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Abstract

Given a d-dimensional continuous (resp. discrete) probability distribution µ and
a discrete distribution ν, the semi-discrete (resp. discrete) Optimal Transport (OT)
problem asks for computing a minimum-cost plan to transport mass from µ to ν; we
assume n to be the number of points in the support of the discrete distributions. In
this paper, we present three approximation algorithms for the OT problem with strong
theoretical guarantees.

(i) Additive approximation for semi-discrete OT: For any parameter ε > 0, we present
an algorithm that computes a semi-discrete transport plan τ with cost ¢(τ) ≤
¢(τ∗) + ε in nO(d) log ∆

ε time; here, τ∗ is the optimal transport plan, ∆ is the
diameter of the supports of µ and ν, and we assume we have access to an oracle
that outputs the mass of µ inside a constant-complexity region in O(1) time.
Our algorithm works for several ground distances including the Lp-norm and
the squared-Euclidean distance.

(ii) Relative approximation for semi-discrete OT: For any parameter ε > 0, we present an
algorithm that computes a semi-discrete transport plan τ with cost ¢(τ) ≤ (1 +

ε)¢(τ∗) in nε−O(d) log(n) logO(d)(log n) time; here, τ∗ is the optimal transport
plan, and we assume we have access to an oracle that outputs the mass of µ
inside an orthogonal box in O(1) time, and the ground distance is any Lp norm.

(iii) Relative approximation for discrete OT: For any parameter ε > 0, we present a
Monte-Carlo algorithm that computes a transport plan σ with an expected cost
¢(σ) ≤ (1 + ε)¢(σ∗) under any Lp norm in nε−O(d) log(n) logO(d)(log n) time;
here, σ∗ is an optimal discrete transport plan and we assume that the spread of
the supports of µ and ν is polynomially bounded.

1 Introduction
Optimal transport (OT) is a powerful tool for comparing probability distributions and
computing maps between them. Put simply, the optimal transport problem deforms one
distribution to the other with smallest possible cost. Classically, the OT problem has been
extensively studied within the operations research, statistics, and mathematics [37, 38, 49].
In recent years, optimal transport has seen rapid rise in various machine learning and
computer vision applications as a meaningful metric between distributions and has
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been extensively used in generative models [19, 25, 43], robust learning [20], supervised
learning [28,35], computer vision applications [10,26], variational inference [6], blue noise
generation [18, 41], and parameter estimation [13, 34]. These applications have led to
developing efficient algorithms for OT; see the book [40] for review of computational OT.

In the geometric OT problem, the cost of transporting unit mass between two locations
is the Euclidean distance or some Lp norm between them. In this paper, we design
simple, efficient approximation algorithms for the semi-discrete and discrete geometric
OT problems in fixed dimensions.

Let µ be a continuous probability distribution (i.e., density) defined over a compact
bounded support A ⊂ Rd, and let ν be a discrete distribution, where the support of
ν, denoted by B, is a set of n points in Rd. Let d(·, ·) be the ground metric between
a pair of points in Rd. A coupling τ : A × B → R≥0 is called a transport plan for µ
and ν if for all a ⊆ A, ∑b∈B τ(a, b) = µ(a) (where µ(a) is the mass of µ inside a)
and for all b ∈ B,

∫
A τ(a, b) da = ν(b). The cost of the transport plan τ is given by

¢(τ) :=
∫

A ∑b∈B d(a, b)τ(a, b) da. The goal is to find a minimum-cost (semi-discrete)
transport plan satisfying µ and ν1. For any parameter ε > 0, a transport plan τ between
µ and ν is called ε-close if the cost of τ is within an additive error of ε from the cost of the
optimal transport plan τ∗, i.e., ¢(τ) ≤ ¢(τ∗) + ε. A (1 + ε)-approximate OT plan, or simply
ε-OT plan, is a transport plan τ with ¢(τ) ≤ (1 + ε)¢(τ∗).

The problem of computing semi-discrete optimal transport between µ and ν reduces
to the problem of finding a set of weights y : B → R≥0 so that, for any point b ∈ B, the
Voronoi cell of b in the additively weighted Voronoi diagram has a mass equal to ν(b), i.e.,
Vor(b) = {x ∈ Rd | d(x, b) − y(b) ≤ d(x, b′) − y(b′), ∀b′ ∈ B}, µ(Vor(b)) = ν(b), and
the mass of µ in Vor(b) is transported to b; see [9]. One can thus define an optimal semi-
discrete transport plan by describing the weights of points in B. For arbitrary distributions,
weights can have large bit (or algebraic) complexity, so our goal will be to compute the
weights accurately up to s = O(log ε−1) bits, which in turn will return an ε-close semi-
discrete OT plan.

If µ is also a discrete distribution with support A, a discrete transport plan is σ : A ×
B → R≥0 that assigns the mass transported along each edge (a, b) ∈ A × B such that
∑b∈B σ(a, b) = µ(a) for each point a ∈ A and ∑a∈A σ(a, b) = ν(b) for each point b ∈ B.
The cost of σ is given by ¢(σ) = ∑(a,b)∈A×B σ(a, b)d(a, b). The discrete OT problem asks for a
transport plan σ with the minimum cost. We refer to such plan as an OT plan.

Related work. The discrete optimal transport problem under any metric can be modeled
as an uncapacitated minimum-cost flow problem and can be solved in strongly polyno-
mial time of O((m + n log n)n log n) time using the algorithm by Orlin [39]. Using re-
cent techniques [44], it can be solved in n2+o(1)poly log(∆) time, where ∆ depends on the
spread of A ∪ B and the maximum demand. The special case where all points have the
same demand is the widely studied minimum-cost bipartite matching problem. There is ex-
tensive work on the design of near-linear time approximation for the optimal transport
and related matching problems [3, 7, 10, 22, 29, 42, 45]. The near-linear time algorithms
by Khesin et. al. [29] and Fox and Lu [22] for computing an ε-OT plan use minimum-

1Apparently the semi-discrete OT was introduced by Cullen and Purser [17] without reference to optimal transport.



cost-flow (MCF) solvers (e.g. [46]) as a black box and numerically precondition their
minimum-cost flow instance using geometry [22, 29, 47]. The work of Zuzic [50] describes
a multiplicative-weights update (MWU) based boosting method for minimum-cost flows
using an approximate primal-dual oracle as a black box, which replaces the preconditioner
used in [29,47]. All these algorithms are Monte Carlo algorithms and have running time of
n(ε−1 log n)O(d). Recently, Agarwal et. al. [1] presented an n(ε−1 log n)O(d)-time determin-
istic algorithm for computing an ε-approximate bipartite matching in Rd. A Monte-Carlo
ε-approximation algorithm for matching with run time n log4 n(ε−1 log log n)O(d) was pre-
sented in [2]. Very recently, Fox and Lu proposed a deterministic algorithm for ε-OT with
run time of O(nε−(d+2) log5 n log log n) [23].

The known algorithms for semi-discrete OT that compute an ε-close transport plan by
and large use first and second order numerical solvers [9, 12, 16, 18, 30, 31, 33, 38]. These
algorithms start with an initial set of weights for points in B and iteratively improve the
weights until the mass inside the Voronoi cell of any point b ∈ B is an additive factor
ε away from ν(b). One can use these solvers to compute an ε-close transport plan by
executing poly(n, 1/ε) iterations. Each iteration requires computation of several weighted
Voronoi diagrams which takes nΩ(d) time. One can also draw samples from the continuous
distribution and convert the semi-discrete OT problem to a discrete instance [24]; however,
due to sampling errors, this approach provides an additive approximation. Van Kreveld
et. al. [48] presented a (1 + ε)-approximation OT algorithm for the restricted case when
the continuous distribution is uniform over a collection of simple geometric objects
(e.g. segments, simplices, etc.), by sampling roughly n2 points and then running an
algorithm for computing discrete ε-OT mentioned above. Their running time is roughly
n2ε−O(d)poly log(n).

Our contributions. We present three new algorithms for the semi-discrete and discrete
optimal transport problems. Our first result is a cost-scaling algorithm that computes an
ε-close transport plan for a semi-discrete instance in nO(d) log(∆/ε) time, assuming that we
have access to an oracle that, given a constant complexity region φ, returns µ(φ).

THEOREM 1.1. Let µ be a continuous distribution defined on a compact bounded set A ⊂ Rd, ν
a discrete distribution with a support B ⊂ Rd of size n, and ε > 0 a parameter. Suppose there
exists an ORACLE which, given a constant complexity region φ, returns µ(φ) in Q time. Then, an
ε-close semi-discrete OT plan can be computed in QnO(d) log(∆

ε ) time, where ∆ is the diameter of
A ∪ B.

To the best of our knowledge, our algorithm is the first one to compute an ε-close
OT in time that is polynomial in both n and log(ε−1). Earlier algorithms had an ε−O(1)

factor in the run time2. Our algorithm not only finds the optimal transport cost within an
additive error, it also finds the optimal dual weights within an additive error of ε, i.e., it
computes optimal dual-weights up to O(log ε−1) bits of accuracy. Our algorithm works for
any ground distance where the bisector of two points under the distance function d(·, ·)

2Mérigot and Thibert had conjectured that an algorithm for computing an ε-close OT for semi-discrete setting with
runtime (n log ε−1)O(1) might follow using a scaling framework [36, Remark 24]. Our result proves their conjecture in the
affirmative.



is an algebraic variety of constant degree. Consequently, it works for several important
distances, including the Lp-norm and the squared-Euclidean distance.

The previous best-known algorithm by Kitagawa [30] for the semi-discrete optimal
transport has an execution time nΩ(d)∆/ε; furthermore, their algorithm only approximates
the cost and does not necessarily provide any guarantees for the optimal transport plan or
the optimal dual weights of B.

For each scale δ, our algorithm starts with a set of weights assigned to B. Using these
weights, it constructs an instance of the discrete optimal transport of size nO(d), which is
then solved using a primal-dual solver. The optimal dual weights for this discrete instance
are then used to refine the dual weights of B. These refined dual weights act as the starting
dual weights for the next scale δ/2. Starting with δ = ∆, our algorithm executes a total of
O(log(∆/ε)) scales.

Our main insight is that in scale δ, one can partition the continuous distribution µ into
exponentially many regions Aδ. We prove that the dual weights and the semi-discrete
transport plan τ computed by our algorithm satisfy a set of δ-optimal dual feasibility
conditions (a relaxation of the classical feasibility conditions of the optimal transport),
one for each (ϱ, b) ∈ Aδ × B, making τ a δ-close transport plan. Unfortunately, explicitly
solving for τ using the partitioning Aδ will result in an exponential execution time. We
overcome this difficulty by making two observations.

At the start of scale δ, we have a very good initial estimate for the dual weights of
points in B from the ones computed in the previous scale. In particular, we show that
there is a semi-discrete transport plan τ such that the dual feasibility constraints on every
pair (ϱ, b) ∈ Aδ × B with τ(ϱ, b) > 0 has a slack ≤ 4nδ. Using this claim, we show that in
the optimal semi-discrete transport plan τ∗, τ∗(ϱ, b) = 0 for every pair (ϱ, b) with a slack
> 4nδ. This allows us to restrict our attention to edges with slack ≤ 4nδ. Unfortunately,
there can be exponential number of edges with slack at most 4nδ. In order to overcome
this difficulty, we show that all slack i edges incident on b can be compactly represented
as regions between carefully constructed expansions of O(n) Voronoi cells in the weighted
Voronoi diagram. Using this property, we can compress the size of OT instance to nO(d),
which can then be solved using a discrete OT solver.

We also show that by increasing the number of scales in our algorithm from
O(log(∆/ε)) to O(log(n∆/ε)), we obtain the optimal weights on the points in B within
an additive error of ε.

Next, we present another approximation algorithm for the semi-discrete setting whose
running time is near-linear in n but the dependence on ε increases to ε−O(d).

THEOREM 1.2. Let µ be a continuous distribution defined on a compact set A ⊂ Rd, ν a discrete
distribution with a support B ⊂ Rd of size n, and ε > 0 a parameter. Suppose there exists
an ORACLE which, given an axis-aligned box □, returns µ(□) in Q time. Then, a (1 + ε)-
approximate semi-discrete OT plan can be computed in O(nε−3d−2(log5(n) log(log n) + Q))
time. If the spread of B is polynomially bounded, a (1 + ε)-approximate semi-discrete OT plan
can be computed in O(nε−4d−5(log(n) log2d+5(log n) + Q)) time with probability at least 1

2 .

Similar to [48], the high level view of our approach is to discretize the continuous
distribution and use a discrete OT algorithm. Our main contribution is a more clever
sampling strategy that is more global and that works for arbitrary density (rather than



for collections of geometric objects). We prove that it suffices to sample nε−O(d) points in
contrast to Ω(n2) points in [48].

Our final result is a new (1 + ε)-approximation algorithm for the discrete transport
problem.

