corresponding to the canonical edge vertex. This can also be done in O(1) rounds. Let H

∗ be the
graph we get from this procedure. We will call H∗ the corrected dual subgraph of H.

In particular, if we look at any cycle C using edges of H∗, the cycle corresponds to an actual
cycle in G∗ and thus a cut in G. Furthermore, the vertices on one side of the cut are exactly the
vertices of H that correspond to vertices of G that lie in the cycle. We will use this property for
computing max-flows in Section 5.9.

5.9 Min-cut and max-flow

Our dual graph construction, combined with an algorithm for (1 + ε)-approximate shortest cycle,
gives an algorithm for global min-cut, as the min-cut of a planar graph is the shortest cycle in the
dual.

Theorem 1.9 ((1 + ε)-approximate global min-cut). There is an algorithm to compute the global
min-cut of an embedded planar graph G with n vertices in O(1) rounds using Θ(S) space per machine
and O(n/S) machines where S = nδ for any constant δ > 0.

Proof. The min-cut is the shortest cycle of the dual graph we compute using Lemma 5.7 if we only
look at the dual part of the primal-dual overlay and remove cycles corresponding to faces with
Theorem 1.2, then Theorem 1.4 computes the approximate shortest cycle.

Computing a max-flow between two terminals s and t in G is more challenging, as this is
equivalent to computing the minimum cut in the dual G∗ that separates the two faces s∗ and t∗.
Nonetheless, we can prove the following theorem by adapting ideas for computing inside and outside
emulators.

Theorem 1.10 ((1 + ε)-approximate st-max-flow). There is an algorithm to compute a (1 + ε)-
approximate maximum flow between two vertices of any embedded planar graph G with n vertices in
O(1) rounds using Θ(S) space per machine and O(n/S) machines where S = nδ for any constant
δ > 0.

To prove the max-flow theorem, we first compute an embedding of the primal-dual overlay graph
H using Lemma 5.7 of the component of the graph that s and t are in (we can figure out if they
are connected and get all edges and vertices of that component using variations of Theorem 1.1).
Instead of storing the entire dual face of s∗ and t∗, which may have many edges, we will simply
store the coordinates of the two vertices in the primal-dual overlay graph as a proxy for the face.
Let p1 denote the location of s and p2 the location of t in H. Use as input to the following lemma
the corrected dual subgraph H

∗, as well as p1 and p2 to prove Theorem 1.10.

Lemma 5.9. There exists an algorithm that given as input an embedded planar graph G with n
vertices and m edges and two points p1 and p2 not lying in the same face of G, can find a (1 + ε)-
approximate minimum cycle of G∗ that separates p1 and p2 in O(1) rounds using Θ(S) space per
machine and O(n/S) machines where S = nδ for any constant δ > 0.

Proof. We assume that p1 and p2, and all coordinates of G have different x coordinates. If not,
we can rotate all points by a random angle. We prove this theorem by a recursive algorithm very
similar to Theorem 1.5. The idea the shortest cycle separating p1 and p2 will either pass through

39

the boundary of a cutting-division, or will be completely contained in a single polygonal region of
the cutting-division, say the ith region (i.e., it can contain the polygonal region containing p1 as
a hole, and have p2 outside. In either case, if we glue together a redrawing of each region with
redrawn regions containing p1 and p2, treating them as holes so the topology of the graph does not
change, then also compute an outside emulator of everything other than these three regions, and
recurse on this other graph, we will find the shortest cycle.

Base case. If m ≤ S we can solve this problem on one machine in O(n) time by the algorithm of
Chang–Krauthgamer–Tan [CKT22].

Recursive case. Let B be a sufficiently large bounding box that contains all of G with
punctures at p1 and p2. We construct a (r1/5, 1/r)-cutting-division Γ for r = Sα with
α > 0 sufficiently small on (G,∅, B) that splits the problem into polygonal embedded graphs
(G1,∇(G1), P1), ..., (Gk,∇(Gk), Pk) for k = O(r1/5), and construct a redrawing (Hi,∇(Gi), Qi) and
an ε′-emulator (H ′

i,∇(Gi), Qi) for each i = 1, ..., k for ε′ = ε/C for a sufficiently large C.
We may assume that the cutting-division does not contain p1 or p2 as we assume that p1 and

p2 have different x-coordinates. Let P1 be the polygonal region containing p1, and let Pj be the
polygonal region containing p2. Note that it is possible that j = 1. We will describe how we do
this for one specific region i > 1 and i ̸= j, we construct an outside emulator for B \ (P1 ∪Pj ∪Pi),
from the ε′-emulators we already constructed. Let (H̄i,∇(H̄i), B \ (P1 ∪ Pj ∪ Pi)) be the emulator.
Now, we can glue together that emulator with the redrawn (H1,∇(G1), Q1), (H̄i,∇(Gi), Qi), and
(Hj ,∇(Gi), Qj) to get a single graph H̄ in a region Q′ with three holes: one outside boundary, and
one hole for each of p1 and p2. Note that in Q′, the holes corresponding to p1 and p2 may become
triangles in the redrawing, but have no boundary vertices. We can choose any vertex of the triangle
p′1 from the hole corresponding to p1 and p′2 from the hole corresponding to p2. Now we can recurse
on the graph H̄ with p′1 and p′2. For the correctness of this algorithm, it is clear that a cycle that
separates p′1 and p′2 in H̄ corresponds to a cycle that separates p1 and p2 in G.

H̄ has O(m/r1/5) edges, we need to repeat this construction for each i, so we have O(r1/5) such
subproblems to solve. We can solve all these problems in parallel. The analysis of runtime is the
same as for Theorem 1.5, but we will describe it here for completeness. Let Tmincut(m) denote the
number of rounds to find the shortest p1 and p2 separating cycle in a graph with m edges. Then
the runtime follows the recursion:

Tmincut(m) = Temu(m/r1/5) + Temu(Õ(m/r2/5)) + Tdraw(m/r2/5) + Tmincut(m/r1/5) +O(1)

As r = Θ(mαδ), Temu(m) = O(1) and Tdraw = O(1), so this solves to Tmincut = O(1).

6 Edit distance

In the edit distance problem, we are given two strings s and t, and we wish to determine the
minimum number of operations to transform s to t. In an operation we may insert, delete, or
change a character at any position of s. We also consider a weighted variation of the problem where
we may have varying costs for inserting, deleting, or replacing certain characters in the strings s
and t.

40

Formally we define a cost function w : (Σ ∪ {∅}) × (Σ ∪ {∅}) → R+ where Σ is the alphabet,
and w(a,∅) is the cost of inserting a character a and w(∅, b) is the cost of deleting a character b,
and w(a, b) is the cost for replacing a with b for a, b ∈ Σ.

