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Abstract

Roundtrip spanners are the analog of spanners in directed graphs, where the roundtrip metric
is used as a notion of distance. Recent works have shown existential results of roundtrip span-
ners nearly matching the undirected case, but the time complexity for constructing roundtrip
spanners is still widely open.

This paper focuses on developing fast algorithms for roundtrip spanners and related prob-
lems. For any n-vertex directed graph G with m edges (with non-negative edge weights), our
results are as follows:

• 3-roundtrip spanner faster than APSP: We give an Õ(m
√
n)-time algorithm that

constructs a roundtrip spanner of stretch 3 and optimal size O(n3/2). Previous construc-
tions of roundtrip spanners of the same size either required Ω(nm) time [Roditty, Thorup,
Zwick SODA’02; Cen, Duan, Gu ICALP’20], or had worse stretch 4 [Chechik and Lifshitz
SODA’21].

• Optimal roundtrip emulator in dense graphs: For integer k ≥ 3, we give an
O(kn2 logn)-time algorithm that constructs a roundtrip emulator of stretch (2k − 1) and
size O(kn1+1/k), which is optimal for constant k under Erdős’ girth conjecture. Previ-
ous work of [Thorup and Zwick STOC’01] implied a roundtrip emulator of the same size
and stretch, but it required Ω(nm) construction time. Our improved running time is
near-optimal for dense graphs.

• Faster girth approximation in sparse graphs: We give an Õ(mn1/3)-time algorithm
that 4-approximates the girth of a directed graph. This can be compared with the previous
2-approximation algorithm in Õ(n2,m

√
n) time by [Chechik and Lifshitz SODA’21]. In

sparse graphs, our algorithm achieves better running time at the cost of a larger approxi-
mation ratio.
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1 Introduction

A t-spanner of a graph is a subgraph that approximates all pairwise distances within a factor of
t. Spanners are useful in many applications since they can be significantly sparser than the graphs
they represent, yet are still a good representation of the shortest paths metric. As many algorithms
are much faster on sparse graphs, running such algorithms on a spanner rather than the graph itself
can be significantly more efficient, with only a slight loss in approximation quality.

For undirected graphs, the spanner question is very well understood. It is known that for all
integers k ≥ 2, every n-vertex undirected (weighted) graph contains a (2k−1)-spanner on O(n1+1/k)
edges [ADDJS93] and this is optimal under Erdős’ girth conjecture [TZ01].

For directed graphs, however, there can be no non-trivial spanners under the usual shortest paths
metric: consider for instance a complete bipartite graph, with edges directed from one partition to
the other. Omitting a single edge (u, v) would cause the distance d(u, v) to go from 1 to ∞.

Nevertheless, one can define a notion of a spanner in directed graphs based on the roundtrip
metric defined by Cowen and Wagner [CW04]: d(u⇌ v) = d(u, v) + d(v, u). A roundtrip t-spanner
of a directed graph is a subgraph that preserves all pairwise roundtrip distances within a factor of
t.

Cen, Duan and Gu [CDG20] showed that basically the same existential results are possible for
roundtrip spanners as in undirected graphs: for every integer k ≥ 2 every n-vertex directed graph
contains a (2k − 1)-roundtrip spanner on O(kn1+1/k log n) edges. For the special case of k = 2,
it was known earlier that every n-vertex graph contains a 3-roundtrip spanner on O(n

√
n) edges

[RTZ08].
The known results on algorithms for constructing spanners and roundtrip spanners differ drasti-

cally however. Baswana and Sen [BS07] presented a randomized linear time algorithm for computing
an O(kn1+1/k)-edge (2k−1)-spanner of any n-vertex weighted graph (which was later derandomized
[RTZ05]). Meanwhile, the algorithms for constructing roundtrip spanners are much slower.

The first construction of roundtrip spanners was given by Roditty, Thorup and Zwick in [RTZ08],
where they gave the construction of (2k + ε)-roundtrip spanners on Õ((k2/ε)n1+1/k) edges for any
graph with edge weights bounded by polyn (log nW dependence in the size otherwise) in O(mn)
time. Later, Zhu and Lam [ZL18] derandomized this construction and improved the sparsity of
the spanner to contain Õ((k/ε)n1+1/k) edges. Most recently, Chechik and Lifshitz constructed a
4-roundtrip spanner on O(n3/2) edges in Õ(n2) time. All currently known results on constructions
of roundtrip spanners are summarized in Table 1.

Notice that for all cases with running time faster than mn, the stretch is suboptimal for the
used sparsity. This motivates the following:

Question: What is the best construction time for roundtrip spanners of optimal stretch-sparsity
tradeoff?

Alongside the construction of roundtrip spanners, another closely related problem is approximat-
ing the girth (i.e. the length of the shortest cycle) in directed graphs. The first nontrivial algorithm
is by Pachocki, Roditty, Sidford, Tov, Vassilevska Williams [PRSTV18], who gave an O(k log n)
approximation algorithm running in Õ(mn1/k) time. Further improvements by [CLRS20; DV20] fol-
lowed. Most recently, Chechik and Lifshitz [CL21] obtained a 2-approximation in Õ(min{n2,m

√
n})

time, which is optimal for dense graphs. The current known results are summarized in Table 2.
While the 2-approximation result is optimal for dense graphs, and while a 2− ε-approximation

is (conditionally) impossible in O((mn)1−δ) time [DV20], it is unclear what other approximations

1



(2.5? 3?) are possible with faster algorithms. This motivates the following question:

Question: what is the best running time-approximation tradeoff for the girth of directed graphs?

1.1 Our Results

Throughout this paper, we consider directed graphs on n vertices and m edges with non-negative
edge weights. We use Õ(·) to hide poly log(n) factors. All our algorithms are Las Vegas randomized.

Theorem 1.1 There is a randomized algorithm that computes a 3-roundtrip spanner of O(n3/2)
size in Õ(m

√
n) time.

This can be compared with the 4-roundtrip spanner of O(n3/2) size constructable in O(n2 log n)
time from [CL21].

Alongside spanners, another important object of study are emulators: sparse graphs that approx-
imate all pairwise distances; the difference here is that emulators are not required to be subgraphs,
and can be weighted even if the original graph was unweighted. Similar to roundtrip spanners being
analogs of spanners in directed graphs, we consider roundtrip emulators which are the analogs of
emulators in directed graphs. While emulators are very well studied in undirected graphs [ACIM99;
DHZ96; Woo06; Pet09; BKMP10; BV15; BV16; AB17; HP18; LVWX22; KP23], the authors are not
aware of any results, for the roundtrip metric. The only known construction of roundtrip emulators
is implied from using the roundtrip metric in Thorup-Zwick’s distance oracle in [TZ01], which has
(2k − 1)-stretch and O(kn1+1/k) edges but requires Õ(mn) construction time.

We obtain a very fast algorithm that constructs essentially optimal roundtrip emulators (up to
the Erdős girth conjecture).

Theorem 1.2 For integers k ≥ 3, there is a randomized algorithm that computes a (2k−1)-roundtrip
emulator of O(kn1+1/k) size in O(kn2 log n) time.

While the result is only for roundtrip emulators, rather than spanners, it achieves a much faster
running time than any result on roundtrip spanners with optimal approximation-size tradeoff. This
is the first algorithm that achieves a sub-mn running time for the problem.

We next focus on the closely related question of girth approximation. We prove:

Theorem 1.3 There is a randomized algorithm that computes a 4-multiplicative approximation of
the girth of a directed graph in Õ(mn1/3) time.

Let us compare with the previous known directed girth approximation algorithms. Compared
with the 2-approximation in Õ(n2,m

√
n) time from [CL21], Theorem 1.3 achieves a better running

time for m ≤ o(n5/3) while raising the approximation ratio to 4. Dalirrooyfard and Vassilevska W.

[DV20] gave for every constant ε > 0, a (4 + ε)-approximation algorithm running in Õ(mn
√
2−1)

time. Our algorithm removes the ε from the approximation factor and further improves the running
time.

1.2 Paper organization

After introducing useful notations and terminologies in Section 2, we give a high level overview
of our techniques in Section 3. Then, in Section 4 we describe our 3-roundtrip spanner algorithm
(Theorem 1.1). In Section 5 we describe our roundtrip emulator algorithm. In Section 6 we describe
our girth approximation algorithm. We conclude with a few open questions in Section 7.

2



Citation Stretch Sparsity Time

Roditty, Thorup, Zwick [RTZ08] △ 2k + ε Õ
(

k2

ε n
1+1/k

)

O(mn)

Pachocki, Roditty, Sidford, Tov,
Vassilevska W. [PRSTV18]

O(k log n) Õ(n1+1/k) Õ(mn1/k)

Chechik, Liu, Rotem, Sid-
ford [CLRS20]

O(k log k) Õ(n1+1/k) Õ(m1+1/k)

Cen, Duan, Gu [CDG20] 2k − 1 Õ(kn1+1/k) Õ(mn logW )

Chechik, Liu, Rotem, Sid-
ford [CLRS20] △ 8 + ε Õ(n3/2/ε2) Õ(m

√
n)

Dalirrooyfard and Vassilevska
W. [DV20] △ 5 + ε Õ(n3/2/ε2) Õ(m

√
n)

Chechik and Lifshitz [CL21] 4 O(n3/2) Õ(n2)

New 3 O(n3/2) Õ(m
√
n)

Table 1: Known results on constructions of roundtrip spanners on a weight directed graph on n
vertices and m edges with edge weight bounded by W . Results marked with △ are subsumed by
other results.

Citation Approximation Factor Time

Pachocki, Roditty, Sid-
ford, Tov, Vassilevska W.
[PRSTV18]

O(k log n) Õ(mn1/k)

Chechik, Liu, Rotem, Sidford
[CLRS20] △ 3 Õ(m

√
n)

Chechik, Liu, Rotem, Sidford
[CLRS20]

O(k log k) Õ(m1+1/k)

Dalirrooyfard and Vassilevska
W. [DV20] △ 4 + ε Õ(mn

√
2−1)

Dalirrooyfard and Vassilevska
W. [DV20] △ 2 + ε Õ(m

√
n)

Dalirrooyfard and Vassilevska
W. [DV20] △ 2 Õ(mn3/4) (unweighted)

Chechik and Lifshitz [CL21] 2 Õ(min{n2,m
√
n})

New 4 Õ(mn1/3)

Table 2: Known results on girth approximation on a weight directed graph on n vertices and m
edges with edge weight bounded by W . Results marked with △ are subsumed by other results.
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2 Preliminaries

We use Õ(·) to hide poly log(n) factors, where n is the number of vertices in the input graph.
In this paper, the input graph G = (V,E) is always a weighted directed graph with vertex set

V of size |V | = n and edge set E of size |E| = m with non-negative edge weights. Without loss
of generality, we assume G does not have parallel edges. We use wt(u, v) to denote the weight of
the directed edge (u, v) ∈ E. For any two vertices u, v ∈ V , we use dG(u, v) to denote the distance
(length of the shortest path) from u to v in G, and we use dG(u ⇌ v) := dG(u, v) + dG(v, u) to
denote the roundtrip distance between u and v. When the context is clear, we simply use d(u, v)
and d(u⇌ v). For a subset of vertices W ⊆ V , we use G[W ] to denote the subgraph of G induced
by the vertex set W .

The girth of G is the length (total edge weight) of the shortest cycle in G. We say a graph
H = (V,E′) is an α-roundtrip emulator of graph G = (V,E), if for every two vertices u, v ∈ V it
holds that dG(u⇌ v) ≤ dH(u⇌ v) ≤ α · dG(u⇌ v). Furthermore, if H is a subgraph of G, we say
H is an α-roundtrip spanner of G.

Without loss of generality, we may assume G is strongly-connected, since otherwise we can run
the algorithm for girth approximation (or roundtrip spanner/emulator) on each strongly-connected
component. In addition, we may assume the maximum degree of G is bounded by O(m/n). This
is due to the following regularization lemma shown in [CLRS20]. This assumption will be used in
Section 6.