THEOREM 1.3. Let µ and ν be two discrete distributions with support sets A, B ⊂ Rd,
respectively, where A ∪ B is a point set of size n with polynomially bounded spread, d ≥ 1 is a
constant and ε > 0 a parameter. Then, a (1 + ε)-approximate discrete OT plan between µ and
ν can be computed by a Monte Carlo algorithm in O

(
nε−2d−5 log(n) log2d+5(log n)

)
time with

probability at least 1
2 .

As mentioned above, until recently, the best-known Monte Carlo algorithm for com-
puting an ε-OT plan had running time n(ε−1 log n)O(d). Recently in an independent
work, Fox and Lu [23] obtained a deterministic algorithm for computing an ε-OT plan
in O(nε−d−2 log5(n) log(log n)) time. We believe that our result is of independent interest.
The running time is slightly better than in [23], though of course their algorithm is deter-
ministic. But our main contribution is a greedy primal-dual O(log log n)-approximation
algorithm that is simple and geometric and runs in O(n log log n) time. By plugging our
algorithm into the multiplicative weight update method as in [50], we obtain a (1 + ε)-
approximation algorithm. We believe the derandomization technique of Lu and Fox can
be applied to our algorithm, but one has to check all the technical details.

2 Computing a Highly Accurate Semi-Discrete Optimal Transport
Given a continuous distribution µ over a compact bounded set A ⊂ Rd, a discrete
distribution ν over a set B ⊂ Rd of n points, and a parameter ε > 0, we present a cost-
scaling algorithm for computing an ε-close semi-discrete transport plan from µ to ν. We
first describe the overall framework, then provide details of the algorithm and analyze its
efficiency, and finally prove its correctness.

In our algorithm, we use a black-box primal-dual discrete OT solver PD-OT(µ′, ν′) that
given two discrete distributions µ′ and ν′ defined over two point sets A′ and B′, returns a
transport plan σ from µ′ to ν′ and a dual weight y(v) for each point v ∈ A′ ∪ B′ such that
for any pair (a, b) ∈ A′ × B′,

y(b)− y(a) ≤ d(a, b), (2.1)
y(b)− y(a) = d(a, b) if σ(a, b) > 0. (2.2)

Standard primal-dual methods [32] construct a transport plan while maintaining (2.1)
and (2.2). For concreteness, we use Orlin’s algorithm [39] that runs in O(|A ∪ B|3) time.

2.1 The Scaling Framework. The algorithm works in O(log(∆ε−1)) rounds, where ∆ is
the diameter of A ∪ B. In each round, we have a parameter δ > 0 that we refer to as the
current scale, and we also maintain a dual weight y(b) for every point b ∈ B. Initially, in
the beginning of the first round, δ = ∆ and y(b) = 0 for all b ∈ B. Execute the following
steps s = c log2(∆ε−1) times, where c is a sufficiently large constant3.

3Computing an ε-close transport plan requires O(log(∆/ε)) iterations. When the goal, on the other hand, is to obtain
accurate dual weights up to O(log ε−1) bits, we need to execute our algorithm for O(log(n∆/ε)) iterations. See Section 2.3.



(i) Construct a discrete OT instance: Using the current values of dual weights of B, as
described below, construct a discrete distribution µ̂δ with a support set Xδ, where
|Xδ| = nO(d), and define a (discrete) ground distance function dδ : B × Xδ →
{0, . . . , 4n + 1}.

(ii) Solve OT instance: Compute an optimal transport plan between discrete distributions
µ̂δ and ν using the procedure PD-OT(µ̂δ, ν). Let σδ be the coupling and ŷ : B → R

be the dual weights returned by the procedure.

(iii) Update dual weights: y(b)← y(b) + δŷ(b) for each point b ∈ B.

(iv) Update scale: δ← δ/2.

We refer to the jth iteration of this algorithm as iteration j. Our algorithm terminates when
δ ≤ ε. We now describe the details of step (i) of our algorithm, which is the only non-trivial
step. Let y(·) be the dual weights of B at the start of iteration j.

Constructing a discrete OT instance. We construct the discrete instance by constructing
a family of Voronoi diagrams and overlaying some of their cells. For a weighted point set
P ⊂ Rd with weights w : P→ R and a distance function d : P×Rd → R≥0, we define the
weighted distance from a point p ∈ P to any point x ∈ Rd as dw(p, x) = d(p, x)− w(p). For
a point p ∈ P, its Voronoi cell is Vorw(p) = {x ∈ Rd | dw(p, x) ≤ dw(p′, x), ∀p′ ∈ P}, and
the Voronoi diagram VDw(P) is the decomposition of Rd induced by Voronoi cells; see [21].

For i ∈ [1, 4n + 1] and a point b ∈ B, we define a Voronoi cell Vi
b using a weight

function wi : B → R≥0, as follows. We set wi(b) = y(b) + iδ and wi(b′) = y(b′) for all
b′ ̸= b. We set Vi

b = Vorwi(b) in VDwi(B). By construction, V1
b ⊆ V2

b ⊆ . . . ⊆ V4n+1
b . Set

Vb = {Vi
b | i ∈ [1, 4n+ 1]} and V =

⋃
b∈B Vb (See Figure 1(a)). Let A (V ) be the arrangement

of V , the decomposition of Rd into (connected) cells induced by V ; each cell of A (V ) is
the maximum connected region lying in the same subset of regions of V [4].

For each cell φ in A (V ), we choose a point rφ arbitrarily and set its mass to µ̂δ(rφ) =

µ(φ), where for any region ρ in Rd, µ(ρ) =
∫

ρ µ(a) da is the mass of µ inside ρ (Here we
assume the mass to be 0 outside the support A of µ). Set Xδ = {rφ | φ ∈ A (V )}. The
resulting mass distribution on Xδ is µ̂δ.

The ground distance dδ(a, b) between any point b ∈ B and a point a ∈ Xδ is defined as

dδ(a, b) =


0, if a ∈ V1

b ,
i, if a ∈ Vi+1

b \Vi
b , i ∈ [1, 4n],

4n + 1, if a /∈ V4n+1
b .

See Figure 1(b). Since each Vi
b is defined by n algebraic surfaces of constant degree,

assuming the bisector of two points under the distance function d(·, ·) is an algebraic
variety of constant degree, A (V ) has nO(d) cells and a point in every cell of A (V ) can
be computed in nO(d) time [11]. Hence, |Xδ| = nO(d). This completes the construction of
Xδ, µ̂δ, and dδ.

Computing a semi-discrete transport plan. At the end of any scale δ, we compute a δ-
close semi-discrete transport plan τδ from the discrete transport plan σδ as follows: For



(a) (b)

Figure 1: (a) The i-expansions of the Voronoi cells of three points b, b′, b′′ ∈ B, (b) A region
φ ∈ A (V ) (highlighted in gray) with a representative point r ∈ Xδ, where dδ(b, r) = 0
since r ∈ V1

b , dδ(r, b′) = 1 since r ∈ V2
b′ \V1

b′ , and dδ(r, b′′) = 2 since r ∈ V3
b′′ \V2

b′′ is between
the 2-expansion and 3-expansion of Voronoi cell of b′′. The ground distance in this figure
is squared Euclidean.

any edge (rφ, b) ∈ Xδ × B, we arbitrarily transport σδ(rφ, b) mass from the points inside
the region φ to the point b. A simple construction of such transport plan is to set, for any
region φ, any point a ∈ φ, and any point b ∈ B, τδ(a, b) = µ(a)

µ̂δ(rφ)
σδ(rφ, b). Our algorithm

will only compute the transport plan at the end of the last scale, i.e., δ ≤ ε.

Efficiency analysis. Our algorithm runs O(log(∆ε−1)) scales, where in each scale, it
constructs a discrete OT instance in nO(d) time and solves the OT instance using a
polynomial-time primal-dual OT solver. Since the size of the discrete OT instance is nO(d),
solving it also takes nO(d) time, resulting in a total execution time of nO(d) log(∆ε−1) for our
algorithm.

2.2 Proof of Correctness. In the discrete setting, cost scaling algorithms obtain an ε-close
transport plan that satisfies (2.2) and an additive ε relaxation of (2.1). For our proof, we
extend these relaxed feasibility conditions to the semi-discrete transport plan and show
that, at the end of each scale δ, the semi-discrete transport plan computed by our algorithm
satisfies these conditions. We use the relaxed feasibility conditions to show that our semi-
discrete transport plan is δ-close. Thus, in the last scale, when δ ≤ ε, our algorithm returns
an ε-close semi-discrete transport plan from µ to ν.

δ-optimal transport plan. For any scale δ, we first describe a discretization of the
continuous distribution into a set of regions Aδ and then describe the relaxed feasibility
conditions for all pairs (ϱ, b) ∈ Aδ × B.

Consider a decomposition of the support A of the continuous distribution µ into a set
of regions, where each region ϱ in the decomposition satisfies the following condition:



(P1) Assuming every point b ∈ B has a weight w(b) that is an integer multiple of δ, any
two points x and y in ϱ have the same weighted nearest neighbor in B with respect
to weights w(·),

where for any set of weights w for points in B and any point a ∈ A, we say that a point
b ∈ B is a weighted nearest neighbor of a if dw(a, b) = minb′∈B dw(a, b′). Let this set of regions
be Aδ. For each region ϱ ∈ Aδ, let rϱ denote an arbitrary representative point inside ϱ.

Let y : B→ R denote a set of dual weights for the points in B. For each region ϱ ∈ Aδ,
we derive a dual weight yδ(rϱ) for its representative point as follows. Let bϱ ∈ B be the
weighted nearest neighbor of rϱ with respect to weights y(·). We set the dual weight of rϱ

as
yδ(rϱ)← y(bϱ)− d(rϱ, bϱ)− δ. (2.3)

We say that a semi-discrete transport plan τ from µ to ν along with the set of dual weights
y(·) for points in B is δ-optimal if, for each point b ∈ B and each region ϱ ∈ Aδ,

y(b)− yδ(rϱ) ≤ d(rϱ, b) + δ, (2.4)
y(b)− yδ(rϱ) ≥ d(rϱ, b) if τ(ϱ, b) > 0. (2.5)

In the following lemma, we show that any δ-optimal transport plan τ, y(·) from µ to ν is
3δ-close.

LEMMA 2.1. Suppose τ, y(·) is any δ-optimal transport plan from µ to ν and let τ∗ denote any
optimal transport plan from µ to ν. Then, ¢(τσ) ≤ ¢(τ∗) + δ.

Let y(·) denote the set of dual weights maintained by our algorithm at the beginning
of scale δ. For any point b ∈ B and any region ϱ ∈ Aδ, we define a slack on condition (2.4)
for the pair (ϱ, b), denoted by sδ(ϱ, b), as

sδ(ϱ, b) :=
⌊

d(rϱ, b) + δ− y(b) + yδ(rϱ)

δ

⌋
δ.

In the following, we describe the discretization of the continuous distribution into Aδ

and relate it to the discrete OT instance that is constructed in step (i) of our algorithm.
Furthermore, we relate the distance dδ computed in our algorithm to the slacks sδ.

Discretizing the continuous distribution. Let B = {b1, b2, . . . , bn}, and let w =
⟨w1, . . . , wn⟩ be an n-dimensional vector representing a weight assignment to the points
in B. We say that the vector w is valid if each wi is a non-negative integer multiple of δ and
bounded by ∆. Consider the set Wδ of all valid vectors, i.e., Wδ = (δZ ∩ [0, ∆])n. For a
valid vector w ∈ Wδ, let VDw(B) denote the weighted Voronoi diagram constructed for
the points in B with weights w. The partitioning Aδ is simply the overlay of all weighted
Voronoi diagrams VDw(B) across all valid weight vectors w ∈Wδ (See Figure 2).

At the beginning of scale δ, while constructing the set A (V ), the dual weight of each
point in B maintained by our algorithm is obtained from scale 2δ and hence, is an integer
multiple of 2δ. Therefore, the Voronoi cells Vi

b of each point b ∈ B correspond to valid
weight vectors. By construction of the set Aδ, each region ϱ ∈ Aδ completely lies inside
some region φ ∈ A (V ), i.e., each region in A (V ) consists of a collection of regions in Aδ.
In the next lemma, we establish a connection between the slacks and the distances dδ.



Figure 2: The weighted Voronoi diagrams for four different weight vectors in Wδ. The
ground distance in this figure is squared Euclidean.

LEMMA 2.2. For any region φ ∈ A (V ), any region ϱ ∈ Aδ inside φ, and any point b ∈ B,
if dδ(rφ, b) ≤ 4n, then sδ(ϱ, b) = dδ(rφ, b)δ. Furthermore, if dδ(rφ, b) = 4n + 1, then
sδ(ϱ, b) ≥ (4n + 1)δ.

Next, we show that for each scale δ, the semi-discrete transport plan τδ and dual
weights (y + δŷ)(·) for the points in B computed by our algorithm at the end of the scale
is a δ-optimal transport plan.

δ-optimality of the computed transport plan. Recall that Xδ denotes the set of represen-
tative points of the regions in A (V ) and µ̂δ is the discrete distribution over Xδ computed
by our algorithm at step (i). In the following lemma, we show that any optimal trans-
port plan σ∗ from µ̂δ to ν under distance function dδ does not transport mass on edges
(rφ, b) ∈ Xδ × B with cost dδ(rφ, b) > 4n.

