
ar
X

iv
:2

30
8.

14
56

9v
2

 [
cs

.C
G

]
 2

2
O

ct
 2

02
3

Solving Fréchet Distance Problems by Algebraic Geometric Methods∗

Siu-Wing Cheng† Haoqiang Huang‡

Abstract

We study several polygonal curve problems under the Fréchet distance via algebraic geometric methods.
Let Xd

m and X
d
k be the spaces of all polygonal curves of m and k vertices in R

d, respectively. We assume that
k ≤ m. Let R

d
k,m be the set of ranges in X

d
m for all possible metric balls of polygonal curves in X

d
k under

the Fréchet distance. We prove a nearly optimal bound of O(dk log(km)) on the VC dimension of the range

space (Xd
m,Rd

k,m), improving on the previous O(d2k2 log(dkm)) upper bound and approaching the current
Ω(dk log k) lower bound. Our upper bound also holds for the weak Fréchet distance. We also obtain exact
solutions that are hitherto unknown for the curve simplification, range searching, nearest neighbor search, and
distance oracle problems.

1 Introduction.

The Fréchet distance, denoted by dF , is a popular distance metric to measure the similarity between curves that
has been used in various applications such as map construction, trajectory analysis, protein structure analysis,
and handwritten document processing (e.g. [11, 12, 41, 45]).

We use Xd
ℓ to denote the space of all polygonal curves of ℓ vertices in R

d. Given a curve γ ∈ X
d
ℓ , we call ℓ the

size of γ and denote it by |γ|. A parameterization of a curve τ ∈ X
d
m is a function ρ : [0, 1] → R

d such that ρ(t)
moves monotonically from the beginning of τ to its end as t increases from 0 to 1. It is possible that ρ(t1) = ρ(t2)
for some t1 and t2 that are different. Given a parameterization ̺ of another curve σ ∈ X

d
k, the pair (ρ, ̺) form a

matching M in the sense that ρ(t) is matched to ̺(t) for all t ∈ [0, 1]. Let dM(σ, τ) = maxt∈[0,1] d(̺(t), ρ(t)). A
Fréchet matching is a matching that minimizes dM(σ, τ). We call the corresponding distance the Fréchet distance
of σ and τ , denoted by dF (σ, τ). A variant is to drop the monotonicity constraint on the parameterization of a
curve, i.e., ρ(t) is allowed to move back and forth continuously along τ in its movement from the beginning of τ

to its end. The corresponding distance is known as the weak Fréchet distance of σ and τ , denoted by d̂F (σ, τ).

Clearly, d̂F (σ, τ) ≤ dF (σ, τ). Alt and Godau developed the first O(km log(km))-time algorithms to compute

dF (σ, τ) and d̂F (σ, τ) [4].
There are many algorithmic challenges that arise from the analysis of curves and trajectories. Range searching

under the Fréchet distance was made by ACM SIGSPATIAL in 2017 a software challenge [48]. There has been
extensive research on curve simplification [3, 7, 8, 18, 21, 36, 38, 39, 46, 47], clustering [13, 14, 18, 23, 43], and
nearest neighbor search [17, 25, 26, 28, 27, 31, 40, 42]. Range searching has also been studied [1]. In this paper,
we use algebraic geometric methods to solve Fréchet distance problems. Algebraic geometric tools have hardly
been used before. Afshani and Driemel [1] employed a semialgebraic range searching solution in R

2, but we go
much further to use arrangements of zero sets of polynomials in higher dimensions. We will deal with input
curve(s) in X

d
m and output/query curve in X

d
k. We assume that k ≤ m. The condition that is most favorable for

our results is that k ≪ m; it is a natural goal for curve simplification; the condition of k ≪ m is also natural for
query problems when the query curve is a sketch provided by the user in 2D or 3D, or a short sequence of key
configurations in higher dimensions.

1.1 Previous work.

VC dimension. Let Rd
k,m be the set of ranges in X

d
m for all possible metric balls of polygonal curves in X

d
k under

dF . That is, Rd
k,m = {BF (σ, r) : r ∈ R≥0, σ ∈ X

d
k}, where BF (σ, r) = {τ ∈ X

d
m : dF (σ, τ) ≤ r}. Driemel et al. [24]

∗Research supported by the Research Grants Council, Hong Kong, China (project no. 16208923).
†Department of Computer Science and Engineering, HKUST, Hong Kong. Email: scheng@cse.ust.hk
‡Department of Computer Science and Engineering, HKUST, Hong Kong. Email: haoqiang.huang@connect.ust.hk

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

http://arxiv.org/abs/2308.14569v2

showed that the VC dimension of the range space
(
X

d
m,Rd

k,m

)
is O(d2k2 log(dkm)). They also proved a lower

bound of Ω
(
max{dk log k, log(dm)}

)
. For d̂F , the same lower bound holds and the upper bound improves to

O(d2k log(dkm)). Recently and independently, Brüning and Driemel [10] obtained the same O(dk log(km)) bound
for the VC dimension of

(
X

d
m,Rd

k,m

)
using arguments that are similar to ours. They also proved an O(dk log(km))

bound for the VC dimension under Hausdorff distance and an O(min{dk2 logm, dkm log k}) bound for the VC
dimension under dynamic time warping.

Driemel et al. [24] discussed several applications of the VC dimension bound. Let T be a set of input curves
from X

d
m. The VC dimension bound allows us to draw a small random sample of T of size that does not depend on

the cardinality of T and only depends onm logarithmically. This random sample allows us to perform approximate
range counting in T for any metric ball of any curve in X

d
k. The random sample also helps to construct a compact

classifier for classifying a query curve in X
d
k based on the curves in T .

Curve simplification. In 2D and 3D, the simplifications of region boundaries and trajectories of moving agents
find applications in geographical information systems. One may simplify a time series of multidimensional data
to speed up subsequent processing.

Given any τ ∈ X
d
m and any r > 0, one problem is to find a curve σ with the minimum size such that

dF (σ, τ) ≤ r. Let κ(τ, r) denote this minimum size. Guibas et al. [36] presented an O(m2 log2 m)-time exact
algorithm in R

2, but no exact algorithm is known in higher dimensions. Agarwal et al. [3] showed how to
construct σ in O(m logm) time such that dF (σ, τ) ≤ r and |σ| ≤ κ(τ, r/2). Van de Kerkhof et al. [46] showed
that for any ε ∈ (0, 1), one can construct σ in O(ε−O(1)m2 logm log logm) time such that dF (σ, τ) ≤ (1+ ε)r and
|σ| ≤ 2 κ(τ, r)−2. If the vertices of σ must be vertices of τ , Van Kreveld et al. [47] showed that |σ| can be minimized
in O(|σ|m5) time. Later, Van de Kerkhof et al. [46] and Bringmann and Chaudhury [8] improved the running time
to O(m3). If the vertices of σ must lie on τ but not necessarily at the vertices, Van de Kerkhof et al. [46] showed
that |σ| can be minimized in O(m)-time in R; however, the problem is NP-hard in dimensions two or higher. The

results of Van de Kerkhof et al. [46] also hold for d̂F . In the case that the vertices of σ are unrestricted, Cheng
and Huang [18] obtained a bicriteria approximation scheme in R

d: for any α, ε ∈ (0, 1), one can construct σ in
Õ
(
mO(1/α) · (d/(αε))O(d/α)

)
time such that dF (σ, τ) ≤ (1 + ε)r and |σ| ≤ (1 + α) · κ(τ, r).

Another simplification problem is that given an integer k ≥ 2, compute a curve σ ∈ X
d
k that minimizes

dF (σ, τ). In R
d, if the vertices of σ must be vertices of τ , Godau [32] showed how to solve the problem in

O(m4 logm) time. He also proved that the curve σ returned by his algorithm satisfies dF (σ, τ) ≤ 7 opt, where opt
is the minimum possible Fréchet distance if the vertices of σ are unrestricted. Subsequently, Agarwal et al. [3]
showed that the curve σ returned by Godau’s algorithm [32] satisfies dF (σ, τ) ≤ 4 opt.

