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Faster Algorithms for Bounded Knapsack and Bounded Subset Sum Via

Fine-Grained Proximity Results

Lin Chen∗ Jiayi Lian† Yuchen Mao‡ Guochuan Zhang§

Abstract

We investigate pseudopolynomial-time algorithms for Bounded Knapsack and Bounded Subset Sum. Recent

years have seen a growing interest in settling their fine-grained complexity with respect to various parameters.

For Bounded Knapsack, the number of items n and the maximum item weight wmax are two of the most

natural parameters that have been studied extensively in the literature. The previous best running time in

terms of n and wmax is O(n+w3
max) [Polak, Rohwedder, Węgrzycki ’21]. There is a conditional lower bound of

(n+ wmax)
2−o(1) based on (min,+)-convolution hypothesis [Cygan, Mucha, Węgrzycki, Włodarczyk ’17]. We

narrow the gap significantly by proposing an Õ(n+w
12/5
max )-time algorithm. Our algorithm works for both 0-1

Knapsack and Bounded Knapsack. Note that in the regime where wmax ≈ n, our algorithm runs in Õ(n12/5)

time, while all the previous algorithms require Ω(n3) time in the worst case.

For Bounded Subset Sum, we give two algorithms running in Õ(nwmax) and Õ(n+w
3/2
max) time, respectively.

These results match the currently best running time for 0-1 Subset Sum. Prior to our work, the best running

times (in terms of n and wmax) for Bounded Subset Sum are Õ(n + w
5/3
max) [Polak, Rohwedder, Węgrzycki

’21] and Õ(n+ µ
1/2
maxw

3/2
max) [implied by Bringmann ’19 and Bringmann, Wellnitz ’21], where µmax refers to the

maximum multiplicity of item weights.

1 Introduction

Knapsack and Subset Sum are two of the most fundamental problems in combinatorial optimization. In 0-1
Knapsack, we are given a set of n items and a knapsack of capacity t. Each item i has a weight wi and a profit pi.
Assume t, pi, wi ∈ N. We should select items so as to maximize the total profit subject to the capacity constraint.
Subset Sum is a special case of Knapsack where every item has its profit equal to its weight. In 0-1 Subset Sum,
given a set of n items with weight {wi}i∈[n] and a target t, we are asked whether there is some subset of items
whose total weight is t. The two problems can be naturally generalized to the bounded case where each item i
can be selected up to ui times. We investigate Bounded Knapsack and Bounded Subset Sum. Throughout the
rest of the paper, Knapsack and Subset Sum always refer to the bounded case unless stated otherwise.

Knapsack and Subset Sum are both weakly NP-hard, and can be solved in pseudopolynomial time using
standard dynamic programming [5]. In recent years, there has been a series of works trying to settle the best
possible pseudopolynomial running time for these problems with respect to various parameters, including n, t, the
total number of item copies N =

∑
i ui, the maximum weight wmax, the maximum profit pmax, and the optimal

total profit OPT . Table 1 and Table 2 list the known pseudopolynomial-time algorithms for Knapsack and Subset
Sum, respectively. Of particular interest are those algorithms that have only n and wmax as parameters, because
n and wmax can be much smaller than N and t, but not vice versa.

For Knapsack, the standard dynamic programming has a running time of O(N2wmax) as t 6 Nwmax.
Tamir [28] gave an O(n3w2

max)-time algorithm, which is the first algorithm with running time depending only on n

and wmax. The results via fast (min,+)-convolution in Reference [3, 4, 21] imply an Õ(Nw2
max)-time1 algorithm.

Bateni et al. [4] also gave an improved Õ(n ·w2
max ·min{n,wmax})-time algorithm. Eisenbrand and Weismantel [16]
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Table 1: Pseudopolynomial-time algorithms for Bounded Knapsack.

Bounded Knapsack Reference

Õ(n ·min{t, OPT }) Bellman [5]
O(N · wmax · pmax) Pisinger [25]

O(n3 · w2
max) Tamir [28]

Õ(n+ wmax · t) Kellerer and Pferschy [21], also [3, 4]

Õ(n+ pmax · t) Bateni et al. [4]

Õ(n · w2
max ·min{n,wmax}) Bateni et al. [4]

O(N ·min{w2
max, p

2
max}) Axiotis and Tzamos [3]

Õ(n ·min{w2
max, p

2
max}) Eisenbrand and Weismantel [16]

O(n+min{w3
max, p

3
max}) Polak et al. [26]

Õ(n+ (t+OPT )1.5) Bringmann and Cassis [8]

Õ(N ·min{wmax · p2/3max, pmax · w2/3
max}) Bringmann and Cassis [9]

Õ(n+min{w12/5
max , p

12/5
max }) This Paper

Table 2: Pseudopolynomial-time algorithms for Bounded Subset Sum. In (*),
µmax = maxw{

∑
i:wi=w ui}.

Bounded Subset Sum Reference

Õ(n ·min{t, OPT }) Bellman [5]
O(N · wmax) Pisinger [25]

Õ(n+min{√n · t, t5/4}) Koiliaris and Xu [22]

Õ(n+ t) Bringmann [6], Jin and Wu [20]

Õ(N + µ
1/2
max · w3/2

max)* Bringmann and Wellnitz [11] + [6]

Õ(n+ w
5/3
max) Polak et al. [26]

Õ(n · wmax) This Paper

Õ(n+ w
3/2
max) This Paper

proved a proximity result, with which an Õ(nw2
max)-time algorithm for Knapsack can be obtained. Combining

the proximity result [16] and the convolution framework [3, 4, 21], Polak et al. [26] showed that Knapsack can be
solved in O(n+w3

max) time. There is also a conditional lower bound (for 0-1 Knapsack) of (n+wmax)
2−o(1) based

on the (min,+)-convolution conjecture [14, 23]. It remains open whether Knapsack can be solved in O(n+w2
max)

time [8].
For Subset Sum, Pisinger [25] improved the standard dynamic programming and obtained a running time of

O(Nwmax). We remark that the dense Subset Sum result by Galil and Margalit [17] implies an Õ(n+w
3/2
max)-time

algorithm, but their algorithm requires all wi to be distinct and umax = 1 and is not applicable for Bounded
Subset Sum. Hence, we do not include it in Table 2. Nevertheless, Bringmann and Wellnitz [11] later refined

and extended the dense Subset Sum result, and their result implies an Õ(N + µ
1/2
maxw

3/2
max)-time algorithm where

µmax = maxw
∑

i:wi=w ui. (Note that
∑

i:wi=w ui is the total number of item copies whose weight is w). Polak et
al. [26] gave the first algorithm for Bounded Subset Sum that depends only on n and wmax. Their algorithm runs

in Õ(n+w
5/3
max)-time. There is a conditional lower bound of Ω(n+w

1−o(1)
max ) implied by the Set Cover Hypothesis [6]

and Strong Exponential Time Hypothesis [1].

1.1 Our Results

Theorem 1.1. There is an Õ(n+ w
12/5
max )-time algorithm for Bounded Knapsack.

Our result significantly narrows the gap between the previous upper bound of O(n+w3
max) and the lower bound

of Ω(n + w
2−o(1)
max ). Moreover, in the regime where wmax is O(n), our algorithm outperforms all the previous



algorithms that have only n and wmax as parameters. In particular, when wmax ≈ n and t ≈ n2, our algorithm is
the first to guarantee a subcubic running time in this regime, while all previous algorithms require Ω(n3) time2.

Due to the symmetry of weights and profits, we can also obtain an Õ(n+p
12/5
max )-time algorithm by exchanging

the roles of weights and profits [3, 26].

Corollary 1.1. There is an Õ(n+ p
12/5
max )-time algorithm for Bounded Knapsack.

Theorem 1.2. There is an Õ(nwmax)-time algorithm for Bounded Subset Sum.

Theorem 1.3. There is an Õ(n+ w
3/2
max)-time randomized algorithm for Bounded Subset Sum.

The best algorithms (in terms of n and wmax) for 0-1 Subset Sum run in O(nwmax) and Õ(n+ w
3/2
max) time,

but they cannot be generalized to Bounded Subset Sum. Indeed, prior to our work, the best-known algorithm for

Bounded Subset Sum in terms of these two parameters is that of Polak et al. [26] running in Õ(n+ w
5/3
max) time.

Pisinger’s algorithm [25] runs in O(nwmax) time on 0-1 Subset Sum but requires O(Nwmax) on Bounded Subset
Sum3. Meanwhile, the works of Galil and Margalit [17] and Bringmann and Wellnitz [11] imply a running time of

Õ(n + w
3/2
max) only when all {w1, . . . , wn} are distinct and all ui = 1. For Bounded Subset Sum, their algorithms

either do not work or have additional factors in the running time. It is natural to ask whether Bounded Subset
Sum can be solved as fast as 0-1 Subset Sum. Our results provide an affirmative answer to this question (at least
with respect to the known algorithms).