LEMMA 2.3. For any scale δ, let σ∗ be any optimal transport plan from µ̂δ to ν. For any point
b ∈ B and any region φ ∈ A (V ), if σ∗ transports mass from rφ to b, then dδ(rφ, b) ≤ 4n.

Proof. Let τ2δ, y(·) be the 2δ-optimal transport plan computed by our algorithm at scale 2δ.
Let σ2δ denote a transformation of τ2δ into a discrete transport plan from µ̂δ to ν by simply
setting, for each region φ ∈ A (V ), σ2δ(rφ, b) := τ2δ(φ, b). Let σ∗ be any optimal transport
plan from µ̂δ to ν, where the cost of each edge (rφ, b) is set to dδ(rφ, b). Define the residual
network G on the vertex set Xδ ∪ B as follows. For any pair (r, b) ∈ Xδ × B, if σ2δ(r, b) >
σ∗(r, b), then we add an edge directed from b to r with a capacity σ2δ(r, b) − σ∗(r, b);
otherwise, if σ2δ(r, b) < σ∗(r, b), then we add an edge directed from r to b with a capacity
σ∗(r, b)− σ2δ(r, b). This completes the construction of the residual network.

For contradiction, suppose there is a pair (r∗, b∗) ∈ Xδ × B such that σ∗(r∗, b∗) > 0
and dδ(r∗, b∗) > 4n. From Lemma A.5, σ2δ(r∗, b∗) = 0 since σ2δ transports mass only on
edges with distance at most 4. Hence, in the residual network G , there is a directed edge
from r∗ to b∗ and by Lemma A.7, the edge (r∗, b∗) is contained in a simple directed cycle



C = ⟨b1, r1, . . . , bk, rk⟩ in the residual network. Define the cost of the cycle C as

w(C) := ∑
⟨b,r⟩∈C

dδ(r, b)− ∑
⟨r,b⟩∈C

dδ(r, b).

Since σ∗ is an optimal transport plan from µ̂δ to ν, any cycle C on the residual network have
a non-negative cost. Note that the length of C is at most 2n since C is a simple cycle and
each point of B appears at most once in C. Furthermore, by Lemma A.5, any directed edge
(bi, ri) ∈ C has a distance at most 4. Finally, by construction, all edges have a non-negative
cost. Therefore,

0 ≤ w(C) = ∑
⟨b,r⟩∈C

dδ(r, b)− ∑
⟨r,b⟩∈C

dδ(r, b) ≤ ∑
⟨b,r⟩∈C

4− dδ(r∗, b∗) ≤ 4n− dδ(r∗, b∗) < 0,

which is a contradiction. Hence, σ∗ cannot transport mass on edges (r∗, b∗) with cost
dδ(r∗, b∗) > 4n.

Let σδ, ŷ(·) be the optimal transport plan from µ̂δ to ν computed at step (ii) of our
algorithm, and recall that τδ is the transport plan from µ to ν computed at the end of scale
δ. In the following lemma, we show that τδ, (y + δŷ)(·) is a δ-optimal transport plan.

LEMMA 2.4. For each scale δ, let (y + δỹ)(·) denote the set of dual weights for points in B
computed at step (iii) of our algorithm. Then, the transport plan τδ, (y + δỹ)(·) is a δ-optimal
transport plan.

Proof. Let yδ(·) denote the set of dual weights derived for the representative points of
regions in Aδ using Equation (2.3) at the beginning of scale δ. Consider a set of dual
weights y′δ that assigns, for each region ϱ ∈ Aδ inside a region φ ∈ A (V ), a dual
weight y′δ(rϱ) := yδ(rϱ) + ŷ(rφ). First, we show that the transport plan τδ along with
dual weights (y + δŷ)(·) and y′δ(·) satisfy δ-optimality conditions (2.4) and (2.5). We then
show that deriving the dual weights for the representative points of the regions inAδ from
the dual weights (y + δỹ)(·) as in Equation (2.3) does not violate δ-optimality conditions
and conclude that the transport plan τδ and dual weights (y + δŷ)(·) for points in B is
δ-optimal.

For any region φ ∈ A (V ), any region ϱ ∈ Aδ inside φ, and any point b ∈ B,

• by Lemma 2.2, dδ(rφ, b)δ ≤ sδ(ϱ, b). Combining with feasibility condition (2.1),

(y + δỹ)(b)− y′δ(rϱ) = (y(b) + δỹ(b))− (yδ(rϱ) + δỹ(rφ))

= (y(b)− yδ(rϱ)) + δ(ỹ(b)− ỹ(rφ))

≤ (y(b)− yδ(rϱ)) + dδ(rφ, b)δ ≤ (y(b)− yδ(rϱ)) + sδ(ϱ, b)
≤ (y(b)− yδ(rϱ)) + (d(rϱ, b)− y(b) + yδ(rϱ) + δ)

= d(rϱ, b) + δ,

leading to δ-optimality condition 2.4.



• if τδ(ϱ, b) > 0, then σδ transports mass from rφ to b, i.e., σδ(rφ, b) > 0. In this case, by
Lemma 2.3, dδ(rφ, b) ≤ 4n and by Lemma 2.2, sδ(ϱ, b) = dδ(rφ, b)δ. Combining with
feasibility condition (2.2),

(y + δỹ)(b)− y′δ(rϱ) = (y(b) + δỹ(b))− (yδ(rϱ) + δỹ(rφ))

= (y(b)− yδ(rϱ)) + δ(ỹ(b)− ỹ(rφ))

= (y(b)− yδ(rϱ)) + dδ(rφ, b)δ = (y(b)− yδ(rϱ)) + sδ(ϱ, b)
≥ (y(b)− yδ(rϱ)) + (d(rϱ, b)− y(b) + yδ(rϱ))

= d(rϱ, b),

leading to δ-optimality condition 2.5.

In Lemma A.4 in the appendix, we show that reassigning the dual weights as in
Equation (2.3) does not violate δ-optimality conditions (2.4) and (2.5); hence, τ, (y + δŷ)(·)
is δ-optimal, as claimed.

2.3 Computing Optimal Dual Weights. In this section, we show that in addition to
computing an ε-close transport cost in the semi-discrete setting, our algorithm can also
compute the set of dual weights for the points in B accurately, up to O(log ε−1) bits. To
obtain such accurate set of dual weights, we execute our algorithm for O(log(n∆/ε))
iterations so that the final value of δ when the algorithm terminates is at most ε/5n. In
the following, we show that the dual weight computed for each point in B at the last scale
is ε-close to the optimal dual weight value.

Note that any edge in the graph constructed in Step (i) of our algorithm has a cost at
most 4n + 1. Consequently, in Step (ii), the largest dual weight returned by the primal-
dual solver is at most 4n + 14 and in Step (iii), the dual weight of any point b ∈ B changes
by at most (4n + 1)δ. Since the dual weight of b becomes the optimal dual weight in the
limit, to bound the difference between the current dual weight and the optimal, it suffices
if we bound the total change in the dual weights for all scales after scale δ ≤ ε/5n. The
difference between the optimal dual weight and the current dual weight is at most

(4n + 1)
∞

∑
i=1

δ/2i = (4n + 1)δ ≤ (4n + 1)(ε/5n) ≤ ε.

Therefore, after O(log(n∆/ε)) iterations of the algorithm, the difference in the optimal
dual weight y(b) and the current dual weight of b is at most ε.

3 Approximation Algorithm for Semi-Discrete Optimal Transport
In this section, we present our second approximation algorithm for the semi-discrete
setting that computes an ε-OT plan in nε−O(d)poly log(n) expected time. We begin by
describing a few notations that help us in presenting our algorithm. Let µ, ν, A, and
B be the same as above. For any point b ∈ Rd and any r ≥ 0, let D(b, r) denote
the Euclidean ball of radius r centered at b. Any pair of sets P, Q ⊂ Rd is called ε-
well separated if max{diam(P), diam(Q)} ≤ ε · min(p,q)∈P×Q ∥p − q∥. Given a set S of

4Any set of dual weights returned by the algorithm can be translated by a fixed value so that the smallest dual weight
becomes 0. Assuming this, it is easy to see that the largest dual weight is 4n + 1.



n points in Rd and a parameter ε, a collection W = {(P1, Q1), . . . , (Pk, Qk)} is an ε-well
separated pair decomposition (ε-WSPD) of S if (i) each pair (Pi, Qi) is ε-well separated, and
(ii) for any distinct p, q ∈ S, there exists a pair (Pi, Qi) ∈ W where p ∈ Pi and q ∈ Qi.
Given a point set B ⊂ Rd and a hypercube □, we say that □ is ε-close to b ∈ B if
maxa∈□ ∥b − a∥ ≤ ε minb′ ̸=b∈B ∥b′ − b∥. For any parameter δ > 0, let Gδ denote an
axis-aligned grid of side-length δ with a vertex at the origin, i.e., Gδ := [0, δ]d + Zd. In
the remainder of this section, we present our algorithm and analyze its correctness and
efficiency.

3.1 Algorithm. Here is a brief overview of our algorithm. Let H be a hypercube of side-
length 4

ε diam(B) centered at one of the points of B. First, we partition H into a collection of
hypercubes such that for each b ∈ B and all hypercubes □ except the ones that are ε-close to
b, the following condition holds: for all p, q ∈ □, ∥b− p∥ ≤ (1 + ε)∥b− q∥. If a hypercube
□ is ε-close to b ∈ B, then we greedily route the mass of µ inside □ to b. We then construct
a discretization µ̂ of the remaining mass from µ by collapsing the mass µ(□) of each cell □
to its center point c□. We compute an ε-OT plan σ from µ̂ to ν using the algorithm describe
in Section 4 and transform σ into a semi-discrete transport plan τσ by dispersing the mass
transportation throughout each hypercube, as described in Section 2.1. We now describe
the algorithm in more detail.

Construction of hypercubes. Let W denote an ( ε
4 )-WSPD of B. For every pair (B1, B2) ∈

W, we construct a set of hypercubes closely following the construction of an approximate
Voronoi diagram [8], as follows. Let b1 ∈ B1 and b2 ∈ B2 denote arbitrary representative
points of B1 and B2, respectively. For any integer i = 0, . . . , t = 2 log2(2dε−1), define
δi = 2i ε

2
√

d
∥b1 − b2∥ and let Gi(B1, B2) denote the set of hypercubes of the grid Gεδi

intersecting D(b1, δi) ∪ D(b2, δi). For any cell □ ∈ Gi(B1, B2), if there exists a child cell
□′ ⊂ □ in Gi−1(B1, B2), then we replace □ with its 2d child cells to keep all hypercubes
interior disjoint. Set G =

⋃
(B1,B2)∈W

⋃t
i=0 Gi(B1, B2).

Transporting local mass. For any point b ∈ B and some sufficiently small constant c > 0,
define its local neighborhood to be

Nε(b) =
{
□ ∈ G : max

a∈□
∥b− a∥ ≤ c ε min

b′ ̸=b
∥b′ − b∥

}
.

For each b ∈ B, we transport the mass locally as follows. If ν(b) > 0 and there exists a
hypercube □ ⊆ Nε(b) with µ(□) > 0, we transport min{µ(□), ν(b)} mass from □ to b. If
µ(□) ≤ ν(b), we set ν(b) = ν(b)− µ(□), delete □ from G , and repeat the above step. If
µ(□) > ν(b), we set ν(b) = 0 and scale the mass in □ down so that µ(□) = µ(□)− ν(b).
This process stops when either ν(b) = 0 or no cell of G lies inside Nε(b).

Discrete OT on remaining demand. Let µ′ and ν′ be the two distributions after transport-
ing the local mass. Note that µ′ and ν′ are not necessarily probability distributions, i.e., the
mass of each one of them might not add up to 1; however, the total mass in µ′ equals that
of ν′. Let G be the set of remaining hypercubes. Let Â = {c□ : □ ∈ G } ∪ {c0} for some
c0 ∈ A \ H, where c□ denotes the center of □. Define µ̂(c□) =

∫
□ µ′(a) da for every hyper-



cube □ ∈ G and let µ̂(c0) =
∫

A µ′(a)da−∑□∈G µ̂(c□). We compute a (1 + ε)-approximate
discrete transport plan σ from µ̂ to ν′ using the algorithm described in Section 4. We then
convert σ into a semi-discrete transport plan τσ in a straightforward manner, similar to
Section 2.1. We return a transport plan τ̃ obtained from combining τσ with the local mass
transportation committed in the previous step in a straight-forward manner. It is easy
to confirm that the transport plan τ̃ is a transport plan from µ to ν. This completes the
description of our algorithm.

3.2 Proof of Correctness. In this section, we show that the transport plan computed by
our algorithm is a (1+ ε)-approximate transport plan from µ to ν. Recall that as a first step,
our algorithm constructs a family G of hypercubes. In the following lemma, we enumerate
useful properties of these hypercubes.