Range searching. Let T be a set of n curves in X
d
m. Let k ≥ 2 be a given integer. The problem is to construct

a data structure so that for any σ ∈ X
d
k and any r > 0, one can efficiently retrieve every τ ∈ T that satisfies

dF (σ, τ) ≤ r. In R
2, assuming that r is given for preprocessing and k = logO(1) n, Afshani and Driemel [1] achieves

an O
(√

n logO(m2) n
)
query time using O

(
n(log logn)O(m2)

)
space. Let S(n) and Q(n) be the space and query

time of any range searching data structure for this problem, respectively. Afshani and Driemel [1] also proved

that S(n) = Ω
(

n2

Q(n)2

)
·
(log(n/Q(n))

log log n

)k−1
/2O(2k) and S(n) = Ω

(
n2

Q(n)2

)
·
(log(n/Q(n))
k3+o(1) log logn

)k−1−o(1)
. De Berg et al. [19]

considered the problem of counting the number of inclusion-maximal subcurves of a curve τ ∈ X
d
m that are within

a query radius r from a query segment ℓ. For any s ∈ [m,m2], they achieve an Õ(m/
√
s) query time using Õ(s)

space; however, the count may include some subcurves at Fréchet distance up to (2 + 3
√
2)r from ℓ.

Nearest neighbor. Let T be a set of n curves in X
d
m. Let k ≥ 2 be a given integer. The problem is to construct

a data structure so that for any σ ∈ X
d
k, its (approximate) nearest neighbor under dF can be retrieved efficiently.

No efficient exact solution is known. A related question is the (λ, r)-ANN problem for any λ > 1 and any r > 0
that are given for preprocessing: for any query curve σ ∈ X

d
k, either find a curve τ ∈ T that satisfies dF (σ, τ) ≤ λr,

or report that dF (σ, τ) > r for all τ ∈ T . Har-Peled et al. [37] showed that a (λ, r)-ANN data structure can be
converted into a λ-ANN data structure; the space and query time only increase by some polylogarithmic factors.

Driemel and Psarros [25] developed (λ, r)-ANN data structures in R with the following combinations of
(λ, space, query time):

(
5+ε,O(mn)+n·O(1ε)

k, O(k)
)
,
(
2+ε,O(mn)+n·O(m

kε)
k, O(2kk)

)
, and

(
24k+1, O(n logn+

mn), O(k logn)
)
. The last one is randomized with a failure probability of 1/poly(n). Bringman et al. [9] improved

these combinations in R:
(
1+ ε, n ·O(m

kε)
k, O(2kk)

)
, (2+ ε, n ·O(m

kε)
k, O(k)

)
,
(
2+ ε,O(mn)+n ·O(1ε)

k, O(2kk)
)
,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

(
2 + ε,O(mn), O(1ε)

k+2
)
, and

(
3 + ε,O(mn) + n · O(1ε)

k, O(k)
)
. Cheng and Huang [17] presented (1 + ε, r)-

ANN solutions in R
d. For d ∈ {2, 3}, the space and query time are O(mn/ε)O(k) · Õ(k) and O(1/ε)O(k) · Õ(k),

respectively. For d ≥ 4, the space and query time increase to Õ
(
k(mndd/εd)O(k) + (mndd/εd)O(1/ε2)

)
and

Õ
(
k(mn)0.5+ε/εd + k(d/ε)O(dk)

)
, respectively. They also presented (3 + ε, r)-ANN data structures with query

times of Õ(k) for d ∈ {2, 3} and Õ
(
k(mn)0.5+ε/εd

)
for d ≥ 4.

Bringman et al. [9] proves that, conditioned on the orthogonal vector hypothesis, one cannot achieve
the following combinations of (λ, space, query time) for the (λ, r)-ANN problem for any ε, ε′ ∈ (0, 1): (2 −
ε, poly(n), O(n1−ε′)) in R when 1 ≪ k ≪ logn and m = knΘ(1/k), (3 − ε, poly(n), O(n1−ε′)) in R when
k = m = Θ(logn), and (3 − ε, poly(n), O(n1−ε′)) in R

2 when 1 ≪ k ≪ logn and m = knΘ(1/k). Approximate
nearest neighbor results are also known for the discrete Fréchet distance [28, 29, 31, 40].

Distance oracle. In some applications (e.g. sports video analysis [19]), given a curve τ ∈ X
d
m and an integer

k ≥ 2, one wants to construct a distance oracle so that for any curve σ ∈ X
d
k, dF (σ, τ) can be determined in

o(km) time.
In R

2, De Berg et al. [20] designed a data structure of O(m2) size such that for any horizontal segment
ℓ, dF (ℓ, τ) can be reported in O(log2 m) time. By increasing the space to O(m2 log2 m), they can also report
dF (ℓ, τ

′) in O(log2 m) time for any horizontal segment ℓ and any vertex-to-vertex subcurve τ ′ of τ .
Gudmundsson et al. [35] generalized the above result in R

2. They developed a data structure of O(n3/2) size
such that for any horizontal segment ℓ and any subcurve τ ′ ⊆ τ , dF (ℓ, τ

′) can be reported in O(log8 m) time,
where τ ′ are delimited by any two points on τ , not necessarily vertices. They also presented a data structure of
the same size such that for any horizontal segment ℓ and any subcurve τ ′ ⊆ τ , the translated copy ℓ′ of ℓ that
minimizes dF (ℓ

′, τ ′) can be reported in O(log32 m) time.
Buchin et al. [15, 16] improved the distance oracle in R

2 recently in several ways. First, they presented a
data structure of O(m logm) size such that dF (ℓ, τ) can be reported in O(logm) time for any horizontal segment
ℓ. Second, they developed a data structure of O(m log2 m) size such that for any horizontal segment ℓ and any
subcurve τ ′ ⊆ τ , dF (ℓ, τ

′) can be reported in O(log3 m) time. Note that τ ′ are delimited by any two points on τ ,
not necessarily vertices. Third, for any parameter κ ∈ [m], they presented a data structure of O(mκ2+ε+m2) size
such that for any segment ℓ and any subcurve τ ′ ⊆ τ , dF (ℓ, τ

′) can be reported in O((m/κ) log2 m+log4 m) time.
Note that there is no restriction on the orientation of ℓ. Fourth, they developed a data structure of O(m log2 m)
size such that for any horizontal segment ℓ and any subcurve τ ′ ⊆ τ , the translated copy ℓ′ of ℓ that minimizes
dF (ℓ

′, τ ′) can be reported in O(log12 m) time. For arbitrarily oriented query segments, they presented a data
structure of O(mκ3+ε + m2) size for any κ ∈ [m] such that for any segment ℓ and any subcurve τ ′ ⊆ τ , the
translated copy ℓ′ of ℓ that minimizes dF (ℓ

′, τ ′) can be reported in O((m/κ)4 log8 m + log16 m) time. If both
scaling and translation can be applied to the arbitrarily oriented segment, they presented a data structure of
O(mκ3+ε + m2) size for any κ ∈ [m] such that for any segment ℓ and any subcurve τ ′ ⊆ τ , the scaled and
translated copy ℓ′ of ℓ that minimizes dF (ℓ

′, τ ′) can be reported in O((m/κ)2 log4 m+ log8 m) time.
In R

2, Gudmundsson et al. [33] showed that for any r > 0 and any σ ∈ X
2
k, one can check dF (σ, τ) ≤ r in

O(k log2 m) time using O(m logm) space, provided that the edges in σ and τ are suitably longer than r.
In R

d, Driemel and Har-Peled [22] proved that for any segment ℓ and any subcurve τ ′ ⊆ τ , one can return
a 1 + ε approximation of dF (ℓ, τ

′) in Õ(ε−2) time using Õ(mε−2d) space. For any query curve σ ∈ X
d
k and any

subcurve τ ′ ⊆ τ , they can return an O(1)-approximation of dF (σ, τ
′) in Õ(k2) time using O(m logm) space. In

R
d, Gudmundsson et al. [34] showed that, conditioned on SETH, it is impossible to construct in polynomial time

a data structure for a given τ ∈ X
d
m such that for any σ ∈ X

d
k, a 1.001-approximation of dF (σ, τ) can be returned

in O((km)1−δ) time for any δ > 0.