A weight function w is quasimetric if it satisfies the triangle inequality w(a, c) ≤ w(a, b)+w(b, c)
for all a, b, c ∈ Σ∪{∅}. It is reasonable to assume we always deal with quasimetric weight functions,
since we can always do edit distance computations on a weight function w where w(a, c) is the cost
of the cheapest way to transform a to c. We will focus on the setting where the alphabet size is a
constant, so the preprocessing costs constant time and can be done locally. We say that a weight
function w is symmetric if w(a, b) = w(b, a) for all a, b ∈ Σ ∪ {∅}. In particular, this means that
the cost of inserting and deleting a character is the same. In the classic edit distance problem, all
weights are 1 and the weights are symmetric and quasimetric.

The textbook dynamic programming algorithm for edit distance creates a table A with the
following recurrence if we let si denote the ith character of string s and tj denote the jth character
of string j.

A[i][j] =

−∞ if i < 0 or j < 0

0 if i = j = 0

min{w(si,∅) +A[i− 1][j], w(∅, tj) +A[i][j − 1], w(si, tj) +A[i− 1][j − 1]}

Another interpretation of this dynamic program is that it defines a directed graph Gw
s,t with

vertices (i, j) ∈ V for i = 1, . . . , |s| and j = 1, . . . , |t|. For a vertex (i, j) there are incoming edges:

• from (i− 1, j) with weight w(si,∅) for corresponding to a deletion of si,

• from (i, j − 1) with weight w(∅, tj) corresponding to an insertion of tj ,

• from (i− 1, j − 1) with weight w(si, tj) corresponding to a replacement of si with tj .

The table A[i][j] stores the shortest path in this graph from (0, 0) to (i, j). We remark that Gw
s,t

is a planar graph with a straight-line embedding if we place vertices at the corresponding x and y
coordinates.

We observe that we can actually view this as an undirected shortest path problem when the
weights function is quasimetric and symmetric, and work with the graph G

w
s,t that has the same

vertex set and edge set as Gw
s,t, except the edges are undirected.

Observation 6.1. For symmetric and quasimetric weight functions, the shortest path between (0, 0)
and (i, j) in Gw

s,t is equal to the shortest path between those vertices in G
w
s,t.

Proof. It is sufficient to show that there exists a shortest path from (0, 0) to (i, j) in G
w
s,t that is

non-decreasing in both dimensions. We select P as a shortest path from (0, 0) to (i, j) in G
w
s,t such

that its hop-length is minimized. If P is non-decreasing in both dimensions, then we are done. For
the rest of the proof, suppose P is not non-decreasing in the x-dimension or in the y-dimension.

We select b = (xb, yb) as the first vertex on P such that the edge leading to b in P is a
decreasing move in at least one dimension. Let b′ = (xb′ , yb′) be the vertex on P right before b.
Then (xb′ = xb + 1) ∨ (yb′ = yb + 1) is true.

41

Case 1: b′ → b is diagonal. We first consider the case where b′ = (xb + 1, yb + 1). That is, the
edge between b′ and b is diagonal. Let b′′ be the vertex on P right before b′. Our choice of b implies
that b′′ = (xb, yb + 1) or b′′ = (xb + 1, yb). Now we may shorten the hop-length of P by replacing
b′′ → b′ → b with b′′ → b. We claim that the weight of the new path cannot be larger than the
weight of the old path.

We only prove this claim for the case where b′′ = (xb, yb + 1), as the other case is similar.
The weight of b′′ → b′ → b equals w(sxb+1,∅) + w(sxb+1, tyb+1), and the weight of b′′ → b equals
w(∅, tyb+1). We have

w(sxb+1,∅) + w(sxb+1, tyb+1) ≥ w(tyb+1,∅) = w(∅, tyb+1),

where the inequality is due to the fact that w is quasimetric and the equality is due to the fact that
w is symmetric.

Case 2: b′ → b is horizontal or vertical. Next, we consider the case where b′ = (xb + 1, yb) or
b′ = (xb, yb + 1). That is, the edge between b′ and b is horizontal or vertical. For the rest of the
proof, we only focus on the case where b′ = (xb, yb + 1), since the other case is similar.

We select a = (xa, ya) to be the last vertex on P before b such that ya = yb. Let a′ = (xa′ , ya′)
be the vertex on P right after a. Our choice of a implies that we must have ya′ = ya + 1, so either
a′ = (xa, ya + 1) or a′ = (xa + 1, ya + 1). For the rest of the discussion, we write k = ya = yb for
notational simplicity.

Case 2.1: a → a′ is vertical. Consider the case where a′ = (xa, ya+1). Recall that ya = yb = k,
so ya + 1 = ya′ = yb′ = yb + 1 = k + 1, meaning that the subpath of P from a′ to b′ is a horizontal
line segment from (xa, k + 1) to (xb, k + 1), so the subpath of P from a to b is

a = (xa, k) → (xa, k + 1) → (xa + 1, k + 1) → (xa + 2, k + 1) → · · · → (xb, k + 1) → (xb, k) = b.

We can shorten P by replacing this subpath with the path

a = (xa, k) → (xa + 1, k) → (xa + 2, k) → · · · → (xb, k) = b.

The weight of the new path is at most the weight of the old path because the weight of (i− 1, k) →
(i, k) is identical to the weight of (i− 1, k+1) → (i, k+1) for all i, as they are both w(si,∅). This
contradicts our choice of P , as the hop-length of the new path is smaller than the hop-length of the
old path.

Case 2.2: a → a′ is diagonal. Consider the case where a′ = (xa + 1, ya + 1). Similarly, the
subpath of P from a′ to b′ is a horizontal line segment from (xa + 1, k + 1) to (xb, k + 1), so the
subpath of P from a to b is

a = (xa, k) → (xa + 1, k + 1) → (xa + 2, k + 1) → · · · → (xb, k + 1) → (xb, k) = b.

Similarly, we can shorten P by replacing this subpath with the path

a = (xa, k) → (xa + 1, k) → (xa + 2, k) → · · · → (xb, k) = b.

42

We claim that the weight of the new path is at most the weight of the old path. As discussed earlier,
we already know that the weight of (i− 1, k) → (i, k) is identical to the weight of (i− 1, k + 1) →
(i, k + 1) for all i, so we just need to prove that the weight of (xa, k) → (xa + 1, k), which equals
w(sxa+1,∅), is at most the sum of the weight of (xa, k) → (xa + 1, k + 1) and the weight of
(xb, k + 1) → (xb, k), which equals w(sxa+1, tk+1) + w(∅, tk+1). Indeed,

w(sxa+1,∅) ≤ w(sxa+1, tk+1) + w(tk+1,∅) = w(sxa+1, tk+1) + w(∅, tk+1),

where the inequality follows from the assumption that w is quasimetric and the equality follows
from the assumption that w is symmetric. This contradicts our choice of P , as the hop-length of
the new path is smaller than the hop-length of the old path.