LEMMA 3.1. For each □ ∈ G the hypercube □ satisfies at least one of the following two conditions:

1. For any two points a1, a2 ∈ □ and any b ∈ B, ∥a1 − b∥ ≤ (1 + ε)∥a2 − b∥,

2. There exists some b ∈ B such that ∥a− b∥ ≤ ε minb′ ̸=b ∥b′ − b∥ for all a ∈ □.

We then use a simple triangle inequality argument similar to [5] to show that a greedy
routing on Nε(b) only incurs another (1 + ε)-relative error.

LEMMA 3.2. Let τ∗ be an optimal transport plan between µ and ν, and let τ̃ be the transport plan
returned by the algorithm. There exists a transport plan τ̂ such that (i) τ̂ = τ̃ when restricted to⋃

b∈B Nε(b), and (ii) ¢(τ̂) ≤ (1 + ε)¢(τ∗).

We next show that any mass outside of H can be routed arbitrarily while incurring at
most (1+ ε)-relative error because any two points b1, b2 ∈ B are approximately equidistant
from any a ∈ A \ H.

LEMMA 3.3. Let τ̃ be the semi-discrete transport plan constructed by our algorithm. Let τ be any
arbitrary transport plan. Then,

∑
b∈B

∫
A\⋃□∈G □

∥a− b∥ · τ̃(a, b) da ≤ (1 + ε) ∑
b∈B

∫
A\⋃□∈G □

∥a− b∥ · τ(a, b) da.

Finally, we consider the mass that lies inside H but does not lie in a cell of G that is
ε-close to a point of B that has survived. We use the fact that all points within such a cell
□ of G are roughly at the same distance from a point of B, i.e. for any p, q ∈ □ where
µ′(□) > 0 and for any b ∈ B where ν′(b) > 0, ∥p− q∥ ≤ (1 + ε)∥q− b∥.

LEMMA 3.4. Let τ̂′ be a transport plan between µ′ and ν′ defined by τ̂′(a, b) = τ̂(a, b) if
a ̸∈ Nε(b) and τ̂′(a, b) = 0 otherwise. Then ¢(τσ) ≤ (1 + ε)¢(τ̂′).

Lemmas 3.2-3.4 together imply that our algorithm returns an ε-OT plan.

LEMMA 3.5. Let τ̃ be the transport plan computed by our algorithm, and let τ∗ be an optimal
transport plan between µ and ν. Then ¢(τ̃) ≤ (1 + ε)¢(τ∗).



3.3 Efficiency analysis. Callahan and Kosaraju [14] have shown that an ( ε
4 )-WSPD W

of S of size O(nε−d) can be constructed in O(n(ε−d + log n)) time. For each pair in W,
our algorithm computes O(log ε−1) approximate balls, where for each approximate ball,
our algorithm adds O(ε−d) hypercubes to G . Therefore, the collection G of hypercubes has
size O(nε−2d log ε−1). Hence, partitioning the hypercube H takes O(n(log n+ ε−2d log ε−1))
time. Furthermore, computing the mass of µ inside each hypercube take O(nε−2d log ε−1Q)
time. Finally, note that the discrete OT instance computed by our algorithm has size
O(nε−2d log ε−1) and hence, can be solved in O(nε−4d−5 log(n) log2d+5(log n) log(ε−1))
time using the algorithm in Section 4 when the spread of B is polynomially bounded,
leading to Theorem 1.2.

4 A Near-Linear ε-Approximation Algorithm for Discrete OT
In this section, we present a randomized Monte-Carlo (1+ ε)-approximation algorithm for
the discrete OT problem. We now let µ, ν be two discrete distributions with support sets A
and B, respectively, which are finite point sets in Rd. Set n = |A|+ |B|. We first present an
overview of the algorithm, then provide details of the various steps, and finally analyze
its correctness and efficiency. Our algorithm can be seen as an adaptation of the boosting
framework presented by Zuzic [50] to the discrete optimal transport problem; we present
an O(log log n)-approximation algorithm for the discrete OT problem and then boost the
accuracy of our algorithm using the multiplicative weights update method and compute a
(1 + ε)-approximate discrete OT plan.

4.1 Overview of the Algorithm. At a high level, we compute a hierarchical graph G =
(V, E), where V ⊇ A ∪ B is a set of points in Rd. The weight of an edge is the Euclidean
distance between its endpoints. The construction of G is randomized, and G is a (1 + ε)-
spanner in expectation, i.e., dG (a, b), the shortest-path distance between (a, b) ∈ A× B in G
satisfies the condition ∥ − ∥ ≤ E[dG (a, b)] ≤ (1 + ε)∥a− b∥. We formulate the OT problem
as a min-cost flow problem in G by setting η(u) = µ(u) if u ∈ A and η(u) = −ν(u) if
u ∈ B. Following a bottom-up greedy approach, we construct a flow σ : V → R≥0 and
dual weights y : V → R that satisfy (C1) and (C2) with ρ = a1 log log n, where a1 > 0 is a
constant:

(C1) |y(u)− y(v)| ≤ ρ∥u− v∥ ∀(u, v) ∈ E,

(C2) ∑(u,v)∈E σ(u, v)∥u− v∥ ≤ ∑u∈V y(u)η(u).

The first condition guarantees the dual solution y is ρ-approximately feasible, while
the second condition guarantees that y is non-trivial and the flow σ is a ρ-approximation.
Using such a primal-dual solution, one can use multiplicative-weight-update method
(MWU) to boost a ρ-approximate flow into a (1 + ε)-approximate flow on G by making
O(ρ2ε−2 log n) calls to our greedy primal-dual approximation algorithm. We also describe
the multiplicative weights procedure in Section 4.4. Once a (1 + ε)-approximate flow is
obtained in G , then one can simply shortcut paths in G to obtain an ε-OT plan; see e.g. [23].

We remark that a (1 + ε)-spanner is not needed if only a O(log log n)-approximation is
desired. An O(log log n)-OT plan can be constructed directly in O(n log log n) time using
our algorithm. We now describe the details of our algorithm.



4.2 Constructing a spanner. We now define the construction of the graph G , which is
built upon a hierarchical partitioning of Rd and the tree T associated to it.

Hierarchical partitioning. For simplicity, we refer to all d-dimensional hypercubes as
cells. For any cell □, let ℓ□ and c□ denote its side-length and center, respectively. Let

∆ =
maxp,q∈A∪B ∥p−q∥
minp,q∈A∪B ∥p−q∥ denote the spread of A ∪ B. Additionally, define G(□, ℓ) to be the

grid that partitions □ into new cells of side-length ℓ. Without loss of generality, assume
A ∪ B ⊆ [0, ∆]d.

Let □∗ be a randomly shifted cell of side-length 2∆ containing all points in A ∪ B, i.e.,
□∗ = [0, 2∆]d − x for some x chosen uniformly at random from the hypercube [0, ∆]d. We
construct a hierarchical partition of □∗ as follows. We designate □∗ as the root cell of T .
For any cell □ of T , define n□ := |(A∪ B)∩□| as the number of points of A∪ B contained
within □. We construct T recursively as follows. If n□ ≤

(
ε−1 log log n

)3d, □ is a leaf of

T . Otherwise, using the grid G□ = G

(
□, ℓ□/n

1
3d
□

)
, we partition □ into smaller cells of

side-length ℓ□/n
1

3d
□ . We add all non-empty cells of G□ to T as the children of □ and denote

them by C[□]. The height h of T is h = O(log log n).
For any cell □ of T , we define a set of O((ε−1dh)d) equal-sized subcells as follows.

Define δ□ = εℓ□
4dh to be the side-length of the subcells of □. We add all the cells of the grid

G(□, δ□) that contain a point of A ∪ B as the subcells of □ and denote the resulting family
by S[□].

Vertices and edges of the graph. The vertex set of G consists of the points A ∪ B plus the
center point of all non-empty cells and subcells of T . More precisely,

V = (A ∪ B) ∪
⋃

□∈T

{c□} ∪ {cξ : ξ ∈ S[□]}.

The edge set of G consists of two sets of edges per cell of T .

1. If □ is a non-leaf cell, let I□ = c□ ∪
(⋃

□′∈C[□] c□′
)
∪
(⋃

ξ∈S[□] cξ

)
be the set of points

composed of the center of □, centers of its children, and the centers of the subcells
of □. Otherwise, let I□ = c□ ∪ ((A ∪ B) ∩□). We construct a (1 + ε)-spanner S□

on I□. We add all edges of S□ to G and refer to them as greedy edges. Note that
|I□| = |C[□]|+ |S[□]|+ 1 = O(n1/3

□ + (h/ε)d) for any non-leaf cell.

2. In addition, for any non-leaf cell □, let X□ =
⋃

□′∈C[□]
⋃

ξ∈S[□′] cξ be the set of centers
of the subcells of the children of □. Let S ′

□ be a (1 + ε)-spanner constructed on the
points in X□. We add all the edges of S ′

□ to G and refer to them as shortcut edges.

Recall that the weight of every edge in G is the Euclidean distance between its
endpoints. The greedy edges are the edges that our greedy algorithm uses to compute
a flow, whereas the shortcut edges guarantee that the shortest-path distances in G are
a (1 + ε)-approximation of the Euclidean distances in expectation. We remark that the



Figure 3: The hierarchical structure of the graph G . The vertices of the graph are the centers
of the cells (blue disks) and centers of subcells (red squares). For any cell □, the greedy
edges form a spanner on its children and subcells (black triangles) and the shortcut edges
form a spanner on the center of the subcells of its children (purple dashed rectangle).

shortcut edges are only necessary when applying the MWU method to obtain a (1 + ε)-
approximate transport plan, otherwise only greedy edges are necessary for a O(log log n)-
approximation.

For any pair (a, b) ∈ A× B, let Pa,b be the shortest path in G from a to b with respect
to Euclidean distances along each edge and ϕ(Pa,b) to be the cost of Pa,b, i.e. the sum of
Euclidean distances of every edge in Pa,b. The following lemma bounds the size of G and
shows that the shortest path metric of G , in expectation, (1 + ε)-approximates Euclidean
distances.

LEMMA 4.1. The graph G contains O(nh) vertices and O(nε−dh) edges. The max degree of any
vertex in G is at most O(ε−d log n). Furthermore, for any pair of points (a, b), ϕ(Pa,b) ≥ ∥a− b∥
and E [ϕ(Pa,b)] ≤ (1 + 3ε)∥a− b∥.

4.3 Greedy Primal-Dual Algorithm. Given the graph G = (V, E) and a demand
function η : V → R, we compute a flow σ on G satisfying the demand function η
and a set of dual weights y satisfying the conditions (C1) and (C2) with a parameter
ρ = a1ε−1 log log n, where a1 is a constant depending on d. It transports as much demand
as possible among children of each cell, and routes all excess up the tree T . Due to the
high branching factor of the cells in T , each subcell contains polynomially many child-
subcells. Therefore, subcells cannot simply inherit the dual weights from cells as in [29],
since it might violate condition (C1). Instead, we create a min-cost flow instance for each
cell consisting of the centers of its immediate descendants and compute a primal-dual flow
on this instance.

Dual assignment and flow function. We now compute the primal-dual pair (σ, y) in a
bottom-up manner. At any cell □ we assume that all excess mass has been routed to
c□′ for each child □′ ∈ C[□], and then route all excess mass from the children of □ to
c□. We denote the value of this excess demand in a subtree rooted at □ as η̄□, and it is



defined as follows. If □ is a leaf cell, then η̄□ = η(c□) + ∑p∈(A∪B)∩□ η(p). Otherwise,
η̄□ = η(c□) + ∑□′∈C[□] η̄□′ + ∑ξ∈S[□] η̄ξ .

We wish to run Orlin’s primal-dual algorithm for min-cost flow on S□ [39]. However,
we only assume that η is a balanced demand function on the whole vertex set of G . The
total mass in S□ defined by η may not be balanced on some subgraph S□. To resolve
this issue, we make c□ a sink node that absorbs all excess mass from η in the subgraph
rooted at □. We define a local demand function η□ : I□ → R as follows. For each child
□′ ∈ C[□], η□(c□′) = η̄□′ , for each subcell ξ ∈ S[□], η□(cξ) = η(cξ), and,

η□(c□) = − ∑
□′∈C[□]

η□(c□′)− ∑
ξ∈S[□]

η□(cξ).

Roughly speaking, the demand at the center of a child node □′ is the surplus/deficit in
the subtree rooted at □′. The demand at the center of □ is set so that the net excess of
demands in I□ is rooted to c□ and similarly, the net deficit of I□ is supplied from c□. The
pair (S□, η□) is a balanced instance for the min-cost flow. We now run Orlin’s primal-
dual algorithm for uncapacitated minimum-cost flow to obtain a local primal-dual pair
(σ□, y□) on (S□, η□) [39]. The combination of all flows computed at all cells of T satisfies
the demand function η.

Suppose (σ□, y□) is the primal-dual flow computed on the local instance (S□, η□),. For
any point u ∈ I□, we define the dual weight of u as y(u)← y□(u)− y□(c□) + y(c□). The
definition of y synchronizes all the local dual weights computed for each cell of the tree.
Additionally, observe that each edge (u, v) of G belongs to a unique local instance (S□, η□)
of min cost flow. We simply define σ(u, v) = σ□(u, v), where □ is the cell for which (u, v)
is contained in I□. This completes the construction of our greedy primal-dual algorithm.