1.2 Our results We develop a set of polynomials of constant degrees that characterize dF (σ, τ) and d̂F (σ, τ)
for any σ ∈ X

d
k and any τ ∈ X

d
m. This allows us to construct an arrangement of zero sets of polynomials such

that each cell of the arrangement encodes the exact solution for the problem in question.

VC dimension. We obtain an O(dk log(km)) bound on the VC dimension for the range space (Xd
m,Rd

k,m)

and its counterpart for d̂F , improving the previous O(d2k2 log(dkm)) bound for dF and O(d2k log(dkm)) bound

for d̂F . Our bound is very close to the Ω(dk log k) lower bound [24].

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Curve simplification. We show that for any τ ∈ X
d
m and any r > 0, the curve σ with the minimum size that

satisfies dF (σ, τ) ≤ r or d̂F (σ, τ) ≤ r can be computed in O(km)O(dk) time, where k = |σ|. Given τ ∈ X
d
m and an

integer k ≥ 2, we can compute in O(km)O(dk) time a curve σ ∈ X
d
k that minimizes dF (σ, τ) or d̂F (σ, τ). These are

the first exact algorithms for d ≥ 3 when the vertices of σ are not restricted. We also obtain an approximation
scheme: given any τ ∈ X

d
m, any r > 0, and any α ∈ (0, 1), we can compute σ in O(m/α)O(d/α) time such that

dF (σ, τ) ≤ r or d̂F (σ, τ) ≤ r, and |σ| is 1+α times the minimum possible. Only a bicriteria approximation scheme
was known before that approximates both dF (σ, τ) and |σ| [18].

Range searching. Let T be a set of n curves in X
d
m. Let k ≥ 2 be a given integer. We present a data structure

of O(kmn)O(d4k2) size such that for any σ ∈ X
d
k and any r > 0, it returns every curve τ ∈ T that satisfies

dF (σ, τ) ≤ r. The query time is O((dk)O(1) log(kmn)) plus output size. The previous solution works in R
2 [1],

and the query radius r needs to be given for preprocessing. For d̂F , the query time remains asymptotically the
same, and the space improves to O(kmn)O(d2k).

Nearest neighbor and distance oracle. Let T be a set of n curves in X
d
m. Let k ≥ 2 be an integer. We

obtain a nearest neighbor data structure of O(kmn)poly(d,k) size such that for any σ ∈ X
d
k, its nearest neighbor

in T under dF can be reported in O((dk)O(1) log(kmn)) time. Given τ ∈ X
d
m and an integer k ≥ 2, we obtain a

distance oracle of O(km)poly(d,k) size such that for any σ ∈ X
d
k and any subcurve τ ′ ⊆ τ , we can report dF (σ, τ

′)
in O((dk)O(1) log(km)) time. The subcurve τ ′ are delimited by any two points on τ , not necessarily vertices. The

same results also hold for d̂F .

In summary, we obtain improved bounds for the VC dimensions under dF and d̂F—by an order of magnitude
in the case of dF—that are close to the known lower bound, and we also obtain exact solutions for the curve
simplification, range searching, nearest neighbor search, and distance oracle problems. Exact solutions were not
known for these problems in R

d for d ≥ 3; they were not known for the nearest neighbor search and distance
oracle problems even in R

2. When d and k are O(1), our curve simplification algorithms run in polynomial time,
and our data structures for the query problems use polynomial space and answer queries in logarithmic time.
Last but not least, the connection with arrangements of zero sets of polynomials and algebraic geometry may
offer new perspectives on designing algorithms and proving approximation results.

2 Background results on algebraic geometry

We survey several algebraic geometric results that will be useful. Given a set P = {ρ1, ..., ρs} of polynomials
in ω real variables, a sign condition vector S for P is a vector in {−1, 0,+1}s. The point ν ∈ R

ω realizes S if
(sign(ρ1(ν)), ..., sign(ρs(ν))) = S. The realization of S is the subset {ν ∈ R

ω : (sign(ρ1(ν)), ..., sign(ρs(ν))) = S}.
For every i ∈ [s], ρi(ν) = 0 describes a hypersurface in R

ω. The hypersurfaces
{
ρi(ν) = 0 : i ∈ [s]

}
partition R

ω

into open connected cells of dimensions from 0 to ω. This set of cells together with the incidence relations among
them form an arrangement that we denote by A (P). Each cell is a connected component of the realization of a
sign condition vector for P . One sign condition vector may induce multiple cells. The cells in A (P) represent all
sign condition vectors that can be realized. There are algorithms to construct a point in each cell of A (P) and
optimize a function over a cell.

Theorem 2.1. ([5, 6, 44]) Let P be a set of s polynomials in ω variables that have O(1) degrees.

(i) The number of cells in A (P) is sω · O(1)ω.

(ii) A set Q of points can be computed in sω+1 · O(1)O(ω) time that contains at least one point in each cell of

A (P). The sign condition vectors at these points are computed within the same time bound.

(iii) For a semialgebraic set S described using P, the minimum over S of a polynomial in the same variables that

have O(1) degree can be computed in s2ω+1 · O(1)O(ω) time. The point at the minimum is also returned.

We will need a point location structure for A (P) so that for any query point ν ∈ R
ω, the cell in A (P)

that contains ν can be reported quickly. The point enclosure data structure proposed by Agarwal et al. [2] is
applicable; however, the query time has a hidden factor that is exponential in ω. This is acceptable if ω is O(1),
but this may not be so in our case. Instead, we linearize the zero sets of the polynomials to hyperplanes in higher
dimensions and use the point location solution by Ezra et al. [30].

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Theorem 2.2. ([30]) Let P be a set of s hyperplanes in R
ω. For any ε > 0, one can construct a data structure

of O(s2ω logω+O(ω)) size in O(sω+ε) expected time that can locate any query point in A (P) in O(ω3 log s) time.

The next result, which follows from the quantifier elimination result quoted in [2, Proposition 2.6.2], gives
the nature and complexity of an orthogonal projection of a semialgebraic set.

Lemma 2.1. Let S be a semialgebraic set in R
ω represented by s polynomial inequalities and equalities in ω

variables, each of degree at most t. The orthogonal projection of S in R
ω−1 along one of the axes is a semialgebraic

set of s2ωtO(ω) polynomial inequalities and equalities of degrees at most tO(1). The orthogonal projection can be

computed in s2ωtO(ω) time.

3 Characterizing Fréchet distance with polynomials

Afshani and Driemel [1] developed the following predicates that involve σ = (w1, . . . , wk) ∈ X
d
k, τ = (v1, . . . , vm) ∈

X
d
m, and r ∈ R≥0. We treat τ as fixed and both σ and r as unknowns. So the coordinates of each wj are variables.

For any segment ℓ, let aff(ℓ) denote the support line of ℓ.

• P1 returns true if and only if d(v1, w1) ≤ r.

• P2 returns true if and only if d(vm, wk) ≤ r.

• P3(i, j) returns true if and only if d(wj , vivi+1) ≤ r.

• P4(i, j) returns true if and only if d(vi, wjwj+1) ≤ r.

• P5(i, j, j
′) returns true if and only if there exist two points p, q ∈ aff(vivi+1) such that d(p, wj) ≤ r,

d(q, wj′) ≤ r, and either p = q or −→pq and −−−→vivi+1 have the same direction.1

• P6(i, i
′, j) returns true if and only if there exist two points p, q ∈ aff(wjwj+1) such that d(p, vi) ≤ r,

d(q, vi′) ≤ r, and either p = q or −→pq and −−−−−→wjwj+1 have the same direction.1

Lemma 3.1. ([1, 24]) It takes O(km(k +m)) time to decide whether dF (σ, τ) ≤ r from the truth values of P1,

P2, P3(i, j) and P4(i, j) for all i ∈ [m] and j ∈ [k], P5(i, j, j
′) for all i ∈ [m], j ∈ [k − 1], and j′ ∈ [j + 1, k], and

P6(i, i
′, j) for all i ∈ [m − 1], i′ ∈ [i + 1,m], and j ∈ [k]. It takes O(km) time to decide whether d̂F (σ, τ) ≤ r

from the truth values of P1, P2, P3(i, j) and P4(i, j) for all i ∈ [m] and j ∈ [k]. No additional knowledge of σ or

τ besides the truth values of these predicates is necessary.