Since a contradiction is obtained in all cases, P must be non-decreasing in both dimensions.

As a warmup, we will show an MPC algorithm using O(n2) total memory that is a corollary of
our result on approximate SSSP.

Corollary 6.2. There exists an algorithm that given as input two strings s and t of length n and a
symmetric quasimetric weight function w, computes a (1 + ε)-approximate edit distance between s
and t in O(1) rounds using O(S) space per machine and O(n2/S) machines where S = nδ for any
constant δ > 0.

Proof. We begin by partitioning s and t into contiguous substrings of length ℓ =
√
S. For sim-

plicity, we assume
√
S is an integer and m = (n − 1)/ℓ is an integer. Let s(i) denote the string

s(i−1)ℓ+1s(i−1)ℓ+2 · · · siℓ+1 for i ∈ [m], and similarly for t(i).
For each i, j ∈ [m], we distribute s(i) and t(j) to a different machine along with the weight

function w. Observe that we can do this as we have O(m2) = O(n2/S) machines. This allows
us to construct G

w
s,t as every machine constructs an O(S) sized block of G

w
s,t. Formally, we say

the (i, j) block of Gw
s,t is the set of edges between vertices (a, b) for a ∈ [(i − 1)ℓ + 1, iℓ + 1] and

b = [(j − 1)ℓ+ 1, jℓ+ 1] of Gw
s,t. Putting all the edges together (and removing duplicates), we have

computed all edges of Gw
s,t.

Now we can use our result on approximate SSSP in planar graphs Theorem 1.5 to compute
a (1 + ε)-approximate shortest path from (0, 0) to (n, n). By Observation 6.1, this is a (1 + ε)-
approximate weighted edit distance.

We remark that as the entire graph is a grid graph, the entire algorithm can be significantly
simplified (e.g. cutting-divisions can be blocks of the grid).

We are able to match the result of Hajiaghayi, Seddighin, and Sun [HSS19] where they use only
Õ(n2/S2) machines. This takes a little extra effort, as with fewer machines, we need each machine
to take a longer S sized substring of s and t. Nonetheless, we show that we can construct a sparser
version of Gw

s,t that approximately preserves distances with this much memory.

Theorem 1.11 (Edit distance). There exists an algorithm that given as input two strings s and t of
length n and a symmetric weight function w, computes a (1 + ε)-approximate edit distance between
s and t in O(1) rounds doing Õ(n2) work using Õ(S) space per machine and Õ(n2/S2) machines
where S = nδ for any constant δ > 0.

As before we can distribute pairs of contiguous substrings, one from each string, and the weight
function w to every machine. However, this time, we need to set the length ℓ = S, so we have

43

m = (n− 1)/ℓ = O(n/S) contiguous substrings of each string. This way we can still distribute s(i)

and t(j) to a different machine for each i, j ∈ [m] as now we only need O(m2) = O(n2/S2) machines.
Now we’re faced with a dilemma. The machine given s(i) and t(j) has two length S strings but

we only have O(S) total memory. The (i, j) block of the graph G
w
s,t has O(S) memory. Fortunately,

we can use ε-emulators to construct a sparser graph of size Õ(S) on the O(S) boundary vertices
of the block of the graph. If we were able to do this, we could run the deterministic version of
Theorem 1.5 which computes the single source shortest path with O(η1+α) work on an η vertex
graph for any constant α > 0. As η = Õ(n/S), choosing a constant α < δ would solve the problem
with o(n2) total work.

However, it is difficult to construct an ε-emulator for the (i, j) block without being able to store
the entire block to begin with! To resolve this issue, we will use a simple recursive algorithm to
do exactly this with divide and conquer. To do so, we will prove the following lemma from which
Theorem 1.11 follows.

Lemma 6.3. Fix a parameter ε with 0 < ε ≤ 1/2. Given two strings s and t of length n, there exists
an algorithm that computes an ε-emulator for G

w
s′,t′ with boundary vertices (x, 0), (0, y), (x, |s|), and

(|t|, y) for all x, y ∈ [n] in Õ(n2) time and Õ(n) memory.

Proof. We begin by splitting s in half into s(1) and s(2), and t in half into t(1) and t(2). We will
compute an emulator on each of s(i) and t(j) for i, j ∈ {1, 2} of size Õ(n/2) with Õ(n/2) space by
recursion, and glue them together at the boundary vertices for a single graph H with the techniques
from Section 4.5 (we can view our partition as a particularly simple cutting-division). Then, we can
reduce the size of H using an ε′-emulator for some ε′ to be specified later to get a graph H ′. H ′ has
size Õ(n) and can be computed in Õ(n) time and space by Theorem 2.6. We repeat this recursively
until our subproblems have size O(

√
n), we can afford to directly compute an ε′ emulator directly

with Õ(n) space, so our recursion has depth (log n)/2. It remains to argue that the final graph we
obtain is an ε-emulator. Observe that gluing together two γ-emulators results in an γ emulator.
Taking an γ-emulator of an γ′-emulator gives a graph with distortion at most (1 + γ) · (1 + γ′). If
we choose ε′ sufficiently small such that ε = O(ε′ log n), we can bound the overall approximation
factor as follows:

(logn)/2∏
i=1

(1 + ε′) ≤ 1 +O(ε′ log n) ≤ 1 + ε

Observe that even when we choose an ε′ = Θ(1/ log n), an ε′-emulator of an n vertex graph still has
Õ(n) size and can be computed in Õ(n) time and space by Theorem 2.6.

Since we do computation on each recursive subproblem in sequence, we can reuse the space. If
we let S(n) denote the space we use for solving our problem with length n strings s′ and t′, our
space follows the recursion S(n) = S(n/2) + Õ(n), with the base case that S(

√
n) = Õ(n). This

sum is geometric and solves to S(n) = Õ(n).

7 Open questions

We believe that the new techniques developed in this work will be relevant to future research on
geometric problems in MPC, which is an area where many fundamental questions remain relatively
unexplored. We list some of these open questions:

44

1. EMST in higher dimensions. Our work implies that two-dimensional Euclidean MST can
be solved in O(1) rounds in the MPC model in the fully scalable regime. It is a challenging
open question to extend this result to higher dimensions. For the case where the dimension is
a constant d = O(1), Andoni, Nikolov, Onak, and Yaroslavtsev [ANOY14] designed an O(1)-
round algorithm for (1 + ε)-approximation of Euclidean MST. Very recently, it was shown
in [CCJ+23] that (1+ε)-approximation is also possible in the regime of d = ω(1). Specifically,
they showed that for any constants ε ∈ (0, 1) and δ ∈ (0, 1), a (1 + ε)-approximation of
Euclidean MST can be computed in O(1) rounds with local memory size S = O(nδ) ·dO(1). It
is still unknown whether Euclidean MST can be solved exactly in O(1) rounds even for d = 3.

