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Abstract

Let B = {b1, . . . , bn} be a set of n axis-aligned boxes in Rd where d ≥ 2 is a constant. The
piercing problem is to compute a smallest set of points N ⊂ Rd that hits every box in B, i.e.,
N ∩bi ̸= ∅, for i = 1, . . . , n. The problem is known to be NP-Hard. Let p := p(B), the piercing
number be the minimum size of a piercing set of B. We first present a randomized O(log logp)-
approximation algorithm with expected running time O(nd/2 polylog(n)). Next, we show that
the expected running time can be improved to near-linear using a sampling-based technique, if
p = O(n1/(d−1)). Specifically, in the plane, the improved running time is O(n logp), assuming

p < n/ logΩ(1) n. Finally, we study the dynamic version of the piercing problem where boxes
can be inserted or deleted. For boxes in R2, we obtain a randomized O(log logp)-approximation
algorithm with O(n1/2 polylog(n)) amortized expected update time for insertion or deletion of
boxes. For squares in R2, the update time can be improved to O(n1/3 polylog(n)).

Our algorithms are based on the multiplicative weight-update (MWU) method and require
the construction of a weak ε-net for a point set with respect to boxes. A key idea of our work
is to exploit the duality between the piercing set and independent set (for boxes) to speed up
our MWU. We also present a simpler and slightly more efficient algorithm for constructing a
weak ε-net than in [Ezr10], which is of independent interest. Our approach also yields a simpler
algorithm for constructing (regular) ε-nets with respect to boxes for d = 2, 3.

1. Introduction

Problem statement. A box is an axis-aligned box in Rd of the form
∏d

i=1[αi, βi]. A one dimen-
sional box is an interval , and a two dimensional box is a rectangle . Let B = {b1, . . . , bn} be a
set of n boxes in Rd. A subset N ⊂ Rd is a piercing set of B if N ∩R ̸= ∅ for every box b ∈ B. The
piercing problem asks to find a piercing set of B of the smallest size, which we denote by p := p(B)
and call the piercing number of B. Although the piercing problem can be defined over arbitrary
geometric objects such as disks and halfspaces, here we focus on boxes. The piercing problem is a
fundamental problem in computational geometry and has applications in facility location, sensor
networks, etc.
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The piercing problem is closely related to the classical geometric hitting-set problem: Given a
(geometric) range space Σ = (X ,R), where X is a (finite or infinite) set of points in Rd and R ⊆ 2X

is a finite family of ranges, defined by simply-shaped regions such as rectangles, balls, hyperplanes
etc. That is, each range in Σ is of the form R ∩ X , where R ∈ R is a geometric shape (strictly
speaking, Σ = (X , {R ∩ X | R ∈ R}) but with a slight abuse of notation we will use (X ,R) to
denote the range space). A subset H ⊆ X is a hitting set of Σ if H ∩ R ̸= ∅ for all R ∈ R. The
hitting-set problem asks for computing a minimum-size hitting set of Σ. The piercing problem is
a special case of the hitting-set problem in which Σ = (Rd,B). Instead of letting the set of points
be the entire Rd, we can choose the set of points to be the set of vertices in A(B), the arrangement
of B,1 and the range space is now Σ =

(
V, {b ∩ V | b ∈ B}

)
, where V := V(B) is the set of vertices

in A(B). It is easily seen that B has a piercing set of size p if and only if Σ has a hitting set of
size p. Hitting set for general range spaces was listed as one of the original NP-complete problems
[Kar72]. Furthermore, the box piercing problem is NP-Complete even in 2D [FPT81], so our goal
is to develop an efficient approximation algorithm for the piercing problem.

In many applications, especially those dealing with large data sets, simply a polynomial-time
algorithm is not enough, and one desires an algorithm whose running time is near-linear in |B|. In
principle, the classical greedy algorithm can be applied to the range space (V,B), but |V| = O(nd),
so it will not lead to a fast algorithm. Intuitively, due to the unconstrained choice of points
with which to pierce boxes of B, the piercing problem seems easier than the geometric hitting-set
problem and should admit faster solutions and better approximations. In this paper, we make
progress towards this goal for a set of boxes in both static and dynamic settings.

Related work. The well-known shifting technique by Hochbaum and Maass [HM85] can be used
to obtain a PTAS when B comprises of unit-squares or near-equal-sized fat objects in any fixed
dimension. Efrat et al. [EKNS97] designed an O(1)-approximation algorithm for a set of arbitrary
”fat” objects that runs in near-linear time in 2d and 3d. Chan [Cha03] gave a separator-based

PTAS for arbitrary sized fat objects, with running time O(nε
−d
). Chan and Mahmood [CM05]

later gave a PTAS for a set of boxes with arbitrary width but unit height. All of the above results
consider a restricted setting of boxes. Surprisingly, little is known about the piercing problem
for a set of arbitrary axis-aligned boxes in Rd. By running a greedy algorithm or its variants
based on a multiplicative weight update (MWU) method, an O(logp)-approximation algorithm
with running time roughly O(nd) can be obtained for the box-piercing problem in Rd. Using
the weak ε-net result by Ezra [Ezr10] (see also [AES09]), the approximation factor improves to
O(log logp). An interesting question is what is the smallest piercing set one can find in near-linear
time. Nielsen [Nie00] presented an O(logd−1p)-approximation divide-and-conquer algorithm that
runs in O(n logd−1 n) time. We are unaware of any near-linear time algorithm even with O(logp)-
approximation ratio for d ≥ 3. We note that the piercing problem has also been studied in discrete
and convex geometry, where the goal is to bound the size of the piercing set for a family of objects
with certain properties. See e.g. [AK92, CSZ18].