We construct a set of polynomials such that their signs encode the truth values of the above predicates. The
first three polynomials f0, f1, and f2 are straightforward:

f0(r) = r ≥ 0.

P1 returns true ⇐⇒ f1(v1, w1, r) = ‖v1 − w1‖2 − r2 ≤ 0.

P2 returns true ⇐⇒ f2(vm, wk, r) = ‖vm − wk‖2 − r2 ≤ 0.

In the following, we assume that f0(r) ≥ 0, f1(v1, w1, r) ≤ 0, and f2(vm, wk, r) ≤ 0.

P3(i, j).P3(i, j).P3(i, j). We use several polynomials to encode P3(i, j). Let 〈ν, ν′〉 denote the inner product of vectors ν and ν′.
First, observe that d(wj , aff(vivi+1))

2 · ‖vi − vi+1‖2 can be written as a polynomial of degree 2 in the coordinates
of wj .

d(wj , aff(vivi+1))
2 · ‖vi − vi+1‖2 = ‖wj − vi+1‖2 · ‖vi − vi+1‖2 − 〈wj − vi+1, vi − vi+1〉2.

The first polynomial f3,1(vi, vi+1, wj , r) compares the distance d(wj , aff(vivi+1)) with r. It has degree 2. For ease

of presentation, we shorten the notation f3,1(vi, vi+1, wj , r) to f i,j
3,1.

f i,j
3,1 =

(
d(wj , aff(vivi+1))

2 − r2
)
· ‖vi − vi+1‖2

= ‖wj − vi+1‖2 · ‖vi − vi+1‖2 − 〈wj − vi+1, vi − vi+1〉2 − r2 · ‖vi − vi+1‖2.

1The degenerate possibility of p = q was not included in [1].

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Since ‖vi − vi+1‖2 is positive, we have d(wj , aff(vivi+1)) ≤ r if and only if f i,j
3,1 ≤ 0. Therefore, if f i,j

3,1 > 0, then

P3(i, j) is false. If f
i,j
3,1 ≤ 0, we use the following two degree-1 polynomials to check whether the projection of wj

in aff(vivi+1) lies on vivi+1.

f i,j
3,2 = 〈wj − vi, vi+1 − vi〉, f i,j

3,3 = 〈wj − vi+1, vi − vi+1〉.

Specifically, the projection of wj in aff(vivi+1) lies on vivi+1 if and only if f i,j
3,2 ≥ 0 and f i,j

3,3 ≥ 0. As a result, if

f i,j
3,1 ≤ 0, f i,j

3,2 ≥ 0, and f i,j
3,3 ≥ 0, then P3(i, j) is true. The remaining cases are either f i,j

3,2 < 0 or f i,j
3,3 < 0. We use

the following polynomials to compare d(wj , vi) and d(wj , vi+1) with r.

f i,j
3,4 = ‖wj − vi‖2 − r2, f i,j

3,5 = ‖wj − vi+1‖2 − r2.

If f i,j
3,1 ≤ 0 and f i,j

3,2 < 0, then vi is the nearest point in vivi+1 to wj , so P3(i, j) is true if and only if f i,j
3,4 ≤ 0.

Similarly, in the case that f i,j
3,1 ≤ 0 and f i,j

3,3 < 0, P3(i, j) is true if and only if f i,j
3,5 ≤ 0.

P4(i, j).P4(i, j).P4(i, j). We can define polynomials f i,j
4,1, f

i,j
4,2, f

i,j
4,3, f

i,j
4,4, and f i,j

4,5 to encode P4(i, j) in a way analogous to the

encoding of P3(i, j). The differences are that f i,j
4,1 has degree 4, and f i,j

4,2 and f i,j
4,3 have degree 2.

P5(i, j, j
′).P5(i, j, j
′).P5(i, j, j
′). We first check whether f i,j

3,1 ≤ 0 and f i,j′

3,1 ≤ 0 to make sure that d(wj , aff(vivi+1)) ≤ r and

d(wj′ , aff(vivi+1)) ≤ r. If f i,j
3,1 > 0 or f i,j′

3,1 > 0, then P5(i, j, j
′) is false. Suppose that f i,j

3,1 ≤ 0 and f i,j′

3,1 ≤ 0. We

use the polynomial f i,j,j′

5,1 below to check whether the order of the projections of wj and wj′ in aff(vivi+1) are

consistent with the direction of −−−→vivi+1.

f i,j,j′

5,1 = 〈wj′ − wj , vi+1 − vi〉.

If f i,j,j′

5,1 ≥ 0, then P5(i, j, j
′) can be satisfied by taking the projections of wj and wj′ in aff(vivi+1) as the points

p and q, respectively, in the definition of P5(i, j, j
′).

Suppose that f i,j,j′

5,1 < 0. Let Br denote the ball centered at the origin with radius r. Let ⊕ denote the
Minkowski sum operator. We claim that P5(i, j, j

′) is true if and only if wj′ ⊕Br ∩wj ⊕Br ∩ aff(vivi+1) 6= ∅. The
reason is as follows. Since f i,j,j′

5,1 < 0, the order of the projections of wj′ and wj in aff(vivi+1) are opposite to the

direction of −−−→vivi+1. If wj′ ⊕ Br ∩ wj ⊕ Br ∩ aff(vivi+1) 6= ∅, we can satisfy P5(i, j, j
′) by picking a point in this

intersection to be both p and q in the definition of P5(i, j, j
′). Conversely, if wj′ ⊕Br ∩wj ⊕Br ∩ aff(vivi+1) = ∅,

then for any p ∈ wj ⊕Br ∩ aff(vivi+1) and any q ∈ wj′ ⊕Br ∩ aff(vivi+1), the direction of −→pq is opposite to that

of −−−→vivi+1, which makes P5(i, j, j
′) false. We use the degree-2 polynomial f i,j,j′

5,2 below to capture the ideas above.

f i,j,j′

5,2 =
(
d(wj′ , aff(vivi+1))

2 + 〈wj − wj′ , vi − vi+1〉2 · ‖vi − vi+1‖−2 − r2
)
· ‖vi − vi+1‖2

= ‖wj′ − vi+1‖2 · ‖vi − vi+1‖2 − 〈wj′ − vi+1, vi − vi+1〉2 + 〈wj − wj′ , vi − vi+1〉2−
r2 · ‖vi − vi+1‖2.

Specifically, d(wj′ , aff(vivi+1))
2 + 〈wj − wj′ , vi − vi+1〉2 · ‖vi − vi+1‖−2 is equal to the squared distance between

wj′ and the projection of wj in aff(vivi+1). Thus, f i,j,j′

5,2 ≤ 0 if and only if wj′ is at distance at most r from the

projection of wj in aff(vivi+1). Because d(wj , aff(vivi+1)) ≤ r, if f i,j,j′

5,2 ≤ 0, we can set both p and q to be the
projection of wj in aff(vivi+1) to satisfy P5(i, j, j

′).