1.2 Technique Overview
Knapsack A proximity result [16] states that a certain greedy solution g and an optimal solution z differ in

O(wmax) items. It directly follows that the total weight ∆ of these items is O(w2
max). Therefore, it is possible to

obtain z from g by deleting and adding only O(w2
max) volume of items. The upper bound on ∆ plays an important

role in accelerating the (min,+)-convolution framework [3, 4, 21] for Knapsack. The (min,+)-convolution-based
algorithm first partitions items by their weights, and for each group, computes an all-capacities solution which is
a vector of length t+1. These vectors are combined one by one using a linear-time concave (min,+)-convolution
algorithm [2], and every intermediate vector is also truncated to be of length t. Since the concave (min,+)-
convolution are performed for at most wmax times, each taking O(t) time, the total running time is O(n+wmaxt).
Applying the proximity result, every solution vector and intermediate vector can be truncated to be of length
roughly w2

max. Therefore, a running time of O(n + w3
max) can be obtained in [26].

The upper bound of O(w2
max) on ∆ is tight in the sense that there are instances on which ∆ = Θ(w2

max).
Nevertheless, ∆ only characterizes the total difference of g and z on all groups, and it does not provide satisfactory
answers to questions like: how much can a particular group (or a particular set of groups) contribute to ∆?
Intuitively, since the total contribution of all groups is O(w2

max), only a few groups can have large contribution.

Our first fine-grained proximity result states that only Õ(w
1/2
max) groups can contribute as much as O(w2

max),

and rest of the groups together can contribute at most O(w
3/2
max). Then except for Õ(w

1/2
max) convolutions, every

convolution can be done in O(w
3/2
max) time, which leads to an Õ(n + w

5/2
max)-time algorithm. Then we further

improve the proximity result and obtain an Õ(n+ w
12/5
max ) algorithm.

We define the efficiency of an item to be the ratio of its profit to weight. Our proximity result is based on
a natural intuition that only the choice of items with median efficiency can differ a lot in g and z, while the
items with high efficiency or low efficiency are so good or so bad that both g and z tend to make the same
decision. Formal proof of this idea requires additive combinatorics tools developed by a series of works including
[6, 17, 24, 27]. Basically, when we select enough items with median efficiency, the multiset of weights of these
items becomes “dense”. Then we can use tools from dense subset sum due to Bringmann and Wellnitz [11] to
show that items with high and low efficiency cannot differ too much in g and z.

We remark that a recent work of Deng et al. [15] also utilized the additive combinatorics result in Subset
Sum [11] to show a proximity result in the context of approximation algorithms for Knapsack. Both our approach

2The only exception is the Õ(Nwmaxp
2/3
max)-time algorithm by Bringmann [9], but they additionally require pmax 6 O(n3/2) and

N ≈ n.
3Note that the idea of binary encoding each ui as 1 + 2 + 4 + . . . + 2log ui (bundling item copies) does not help to reduce the

running time to O(nwmax), because although it reduces ui to a constant, it increases wmax by a factor of ui.



and theirs share a similar high-level idea, that is, if the optimal solution selects many low-efficiency items, then
the high-efficiency items not selected by the optimal solution cannot form a dense set (in terms of their weights
or profits), for otherwise it is possible to utilize additive combinatorics results to conduct an exchange argument
on low- and high-efficiency items. There are, however, two major differences in techniques: (i). The density
requirement on the high-efficiency item set in Deng et al.’s work [15] is very strong. In particular, they require
any large subset of this set to be dense. This works in approximation algorithms where the input instance can be
reduced to a bounded instance in which item profits differ by a constant factor. For exact algorithms, such kind
of density requirement is not achievable. Nevertheless, we give a similar exchange argument that only requires
a weaker density condition. (ii). Multiplicity of item weights or profits has not been considered in Deng et al.’s
work [15]. We remark that the additive combinatorics result in Subset Sum by Bringmann and Wellnitz [11] is
for multisets, which actually provides a trade-off between “dense threshold” and item multiplicity. Very roughly
speaking, for a multiset X that consists of integers up to w, it can become dense if it contains Θ̃(

√
w) or more

distinct integers, but it can also become dense if it only contains Θ̃(w0.4) distinct integers where each integer

has Θ̃(w0.2) multiplicities. Deng et al.’s work only utilized the former result. We achieve an Õ(n + w
5/2
max)-time

algorithm using the former result, and show that it can be further improved to Õ(n+ w
12/5
max )-time by exploiting

the multiplicity to build a stronger proximity result.
Subset Sum Observe that the gap between O(nwmax) and O(Nwmax) arises from umax as N 6 numax. A

standard method for reducing umax is to bundle item copies. For example, by bundling every k copies of each
item, we reduce umax by a factor of k. Doing this, however, increases wmax by the same factor. As a consequence,
any trivial treatment of the resulting instance will not improve the running time. Let X be the input instance. Let
S(X) be the set of all subset sums of X . The effect of bundling is essentially decomposing X into X = X0 + kX1

where X0 stands for the set of the items that are not bundled (called residual items), and kX1 stands for the
set of the bundled items. We can prove that S(X) = S(X0) + kS(X1). Since both the residual items and the
bundled items have smaller multiplicities, computing S(X0) and S(X1) is faster than directly computing S(X).

Computing S(X0)+ kS(X1) using standard FFT, however, still requires Õ(mS(X0)+ k ·mS(X1)) time where mS(Xi)

is the maximum element in S(Xi). Note that mS(X0)+k ·mS(X1) can be as large as Nwmax, so it leads to the failure
of the bundling idea. We propose an FFT-based algorithm that can determine whether t ∈ S(X0) + kS(X1) in

Õ(mS(X0) + mS(X1)) time for arbitrary t. This algorithm can be extended to arbitrary many levels of bundling.
After recursively applying the bundling idea for logarithmic levels, we can reduce the multiplicities of items in
each level to a constant. Therefore, the S(Xi) for each level can be computed in Õ(nwmax) time. Then we can

determine whether t ∈∑
i k

iS(Xi) using our FFT-based algorithm in Õ(nwmax) total time.

Then we observe that when the number of distinct weights in the input is bounded by Õ(w
1/2
max), after O(n)-

time preprocessing, Subset sum can be solved in Õ(w
3/2
max) time using our Õ(nwmax)-time algorithm. It remains

to tackle the case where the number of distinct weights is at least Θ̃(w
1/2
max). In this case, the set of item weights

is “dense”, so we can apply additive combinatorics tools as we did for Knapsack. Moreover, since every item has
the same efficiency in Subset Sum, we can get stronger proximity result. Indeed, we show that there is a greedy

solution g and an optimal solution z that differ by at most ∆ = Õ(w
3/2
max) volume of items. Obtaining z from g

can be basically reduced to two Subset Sum problems with t = Õ(w
3/2
max). Then using Bringmann’s Õ(n+ t)-time

algorithm [6] for Subset Sum, the dense case can be solved in Õ(n+ w
3/2
max) time.

1.3 Further Related Work For Knapsack, N, t, pmax, OPT are alternative parameters that have been used in the
literature. The standard dynamic programming due to Bellman together with the idea of bundling item copies
gives a running time of Õ(nt) [5, 25]. Using a balancing technique, Pisinger obtained a dynamic programming
algorithm that runs in O(Nwmaxpmax) time [25]. Several recent advances in Knapsack build upon (min,+)-
convolution [3, 4, 8, 12, 21]. In particular, Bringmann and Cassis used the partition and convolve paradigm to

develop an algorithm that runs in Õ(Nwmaxp
2/3
max}) time [9]. The additive combinatorics techniques used in these

papers also inspired progress in approximation algorithms of Knapsack [15]. Pseudopolynomial-time algorithms
have also been studied extensively for Knapsack and Subset Sum in the unbounded case where ui = ∞. See
Reference [4, 6, 8, 13, 18, 28].

For Subset Sum, when taking the target t as a parameter, the best-known deterministic algorithm is due to
Koiliaris and Xu [22], which runs in Õ(n+min{√nt, t5/4}) time. The best-known randomized algorithm is due to



Bringmann [6], which runs in Õ(n+ t) time. An alternative randomized algorithm with almost the same running
time is given by Jin and Wu [20].

1.4 Paper Outline In Section 2, we introduce necessary terminology and preliminaries. In Section 3, we prove
two exchange arguments that are crucial to our algorithms. In Section 4, we present a simpler algorithm to

illustrate our main idea. The Õ(n+ w
12/5
max )-time algorithm for Knapsack is presented in Section 5. In Section 6,

we give two algorithms for Subset Sum. Omitted proofs can be found in the appendix.

2 Preliminaries

2.1 Notation We use I = {1, . . . , n} to denote the set of all items, each with weight wi and profit pi. We assume
that items are labeled in decreasing order of efficiency. That is, p1/w1 > . . . > pn/wn. Item i has ui copies. Let
W = {wi : i ∈ I} be the set of all item weights. The maximum weight is denoted by wmax.

Let i be some item. We denote the set of item {1, ..., i− 1} as I<i and {i, . . . , n} as I>i. Let i and j be two
items with i < j, we say i is to the left of j, and j is to the right.

For w ∈W , we denote the set of items with weight w as

Iw = {i ∈ I : wi = w}.

For any subset W ′ of W , we write
⋃

w∈W ′ Iw as IW ′

. We also write IW ′ ∩ I<i as IW ′

<i , and IW ′ ∩ I>i as IW ′

>i .
Basically, the superscript restricts the weights of items in the set, while the subscript restricts the indices.