Lemma 2.1 (Regularization [CLRS20]) Given a directed weighted graph G = (V,E) on n vertices
and m edges, one can construct a graph H on O(n) vertices and O(m) edges with non-negative edge
weights and maximum degree O(m/n) in O(m) time such that all of the following holds:

1. All roundtrip distances between pairs of vertices in G are the same in H as in G.

2. Given a cycle in H, one can find a cycle of the same length in G in O(m) time.

3. Given a subgraph H ′ in H, one can find in O(m) time a subgraph G′ of G such that |E(G′)| ≤
|E(H ′)| and the roundtrip distances in G′ are the same as in H ′.

In our algorithms, we often use Dijkstra’s algorithm to compute single-source distances. On
a weighted directed graph G = (V,E), we use out-Dijkstra from a source s ∈ V to refer to Dijk-
stra algorithm computing distances d(s, ·) from s, and use in-Dijkstra from s to refer to Dijkstra
algorithm computing distances d(·, s) into s.

3 Technical Overview

3.1 Previous Work

Throughout this paper, our techniques are based on the following key observation introduced in
[CL21].

Lemma 3.1 (Key Observation [CL21]) Let G = (V,E) be a weighted directed graph with nonnegative
edge weights. For vertices u, v, r ∈ V , if

2 · d(v, r) + d(r, u) ≤ 2 · d(v, u) + d(u, r), (1)
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then
d(u⇌ r) ≤ 2 · d(u⇌ v).

v

ur

Figure 1: A illustration of Lemma 3.1 with u, v, r ∈ V satisfying Eq. (1). The red cycle u v  u
can be 2-approximated by the cycle u v  r  u highlighted green.

An important property of the above observation is that Eq. (1) is symmetric with respect to
the roles of u and r. This symmetry is crucial to the analysis of the applications of Lemma 3.1 in
the previous work [CL21] as well as in our new algorithms, so we first describe it in more details as
follows.

The Symmetry Argument Consider the following routine that sparsifies a graph G = (V,E)
on n vertices using a random sample S ⊆ V . For every vertex v ∈ V , we check for every vertex
s ∈ S ∩N(v) and u ∈ N(v) where N(v) denotes the out neighborhood of v, if 2d(v, s) + d(s, u) ≤
2d(v, u) + d(u, s) then remove the edge (v, u). We say that we use the set S as eliminators to
perform the sparsification since we are comparing the distance d(v, u) using the distance information
involving s ∈ S.

For any two neighbors u, u′ ∈ N(v) (possible u = u′), notice that the condition involving v, u, u′

compares the distances 2d(v, u) + d(u, u′) against 2d(v, u′) + d(u′, u), which is the same as if we
switch the roles of u and u′. This means that either u eliminates u′ or u′ eliminates u. (We say “u
eliminates u′” meaning that, if u ∈ S, then the edge (v, u′) will be removed, namely u′ is eliminated
from N(v).) So given a random u ∈ N(v), in expectation half of the pairs (u, u′) falls in the case
where u can eliminate u′ and additionally u can eliminate u itself. Thus, if N(v) ∩ S 6= ∅, then
in expectation the procedure will remove at least |N(v)|/2 edges. This implies that the graph
sparsification can effectively remove a constant fraction of the edges adjacent to the vertices with
high out-degree. More specifically, since on expectation, the sample S can hit vertex sets with size
Ω(n/|S|), this procedure can remove a constant fraction of the outgoing edges adjacent to vertices
with degree Ω(n/|S|). So if we repeat this process Θ(log n) rounds, on expectation we can reduce
the out-degree of every vertex to at most O(n/|S|).

Applications of the key observation Now we are ready to explain how the above Lemma 3.1
is useful for constructing roundtrip spanners and approximating directed cycles.

1. Girth approximation: reduce search space. Suppose we can take a small random subset
of vertices S ⊆ V and for each vertex s ∈ S and set the current girth estimate as the length
of the shortest cycle passing through any vertex in S. Then if r ∈ S, Lemma 3.1 shows that
we no longer have to consider the shortest cycle passing through v and u satisfying Eq. (1).
This is because the shortest cycle passing through u and v can already be 2-approximated by
the shortest cycle passing through r. Then if we want to search for cycles passing through v
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that cannot be 2-approximated, we would not need to consider the vertex u. Thus, using the
sample S, we can compute a pruned vertex set B(v) ⊆ V that contains all the vertices u ∈ V
such that Eq. (1) does not hold for any r ∈ S. By the symmetry argument, each sample
that hits the set B(v) can reduce the size of B(v) by a constant fraction. So over Θ(log n)
rounds, we can obtain a pruned set of size roughly O(n/|S|). This technique is used in the
2-approximation in [CL21] and will be used in our algorithm for computing a 4-approximation
of the girth in Section 6.

2. Roundtrip spanners: graph sparsification. Suppose we take a random subset S ⊆ V
and add all the in/out shortest path tree from S to our spanner H. We apply Lemma 3.1 to
the vertices u, v, r ∈ V where u, r are out-neighbors of v. If r ∈ S, Lemma 3.1 implies that
we can delete the edge (v, u) since the shortest cycle containing (v, u) can be 2-approximated
by the cycle passing through r and u, which is already added to the spanner H. As explained
previously by the symmetry argument, in expectation we can reduce the out-degree of every
vertex to roughly O(n/|S|) if we repeat this process for Θ(log n) rounds. This technique was
used in the construction of 4-roundtrip spanners in [CL21] and will be used in our construction
of 3-roundtrip spanner in Section 4 and our (2k − 1)-roundtrip emulator in Algorithm 2.

3.2 Our Techniques

Our techniques consist of a collection of extensions to the techniques introduced in [CL21]. We now
highlight the novel components in each of our algorithms.

3-Roundtrip Spanner in Õ(m
√
n) Time Our algorithm follows from a modification of Chechik

and Lifshitz’s [CL21] 4-roundtrip spanner algorithm, which was based on the graph sparsification
approach mentioned earlier. Our new idea lies in a more careful analysis of the stretch of the
spanner: instead of directly bounding the roundtrip distance dH(u⇌ v) between vertices u, v in the
spanner H as Chechik and Lifshitz did, we separately bound the one-way distances dH(u, v), dH (v, u)
and add them up. After a slight change in their algorithm (namely, by computing distances in the
original graph rather than in the sparsified graph in each round), this analysis enables us to improve
the stretch from 4 to 3.

(2k − 1)-Roundtrip Emulator in Õ(n2) Time The celebrated approximate distance oracle
result of Thorup and Zwick [TZ01] immediately yields (2k−1)-emulators of O(kn1+1/k) size for any
metric. But a straightforward implementation of their generic algorithm in the roundtrip metric
would require computing single source shortest paths from all vertices, in Õ(mn) total time. For
the easier case of undirected graphs, [TZ01] reduced the construction time to O(kmn1/k), but
unfortunately these techniques based on balls and bunches do not yield a speedup in our roundtrip
distance setting.

Our faster roundtrip emulator algorithm combines Thorup and Zwick’s technique [TZ01] with
the graph sparsification approach of [CL21]. The intuition is that, since the bottleneck of the
generic Thorup-Zwick algorithm lies in computing single source shortest paths, a natural idea is to
use [CL21]’s approach to gradually sparsify the graph so that Dijkstra’s algorithm can run faster.
More specifically, recall that the Thorup-Zwick algorithm takes a sequence of nested vertex samples
S1 ⊆ · · · ⊆ Sk = V which serve as intermediate points for routing approximate shortest paths.
In our case, these vertex samples also play the same role as in the graph sparsification approach

6



described earlier, where short cycles going through these vertex samples can approximate the cycles
we care about. This results in a multi-round algorithm that interleaves graph sparsification steps
and running Dijkstra from vertices of Si (with gradually increasing size) in Õ(n2) total time. It is not
obvious that the (2k− 1)-stretch of Thorup-Zwick still holds after adding these graph sparsification
steps, but it turns out the stretch analysis of Thorup-Zwick fits nicely with the cycle approximation
arguments, and with a careful analysis we are still able to show (2k − 1) stretch when k ≥ 3.

For some technical reason related to the sampling argument of Thorup-Zwick, we had to slightly
simplify the graph sparsification techniques of [CL21], in order to avoid an undesirable extra loga-
rithmic factor in the sparsity bound of our roundtrip emulator. See the discussion in Remark 4.1
and the proof of Lemma 5.2.

4-Approximation of Girth in Õ(mn1/3) Time Our algorithm vastly extends the technique
of the 2-approximate girth algorithm in Õ(min{n2,m

√
n}) time by Chechik and Lifshitz [CL21].

In the 2-approximation algorithm, one takes a sample S of size O(
√
n) and uses in/out Dijkstra’s

to exactly compute the shortest cycle going through every s ∈ S. Then using S as eliminators,
compute for every vertex v ∈ V a pruned vertex set B(v) of size O(

√
n), and search for short cycles

from v on G[B(v)]. A natural attempt to improve the running time is to generalize this framework
to multiple levels: take a sequence of vertex samples of increasing sizes S1, . . . , Sk−1, Sk = V and
compute a sequence of pruned vertex subsets V = B1(v), B2(v), . . . , Bk(v) of decreasing sizes for
every v, so that one can run Dijkstra from/to every vertex in Si on G[Bi(v)] in Õ(mn1/k) time.
However, it is unclear how to do this since one can no longer check the condition Eq. (1) due to not
having all the distance information from/to every vertex s ∈ Si, and thus we cannot compute the
sets Bi(v) as desired.

In this work we are able to implement the above plan for k = 3, obtaining a 4-approximation girth
algorithm in Õ(mn1/3) time. We deal with the problem of not having enough distance information
to compute B3(v) by using a certain distance underestimate obtained from the distance information
from S1, and enforcing a stricter set of requirements on the vertices that we explore, so that we
always have their distance information available. We also apply more novel structural lemmas about
cycle approximation that extend the key observation Lemma 3.1 of [CL21] in various ways, which
may be of independent interest. As a result, our 4-approximation algorithm becomes more technical
than the previous 2-approximation algorithm in Õ(m

√
n) time.

Here, we highlight the key structural lemma (Lemma 6.16) that enabled us to overcome the
above described difficulty. It is illustrated in the following Fig. 2, which can be viewed as an
extension of Lemma 3.1 from 3 vertices to 4 vertices. As illustrated, if there exists some vertex r2
that is in a short cycle with v but not in a short cycle with u, then we can find some vertex r1 such
that the cycle v  r2  r1  u  v (highlighted in green) can approximate the shortest cycle
passing through u and v (the cycle in red). Then similar to how we can use Lemma 3.1, we can
ignore the vertex u in our search for the shortest cycle passing through v.

7



v

ur2

r1

Figure 2: If there exists a vertex r2 that is in a short cycle with v but not in a short cycle with
u, then we can find a vertex r1 such that the cycle passing through v  r2  r1  u (the cycle
highlighted in green) can approximate the shortest cycle passing through u and v (the cycle in red).

Furthermore, we note that we had to introduced a number of technicalities and a new structural
theorem just to implement our proposed generalization for k = 3. So it is entirely unclear how
to further generalize this approach for k ≥ 4. Moreover, even if one successfully implements the
proposed generalization naively, one would only obtain a 2k−1-approximation in Õ(mn1/k) time,
which is far from being desirable.

4 3-Roundtrip Spanner

In this section, we present our algorithm for constructing a 3-roundtrip spanner with O(n3/2) edges
in time Õ(m

√
n) (Theorem 1.1). Our algorithm closely follows the previous Õ(n2)-time 4-roundtrip

spanner algorithm by Chechik and Lifshitz [CL21], but we use a more careful analysis to improve
the stretch from 4 to 3.

4.1 Algorithm and stretch analysis

Our algorithm (see pseudocode in Algorithm 1) has a similar structure as in [CL21]: We iteratively
sample vertex subsets Si ⊆ V with geometrically increasing expected sizes E[|Si|] up to

√
n. In each

iteration i, we add the shortest path trees from/to every s ∈ Si into the spanner, and sparsify the
input graph G using the method of [CL21] based on Si (Line 8 – Line 11). Finally, we are able to
sparsify the graph to contain only O(n3/2) edges in expectation, and we will add these remaining
edges to the spanner. Over all iterations, we add a total of 2n · O(

√
n) = O(n3/2) edges to the

spanner, and we only run O(
√
n) instances of Dijkstra which take Õ(m

√
n) total time.