We conclude this discussion by mentioning that there has been much work on the geometric
hitting-set problem. For a range space Σ = (X ,R) and weight function ω : X −→ R≥0, a subset N ⊆
X is an ε-net if for any R ∈ R with ω(R) ≥ εω(X ), we have R∩N ≠ ∅. The multiplicative weight
update (MWU) method assigns a weight to each point so that every range in R becomes “1/ep-

1The arrangement of B, denoted by A(B), is the partition of Rd into maximal connected cells so that all points
within each cell are in the interior/boundary of the same set of rectangles. It is well known that A(B) has O(nd)
complexity [Ede87].
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heavy” and then one simply chooses a 1/ep-net. Using the MWU method and results on ε-nets,
Brönnimann and Goodrich [BG95] presented a polynomial-time O(logp)-approximation algorithm
for the hitting-set problem for range spaces with finite VC-dimension [VC71]. Later Agarwal and
Pan [AP20] presented a more efficient implementation of the MWU method for geometric range
spaces. Their approach led to O ((|X|+ |R|) polylog(n)) algorithm with O(logp)-approximation
for many cases including a set of rectangles in Rd (see also [BMR18, CH20]). But it does not lead to
a near-linear time algorithm for the piercing problem because |X| = O(nd) in this case. In another
line of work, polynomial-time approximation algorithms for hitting sets based on local search have
also been proposed [MR10].

The MWU algorithm essentially solves and rounds the LP associated with the hitting-set prob-
lem, see [Har11, Chapter 6]. Thus, the approximability of the problem is strongly connected to
the integrality gap of the LP. For the hitting-set problem of points with boxes for d ≤ 3, Aronov
et al. [AES09] showed a rounding scheme with integrality gap O(log logp). Furthermore, Ezra
[Ezr10] showed the same gap holds in higher dimensions if one is allowed to use any point to do the
piercing. Surprisingly, Pach and Tardos [PT11] showed that this integrality gap is tight. While a
better approximation than the integrality gap can be obtained in a few cases [CH12, MR10], these
algorithms require a fundamentally different approach. Thus, a major open problem is to obtain
an O(1)-approximation algorithm for the box-piercing problem.

Recently, Agarwal et al. [ACS+22] initiated a study of dynamic algorithms for geometric in-
stances of set-cover and hitting-set. Here the focus is on maintaining an approximately optimal
hitting-set (resp. set-cover) of a dynamically evolving instance, where in each step a new object
may be added or deleted. They introduced fully dynamic sublinear time hitting-set algorithms for
squares and intervals. These results were improved and generalized in [CHSX22, CH21]. Khan
et al. [KLR+23] proposed a dynamic data structure for maintaining a O(polylog(n))-factor ap-
proximation of the optimal hitting-set for boxes under restricted settings, but no algorithm with
sublinear update time for the general setting is known.

Our results. In this paper, we design an efficient O(log logp)-approximation algorithm for the
box-piercing problem. Let B be a set of n boxes in Rd. A naive way to get an O(log logp)-
approximation is by using aforementioned MWU [AP20, BG95] based hitting-set algorithms on
the range space (V,B), and use Ezra’s [Ezr10] algorithm for computing a weak ε-net instead of
computing a strong ε-net. While this naive approach gives the desired approximation, it runs in
Ω(nd) time. We present the following results.

(A) A new MWU and its fast implementation. We present two algorithms in Section 2.
The first is essentially the one by Agarwal-Pan that computes a hitting set of the range space
(V,B) of size O(p log logp). We show that it can be implemented in O(n(d+1)/2 log3 n) expected
time (Theorem 2.3). To achieve the desired running time, we need a data structure to perform all
the required operations on V without ever explicitly constructing it. In Section 5, we present such
a data structure, which exploits the properties of the partitioning technique by Overmars and Yap
[OY91].

Our main result is, however, a different MWU algorithm tailored for boxes withO(nd/2 log2d+3 n)
expected running time (Theorem 2.10). It exploits the duality between the piercing-set problem
and the independent-set problem, along with fast approximation algorithms for these two prob-
lems. The basic idea is to use the aforementioned approximation algorithm to find a large set of
independent boxes among the light boxes identified by the MWU algorithm in a round. If the
algorithm does not find such an independent set, then we can use a simple piercing-set algorithm
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to compute a desired piercing set. Otherwise we double the weight of the boxes in the independent
set. The idea of duality and approximation to speedup the MWU is critical to get a near linear
running time in the plane. As far as we are aware, the idea of quickly rounding the dual problem
and using it to speedup the primal algorithm, in the context of set-cover/hitting-set/piercing-set
for rectangles, was not used before. This algorithm also relies on the data structure described in
Section 5.