2. Approximate diameter and radius. For a planar embedded graph G with n vertices and m
edges, we use O(n2) total space for computing a (1 + ε)-approximate diameter and radius in
O(1) rounds with our algorithm for APSP. On the other hand, with O(n) total space, we can
compute a (2 + ε)-approximate diameter and radius in O(1) rounds with our algorithm for
SSSP. Does there exist an O(1)-round algorithm for computing (1+ ε)-approximate diameter
or radius using O(n) total space? In the sequential setting, it was shown that a (1 + ε)-
approximate diameter can be computed in O(n) time by a sequence of results [WY16, Cab19,
CS19, CKT22]. However, all sequential results on this line require shortest path separators,
rather than the cycle separators used for divisions, so it is not clear how we can use these
results in our framework.

3. Exact solutions to distance-based problems. For embedded planar graphs, all our algo-
rithms for computing distances, cuts, and flows are (1 + ε)-approximation, due to the use
of ε-emulator. It is unknown whether it is possible to improve these results to obtain exact
solutions, without any approximation errors. This is likely a difficult open problem, as all
existing results on exact distance computation in parallel, distributed, and semi-streaming
models require polynomial round complexity or pass complexity [CFHT20, CDKL21]. For
exact distance computation, what advantages do we obtain from restricting ourselves to the
case of embedded planar graphs or to the case where the distances are given by the actual
distances between the points in Euclidean space?

4. Geometric intersection graphs. There exist extensions of the planar separator theorem
to some types of geometric intersection graphs, such as the unit-disc graphs [dBBK+20,
dBKMT23]. These extensions were used to design sequential algorithms that have match-
ing conditional lower bounds [dBBK+20]. Is it possible to utilize the techniques developed
in [dBBK+20, dBKMT23] to obtain improved parallel and distributed algorithms for some
classes of geometric intersection graphs?

5. Planarity testing and graph drawing. All our planar graph algorithms assume that an em-
bedding of the input planar graph G is given. What are the round complexities of planarity
testing and drawing a planar graph? Essentially nothing is known about these problems in
the MPC model. In the related CONGEST model of distributed computing, it is known that
a combinatorial embedding of a planar network can be computed in near-diameter rounds
O(D log n) [GH16a], and after a combinatorial embedding is given, a polyline planar drawing
with at most three bends per edge can be computed in O(D) rounds [Sed22]. It is unlikely
that a straight-line drawing of a planar graph can be computed in o(log n) rounds in the

45

MPC model with strongly sublinear memory per machine, since such an o(log n)-round algo-
rithm, combined with our algorithms in this paper, would refute the 1-vs-2-cycles conjecture.
Nanongkai and Scquizzato [NS22] showed that if the planarity testing problem can be solved
in o(log n) rounds, then the 1-vs-2 cycle conjecture would also be refuted.

Acknowledgements

We thank Sariel Har-Peled for suggesting the sublinear time algorithm for constructing cuttings,
Hsien-Chih Chang for pointing out the application to edit distance, and Timothy M. Chan, Jeff
Erickson, and Jack Spalding-Jamieson for helpful discussions.

Appendix

A Proof of sublinear time algorithm for constructing cuttings

In this section, we prove theorem 3.1. The algorithm and the underlying ideas presented in this sec-
tion are standard and are derived from classical randomized techniques in computational geometry.
The key idea is that a sample of a set well approximates the old set, so we can sample a small set
of edges and run an efficient algorithm to compute an optimal cutting on the sample.

We assume that the reader is familiar with VC-dimension. Consider a range space (X,R) of
VC-dimension d. In particular, we are interested in X being line segments and R being the set of
trapezoidal ranges, which has V C dimension O(1). Let S be a finite subset of X and let R be a
subset of S. For a range H ∈ R, let H ⊓ S denote the set of line segments of S intersecting H.
Then we define the following two quantities for each range H ∈ R.

The measure of H, m(H) =
|H ⊓ S|

|S|
. The estimate of H by R, sR(H) =

|H ⊓R|
|R|

Definition A.1. A subset R ⊆ S is an ε-approximation if for each range H ∈ R:

|µ(H)− sR(H)| ≤ ε

While this is enough for proving a sublinear time algorithm for cuttings, we can improve the
bounds slightly by using a closely related idea of relative approximations.

Definition A.2. A subset R ⊆ S is a relative (p, ε)-approximation if for each range H ∈ R:

1. If µ(H) ≥ p, then (1− ε)µ(H) ≤ sR(H) ≤ (1 + ε)µ(H).

2. If µ(H) < p, then sR(H) ≤ (1 + ε)p.

The following theorem shows that random samples of relatively small sizes are relative (p, ε)-
approximations.

Theorem A.3 ([LLS01, HS11]). A sample R of size O
(
ε−2p−1(d log p−1 + log δ−1)

)
is a relative

(p, ε)-approximation with probability at least 1− δ.

This directly implies a sublinear time algorithm for cuttings.

46

Theorem 3.1 (Sublinear time (1/r)-cuttings of size O(r)). Let S be a set of n non-crossing line
segments and 0 < δ < 1. Let R ⊆ S be a random sample of size m = O(r(log r + log δ−1)). Then
there exists a randomized algorithm that takes as input the sample R, constructs a (1/r)-cutting
of S of size O(r) in time O(m log r) and succeeds with probability at least 1 − δ. In particular, a
(1/r)-cutting of S of size O(r) can be constructed from a sample of size O(r log n) in O(r log n log r)
time with high probability.

Proof. Let ∆ denote the set of all trapezoids in the plane. Trapezoids have VC-dimension O(1).
For a set S of n non-crossing line segments, a sample R ⊆ S of size m = O(r(log r + log δ−1))
is a (1/(2r), 1/2)-relative approximation with probability at least 1 − δ. Applying Theorem 2.4
we can construct a (1/(2r))-cutting Ξ of R of size O(r) in O(m log r) time. Consider a trapezoid
σ ∈ Ξ, it must intersect at most O(log r + log δ−1) edges of R by the definition of a cutting, so
sR(σ) ≤ 1/(2r). Now let us consider if µ(σ) ≥ 1/(2r). Since R is a (1/(2r), 1/2)-approximation of
(S,∆) and σ ∈ ∆, we know that 1/2µ(σ) ≤ sR(σ), so µ(σ) ≤ 2sR(σ) ≤ 1/r. Thus we conclude that
Ξ is a (1/r)-cutting of S with probability at least 1− δ.