For any subset I ′ of items, we refer to the multiset {wi : i ∈ I ′} as the weight multiset of I ′.
A solution to Bounded Knapsack can be represented by a vector x where xi is the number of selected copies

of item i.

2.2 The Previous Proximity Result Let g be a maximal prefix solution that can be obtained greedily as follows.
Starting with an empty knapsack, we process items in increasing order of index (i.e., in decreasing order of
efficiency). If the knapsack has enough room for all copies of the current item, we select all these copies, and
process the next item. Otherwise, we select as many copies as possible, and then stop immediately. The item at
which we stop is called the break item, denoted by b. Without loss of generality, we assume that no copies of the
break item b are selected by g (i.e., gb = 0). If gb 6= 0, we can view those copies selected by g as a new item i′

with ui′ = gb, and set ub = ub − gb. It is easy to observe that gi = ui for all i < b and that gi = 0 for all i > b.
The following proximity result states that there is an optimal solution z that differs from g only in a few

items.

Lemma 2.1. ([16, 26]) Let g be a maximal prefix solution of Knapsack. There exists an optimal solution z such
that

‖z− g‖1 =
n∑

i=1

|zi − gi| 6 2wmax.

Throughout the rest of the paper, we fix g to be a maximal prefix solution and z to be an optimal solution
that minimizes ‖z− g‖1. For any subset I ′ of items, we define the weighted ℓ1-distance from g to z on I ′ to be

∆(I ′) =
∑

i∈I′

wi|gi − zi|.

2.3 Proximity-based (min,+)-Convolution Framework Both the algorithm of Polak et al. [26] and our algorithm
use the proximity-based (min,+)-convolution framework. We present a general form of the framework through
the following Lemma. Recall that W is the set of all item weights.

Lemma 2.2. Let g be a maximal prefix solution to Bouned Knapsack. Let W1 ∪ · · · ∪Wk be a partition of the
set W . For j ∈ {1, ..., k}, let Uj be an upper bound for ∆(IWj ). Then Bounded Knapsack can be solved in

Õ(n+ k
∑k

j=1 |Wj | · Uj) time.

We only give a sketch of the proof. The complete proof is deferred to Appendix A.



Proof Sketch. We construct an optimal solution x through modifying g. Specifically, we have x = g − x− + x+,
where x− represents the copies of items in I<b that are deleted from g, and x+ represents the copies of items in
I>b that are added to g, while noting that b is the break item. We shall compute two sequences, namely: (i).
x− = 〈x−

0 , ..., x
−
k·Uk
〉, where x−

t′ is the minimum total profit of copies in I<b whose total weight is exactly t′; (ii).

x+ = 〈x+
0 , ..., x

+
k·Uk
〉, where x+

t′ is the maximum total profit of copies in I>b whose total weight is exactly t′. The
optimal solution can be found easily using these two sequences in O(kUk) time.

The computation of x− and x+ follows the same method as Polak et al. [26]: we consider all copies of items
whose weight is exactly w, and let sw denote the sequence whose t′-th entry is the maximum total profit of
these items when their total weight is exactly t′. After computing all sw’s, we iteratively update x− and x+ by
computing their convolutions with each sw. The key point is that we can strategically pick an order of the sw’s

to perform convolution. In particular, assuming that U1 6 ... 6 Uk, we have ∆(IW1∪...∪Wk′ ) 6
∑k′

j=1 Uj 6 k′ ·Uk′

for any 1 6 k′ 6 k. We first convolve sw’s in W1, then W2, etc. When we compute the convolution with sw where
w ∈Wk′ , we can truncate the sequence after the k′ ·Uk′-th entry, and thus the convolution takes O(k′ ·Uk′) time via

SMAWK algorithm [2]. It is easy to verify that the total time is Õ(n+
∑k

j=1 |Wj |·j ·Uj) = Õ(n+k
∑k

j=1 |Wj |·Uj).

2.4 Additive Combinatorics Additive combinatorics has been a useful tool for Subset Sum. With additive
combinatorics tools, Galil and Margalit [17] gave a characterization of the regime within which Subset Sum can
be solved in linear time. Their result was later improved by Bringmann and Wellnitz [11]. Our exchange argument
in Section 3 heavily utilizes the dense properties by Bringmann and Wellnitz. We briefly descibe these properties
in this subsection.

Let X be a multiset of positive integers. We denote the sum of X as ΣX , the maximum element in X as mX ,
the maximum multiplicity of elements in X as µX , and the support of X as suppX . The number of elements in
X is denoted by |X | (with multiplicities counted). We say X can hit an integer s if some subset of X sums to
this integer, i.e., there is a subset X ′ ⊆ X that ΣX′ = s.

Definition 2.1. (Definition 3.1 in [11]) We say that a multiset X is δ-dense if it satisfies |X |2 > δ · µXmX .

Definition 2.2. (Definition 3.2 in [11]) Let X be a multiset. We denote by X(d) := X ∩ dZ the multiset of all
numbers in X that are divisible by d. Further, we write X(d) := X\X(d) to denote the multiset of all numbers
in X not divisible by d. We say an integer d > 1 is an α-almost divisor of X if |X(d)| 6 α · µXΣX/|X |2.

Theorem 2.1. (Theorem 4.2 in [11]) Let X be a multiset of positive integers and set

cδ := 1699200 · log(2|X |) log2(2µX),

cα := 42480 · log(2µX),

cλ := 169920 · log(2µX).

If X is cδ-dense and has no cα-almost divisor, then for λX := cλµXmXΣX/|X |2, X can hit all the integers in
range [λX ,ΣX − λX ].

Theorem 2.2. (Theorem 4.1 in [11]) Let X be a multiset of positive integers. Let δ, α be functions of n with
δ ≥ 1 and 0 < α 6 δ/16. Given a δ-dense set X of size n, there exists an integer d > 1 such that X ′ := X(d)/d
is δ-dense and has no α-almost divisor. Moreover, we have the following additional properties:

(i) d 6 4µXΣX/|X |2,
(ii) |X ′| > 0.75|X |,
(iii) ΣX′ ≥ 0.75ΣX/d.

3 A General Exchange Argument

In this section, we establish two additive combinatorics results that are crucial to proving our proximity result.
Basically we show that given two (multi-)sets A and B of positive integers, if A is dense, and ΣB is large, there
must be some non-empty subset A′ of A and a subset B′ of B such that ΣA′ = ΣB′ . We first give a result where
multiplicities of integers are not utilized.



Lemma 3.1. Let w be a positive integer. Let p be an arbitrary real number such that 0.5 6 p < 1. Let A be a
multiset of integers from {1, ..., w} such that |suppA| > cAw

p logw, B be a multiset of integers from {1, ..., w}
such that ΣB > cBw

2−p, where cA and cB are two sufficiently large constants. Then there must exist a non-empty
subset A′ of A and a non-empty subset B′ of B such that ΣA′ = ΣB′ .

Proof. Let S = suppA. Note that |S| > cAw
p logw. What we actually prove is that there is a non-empty subset

S′ of S such that some subset B′ of B have the same total weight as S′. We first characterize the set of integers
that can be hit by S. Then we show that B can hit at least one of these integers.

Note that mS 6 w, µS = 1, and |S| 6 w. Since cA is sufficiently large, we have that

|S|2 > c2Aw
2p log2 w > c2Aw logw > c2AµSmS log |S| > cδµSmS .

By definition, S is cδ-dense. By Theorem 2.2, there exists an integer d such that S′ := S(d)/d is cδ-dense and has
no cα-almost divisor. And the followings hold.

(i) d 6 4µSΣS/|S|2,

(ii) |S′| > 0.75|S|.

(iii) ΣS′ > 0.75ΣS/d.

Note that µS′ = 1, mS′ 6 w/d, and ΣS′ 6 ΣS/d. Applying Theorem 2.1 on S′, we get S′ can hit any integer in
the range [λS′ ,ΣS′ − λS′ ] where

λS′ =
cλµS′mS′ΣS′

|S′|2 6
cλwΣS

(0.75|S|)2d2 6
min{cA, cB}

2
· wΣS

d2|S|2 .

The last inequality holds since cA and cB are sufficiently large constants. We can conclude that S can hit any
multiple of d in the range [dλS′ , d(ΣS′ − λS′)]. We also have that the left endpoint of this interval

dλS′ 6
cB
2
· wΣS

d|S|2 6
cB
2
· w

2|S|
|S|2 6

cB
2
· w

2

|S| 6
cB
2
· w2−p,

and that the length of the interval

d(ΣS′ − 2λS′) >
3ΣS

4
− cA ·

wΣS

d|S|2

>
ΣS

|S|2 (
3|S|2
4
− cA ·

w

d
) (since |S| > cAw

1/2 logw and d > 1)

>
ΣS

|S|2 (
3c2A
4
· w − cA · w) (since cA is sufficiently large)

>4 · ΣS

|S|2 · w (since d 6 4µSΣS/|S|2 and µS = 1)

>dw

To complete the proof, it suffices to show that there is a subset B′ of B whose sum is a multiple of d and
is within the interval [dλS′ , d(ΣS′ − λS′)]. We claim that as long as B has at least d numbers, there must be
a non-empty subset of B whose sum is at most dw and is a multiple of d. Assume the claim is true. We can
repeatedly extract such subsets from B until B has less than d numbers. Note that the total sum of these subsets
is at least

ΣB − wd > cBw
2−p − w · 4ΣS

|S|2 > cBw
2−p − 4w2

|S| > cBw
2−p − w2−p

>
cBw

2−p

2
.