(B) Piercing, clustering, and multi-round algorithms. We show that the natural
algorithm of first computing a piercing set P0 for a random sample of input boxes, and then
piercing the input boxes that are not pierced by P0 leads to an efficient piercing algorithm. This
algorithm can be extended to run an arbitrary number of rounds. For clustering this idea was
described by Har-Peled [Har04] (but the idea is much older see e.g. [GRS98]). In particular, if
the algorithm runs ζ rounds, then it needs to compute piercing sets ζ times for sets of boxes of
size (roughly) p1−1/ζn1/ζ . By picking ζ a sufficiently large constant, we obtain an O(ζ log logp)
approximation algorithm that runs in near-linear expected time, provided that p = O(n1/(d−1)).
See Theorem 3.3 and Corollary 3.4. For d = 2, this leads to the striking result that one can
obtain an O(log logp)-approximation algorithm with O(n logp) expected running time provided
that p= O(n/ log15 n), see Corollary 3.5.

(C) Dynamic Algorithms for Piercing. We consider the piercing problem for a set B of
boxes in R2 in the dynamic setting, i.e., at each step a new box is inserted into or deleted from B.
Our goal is to maintain an (approximately) optimal solution of the current set. We implement a
dynamic version of the multi-round sampling based algorithm in Section 3, and attain a randomized
Monte Carlo O(log logp)-approximation algorithm with O(n1/2 polylog(n)) amortized expected
update time. The update time improves to O(n1/3 polylog(n)) if B is a set of squares in R2. In
principle, our approach extends to higher dimensions but currently we face a few technical hurdles
in its efficient implementation (Section 4).

(D) New constructions of (weak) ε-nets. We present (in Section 6) a simpler and more
efficient algorithm for constructing a weak ε-net then the one in [Ezr10]. In particular, given a set
P of n points in Rd, a weight function w : P −→ R≥0, and a parameter ε ∈ (0, 1), it computes a

set N ⊆ Rd of O(ε−1 log log ε−1) points (not necessarily a subset of P) in O(n + ε−1 logO(d2) ε−1)
expected time such that for any box b with ω(b ∩ P) ≥ εω(P), we have b ∩ N ̸= ∅. The running
time can be improved to O((n +m + ε−1) logd ε−1) if we wish to guarantee above property for a
given set ofm boxes, which is the case in our setting. Our technique also gives an efficient algorithm
for constructing an ε-net of size O(ε−1 log log ε−1) for rectangles in d = 2, 3, which is somewhat
simpler than the one in [AES09].

Building on the earlier work [AES09, Ezr10, PT11], our work brings the key insights of the
results to the forefront. Our main new ingredient is using poly-logarithmic different grids to “cap-
ture” the distribution of the point sets. This idea appears in the work of Pach and Tardos [PT11]
in the construction of the lower-bound, so it is not surprising that it is useful in the construction
itself (i.e., upper-bound).

2. Piercing set via multiplicative weight update (MWU) algorithm

We describe two multiplicative-weight-update (MWU) basedO(log logp)-approximation algorithms
for computing a piercing set for B. Let V = V(B) denote the set of vertices in the arrangement

A(B). As already mentioned, there is always an optimal piercing set N ⊆ V of B. The basic idea
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Dim preprocessing Std. operations sample ref

d = 1 O(n log n) O(log n) O(log n) Lemma 5.1

d = 2 O(n3/2 log n) O(
√
n log n) O(log n) Lemma 5.4

d > 2 O(n(d+1)/2 log n) O(n(d−1)/2 log n) O(log n) Lemma 5.4

Figure 2.1: We describe a data-structure for maintaining (implicitly) the vertices of an arrangement
of boxes, under operations weight, double, halve, insert, delete, see Definition 2.1.

is to reweight the points of V such that all boxes become heavy. Specifically, we compute a weight
function ω : V −→ Z+, such that for any box b ∈ B, we have ω(b ∩ V) =

∑
p∈b∩V ω(p) ≥ ω(V)/2pe.

We then compute a weak 1
2pe -net N of the range space (V,B) with respect to the above weight

function. By definition N is a piercing set of B. The two algorithms differ in how the weights are
updated. Before describing the algorithms, we give the specifications of a data structure used by
both algorithms. We defer the implementation details of the data structure to Section 5.

For a multi-set S ⊆ B of boxes, and a point p ∈ Rd, let S ⊓ p = {b ∈ S | p ∈ b} be the multi-set
of all boxes in S containing p, let

wS(p) := 2|S⊓p| (2.1)

be the doubling weight of p. For a finite set of points X ⊆ Rd, let wS(X) :=
∑
x∈X

wS(p).

Definition 2.1 (Implicit arrangement data-structure). Let B be a set of axis-aligned boxes in Rd (known
in advance). Let C ⊆ B be a set of active boxes (initially empty) and let V(C) be the set of vertices
of the arrangement A(C). Let S ⊆ B be a multi-set of update boxes (initially empty). S induces
a weight function on the vertices in V(C) using Eq. (2.1). Here, we require a data-structure that
supports the following operations:

(I) weight(b): given a box b, compute wS(V(C) ∩ b).