Remarks Observe that the proof only relied on the fact that for line segments, ranges that are
vertical trapezoids have O(1) VC-dimension. We can easily replace line segments with bounded de-
gree algebraic curves, or other pseudo-curves provided we modify our ranges to be the corresponding
pseudo-trapezoids. The only property of relative approximations we used was that for µ(h) ≥ 1/(2r),
µ(H) ≤ 2sR(H). If we replaced the relative approximation with a (1/(2r))-approximation, the above
property would still hold. However, the bounds we would get would be worse.

B Deterministic cuttings in the MPC model

As mentioned in the remark of Appendix A, we can use ε-approximations instead. We use the
following two properties of ε-approximations that have been observed many times in the literature
that relative approximations do not have, that allow for the use of the merge-and-sketch paradigm.

Observation B.1 (Lemma 5.33 of [Hp11]). Let (X,R) be a range space with VC-dimension d.
Then if A1 is an ε-approximation for (X,R) and A2 is an ε′-approximation for (A1,R), then A2 is
an (ε+ ε′)-approximation for (X,R).

Observation B.2 (Lemma 5.35 of [Hp11]). Let (X1,R) and (X2,R) be two range spaces with VC-
dimension d, A1 is an ε-approximation for (X1,R) and A2 is an ε-approximation for (X2,R). If
|A1| = |A2| and |X1| = |X2|, then A1 ∪A2 is an ε-approximation for (X1 ∪X2,R).

We also need deterministic computation of ε-approximations. We note that the space usage was
never explicitly stated, but with careful analysis of the algorithm of Chazelle and Matoušek [CM96],
one can show it runs in linear space.

Theorem B.3 ([Mat95, CM96, Cha01]). Let (X,R) be a range space with VC-dimension d
for constant d, where |X| = n. Then one can compute an ε-approximation for (X,R) of size
O(ε−2 log(ε−1)) deterministically in O(n) space and O(nε−2d logd(ε−1)) time.

This is all we need to prove our result on deterministic cuttings in the MPC model. This is
almost identical to the proof of [CM96] for deterministic ε-approximations in parallel, albeit with a
larger branching factor and different parameters to ensure we finish in O(1) rounds.

47

Theorem 3.5 (Deterministic MPC Cuttings). There exists a deterministic MPC algorithm for
computing a (1/r)-cutting of n line segments S for r = Sα for a sufficiently small α > 0 that
uses O(1) rounds with O(n/S) machines with O(S) memory per machine where S = nδ for some
constant δ > 0.

Proof. Instead of computing a random sample, each machine can compute an ε-approximation
deterministically with ε = 1/(Cr) for a sufficiently large constant C. The ε-approximation will
have size O(r2 log r). Ideally, we would send all of this to one machine, but that would require too
much space. Instead, we will merge as many of these approximations onto one machine, then create
a sketch by taking another ε-approximation of the merged approximations.

In one round, we can merge O(S/r3) of the ε-approximations together onto one machine since
they would have total size O(S/r3) · O(r2 log r) = o(S). We can do this in parallel amongst all
the machines. Afterward, we will take a sketch of the edges. To be precise, we compute another
ε-approximation of the approximations that is O(r2 log r) sized, and we can repeat until we are left
with everything on one machine is the sum of all the ε we incurred from the merge steps.

This process terminates with a O(r2 log r) sized ε-approximation on a single machine in
logS/r3(n/S) = O(1/(δ − 3α)) = O(1) rounds. The total error accumulates at each sketch we
performed. Since we chose ε = 1/(Cr), choosing C to be sufficiently large, our final set of edges
can be made to be a (1/(2r))-approximation of S. At this point, we can apply the deterministic
version of Theorem 2.4 as in Theorem 3.1 on this approximation to get a (1/r)-cutting.

References

[AJ20] Sharareh Alipour and Amir Jafari. A LOCAL constant approximation factor algorithm
for minimum dominating set of certain planar graphs. In Christian Scheideler and
Michael Spear, editors, SPAA ’20: 32nd ACM Symposium on Parallelism in Algorithms
and Architectures, Virtual Event, USA, July 15-17, 2020, pages 501–502. ACM, 2020.
doi:10.1145/3350755.3400217.

[ANOY14] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev.
Parallel algorithms for geometric graph problems. In David B. Shmoys, editor, Sym-
posium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 574–583. ACM, 2014. doi:10.1145/2591796.2591805.

[ASS+18] Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong. Parallel
graph connectivity in log diameter rounds. In Mikkel Thorup, editor, 59th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France,
October 7-9, 2018, pages 674–685. IEEE Computer Society, 2018. doi:10.1109/FOCS.
2018.00070.

[ASZ19] Alexandr Andoni, Clifford Stein, and Peilin Zhong. Log diameter rounds algorithms
for 2-vertex and 2-edge connectivity. In Christel Baier, Ioannis Chatzigiannakis, Paola
Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume
132 of LIPIcs, pages 14:1–14:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.ICALP.2019.14.

48

https://doi.org/10.1145/3350755.3400217
https://doi.org/10.1145/2591796.2591805
https://doi.org/10.1109/FOCS.2018.00070
https://doi.org/10.1109/FOCS.2018.00070
https://doi.org/10.4230/LIPIcs.ICALP.2019.14

[BCGW21] Marthe Bonamy, Linda Cook, Carla Groenland, and Alexandra Wesolek. A Tight Local
Algorithm for the Minimum Dominating Set Problem in Outerplanar Graphs. In Seth
Gilbert, editor, 35th International Symposium on Distributed Computing (DISC 2021),
volume 209 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1–
13:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.DISC.2021.13.

[BDE+19] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Vahab S.
Mirrokni. Near-optimal massively parallel graph connectivity. In David Zuckerman, ed-
itor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,
Baltimore, Maryland, USA, November 9-12, 2019, pages 1615–1636. IEEE Computer
Society, 2019. doi:10.1109/FOCS.2019.00095.

[BEG+21] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi HajiAghayi,
and Saeed Seddighin. Approximating edit distance in truly subquadratic time: Quan-
tum and mapreduce. Journal of the ACM (JACM), 68(3):1–41, 2021.

[BFKL21] Ruben Becker, Sebastian Forster, Andreas Karrenbauer, and Christoph Lenzen. Near-
optimal approximate shortest paths and transshipment in distributed and streaming
models. SIAM J. Comput., 50(3):815–856, 2021. doi:10.1137/19M1286955.

[BGS21] Mahdi Boroujeni, Mohammad Ghodsi, and Saeed Seddighin. Improved MPC algo-
rithms for edit distance and Ulam distance. IEEE Trans. Parallel Distributed Syst.,
32(11):2764–2776, 2021. doi:10.1109/TPDS.2021.3076534.

[BKS17] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel
query processing. J. ACM, 64(6):40:1–40:58, 2017. doi:10.1145/3125644.