That is, the total sum of these subsets is at least the left endpoint of [dλS′ , d(ΣS′ − λS′)]. Also note that the
sum of each subset is at most dw, which does not exceed the length of the interval. As a result, there must be a
collection of subsets whose total sum is within the interval. Since the sum of each subset is a multiple of d, so is
any collection of these subsets.



To see why the claim is true, take d arbitrary numbers from B. For i ∈ {1, ..., d}, Let hi be the sum of the
first i numbers. If any of hi ≡ 0 (mod d), then we are done. Otherwise, by the pigeonhole principle, there must
be i < j such that hi ≡ hj (mod d). This implies that there is a subset of j− i numbers whose sum is hj −hi ≡ 0
(mod d). Note that 0 < j − i 6 d. So this subset is non-empty and has its sum at most dw.

Lemma 3.1 has no requirement on the multiplicities of elements in A. Therefore, in order to be dense, A
must contain at least cAw

1/2 logw distinct integers. The following Lemma 3.2 generalizes Lemma 3.1 by taking
the multiplicity of integers into consideration. Its proof is similar to that of Lemma 3.1, so we defer it to the
appendix B.

Lemma 3.2. Let w be a positive integer. Let A and B be two multisets of integers from {1, ..., w} such that

(i) at least cAw
2/5 log2 w distinct integers in A have multiplicity of at least w1/5,

(ii) ΣB > cBw
8/5,

where cA and cB are two sufficiently large constants. Then there must exist a non-empty subset A′ of A and a
non-empty subset B′ of B such that ΣA′ = ΣB′ .

4 An Õ(n + w5/2
max

)-time Algorithm for Knapsack

To illustrate our main idea, we first present a simpler algorithm that runs in Õ(n + w
5/2
max). The algorithm uses

the proximity-based (min,+)-convolution framework (See Subsection 2.3). By Lemma 2.2, the key to obtaining
a fast algorithm is to find a good partition of W .

Polak et al. [26] did not partition W at all. That is, they used k = 1 and W1 = W . Lemma 2.1 implies an
upper bound of 2w2

max on ∆(IW ). Together with the fact that |W | 6 wmax, they obtained a running time of
O(n+w3

max). Although the upper bound of O(w2
max) on ∆(IW ) is actually tight, an improvement in the running

time is still possible. Indeed, our first proximity result states that ∆(IW ) concentrates at the small set W ∗ of

roughly w
1/2
max weights, and that the rest of the weights together contribute at most O(w

3/2
max). Moreover, W ∗ can

be identified in Õ(n) time. Then an Õ(n+ w
5/2
max)-time algorithm directly follows by Lemma 2.2.

This section is divided into two parts: the structural part and the algorithmic part. The structural part
proves the existence of W ∗, and the algorithmic part gives algorithms for finding W ∗ and solving Knapsack.

4.1 Structural Part – Fine-Grained Proximity In the structural part, Bounded Knapsack and 0-1 Knapsack are
equivalent, in the sense that every item with ui copies can be viewed as ui items. Therefore, only 0-1 Knapsack is
discussed in the structural part. In 0-1 Knapsack, each item i has only one copy, so there is no difference between
items and copies of items. We can use them interchangeably. As a result, any solution to 0-1 Knapsack can be
represented as a subset of I. Let x ∈ {0, 1}|I| be a solution to 0-1 Knapsack. With slight abuse of notation, we
also use x to denote the set of items selected by x. For any subset I ′ of items, x(I ′) = I ′ ∩ x and x(I ′) = I ′ \ x
denote the sets of items from I ′ that are selected and not selected by x, respectively.

Our first proximity result is the following.

Lemma 4.1. There exists a partition (W ∗,W ∗) of W such that

(i) |W ∗| = 4cAw
1/2
max logwmax, and

(ii) ∆(IW∗

) 6 4cBw
3/2
max,

where cA and cB are two large constants used in Lemma 3.1.

Proof. We will define W ∗ via a partition of I, and then show that W ∗ satisfies properties in the lemma.
Defining W ∗ via a partition of I. Recall that we label the items in decreasing order of efficiency. That is,

p1/w1 > . . . > pn/wn. Without loss of generality, we assume that for any two items i < j < b, if i and j have
the same efficiency, then wi 6 wj , and that for any two items b < i < j, if i and j have the same efficiency, then
wi > wj . We partition the items into four groups (I1, I2, I3, I4) according to their indices. See Figure 1 for an
illustration. We shall define I2 and I3 in such a way that (i) they are “close” to the break item b and that (ii)



items within them have Θ(w
1/2
max logwmax) distinct weights separately. Because the items in I2 and I3 have their

efficiency close to that of b, it is difficult to tell how many of them should be selected by the optimal solution. In
other words, z and g may differ a lot in these items. In contrast, the items in I1 and I4 have very high and very
low efficiency, respectively, so z tends to select most of I1 and few of I4 . As a result, z and g are similar in I1
and I4.

b0 n

I1 I2 I3 I4

larger index and lower efficiency

Figure 1: I1, I2, I3, and I4

Now we formally describe (I1, I2, I3, I4). For any i < j, let I[i,j) be the set of items {i, . . . , j − 1}. Let i∗ be

the minimum index i such that the items in I[i,b) have exactly 2cAw
1/2
max logwmax distinct weights. Let I2 = I[i∗,b),

and let I1 = I<i∗ . When no such i∗ exists, let I2 = I<b, and let I1 = ∅. I3 and I4 are defined similarly as follows.

Let j∗ be the maximum index j such that the items in I[b,j) have exactly 2cAw
1/2
max logwmax distinct weights. Let

I3 = I[b,j∗), and let I4 = I>j∗ . When no such j∗ exists, let I3 = I>b, and let I4 = ∅.
W ∗ is defined as the set of the weights of the items in I2 ∪ I3.
Verifying properties. It is straightforward that |W ∗| 6 4cAw

1/2
max logwmax. We are left to show ∆(IW∗

) 6

2cBw
3/2
max. Note that IW∗ ⊆ I1 ∪ I4, so IW∗

can be partitioned into IW∗

1 = IW∗ ∩ I1 and IW∗

4 = IW∗ ∩ I4, we

have ∆(IW∗

) = ∆(IW∗

1 )+∆(IW∗

4 ). It suffices to show that ∆(IW∗

1 ) and ∆(IW∗

4 ) are both bounded by 2cBw
3/2
max.

In the following, we only provide proof for ∆(IW∗

1 ). Bounds for ∆(IW∗

4 ) can be proved similarly due to symmetry.

Suppose, for the sake of contradiction, that ∆(IW∗

1 ) > 2cBw
3/2
max. That is, a great volume of items in IW∗

1 are

deleted when obtaining the optimal solution z from the greedy solution g. (Note that g selects all items in IW∗

1 as

IW∗

1 ⊆ I<b, so ∆(IW∗

1 ) is exactly the total weight of items in I1 that are deleted.) Obviously, IW∗

1 is non-empty

since otherwise ∆(IW∗

1 ) would be 0. This implies that I2 has exactly 2cAw
1/2
max logwmax distinct weights. The

greedy solution g picks all the items in I2 as I2 ⊆ I<b. When obtaining z from g, at least one of the following
two cases must be true.

(i) z keeps lots of items in I2 so that z(I2) have at least cAw
1/2
max logwmax distinct weights.

(ii) lots of the items in I2 are deleted so that z(I2) have at most cAw
1/2
max logwmax distinct weights. In other

words, z(I2) have at least cAw
1/2
max logwmax distinct weights.

We will show that both cases lead to a contradiction. The high-level idea is the following. In case (i), when

obtaining z, lots of items in I2 are kept while a great volume of items in IW∗

1 are deleted. We will show that

there is a subset Z ⊆ z(I2) of items kept by z and a subset D ⊆ z(IW∗

1 ) of the deleted items such that D and Z
have the same total weight. Note that items in D have higher efficiency than those in Z as D is to the left of Z.
But then, when obtaining z from g, why not delete Z rather than D? In case (ii), lots of items in I2 are deleted.

Also, since a great volume of items (in IW∗

1 ) are deleted, at least the same volume of items should be added in
order to obtain the optimal solution z. We will show that there is a subset D ⊆ z(I2) of the deleted items and a
subset A ⊆ z(I>b) of the added items such that A and D have the same total weight. Since the items in D have
higher efficiency than those in A, when obtaining z from g, why bother to delete D and add A?