4.4 Multiplicative Weights Update (MWU) Framework. Using one of the known al-
gorithms [15, 27], we first compute an estimate of the OT cost within a d log n factor in
O(n log n) time, i.e. we compute a value g̃ such that w∗ ≤ g̃ ≤ (d log n) ·w∗. Using this es-
timate, we perform an exponential search in the range

[
g̃

d log n , g̃
]

with increments of factor
(1 + ε). For any guess value g, the MWU algorithm either returns a flow σ : E → R with
¢(σ) ≤ (1 + ε)g or returns dual weights as a certificate that g < w∗. We now describe the
MWU algorithm for a fixed value of g.

Set T = 4ρ2ε−2 log |E|. The algorithm runs in at most T iterations, where in each
iteration, it maintains a pre-flow vector σt satisfying ¢(σt) ≤ g. The pre-flow σt need not
route all demand successfully. Initially, set σ0(u, v) = g

∥u−v∥·|E| for each edge (u, v) ∈ E.
For each iteration t, define the residual demand ηt

res(·) as

ηt
res(u) = η(u)− ∑

v:(u,v)∈E
(σt−1(u, v)− σt−1(v, u)).

Let (σt
res, yt) be the primal-dual flow computed by our greedy algorithm for the residual

demands ηt
res. Recall that (σt

res, yt) satisfies (C1) and (C2). If ⟨ηt
res, yt⟩ ≤ εg, then (C2)

implies that ¢(σt
res) ≤ εg. Since σt

res routes the residual demands, the flow function
σt = σt−1 + σt

res routes the original demand η with a cost ¢(σt) ≤ (1 + ε)g. In this case, the
algorithm returns σt as the desired flow and terminates.



Otherwise, ⟨ηt
res, yt⟩ > εg and we update the flow along each edge e = (u, v) of G

based on the slack st(u, v) = yt(u)−yt(v)
∥u−v∥ of e with respect to dual weights yt:

σt(u, v)← exp
(

ε

2ρ2 st(u, v)
)
· σt−1(u, v).

We emphasize that flow along an edge is increasing if the slack is large. Then, one
needs to rescale σt so that its cost is bounded above by g. If the algorithm does not
terminate within T rounds, we conclude that the value of g is an under-estimate of the cost
of the min-cost flow; we increase g by a factor of (1 + ε) and repeat the MWU algorithm.
This completes the description of the MWU framework.

4.5 Analysis. The following two lemmas prove that our algorithm satisfies conditions
(C1) and (C2) for a sufficiently small approximation factor.

LEMMA 4.2. For any edge (u, v) ∈ E, |y(u)− y(v)| ≤ O(d3/2hε−1)∥u− v∥.

LEMMA 4.3. ∑(u,v)∈E σ(u, v)∥u− v∥ ≤ ∑u∈V y(u)η(u).

Next, we bound the running time of our algorithm. For any cell □, the algorithm
computes an exact primal-dual solution to min-cost flow on I□ with demands η□(·) in
O(|I□|3) time. Each cell □ satisfies |I□| = O

(
n1/3
□ + (h/ε)d

)
. The total number of points

inside the cells of level i is n; i.e, ∑□∈L [i] n□ = n. Furthermore, the total number of non-

empty subcells of the cells at level i is at most n; i.e, ∑□∈L [i] O (h/ε)d ≤ n. Therefore,

∑
□∈L [i]

|I□|3 = ∑
□∈L [i]

O
(

n□ +
(

hε−1
)3d
)
= O

(
n
(

hε−1
)2d
)

.

Summing over all levels of T , the total running time of the algorithm is Õ
(

n (h/ε)2d+1
)

.
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A Missing Details and Proofs of Section 2
In this section, we present the missing details and the proofs of the claims made in
Section 2.

A.1 Weighted Nearest Neighbor. Let w : B→ R≥0 denote a set of non-negative weights
for the points in B. Recall that for any pair of points (a, b) ∈ A× B, the weighted distance
of a and b with respect to w is dw(a, b) = d(a, b)− w(b). For any point a ∈ A, the weighted
nearest neighbor (WNN) of a is a point b ∈ B with the smallest weighted distance to a,
i.e, a point b ∈ B satisfying dw(a, b) = minb′∈B dw(a, b′). For any δ > 0 and any point
a ∈ A, we say that a point b ∈ B is a δ-approximate weighted nearest neighbor (δ-WNN) of a if
dw(a, b) ≤ minb′∈B dw(a, b′) + δ.

LEMMA A.1. Given a transport plan τ from µ to ν and a parameter δ > 0, suppose there exists a
set of weights w for the points in B such that for any pair of points (a, b) ∈ A× B with τ(a, b) > 0,
the point b is a δ-WNN of a with respect to weights w. Then, τ is a δ-close transport plan from µ
to ν.

Proof. For any transport plan τ′, we define the weighted cost of τ′, denoted by ¢w(τ′), as
the cost of the τ′ where the edge costs are replaced with the weighted distance between
the points, i.e., ¢w(τ′) := ∑b∈B

∫
A dw(a, b)τ′(a, b) da. For any transport plan τ′,

¢w(τ
′) = ∑

b∈B

∫
A

dw(a, b)τ′(a, b) da = ∑
b∈B

∫
A
(d(a, b)− w(b))τ′(a, b) da

= ∑
b∈B

∫
A

d(a, b)τ′(a, b) da− ∑
b∈B

w(b)
∫

A
τ′(a, b) da

= ¢(τ′)− ∑
b∈B

w(b)ν(b). (A.1)

For any point a ∈ A, suppose ba denotes any WNN of a. Furthermore, for any point a ∈ A,
let Mτ(a) denote the set of all points b ∈ B such that τ(a, b) > 0. Let τ∗ denote any optimal
transport plan from µ to ν.

¢w(τ) =
∫

A
∑

b∈Mτ(a)
dw(a, b)τ(a, b) da ≤

∫
A

∑
b∈Mτ(a)

(dw(a, ba) + δ)τ(a, b) da

= δ +
∫

A
dw(a, ba)µ(a) da ≤ δ +

∫
A

∑
b∈B

dw(a, b)τ∗(a, b) da

= ¢w(τ
∗) + δ. (A.2)

Combining Equations (A.1) and (A.2),

¢(τ) = ¢w(τ) + ∑
b∈B

w(b)ν(b) ≤ ¢w(τ) + δ + ∑
b∈B

w(b)ν(b) = ¢(τ∗) + δ,

i.e., the transport plan τ is a δ-close transport plan.



A.2 δ-Optimal Transport Plan. Given a continuous distribution µ defined over a com-
pact bounded set A, a discrete distribution ν defined on a point set B, and a parameter
δ > 0, recall that Aδ denotes a partitioning over the set A, which is the arrangement of all
weighted Voronoi diagrams VDw(B) for all valid weight vectors w ∈ Wδ. Recall that for
each region ϱ ∈ Aδ, we refer to its representative point by rϱ. In the following lemma, we
show an important property of the partitioning Aδ.

LEMMA A.2. For any region ϱ ∈ Aδ, any pair of points a1, a2 ∈ ϱ, and any valid weight vector
w ∈Wδ, any δ-WNN of a1 is also a δ-WNN for a2.

Proof. Suppose a point b ∈ B is a δ-WNN of the point a1, i.e., for any point b′ ∈ B,

dw(a1, b)− δ ≤ dw(a1, b′). (A.3)

Define the weights w+(·) as a set of weights that assigns w+(b) = w(b) + δ and w+(b′) =
w(b′) to each point b′ ̸= b in B. Note that w+ is also a valid weight vector. For any point
b′ ̸= b in B, by Equation (A.3),

dw+(a1, b) = d(a1, b)− w+(b) = d(a1, b)− w(b)− δ = dw(a1, b)− δ ≤ dw(a1, b′)
= dw+(a1, b′). (A.4)

In other words, b is a WNN for the point a1 with respect to weights w+. Since w+ ∈ Wδ,
by the construction of Aδ, the region ϱ completely lies inside the Voronoi cell of b in the
weighted Voronoi diagram VDw+(B). As a result, b is also a WNN for the point a2 with
respect to the weights w+(·). Therefore, for any point b′ ̸= b in B,

dw(a2, b)− δ = d(a2, b)− w(b)− δ = dw+(a2, b) ≤ dw+(a2, b′) = dw(a2, b′),

i.e., the point b is also a δ-WNN for a2.

Lemma A.3 follows from combining Lemmas A.1 and A.2 in a straight-forward way.

LEMMA A.3. Suppose τ is a transport plan from µ to ν and w ∈ Wδ a valid weight vector such
that for any pair (ϱ, b) ∈ Aδ × B with τ(ϱ, b) > 0, the point b is a δ-WNN of rϱ. Then, τ is a
δ-close transport plan from µ to ν.

In the following lemma, we show that any δ-optimal transport plan τ, y(·) from µ to ν
is δ-close.

LEMMA 2.1. Suppose τ, y(·) is any δ-optimal transport plan from µ to ν and let τ∗ denote any
optimal transport plan from µ to ν. Then, ¢(τσ) ≤ ¢(τ∗) + δ.

Proof. To prove this lemma, we first show that for any pair (ϱ, b) ∈ Aδ × B such that
τ(ϱ, b) > 0, the point b is a δ-WNN of the representative point rϱ. Then, by invoking
Lemma A.3, we conclude that the transport plan τ is δ-close, as desired.

For any region ϱ ∈ Aδ and any point b ∈ B with τ(ϱ, b) > 0, by δ-optimality
condition (2.5),

y(b)− yδ(rϱ) ≥ d(rϱ, b). (A.5)



Furthermore, for any point b′ ̸= b in B, by δ-optimality condition (2.4),

y(b′)− yδ(rϱ) ≤ d(rϱ, b′) + δ. (A.6)

Combining Equations (A.5) and (A.6),

d(rϱ, b)− y(b) ≤ −yδ(rϱ) ≤ d(rϱ, b′)− y(b′) + δ,

or equivalently, dy(rϱ, b) ≤ dy(rϱ, b′) + δ, i.e., the point b is a δ-WNN of the representative
point rϱ.

Next, we show that if there exists a transport plan τ from µ to ν, a set of dual weight
y(·) for points in B, and a set of dual weights y′(·) for representative points of the regions in
Aδ that satisfy δ-optimality conditions (2.4) and (2.5) (in which yδ(·) is replaced with y′(·)),
then reassigning the dual weights based on Equation (2.3) does not violate conditions (2.4)
and (2.5), i.e., the transport plan τ and dual weights y(·) for points in B is δ-optimal.

LEMMA A.4. For any scale δ, if there exists a transport plan τ from µ to ν, a set of dual weights
y(·) for points in B, and a set of dual weights y′(·) for representative points of regions in Aδ

satisfying δ-optimality conditions (2.4) and (2.5), then τ, y(·) are δ-optimal.

Proof. To prove this lemma, we show that conditions (2.4) and (2.5) hold when plugging
dual weights y(·) for points in B and dual weights yδ(·) derived by Equation (2.3) for
representative points of Aδ. For any region ϱ ∈ Aδ, let bϱ denote the weighted nearest
neighbor of rϱ in B with respect to weights y(·). For any pair (ϱ, b) ∈ Aδ × B,

yδ(rϱ) = y(bϱ)− d(a, bϱ)− δ ≥ y(b)− d(rϱ, b)− δ;

therefore, the optimality condition (2.4) holds for (ϱ, b). Next, we show that the optimality
condition (2.5) also holds for all pairs (ϱ, b) with τ(ϱ, b) > 0. By condition (2.4) on
τ, y(·), y′(·), for any point b′ ∈ B, y′(rϱ) ≥ y(b′)− d(rϱ, b′)− δ. Therefore,

y(rϱ) ≥ max
b′∈B

(y(b′)− d(rϱ, b′)− δ) = y(bϱ)− d(rϱ, bϱ)− δ = yδ(rϱ).

As a result, for the point b ∈ B with τ(ϱ, b) > 0, by condition (2.5) on τ, y(·), y′(·), we have

y(b)− yδ(rϱ) ≥ y(b)− y′(rϱ) ≥ d(rϱ, b),

and the δ-optimality condition (2.5) holds after replacing y′(·) with yδ(·).

A.3 Discretizing the Continuous Distribution.

LEMMA 2.2. For any region φ ∈ A (V ), any region ϱ ∈ Aδ inside φ, and any point b ∈ B,
if dδ(rφ, b) ≤ 4n, then sδ(ϱ, b) = dδ(rφ, b)δ. Furthermore, if dδ(rφ, b) = 4n + 1, then
sδ(ϱ, b) ≥ (4n + 1)δ.