(II) double(b): given a box b ∈ B, adds a copy of b to the multi-set of update boxes S.
(III) halve(b): given a box b ∈ B, removes a copy of b from the multi-set of update boxes S.
(IV) sample: returns a random point p ∈ V(C), with probability wS(p)/wS(V(C)).
(V) insert(b): inserts b into the set of active boxes C.
(VI) delete(b): removes b from the set of active boxes C.

Figure 2.1 summarizes the performance of the data structure. In particular, it can be con-
structed inO(n(d+1)/2 log n) time, each of the above operations can be supported inO(n(d−1)/2 log n)
time per operation, except for sample, which takes only O(log n) time. See Lemma 5.4. Note that
the halve and delete operations are not used by the basic algorithm.

2.1. Basic MWU algorithm

The algorithm is a small variant of the Agarwal-Pan algorithm [AP20]. The algorithm performs
an exponential search on a value k, and it stops when k ≥ p and k ≤ 2p. Specifically, in the ith
stage, k is set to 2i. We next describe such a stage for a fixed value of k (and i).

In the beginning of the stage, ω(p) = 1 for all p ∈ V. Let ε = 2
3k . A box b is ε-light if

ω(V ∩ b) < εω(V), and ε-heavy otherwise. The algorithm proceeds in rounds. In each round, it
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scans all the boxes in B trying to find an ε-light box. If an ε-light box b is found, the algorithm
performs a doubling operation on its points. That is, it doubles the weight of each of the points in
V ∩ b. The algorithm performs the doubling on b repeatedly until b becomes ε-heavy (in relation
to the updated weight ω(V)). The algorithm then resumes the scan for ε-light boxes (over the
remaining boxes). Importantly, the algorithm never revisits a box during a round (thus a box that
becomes heavy during a round might become light again in that round). Let ℓ = ⌊1/ε⌋ ≤ 2k.
If ℓ doubling operations are performed in a round, the algorithm aborts the round, and proceeds
to the next round. If a round was completed without ℓ weight-doubling being performed, the
algorithm computes a weak (ε/e)-net N of (V,B) using the algorithm described below in Section 6
(specifically, Lemma 6.12).

Finally, if the number of rounds exceeds τ = c ln(|V|/k) at any stage, where c > 0 is a suitably
large constant, the algorithm decides the guess for k as too small, doubles the value of k, and
continues to the next stage, till success.

In order to implement the above algorithm, we use the implicit arrangement data structure
from Definition 2.1. At the beginning of each stage, we build an instance of the data structure on B
and add all the boxes to the active set using the insert operation. The doubling step with a box b
is performed using double(b) and the ε-lightness of a box is tested using the weight(b) operation.

Analysis. The following lemma proves the correctness of the algorithm.

Lemma 2.2 (AP20). If k ∈ [p/2,p], then the algorithm returns a piercing set for B, of size
O(p log logp), where p= p(B) is the size of the optimal piercing set of B.

Proof: This claim is well known [AP20, Lemma 3.1], but we include a proof for the sake of com-
pleteness.

Initially, the weight W0 of all the vertices of V is m= |V| = O(nd). Let Wi be the weight of V
after the ith doubling operation, and observe that

p2⌊i/p⌋ ≤Wi ≤ (1 + ε)iW0 ≤ mexp(εi).

The lower bound follows as every doubling operation must double the weight of one of the p points
in the optimal piercing set (and to minimize this quantity, this happens in a round robin fashion).
The upper bound follows readily from the ε-lightness of the box being doubled. Taking i = tp,
and taking the log of both sides (in base 2), we have

logp+ t ≤ logm+ εtp log e ≤ logm+
2

3k
tp · 1.45 ≤ logm+ 0.97t

p

k
.

Assuming k ≥ p, this readily implies that t = O(log m
k ). Namely, the algorithm performs at most

τ = O(k log(m/k)) doubling operations in a stage, if the guess k ≥ p.
Since every round performs exactly ℓ = ⌊1/ε⌋ = ⌊3k/2⌋ ≥ k doubling operations in each round,

except the last one, it follows that the algorithm performs at most τ/k = O(log m
k ) rounds.

So consider the last round. Assume the weight of V at the start of the round was W . At the
end of the round, the total weight of V is at most (1 + ε)ℓW ≤ exp(ε ⌊1/ε⌋)W ≤ eW . Every box
during this round, must have been heavy (at least for a little while), which implies that it had
weight ≥ εW , as weights only increase during the algorithm execution. This implies that all the
boxes are ε/e-heavy at the end of the round. Thus, the weak ε/e-net the algorithm computes must
pierce all the boxes of B.
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The above lemma shows that the algorithm succeeds if it stops, and it must stop in a stage if
k is sufficiently large.

Theorem 2.3. Let B be set of n axis-aligned boxes in Rd, for some fixed d ≥ 2, and let p= p(B)
be the piercing number of B. The above algorithm computes, in O(n(d+1)/2 log3 n) expected time, a
piercing set of B of size O(p log logp).

Proof: The above implies that if the algorithm outputs a piercing set, then it is of the desired size
(it might be that the algorithm stops at an earlier stage than expected with a guess of k that
is smaller than p). Thus, it must be that if the guess for the value of k is too small, then the
algorithm double weights in vain, and performs too many rounds (i.e., their number exceeds τ),
and the algorithm continues to the next stage.