The remaining case is that f i,j,j′

5,2 > 0. It means that wj′ is at distance more than r from the projection
of wj in aff(vivi+1). Let p∗ be the point in wj′ ⊕ Br ∩ aff(vivi+1) closest to wj . In this case, p∗ lies between
the projections of wj′ and wj in aff(vivi+1), so P5(i, j, j

′) is satisfied if and only if d(wj , p
∗) ≤ r. The distance

between p∗ and the projection of wj in aff(vivi+1) is equal to

〈wj′ − wj , vi − vi+1〉
‖vi − vi+1‖

−
√
r2 − d(wj′ , aff(vivi+1))2.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

P5(i, j, j
′) is satisfied if and only if d(wj , p

∗)2 − r2 ≤ 0

⇐⇒ d(wj , aff(vivi+1))
2 +

(〈wj′ − wj , vi − vi+1〉
‖vi − vi+1‖

−
√
r2 − d(wj′ , aff(vivi+1))2

)2

− r2 ≤ 0

⇐⇒
(
d(wj , aff(vivi+1))

2 − r2
)
· ‖vi − vi+1‖2 +

(
〈wj′ − wj , vi − vi+1〉 − ‖vi − vi+1‖ ·

√
r2 − d(wj′ , aff(vivi+1))2

)2

≤ 0

⇐⇒ f i,j
3,1 + 〈wj′ − wj , vi − vi+1〉2 −

2〈wj′ − wj , vi − vi+1〉 · ‖vi − vi+1‖ ·
√
r2 − d(wj′ , aff(vivi+1))2 − f i,j′

3,1 ≤ 0.

We move the term containing the square root to the right hand side:

f i,j
3,1 + 〈wj′ − wj , vi − vi+1〉2 − f i,j′

3,1 ≤ 2〈wj′ − wj , vi − vi+1〉 ·
√
−f i,j′

3,1

⇐⇒ f i,j
3,1 +

(
f i,j,j′

5,1

)2

− f i,j′

3,1 ≤ −2f i,j,j′

5,1

√
−f i,j′

3,1 .(3.1)

Recall that we are considering the case of f i,j′

3,1 ≤ 0 and f i,j,j′

5,1 < 0. Therefore, the right hand side of (3.1) is
non-negative. Define the following two polynomials:

f i,j,j′

5,3 = f i,j
3,1 +

(
f i,j,j′

5,1

)2

− f i,j′

3,1 ,

f i,j,j′

5,4 =
(
f i,j,j′

5,3

)2

+ 4
(
f i,j,j′

5,1

)2

f i,j′

3,1 .

Note that f i,j,j′

5,3 is the left hand side of (3.1), and f i,j,j′

5,4 is obtained by squaring and rearranging the two sides

of (3.1). Hence, in the case of f i,j′

3,1 ≤ 0 and f i,j,j′

5,1 < 0, P5(i, j, j
′) is true if and only if (3.1) is satisfied, which is

equivalent to either f i,j,j′

5,3 ≤ 0 or f i,j,j′

5,4 ≤ 0.

P6(i, i
′, j).P6(i, i
′, j).P6(i, i
′, j). We define polynomials f i,i′,j

6,1 , f i,i′,j
6,2 , f i,i′,j

6,3 , and f i,i′,j
6,4 to encode P6(i, i

′, j) in a way analogous to the

encoding of P5(i, j, j
′). The polynomial f i,i′,j

6,4 involves (f i,j
4,1)

2 and (f i′,j
4,1)

2. So f i,i′,j
6,4 has degree 8.

Let P̂ be the set of polynomials including f0 and those for P1, P2, P3(i, j)’s, and P4(i, j)’s. Let P be union

of P̂ and the polynomials for P5(i, j, j
′)’s and P6(i, i

′, j)’s. By Lemma 3.1, we get:

Corollary 3.1. Given the corresponding sign condition vector of P for σ and r, we can check whether

dF (σ, τ) ≤ r in O(km(k + m)) time. Given the corresponding sign condition vector of P̂ for σ and r, we

can check whether d̂F (σ, τ) ≤ r in O(km) time.

4 Applications.

4.1 VC dimension. We bound the VC dimension of the range space (Xd
m,Rd

k,m) induced by dF . Let

T = {τ1, . . . , τn} be a set of n curves in X
d
m. For a ∈ [n], we denote the vertices of τa by (va,1, va,2, . . . , va,m). Let

σ = (w1, . . . , wk) be an unknown curve in X
d
k. Let r be an unknown positive real number.

For a ∈ [n], let Pa be the set of polynomials for τa, σ, and r as described in Section 3. The zero set of every
polynomial in Pa is a hypersurface in R

dk+1. The cells of the arrangement A (Pa) in the halfspace r ≥ 0 capture
all possible sign condition vectors for Pa. By Corollary 3.1, for each cell of A (Pa) in the halfspace r ≥ 0, the
inequality dF (σ, τa) ≤ r either holds for all points in that cell or fails for all points in that cell.

Let P =
⋃n

a=1 Pa. It follows that for every curve σ = (w1, . . . , wk) ∈ X
d
k and every r ≥ 0, the cell in A (P)

that contains the point (w1, . . . , wk, r) represents the subset of curves in T that are at Fréchet distances at most
r from σ. So the cardinality of Rd

k,m|T = {R ∩ T : R ∈ Rd
k,m} is at most the number of cells in A (P) which is

O(nkm2)dk+1 by Theorem 2.1(i). The VC dimension is the cardinality of the largest T such that Rd
k,m|T contains

all possible subsets of T . Hence, if ∆ denotes the VC dimension, then 2∆ ≤ O(∆km2)dk+1, which implies that

∆ = O(dk log(km) + dk log∆) and hence ∆ = O(dk log(km)). The same bound also works for d̂F .

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Theorem 4.1. The VC dimensions of (Xd
m,Rd

k,m) and its counterpart for d̂F are O(dk log(km)).

4.2 Curve simplification. Let τ ∈ X
d
m be the input curve. The first problem is that given r > 0, compute a

curve σ with the minimum size such that dF (σ, τ) ≤ r. We enumerate b from 2 to m until we can find a curve
σ = (w1, . . . , wb) ∈ X

d
b such that dF (σ, τ) ≤ r. When this happens, we obtain the desired curve of the minimum

size. For a particular b, we construct the set P of polynomials in Section 3 for τ and σ. Note that r is not a
variable because it is specified in the input. By Theorem 2.1(ii), we can compute in O(bm2)db+1 ·O(1)O(db) time
a set Q of points such that Q contains at least one point in each cell of A (P), as well as the sign condition
vectors for P at the points in Q. By Corollary 3.1, it takes another O(bm2) time per cell to determine whether
the inequality dF (σ, τ) ≤ r is satisfied by the point(s) of Q in that cell. If the answer is yes for some cell in A (P),
we stop; any point in Q in that cell gives the desired curve σ. If the answer is no for every cell in A (P), we
increment b and repeat the above. Let k be the minimum size of σ. The total running time is O(km)O(dk).

The second problem is that given an integer k ≥ 2, compute a curve σ ∈ X
d
k that minimizes dF (σ, τ). We

construct the same set P of polynomials as in the previous paragraph; however, r is a variable in this case. By
Theorem 2.1(ii) and as discussed in the previous paragraph, we can determine in O(km)O(dk) time the subset K
of cells of A (P) that satisfy the inequality dF (σ, τ) ≤ r. Specifically, we obtain a set Q of points such that every
point in Q lies in a cell of K, and every cell in K contains a point in Q, and we also obtain the sign condition
vectors at the points in Q which give the polynomial inequalities and equalities that describe every cell in K.
This yields a collection of semialgebraic sets. We invoke Theorem 2.1(iii) to determine in O(km)O(dk) time the
minimum r attained in each such semialgebraic set. The minimum over all such sets is the minimum dF (σ, τ)
desired. The total running time is O(km)O(dk).