Proof. For any region ϱ ∈ Aδ, suppose bϱ ∈ B denotes the weighted nearest neighbor of
rϱ with respect to weights y(·). For any point b ∈ B, we can rewrite the slack sδ(ϱ, b) as
follows.

sδ(ϱ, b) =
⌊

d(rϱ, b) + δ− y(b) + yδ(rϱ)

δ

⌋
δ

=

⌊
d(rϱ, b) + δ− y(b) + (y(bϱ)− d(rϱ, bϱ)− δ)

δ

⌋
δ

=

⌊
dy(rϱ, b)− dy(rϱ, bϱ)

δ

⌋
δ. (A.7)

For each point b ∈ B, let Vb = Vor(b) denote the weighted Voronoi cell of the point b in
the weighted Voronoi diagram VDy(B). Recall that for any i ∈ [1, 4n + 1], Vi

b denotes the
i-expansion of the weighted Voronoi cell of the point b. For any pair (ϱ, b) ∈ Aδ × B, if
rϱ lies inside Vb, then b is the WNN of rϱ and by Equation (A.7), sδ(ϱ, b) = 0. Otherwise,
suppose the point rϱ lies inside Vi

b for some i ∈ [1, 4n + 1]. Let y′(·) denote a set of dual
weights for the point set B that assigns y′(b) = y(b) + iδ to the point b and y′(b′) = y(b′)
to each point b′ ̸= b in B. Since rϱ lies inside Vi

b , then b is the weighted nearest neighbor
of rϱ with respect to weights y′(·), i.e., dy′(rϱ, b) < dy′(rϱ, b′) for each point b′ ̸= b ∈ B.
Therefore,

dy(rϱ, b) = d(rϱ, b)− y(b) = d(rϱ, b)− (y′(b)− iδ) = dy′(rϱ, b) + iδ

< dy′(rϱ, bϱ) + iδ = dy(rϱ, bϱ) + iδ.

Plugging into Equation (A.7), sδ(ϱ, b) =
⌊

dy(rϱ,b)−dy(rϱ,bϱ)
δ

⌋
δ < iδ for any region ϱ ∈ Aδ

inside Vi
b . Furthermore, for any region ϱ ∈ Aδ outside of Vi

b , the WNN of ϱ with respect to
weights y′(·) remains to be bϱ and we have dy′(rϱ, b) > dy′(rϱ, bϱ). Therefore,

dy(rϱ, b) = dy′(rϱ, b) + iδ > dy′(rϱ, bϱ) + iδ = dy(rϱ, bϱ) + iδ.

Plugging into Equation (A.7), sδ(ϱ, b) =
⌊

dy(rϱ,b)−dy(rϱ,bϱ)
δ

⌋
δ ≥ iδ for any region ϱ ∈ Aδ

outside Vi
b . Thus, for any point b ∈ B, any region φ ∈ A (V ), and any ϱ ∈ Aδ inside φ,

– if rϱ lies inside V1
b , then sδ(ϱ, b) = 0. In this case, rφ also lies inside V1

b and
dδ(rφ, b) = 0,

– if rϱ lies inside Vi+1
b \ Vi

b for some i ∈ [1, 4n], then sδ(ϱ, b) = iδ. In this case, rφ also
lies in Vi+1

b \Vi
b and dδ(rφ, b) = i, and

– if rϱ lies outside V4n+1
b , then sδ(ϱ, b) ≥ (4n + 1)δ. In this case, rφ also lies outside of

V4n+1
b and dδ(rφ, b) = 4n + 1.

This completes the proof of this lemma.



A.4 δ-Optimality of the Computed Transport Plan.

LEMMA A.5. Let τ2δ, y(·) be any 2δ-optimal transport plan from µ to ν, where the dual weights
of points in B are integer multiples of 2δ. Then, for any region ϱ ∈ Aδ and any point b ∈ B, if
τ2δ(ϱ, b) > 0, then sδ(ϱ, b) ≤ 4δ.

Proof. Let ϱ∗ denote the region in A2δ containing ϱ (by construction, it can be easily
confirmed that the set of valid weight vectors X2δ is a subset of Wδ and hence, each
region in Aδ completely lies inside a region in A2δ). Define bϱ to be the weighted nearest
neighbor of rϱ (and consequently rϱ∗) with respect to weights y(·). By Equation (2.3),
y2δ(rϱ∗) = y(bϱ)− d(rϱ∗ , bϱ)− 2δ and yδ(rϱ) = y(bϱ)− d(rϱ, bϱ)− δ. Hence,

sδ(ϱ, b) =
⌊

d(rϱ, b) + δ− y(b) + yδ(rϱ)

δ

⌋
δ

=

⌊
d(rϱ, b) + δ− y(b) + (y(bϱ)− d(rϱ, bϱ)− δ)

δ

⌋
δ

=

⌊
dy(rϱ, b)− dy(rϱ, bφ)

δ

⌋
δ ≤

⌊
dy(rϱ∗ , b)− dy(rϱ∗ , bϱ)

δ

⌋
δ + 2δ, (A.8)

where the last inequality is resulted from Lemma A.6 below. Finally, from the 2δ-optimality
condition (2.5) on τ2δ, y(·),

d(rϱ∗ , b) ≤ y(b)− y2δ(rϱ∗) = y(b)− (y(bϱ)− d(rϱ∗ , bϱ)− 2δ).

Hence,
dy(rϱ∗ , b)− dy(rϱ∗ , bϱ) ≤ 2δ. (A.9)

Plugging Equations (A.9) into Equation (A.8),

sδ(ϱ, b) ≤
⌊

dy(rϱ∗ , b)− dy(rϱ∗ , bϱ)

δ

⌋
δ + 2δ ≤ 4δ,

as claimed.

LEMMA A.6. For any region ϱ∗ ∈ A2δ, any pair of points a1, a2 ∈ ϱ∗, and any pair of points
b1, b2 ∈ B,

⌊
d(a1,b1)−d(a1,b2)

δ

⌋
δ ≤

⌊
d(a2,b1)−d(a2,b2)

δ

⌋
δ + 2δ.

Proof. To prove this lemma, we first construct a valid weight vector w ∈ W2δ such that
in the Voronoi diagram VDw(B), the region ϱ∗ lies inside the Voronoi cell of b1, which
gives us dw(a1, b1) ≤ dw(a1, b2). Then, we increase the weight of b2 in w by 2δ and
obtain another valid weight vector w+ ∈ W2δ such that ϱ∗ now lies inside the Voronoi
cell of b2 and conclude dw(a2, b2) ≤ dw(a2, b1) + 2δ. Combining the two bounds, we
get d(a1, b1)− d(a1, b2) ≤ d(a2, b1)− d(a2, b2) + 2δ, leading to the lemma statement. We
describe the details below.

Consider a valid weight vector w ∈ W2δ that assigns w(b1) =
⌈

d(rϱ∗ ,b1)

2δ

⌉
2δ, w(b2) =⌈

d(rϱ∗ ,b2)

2δ

⌉
2δ, and w(b′) = 0 for each b′ ̸= b1, b2 in B. Without loss of generality, assume



dw(rϱ∗ , b1) < dw(rϱ∗ , b2)5. By construction,

−2δ < dw(rϱ∗ , b1) < dw(rϱ∗ , b2) ≤ 0 ≤ min
b′∈B,b′ ̸=b1,b2

dw(rϱ∗ , b).

Hence, the point rϱ∗ and consequently the region ϱ∗ lie inside the Voronoi cell of b1 in
VDw(B). Therefore,

d(a1, b1)− w(b1) = dw(a1, b1) ≤ dw(a1, b2) = d(a1, b2)− w(b2).
d(a1, b1)− d(a1, b2) ≤ w(b1)− w(b2). (A.10)

Next, consider the weight vector w+ ∈ W2δ that assigns w+(b2) = w(b2) + 2δ and
w+(b′) = w(b′) for all points b′ ̸= b2 in B. In this case,

dw+(rϱ∗ , b2) ≤ −2δ < dw+(rϱ∗ , b1) = dw(rϱ∗ , b1) ≤ 0 ≤ min
b′∈B,b′ ̸=b1,b2

dw(rϱ∗ , b).

Therefore, the point rϱ∗ and consequently the region ϱ∗ lie inside the Voronoi cell of b2 in
VDw+(B). Therefore,

d(a2, b2)− (w(b2) + 2δ) = dw+(a2, b2) ≤ dw+(a2, b1) = d(a2, b1)− w(b1),
w(b1)− w(b2) ≤ d(a2, b1)− d(a2, b2) + 2δ. (A.11)

Combining Equations (A.10) and (A.11),

d(a1, b1)− d(a1, b2) ≤ w(b1)− w(b2) ≤ d(a2, b1)− d(a2, b2) + 2δ,⌊
d(a1, b1)− d(a1, b2)

δ

⌋
δ ≤

⌊
d(a2, b1)− d(a2, b2)

δ

⌋
δ + 2δ.

Residual Network. Given two transport plans σ1 and σ2 from µ̂δ to ν, we define the
residual network G (σ1, σ2) on the vertex set Xδ ∪ B as follows. Define σ := σ1 − σ2 to
be a function that assigns, for any pair (r, b) ∈ Xδ × B, σ(r, b) = σ1(r, b)− σ2(r, b). For any
pair (r, b) ∈ Xδ× B, if σ(r, b) > 0, then we add an edge directed from b to r with a capacity
σ(r, b); otherwise, if σ(r, b) < 0, then we add an edge directed from r to b with a capacity
|σ(r, b)|.

LEMMA A.7. Given any two transport plans σ1 and σ2 from µ̂δ to ν, for any directed edge
(r, b) ∈ Xδ × B in the residual network G (σ1, σ2), there exists a directed cycle C in G (σ1, σ2)
that contains the edge (r, b).

Proof. To prove this lemma, we conduct a DFS-style search from the point b in the
residual network to compute a directed path P from b to r. This proves the lemma
since concatenating the edge (r, b) to P results in a directed cycle on the residual network
containing (r, b). Our proof relies on the following observation: Since both σ1 and σ2 are
transport plans from µ̂δ to ν, by the construction of the residual network, for any point

5If dw(rϱ∗ , b1) ≥ dw(rϱ∗ , b2), one can simply decrease w(b2) by 2δ and follow a very similar argument.



u ∈ Xδ ∪ B, the total capacity of incoming edges to u is equal to the total capacity of
outgoing edges from u.

We conduct a DFS-style procedure that grows a path P = ⟨r = p0, b = p1, p2, . . . , pk⟩
as follows. Initially, we set P = ⟨r = p0, b = p1⟩. At each step, for the last point pk of the
path P, let N(pk) denote the set of all outgoing edges from pk. Note that since there exists
an incoming edge (pk−1, pk) in the residual graph, by the observation stated above, N(pk)
is not empty. Consider any point p ∈ N(pk).

• If p = r, then P ◦ (pk, r) is a cycle containing (r, b), as desired.

• Otherwise, if p already exists in the path P as pi for some i ≥ 1, then we have found a
cycle C = ⟨pi, pi+1, . . . , pk, pi⟩. We “cancel” this cycle as follows. Define the capacity
of the cycle c(C) as the minimum capacity of all edges on C. We then decrease the
capacity of all edges on C by c(C) and for those that now have a zero capacity, we
simply remove them from the residual network. We set P = ⟨p0 = r, p1 = b, . . . , pi⟩
and continue our search.

• Otherwise, we add p as pk+1 to the path P and continue the search.

Note that since all edges in the residual network have a positive finite capacity at all times,
each time we cancel a cycle reduces the total capacity of the edges of the residual network.
Furthermore, the length of the path P will never be more than 2n, as there are only n points
in the set B and the residual network is a bipartite graph. Hence, our DFS-style procedure
will terminate by returning a cycle containing (r, b).

B Missing Details of Section 3
Without loss of generality, we will assume that ε < 1

2 . Otherwise, we can replace ε with
min{ 1

3 , ε} without increasing runtime dependence on ε. This choice of ε is important to
guarantee that all neighborhoods Nε(b) are disjoint.

The following lemmas roughly split the edge costs into three cases. First, we observe
that we can safely transport mass to any point b ∈ B from regions of A that have extremely
small distances to b. Second, we observe that we can arbitrarily transport any mass of µ
that is far enough from all points of B at the cost of an small error. Finally, given a box □
with the property that for any point b ∈ B, the point b is (1+ ε)-approximately equidistant
from all points inside □, the mass of µ inside □ can be moved to the center of □ without
too much sacrifice.

LEMMA 3.2. Let τ∗ be an optimal transport plan between µ and ν, and let τ̃ be the transport plan
returned by the algorithm. There exists a transport plan τ̂ such that (i) τ̂ = τ̃ when restricted to⋃

b∈B Nε(b), and (ii) ¢(τ̂) ≤ (1 + ε)¢(τ∗).

Proof. We break the proof of this lemma into two stages. For stage I, we argue that there
exists an intermediary transport plan τ̂1 between µ and ν where (i)

∫
Nε(b)

τ̂1(a, b) da is as
large as possible for all b and (ii) ¢(τ̂1) ≤ (1 + O(ε))¢(τ∗). For stage II, we argue that from
τ̂1, the choice of mass within each neighborhood Nε(b) which is greedily coupled with b
can be swapped so that τ̂ agrees with τ while only incurring a (1+ ε) approximation error.