Let h = ⌈logp⌉ and m= |V|. Overall, the algorithm performs at most

h∑
i=1

O(2i logm) = O(p logm) = O(pd log n) (2.2)

doubling operations (i.e., double). Every round requires n weight operations. There are O(logm)
rounds in each stage, and there are h stages. We conclude that the algorithm performs

O(n logmlogp) = O(n log2 n)

weight operations. Thus, the overall running time (including preprocessing and activating all
boxes), is

O(n(d+1)/2 log n+ n · n(d−1)/2 log n · log2 n) = O(n(d+1)/2 log3 n).

Finally, the algorithm in Section 6 for computing a weak ε-net first chooses a random sample Q
of V of size O(ε−1 log ε−1) and then computes a weak ε

2 -net of (Q,B). Using sample, Q can be
computed in O(|Q| log n) time. Combining this with Lemma 6.12, we conclude that a ε/e-net of
(V,B) of size O(p log logp) can be computed in O

(
(n+ ε−1) logd n

)
time, which is dominated by

the data-structure’s overall running time.

2.2. An improved MWU algorithm

We now present an alternative algorithm for piercing that exploits LP duality. Operationally, the
improved algorithm differs from the basic one in a few ways. The algorithm does not use the
implicit arrangement data-structure to maintain the weights on V directly. Moreover, instead of
doubling the weight of light boxes one at a time, the algorithm performs ”batch doubling”, i.e., it
doubles the weights of a collection of boxes at the same time. The algorithm also does not compute
the weights of boxes exactly. Instead, it approximates the weights using a suitable sample. This
sample is periodically recomputed by a process we call ”batch sampling” that uses the implicit
arrangement data structure in R(d−1). Before describing the improved algorithm, we explore the
duality between piercing sets and independent sets, and discuss the details of batch sampling.

LP duality, piercing and independence numbers. Let B be a set of boxes in Rd, and let V be
the set of vertices of the arrangement A(B). A subset X ⊆ B is an independent set if no pair of
boxes of X intersect. The independence number of B, denoted by i(B), is the size of the largest
independent set X ⊆ B. Observe that i(B) ≤ p(B), as each box in an independent set must be
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p∗(B) =min
∑
v∈V

xv

∀b ∈ B
∑

v∈b∩V
xv ≥ 1

∀v ∈ V xv ≥ 0.

i∗(B) =max
∑
b∈B

yb

∀v ∈ V
∑

b∈B:v∈b
yb ≤ 1

∀b ∈ B yb ≥ 0.

The LP for the fractional piercing number.
The dual LP for the fractional independence
number.

Figure 2.2: LPs for the piercing and Independence problems. By duality, we have p∗(B) = i∗(B).

pierced, but no point can pierce more than one box in the independent set. Let p∗ = p∗(B) denote
the fractional piercing number of B, i.e., this is the minimum piercing number of B when solving
the associated LP, see Figure 2.2. The dual LP, is the fractional independence LP – it computes
(fractionally) a maximum independent set of boxes in B. The value of this LP i∗ := i∗(B) is the
fractional Independence number of B. By LP duality p∗ = i∗, see Figure 2.2. It is known,
and also implied by Lemma 2.2, that p∗ ≤ p ≤ c1p

∗ log logp∗, for some constant c1 > 0. This
implies that p∗ ≥ p/(c1 log logp).

We need the following standard algorithms for computing independent set and piercing set
of boxes. Better results are known [CC09, GKM+22, Mit21], but they are unnecessary for our
purposes.

Lemma 2.4 (AKS97). Let B be a set of n boxes in Rd. An independent subset of boxes of B
of size Ω(i∗/ logd−1 n) can be computed in O(n logd−1 n) time, where i∗ = i∗(B) is the fractional
independence number of B.

Proof: This algorithm is well known and we sketch it here for completeness – it works by induction
on the dimension. For d = 1, a greedy algorithm picking the first interval with the minima right
endpoint computes the optimal independent set — the running time of this algorithm is O(n) after
sorting. It is straightforward to verify that one can assume that the LP solution in this case is
integral, and thus i∗ = i(B).

For d = 2, compute the vertical line such that its x-coordinate is the median of the x-coordinates
of the endpoints of the boxes. Compute the optimal independent set of rectangles intersecting this
line (which is just the one dimensional problem), and now recurse on the two subsets of rectangles
that do not intersect the median line. This results in a partition of the set of rectangles B into
O(log n) sets, such that for each set, we have the optimal (fractional) independent set. Clearly, one
of them has to be of size Ω(i∗/ log n).

For d > 2, the same algorithm works by approximating the optimal solution along the median
of the first coordinate (i.e., d− 1 subproblem), and then recursively on the two subproblems. The
bounds stated readily follows.

The piercing problem can be solved exactly by the greedy algorithm in one dimension (i.e.,
add the leftmost right endpoint of an input interval to the piercing set, remove the intervals that
intersect it, and repeat). For higher dimensions, one can perform the same standard divide and
conquer approach, used in Lemma 2.4, and get the following.