The main difference from [CL21] lies in the sparsification rule at Line 10. Our rule is based on
comparing distances in the original input graph G, while Chechik and Lifshitz’s rule was based on
distances in the sparsified graph Gi.

Remark 4.1 Readers familiar with [CL21] may notice some other technical differences between
Algorithm 1 and [CL21]: in order to remove a log n factor from the spanner size, Chechik and Lif-
shitz [CL21] had to resample Si in case it is “unsuccessful” (i.e., Line 11 did not remove sufficiently
many edges), whereas our Algorithm 1 achieves the same goal without resampling. Another differ-
ence is that we fix the sample rate of each iteration i at Line 5, while [CL21] determines sample
rate based on the current size |E(Gi)|.
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Algorithm 1: 3-roundtrip-spanner(G)

Input: A weighted directed graph G = (V,E)
Output: a 3-roundtrip spanner H ⊆ G

1 H ← (V (G),∅)
2 G0 ← G

3 Let ∆ := ⌈log3/2
√
n⌉, and α := (

√
n)1/∆. // α ∈ [5/4, 3/2] when

√
n ≥ 2

4 for i← 0, 1, . . . ,∆ − 1 do

5 Sample Si ⊆ V by including each vertex with probability αi/n independently
6 Compute dG(s, v), dG(v, s) for all s ∈ Si and v ∈ V using Dijkstra
7 Add to H the shortest path trees in G from/to every vertex in s ∈ Si

8 Gi+1 ← Gi

9 for (x, y), (x, s) ∈ E(Gi) such that s ∈ Si do

10 if 2dG(x, s) + dG(s, y) ≤ 2wt(x, y) + dG(y, s) then

11 Remove the edge (x, y) from Gi+1

12 H ← H ∪E(G∆)
13 return H

These modifications are not essential for obtaining this 3-spanner result. In particular, our
algorithm is equivalent to simply sampling

∑∆−1
i=0 |Si| = O(

√
n) vertices all at once. Nonetheless,

we present it in this way because it leads to cleaner implementation and analysis. Furthermore, it
will be useful later for our emulator algorithm in Section 5 (where we require Si to be uniformly and
independently sampled).

Now we prove the stretch of the spanner constructed by Algorithm 1. Our proof mostly follows
[CL21]; the key difference is that [CL21] estimated dH(u ⇌ v) as a whole, while our improvement
comes from separately estimating dH(u, v) and dH(v, u) and combine them to obtain an upper
bound for dH(u⇌ v).

Lemma 4.2 For any two vertices u, v ∈ V ,

dH(u, v) ≤ 2dG(u, v) + dG(v, u).

As a consequence, dH(u⇌ v) ≤ 3dG(u⇌ v) for any u, v ∈ V .

Proof. Let P denote the shortest path from u to v in G. If P is completely contained in the final
G∆, then by Line 12 clearly dH(u, v) = dG(u, v) and we are done. For the remaining case, consider
any iteration i in which some edge (x, y) of P is removed from Gi+1 at Line 11. By Line 10, there
is a vertex s ∈ Si such that

2dG(x, s) + dG(s, y) ≤ 2wt(x, y) + dG(y, s),

which means

dG(x, s) + dG(s, y) ≤ 2wt(x, y) + dG(y, s)− dG(x, s)

≤ 2wt(x, y) + dG(y, x). (2)

9



Since H contains the shortest path trees in G from s and to s (by Line 7), we have

dH(u, v) ≤ dH(u, s) + dH(s, v)

= dG(u, s) + dG(s, v)

≤ dG(u, x) + dG(x, s) + dG(s, y) + dG(y, v)

≤ dG(u, x) + 2wt(x, y) + dG(y, x) + dG(y, v). (by Eq. (2))

Then, using dG(y, x) ≤ dG(y, v) + dG(v, u) + dG(u, x), we immediately obtain

dH(u, v) ≤ 2
(

dG(u, x) + wt(x, y) + dG(y, v)
)

+ dG(v, u)

= 2dG(u, v) + dG(v, u).

4.2 Analysis of sparsity and running time

Now we analyze the expected size of H and the running time of Algorithm 1. We first prove the
following lemma that bounds the expected number of edges in Gi. From now on we use mi :=
|E(Gi)|. Recall from Line 3 that ∆ = ⌈log3/2

√
n⌉, α = (

√
n)1/∆, and note that α ∈ [5/4, 3/2] when√

n ≥ 2.

Lemma 4.3 For i = 0, . . . ,∆, we have

E[mi] ≤ 2n2/αi.

Proof. In the i-th iteration, we sample Si ⊆ V by including each vertex independently with proba-
bility pi := αi/n. In the following, we focus on a particular vertex x ∈ V , and let degi(x) = |NGi(x)|
denote the out-degree of x in Gi.

For any two out-neighbors vs, vy ∈ NGi(x), we say vs eliminates vy, if the inequality at Line 10
holds for (s, y) := (vs, vy). Observe that the inequality at Line 10 is (essentially) symmetric with
respect to y and s, and one immediately observes that for any two v, v′ ∈ NGi(x) (possibly v = v′),
either v eliminates v′, or v′ eliminates v.1 Then, Line 11 indicates that, for any vs, vy ∈ NGi(x),
if vs ∈ Si and vs eliminates vy, then vy /∈ NGi+1(x). Therefore, degi+1(x) is the number of out-
neighbors of x that are not eliminated by anyone from Si.

For every v ∈ NGi(x), let ev denote the number of v′ ∈ NGi(x) that eliminates v (including v
itself). We have

1 ≤ ev ≤ degi(x) (3)

and
1

|NGi(x)|
∑

v∈NGi
(x)

ev =
degi(x) + 1

2
. (4)

Then, over a uniformly independently sampled set Si of eliminators, we analyze the expected number

1In more detail, by symmetry we can pick (s, y) := (v, v′) or (v′, v) to satisfy 2dG(x, s) + dG(s, y) ≤ 2dG(x, y) +
dG(y, s). Then, the inequality at Line 10 holds due to dG(x, y) ≤ wt(x, y).
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of out-neighbors of x that are not eliminated, as follows:

E
Si

[degi+1(x) | Gi] =
∑

v∈NGi
(x)

(1− pi)
ev

≤ |NGi(x)|
2

· (1− pi)
1 +
|NGi(x)|

2
· (1− pi)

degi(x)

(by convexity of f(x) = (1− pi)
x, and Eqs. (3) and (4))

=
degi(x)

2
· (1− pi + (1− pi)

degi(x))

≤ degi(x)

2
· (1 + e−pi degi(x)).

Multiplying both sides by pi+1,

E
Si

[pi+1 degi+1(x) | Gi] ≤
pi+1 degi(x)

2
· (1 + e−pi degi(x))

=
α

2
(pi degi(x) + pi degi(x)e

−pi degi(x)) (by pi = αi/n)

<
α

2
(pi degi(x) + 1).

Hence,

E[pi+1 degi+1(x)] ≤
α

2
(E[pi degi(x)] + 1).

Since 0 ≤ p0 deg0(x) ≤ 1
n · (n − 1) < 1, by induction we obtain E[pi degi(x)] < α/(2 − α) for all i

(recall α ≤ 3/2 < 2). Summing over all x ∈ V , we obtain

E[mi] =
1

2

∑

x∈V
E[degi(x)] ≤

n

2
· α/(2 − α)

pi
=

α

4− 2α
n2/αi < 2n2/αi.

Now we are ready to present the analysis of the sparsity of H and the running time of our
algorithm.

Sparsity For each iteration i of Algorithm 1, by definition (Line 5) we have expected sample size

E[|Si|] = αi,

and we add the shortest path trees from / to every vertex in s ∈ Si in G, which contain |Si| ·2(n−1)
edges. So summing over all iterations, the number of edges we add in expectation is at most (recall
α ≥ 5/4)

E

[

∆−1
∑

i=0

|Si| · 2(n− 1)

]

= 2(n − 1) ·
logα

√
n−1

∑

i=0

αi =
(2n− 1)(

√
n− 1)

α− 1
< 8n3/2.

In the last step (Line 12), we add all the edges in G∆ to H. By Lemma 4.3, we have

E[|E(G∆)|] ≤ 2n2/α∆ = 2n3/2.

Thus, in expectation we add O(n3/2) edges to H in total as desired.
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Running Time In each iteration i, the bottleneck is at Line 6 where we run |Si| instances of
Dijkstra on G, each taking O(m+ n log n) time. The sparsification steps (Line 8 – Line 11) can be
implemented in O(|Si| · |E(Gi)|) ≤ O(|Si| ·m) time. So in expectation the total time taken by the
algorithm is bounded by

E

[

∆−1
∑

i=0

|Si| ·O(m+ n log n)

]

= O(m+ n log n)

logα
√
n−1

∑

i=0

αi = O(m
√
n+ n

√
n log n).

5 (2k − 1)-roundtrip emulator in nearly quadratic time

In this section, we give the construction of a (2k − 1)-roundtrip emulator on O(kn1+1/k) edges
running in O(kn2 log n) time for k ≥ 3 (Theorem 1.2). Our algorithm does not work for k = 2. (For
k = 2, our 3-roundtrip spanner algorithm from Section 4 has Õ(m

√
n) time complexity, which is

slower than Õ(n2) for any nontrivial input size m≫ n1.5.)

5.1 Algorithm

Our algorithm carefully combines ideas from Thorup-Zwick distance oracle [TZ01] and the graph
sparsification technique introduced in [CL21]. The pseudocode of our algorithm is given in Algorithm 2.
The main body contains (k−1)∆ = Θ(log n) iterations (indexed by i = r∆+ t), divided into (k−1)
rounds (indexed by r ∈ {0, . . . , k − 2}), where each round consists of ∆ iterations (indexed by the
inner loop variable t ∈ {0, . . . ,∆−1}). The i-th iteration samples a vertex subset Si, whose expected
size E[|Si|] gradually increases from 1 in the 0-th iteration to Θ(n(k−1)/k) in the last iteration. In
each iteration we run in/out-Dijkstra from every sampled vertex s ∈ Si on the current (sparsified)
graph Gi ⊆ G. Using the obtained distance information from/to Si, we not only perform the graph
sparsification steps (Line 14–Line 17) as in [CL21], but also compute pivots pi(u) ∈ Si and bunches
Bi(u) ⊆ Si used in Thorup and Zwick’s algorithm [TZ01] (in the roundtrip metric) and adds edges
to the emulator H accordingly (Line 10 – Line 13). The main complication compared to [TZ01] is
that we now have a sequence of (gradually sparsified) graphs Gi involved rather than a single graph
G, and the pivots pi(u) are defined using the distances on the current graph Gi, while the bunches
Bi(u) are defined with respect to the pivot pr∆−1(u) on the graph Gr∆−1 from the previous round
of the outer loop r.

By our parameter setting, we expect each round in the outer loop to roughly decrease the size of
the current graph by a factor of n1/k. After running all (k− 1) rounds, we can show the remaining
graph G(k−1)∆ has O(n1+1/k) edges in expectation, and we add all of them to the emulator H.

5.2 Analysis of sparsity and running time

We can without loss of generality assume k ≤ log n, since otherwise we can run the algorithm
for k = ⌊log n⌋ and still satisfy all the requirements. Recall from Line 3 that ∆ = ⌈log3/2 n1/k⌉,
α := (n1/k)1/∆, and note that α ∈ [5/4, 3/2].