[BLM+23] Alkida Balliu, Rustam Latypov, Yannic Maus, Dennis Olivetti, and Jara Uitto. Op-
timal deterministic massively parallel connectivity on forests. In Nikhil Bansal and
Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 2589–
2631. SIAM, 2023. doi:10.1137/1.9781611977554.CH99.

[BSW97] Mark Babikov, Diane L. Souvaine, and Rephael Wenger. Constructing piecewise linear
homeomorphisms of polygons with holes. In Proceedings of the 9th Canadian Confer-
ence on Computational Geometry, Kingston, Ontario, Canada, August 11-14, 1997,
1997.

[Cab19] Sergio Cabello. Subquadratic algorithms for the diameter and the sum of pairwise
distances in planar graphs. ACM Trans. Algorithms, 15(2):21:1–21:38, 2019. doi:
10.1145/3218821.

[CC22] Sam Coy and Artur Czumaj. Deterministic massively parallel connectivity. In Ste-
fano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 162–175.
ACM, 2022. doi:10.1145/3519935.3520055.

49

https://doi.org/10.4230/LIPIcs.DISC.2021.13
https://doi.org/10.1109/FOCS.2019.00095
https://doi.org/10.1137/19M1286955
https://doi.org/10.1109/TPDS.2021.3076534
https://doi.org/10.1145/3125644
https://doi.org/10.1137/1.9781611977554.CH99
https://doi.org/10.1145/3218821
https://doi.org/10.1145/3218821
https://doi.org/10.1145/3519935.3520055

[CCJ+23] Xi Chen, Vincent Cohen-Addad, Rajesh Jayaram, Amit Levi, and Erik Waingarten.
Streaming euclidean MST to a constant factor. In Barna Saha and Rocco A. Servedio,
editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 156–169. ACM, 2023. doi:
10.1145/3564246.3585168.

[CDKL21] Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf. Fast
approximate shortest paths in the congested clique. Distributed Comput., 34(6):463–
487, 2021. doi:10.1007/S00446-020-00380-5.

[CDP21a] Artur Czumaj, Peter Davies, and Merav Parter. Component stability in low-space
massively parallel computation. In Avery Miller, Keren Censor-Hillel, and Janne H.
Korhonen, editors, PODC ’21: ACM Symposium on Principles of Distributed Com-
puting, Virtual Event, Italy, July 26-30, 2021, pages 481–491. ACM, 2021. doi:
10.1145/3465084.3467903.

[CDP21b] Artur Czumaj, Peter Davies, and Merav Parter. Graph sparsification for deran-
domizing massively parallel computation with low space. ACM Trans. Algorithms,
17(2):16:1–16:27, 2021. doi:10.1145/3451992.

[CDP21c] Artur Czumaj, Peter Davies, and Merav Parter. Simple, deterministic, constant-round
coloring in congested clique and MPC. SIAM J. Comput., 50(5):1603–1626, 2021.
doi:10.1137/20M1366502.

[CEGS94] Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, and Micha Sharir. Al-
gorithms for bichromatic line-segment problems polyhedral terrains. Algorithmica,
11(2):116–132, 1994. doi:10.1007/BF01182771.

[CFG+19] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
complexity of (∆+1) coloring in congested clique, massively parallel computation, and
centralized local computation. In Peter Robinson and Faith Ellen, editors, Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019,
Toronto, ON, Canada, July 29 - August 2, 2019, pages 471–480. ACM, 2019. doi:
10.1145/3293611.3331607.

[CFHT20] Yi-Jun Chang, Martin Farach-Colton, Tsan-sheng Hsu, and Meng-Tsung Tsai. Stream-
ing complexity of spanning tree computation. In Christophe Paul and Markus
Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer
Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs,
pages 34:1–34:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPICS.STACS.2020.34.

[Cha01] Bernard Chazelle. The discrepancy method - randomness and complexity. Cambridge
University Press, 2001.

[CKT22] Hsien-Chih Chang, Robert Krauthgamer, and Zihan Tan. Almost-linear ε-emulators
for planar graphs. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 -
24, 2022, pages 1311–1324. ACM, 2022. doi:10.1145/3519935.3519998.

50

https://doi.org/10.1145/3564246.3585168
https://doi.org/10.1145/3564246.3585168
https://doi.org/10.1007/S00446-020-00380-5
https://doi.org/10.1145/3465084.3467903
https://doi.org/10.1145/3465084.3467903
https://doi.org/10.1145/3451992
https://doi.org/10.1137/20M1366502
https://doi.org/10.1007/BF01182771
https://doi.org/10.1145/3293611.3331607
https://doi.org/10.1145/3293611.3331607
https://doi.org/10.4230/LIPICS.STACS.2020.34
https://doi.org/10.4230/LIPICS.STACS.2020.34
https://doi.org/10.1145/3519935.3519998

[CLM+20] Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovic, Krzysztof Onak,
and Piotr Sankowski. Round compression for parallel matching algorithms. SIAM J.
Comput., 49(5), 2020. doi:10.1137/18M1197655.

[CM96] Bernard Chazelle and Jirí Matousek. On linear-time deterministic algorithms for op-
timization problems in fixed dimension. J. Algorithms, 21(3):579–597, 1996. doi:
10.1006/jagm.1996.0060.

[CS11] Bernard Chazelle and C. Seshadhri. Online geometric reconstruction. J. ACM,
58(4):14:1–14:32, 2011. doi:10.1145/1989727.1989728.

[CS19] Timothy M. Chan and Dimitrios Skrepetos. Faster approximate diameter and dis-
tance oracles in planar graphs. Algorithmica, 81(8):3075–3098, 2019. doi:10.1007/
s00453-019-00570-z.

[dBBK+20] Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C.
van der Zanden. A framework for exponential-time-hypothesis-tight algorithms and
lower bounds in geometric intersection graphs. SIAM J. Comput., 49(6):1291–1331,
2020. doi:10.1137/20M1320870.

[dBKMT23] Mark de Berg, Sándor Kisfaludi-Bak, Morteza Monemizadeh, and Leonidas
Theocharous. Clique-based separators for geometric intersection graphs. Algorithmica,
85(6):1652–1678, 2023. doi:10.1007/S00453-022-01041-8.

[dBS95] Mark de Berg and Otfried Schwarzkopf. Cuttings and applications. Int. J. Comput.
Geom. Appl., 5(4):343–355, 1995. doi:10.1142/S0218195995000210.

[DDK+20] Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh
Sawlani, and Xiaorui Sun. Parallel batch-dynamic graphs: Algorithms and lower
bounds. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
1300–1319. SIAM, 2020. doi:10.1137/1.9781611975994.79.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large
clusters. In Proceedings of the 6th Conference on Symposium on Operating Systems
Design & Implementation (OSDI), pages 10–10, Berkeley, CA, USA, 2004. USENIX
Association.