The third problem is that given α ∈ (0, 1) and r > 0, compute a curve σ of size within a factor 1 + α of
the minimum possible such that dF (σ, τ) ≤ r. We proceed in a greedy fashion as in the bicriteria approximation
scheme in [18] as follows. Let τ [vb, vb′] denote the subcurve of τ from vb to vb′ . We enumerate i = 1, 2, . . . until
the largest value such that τ [v1, vi] can be simplified to a curve σ1 of ⌈1/α⌉ vertices such that dF (σ1, τ [v1, vi]) ≤ r.
This takes i · O(m/α)O(d/α) time as discussed in our solution for the first problem. We repeat this procedure on
the suffix τ [vi+1, vm] to approximate the longest prefix of τ [vi+1, vm] by another curve σ2 of ⌈1/α⌉ vertices. In
this way, we get a sequence of curves σ1, σ2, We connect them in this order to form a curve σ. Given that the
last vertex of σ1 is at a distance no more than r to vi and the first vertex of σ2 is at a distance no more than
r to vi+1, linear interpolation guarantees that the connection between σ1 and σ2 does not violate the Fréchet
distance bound of r. The same analysis can be applied to all the other connections. Since we only introduce one
extra vertex for every 1/α edges in the optimal simplification, the size of σ is at most (1+α) times the minimum
possible. The total running time is m ·O(m/α)O(d/α) = O(m/α)O(d/α).

The above results also hold for d̂F .

Theorem 4.2. Let τ be a curve in X
d
m. For every r > 0, we can compute in O(km)O(dk) time the curve σ of

the minimum size k that satisfies dF (σ, τ) ≤ r. For every integer k ≥ 2, we can compute in O(km)O(dk) time the

curve σ ∈ X
d
k that minimizes dF (σ, τ). For every α ∈ (0, 1) and every r > 0, we can compute in O(m/α)O(d/α)

time a curve σ of size 1 + α times the minimum possible such that dF (σ, τ) ≤ r. These results also hold for d̂F .

4.3 Range searching. Let T = {τ1, . . . , τn} be n curves in X
d
m. Let k ≥ 2 be a given integer. We want to

construct a data structure such that for any query curve σ = (w1, . . . , wk) ∈ X
d
k and any r > 0, we can report

the subset of T that are within a Fréchet distance r from σ. Let P be the set of O(km2n) polynomials that we
introduce for bounding the VC dimension under dF .

As discussed in Section 4.1, every cell in A (P) represents a subset T ′ ⊆ T such that for every τa ∈ T ′ and every
point (w1, . . . , wk, r) in that cell, dF ((w1, . . . , wk), τa) ≤ r. Conceptually speaking, it suffices to perform a point
location in A (P) using the query point (w1, . . . , wk, r). This can be accomplished using a tree that represents a
hierarchical decomposition; each node stores a small subset of the polynomials so that we can compare the query
point with the arrangement of this small subset to decide which child to visit. For example, the point enclosure
data structure in [2] is organized like this. Unfortunately, the arrangement of this small subset of polynomials at
each node has size exponential in the ambient space dimension. In our case, this dimension is dk+1, so querying
takes time exponential in dk + 1 at each node which is undesirable.

Fortunately, as stated in Theorem 2.2, point location in an arrangement of hyperplanes has a much better

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

dependence on the ambient space dimension. We linearize the zero sets of the polynomials in P , that is, we
introduce a new variable to stand for every product of monomials of variables. Since each polynomial in P has
degree at most 8 and involves at most two vertices of σ, after linearization, the total number of variables cannot
be more than O(d8k2). In fact, a careful examination of the terms of these polynomials show that there are
no more than O(d4k2) variables after linearization. Hence, we have a set of O(km2n) hyperplanes in O(d4k2)
dimensions. Building the point location data structure in Theorem 2.2 for this arrangement of hyperplanes solves
our problem.

Theorem 4.3. Let T = {τ1, . . . , τn} be a set of n curves in X
d
m. Let k ≥ 2 be a given integer. We can construct

a data structure of O(kmn)O(d4k2 log(dk)) size in O(kmn)O(d4k2 log(dk)) expected time such that for any query curve

σ ∈ X
d
k and any r > 0, the subset of T that are within a Fréchet distance of r from σ can be reported in time

O((dk)O(1) log(kmn)) plus the output size.

For d̂F , the exponents in the space and preprocessing time in Theorem 4.3 improve to O(d2k log(dk)) because
we only need to linearize the zero sets of the polynomials for P1, P2, P3(i, j), and P4(i, j).

4.4 Nearest neighbor and distance oracle. We first examine the nearest neighbor query. Let T =
{τ1, . . . , τn} be n curves in X

d
m. Let k ≥ 2 be a given integer. We construct the set of polynomials P for T

as in Section 4.3 for range searching. The variables are r and the coordinates of the vertices of σ = (w1, . . . , wk).
So we are in R

dk+1. Without loss of generality, let the r-axis be the vertical axis.
Let K be the subset of cells in A (P) that represent non-empty range searching results. Let

⋃K denote the
union of cells in K. Observe that

⋃K is upward monotone in the sense that its intersection with any vertical line
is either empty or a halfline that extends vertically upward. It is because if (σ, r) ∈ ⋃K, there is a non-empty
subset T ′ ⊆ T such that all curves in T ′ are within a Fréchet distance of r from σ; therefore, for any r′ > r, all
curves in T ′ are also within a Fréchet distance of r′ from σ. The upward monotonicity of

⋃K allows us to show
the next result.

Lemma 4.1. The lower boundary of
⋃K is

⋃L for some subset L ⊆ K. Moreover, L can be constructed in

O(kmn)O(dk) time.

Proof. It suffices to prove that a cell C ∈ K cannot lie partially in the lower boundary of
⋃K. Assume to the

contrary that a portion of C lies in the lower boundary of
⋃K, but a portion of C does not. It follows that

there is a point p in the interior of C such that p lies in the lower boundary of
⋃K, but any arbitrarily small

open neighborhood of p in C contains a point of C that does not lie in the lower boundary of
⋃K. Shoot a

ray γ vertical downward from p. If γ intersects another cell in K, then p cannot lie in the lower boundary of⋃K, a contradiction. Suppose that γ does not intersect another cell in K. Then, there must exist some open
neighborhood Np of p in C such that one can shoot vertical rays downward from points in Np without intersecting
another cell in K. But then Np must be part of the lower boundary of

⋃K, a contradiction to what we said earlier
about arbitrarily small open neighborhoods of p in C. This completes the proof of the first part of the lemma.

We construct L as follows. First, by Theorem 2.1(ii), we spend O(kmn)O(dk) time to construct a set Q of
points that contain points in each cell in A (P). The sign condition vectors at the points in Q are also computed.
Note that the cardinality of Q is O(kmn)O(dk). For every cell in A (P), a point in Q ∩ C represents a curve σ
and a value r; we check whether dF (σ, τa) ≤ r for all a ∈ [n] in O(kmn log(km)) time, which tells us whether
C ∈ K. For every cell C ∈ K, we shoot a vertical ray downward from a point p ∈ Q ∩ C to see if the ray
intersects another cell in K. This check is done as follows. Take any other cell C′ ∈ K. The sign condition vector
of a point in Q ∩ C′ gives the polynomial inequalities and equalities that describe C′. Let p = (w1, . . . , wk, r0).
Plug w1, . . . , wk into the polynomials in the description of C′. Note that the polynomials are independent of r,
or quadratic in r, or biquadratic in r. In O(dkm2n) time, we can solve for the conditions on r imposed by the
polynomials in the description of C′. In general, each polynomial equality/inequality specify O(1) disjoint ranges
of r for which the polynomial equality/inequality is satisfied. Starting with the range r < r0 imposed by p, we
can examine each polynomial in turn to “accumulate” the disjoint ranges of r. That is, if R is the current list
of disjoint ranges of r, then for every range R of r given by the next polynomial equality/inequality, we compute
the new ranges {R ∩ R′ : R′ ∈ R}. The cardinality of R increases by O(1) after processing each polynomial
equality/inequality. Hence, we can decide in Õ(km2n) time whether the downward ray from p intersects C′ or

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

not, which means that we can decide in O(kmn)O(dk) time whether C belongs to L. In all, we can construct L in
|L| ·O(kmn)O(dk) = O(kmn)O(dk) time.