Algorithm 2 has (k − 1)∆ = logα n
1−1/k iterations. It has a similar structure as our earlier

Algorithm 1 for 3-roundtrip spanner (except for the additional Line 10 – Line 13 here). For each
iteration i = r ·∆+ t where r ∈ {0, . . . , k − 2} and t ∈ {0, 1, . . . ,∆ − 1}, by Line 8 we have

E[|Si|] = αi.
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Algorithm 2: (2k − 1)-Emulator(G) (for k ≥ 3)

Input: A weighted directed graph G = (V,E)
Output: A (2k − 1)-roundtrip emulator H of G

1 H ← (V (G),∅)
2 G0 ← G

3 Let ∆ := ⌈log3/2 n1/k⌉, and α := (n1/k)1/∆. // α ∈ [5/4, 3/2] when n1/k ≥ 2

4 Let G−1 = empty graph and p−1(u) := ⊥ for all u ∈ V . // dG−1(u⇌ p−1(u)) = +∞.

5 for r ← 0, . . . , k − 2 do

6 for t← 0, . . . ,∆− 1 do

7 Let i := r∆+ t
8 Sample Si ⊆ V by including each vertex with probability αi/n independently
9 Compute dGi(s, v), dGi (v, s) for all s ∈ Si and v ∈ V using Dijkstra

10 Define pivot pi(u) := argmins∈Si dGi(u⇌ s) for all u ∈ V
11 Define bunch Bi(u) := {s ∈ Si : dGi(u⇌ s) < dGr∆−1

(u⇌ pr∆−1(u))}.
12 for u ∈ V, s ∈ {pi(u)} ∪Bi(u) do

13 Add edge (u, s) with weight dGi(u, s) and edge (s, u) with weight dGi(s, u) to H

14 Gi+1 ← Gi

15 for (x, y), (x, s) ∈ E(Gi) such that s ∈ Si do

16 if 2dGi(x, s) + dGi(s, y) ≤ 2wt(x, y) + dGi(y, s) then

17 Remove the edge (x, y) from Gi+1

18 H ← H ∪G(k−1)∆

19 return H

13



Similar to the analysis of our 3-roundtrip spanner algorithm, we have the following lemma on the
expected number edges mi := |E(Gi)|.
Lemma 5.1 In Algorithm 2, for 0 ≤ i ≤ (k − 1)∆ we have

E[mi] ≤ 2n2/αi.

The proof of Lemma 5.1 is identical to the proof of Lemma 4.3 for Algorithm 1, and is omitted
here. Note that in Algorithm 2, Line 10 – Line 13 do not affect edges of Gi, and the remaining part
of the algorithm is almost identical to Algorithm 1 except that the number of iterations is changed
from ∆ to (k−1)∆ (and α is changed accordingly), and the sparsification rule (Line 16) now depends
on distances of Gi instead of G. These modifications do not affect the proof of Lemma 4.3.

Running Time Over all iterations of the inner for loop, for every i = 0, . . . , (k − 1)∆ − 1, the
bottleneck is to run |Si| instances of in/out-Dijkstras on Gi (Line 9), each taking O(mi + n log n)
time. The sparsification steps (Line 14 – Line 17) can be implemented in O(|Si| ·mi) time. Thus
by Lemma 5.1, the expected total running time of our algorithm can be bounded by (note that Si

and mi are independent random variables)

E[

(k−1)∆−1
∑

i=0

|Si| · O(mi + n log n)] ≤
(k−1)∆−1
∑

i=0

αi ·O
(

2n2/αi + n log n
)

=

(k−1)∆−1
∑

i=0

αi ·O
(

2n2/αi
)

= O(n2 · (k − 1)∆)

= O(n2 log n).

Sparsity Similar to in [TZ01], we first bound the expected size of the bunches defined in Line 11.
As mentioned earlier in Remark 4.1, here we rely on the property that the vertex samples Si are
uniform and independent.

Lemma 5.2 For each i = r ·∆ + t (where r ∈ {0, . . . , k − 2}, t ∈ {0, . . . ,∆ − 1}) and each vertex
u ∈ V , we have

E[|Bi(u)|] = αt+1.

Proof. By definition of Bi at Line 11, since Gi ⊆ Gr∆−1 and thus dGr∆−1
(·, ·) ≤ dGi(·, ·), we have

|Bi(u)| = |{s ∈ Si : dGi(u⇌ s) < dGr∆−1
(u⇌ pr∆−1(u))}|

≤ |{s ∈ Si : dGr∆−1
(u⇌ s) < dGr∆−1

(u⇌ pr∆−1(u))}|.

Sort all v ∈ V in increasing order of dGr∆−1
(u⇌ v). Then pr∆−1(u) = argmins∈Sr∆−1

dGr∆−1
(u⇌

s) is the first vertex in this ordering that is included in Sr∆−1, and |Bi(u)| is bounded by the
number of vertices included in Si that occur before pr∆−1(u) in this ordering. Since Sr∆−1 and Si

are sampled uniformly and independently (conditioned on this ordering determined by Gr∆−1), the
expected number of vertices included by Bi(u) is at most

n
∑

j=1

αi

n
·
(

1− αr∆−1

n

)j
≤ αi/n

αr∆−1/n
= αt+1.
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As a direct corollary, we can bound the expected total bunch size.

Corollary 5.3

E





(k−1)∆−1
∑

i=0

∑

u∈V
|Bi(u)|



 ≤ O(kn1+1/k).

Proof. For each r ∈ {0, . . . , k − 2}, by Lemma 5.2 and linearity of expectation, we have

E

[

∆−1
∑

t=0

|Br∆+t(u)|
]

=

logα n1/k −1
∑

t=0

αt+1 = O(n1/k)

for each u ∈ V . Summing over all r ∈ {0, . . . , k − 2} and u ∈ V ,

E





(k−1)∆−1
∑

i=0

∑

u∈V
|Bi(u)|



 =
∑

u∈V

k−2
∑

r=0

E

[

∆−1
∑

t=0

|Br∆+t(u)|
]

≤ O(kn1+1/k).

Now we can analyze the size of the emulator constructed by Algorithm 2.

Lemma 5.4 The emulator H returned by Algorithm 2 has expected size

E[|H|] ≤ O(kn1+1/k).

Proof. By Corollary 5.3, the total number edges added at Line 13 has expectation at most

(k−1)∆−1
∑

i=0

∑

u∈V
2(|Bi(u)|+ 1) ≤ O(kn1+1/k).

In the end at Line 18, we add all the edges in G(k−1)∆ to H. By Lemma 5.1, we know that

E[m(k−1)∆] ≤ 2n2/α(k−1)∆ = 2n2/α(k−1) logα n1/k
= 2n1+1/k.

Thus the expected size of H is O(kn1+1/k) as desired.

5.3 Stretch analysis

By construction, it is clear that dH(u, v) ≥ dG(u, v) for all u, v ∈ V .
From now on we fix a pair of u, v ∈ V and consider the shortest cycle C of length g := dG(u⇌ v)

containing the vertices u, v. We will prove dH(u⇌ v) ≤ (2k − 1)dG(u⇌ v).
If C is included in the final sparsified graph G(k−1)∆, then by Line 18 we know C is included in

the emulator H and thus dH(u⇌ v) = dG(u⇌ v). Hence, in the following we assume C 6⊆ G(k−1)∆,
and let 0 ≤ i < (k − 1)∆ be the first iteration in which C is destroyed by the sparsification steps,
that is, C ⊆ E(Gi) but C 6⊆ E(Gi+1).

We first prove the following Lemma 5.5 (which is essentially from [CL21]), which shows that
when C is destroyed in iteration i, it can be 2-approximated by a cycle going through some sampled
vertex in iteration i.
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Lemma 5.5 Then there exists some s ∈ Si such that

dGi(v ⇌ s) ≤ 2g, and dGi(u⇌ s) ≤ 2g. (5)

Proof. By definition of i, dGi(u ⇌ v) = g = dG(u ⇌ v). Let (x, y) ∈ C \ E(Gi+1) be an edge on
the cycle that is removed. Assume without loss of generality that (x, y) lies on the shortest path
from u to v (otherwise, we can swap the roles of u and v). By Line 16, this means that there exists
some s ∈ Si where

2dGi(x, s) + dGi(s, y) ≤ 2wt(x, y) + dGi(y, s), (6)

which implies the following estimate on the length of the shortest cycle going through u, s, v in Gi:

dGi(u, s) + dGi(s, v) + dGi(v, u)

≤ dGi(u, x) + dGi(x, s) + dGi(s, y) + dGi(y, v) + dGi(v, u) (triangle inequality)

≤ dGi(u, x) + 2wt(x, y) + dGi(y, s)− dGi(x, s) + dGi(y, v) + dGi(v, u) (by Eq. (6))

≤ dGi(u, x) + 2wt(x, y) + (dGi(y, v) + dGi(v, u) + dGi(u, x) + dGi(x, s))

− dGi(x, s) + dGi(y, v) + dGi(v, u) (expanding dGi(y, s) using triangle inequality)

= 2dGi(u, x) + 2wt(x, y) + 2dGi(y, v) + 2dGi(v, u)

= 2dGi(u, v) + 2dGi(v, u) ((x, y) lies on shortest path from u to v)

= 2g.

Thus
dGi(u⇌ s) ≤ dGi(u, s) + dGi(s, v) + dGi(v, u) ≤ 2g

and the same holds for dGi(v ⇌ s) as desired.

By Lemma 5.5 and the definition of the pivots pi(u) := argmins∈Si dGi(u ⇌ s), pi(v) :=
argmins∈Si dGi(v ⇌ s) (Line 10), we have

dGi(u⇌ pi(u)) ≤ 2g, and dGi(v ⇌ pi(v)) ≤ 2g. (7)

We first consider the case when both s ∈ Bi(u) and s ∈ Bi(v) hold (where s is defined in
Lemma 5.5). In this case, we have

dH(u⇌ v) ≤ dH(u⇌ s) + dH(s⇌ v)

≤ dGi(u⇌ s) + dGi(s⇌ v) (by Line 13)

≤ 4g (by Eq. (5))

≤ (2k − 1)g (since k ≥ 3)

as desired.
Hence it remains to consider the case when either s /∈ Bi(u) or s /∈ Bi(v). In the following we

only consider s /∈ Bi(v), and the other case where s /∈ Bi(u) follows from an analogous argument.
By definition of bunches at Line 11, s /∈ Bi(v) implies

dGi(v ⇌ s) ≥ dGr∆−1
(v ⇌ pr∆−1(v)), (8)

where i = r∆+ t (r ∈ {0, . . . , k−2}, t ∈ {0, . . . ,∆−1}). Now we use an induction similar to [TZ01].
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Lemma 5.6 Suppose integer J ≥ 0 satisfies

• p(r−j)∆−1(v) /∈ B(r−j)∆−1(u) for all even 0 ≤ j < J , and

• p(r−j)∆−1(u) /∈ B(r−j)∆−1(v) for all odd 0 ≤ j < J .

Then,

• If J is even, then
d(r−J)∆−1(v ⇌ p(r−J)∆−1(v)) ≤ (J + 2)g.

• If J is odd, then
d(r−J)∆−1(u⇌ p(r−J)∆−1(u)) ≤ (J + 2)g.

Proof. We prove by induction on J . The base case J = 0 follows from

dGr∆−1
(v ⇌ pr∆−1(v)) ≤ dGi(v ⇌ s) (by Eq. (8))

≤ 2g. (by Eq. (5))

To prove the inductive case J ≥ 1, we first consider the case with odd J . By the assumption for
j = J − 1, we have p(r−J+1)∆−1(v) /∈ B(r−J+1)∆−1(u). By definition of bunches at Line 11 (at
iteration i = (r − J + 1)∆ − 1 = (r − J)∆ + (∆− 1)), this means

dG(r−J+1)∆−1
(u⇌ p(r−J+1)∆−1(v)) ≥ dG(r−J)∆−1

(u⇌ p(r−J)∆−1(u)). (9)

Then,

dG(r−J)∆−1
(u⇌ p(r−J)∆−1(u)) ≤ dG(r−J+1)∆−1

(u⇌ p(r−J+1)∆−1(v)) (by Eq. (9))

≤ dG(r−J+1)∆−1
(v ⇌ p(r−J+1)∆−1(v)) + dG(r−J+1)∆−1

(v ⇌ u)

(triangle inequality)

≤ (J − 1 + 2)g + dG(r−J+1)∆−1
(v ⇌ u) (by induction hypothesis)

≤ (J − 1 + 2)g + g (since C ⊆ E(Gi) ⊆ E(G(r−J+1)∆−1))

= (J + 2)g,

as desired.
The inductive proof for even J is similar, by switching the role of u and v.

Lemma 5.7 Let J ≥ 0 be the maximum integer for which the assumption in Lemma 5.6 holds.
Then, dH(u⇌ v) ≤ (2J + 5)g.

Proof. We prove the case where J is odd. The even case can be proved similarly by switching the
role of u and v.