Case (i). z(I2) has at least cAw
1/2
max logwmax distinct weights. Note that z(IW∗

1 ) is exactly the set of items

in IW∗

1 that are deleted when obtaining z and the total weight of z(IW∗

1 ) is ∆(IW∗

1 ) > cBw
3/2
max. The weight

multisets of z(I2) and z(IW∗

1 ) satisfy the condition of Lemma 3.1, which implies that there is a non-empty subset

Z of z(I2) and a non-empty subset D of z(IW∗

1 ) such that Z and D have the same total weight. Let ẑ = (z\Z)∪D
be the solution obtained from z by deleting Z and adding D back. Clearly ẑ is feasible. Note D is to the left of Z
(see Figure 1 for an illustration). According to the way we label items and break ties, we have that D has either



strictly higher average efficiency than Z, or — if the efficiency is the same — strictly smaller average weight than
Z. In the former case, ẑ has a larger profit than z. In the latter case, |D| > |Z|. Since g selects all items in D
and Z, it follows that ẑ is an optimal solution with ‖ẑ− g‖1 < ‖z− g‖1. Both cases contradict our choice of z.

Case (ii). z(I2) has at least cAw
1/2
max logwmax distinct weights. When obtaining z from g, the total weight of

items that are added is exactly ∆(I>b), while the total weight of items that are deleted is at least ∆(IW∗

1 ). Since
the total weight of z and g differ by at most wmax (they are both maximal solutions), we have the following.

∆(I>b) > ∆(IW∗

1 )− wmax > (2cB − 1)w3/2
max > cBw

3/2
max.

Also note that ∆(I>b) is exactly the total weight of items in z(I>b). Again, the weight multisets of z(I2) and
z(I>b) satisfies the conditions of Lemma 3.1. By Lemma 3.1, there is a non-empty subset D of z(I2) and a
non-empty subset Z of z(I>b) such that D and Z have the same total weight. Moreover, D is to the left of Z.
By an argument similar to that in case (i), we can obtain a solution ẑ = (z \ Z) ∪D that is better than z, which
contradicts with our choice of z. This completes the proof.

4.2 Algorithmic Part

Lemma 4.2. In Õ(n) time, we can compute the partition (W ∗,W ∗) of W in Lemma 4.1.

It is easy to see that the process of identifying W ∗ in the proof of Lemma 4.1 can be generalized to Bounded
Knapsack and can be done in Õ(n) time.

The following theorem directly follows by Lemma 4.2 and Lemma 2.2.

Theorem 4.1. There is an Õ(n+ w
5/2
max)-time algorithm for Bounded Knapsack.

5 An Õ(n + w12/5)-time Algorithm for Knapsack

In the structural part of the Õ(n+w
5/2
max)-time algorithm, in order to make the weight multiset of z(I2) (or z(I2))

dense, we require that items in it have Θ(w
1/2
max logwmax) distinct weights. The multiplicities of these weights are

not considered. In this section, we develop a better proximity result by exploiting the multiplicities of weights, and
therefore obtain an algorithm with improved running time. As before, this section is divided into the structural
part and the algorithmic part.

5.1 Structural Part - Fine-Grained Proximity As in Subsection 4.1, it suffices to consider 0-1 Knapsack, and
the notations defined at the beginning of that subsection will be used.

Lemma 5.1. There exists a partition of W into W ∗ and W ∗ such that

(i) |W ∗| 6 4cAw
3/5
max logwmax,

(ii) ∆(IW∗

) 6 4cBw
7/5
max,

where cA and cB are two large constants used in Lemma 3.1.

Lemma 5.1 does not exploit the multiplicities of weights, and can be proved in exactly the same way as Lemma 4.1.

The trade-off between |W ∗| and ∆(IW∗

) essentially results from Lemma 3.1. When |W ∗| is Θ̃(wp
max) for some

p > 1/2, ∆(IW∗

) is O(w2−p
max).

W ∗ already meets the requirement since |W ∗|∆(IW∗

) 6 cBw
12/5
max . W ∗, however, may be problematic since

∆(IW∗

) can be as large as O(w2
max). We further partition W ∗ into two sets and prove a similar result as before.

But this time, we will take advantage of the multiplicities of weights and use Lemma 3.2 instead of Lemma 3.1.

Lemma 5.2. There exits a partition of W ∗ into W+ and W+ = W ∗ \W+ such that

(i) |W+| 6 4cAw
2/5
max log

2 wmax,

(ii) ∆(IW+

) 6 8cBw
9/5
max,

where cA and cB are two large constants used in Lemma 3.2.



5.2 Algorithmic Part The construction of W ∗ and W+ can be easily generalized to Bounded Knapsack and can
be done in Õ(n) time. So we have:

Lemma 5.3. In Õ(n) time, we can compute the partition (W+,W+,W ∗) of W such that

(i) |W+| 6 4cAw
2/5
max log

2 wmax,

(ii) |W+| 6 4cAw
3/5
max logwmax and ∆(IW+

) 6 8cBw
9/5
max,

(iii) ∆(IW∗

) 6 4cBw
7/5
max.

It is easy to verify that

|W+|∆(IW+) + |W+|∆(IW+

) + |W ∗|∆(IW∗

) 6 Õ(w12/5
max ).

Therefore, Theorem 1.1 follows by Lemma 5.3 and 2.2.

6 Algorithms for Bounded Subset Sum

We consider Bounded Subset Sum. We have the following observation by Lemma 2.1.

Observation 6.1. Without loss of generality, we may assume ui 6 4wmax for all 1 6 i 6 n.

6.1 An Õ(nwmax)-time Algorithm In this subsection, we present an Õ(nwmax)-time algorithm. It builds upon
two ingredients: (i). a faster algorithm for computing the sumset of sets with a special structure, and (ii). a
layering technique that transforms the input into a special structure.

6.1.1 Faster sumset algorithm for sets with a special structure We first introduce some notations for integer
sets. Given an integer (multi-)set X and a number a, we let X − a := {x − a : x ∈ X}. We let mX denote the
largest number in X . We let rX := {rx : x ∈ X} for any real number r. Given two integer multisets A,B, we let
A+B := {a+ b : a ∈ A ∪ {0}, b ∈ B ∪ {0}}. It is easy to verify that r(A +B) = rA+ rB.

It is known that the sumset A+B can be computed via Fast Fourier Transform (FFT) in Õ(mA + mB) time.
More generally, the following is true:

Lemma 6.1. [10] Given sets S1, S2, · · · , Sℓ ⊂ N, we can compute S1+S2+ · · ·+Sℓ in O(σ log σ log ℓ) time, where
σ = mS0

+ mS1
+ · · ·+ mSℓ

.

For our purpose, given a target value t, we want to decide whether t ∈ A + kB quickly for some positive
integer k. Using FFT, it takes O(mA + kmB) time, which is too much when k is large. We show that O(mA + mB)
time is sufficient, and the result can be further generalized by the following lemma.

Lemma 6.2. Given sets S0, S1, · · · , Sℓ ⊂ N, an integer k ∈ Z>0 and a target number t, we can determine whether
t ∈ S0 + kS1 + · · ·+ kℓSℓ in O(σ(ℓ + 1) logσ) time, where σ = mS0

+ mS1
+ · · ·+ mSℓ

.

Proof. We prove by induction. The lemma is obviously true for ℓ = 0. Suppose it is true for ℓ = h − 1. That
is, we can determine whether t ∈ S0 + kS1 + · · ·+ kh−1Sh−1 in c1(

∑h−1
i=0 mSi

)(h− 1) log(
∑h−1

i=0 mSi
) time for some

sufficiently large constant c1. Now we consider the case ℓ = h.
Note that t ∈ S0 + kS1 + · · · + khSh if and only if t = t0 + t′ where t0 ∈ S0 and t′ ∈ kS1 + · · · + khSh.

It follows that t′ is a multiple of k. Therefore, t ≡ t0 (mod k). Let r0 ∈ [0, k − 1] be the residue of t modulo
k, S̄0 ⊆ S0 be the subset of integers in S0 whose residue is r0. It is clear that every element in S̄0 − r0 is a
multiple of k, so 1

k (S̄0 − r0) is an integer set. Moreover, it follows that t ∈ S0 + kS1 + · · · + khSh if and only if
t ∈ S̄0 + kS1 + · · ·+ khSh, or equivalently, if and only if

t− r0
k
∈ 1

k

(
(S̄0 − r0) + kS1 + · · ·+ khSh

)
=

1

k
(S̄0 − r0) + S1 + kS2 + · · ·+ kh−1Sh.



Now we compute Ŝ1 := 1
k (S̄0 − r0) + S1 via FFT, which takes c2σ2 log σ2 time for some constant c2 and

σ2 6 mS0
/k + mS1

. It thus remains to determine whether

t− r0
k
∈ Ŝ1 + kS2 + · · ·+ kh−1Sh.

By the induction hypothesis, this takes c1(h−1)σ′ log σ′ time where σ′ = mŜ1
+mS2

+· · ·+mSh
6 mS0

/k+mS1
+· · ·+

mSh
. Therefore, it is easy to verify that the overall running time is bounded by c2σ2 log σ2 + c1(h− 1)σ′ log σ′ 6

c1hσ log σ when c1 > c2.

6.1.2 Item Grouping We follow a standard idea to bundle item copies into groups. A solution to the grouped
instance will take item copies within a group as a whole. Thus, the key point is to show that, after grouping, we
do not lose any solution, and thus the optimal solution.