We are interested in L because for any σ ∈ X
d
k, if (σ, r) belongs to some cell C ∈ L, then C must represent

some curve τa ∈ T in the range searching result using (σ, r). It follows that τa is a nearest neighbor of σ.
Therefore, we want to perform point location in the vertical projection of the cells in L into R

dk. By Lemma 2.1,
the polynomials that define the downward projection of L have constant degree, and they can be computed
in |L| · O(kmn)O(dk) = O(kmn)O(dk) time. It follows that there are O(kmn)O(dk) polynomials that define the
projection of L in R

dk. To support point location in the projection of L, we linearize the zero sets of these
polynomials in the projection to form hyperplanes in (dk)O(1) dimensions. Then, we apply Theorem 2.2 to these
hyperplanes to obtain a point location data structure. Doing the point location in this arrangement of hyperplanes
gives the nearest neighbor of σ. In order to report the nearest neighbor distance, each cell C in the projection of
L corresponds to a cell Ĉ in the arrangement of the hyperplanes after linearization, so we store at Ĉ one of the
polynomial equalities in the definition of the preimage of C that involves r. Then, after the point location, we
can solve that polynomial equality for r. Every polynomial is quadratic or biquadratic in r, so it can be solved
in O(d) time.

Theorem 4.4. Let T = {τ1, . . . , τn} be n curves in X
d
m. Let k ≥ 2 be a given integer. We can construct a

data structure of O(kmn)poly(d,k) size in O(kmn)poly(d,k) expected time such that for any σ ∈ X
d
k, we can find its

nearest neighbor in T under dF or d̂F in O((dk)O(1) log(kmn)) time. The nearest neighbor distance is reported

within the same time bound.

Theorem 4.4 gives a distance oracle in the special case of n = 1.

Theorem 4.5. Let τ be a curve in X
d
m. Let k ≥ 2 be a given integer. We can construct a data structure of

O(km)poly(d,k) size in O(km)poly(d,k) expected time such that for any σ ∈ X
d
k, we can return dF (σ, τ) or d̂F (σ, τ)

in O((dk)O(1) log(km)) time.

Next, we discuss how to extend Theorem 4.5 to allow a query to be performed on a subcurve τ ′ ⊆ τ . The
subcurve τ ′ can be delimited in one of two ways. First, τ ′ can be delimited by two points that lie on two distinct
edges of τ . Second, τ ′ can be a subset of some edge of τ .

For the first possibility, we enumerate τi,i′ = (vi, . . . , vi′) for all i ∈ [m − 1] and i′ ∈ [i + 1,m]. We use τ̂i,i′
to denote a subcurve of τ that is delimited by two points on vivi+1 and vi′−1vi′ . We can represent the endpoints
of τ̂i,i′ as (1 − β)vi + βvi+1 and (1 − γ)vi′−1 + γvi′ for some β, γ ∈ (0, 1). In the formulation of the polynomials
for P1, P2, P3(i, j)’s, P4(i, j)’s, P5(i, j, j

′)’s, and P6(i, i
′, j)’s for τ̂i,i′ , we follow their formulations for the curve

τi,i′ except that every reference to vi is replaced by (1 − β)vi + βvi+1 and every reference to vi′ is replaced by
(1− γ)vi′−1 + γvi′ . We also need the polynomials β, 1− β, γ, 1− γ in order to check β, γ ∈ (0, 1).

For the second possibility, we enumerate τi = (vi, vi+1) for all i ∈ [m − 1]. We use τ̂i to denote a subcurve
of τ that is delimited by two points on vivi+1. We can represent the endpoints of τ̂i as (1 − β)vi + βvi+1

and (1 − γ)vi + γvi+1 for some β, γ ∈ (0, 1). In the formulation of the polynomials for P1, P2, P3(i, j)’s,
P4(i, j)’s, P5(i, j, j

′)’s, and P6(i, i
′, j)’s for τ̂i, we follow their formulations for τi except that every reference

to vi is replaced by (1 − β)vi + βvi+1 and every reference to vi+1 by (1 − γ)vi + γvi+1. We also need the
polynomials β, 1− β, γ, 1− γ, γ − β in order to check β, γ ∈ (0, 1) and β < γ.

For every i ∈ [m − 1] and every i′ ∈ [i + 1,m], we have a set Pi,i′ of polynomials constructed for τi,i′ and

another set P̂i,i′ of polynomials constructed for τ̂i,i′ . For every i ∈ [m− 1], we also have a set P̂i of polynomials
constructed for τ̂i. The polynomials in each Pi,i′ have dk + 1 variables, so we apply Theorem 4.5 to construct
a data structure Di,i′ of O((km)poly(d,k)) size and O((dk)O(1) log(km)) query time. The polynomials in each

P̂i,i′ have dk + 3 = Θ(dk) variables, so we can still construct a data structure D̂i,i′ using the techniques used

for showing Theorem 4.5. The data structure D̂i,i′ also has O((km)poly(d,k)) size and O((dk)O(1) log(km)) query

time. Similarly, we also construct a data structure D̂i for P̂i.
At query time, we are given the query curve σ and the subcurve τ ′ ⊆ τ . If τ ′ = τi,i′ for some i, i′, we query

Di,i′ using σ as we explained in showing Theorems 4.4 and 4.5. If τ ′ = τ̂i,i′ for some i, i′, then β and γ are also

specified. Therefore, we are also doing a point location using (σ, β, γ) in the orthogonal projection of A (P̂i,i′)

onto the R
dk+2. Therefore, the same query strategy works. If τ ′ = τ̂i for some i, we query D̂i.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Theorem 4.6. Let τ be a curve in X
d
m. Let k ≥ 2 be a given integer. We can construct a data structure of

O(km)poly(d,k) size in O(km)poly(d,k) expected time such that for any σ ∈ X
d
k and any subcurve τ ′ ⊆ τ , we can

return dF (σ, τ
′) or d̂F (σ, τ

′) in O((dk)O(1) log(km)) time. The subcurve τ ′ are delimited by two points on τ , not
necessarily vertices.

5 Conclusion.

We demonstrate a connection between (weak) Fréchet distance problems and algebraic geometry that allows us to
obtain improved VC dimension bounds and exact algorithms for several fundamental problems concerning (weak)
Fréchet distance. When d and k are O(1), our results imply polynomial-time curve simplification algorithms and
data structures for range searching, nearest neighbor search, and distance determination that have polynomial
space complexities and logarithmic query times. The connection to algebraic geometry may offer new perspectives
in designing new algorithms and proving approximation results. Our approach is general enough that it should
be possible to to handle other variants of the problems considered.

References

[1] P. Afshani and A. Driemel. On the complexity of range searching among curves. In Proceedings of the ACM-SIAM

Symposium on Discrete Algorithms, pages 898–917, 2018.
[2] P.K. Agarwal, B. Aronov, E. Ezra, and J. Zahl. Efficient algorithm for generalized polynomial partitioning and its

applications. SIAM Journal on Computing, 50:760–787, 2021.
[3] P.K. Agarwal, S. Har-Peled, N.H. Mustafa, and Y. Wang. Near-linear time approximation algorithms for curve

simplification. Algorithmica, 42(3):203–219, 2005.
[4] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. International Journal of

Computational Geometry and Applications, 5:75–91, 1995.
[5] S. Basu, R. Pollack, and M.-F. Roy. On computing a set of points meeting every cell defined by a family of polynomials

on a variety. Journal of Complexity, 13:28–37, 1995.
[6] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Springer, 2007.
[7] S. Bereg, M. Jiang, W. Wang, B. Yang, and B. Zhu. Simplifying 3D polygonal chains under the discrete Fréchet

distance. In Proceedings of the Latin American Symposium on Theoretical Informatics, pages 630–641, 2008.
[8] K. Bringmann and B.R. Chaudhury. Polyline simplification has cubic complexity. In Proceedings of the International

Symposium on Computational Geometry, pages 18:1–18:16, 2019.
[9] K. Bringmann, A. Driemel, A. Nusser, and I. Psarros. Tight bounds for approximate near neighbor searching for time

series under Fréchet distance. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 517–550,
2022.

[10] Frederik Brüning and Anne Driemel. Simplified and improved bounds on the VC-dimension for elastic distance
measures, 2023. arXiv:2308.05998.