By the maximality of J , we have

p(r−J)∆−1(u) ∈ B(r−J)∆−1(v). (10)

By the conclusion of Lemma 5.6, we have

dG(r−J)∆−1
(u⇌ p(r−J)∆−1(u)) ≤ (J + 2)g. (11)
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Then,

dH(u⇌ v) ≤ dH(u⇌ p(r−J)∆−1(u)) + dH(p(r−J)∆−1(u)⇌ v)

≤ dG(r−J)∆−1
(u⇌ p(r−J)∆−1(u)) + dH(p(r−J)∆−1(u)⇌ v) (by Line 13)

≤ dG(r−J)∆−1
(u⇌ p(r−J)∆−1(u)) + dG(r−J)∆−1

(p(r−J)∆−1(u)⇌ v)

(by Line 13 and Eq. (10))

≤ 2dG(r−J)∆−1
(u⇌ p(r−J)∆−1(u)) + dG(r−J)∆−1

(u⇌ v) (triangle inequality)

≤ 2(J + 2)g + dG(r−J)∆−1
(u⇌ v) (by Eq. (11))

= (2J + 5)g.

Lemma 5.8 dH(u⇌ v) ≤ (2k − 1)g.

Proof. By Line 4 and Line 11, we know B∆−1(u) = B∆−1(v) = S∆−1. In particular, this means J
cannot satisfy the assumption of Lemma 5.6 if J ≥ r.

Hence, the maximum J that could possibly satisfy the assumption of Lemma 5.6 is at most
r−1 ≤ k−3. Then, by Lemma 5.7, we have dH(u⇌ v) ≤ (2J+5)g ≤ (2(k−3)+5)g = (2k−1)g.

6 4-Approximation of girth in Õ(mn1/3) time

In this section, we present our algorithm for computing a 4-approximation of the girth in a weighted
directed graph (Theorem 1.3).

In general, we follow the approach of Chechik and Lifshitz [CL21] which uses uniformly random
vertex samples and certain elimination rules to prune the search space for each vertex v ∈ V . Our
running time improvement comes from extending the framework of [CL21] by one more layer, using
several novel structural and algorithmic ideas.

Throughout this section, d(u, v) always means dG(u, v), where G = (V,E) is the input directed
graph.

6.1 Main Algorithm

By Lemma 2.1, we assume each vertex in G has degree at most O(m/n).
Before describing our algorithm in detail, we first give a high-level overview of the structure of

our algorithm. Our algorithm runs in three phases:

1. Phase I. Take a random sample S1 ⊆ V of O(n1/3) vertices.

For each s1 ∈ S1 use Dijkstra to find the shortest cycle going through s1.

2. Phase II. Take a sample S2 ⊆ V of O(n2/3) vertices. Based on the distance information from
S1 obtained in Phase I, for every s2 ∈ S2 we use the elimination rule from [CL21] (Lemma 3.1)

to compute the pruned sets B
(2)
out(s2), B

(2)
in (s2) ⊆ V of size Õ(n2/3).

For each s2 ∈ S2 use Dijkstra to find the shortest cycle going through s2 and some u ∈
B

(2)
out(s2) ∩B

(2)
in (s2).
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3. Phase III. Based on the distance information obtained from Phase I and II, use our novel
elimination rules (Definition 6.17 and Definition 6.20, which are more technical than [CL21])
to compute for every vertex v ∈ V a pruned set B̃′(v) ⊆ V of size Õ(n1/3).

For each v ∈ V use Dijkstra to find the shortest cycle going through v in the induced subgraph
G[B̃′(v)].

Finally output the length of the shortest cycle encountered in the three phases as the girth estimate.
We present our main algorithm in Algorithm 3 as follows. It follows the three-phase structure

described above (indicated by the comments), but involves more definitions and subroutines that
will be explained in the following sections. The main statements for the correctness and running
time of Algorithm 3 will be given in Theorem 6.24 and Theorem 6.26.

Algorithm 3: 4-Approximation-Girth(G)

Input: A strongly connected directed graph G = (V,E) with maximum degree O(m/n)
Output: An estimate g′ such that g ≤ g′ ≤ 4g, where g is the girth of G

1 Initialize g′ ←∞
// Phase I

2 Sample S1 ⊆ V of size |S1| = O(n1/3)
3 for s1 ∈ S1 do

4 From s1 run in- and out-Dijkstra on G
5 g′ ← minu∈V \{s1} d(s1 ⇌ u)

// Phase II

6 Compute eliminators R1,out(v), R1,in(v) ⊆ S1 of size |R1,out(v)|, |R1,in(v)| = O(log n) for all
v ∈ V using Algorithm 4

7 Sample S2 ⊆ V of size |S2| = O(n2/3)
8 for s2 ∈ S2 do

9 From s2 run modified out-Dijkstra on G[B
(2)
out(s2)] and modified in-Dijkstra on

G[B
(2)
in (s2)] (Lemma 6.6), where B

(2)
out(·), B

(2)
in (·) are defined in Definition 6.2

// B
(2)
out(·) and B

(2)
in (·) depend on R1,out and R1,in respectively.

10 g′ ← min{g′,min
u∈B(2)

out(s2)∩B
(2)
in (s2)\{s2}

(

d(s2, u) + d(u, s2)
)

}

// Phase III

11 Compute eliminators R2,in(v) ⊆ S2 of size |R2,in(v)| = O(log n) for all v ∈ V using
Algorithm 5.

12 for v ∈ V do

13 From v run modified in-Dijkstra on G[B̃′(v)], where B̃′(v) is defined in Definition 6.20

// B̃′(·) depends on R2,in (and also R1,out).

14 g′ ← min{g′,minu∈G[B̃′(v)] and (v,u)∈E
(

dG[B̃′(v)](u, v) + wt(v, u)
)

}
15 return g′

6.2 Phase I and II

In this subsection we describe Phase I and II of our Algorithm 3, which mostly follow the 2-
approximation algorithm of [CL21] (with sample size |S1| changed from O(

√
n) to O(n1/3)). One
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piece missing from [CL21] but necessary for us is a certain closedness property of the pruned

sets B
(2)
out(v), which allows us to find all vertices in B

(2)
out(v) by simply running Dijkstra from v

(Lemma 6.6).2

Phase I (Line 2–Line 5) uniformly samples a set S1 of O(n1/3) vertices, and runs O(n1/3) Dijkstra
instances on G to find the shortest cycle going through any vertex in S1.

Observation 6.1 Phase I of Algorithm 3 runs in Õ(mn1/3) total time.

In Phase II we try to find other short cycles in G that are not 2-approximated by the estimate
obtained in Phase I. The first step (Line 6) computes eliminators R1,out(v), R1,in(v) ⊆ S1 of small
size |R1,out(v)|, |R1,in(v)| ≤ O(log n) for all v ∈ V . Intuitively these eliminators retain the usefulness
of the sample S1 in effectively pruning the search space, while being small enough for the benefit of
time efficiency. We defer the algorithm for computing eliminators (Algorithm 4) to the end of this
subsection; instead we first present the following important definition that relies on these eliminators
R1,out(v), R1,in(v) ⊆ S1.

Definition 6.2 (B
(2)
out(v) and B

(2)
in (v), [CL21]) For v ∈ V , given R1,out(v), R1,in(v) ⊆ V , we define

vertex subsets

B
(2)
out(v) = {u ∈ V : 2d(v, r1) + d(r1, u) > 2d(v, u) + d(u, r1) for all r1 ∈ R1,out(v)},

and symmetrically,

B
(2)
in (v) = {u ∈ V : 2d(r1, v) + d(u, r1) > 2d(u, v) + d(r1, u) for all r1 ∈ R1,in(v)}.

Definition 6.2 is motivated by the following lemma, which follows from the key observation

(Lemma 3.1) of [CL21]. Intuitively it says B
(2)
out(·) captures cycles that cannot be 2-approximated

by the estimate in phase I. 3

Lemma 6.3 (2-approximation [CL21]) If u /∈ B
(2)
out(v), then there exists r1 ∈ R1,out(v) ⊆ S1 such

that d(r1 ⇌ u) ≤ 2d(u⇌ v).
The same statement holds if we replace “out” by “in”.

Proof. By Definition 6.2, since u /∈ B
(2)
out(v), there exists r1 ∈ R1,out(v) such that

2d(v, r1) + d(r1, u) ≤ 2d(v, u) + d(u, r1).

Then applying Lemma 3.1 to u, v, r1, we have d(r1 ⇌ u) ≤ 2d(u⇌ v).
The statement with “out” replaced by “in” can be proved symmetrically by reversing the edge

directions.

The following corollary of Lemma 6.3 shows that cycles passing through some s2 ∈ S2 are 2-
approximated by Phase I and II of Algorithm 3. This is essentially how [CL21] obtained their
2-approximation.

2We need to compute these pruned sets B
(2)
out(v) in order to prepare for the later Phase III, which was not required

in [CL21]’s two-phase algorithm.
3We use superscript (2) in the notation of B

(2)
out(v) for this reason, to distinguish it from the set B

(4)
out(v) that will

be introduced later in Section 6.3.
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Corollary 6.4 ([CL21]) Let s2 ∈ S2 and C be the shortest cycle in G going through s2. Then, the
girth estimate g′ obtained by the end of Phase II of Algorithm 3 satisfies g′ ≤ 2g, where g denotes
the length of C.

Proof. We can assume S1∩C = ∅, since otherwise the Phase I of Algorithm 3 can find C and hence
g′ ≤ g.

If C 6⊆ B
(2)
out(s2), let u ∈ C \ B(2)

out(s2). Then by Lemma 6.3 there exists r1 ∈ S1 such that
d(r1 ⇌ u) ≤ 2d(u⇌ s2) = 2g, so Phase I of Algorithm 3 will update g′ with d(r1 ⇌ u) ≤ 2g (since
r1 ∈ S1 and u 6= r1).

Similarly, if C 6⊆ B
(2)
in (s2), we also have g′ ≤ 2g.

The remaining case is C ⊆ B
(2)
out(s2)∩B

(2)
in (s2). Then, Line 10 in Phase II of Algorithm 3 updates

g′ with g.

The following key lemma (which will be proved later) states that the sets B
(2)
in (v), B

(2)
out(v) defined

using R1,in(v), R1,out(v) returned by compute-eliminators-1(G,S1) (Algorithm 4) have small
sizes. Intuitively, this is due to the symmetry of the elimination rule in Definition 6.2 and the
sample size being |S1| = O(n1/3).

Lemma 6.5 (Sizes of B
(2)
in (v), B

(2)
out(v), [CL21]) With high probability4 over the random sample

S1 ⊆ V , we have |B(2)
in (v)|, |B(2)

out(v)| ≤ Õ(n2/3) for all v ∈ V .

Then, the next step of Phase II is to uniformly sample a set S2 of O(n2/3) vertices (Line 7).

We then run out-Dijkstra from every s2 ∈ S2 on the induced subgraph G[B
(2)
out(s2)], and update the

girth estimate g′ with the found cycles going through s2 (Line 8–Line 10).

In order to implement the out-Dijkstra on G[B
(2)
out(s2)] at Line 9, we need the following Lemma 6.6

which states that the set B
(2)
out(s2) (as well as distances d(s2, u) for all u ∈ B

(2)
out(s2)) can be effi-

ciently computed given the eliminators R1,out(v) due to its special structure. Recall that d(·, ·)
always denotes distances in the input graph G.

Lemma 6.6 (Compute B
(2)
out(v)) For any vertex v ∈ V , given R1,out(v) of size O(log n), there exists

an algorithm running in Õ(mn · |B
(2)
out(v)|) time that computes the set B

(2)
out(v), and the distances

d(v, u) for all u ∈ B
(2)
out(v).

The same statement holds if we replace “out” by “ in” and replace d(v, u) by d(u, v).

Proof. We run a modified out-Dijkstra from v on graph G, and let D[u] denote the length of the
shortest path from v to u found by this out-Dijkstra. The modification is that whenever we pop a
vertex u from the heap, we relax the out-neighbors of u only if u satisfies

2d(v, r1) + d(r1, u) > 2D[u] + d(u, r1), for all r1 ∈ R1,out(v). (12)

Comparing Eq. (12) with the definition of B
(2)
out (Definition 6.2), the difference is that we use D[u]

in place of d(v, u). Note that the other three terms in Eq. (12) are already computed in Phase I
because r1 ∈ S1.