[EGS10] David Eppstein, Michael T. Goodrich, and Darren Strash. Linear-time algorithms for
geometric graphs with sublinearly many edge crossings. SIAM J. Comput., 39(8):3814–
3829, 2010. doi:10.1137/090759112.

[EMMZ22] Alessandro Epasto, Mohammad Mahdian, Vahab S. Mirrokni, and Peilin Zhong. Mas-
sively parallel and dynamic algorithms for minimum size clustering. In Joseph (Seffi)
Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, Jan-
uary 9 - 12, 2022, pages 1613–1660. SIAM, 2022. doi:10.1137/1.9781611977073.66.

[Fre87] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with appli-
cations. SIAM J. Comput., 16(6):1004–1022, 1987. doi:10.1137/0216064.

51

https://doi.org/10.1137/18M1197655
https://doi.org/10.1006/jagm.1996.0060
https://doi.org/10.1006/jagm.1996.0060
https://doi.org/10.1145/1989727.1989728
https://doi.org/10.1007/s00453-019-00570-z
https://doi.org/10.1007/s00453-019-00570-z
https://doi.org/10.1137/20M1320870
https://doi.org/10.1007/S00453-022-01041-8
https://doi.org/10.1142/S0218195995000210
https://doi.org/10.1137/1.9781611975994.79
https://doi.org/10.1137/090759112
https://doi.org/10.1137/1.9781611977073.66
https://doi.org/10.1137/0216064

[GGJ20] Mohsen Ghaffari, Christoph Grunau, and Ce Jin. Improved MPC algorithms for mis,
matching, and coloring on trees and beyond. In Hagit Attiya, editor, 34th International
Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Con-
ference, volume 179 of LIPIcs, pages 34:1–34:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPICS.DISC.2020.34.

[GGK+18] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and Ronitt
Rubinfeld. Improved massively parallel computation algorithms for mis, matching,
and vertex cover. In Calvin Newport and Idit Keidar, editors, Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing, PODC 2018, Egham, United
Kingdom, July 23-27, 2018, pages 129–138. ACM, 2018. doi:10.1145/3212734.
3212743.

[GH16a] Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks
I: planar embedding. In George Giakkoupis, editor, Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA,
July 25-28, 2016, pages 29–38. ACM, 2016. doi:10.1145/2933057.2933109.

[GH16b] Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar net-
works II: low-congestion shortcuts, mst, and min-cut. In Robert Krauthgamer, ed-
itor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 202–219.
SIAM, 2016. doi:10.1137/1.9781611974331.CH16.

[GKU19] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional hardness results for mas-
sively parallel computation from distributed lower bounds. In David Zuckerman, edi-
tor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,
Baltimore, Maryland, USA, November 9-12, 2019, pages 1650–1663. IEEE Computer
Society, 2019. doi:10.1109/FOCS.2019.00097.

[GN18] Mohsen Ghaffari and Krzysztof Nowicki. Congested clique algorithms for the minimum
cut problem. In Calvin Newport and Idit Keidar, editors, Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing, PODC 2018, Egham, United
Kingdom, July 23-27, 2018, pages 357–366. ACM, 2018.

[GN20] Mohsen Ghaffari and Krzysztof Nowicki. Massively parallel algorithms for minimum
cut. In Yuval Emek and Christian Cachin, editors, PODC ’20: ACM Symposium on
Principles of Distributed Computing, Virtual Event, Italy, August 3-7, 2020, pages
119–128. ACM, 2020. doi:10.1145/3382734.3405737.

[Goo97] Michael T. Goodrich. Randomized fully-scalable BSP techniques for multi-searching
and convex hull construction (preliminary version). In Michael E. Saks, editor, Pro-
ceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 5-7
January 1997, New Orleans, Louisiana, USA, pages 767–776. ACM/SIAM, 1997.

[GP17] Mohsen Ghaffari and Merav Parter. Near-optimal distributed DFS in planar graphs.
In Andréa W. Richa, editor, 31st International Symposium on Distributed Computing,

52

https://doi.org/10.4230/LIPICS.DISC.2020.34
https://doi.org/10.1145/3212734.3212743
https://doi.org/10.1145/3212734.3212743
https://doi.org/10.1145/2933057.2933109
https://doi.org/10.1137/1.9781611974331.CH16
https://doi.org/10.1109/FOCS.2019.00097
https://doi.org/10.1145/3382734.3405737

DISC 2017, October 16-20, 2017, Vienna, Austria, volume 91 of LIPIcs, pages 21:1–
21:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.
DISC.2017.21.

[GSZ11] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and
simulation in the mapreduce framework. In Takao Asano, Shin-Ichi Nakano, Yoshio
Okamoto, and Osamu Watanabe, editors, Algorithms and Computation - 22nd Interna-
tional Symposium, ISAAC 2011, Yokohama, Japan, December 5-8, 2011. Proceedings,
volume 7074 of Lecture Notes in Computer Science, pages 374–383. Springer, 2011.
doi:10.1007/978-3-642-25591-5_39.

[GU19] Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications
in massively parallel computation and centralized local computation. In Timothy M.
Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1636–
1653. SIAM, 2019. doi:10.1137/1.9781611975482.99.

[Har14] Sariel Har-Peled. Quasi-polynomial time approximation scheme for sparse subsets of
polygons. In Siu-Wing Cheng and Olivier Devillers, editors, 30th Annual Symposium
on Computational Geometry, SoCG’14, Kyoto, Japan, June 08 - 11, 2014, page 120.
ACM, 2014. doi:10.1145/2582112.2582157.

[HKN21] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A determinis-
tic almost-tight distributed algorithm for approximating single-source shortest paths.
SIAM J. Comput., 50(3), 2021. doi:10.1137/16M1097808.

[Hp11] Sariel Har-peled. Geometric Approximation Algorithms. American Mathematical So-
ciety, USA, 2011.

[HS11] Sariel Har-Peled and Micha Sharir. Relative (p, ε)-approximations in geometry. Dis-
cret. Comput. Geom., 45(3):462–496, 2011. doi:10.1007/s00454-010-9248-1.

[HSS19] MohammadTaghi Hajiaghayi, Saeed Seddighin, and Xiaorui Sun. Massively parallel
approximation algorithms for edit distance and longest common subsequence. In Tim-
othy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019,
pages 1654–1672. SIAM, 2019. doi:10.1137/1.9781611975482.100.

[HT23] Jacob Holm and Jakub Tětek. Massively parallel computation on embedded planar
graphs. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January
22-25, 2023, pages 4373–4408. SIAM, 2023. doi:10.1137/1.9781611977554.ch167.

[HW87] David Haussler and Emo Welzl. epsilon-nets and simplex range queries. Discret.
Comput. Geom., 2:127–151, 1987. doi:10.1007/BF02187876.