Recall that uj refers to the copy number of item j. It is obvious that uj can be represented as
uj[0] + uj [1] · 21 + · · · + uj[lj ] · 2lj where 2 6 uj[i] < 4 for all 0 6 i 6 ℓj − 1 and uj [ℓj ] < 4. This can be

easily achieved recursively: let r be the residue of uj modulo 2; set uj[0] = 2 + r, uj ← uj−(2+r)
2 and repeat the

above procedure.
As uj 6 4wmax for all 1 6 j 6 n, ℓj 6 2 + logwmax. For ease of discussion, we let uj[i] = 0 for i > ℓj and

ℓ = maxj ℓj . Now we define Xi as a multiset that consists of exactly uj [i] copies of weight wj for every j, and note
that by 2iXi we mean the multiset that consists of exact uj [i] copies of weight 2iwj , which represents a multiset
of groups (where each group contains 2i copies of weight wj but has to be selected as a whole).

Let X denote the multiset where every wj occurs uj times. Recall that S(X) denotes the set of all possible
subset-sums of multiset X . We show the following in the appendix.

Lemma 6.3.

S(X) =

ℓ∑

i=0

2iS(Xi) = 20S(X0) + · · ·+ 2ℓS(Xℓ).

That is, for any t ∈ S(X), there exist ti ∈ S(Xi) such that t =
∑ℓ

i=0 2
iti.

Polak et al. [26] derived a similar lemma for ℓ = 2.

6.1.3 Finalizing the Õ(nwmax)-time algorithm Now we are ready to present our Õ(nwmax)-time algorithm. By
Observation 6.1, we have uj 6 4wmax. Consequently, for ℓ = O(logwmax), the given instance can be grouped as
∪ℓi=02

iXi. Note that Xi contains at most 4n elements as there are n item weights, and each item has uj [i] < 4
copies. Our goal is to determine whether t ∈ S(∪ℓi=02

iXi) for an arbitrary target value t. By Lemma 6.3, it

suffices to determine whether t ∈ ∑ℓ
i=0 2

iS(Xi). We first compute each S(Xi). This is equivalent to computing

sumset
∑

e∈X{0, e}. According to Lemma 6.1, this can be achieved in Õ(σ1) time, where σ1 6 4nwmax. Next, we

apply Lemma 6.2 to determine whether t ∈∑ℓ
i=0 2

iS(Xi), which takes Õ(σℓ) time, where σ =
∑ℓ

i=0 mS(Xi), where
mS(Xi) refers to the largest integer in S(Xi), which is bounded by 4nwmax. Consequently, the overall running time

is Õ(ℓ2nwmax) = Õ(nwmax).

Remark 6.1. We do not require that in the input instance, item weights are distinct. If, however, there are items
of the same weight, we can simply merge them and update uj’s. After preprocessing, we apply our algorithm.

Hence, the running time of our algorithm can also be bounded by Õ(n+ |W |wmax) where W stands for the set of
distinct weights.

6.2 An Õ(n+w3/2
max

)-time Algorithm for Subset Sum We present an alternative algorithm for Bounded Subset

Sum of running time Õ(n+w
3/2
max). We start with the following observation. Recall that W is the set of all distinct

weights.

Observation 6.2. We may assume without loss of generality that |W | > 4cAw
1/2
max logwmax, and

2cAw
3/2
max logwmax 6 t 6 ΣI/2.



Proof. If |W | 6 4cAw
1/2
max logwmax, our Õ(n + |W |wmax) algorithm in the previous subsection already runs in

Õ(n+ w
3/2
max) time. It remains to consider the case when |W | > 4cAw

1/2
max logwmax.

If t > ΣI/2, we let t′ = ΣI − t. It is straightforward that the instance (I, t) is equivalent to the instance

(I, t′) and that t′ 6 ΣI/2. If t < 2cAw
3/2
max logwmax, the Õ(n + t)-time algorithm already runs in Õ(n + w

3/2
max)

time.

We will use our technique developed for Knapsack to deal with Subset Sum. Like Knapsack, this whole
subsection is divided into two parts: the structural part and the algorithm part. In the structural part, we will
conceptually take the given instance as a special Knapsack instance, and transform it into a 0-1 Subset Sum
instance. This allows us to carry over the proximity results from Knapsack. In the algorithm part, we take the
original instance and show that it is possible to leverage the proximity results to design our algorithm without
involving the instance transformation.

6.2.1 The structural part In this part, we conceptually view Bounded Subset Sum as a 0-1 Knapsack. Recall
that our Knapsack algorithm starts with a greedy solution. For Subset Sum, every item has the same efficiency,
which means we may construct a greedy solution with respect to any order of items. For technical reasons,
however, we need to start with a special greedy solution g. Towards this, we will first define item sets I2 and I3,
use them to define g, and then use g to further define item sets I1 and I4. These four sets will be treated in a
similar way as we treat I1 to I4 in Knapsack.

Let W be the set of all item weights. Let

• W2 be the set of the largest 2cAw
1/2
max logwmax weights in W ;

• W3 be the set of the smallest 2cAw
1/2
max logwmax weights in W .

Clearly, W2 ∩W3 = ∅. For each w in W2, we put an arbitrary item of weight w into I2. For each w in W3, we
put an arbitrary item of weight w into I3. The following statements hold.

(i) the total weight of items in I2 is at most 2cAw
3/2
max logwmax 6 t.

(ii) the total weight of items not in I3 is at least ΣI/2 > t.

Let g be an arbitrary maximal solution such that g selects every item in I2 but no item in I3. In the algorithm
part, we shall construct such a solution g.

Assuming g, let I1 = g(I) \ I2, and let I4 = g(I) \ I3. We relabel the items so that for any i < j, every item
in Ii has smaller index than any item in Ij .

Recall that Subset Sum is a decision problem. Since we treat it as a special Knapsack problem, we define its
optimal solution as the solution that returns a subset-sum t∗ 6 t and is closest to t. In particular, if the answer
to Subset Sum is “yes”, then t∗ = t. Let z be the optimal solution with the largest lexicographical order. That is,
z always prefers items with smaller indices. We have the following fine-grained proximity between g and z.

Lemma 6.4. ∆(I) = ∑
i∈I wi|gi − zi| 6 (4cA + 2cB)w

3/2
max logwmax.

Proof. Note that ∆(I) = ∑4
i=1 ∆(Ii). It is obvious that ∆(I2) + ∆(I3) is at most 4cAw

3/2
max logwmax since the

total weight of items in I2 ∪ I3 is bounded by this amount. Next we show that ∆(I1) 6 cBw
3/2
max. ∆(I4) can be

proved similarly due to symmetry.

Suppose, for the sake of contradiction, that ∆(I1) > cBw
3/2
max. As in the proof of Lemma 4.1, we can show

that either there is a subset D of z(I1) and a subset Z of z(I2) such that D and Z have the same total weight,
or there is a subset D of z(I2) and a subset A of z(I3 ∪ I4) such that D and A have the same total weight. Note
that in Subset Sum, every item has the same efficiency of 1. In the former case, ẑ = (z \ Z) ∪ D is an optimal
solution whose lexicographical order is larger than z. In the latter case, ẑ = (z \ A) ∪ D is an optimal solution
whose lexicographical order is larger than z. Both contradict our choice of z.



6.2.2 The algorithmic part Note that the input consists of n pairs (wi, ui), meaning that item i has a weight
wi and has ui copies. Despite that g is defined on the transformed 0-1 instance, as we can get and sort W in
O(n logn), constructing it can be done efficiently.

Lemma 6.5. g can be computed in Õ(n) time.

Lemma 6.6. Assuming g, with 1 − o(1) probability we can determine whether there exists z ∈ Z
n, 0 6 zi 6 ui

such that
∑

i∈I wizi = t in Õ(w
3/2
max) time.

Proof. From g we define two sets as follows: G− = {(wi, u
−
i ) : u−

i = gi}, G+ = {(wi, u
+
i ) : u+

i = ui − gi}.
Intuitively, when changing g to z, G− and G+ represent copies that may need to be deleted and added, respectively.

By Lemma 6.4, the total weight of item copies to be deleted in G− is at most Õ(w
3/2
max), and the total weight of

copies to be added from G+ is also at most Õ(w
3/2
max).

Let t′ = (4cA +2cB)w
3/2
max logwmax and t0 =

∑
i∈I wigi. Define S(G+, t′) = {y 6 t′ : y =

∑n
i=1 wixi, 0 6 xi 6

u+
i } and S(G−, t′) = {y 6 t′ : y =

∑n
i=1 wixi, 0 6 xi 6 u−

i }.
We first compute S(G+, t′) and S(G−, t′) using Bringmann’s algorithm [6]. Note that it is a randomized

algorithm. We will compute S+ ⊆ S(G+, t′) and S− ⊆ S(G−, t′) in Õ(t′) = Õ(w
3/2
max) time such that every

number in S(G−, t′) and S(G+, t′) is contained in S− and S+ with probability 1 − (n + t′)−Ω(1), respectively.
Therefore, with probability 1− o(1) we get S(G−, t′) and S(G+, t′). Next, we compute S(G+, t′)− S(G−, t′) via

FFT in Õ(t′) = Õ(w
3/2
max) time. Finally, we test whether t ∈ t0+S(G+, t′)−S(G−, t′), which takes Õ(t′) = Õ(w

3/2
max)

time. Thus, Lemma 6.6 is proved.