To show the correctness of the modified out-Dijkstra, the key claim is the following closedness

property of B
(2)
out(v):

4We use “with high probability” to mean probability 1− 1/nc for arbitrary given constant c ≥ 1.
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Claim 6.7 If u ∈ B
(2)
out(v), then for every vertex x on the shortest path from v to u in G, it holds

that x ∈ B
(2)
out(v).

Proof. For all r1 ∈ R1,out(v), we have

2d(v, r1) + d(r1, x) ≥ 2d(v, r1) + d(r1, u)− d(x, u) (by triangle inequality)

> 2d(v, u) + d(u, r1)− d(x, u) (by u ∈ B
(2)
out(v))

= 2d(v, x) + 2d(x, u) + d(u, r1)− d(x, u) (by assumption on x)

≥ 2d(v, x) + d(x, r1). (by triangle inequality)

Hence, we have x ∈ B
(2)
out(v) by definition.

By Claim 6.7, it is clear that our modified out-Dijkstra visits exactly all the vertices u ∈ B
(2)
out(v),

and correctly computes distances D[u] = d(v, u) for all u ∈ B
(2)
out(v).

Since |R1,out(v)| = O(log n), checking the condition Eq. (12) for all r1 ∈ R1,out(v) only takes
O(log n) time per vertex u ∈ V . By our assumption that the degree of every vertex is at most

O(mn ), it follows that the modified Dijkstra runs in time Õ(mn · |B
(2)
out(v)|).

Hence, we observe the following corollary:

Corollary 6.8 Line 8–Line 10 of Algorithm 3 take total time Õ(mn1/3).

Proof. By Lemma 6.6, the modified out-Dijkstra from all s2 ∈ S2 takes total time

Õ(
m

n

∑

s2∈S2

|B(2)
out(s2)|) ≤ Õ(

m

n
· |S2| · n2/3) ≤ Õ(mn1/3),

where we used |B(2)
out(s2)| ≤ Õ(n2/3) from Lemma 6.5. The update step at Line 10 takes O(m/n) ·

|B(2)
out(s2)| time for each s2 ∈ S2, which also sums up to Õ(mn1/3).

Computing eliminators. Finally, we describe how to compute the eliminators R1,out(v), R1,in(v) ⊆
S1 (Line 6 of Algorithm 3). This subroutine is basically the same as in [CL21], but we present it
here using our notation for completeness. See the pseudocode of compute-eliminators-1(G,S1)
in Algorithm 4, which takes the uniform vertex sample S1 ⊆ V , and returns R1,out(v) ⊆ S1 for all
v. The algorithm for computing R1,in(v) is analogous: we simply run Algorithm 4 on the graph
obtained by reversing the edge orientations of G, and we omit the detailed descriptions here.
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Algorithm 4: compute-eliminators-1(G,S1)

Input: The input graph G = (V,E), and S1 = {s1, s2, . . . , s|S1|} ⊆ V of size

|S1| = O(n1/3) sampled uniformly and independently (with replacement)
Output: Sets R1,out(v) ⊆ S1 of size O(log n) for every vertex v ∈ V

1 T (0)(v), R(0)(v)← ∅ for every v ∈ V
2 for i ∈ {1, . . . , k} where k = 10 log n do

3 S(i) ← the next 10n1/3/ log n samples from S1

4 Run in- and out-Dijkstra from every s ∈ S(i) on G
5 for v ∈ V do

6 T (i)(v)← {s ∈ S(i) | ∀t ∈ R(i−1)(v), 2d(v, s) + d(s, t) < 2d(v, t) + d(t, s)}
7 if T (i)(v) 6= ∅ then

8 t← a random vertex t ∈ T (i)(v)

9 R(i)(v)← R(i−1)(v) ∪ {t}
10 else

11 R(i)(v)← R(i−1)(v)

12 return R1,out(v)← R(k)(v) for each v ∈ V

Algorithm 4 runs in k = 10 log n iterations. In each iteration, it takes 10n1/3/ log n fresh vertex
samples (from S1), and runs Dijkstra from them on G. Then, based on the obtained distance
information, it possibly adds one sampled vertex t to each R1,out(v). By inspecting Algorithm 4,
one immediately observes the following properties.

Observation 6.9 Algorithm 4 runs in time Õ(mn1/3), and outputs sets R1,out(v) ⊆ S1 for all v ∈ V
of size |R1,out(v)| = O(log n).

Proof. First note that the total number of vertex samples required at Line 3 is |S(1) ⊎ · · · ⊎ S(k)| =
k · 10n1/3/ log n = 100n1/3 ≤ |S1|. In each iteration 1 ≤ i ≤ k, the algorithm only adds at most
one sampled vertex t ∈ S1 to the set R(i)(v) for each v ∈ V (Line 7–Line 11), so each output set
R1,out(v) = R(k)(v) ⊆ S1 and has size |R1,out(v)| ≤ k ≤ O(log n).

In each iteration, the Dijkstra instances at Line 4 take time |S(i)| ·O(m+ n log n) ≤ Õ(mn1/3).
Then, to compute T (i)(v) ⊆ S(i) at Line 6 for each v ∈ V , we check for every s ∈ S(i) whether
s ∈ T (i)(v), by simply going over all t ∈ R(i−1)(v) and checking the condition 2d(v, s) + d(s, t) <
2d(v, t) + d(t, s). Note that all four terms in this inequality have already been computed by the
in- and out-Dijkstras since s ∈ S(i) and t ∈ S(1) ∪ · · · ∪ S(i−1). So T (i)(v) can be computed in
time O(|S(i)| · |R(i−1)(v)|) = O((n1/3/ log n) · log n) = O(n1/3) for each v ∈ V . Thus each iteration
runs in time O(mn1/3) time and over all k = O(log n) iterations, Algorithm 4 runs in total time
Õ(mn1/3).

Now we prove the key Lemma 6.5, which states that Algorithm 4 guarantees B
(2)
out(v) and B

(2)
in (v)

to have small size with high probability.

Proof of Lemma 6.5. The proof more or less follows from Section 6 in [CL21]. For purpose of the
proof, we define the sets

Bi(v) = {u ∈ V | 2d(v, u) + d(u, r) < 2d(v, r) + d(r, u)∀r ∈ R(i)(v)}.
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Then note that by definition B
(2)
out(v) = {u ∈ V | 2d(v, u) + d(u, r) < 2d(v, r) + d(r, u)∀r ∈

R1,out(v)} = Bk(v). We want to show that

Pr
[

|Bk(v)| > n2/3 log n
]

≤ 1

n2
.

We first show that if |Bi(v)| > n2/3 log n, then

E

[

|Bi(v)|
∣

∣

∣
|Bi−1(v)|

]

≤ 3

4
|Bi−1(v)|.

By symmetry 5 of the condition 2d(v, u) + d(u, s) < 2d(v, s) + d(s, u) with respect to u ∈ Bi−1(v)
and s ∈ S(i) ∩ Bi(v), for any pair of vertices u, u′ ∈ Bi−1(v), either u can eliminate u′ or u′ can
eliminate u. Thus given a random s ∈ S(i) ∩ Bi(v), on expectation s can eliminate half of the
vertices in Bi−1(v). So conditioned on the event that S(i) ∩ Bi(v) 6= ∅, we have the expected size
of Bi(v) is at most half the size of Bi−1(v). Specifically we have

E

[

|Bi(v)|
∣

∣

∣
S(i) ∩Bi(v) 6= ∅

]

≤ 1

2
|Bi−1(v)|.

Now since |S(i)| = 10n1/3/ log n is a uniform random sample, we can compute Pr[S(i)∩Bi(v) = ∅]
as

Pr
[

S(i) ∩Bi(v) = ∅

]

=

(

1− |Bi(v)

n

)10n1/3/ logn

≈ exp

(

−|Bi(v)| · 10n1/3

n log n

)

≤
(

1

4

)

|Bi(v)|

n2/3 logn ≤ 1

4
.

Thus we have

E

[

|Bi(v)|
∣

∣

∣
|Bi−1(v)|

]

= E

[

|Bi(v)|
∣

∣

∣
|Bi−1(v)|, S(i) ∩Bi(v) 6= ∅

]

· Pr
[

S(i) ∩Bi(v) 6= ∅

]

+ E

[

|Bi(v)|
∣

∣

∣
|Bi−1(v)|, S(i) ∩Bi(v) = ∅

]

· Pr
[

S(i) ∩Bi(v) = ∅

]

≤ 1

2
|Bi−1(v)|+

1

4
|Bi−1(v)| =

3

4
|Bi−1(v)|

as desired.
Now we can easily finish the proof by applying Markov’s inequality.

Pr
[

|Bk(v)| > n2/3 log n
]

≤ E[|Bk(v)]

n2/3 log n
≤

(

3
4

)k
n

(n2/3 log n)
≤
(

3

4

)k

n1/3 ≤ 1

n2
.

Proposition 6.10 Phase II of Algorithm 3 runs in Õ(mn1/3) total time.

Proof. Follows from Observation 6.9 and Corollary 6.8.

5For more details, refer to the proof of Lemma 3.3 in [CL21]
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6.3 New lemmas for 4-approximation

In this section we describe our new structural lemmas that are useful for 4-approximation.
We start with the following Lemma 6.11, which naturally extends the 2-approximation lemma

(Lemma 6.3) for B
(2)
in (v) from one layer to two layers by exploiting the second sample set S2.

Lemma 6.11 Let u, v ∈ V (u 6= v) and r2 ∈ S2. Suppose

2d(r2, v) + d(u, r2) ≤ 2d(u, v) + d(r2, u).

Then, the girth estimate g′ obtained by the end of Phase II of Algorithm 3 satisfies g′ ≤ 4d(u⇌ v).

Proof. Apply Lemma 3.1 (with edge direction reversed) to u, v, r2, and obtain

d(r2 ⇌ u) ≤ 2d(u⇌ v).

If u /∈ B
(2)
out(r2), then by Lemma 6.3 there exists r1 ∈ R1,out(r2) ⊆ S1 such that

d(r1 ⇌ u) ≤ 2d(u⇌ r2) ≤ 4d(u⇌ v).

This implies g′ ≤ 4d(u⇌ v) due to the update at Line 5 in Phase I of Algorithm 3 for r1 ∈ S1.
6

Similarly, if u /∈ B
(2)
in (r2), then we also have g′ ≤ 4d(u⇌ v).

It remains to consider the case where u ∈ B
(2)
in (r2)∩B(2)

out(r2). In this case, Line 10 of Algorithm 3
updates g′ with d(r2 ⇌ u) ≤ 2d(u⇌ v) (here we need to assume u 6= r2; the u = r2 case is already
covered by Corollary 6.4).

Hence, we always have g′ ≤ 4d(u⇌ v).

In light of Lemma 6.11, a natural attempt for a 4-approximation algorithm is to imimate Phase
II and focus on for each v ∈ V the pruned vertex set {u ∈ V : 2d(r2, v) + d(u, r2) > 2d(u, v) +
d(r2, u) for all r2 ∈ R(v)} for some suitably defined R(v) ⊆ S2. As mentioned in the technical
overview, this attempt would require distance information for all r2 ∈ S2, which is infeasible to
compute efficiently enough due to the large size |S2| = O(n2/3). Thus, we need to use more
structural lemmas for our algorithm, described as follows.

First, we generalize the key observation (Lemma 3.1) of [CL21] to the following Lemma 6.12.
Note that Lemma 3.1 corresponds to the k = 2 case of Lemma 6.12. See Fig. 1 (the same figure as
Lemma 3.1) for an illustration.

Lemma 6.12 (Generalized key observation) For any k ≥ 1 and vertices u, v, r, if

k · d(v, r) + d(r, u) ≤ k · d(v, u) + (k − 1) · d(u, r),

then
d(r ⇌ u) ≤ k · d(u⇌ v).

Proof. Note that by triangle inequality, we have d(u, v) ≥ d(u, r)− d(v, r), so

k · d(v, u) + k · d(u, v) ≥ k · d(v, u) + k · d(u, r) − k · d(v, r)
≥
(

k · d(v, r) + d(r, u) − (k − 1) · d(u, r)
)

+ k · d(u, r)− k · d(v, r)
= d(r, u) + d(u, r).