[11] K. Buchin, M. Buchin, D. Duran, B. T. Fasy, R. Jacobs, V. Sacristán, R.I. Silveira, F. Staals, and C. Wenk. Clustering
trajectories for map construction. In Proceedings of the ACM SIGSPATIAL International Conference on Advances

in Geographic Information Systems, pages 14:1–14:10, 2017.
[12] K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo. Detecting commuting patterns by clustering

subtrajectories. International Journal of Computational Geometry & Applications, 21(3):253–282, 2011.
[13] K. Buchin, A. Driemel, J. Gudmundsson, M. Horton, I. Kostitsyna, M. Löffler, and M. Struijs. Approximating (k, l)-

center clustering for curves. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 2922–2938,
2019.

[14] M. Buchin, A. Driemel, and D. Rohde. Approximating (k, l)-median clustering for polygonal curves. In Proceedings

of the ACM-SIAM Symposium on Discrete Algorithms, pages 2697–2717, 2021.
[15] M. Buchin, I. van der Hoog, T. Ophelders, L. Schlipf, R. I. Silveira, and F. Staals. Efficient Fréchet distance queries

for segments, 2022. arXiv:2203.01794.
[16] M. Buchin, I. van der Hoog, T. Ophelders, L. Schlipf, R.I. Silveira, and F. Staals. Efficient Fréchet distance queries

for segments. In Proceedings of the European Symposium on Algorithms, pages 29:1–29:14. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2022.

[17] S.-W. Cheng and H. Huang. Approximate nearest neighbor for polygonal curves under Fréchet distance. In
Proceedings of the International Colloquium on Automata, Languages and Programming, pages 40:1–40:18, 2023.

[18] S.-W. Cheng and H. Huang. Curve simplification and clustering under Fréchet distance. In Proceedings of the

ACM-SIAM Symposium on Discrete Algorithms, pages 1414–1432, 2023.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

[19] M. de Berg, A.F. Cook IV, and J. Gudmundsson. Fast Fréchet queries. Computational Geometry : Theory and

Applications, 46:747–755, 2013.
[20] M. de Berg, A.D. Mehrabi, and T. Ophelders. Data structures for Fréchet queries in trajectory data. In Proceedings

of the Canadian Conference on Computational Geometry, pages 214–219, 2017.
[21] D.H. Douglas and T.K. Peucker. Algorithms for the reduction of the number of points required to represent a digitized

line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization,
10(2):112–122, 1973.

[22] A. Driemel and S. Har-Peled. Jaywalking your dog: computing the Féchet distance with shortcuts. SIAM Journal

on Computing, 42:1830–1866, 2013.
[23] A. Driemel, A. Krivošija, and C. Sohler. Clustering time series under the Fréchet distance. In Proceedings of the

ACM-SIAM Symposium on Discrete Algorithms, pages 766–785, 2016.
[24] A. Driemel, A. Nusser, J.M. Phillips, and I. Psarros. The VC dimension of metric balls under Fréchet and Hausdorff

distances. Discrete & Computational Geometry, 66:1351–1381, 2021.
[25] A. Driemel and I. Psarros. (2 + ǫ)-ANN for time series under the Fréchet distance, 2021. arXiv:2008.09406v5.
[26] A. Driemel and I. Psarros. ANN for time series under the Fréchet distance. In Proceedings of the International

Algorithms and Data Structures Symposium, pages 315–328, 2021.
[27] A. Driemel, I. Psarros, and M. Schmidt. Sublinear data structures for short Fréchet queries, 2019. arXiv:1907.04420.
[28] A. Driemel and F. Silvestri. Locality-sensitive hashing of curves. In Proceedings of the International Symposium on

Computational Geometry, pages 37:1–37:16, 2017.
[29] I.Z. Emiris and I. Psarros. Products of Euclidean metrics, applied to proximity problems among curves: Unified

treatment of discrete fréchet and dynamic time warping distances. ACM Transactions on Spatial Algorithms and

Systems, 6(4):1–20, 2020.
[30] E. Ezra, S. Har-Peled, H. Kaplan, and M. Sharir. Decomposing arrangements of hyperplanes: VC-dimension,

combinatorial dimension, and point location. Discrete & Computational Geometry, 64(1):109–173, 2020.
[31] A. Filtser, O. Filtser, and M.J. Katz. Approximate nearest neighbor for curves: simple, efficient, and deterministic.

In Proceedings of the International Colloquium on Automata, Languages, and Programming, pages 48:1–48:19, 2020.
[32] M. Godau. A natural metric for curves - computing the distance for polygonal chains and approximation algorithms.

In Proceedings of the Annual Symposium on Theoretical Aspects of Computer Science, pages 127–136, 1991.
[33] J. Gudmundsson, M. Mirzanezhad, A. Mohades, and C. Wenk. Fast Fréchet distance between curves with long edges.

International Journal of Computational Geometry and Applications, 29:161–187, 2019.
[34] J. Gudmundsson, M.P. Seybold, and S. Wong. Map matching queries on realistic input graphs under the Fréchet

distance. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 1464–1492. SIAM, 2023.
[35] J. Gudmundsson, A. van Renssen, Z. Saeidi, and S. Wong. Translation invariant Fréchet distance queries.

Algorithmica, 83(11):3514–3533, 2021.
[36] L.J. Guibas, J.E. Hershberger, J.S.B. Mitchell, and J.S. Snoeyink. Approximating polygons and subdivisions with

minimum-link paths. International Journal of Computational Geometry & Applications, 3(4):383–415, 1993.
[37] S. Har-Peled. Approximate nearest neighbor: towards removing the curse of dimensionality. Theory of Computing,

8:321–350, 2012.
[38] J.E. Hershberger and J.S. Snoeyink. An O(n log n) implementation of the Douglas-Peucker algorithm for line

simplification. In Proceedings of the Annual Symposium on Computational Geometry, pages 383–384, 1994.
[39] H. Imai and I. Masao. Polygonal approximations of a curve—formulations and algorithms. Machine Intelligence and

Pattern Recognition, 6:71–86, 1988.
[40] P. Indyk. Approximate nearest neighbor algorithms for Fréchet distance via product metrics. In Proceedings of the

Annual Symposium on Computational Geometry, pages 102–106, 2002.
[41] M. Jiang, Y. Xu, and B. Zhu. Protein structure-structure alignment with discrete Fréchet distance. Journal of

Bioinformatics and Computational Biology, 6(1):51–64, 2008.
[42] M. Mirzanezhad. On the approximate nearest neighbor queries among curves under the Fréchet distance, 2020.

arXiv:2004.08444.
[43] A. Nath and E. Taylor. k-median clustering under discrete Fréchet and Hausdorff distances. In Proceedings of the

International Symposium on Computational Geometry, pages 58:1–58:15, 2020.
[44] R. Pollack and M.-F. Roy. On the number of cells defined by a set of polynomials. Comptes rendus de l’Académie

des sciences. Série 1, Mathématique, 316(6):573–577, 1993.
[45] E. Sriraghavendra, K. Karthik, and C. Bhattacharyya. Fréchet distance based approach for searching online

handwritten documents. In Proceedings of the International Conference on Document Analysis and Recognition,
volume 1, pages 461–465, 2007.

[46] M. van de Kerkhof, I. Kostitsyna, M. Löffler, M. Mirzanezhad, and C. Wenk. Global curve simplification. In
Proceedings of the European Symposium on Algorithms, pages 67:1–67:14, 2019.

[47] M. van Kreveld, M. Löffler, and L. Wiratma. On optimal polyline simplification using the Hausdorff and Fréchet

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

distance. In Proceedings of the International Symposium on Computational Geometry, pages 56:1–56:14, 2018.
[48] M. Werner and D. Oliver. ACM GIS Cup 2017: Range queries under Fréchet distance. ACM SIGSPATIAL Special,

10(1):24–27, June 2018.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction.
	Previous work.
	Our results

	Background results on algebraic geometry
	Characterizing Fréchet distance with polynomials
	Applications.
	VC dimension.
	Curve simplification.
	Range searching.
	Nearest neighbor and distance oracle.

	Conclusion.