Remark

We note that very recently, Bringmann [7] and Jin [19] independently improved the running time to Õ(n+w2
max)

by generalizing our technique.



A Proof of Lemma 2.2

Lemma 2.2. Let g be a maximal prefix solution to Bouned Knapsack. Let W1 ∪ · · · ∪Wk be a partition of the
set W . For j ∈ {1, ..., k}, let Uj be an upper bound for ∆(IWj ). Then Bounded Knapsack can be solved in

Õ(n+ k
∑k

j=1 |Wj | · Uj) time.

Proof. Without loss of generality, assume that U1 6 ... 6 Uk. We construct an optimal solution x from g,
which can be interpreted as x = g − x− + x+. Here x− stands for the copies in g but not in x, which must be
copies in I<b. Likewise, x+ stands for copies in x but not in g, which must be copies in I>b. It is obvious that

∆(I<b) =
∑k

j=1 ∆(IWj

<b ) 6 k · Uk and ∆(I>b) 6 k · Uk.
From now on we shall use the bold symbol x to represent a sequence. We shall compute 3 sequences:

• x− = 〈x−
0 , ..., x

−
k·Uk
〉, where x−

t′ is the minimum total profit of copies in I<b whose total weight is exactly t′;

• x+ = 〈x+
0 , ..., x

+
k·Uk
〉, where x+

t′ is the maximum total profit of copies in I>b whose total weight is exactly t′.

• x+
6 = 〈x+

60, ..., x
+
6k·Uk

〉, where x+
6t′ means the maximum value we can obtain by choosing copies from I>b

whose total weight does not exceed t′. To simply the writing up, we let x+
6k·Uk+h = x+

6k·Uk
for all 1 6 h 6 ∆,

where ∆ = t−∑
i∈I wigi.

Suppose we have computed the above three sequences, then Knapsack can be solved as follows: For every
t′ ∈ {0, ..., k · Uk}, we compute yt′ =

∑
i∈I vigi − x−

t′ + x+
6(t′+∆), and select maxt′ yt′ .

It remains to compute the three sequences. We show that, x+ = 〈x+
0 , ..., x

+
k·Uk
〉 can be computed in

Õ(n + k
∑k

j=1 |Wj |Uj) time. The computation of x− is similar. Moreover, once we have computed x+, x+
6

can be computed in a straightforward way using that x+
6t′ = max16h6t′ x

+
h .

Now we describe our algorithm for computing x+ = 〈x+
0 , ..., x

+
k·Uk
〉. Towards this, we use the fast structured

(min,+)-convolution as a basic operation. The (max,+)-convolution a ⊕ b between two sequence a and b is a
sequence c0, ..., cn+m such that for any i,

ci = max
06j6i

(aj + bi−j).

Let sw = 〈sw0 , ..., swUj
〉, where swt′ denotes the optimal objective value of copies in Iw>b whose total weight is exactly

t′. Note that copies in Iw>b have the same weight w. Hence, swt′ equals the total profit of the i most valuable copies
in Iw>b when t′ = i · w for some i, or equals −∞ otherwise.

Given sw, x+ can be computed by iteratively convolving sw, see Algorithm 1. Due to the special structure of
sw, a single convolution step x+⊕ sw can be performed in linear time by SMAWK algorithm [2] (also see Lemma

2.2 in [26]). As ∆(IW1∪...∪Wk′

>b ) 6
∑k′

j=1 Uj 6 k′ · Uk′ , we can truncate x+ after the k′ · Uk′-th entry when we

compute the weights in Wk′ . We can compute x+ in time: Õ(n +
∑k

j=1 j · |Wj | · Uj) 6 Õ(n + k
∑k

j=1 |Wj |Uj).

Algorithm 1 The Algorithm to Compute x+

1: sort W1, ...,Wk that U1 6 ... 6 Uk

2: x+ := empty sequence
3: for j = 1, ..., k do
4: for w ∈ Wj do
5: sw := the sequence of maximum value get from Iw>b

6: x+ := x+ ⊕ sw ⊲ using SMAWK algorithm
7: Truncate x+ after the j · Uj-th entry

8: return x+

B Proof of Lemma 3.2

Lemma 3.2. Let w be a positive integer. Let A and B be two multisets of integers from {1, ..., w} such that



(i) at least cAw
2/5 log2 w distinct integers in A have multiplicity of at least w1/5,

(ii) ΣB > cBw
8/5,

where cA and cB are two sufficiently large constants. Then there must exist a non-empty subset A′ of A and a
non-empty subset B′ of B such that ΣA′ = ΣB′ .

Proof. Let S a maximal subset of A such that each integer has multiplicity w1/5 in S. Note that |suppS | >
cAw

2/5 log2 w. What we actually prove is that there is a non-empty subset S′ of S such that some subset B′ of
B have the same total weight as S. We characterize the set of integers that can be hit by S. Then we show that
B can hit at least one of these integers.

Since the items in S has the same multiplicity, we obtain the following two equalities that will be frequently
used in the proof.

µSΣsuppS
= ΣS ,

µS |suppS | = |S|.

Note that mS 6 w, µS = w1/5, |suppS | = |suppA| > cAw
2/5 log2 w. Since cA is sufficiently large, we have that

|S|2 = µ2
S |suppS |2 > µ2

S · c2Aw4/5 log4 w > c2A log4 w · mSµS .

The last inequality is due to µA > w1/5. Since |suppA| 6 w and µA 6 w,

cδ = Θ
(
log(2|S|) log2(2µS)

)

= Θ
(
log(µS |suppS |) log2(µS)

)

= Θ
(
log(w2) log2(w)

)

= Θ(log3 w).

When cA is sufficiently large, c2S log4 w > cδ, so S is cδ-dense.
By Theorem 2.2, there exists an integer d such that S′ := S(d)/d is cδ-dense and has no cα-almost divisor.

And the followings hold.

(i) d 6 4µSΣS/|S|2.

(ii) |S′| > 0.75|S|.

(iii) ΣS′ > 0.75ΣS/d.

Note that µS′ 6 µS , mS′ 6 w/d, and ΣS′ 6 ΣS/d. Applying Theorem 2.1 on S′, we get S′ can hit any integer in
[λS′ ,ΣS′ − λS′ ] where

λS′ =
cλµS′mS′ΣS′

|S′|2 6
cλµSwΣS

(0.75|S|)2d2 6
min{cA, cB}

2
· w
d2
· µSΣS

|S|2 .

The last inequality holds since cA and cB are sufficiently large constants. We can conclude that S can hit any
multiple of d in [dλS′ , d(ΣS′ − λS′)]. We also have that the left endpoint of this interval

dλS′ 6
cB
2
· w
d
· µSΣS

|S|2 =
cB
2
· w
d
· ΣsuppS

|suppS |2
6

cB
2
· w2

|suppS |
6

cB
2
· w8/5,



and that the length of the interval

d(ΣS′ − 2λS′) >
3ΣS

4
− cA ·

wµSΣS

d|S|2

=
µSΣS

|S|2 (
3|S|2
4µS

− cA ·
w

d
) (since |S| = µS |suppS | and d > 1)

>
µSΣS

|S|2 (
3|suppS |2µ2

S

4µS
− cA · w) (since |suppS | > cAw

2/5 log2 w and µS = w1/5)

>
µSΣS

|S|2 (
3c2Aw

4
− cAw) (since cA is sufficiently large)

>4 · µSΣS

|S|2 · w (since d 6 4µSΣS/|S|2)

>dw.

To complete the proof, it suffices to show that there is a subset B′ of B whose sum is a multiple of d and
is within the interval [dλS′ , d(ΣS′ − λS′)]. We claim that as long as B has at least d numbers, there must be
a non-empty subset of B whose sum is at most dw and is a multiple of d. Assume the claim is true. We can
repeatedly extract such subsets from B until B has less than d numbers. Note that the total sum of these subsets
is at least

ΣB − wd > cBw
8/5 − w · 4µSΣS

|S|2 > cBw
8/5 − 16wΣsuppS

|suppS |2
> cBw

8/5 − 16w8/5
>

cB
2
w8/5.

That is, the total sum of these subset is at least the left endpoint of [dλS′ , d(ΣS′ − λS′)]. Also note that the
sum of each subset is at most dw, which does not exceed the length of the interval. As a result, there must be a
collection of subsets whose total sum is within the interval. Since the sum of each subset is a multiple of d, so is
the any collection of these subset.

C Proof of Lemma 5.2

Lemma 5.2. There exits a partition of W ∗ into W+ and W+ = W ∗ \W+ such that

(i) |W+| 6 4cAw
2/5
max log

2 wmax,

(ii) ∆(IW+

) 6 8cBw
9/5
max,

where cA and cB are two large constants used in Lemma 3.2.

Proof. Recall that we label the items in decreasing order of efficiency. Without loss of generality, we assume
that for any two items i < j < b, if i and j have the same efficiency, then wi 6 wj , and that for any two items
b < i < j, if i and j have the same efficiency, then wi > wj . For a set I ′ of items, we say a weight w is frequent

in I ′ if I ′ contains at least 2w
1/5
max items with weight w.