6This argument requires r1 6= u. This can be ensured by assuming u /∈ S1 without loss of generality: if u ∈ S1,
then Phase I of Algorithm 3 will update g′ using d(u⇌ v).
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Lemma 6.12 inspires the following definition of B
(4)
out(v) and a 4-approximation lemma (Corollary 6.14),

which are analogous to B
(2)
out(v) (Definition 6.2) and the 2-approximation lemma (Lemma 6.3).

Definition 6.13 (B
(4)
out(v)) For v ∈ V , given R1,out(v) ⊆ V , we define vertex subsets

B
(4)
out(v) = {u ∈ V : 4d(v, r1) + d(r1, u) > 4d(v, u) + 3d(u, r1) for all r1 ∈ R1,out(v)}.

Corollary 6.14 (4-approximation) If u /∈ B
(4)
out(v), then there exists r1 ∈ R1,out(v) such that d(r1 ⇌

u) ≤ 4d(u⇌ v).

Proof. By Definition 6.13, since u /∈ B
(4)
out(v), there exists r1 ∈ R1,out(v) such that

4d(v, r1) + d(r1, u) ≤ 4d(v, u) + 3d(u, r1).

Then applying Lemma 6.12 with k = 4 to u, v, r1, we have d(r1 ⇌ u) ≤ 4d(u⇌ v).

We also have the following relationship between B
(4)
out(v) and B

(2)
out(v).

Lemma 6.15 For all v ∈ V , B
(4)
out(v) ⊆ B

(2)
out(v).

As a consequence, the algorithm of Lemma 6.6 for computing B
(2)
out(v) can also compute B

(4)
out(v)

in the same running time.

Proof. If u ∈ B
(4)
out(v), then by Definition 6.13 for all r1 ∈ R1,out(v),

2d(v, r1) + d(r1, u) > 4d(v, u) + 3d(u, r1)− 2d(v, r1)

= 2d(v, u) + d(u, r1) + 2
(

d(v, u) + d(u, r1)− d(v, r1)
)

≥ 2d(v, u) + d(u, r1).

So u ∈ B
(2)
out(v) by Definition 6.2.

Now we state and prove our main novel technical lemma, which is a key ingredient of our
4-approximation algorithm.

Lemma 6.16 (4-Approximation Filtering Lemma) Consider vertices r2, v, u ∈ V such that v ∈
B

(4)
out(r2) and u 6∈ B

(2)
out(r2). Then there exists r1 ∈ R1,out(r2) such that d(v ⇌ r1) ≤ 4d(v ⇌ u).
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v ∈ B
(4)
out(r2)

u 6∈ B
(2)
out(r2)

r2

r1 ∈ R1,out(r2)

long

short

Figure 3: Illustration of the relationship between the vertices involved in Lemma 6.16. The two
bold black cycle is relatively short and the dashed cycle is relatively long, the goal is to approximate

the red cycle using the cycle highlighted green. As labeled, v ∈ B
(4)
out(r2) meaning that v and r2 are

in a short cycle, u 6∈ B
(2)
out(r2) meaning that u and r2 are in a relatively long cycle. Then we can find

some r1 in the set of eliminators for r2 such that the cycle passing through v and r1 (highlighted
green) approximate the red cycle passing through v and u.

Proof. Since u 6∈ B
(2)
out(r2), by Definition 6.2 there exists r1 ∈ R1,out(r2) such that

2d(r2, u) + d(u, r1) ≥ 2d(r2, r1) + d(r1, u). (13)

Since v ∈ B
(4)
out(r2) and r1 ∈ R1,out(r2), by Definition 6.13 we have

4d(r2, r1) + d(r1, v) > 4d(r2, v) + 3d(v, r1). (14)

Adding Eq. (13) multiplied by 2 with Eq. (14), and cancelling 4d(r2, r1) on both sides, we get

4d(r2, u) + 2d(u, r1) + d(r1, v) > 2d(r1, u) + 4d(r2, v) + 3d(v, r1).

Combining with 4d(r2, v) + 4d(v, u) ≥ 4d(r2, u) (triangle inequality), this implies

4d(v, u) + 2d(u, r1) + d(r1, v) > 2d(r1, u) + 3d(v, r1).

Adding 4d(u, v) to both sides gives

4d(u⇌ v) + 2d(u, r1) + d(r1, v) >
(

2d(r1, u) + 2d(u, v)
)

+
(

2d(u, v) + 2d(v, r1)
)

+ d(v, r1)

≥ 2d(r1, v) + 2d(u, r1) + d(v, r1),

which immediately simplifies to

4d(u⇌ v) > d(r1, v) + d(v, r1) = d(v ⇌ r1).

6.4 Phase III

Now we are ready to describe Phase III, the most technical part of our Algorithm 3. It has a similar
structure as Phase II: we first compute eliminators R2,in(v) ⊆ S2 of size |R2,in(v)| = O(log n) for
all v ∈ V , and then use these eliminators to define pruned vertex sets B̃′(v) (which is a subset of
B′(v)∪ {v} which we will define shortly) to search for short cycles. In light of the 4-approximation
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filtering lemma (Lemma 6.16), we will ensure the eliminators satisfy the following property (it will
be later shown in Observation 6.25):

For every v ∈ V and r2 ∈ R2,in(v), we have v ∈ B
(4)
out(r2). (15)

Again, we defer the algorithm for computing the eliminators R2,in(v) to the end of this subsection.
We first make the following technical definition of pruned vertex sets B′(v), which is directly

motivated by the structural lemmas from Section 6.3.

Definition 6.17 (B′(v)) For v ∈ V , let B′(v) denote the set of vertices s ∈ V that satisfy all the
following conditions:

1. v ∈ B
(4)
out(s), and

2. s ∈ B
(2)
out(r2) for all r2 ∈ R2,in(v), and

3. 2d(s, v)+d(r2, s) < 2d(r2, v)+d(s, r2) for all r2 ∈ R2,in(v). (where d is defined in Lemma 6.18)

In this definition, condition 1 is motivated by the 4-approximation lemma (Corollary 6.14),
condition 2 is motivated by our 4-approximation filtering lemma (Lemma 6.16) and Eq. (15), and
condition 3 is motivated by Lemma 6.11. For technical reason, condition 3 involves a certain distance
underestimate that is easier to compute, defined as follows (readers are encouraged to think of the
underestimate as the original distance, and skip this definition at first read):

Lemma 6.18 (Under-estimate of d(u, r2)) For all u ∈ V and r2 ∈ V , define d(u, r2) as follows:

• Case u ∈ B
(2)
in (r2):

Let d(u, r2) := d(u, r2).

• Case u /∈ B
(2)
in (r2):

Let

d(u, r2) :=
1

2
min

r1∈R1,in(r2)
(2d(r1, r2) + d(u, r1)− d(r1, u)). (16)

Then, d(u, r2) ≤ d(u, r2) holds.

Proof. In order to prove d(u, r2) ≤ d(u, r2), it suffices to focus on the second case, u /∈ B
(2)
in (r2). By

definition of B
(2)
in (r2) (Definition 6.2), there exists r1 ∈ R1,in(r2) such that

2d(r1, r2) + d(u, r1) ≤ 2d(u, r2) + d(r1, u).

This immediately implies d(u, r2) as defined in Eq. (16) satisfies 2d(u, r2) ≤ 2d(u, r2).

The following key lemma (analogous to Lemma 6.5 from Phase II) bounds the size of B′(v).

Lemma 6.19 (size of B′(v)) With high probability over the random samples S1, S2 ⊆ V , we have
|B′(v)| ≤ Õ(n1/3) for all v ∈ V .
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Intuitively, this is due to the symmetry of the elimination rule (Condition 3 in Definition 6.17
of B′(v)), and because the sample size is |S2| = O(n2/3). We will prove Lemma 6.19 later after
describing the algorithm computing eliminators R2,in(v).

Our actual algorithm performs a modified in-Dijkstra from every v ∈ V on the induced subgraph
G[B̃′(v)] (Line 13), where B̃′(v) is a slight variant of B′(v), which we shall define shortly. The reason
for not using B′(v) is because our modified in-Dijkstra algorithm does not know the true distance
d(s, v) needed for checking the condition 1 and 3 in the definition of B′(v).7 Instead, we use the
current distance found by the in-Dijkstra to replace d(s, v). The formal definition is as follows
(again, readers are encouraged to skip this definition at first read, and think of B̃′(v) as the same
as B′(v) for intuition):

Definition 6.20 (Modified in-Dijkstra and B̃′(v)) For v ∈ V , consider the following modified in-
Dijkstra algorithm starting from v on graph G, where we let D[u] denote the length of the shortest
path from u to v found by this in-Dijkstra.

The modification is that whenever we pop a vertex s 6= v from the heap, we relax the in-neighbors
of s only if s satisfies all the following three conditions:

1. 4d(s, r1) + d(r1, v) > 4D[s] + 3d(v, r1) for all r1 ∈ R1,out(s), and

2. s ∈ B
(2)
out(r2) for all r2 ∈ R2,in(v), and

3. 2D[s] + d(r2, s) < 2d(r2, v) + d(s, r2) for all r2 ∈ R2,in(v).

Let B̃′(v) denote the set of vertices s that are popped out from the heap and satisfy all the three
conditions above, and additionally we also let v ∈ B̃′(v). (Note that the source vertex v always
relaxes all its in-neighbors in the beginning of in-Dijkstra)

Observation 6.21 B̃′(v) ⊆ B′(v) ∪ {v} for all v ∈ V .

Proof. Note that the three conditions in Definition 6.20 are the same as the three conditions in
Definition 6.17 except that the terms d(s, v) in condition 1 and 3 are replaced by D[s]. Since the
distance D[s] found by the in-Dijkstra from v must be greater than or equal to the true distance
d(s, v), we see that both condition 1 and 3 are strengthened. Hence, B̃′(v) ⊆ B′(v).

Phase III of our algorithm (Line 13) is implemented by the modified in-Dijkstra described in
Definition 6.20. It remains to show that we can implement it efficiently. In particular, we need
to show that checking the three conditions in Definition 6.20 is efficient. We first show that the
underestimate d(u, r2) from Lemma 6.18 can be computed efficiently.

Lemma 6.22 (Compute d(u, r2)) For r2 ∈ V , assume we know B
(2)
in (r2) and d(x, r2) for all x ∈

B
(2)
in (r2). Then d(u, r2) can then be computed for any u ∈ V in O(log n) time.

Proof. According to the definition in Lemma 6.18, we first check whether u ∈ B
(2)
in (r2). In the first

case where u ∈ B
(2)
in (r2), the answer is d(u, r2), which we know by assumption. In the second case

where u /∈ B
(2)
in (r2), we need to compute Eq. (16) by going over all O(log n) many r1 ∈ R2,in(r2).

The expression of Eq. (16) only involves distances d(r1, ·) and d(·, r1) for r1 ∈ R1,in(r2) ⊆ S1,
which are already computed in Phase I of Algorithm 3. So we can compute the answer in O(log n)
time.

7Note that we introduced the under-estimate d(s, r2) in condition 3 of Definition 6.17 for the same reason.
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Now we show B̃′(v) can be computed efficiently.

Lemma 6.23 The modified in-Dijkstra of Definition 6.20 computes B̃′(v) in Õ(mn · |B̃′(v)|) time.

Proof. Suppose the modified in-Dijkstra pops vertex s from the heap.

• The condition 1 of Definition 6.20 can be checked in O(1) time because we already know
d(r1, ·), d(·, r1) for all r1 ∈ S1 from Phase I of Algorithm 3.

• The condition 2 can be checked in O(|R2,in(v)|) ≤ O(log n) time since we already computed

B
(2)
out(r2) for all r2 ∈ S2 in Phase II of Algorithm 3.

• For condition 3, we need to check 2D[s] + d(r2, s) < 2d(r2, v) + d(s, r2) for all r2 ∈ R2,in(v).

– Since the check for condition 2 has passed, we have s ∈ B
(2)
out(r2). So we know the value

of d(r2, s) from Phase II of Algorithm 3 (note that r2 ∈ S2).

– Since r2 ∈ R2,in(v), we have v ∈ B
(4)
out(r2) ⊆ B

(2)
out(r2) by Eq. (15). So we know the value

of d(r2, v) from Phase II of Algorithm 3.