Lemma 2.5 (Nie00). Let B be a set of n boxes in Rd for d ≥ 2. A piercing set P of B of size
O(p∗ logd−1 n) can be computed in O(n logd−1 n) time.
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Corollary 2.6. Let B be a set of n boxes in Rd for d ≥ 2. Then the following two sets can be
computed in O(n logd−1 n) time:

(i) An independent set B′ ⊆ B of B of size Ω
( p

logd−1 n log logn

)
, and

(ii) a piercing set P ⊆ Rd of B of size O(p logd−1 n).

Proof: By Lemma 2.4, an independent set B′ of size Ω
(

i∗

logd−1 n

)
can be computed in O(n logd−1 n)

time, and by Lemma 2.5, a piercing set P of size O(p logd−1 n) can be computed in O(n logd−1 n)
time. By Lemma 2.2, we have∣∣B′∣∣ = Ω

(
i∗

logd−1 n

)
= Ω

(
p

logd−1 n log log n

)
,

Batch sampling. For the purposes of our improved algorithm, we need to support the following
“batch sampling” operation. Given a set B of n boxes in Rd, a multiset (i.e., list) S ⊆ B of boxes
such that |S| = O(n log n), and a parameter r > 0 such that r = O(n log n), the task at hand
is to compute a random subset R of r vertices of A(B), where each vertex v ∈ A(B) is sampled
independently with probability wS(p)/wS(V), see Eq. (2.1). This procedure can be implemented
using the data structure described in Definition 2.1, but one can do better, by sweeping along the
xd-axis and constructing the data structure in one lower dimension, as follows.

Let B↓ be the collection of (d− 1)-dimensional projections of the boxes in B, to the hyperplane
xd = 0. Let V ′ be the set of vertices in A(B↓), the arrangement of B↓ in Rd−1. Let F be the set of
xd-coordinates of all the vertices of the boxes of B.

Build D, an instance of the (d− 1)-dimensional data structure of Definition 2.1 on B↓. Impor-
tantly, initially all the boxes of B↓ are inactive. Observe that V ⊆ V ′×F . Assume F is sorted and
the ith point (in sorted order) is denoted by ei. We perform two space-sweeps along the xd-axis.
In step i of a sweep, D represents the point-set Ji := (V ′ × {ei})∩V lying on a R(d−1)-dimensional
subspace, and we compute α(i), the total weight of vertices in Ji

At any step i of the first sweep, for every box b ∈ B that starts (resp. ends) at ei call insert(b)
(resp. delete(b)). This activates/deactivates all the vertices on the boundary on b. Similarly, for
every b ∈ S that begins (resp. ends) at ei, use double(b) (resp. halve(b)) operation on D to double
(resp. halve) the weight of the points in Ji ∩ b. Next, use the weight operation on D to get the
weight of all the points in Ji and store it in α[i]. At the end of the first sweep, independently sample

r numbers from the set {1, ..., 2n} where the integer j is sampled with probability α(j)/
2n∑
i=1

α(i).

Let δ(j) denote the number of times j was sampled.
Next, reset D and begin the second sweep. In step i of the second sweep, perform the same

operations except replace the weight-computing step with taking δ(i) independent samples from Ji
using the sample operation on D.

Observe that at the end of the first sweep α(i)/
2n∑
j=1

α(j) is the total probability mass of all the

points in Ji. Using this fact, it is easy to verify that at the end of the second sweep the sampled
points correspond to the desired subset R.

Initializing D takes O(nd/2 log n) time, and performing each step of the sweep takes

O(n(d−2)/2 log n)

9



time. Each sweep handles O(|S|) = O(n log n) events, hence, R can be computed in O(nd/2 log2 n)
time. We thus obtain the following:

Lemma 2.7. Let B be a set of n boxes in Rd, and let S be a multiset of boxes such that |S| =
O(n log n). Let ω be the doubling weight function induced by S over the vertices V of A(B), see
Eq. (2.1). Given a parameter r > 0 such that r = O(n log n), a random subset R ⊂ V of size r,
where each vertex of V is sampled with probability proportional to its weight, can be computed in
O(nd/2 log2 n) time.

The new MWU algorithm. As in the previous algorithm, the algorithm performs an exponential
search on k until k ≤ 2p. For a particular guess k, the new algorithm also works in rounds. The
difference is how each round is implemented. Instead of doubling the weight of a light box as soon
as we find one, we proceed as follows. Let ω : V → R≥0 be the weight function at the beginning
of the current round. Observe that for any point p ∈ V, ω(p) = wS(p) where S is the multi-set of
boxes that doubled their weights so far, see Eq. (2.1). At the beginning of each round, we process
B and S to generate a random subset R ⊂ V of size O(k log n), such that for a box b ∈ B one can
determine whether it is light, i.e., ω(b) ≤ ω(V)/4k by checking if |b∩R| ≤ |R|/4k. By processing R
into an orthogonal range-counting data structure [Aga04], we can compute |b ∩R|, in O(logd−1 n)
time, for any b ∈ B, by querying the data structure with b. By repeating this for all boxes of B,
we compute a set L ⊆ B of light boxes.

Next, we compute an independent set of boxes I ⊆ L using Lemma 2.4. There are several
possibilities:

• If |I| ≥ 2k, then the guess for k is too small. We double the value of k, and restart the
process.