Stage I: Let b be an arbitrary element of B. Suppose
∫

Nε(b)
τ∗(x, b) dx <

min
{∫

Nε(b)
µ(x) dx, ν(b)

}
, i.e. there is some mass within the approximate ball Nε(b)

which could be routed to b by τ∗ but is instead routed to some point b′ ̸= b. Then there
exist sets U ⊆ Nε(b), V ⊆ A \Nε(b) and B′ ⊆ B \ {b} where ∑b′∈B′

∫
U τ∗(u, b′) du =∫

V τ∗(v, b) dv > 0 (some mass in Nε(b) is routed away from b and an equal mass outside
Nε(b) is routed to b via τ∗).

Since U ⊆ Nε(b), where the radius of the approximate ball Nε(b) is ε and ∥b− b′∥ ≥ 1
for all b′ ∈ B′, we know that

∥u− b′∥ ≥ (1− ε)∥b′ − b∥ and ∥u− b∥ ≤ ε∥b′ − b∥

for all u ∈ U and b′ ∈ B′. Hence, ∥u − b∥ ≤ ε
1−ε∥u − b′∥. Moreover, by the triangle

inequality we can conclude that for any u, v ∈ U ×V and b′ ∈ B′,

∥v− b′∥ ≤ ∥v− b∥+ ∥b− u∥+ ∥u− b′∥ ≤ ∥v− b∥+
(

1 +
ε

1− ε

)
∥u− b′∥.

Let τ1 be defined as the transport plan which routes the mass of U to b, the mass of V to b′,
and equals τ∗ elsewhere. It follows that∫

U
∥u− b∥τ̂1(u, b) du + ∑

b′∈B′

∫
V
∥v− b′∥τ̂1(v, b′) dv

≤
(

1 +
2ε

1− ε

)
∑

b′∈B′

∫
U
∥u− b′∥τ∗(u, b′) du +

∫
V
∥v− b∥τ∗(v, b) dv.

Since ε ∈ (0, 1
2 ), we note that 2ε

1−ε ≤ 4ε. Furthermore, since τ̂1 = τ∗ outside of
(U ∪V)× B′ ∪ {b}, we deduce ¢(τ̂1) ≤ (1 + 4ε)¢(τ∗).

Finally, we note that Nε(b) ∩Nε(b′) = ∅ for all b ̸= b′ since ε ∈ (0, 1
2 ). Therefore,

the (1 + 4ε) approximation factor is incurred at most once for each U ⊆ Nε(b) which is
rerouted. Since each operation reroutes a maximal amount of mass in Nε(b) to b and every
pair of neighborhoods is disjoint, we conclude that after n such U, V swaps a satisfactory
transport plan τ̂1 has been constructed from τ∗.

Stage II: Let b be an arbitrary element of B, and let Nε(b) be the approximate ball of
radius ε centered at b. Suppose there exist disjoint sets X, Y ⊂ Nε(b) and some B′ ⊂ B \ {b}
where ∫

X
τ(x, b) dx =

∫
Y

τ̂1(y, b) dy = ∑
b′∈B′

∫
X

τ̂1(x, b′) dx > 0.

In the same manner as stage I, we now show that for any x, y ∈ X×Y and b′ ∈ B′,

∥x− b∥+ ∥y− b′∥ ≤ (1 + 6ε)∥x− b′∥+ ∥y− b∥.

Let x ∈ X, y ∈ Y and b′ ∈ B′ be arbitrarily chosen. First, observe that

∥y− b′∥ ≤ ∥x− b′∥+ ∥x− b∥+ ∥y− b∥ ≤ ∥x− b′∥+ 2ε

by triangle inequality and condition 2 of Lemma 3.1. Additionally, since x ∈ X ⊆ Nε(b),
we note that ∥x− b∥ ≤ ε. Now we can use the triangle inequality to bound

∥x− b′∥ ≥ ∥b− b′∥ − ∥x− b∥ ≥ 1− α.



Combining these inequalities and ε ∈ (0, 1
2 ), we conclude

∥y− b′∥+ ∥x− b∥ ≤ ∥x− b′∥+ 3ε

≤ (1 +
3ε

1− ε
)∥x− b′∥+ ∥y− b∥

≤ (1 + 6ε)∥x− b′∥+ ∥y− b∥.

Let τ̂ be defined as the transport plan which routes the mass of Y to B′, the mass of X to b,
and equals τ̂1 elsewhere. It follows that∫

X
∥x− b∥τ̂(x, b) dx + ∑

b′∈B′

∫
Y
∥y− b′∥τ̂(y, b′) dy

≤ (1 + 6ε) ∑
b′∈B′

∫
X
∥x− b′∥τ̂1(x, b′) dx +

∫
Y
∥y− b∥τ̂1(y, b) dv.

Furthermore, since τ̂1 = τ̂ outside of (X ∪ Y) × (B′ ∪ {b}), we deduce ¢(τ̂1) ≤ (1 +
6ε)¢(τ∗). Repeat for every b ∈ B and every X, Y ⊆ Nε(b) and by construction we then
have τ̂ = τ on Nε(b)× {b} for all b ∈ B. Note that no neighborhoods Nε(b) intersect, so
the cost approximation factor does not increase since no set X is swapped more than once.
We conclude that ¢(τ̂) ≤ (1 + 22ε)¢(τ∗).

LEMMA 3.3. Let τ̃ be the semi-discrete transport plan constructed by our algorithm. Let τ be any
arbitrary transport plan. Then,

∑
b∈B

∫
A\⋃□∈G □

∥a− b∥ · τ̃(a, b) da ≤ (1 + ε) ∑
b∈B

∫
A\⋃□∈G □

∥a− b∥ · τ(a, b) da.

Proof. Suppose a ∈ A \ ⋃□∈G □. Then a satisfies ∥a− b1∥ ≥ 1
ε ∥b1 − b2∥ for all b1, b2 ∈ B.

By the triangle inequality, we note that ∥a− b2∥ ≤ (1 + ε)∥a− b1∥ for all such a ∈ A and
b1, b2 ∈ B.

Since τ and τ̃ are both feasible transport plans, they satisfy ∑b∈B τ(a, b) = ∑b∈B τ̃(a, b).
We deduce that

∑
b∈B
∥a− b∥ · τ(a, b) ≤ (1 + ε) ∑

b∈B
∥a− b∥ · τ̃(a, b)

by combining the previous two statements. Finally, integrating over all a ∈ A \ ⋃□∈G □
gives us the desired result

∑
b∈B

∫
A\⋃□∈G □

∥a− b∥ · τ(a, b) da ≤ (1 + ε) ∑
b∈B

∫
A\⋃□∈G □

∥a− b∥ · τ̃(a, b) da.

LEMMA 3.4. Let τ̂′ be a transport plan between µ′ and ν′ defined by τ̂′(a, b) = τ̂(a, b) if
a ̸∈ Nε(b) and τ̂′(a, b) = 0 otherwise. Then ¢(τσ) ≤ (1 + ε)¢(τ̂′).



Proof. Note that

¢(τ) = ∑
b∈B

∫
A\Nε(b)

∥a− b∥τ(a, b) da + ∑
b∈B

∫
Nε(b)

∥a− b∥τ(a, b) da

where Nε(b) again denotes the approximate ball centered at b of radius ε. We can
analogously claim

¢(τ̂) = ∑
b∈B

∫
A\Nε(b)

∥a− b∥τ̂(a, b) da + ∑
b∈B

∫
Nε(b)

∥a− b∥τ̂(a, b) da

= ∑
b∈B

∫
A\Nε(b)

∥a− b∥τ̂(a, b) da + ∑
b∈B

∫
Nε(b)

∥a− b∥τ(a, b) da,

where the second equality follows from the fact that τ̂ = τ on ∪b∈B(Nε(b)× b). It therefore
suffices to compare the transport plans on the pairs a, b ∈ A× B of (approximate) distance
greater than ε. That is,

¢(τ)− ¢(τ̂) = ∑
b∈B

∫
A\Nε(b)

∥a− b∥(τ(a, b)− τ̂(a, b)) da.

For simplicity, let Z =
⋃

□∈G □, X = A \Z , and define Zb := Z \Nε(b) for each b ∈ B.
Then, we observe

¢(τ)− ¢(τ̂) = ∑
b∈B

[∫
X
∥a− b∥(τ(a, b)− τ̂(a, b)) da +

∫
Zb

∥a− b∥(τ(a, b)− τ̂(a, b)) da
]

.

For convenience, define τ′ = τ− τ̂ and let Gb = {□ ∈ G : □ ⊆ Nε(b)}. Additionally define
the discrete plans σ̂ and σ′ by σ̂(c□, b) :=

∫
□ τ̂(a, b) da and σ′(c□, b) = σ(c□, b)− σ̂(c□, b).

We conclude that

¢(τ)− ¢(τ̂) = ∑
b∈B

[∫
X
∥a− b∥τ′(a, b) da +

∫
Zb

∥a− b∥τ′(a, b) da
]

≤ ∑
b∈B

[∫
X
∥a− b∥τ′(a, b) da + (1 + ε) ∑

□∈G \Gb

∥c□ − b∥σ′(c□, b)

]

≤ ε ∑
b∈B

[∫
X
∥a− b∥τ̂(a, b) da + (1 + ε) ∑

□∈G \Gb

∥c□ − b∥σ̂(c□, b)

]

≤ ε ∑
b∈B

[∫
X
∥a− b∥τ̂(a, b) da + (1 + ε)2

∫
Zb

∥a− b∥τ̂(a, b) da
]

≤ 9
4

ε ∑
b∈B

[∫
X
∥a− b∥τ̂(a, b) da +

∫
Zb

∥a− b∥τ̂(a, b) da
]

,

where the second and fourth lines follow from the first condition of Lemma 3.1, the third
line follows from Lemma 3.3 and the fact that σ is a (1 + ε)-approximate transport plan,
and the last line uses ε ∈ (0, 1

2 ). We conclude that ¢(τ) ≤ (1 + 9
4 ε)¢(τ̂).



C Missing Proofs of Section 4
LEMMA 4.1. The graph G contains O(nh) vertices and O(nε−dh) edges. The max degree of any
vertex in G is at most O(ε−d log n). Furthermore, for any pair of points (a, b), ϕ(Pa,b) ≥ ∥a− b∥
and E [ϕ(Pa,b)] ≤ (1 + 3ε)∥a− b∥.

Proof. The vertex set of our graph consists of the center points of all non-empty cells of the
quad-tree as well as the point sets A ∪ B. At each level i of the tree, the total number of
non-empty cells of level i is no more than n. Since our spanner contains the center point
of each non-empty cell at all levels, where h = O(log log n), the total number of vertices is
O(n log log n).

Next, we bound the number of edges of our graph. For any cell □, we add two sets
of edges corresponding to two (1 + ε)-spanners S□ and S ′

□. Each one of these spanners
has O(n□ε−d) edges and bounded degree of O(n□ε−d log n) ≤ O(nε−d log n) for cell □. In
each level of the graph, there are at most n points distributed among cells where each point
appears at most once. Therefore, |E| is bounded by a sum over all levels ℓ of the graph:

O(∑
□

n□ε−d) ≤ O(∑
ℓ

nε−d) = O(nε−dh).

The cost of any edge in the spanner G is the Euclidean distance of the two endpoints of
the edge. Therefore, from the triangle inequality, any path from a to b has a cost of at least
the Euclidean distance of a and b; i.e, ϕ(Pa,b) ≥ ∥a− b∥.

Suppose (a, b) have least common ancestor □. Let ξa, ξb be the subcells in S ′
□ which

contain a and b, respectively. Since S ′
□ is a (1 + ε)-spanner, the length of the shortest path

from ξa to ξb is a (1 + ε)-approximation of their Euclidean distance.
Define Pa and Pb to be the shortest paths from a to ξa and b to ξb, respectively, only

taking greedy edges. Then, one path from a to b in the graph is the following path:

P = Pa ◦ P□
a,b ◦ Pb.

For any cell □, define δ□ =
√

dεh−1ℓ□ to be the diameter of the subcells of □. Define δa
and δb to be the diameter of the subcells ξa and ξb. Recall that □ is of level i > 0.

For any □′ ∈ C[□], we note that the shortest path from □′ to □ is bounded above in
length by (1+ ε)∥c□′ − c□∥. Using this, we can bound the length of Pa and Pb by the greedy
paths going directly up the tree:

ϕ(Pa) + ϕ(Pb) ≤
1
2
(δa + δb).

Next, we bound the expected value of δa and δb. For any level j of the tree, the probability
that the least common ancestor of (a, b) is of level j is

Pr [lev(a, b) = j] ≤
√

d∥a− b∥
ℓj+1

.

As a result,

E [δa] ≤
h

∑
j=1

Pr [lev(a, b) = j] .δj+1 ≤
h

∑
j=1

√
d∥a− b∥
ℓj+1

.
εℓj+1

2
√

dh
=

ε

2
∥a− b∥.