– We can compute d(s, r2) in O(log n) time due to Lemma 6.22 and Phase II of Algorithm 3.

Hence, we can check whether s ∈ B̃′(v) in O(log2 n) time.

Now we are ready to prove that our Algorithm 3 achieves 4-approximation.

Theorem 6.24 (Correctness of Algorithm 3) Algorithm 3 returns g′ satisfying g ≤ g′ ≤ 4g, where
g is the girth of the input directed graph G.

Proof. Let C be the shortest cycle of G with length g. Consider an arbitrary vertex v on C. If
v ∈ S1, then C is found in Phase I of Algorithm 3 and hence g′ = g. If all vertices on C are
contained in B̃′(v), then it is eventually found at Line 14 in Algorithm 3, and g′ = g. Hence, in
the following we assume v /∈ S1, and there is some vertex u ∈ C that is not included in B̃′(v). We
choose u to be the first ancestor of v on the cycle that is not in B̃′(v) (in particular, u is a minimizer
of d(u, v) among u ∈ C \ B̃′(v)). Note that u 6= v because v ∈ B̃′(v) by definition.

Let x ∈ C denote the out-neighbor of u on the cycle C. By our definition of u, we know the entire
shortest path from x to v on C are contained in B̃′(v). Then, x must have relaxed its in-neighbor
u during the modified in-Dijkstra, which makes D[u] equal to the true distance d(u, v). The fact
that u /∈ B̃′(v) then means some of the three conditions in Definition 6.20 is violated for u, which
then implies u /∈ B′(v), as these conditions are equivalent to the three conditions in the definition
of B′(v) (Definition 6.17) due to D[u] = d(u, v).

As u /∈ B′(v), we now divide into three cases depending on which condition in Definition 6.17
fails for u.

• Condition 1 fails, i.e., v /∈ B
(4)
out(u).

Then by Corollary 6.14, there exists r1 ∈ R1,out(u) such that 4d(u ⇌ v) ≥ d(r1 ⇌ v) ≥ g′

(due to the update at Line 5 for r1 ∈ R1,out(u) ⊆ S1 during Phase I of Algorithm 3; note that
v 6= r1 since v /∈ S1).
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• Condition 2 fails, i.e., u /∈ B
(2)
out(r2) for some r2 ∈ R2,in(v).

Since r2 ∈ R2,in(v), by Eq. (15) we have v ∈ B
(4)
out(r2). Then, by the 4-approximation filtering

lemma (Lemma 6.16), there exists r1 ∈ R1,out(r2) such that 4d(v ⇌ u) ≥ d(v ⇌ r1) ≥ g′ (due
to the update at Line 5 in Phase I of Algorithm 3).

• Condition 3 fails, and Conditions 1,2 hold. This is saying that there exists r2 ∈ R2,in(v) such
that

2d(u, v) + d(r2, u) ≥ 2d(r2, v) + d(u, r2). (17)

And, we have v ∈ B
(4)
out(u) (by Condition 1) and u ∈ B

(2)
out(r2) (by Condition 2).

We further divide into two cases:

– Case u ∈ B
(2)
in (r2):

In this case we have d(u, r2) = d(u, r2) by Lemma 6.18. So we apply Lemma 6.11 to
Eq. (17) and obtain g′ ≤ 4d(u⇌ v).

– Case u 6∈ B
(2)
in (r2):

Plugging the definition d(u, r2) = minr1∈R1,in(r2)
1
2(2d(r1, r2) + d(u, r1) − d(r1, u)) (from

Lemma 6.18) into Eq. (17), we obtain that there exists r1 ∈ R1,in(r2) such that

2d(u, v) + d(r2, u) ≥ 2d(r2, v) +
1

2
(2d(r1, r2) + d(u, r1)− d(r1, u)).

Multiplying both sides by 2, and then adding 4d(v, u) − 2d(r2, u) to both sides, we get

4d(u, v) + 4d(v, u) ≥ 4d(r2, v) + 2d(r1, r2) + d(u, r1)− d(r1, u) + 4d(v, u) − 2d(r2, u)

≥ 2d(r2, v) + 2d(r1, r2) + d(u, r1)− d(r1, u) + 2d(v, u)
(by triangle inequality d(r2, u) ≤ d(r2, v) + d(v, u))

≥ d(r2, v) + d(r1, r2) + d(u, r1) + d(v, u)
(by triangle inequality d(r1, u) ≤ d(r1, r2) + d(r2, v) + d(v, u))

≥ d(v ⇌ r1).

Hence, 4d(v ⇌ u) ≥ d(v ⇌ r1) ≥ g′ (due to the update at Line 5 in Phase I of
Algorithm 3).

Hence we have established g′ ≤ 4d(v ⇌ u) in all three cases.

Computing eliminators. Finally, we describe how to compute the eliminators R2,in(v) ⊆ S2

(Line 11 of Algorithm 3). The algorithm has a similar overall structure as the eliminator compu-
tation in Phase II (and [CL21]) described earlier (Algorithm 4). The main idea is to exploit the
symmetry in the definition of B′(v) (Definition 6.17), but here it involves more conditions and we
need to be slightly more careful to make sure the running time is Õ(mn1/3). See the pseudocode of
compute-eliminators-2(G,S2) in Algorithm 5, which takes the uniform vertex sample S2 ⊆ V ,
and returns R2,in(v) ⊆ S2 for all v.
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Algorithm 5: compute-eliminators-2(G,S2)

Input: The input graph G = (V,E), and S2 = {s1, s2, . . . , s|S2|} ⊆ V of size

|S2| = O(n2/3) sampled uniformly and independently (with replacement)
Output: The sets R2,in(v) ⊆ S2 of size O(log n) for every vertex v ∈ V

1 T (0)(v), R(0)(v)← ∅ for every v ∈ V
2 for i ∈ {1, . . . , k} where k = 10 log n do

3 S(i) ← the next 10n2/3/ log n samples from S2.

4 for s ∈ S(i) do

5 Compute B
(2)
out(s), B

(2)
in (s) and B

(4)
out(s), and distances d(s, v) for all v ∈ B

(2)
out(s),

d(v, s) for all v ∈ B
(2)
in (s), using Lemma 6.6

6 for v ∈ V do

7 T (i)(v)← {s ∈ S(i) | v ∈ B
(4)
out(s) and ∀t ∈ R(i−1)(v), s ∈ B

(2)
out(t) and

2d(s, v) + d(t, s) < 2d(t, v) + d(s, t)}, where d(·, ·) is defined in Lemma 6.18.
8 if T (i)(v) 6= ∅ then

9 t← a random vertex t ∈ T (i)(v)

10 R(i)(v)← R(i−1)(v) ∪ {t}
11 else

12 R(i)(v)← R(i−1)(v)

13 return R2,in(v)← R(k)(v) for each v ∈ V

By inspecting Algorithm 5, we observe the following properties (analogous to Observation 6.9
for Algorithm 4 from Phase II).

Observation 6.25 Algorithm 5 runs in time Õ(mn1/3), and outputs sets R2,in(v) ⊆ S2 of size

|R2,in(v)| = O(log n) for all v ∈ V . Moreover, for every v ∈ V and s ∈ R2,in(v), we have v ∈ B
(4)
out(s).

Proof. First note that the total number of vertex samples required at Line 3 is |S(1) ⊎ · · · ⊎ S(k)| =
k · 10n2/3/ log n = 100n2/3 ≤ |S2|. In each iteration 1 ≤ i ≤ k, the algorithm only adds at most one
sampled vertex t ∈ S2 to the set R(i)(v) for each v ∈ V , so each output set R2,in(v) = R(k)(v) ⊆ S2

and has size |R2,in(v)| ≤ k ≤ O(log n).

To prove the moreover part, note that by definition of T (i)(v) at Line 7, v ∈ B
(4)
out(s) holds for

all s ∈ T (i)(v) and thus for all s ∈ R2,in(v).
It remains to bound the running time. In each iteration, Line 5 takes time Õ(mn · n2/3) for

each s ∈ S(i) by Lemma 6.6 (recall that |B(2)
out(s)|, |B

(2)
in (s)|, |B(4)

out(s)| ≤ Õ(n2/3) by Lemma 6.5 and
Lemma 6.15), which sums to Õ(n2/3) · Õ(mn · n2/3) = Õ(mn1/3) in total.

To implement Line 7 efficiently, for any given v ∈ V we want to quickly go over all s ∈ S(i) such

that v ∈ B
(4)
out(s). This can be achieved by a preprocessing stage that iterates over s ∈ S(i) and

inserts s to the v-th bucket for every v ∈ B
(4)
out(s), in Õ(n2/3 · n2/3) = Õ(n4/3) total time. Then,

we show that all four terms in the inequality at Line 7 are known from the computation at Line 5

or can be computed efficiently from there: d(s, v) is known because v ∈ B
(4)
out(s), s ∈ S(i), d(t, s)

is known because s ∈ B
(2)
out(t) and t ∈ S2, d(t, v) is known because v ∈ B

(4)
out(t) and t ∈ S2, and

d(s, t) can be computed by Lemma 6.22 in O(log n) time because we know B
(2)
in (t) and d(x, t) for

all x ∈ B
(2)
in (t).
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Thus overall k = O(log n) iterations, Algorithm 5 takes Õ(mn1/3) time.

Now we prove the key Lemma 6.19, which states that Algorithm 5 guarantees B′(v) to have
small size with high probability.

Proof of Lemma 6.19. The proof is based on symmetry of elimination, which is similar to the earlier
proof of Lemma 6.5.

Fix the v ∈ V from Definition 6.17. Due to Item 1 of Definition 6.17, here we only need to

consider vertices from Cv := {s ∈ V : v ∈ B
(4)
out(s)}. We make the following definition motivated by

Item 2 and Item 3 of Definition 6.17: for two vertices s, t ∈ Cv, we say t eliminates s, if s /∈ B
(2)
out(t)

or 2d(s, v) + d(t, s) ≥ 2d(t, v) + d(s, t). Then, observe that B′(v) consists of exactly the vertices
s ∈ Cv that are not eliminated by any vertex in R2,in(v).

Now we show that for any s, t ∈ Cv, either s eliminates t or t eliminates s. Suppose to the
contrary that s does not eliminate t, and t does not eliminate s. Then we have inequalities

2d(s, v) + d(t, s) < 2d(t, v) + d(s, t) ≤ 2d(t, v) + d(s, t)

and
2d(t, v) + d(s, t) < 2d(s, v) + d(t, s) ≤ 2d(s, v) + d(t, s),

which are contradicting each other.
Having proved this symmetry property, the rest of the arguments is the same as in Lemma 6.5,

and we omit it here.

Finally, we can state the time complexity of the entire Algorithm 3.

Theorem 6.26 (Running time of Algorithm 3) Algorithm 3 runs in Õ(mn1/3) time with high prob-
ability.

Proof. The running time of Phase I is Õ(mn1/3) by Observation 6.1. The running time of Phase II
is Õ(mn1/3) by Proposition 6.10.

For Phase III, Line 11 (computing eliminators R2,in(v) for all v ∈ V ) takes Õ(mn1/3) time by
Observation 6.25. Then, the for loop takes Õ(mn · |B̃′(v)|) time for each v ∈ V . Since B̃′(v) ⊆
B′(v) ∪ {v} (by Observation 6.21) and |B′(v)| ≤ Õ(n1/3) (by Lemma 6.19), the total time for this
loop is n · Õ(mn · n1/3) = Õ(mn1/3).

Thus, the overall running time of Algorithm 3 is Õ(mn1/3).

7 Conclusion

We conclude with a few open questions:

1. Can we compute 3-roundtrip spanner in Õ(n2) time (or even faster)?

2. Can we compute (2k − 1)-approximate roundtrip emulators faster on sparse graphs?

3. For the O(mn1/k)-time roundtrip spanner (or directed girth) algorithm of [CLRS20], can we
improve its O(k log k) approximation ratio to O(k)? Can our technique be combined with the
divide-and-conquer techniques of [PRSTV18; CLRS20; DV20]?
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4. Can we show fine-grained lower bounds for the task of computing roundtrip spanners? In
particular, can we rule out Õ(m)-time algorithms for computing (2k − 1)-roundtrip spanners
of sparsity O(n1+1/k)?
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