• If |I| < c1k/ log
2d−1 n, then by Corollary 2.6, a piercing set P of L of O(k) points can be

computed in O(n logd−1 n) time. The remaining boxes of H = B \L are (say) 1/4.01k-heavy.
By applying Lemma 6.12 to H and R, we compute a weak 1/4.01k-net N for these boxes of
size O(k log log k) in O(n logd n) expected time. The set P ∪ N is the desired piercing set of
B of size O(p log logp).

• If |I| ≥ c1k/ log2d−1 n, then we update S, the multi-set of boxes doubled so far, to S = S ∪I.
The algorithm now continues to the next round.

Remark 2.8. It is interesting to observe that the batch doubling operation in the above algorithm
corresponds to merely updating the list S. The actual work associated with the doubling is in
regenerating the sample R at the beginning of the next round. This is done by batch sampling as
described below.

Computing the random sample R in each round. Let ω : V → R≥0 be the weight function
in the beginning of a particular round. Our goal is to compute a sample R ⊂ V, such that we can
check if a box b ∈ B is light by checking if |b ∩ R| ≤ |R|/4k. Recall that S denotes the list of
boxes for which the MWU algorithm had doubled the weights. Moreover, recall that the weight of
a vertex v ∈ V is 2|S⊓v|, where |S ⊓ v| denotes the number of boxes in S that contain v. We use
the concept of relative approximations.

Definition 2.9. Let Σ = (X ,R) be a finite range space, and R ⊂ X , and let ω : X −→ R≥0 be a
weight function. For a range r ∈ R, let m(r) = ω(r ∩ X)/ω(X) and s(r) = |r ∩R| /|R|. Then, R is
a relative (p, ε)-approximation of Σ if for each r ∈ R we have:
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(i) If m(r) ≥ p, then (1− ε)m(r) ≤ s(r) ≤ (1 + ε)m(r).

(ii) If m(r) ≤ p, then s(r) ≤ (1 + ε)p.

It is known [HS11, Har11] that if the VC-dimension of Σ is d, then a random sample R of size
O
(

1
ε2p

[
d log 1

p + log 1
φ

])
, where each point is chosen with probability proportional to its weight, is

a relative (p, ε)-approximation with probability ≥ 1− φ. In view of this result, we can detect light
boxes of B (with respect to S) as follows. Set ε = 0.01, p = ε

20k , φ = 1
nO(1) . We chose a random

subset R ⊆ V of r = O( k
ε2

log n) points. Then we have the following property for each box b ∈ B.

(I) If m(b) = ω(b ∩ V)/ω(B) ≥ (ε/20k) then 0.99m(b) ≤ s(b) ≤ 1.01m(b).

(II) If m(b) ≤ ε/20k then s(b) ≤ 1.01/20k.

Therefore to check if a box is b is light, it suffices to check |b∩R|. As for computing the sample
R, observe that this is exactly what batch sampling is designed for, see Lemma 2.7.

Analysis. The correctness of the new MWU follows from the previous one. We now analyze the
running time. Each round except the last round doubles the weight of Ω(k/ log2d n) boxes. Since the
total number of weight-doubling operations performed by the algorithm is O(p log n), see [AP20],
the algorithm stops within O(log2d n) rounds. In a particular round, the algorithm uses batch
sampling to recompute the random subset R which it uses to identify the set L ⊆ B of light boxes.
Lemma 2.7 shows that the cost of batch sampling is bounded by O(nd/2 log2 n) time. As discussed
above, once R is computed, L can be identified in O(n logd−1 n) time. Finding an independent set
I ⊆ L using Lemma 2.4 also takes O(n logd−1 n) time. Updating the multi-set S of boxes whose
weights have been doubled so far also takes O(n) time. The algorithm computes a piercing set and
a weak net only in the last round. Together, they take O(n logd n) time. The running time for
these steps is dominated by the the time for the batch sampling in each round. Considering the
need to do an exponential search for p, we obtain the following:

Theorem 2.10. Let B be set of n axis-aligned boxes in Rd, for d ≥ 2, and let p = p(B) be the
piercing number of B. A piercing set of B of size O(p log logp) can be computed in O(nd/2 log2d+3 n)
expected time.

3. Multi-round piercing algorithm

Let B be a set of (closed) boxes in Rd, and let V = V(B) be the set of vertices of the arrangement

A(B). When considering a piercing set for B, one can restrict the selection of piercing points to
points of V. Two point sets Q,Q′ are equivalent for B if for all faces (of all dimensions) f of the
arrangement of B, we have that |Q ∩ f| = |Q′ ∩ f|. Since |V| = O(nd), it follows that the number of
non-equivalent (i.e., distinct) piercing sets of size ≤ t is bounded by O(ndt).

The key insight is that a piercing set for a sufficiently large, but not too large, sample is a
piercing set for almost all the boxes.