[IMS17] Sungjin Im, Benjamin Moseley, and Xiaorui Sun. Efficient massively parallel methods
for dynamic programming. In Hamed Hatami, Pierre McKenzie, and Valerie King,

53

https://doi.org/10.4230/LIPICS.DISC.2017.21
https://doi.org/10.4230/LIPICS.DISC.2017.21
https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1145/2582112.2582157
https://doi.org/10.1137/16M1097808
https://doi.org/10.1007/s00454-010-9248-1
https://doi.org/10.1137/1.9781611975482.100
https://doi.org/10.1137/1.9781611977554.ch167
https://doi.org/10.1007/BF02187876

editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 798–811. ACM,
2017. doi:10.1145/3055399.3055460.

[Kir83] David G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput.,
12(1):28–35, 1983. doi:10.1137/0212002.

[KLM+14] Raimondas Kiveris, Silvio Lattanzi, Vahab S. Mirrokni, Vibhor Rastogi, and Sergei
Vassilvitskii. Connected components in mapreduce and beyond. In Ed Lazowska,
Doug Terry, Remzi H. Arpaci-Dusseau, and Johannes Gehrke, editors, Proceedings of
the ACM Symposium on Cloud Computing, Seattle, WA, USA, November 3-5, 2014,
pages 18:1–18:13. ACM, 2014. doi:10.1145/2670979.2670997.

[KMS13] Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator
decompositions for planar graphs in linear time. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 505–514. ACM, 2013. doi:10.1145/
2488608.2488672.

[KSV10] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
mapreduce. In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January
17-19, 2010, pages 938–948. SIAM, 2010. doi:10.1137/1.9781611973075.76.

[LLS01] Yi Li, Philip M. Long, and Aravind Srinivasan. Improved bounds on the sample
complexity of learning. J. Comput. Syst. Sci., 62(3):516–527, 2001. doi:10.1006/
jcss.2000.1741.

[LMR21] Reut Levi, Moti Medina, and Dana Ron. Property testing of planarity in
the CONGEST model. Distributed Comput., 34(1):15–32, 2021. doi:10.1007/
S00446-020-00382-3.

[LP19] Jason Li and Merav Parter. Planar diameter via metric compression. In Moses Charikar
and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages
152–163. ACM, 2019. doi:10.1145/3313276.3316358.

[LPW13] Christoph Lenzen, Yvonne-Anne Pignolet, and Roger Wattenhofer. Distributed mini-
mum dominating set approximations in restricted families of graphs. Distributed Com-
put., 26(2):119–137, 2013. doi:10.1007/S00446-013-0186-Z.

[Mat95] Jirí Matousek. Approximations and optimal geometric divide-an-conquer. J. Comput.
Syst. Sci., 50(2):203–208, 1995. doi:10.1006/jcss.1995.1018.

[NS22] Danupon Nanongkai and Michele Scquizzato. Equivalence classes and conditional hard-
ness in massively parallel computations. Distributed Comput., 35(2):165–183, 2022.
doi:10.1007/S00446-021-00418-2.

54

https://doi.org/10.1145/3055399.3055460
https://doi.org/10.1137/0212002
https://doi.org/10.1145/2670979.2670997
https://doi.org/10.1145/2488608.2488672
https://doi.org/10.1145/2488608.2488672
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1006/jcss.2000.1741
https://doi.org/10.1006/jcss.2000.1741
https://doi.org/10.1007/S00446-020-00382-3
https://doi.org/10.1007/S00446-020-00382-3
https://doi.org/10.1145/3313276.3316358
https://doi.org/10.1007/S00446-013-0186-Z
https://doi.org/10.1006/jcss.1995.1018
https://doi.org/10.1007/S00446-021-00418-2

[Par20] Merav Parter. Distributed planar reachability in nearly optimal time. In Hagit Attiya,
editor, 34th International Symposium on Distributed Computing, DISC 2020, Octo-
ber 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 38:1–38:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.DISC.2020.
38.

[RMCS13] Vibhor Rastogi, Ashwin Machanavajjhala, Laukik Chitnis, and Anish Das Sarma.
Finding connected components in map-reduce in logarithmic rounds. In Christian S.
Jensen, Christopher M. Jermaine, and Xiaofang Zhou, editors, 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013,
pages 50–61. IEEE Computer Society, 2013. doi:10.1109/ICDE.2013.6544813.

[RVW18] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and circuits
(on lower bounds for modern parallel computation). J. ACM, 65(6):41:1–41:24, 2018.
doi:10.1145/3232536.

[Sch89] Walter Schnyder. Planar graphs and poset dimension. Order, 5:323–343, 1989.

[Sch90] Walter Schnyder. Embedding planar graphs on the grid. In David S. Johnson, editor,
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24
January 1990, San Francisco, California, USA, pages 138–148. SIAM, 1990.

[Sed22] Hannes Sederholm. Distributed Drawing of Planar Graphs in the CONGEST model.
Master’s thesis, Aalto University. School of Science, 2022. URL: http://urn.fi/URN:
NBN:fi:aalto-202208285084.

[Tut63] William Thomas Tutte. How to draw a graph. Proceedings of the London Mathematical
Society, 3(1):743–767, 1963.

[WY16] Oren Weimann and Raphael Yuster. Approximating the diameter of planar graphs
in near linear time. ACM Trans. Algorithms, 12(1):12:1–12:13, 2016. doi:10.1145/
2764910.

55

https://doi.org/10.4230/LIPICS.DISC.2020.38
https://doi.org/10.4230/LIPICS.DISC.2020.38
https://doi.org/10.1109/ICDE.2013.6544813
https://doi.org/10.1145/3232536
http://urn.fi/URN:NBN:fi:aalto-202208285084
http://urn.fi/URN:NBN:fi:aalto-202208285084
https://doi.org/10.1145/2764910
https://doi.org/10.1145/2764910

	Introduction
	Our contributions
	Technical overview
	Additional related work
	Roadmap

	Preliminaries
	MPC algorithm for separators in embedded planar graphs
	Sublinear and MPC algorithms for constructing cuttings
	Cutting-divisions
	MPC algorithm for computing cutting-divisions

	Graph drawing
	Compatible triangulations and graph morphing
	Scaffold graphs for a polygonal region
	Boundary routing of nested polygons
	Redrawing a polygonal embedding as a triangular polygonal embedding
	Gluing planar graphs together
	Handling degenerate polygonal regions

	MPC algorithms for embedded planar graphs
	Redrawing a graph
	Connected components
	Minimum spanning forest
	Computing emulators
	Shortest cycle
	Single source shortest path
	All-pairs shortest paths
	Drawing the primal-dual overlay graph
	Min-cut and max-flow

	Edit distance
	Open questions
	Proof of sublinear time algorithm for constructing cuttings
	Deterministic cuttings in the MPC model