Defining W+ via Partition of IW ∗

. W+ will be defined via a partition of IW∗

. We partition them into four
subsets (I1, I2, I3, I4) as follows. For i < b, let I[i,b) be the set of items {i, . . . , b− 1} whose weight is in W ∗. Let

i∗ be the minimum index i such that exactly 2cAw
2/5
max log

2 wmax weights are frequent in I[i,b). Let I2 = I[i∗,b),
and let I1 = I<i∗ . When no such i∗ exists, let I2 = I<b, and let I1 = ∅. I3 and I4 are defined similarly as follows.
For any j > b, define I[b,j] to be the set of items {b, . . . , j} whose weight is in W ∗. Let j∗ be the maximum index

j such that exactly 2cAw
2/5
max log

2 wmax weights are frequent. Let I3 = I[b,j∗], and let I4 = I>j∗ . When no such
j∗ exists, let I3 = I>b, and let I4 = ∅.

W+ is define to be the set of weights that are frequent in I2 or I3, and W+ = W ∗ \W+.

Verifying Properties. It is straightforward that |W+| 6 4cAw
2/5
max log

2 wmax. It is left to show ∆(IW+

) 6

8cBw
9/5
max. We first partition IW+

into IW+

k = IW+ ∩ Ik for k ∈ {1, 2, 3, 4}. Next we show ∆(IW+

k ) 6 2cBw
9/5
max

for k ∈ {1, 2}.



Consider IW+

2 first. For any w ∈ W+, w is not frequent in I2. That is, |I2 ∩ Iw| < w
1/5
max. We have

∆(IW+

2 ) 6
∑

i∈IW+

2

wi =
∑

w∈W+

w|I2 ∩ Iw| 6 |W+|wmaxw
1/5
max = w9/5

max.

Now consider IW+

1 . Suppose, for the sake of contradiction, that ∆(IW+

1 ) > 2cBw
9/5
max > 2cBw

8/5
max. That is,

we delete a large volume of items in IW+

1 . Clearly, IW+

1 is not empty, so there are exactly 2cAw
2/5
max log

2 wmax

weights that are frequent in I2. Recall that, by frequent, we mean |Iw ∩ I2| > 2w
1/5
max. Then at least one of the

following two cases are true.

(i) there are at least cAw
2/5
max log

2 wmax weights w such that |Iw ∩ z(I2)| > w
1/5
max.

(ii) there are at least cAw
2/5
max log

2 wmax weights w such that |Iw ∩ z(I2)| > w
1/5
max.

Case (i). z(IW+

1 ) is a set of deleted items whose total weight is ∆(IW+

1 ) > 2cBw
8/5
max. z(I2) is a set of items

remaining in z, and there are at least cAw
2/5
max log

2 wmax weights w such that |Iw ∩ z(I2)| > w
1/5
max. One can verify

that the weight multisets of z(IW+

1 ) and z(I2) satisfy the conditions of Lemma 3.2. By Lemma 3.2, there is a

subset D of z(IW+

1 ) and a subset Z of z(I2) such that D and Z have the same total weight. Then ẑ = (z \Z)∪D
would be a better solution than z. Contradiction.

Case (ii). there are at least cAw
2/5
max log

2 wmax weights w such that |Iw ∩ z(I2)| > w
1/5
max. ∆(IW+

1 ) > 2cBw
8/5
max

implies that

∆(I>b) > ∆(IW+

1 )− wmax > cBw
8/5
max.

Note that the total weight of z(I>b) is exactly ∆(I>b). One can verify that the weight multisets of z(I2) and
z(I>b) satisfy the condition of Lemma 3.2. By Lemma 3.2, there is a subset D of z(I2) and a subset A of
z(I>b) such that D and A have the same total weight. Then ẑ = (z \ A) ∪ D would be a better solution than z.
Contradiction.

Due to symmetry, it can be similarly proved that ∆(IW+

k ) 6 2cBw
9/5
max for k ∈ {3, 4}. We provide a full proof

for completeness. Consider IW+

3 . For any w ∈W+, w is not frequent in I2. That is, |I3 ∩ Iw| < w
1/5
max.

∆(IW+

3 ) 6
∑

i∈IW+

3

wi =
∑

w∈W+

w|I3 ∩ Iw| 6 |W+|wmaxw
1/5
max = w9/5

max.

Consider IW+

4 . Suppose, for the sake of contradiction, that ∆(IW+

4 ) > 2cBw
9/5
max > 2cBw

8/5
max. That is, we add

a large volume of items from IW+

4 when obtaining z from g. Clearly, IW+

4 is not empty, so there are exactly

2cAw
2/5
max log

2 wmax weights that are frequent in I3. Recall that, by frequent, we mean |Iw ∩ I3| > 2w
1/5
max. Then

at least one of the following two cases are true.

(iii) there are at least cAw
2/5
max log

2 wmax weights w such that |Iw ∩ z(I3)| > w
1/5
max.

(iv) there are at least cAw
2/5
max log

2 wmax weights w such that |Iw ∩ z(I3)| > w
1/5
max.

Case (iii). z(IW+

4 ) has a total weight of ∆(IW+

4 ) > 2cBw
8/5
max. For z(I3), there are at least cAw

2/5
max log

2 wmax

weights w such that |Iw ∩ z(I3)| > w
1/5
max. One can verify that the weight multisets of z(IW+

4 ) and z(I3) satisfy

the conditions of Lemma 3.2. By Lemma 3.2, there is a subset Z of z(IW+

4 ) and a subset D of z(I3) such that D
and Z have the same total weight. Then ẑ = (z \ Z) ∪ D would be a better solution than z. Contradiction.

Case (iv). there are at least cAw
2/5
max log

2 wmax weights w such that |Iw ∩z(I3)| > w
1/5
max. ∆(IW+

4 ) > 2cBw
8/5
max

implies that

∆(I<b) > ∆(IW+

4 )− wmax > cBw
8/5
max.

Note that the total weight of z(I<b) is exactly ∆(I<b). One can verify that the weight multisets of z(I3) and
z(I<b) satisfy the conditions of Lemma 3.2. By Lemma 3.2, there is a subset A of z(I3) and a subset D of
z(I<b) such that D and A have the same total weight. Then ẑ = (z \ A) ∪ D would be a better solution than z.
Contradiction.



D Proof of Lemma 6.3

Lemma 6.3.

S(X) =

ℓ∑

i=0

2iS(Xi) = 20S(X0) + · · ·+ 2ℓS(Xℓ).

That is, for any t ∈ S(X), there exist ti ∈ S(Xi) such that t =
∑ℓ

i=0 2
iti.

Proof. It is obvious that S(X) ⊇ ∑ℓ
i=0 2

iS(Xi). We prove below that S(X) ⊆ ∑ℓ
i=0 2

iS(Xi), and Lemma 6.3

follows. Take an arbitrary t′ ∈ S(X), by definition there exist ηj 6 uj =
∑ℓ

i=0 uj [i] ·2i for all 1 6 j 6 n such that

t′ =
∑

j

wjηj .

We claim that

Claim D.1. If ηj 6 uj =
∑ℓj

i=0 uj [i] · 2i, then there exist ηj [i]’s such that ηj =
∑ℓj

i=0 ηj [i] · 2i and ηj [i] 6 uj [i] for
all 0 6 i 6 ℓj.

Suppose the claim is true, then since Xi contains uj [i] copies of weight wj , we know that
∑

j ηj [i]wj ∈ S(Xi).

Thus,
∑

j ηj [i] ·2iwj ∈ 2iS(Xi), and consequently t′ =
∑

i

∑
j ηj [i] ·2iwj ∈

∑
i 2

iS(Xi), and Lemma 6.3 is proved.
It remains to prove Claim D.1. We prove by induction on ℓj . Claim D.1 is obviously true for ℓj = 0. Suppose

it is true for ℓj = h− 1, we prove that it is also true for ℓj = h. Towards this, let rt ∈ {0, 1} be the residue of t
modulo 2. Recall that uj [i] ∈ [2, 4) for 0 6 i 6 ℓj − 1. There are two possibilities: (i). If rt 6 uj[0]− 2, then we
let ηj [0] = rt + 2; (ii). If uj [0]− 2 < rt 6 uj [0], then we let ηj [0] = rt. It is clear that ηj [0] 6 uj[0] is always true.
Meanwhile, we also have ηj [0] + 2 > uj [0].

By the fact that ηj [0] ≡ ηj (mod 2) and uj [0] ≡ uj (mod 2), ηj − ηj [0] and uj − uj[0] are multiples of 2.
Using that ηj 6 uj and ηj [0] + 2 > uj[0], we have

ηj − ηj [0] < uj − uj [0] + 2.

Thus,
ηj − ηj [0]

2
<

uj − uj [0]

2
+ 1.

Since
ηj−ηj [0]

2 and
uj−uj [0]

2 are both integers, we have that

ηj − ηj [0]

2
6

uj − uj[0]

2
=

ℓ−1∑

i=0

uj [i+ 1] · 2i.

Using the induction hypothesis, there exists η̄j [i] such that
ηj−ηj [0]

2 =
∑ℓ−1

i=0 η̄j [i] ·2i where η̄j [i] 6 uj[i+1]. Recall
that ηj [0] 6 uj [0]. Consequently, Claim D.1 is true.
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