An analogous claim can be made for δb. Finally, as discussed before, the cost of the shortest
path between cξa , cξb is bounded above by (1 + ε)∥cξa − cξb∥. Using triangle inequality,

∥cξa − cξb∥ ≤ ∥a− b∥+ 1
2
(δa + δb)

Combining all these bounds,

E [ϕ(Pa,b)] ≤ E [ϕ(P)] = E
[
ϕ(Pa) + ϕ(P□

ab) + ϕ(Pb)
]

≤ E

[
(1 + ε)∥cξa − cξb∥+

1
2
(δa + δb)

]
≤ (1 + ε)∥a− b∥+ 1

2
((1 + ε) + 1)E [δa + δb]

≤
(
(1 + ε) +

(2 + ε)ε

2

)
∥a− b∥ ≤ (1 +

5
2

ε)∥a− b∥.

where the last inequality assumes ε ≤ 1. If not, then ε can be substituted for 1 without loss
of generality. To obtain (1 + ε)-approximation instead, one can rescale ε by 2

5 .

LEMMA 4.2. For any edge (u, v) ∈ E, |y(u)− y(v)| ≤ O(d3/2hε−1)∥u− v∥.

Proof. For any edge (u, v) ∈ E, consider the following cases.

1. Greedy edges: If (u, v) is an greedy edge, by the definition, there exists a cell □ such
that u, v ∈ I□. Let ( f□, y□) denote the flow and the set of dual weights computed on
the local instance I□. From the properties of exact primal-dual minimum cost flow,
|y□(u)− y□(v)| ≤ ∥u− v∥. Therefore, by the dual assignment of our algorithm,

|y(u)− y(v)| = |(y□(u)− y□(c□) + y(c□))− (y□(v)− y□(c□) + y(c□))| ≤ ∥u− v∥.

2. Shortcut edges: If (u, v) is a shortcut edge, then there exists a cell □ of level i and
children □1,□2 ∈ C[□] such that u (resp, v) is the center point of a subcell ξ1 ∈ S[□1]
(resp. ξ2 ∈ S[□2]); i.e, u = cξ1 (resp. v = cξ2). Observe that cξ1 ∈ I□1 and cξ2 ∈ I□2 .
Recall that S□1 (resp. S□2) denotes the (1 + ε)-spanner constructed on the local
instance I□1 (resp. I□2). Let P = ⟨cξ1 = p1, . . . , pk1 = c□1⟩ be the path in S□1 from
cξ1 to c□1 . Similarly, let Q = ⟨cξ2 = q1, . . . , qk2 = c□2⟩ be the path in S□2 connecting
cξ1 to c□1 . Finally, note that c□1 , c□2 ∈ I□ and let R = ⟨c□1 = r1, . . . , rk3 = c□2⟩ be the
path connecting the two center points c□1 and c□2 in S□. All the edges in the paths
P, Q, and R are greedy edges. By the triangle inequality,

|y(cξ1)− y(cξ2)| ≤ |y(cξ1)− y(c□1)|+ |y(c□1)− y(c□2)|+ |y(c□2)− y(cξ2)|

≤
(

k1−1

∑
j=1
|y(pj)− y(pj+1)|

)
+

(
k3−1

∑
j=1
|y(ri)− y(ri+1)|

)

+

(
k2−1

∑
j=1
|y(qj+1)− y(qj)|

)
≤ (1 + ε)∥cξ1 − c□1∥+ (1 + ε)∥c□1 − c□2∥+ (1 + ε)∥c□2 − cξ2∥.



Since ξ1 and ξ2 are subcells of children □1 and □2 of □, their side-lengths are both
εℓ□1
2dh . Thus, the Euclidean distance of their centers is ∥cξ1 − cξ2∥ ≥

εℓ□1
2dh . Furthermore,

∥cξ1 − c□1∥ ≤
√

dℓ□1 and ∥c□2 − cξ2∥ ≤
√

dℓ□2 . Combining these inequalities gives

∥cξ1 − c□1∥ ≤
√

dℓ□1 ≤
2d3/2h

ε
∥cξ1 − cξ2∥,

and the analogous for ∥c□2 − cξ2∥. By triangle inequality, we can extend this to
conclude ∥c□1 − c□2∥ ≤ O( d3/2h

ε )∥cξ1 − cξ2∥. Therefore,

|y(cξ1)− y(cξ2)| ≤ (1 + ε)∥cξ1 − c□1∥+ (1 + ε)∥c□1 − c□2∥+ (1 + ε)∥c□2 − cξ2∥

≤ O
(

d3/2h
ε

)
∥cξ1 − cξ2∥.

LEMMA 4.3. ∑(u,v)∈E σ(u, v)∥u− v∥ ≤ ∑u∈V y(u)η(u).

Proof. By construction, for any shortcut edge (u, v) ∈ E, σ(u, v) > 0. For any greedy edge
(u, v) ∈ E, there exists a unique cell □ such that u, v ∈ I□ and the spanner S□ contains
the edge (u, v). By the dual assignment, if σ□(u, v) > 0, then

y(u)− y(v) = y□(u)− y□(v) = ∥u− v∥.

Therefore, for any edge (u, v) carrying a positive flow in σ, y□(u)− y□(v) = ∥u− v∥. As a
result,

∑
(u,v)∈E

σ(u, v)∥u− v∥ = ∑
(u,v)∈E

σ(u, v)(y(u)− y(v))

= ∑
w∈V

(
∑

z:(w,z)∈E
σ(w, z)

)
y(w)

= ∑
w∈V

y(w) · η(w).

D The Multiplicative Weight Update Framework
At a very high level, the multiplicative weights method uses an approximate oracle to
estimate the best flow and iteratively updates the flow using the oracle as a rough guide.
In our setting, we construct an undirected graph G = (V, E) with A ∪ B ⊆ V that
is a (randomized) spanner of A ∪ B under Euclidean distance and we compute an ε-
approximate MCF on G . The approximate oracle is a greedy algorithm GREEDY which
routes flow along tree edges. This greedy tree flow leads to high costs for some pairs
which have positive flow, and the multiplicative weights method gradually reroutes the
flow along shorter paths between these two points in the graph.



We use complementary slackness to guide which edges are valuable. Using the LP
duality, the MCF problem can be formulated as computing dual weights y maximizing
∑v∈V η(u)y(u) subject to y(u) − y(v) ≤ ∥u − v∥ for all (u, v) ∈ E. Equivalently, the
collection of constraints can be expressed as max(u,v)∈E

y(u)−y(v)
∥u−v∥ ≤ 1. We refer to the

expression y(u)−y(v)
∥u−v∥ as the slack of an edge (u, v). By complementary slackness, if (σ, y)

is an optimal primal-dual pair, then σ(u, v) is positive when the slack of (u, v) is 1. In view
of this observation, if the slack of a directed edge e is large, the MWU method increases the
flow along e.

We transform the undirected graph G into a directed graph G = (V, E) that takes the
vertices of G and adds both directed edges for every undirected edge of G . Additionally
set η(u) to be the original demand of u ∈ A ∪ B and 0 for u ∈ V \ (A ∪ B). The cost of an
edge e = (u, v) in G, denoted by |e|, is ∥u− v∥. Given G, a demand function η : V → R,
and a parameter ε > 0, the MWU algorithm computes a flow function σ : E → R≥0 that
satisfies the demand and ¢(σ) ≤ (1 + ε)w∗, where w∗ is the min-cost flow for (G, η). The
algorithm assumes the existence of a greedy algorithm GREEDY(G, η) that computes a
primal-dual pair (σ, y) on G, where σ : E → R is a flow function that routes the demand
η, i.e. ∑v:(u,v)∈E σ(u, v) − σ(v, u) = η(u) for all u ∈ V, and y : V → R is a dual weight
function that satisfies the following two conditions:

(C1) |y(u)− y(v)| ≤ ρ∥u− v∥ ∀(u, v) ∈ E,

(C2) ∑(u,v)∈E σ(u, v)∥u− v∥ ≤ ∑u∈V y(u)η(u),

where ρ > 0 is a parameter. (C1) guarantees ρ-approximate feasibility of the computed
dual weights. (C2) is a strong-duality condition used to prevent GREEDY from returning
trivial dual weights, as well as upper bound the cost of the flow σ.

We now describe the algorithm in more detail. Using one of the known algorithms
[15, 27], we first compute an estimate of the OT cost within a d log n factor in O(n log n)
time, i.e. it returns a value g̃ such that w∗ ≤ g̃ ≤ (d log n) · w∗. We refer to this algorithm
as LOGAPPROX. Using this estimate, we perform an exponential search in the range[

g̃
d log n , g̃

]
with increments of factor (1 + ε). For any guess value g, the MWU algorithm

either returns a flow σ : E→ R with ¢(σ) ≤ (1+ ε)g or returns dual weights as a certificate
that g < w∗. We now describe the MWU algorithm for a fixed value of g.

Set T = 4ρ2ε−2 log |E|. The algorithm runs in at most T iterations, where in each
iteration, it maintains a pre-flow vector σt such that ¢(σt) ≤ g. The flow σt need not route
all demand successfully. Initially, set σ0(e) = g

|e|·|E| so that ¢(σ0) ≤ g. For each iteration t,
define the residual demand of iteration t, denoted by ηt

res, as

ηt
res(u) = η(u)− ∑

v:(u,v)∈E
(σt−1(u, v)− σt−1(v, u)).

Let (σt
res, yt) be the primal-dual flow computed by the GREEDY for the residual demands

ηt
res. Recall that (σt

res, yt) satisfies (C1) and (C2). If ⟨ηt
res, yt⟩ ≤ εg, then (C2) implies that

¢(σt
res) ≤ εg. Since σt

res routes the residual demands, the flow function σt = σt−1 + σt
res



routes the original demand η with a cost ¢(σt) ≤ (1 + ε)g. In this case, the algorithm
returns σt as the desired flow and terminates.

Otherwise, ⟨ηt
res, yt⟩ > εg and we update the flow along each edge e = (u, v) of G

based on the slack st(u, v) = yt(u)−yt(v)
∥u−v∥ of e with respect to dual weights yt:

σt(u, v)← exp
(

ε

2ρ2 st(u, v)
)
· σt−1(u, v).

We emphasize that flow along an edge is increasing if the slack is large. Then, one
needs to rescale σt so that its cost is bounded above by g. If the algorithm does not
terminate within T rounds, we conclude that the value of g is smaller than the MCF cost.
We increase g by a factor of (1 + ε) and repeat the MWU algorithm.

Algorithm 1 Minimum-Cost-Flow(G, η, ε):
g̃← LOGAPPROX(G, η)

g← g̃
d log n , T = 4ρ2ε−2 log |E|

repeat
σ0(u, v) = σ0(v, u) = g

∥u−v∥·|E| ∀(u, v) ∈ E
for t = 1, . . . , T do

ηt
res(u)← η(u)−

(
∑v:(u,v)∈E

[
σt−1(u, v)− σt−1(v, u)

])
∀u ∈ V

(σt
res, yt)← GREEDY(G, ηt

res)
if ⟨ηt

res, yt⟩ ≤ ε · g then
return σt−1 + σt

res
end if
st(u, v)← yt(u)−yt(v)

∥u−v∥ ∀(u, v) ∈ E
σt(u, v)← exp(βst(u, v)) · σt−1(u, v)
Rescale σt so ¢(σt) ≤ g

end for
g← (1 + ε)g

until flow is returned

The following Lemma regarding Algorithm 1 is proven in [50], which we follow closely
in this work for its use of primal-dual oracles.

LEMMA D.1. Given an O(d log n) approximate guess g of the minimum cost flow value and an
algorithm GREEDY which computes a primal-dual pair satisfying conditions (C1) and (C2) in
Tρ(n) time, a (1 + ε)-approximate minimum cost flow on G can be computed in O((Tρ(n) +

|E|) ρ2 log n
ε2 log(d log n)) time.

D.1 Recovering a Transport Map To be precise, the multiplicative weights algorithm
we have described so far produces a min-cost flow on the (1 + ε)-spanner in expectation.
A true transportation map is over A × B. We briefly describe the procedure of [29] for
completeness, which takes a flow on some approximate spanner with bounded degree
and produces a transportation map. The basic idea is to iteratively skip over any vertex
which has flow passing through. Algorithm 2 shows how to shortcut vertices.



Algorithm 2 Recover-Transport-Map(G, A, B, τ):
Let f (u, v) = τ(u, v)− τ(v, u)
while there exists v ∈ V \ (A ∪ B) where f (u, v), f (v, w) > 0 for some u, w do

Add (u, w) to G if (u, w) ̸∈ E
f (u, w)← min{ f (u, v), f (v, w)}
Subtract min{ f (u, v), f (v, w)} from both f (u, v) and f (v, w)
Remove (u, v) from G if f (u, v) = 0 (analogous for (v, w))
if deg(u) > deg(v) and u ̸∈ A ∪ B (analogous for w) then

Shortcut u (or w) in next iteration of while loop
end if

end while

LEMMA D.2. Given a graph G = (V, E) with A ∪ B ⊆ V and maximum degree of degmax, as
well as a flow τ over G which routes the demand of A ∪ B, Algorithm 2 returns a transportation
plan over A× B in O(|E| · degmax) time.
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