Lemma 3.1. Let B be a set of n boxes in Rd, δ ∈ (0, 1) and t > 0 be parameters, and let S ⊆ B
be a random sample of size O(dtδ log n). If S can be pierced by a set Q of t points, then at most δn

boxes of B are not pierced by Q, and this holds with probability ≥ 1− 1/nO(d).
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Proof: Let F be the collection of all piercing sets of B with at most t points, where no two sets
in F are equivalent for B. Let F ′ =

{
X ∈ F

∣∣ |B \X| ≥ δn} be all the “bad” piercing set in F
that fail to stab ≥ δn boxes of B, where B \X = {b ∈ B | b ∩X = ∅}. By the above, we have that
m = |F ′| ≤ O(ndt). Fix a “bad” set X ∈ F ′. Let u = cdtδ lnn be the size of |S|, where c is a
sufficiently large constant. The probability that the set X is a piercing set for the sample S is at
most

ψ = (1− δ)u ≤ exp(−δu) = exp(−c · d · t · lnn) = 1

ncdt
.

In particular, by the union bound, the probability that any set of F ′ will be a valid piercing set for
S is at most |F ′|ψ < 1/nO(d), for c sufficiently large.

3.1. A piercing algorithm via sampling

Lemma 3.1 suggests a natural algorithm for piercing – pick a random sample from B, compute
(or approximate) a piercing set for it, compute the boxes this piercing set misses, and repeat the
process for several rounds. In the last round, hopefully, the number of remaining boxes is sufficient
small than one can apply the piercing approximation algorithm directly to B. We thus get the
following.

Lemma 3.2. Let B be a set of n boxes in Rd, and let ζ > 1 be a parameter. Furthermore, assume
that we are given an algorithm Pierce that for m boxes, can compute a O(log logp) approximate
to their piercing set in TP(m) time, where p is the size of the optimal piercing set for the given
set. Then, one can compute a piercing set for B of size O(ζp log logp) in expected time

O
(
ζTP

(
p1−1/ζn1/ζ log n

)
+ n logd−1p

)
.

Proof: We assume that we have a number k such that p ≤ k ≤ 2p, where p is the size of the
optimal piercing set for B. To this end, one can perform an exponential search for this value, and
it is easy to verify that this would not effect the running time of the algorithm.

The algorithm performs ζ rounds. Let B0 = B. Let δ = (k/n)1/ζ . In the ith round, for
i = 1, . . . , ζ − 1, we pick a random sample Si from Bi−1 of size

m = O
(
dkδ−1 log n

)
= O

(
dk1−1/ζn1/ζ log n

)
= O

(
p1−1/ζn1/ζ log n

)
.

In the ζth round, we set Sζ = Bζ−1. Now, we approximate the optimal piercing set for Si, by calling
Qi ← Pierce(Si). If the piercing set Qi is too large – that is, |Qi| ≫ k log log k, then the guess
for k is too small, and the algorithm restarts with a larger guess for k. Otherwise, the algorithm
builds a range tree for Qi, and streams the boxes of Bi−1 through the range tree, to compute the set
Bi = Bi−1 \ Qi, the boxes in Bi−1 not pierced by Qi. By Lemma 3.1, we have |Bi| ≤ δ |Bi−1| ≤ δin
with high probability. If |Bi| > δ |Bi−1|, we repeat round i, so assume |Bi| ≤ δ |Bi−1|. In particular
|Sζ | = |Bζ−1| ≤ δζ−1n ≤ p1−1/ζn1/ζ . Therefore, the total time spent by Pierce(.) in ζ rounds is
O(ζTP(p

1−1/ζn1/ζ log n)). Finally, during the first ζ − 1 iterations, computing Bi takes

ζ−1∑
i=1

O(|Bi−1| logd−1 |Qi|) =
ζ−1∑
i=1

O(δin logd−1(p log logp)) = O(n logd−1p)

time. Clearly, ∪iQi is the desired piercing set.
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We can use the algorithm of Theorem 2.10, for the piercing algorithm. For this choice,

TP(m) = O(md/2 log2d+3m).

We then get an approximation algorithm with running time

O

(
ζ
(
p1−1/ζn1/ζ

)d/2
polylog(n) + n logd−1p

)
.

We thus get our second main result.

Theorem 3.3. Let B be a set of n axis-aligned boxes in Rd, for d ≥ 2, and let ζ > 0 be an integer.
A piercing set of B of size O(ζp log logp) can be computed in

O
(
ζpd/2−d/2ζnd/2ζ polylog(n) + n logd−1p

)
.

expected time, where p= p(B) is the size of the optimal piercing set.

The above algorithm provides a trade-off between the approximation factor and the running
time. It readily leads to a near linear time algorithm if the piercing set is sufficiently small. For
example, by choosing ζ = d, we obtain the following:

Corollary 3.4. Let B be a set of n axis-aligned boxes in Rd for some fixed d ≥ 2, and as-
sume p(B) = O(n1/(d−1)). Then, a piercing set of B of size O(dp log logp) can be computed
in O(n polylog(n)) expected time.

If the piercing set is slightly sublinear, the above leads to an approximation algorithm with
running time O(n log n).

Corollary 3.5. Let B be a set of n axis-aligned rectangles in R2 for some fixed d ≥ 2, and assume
that it can be pierced by p= O(n/ log15 n) points. Then, a piercing set of B of size O(p log logp)
can be computed in O(n logp) expected time.

Proof: Pick a random sample S ⊆ B of size O(n/ log7 n). The algorithm of Theorem 2.10 yields in
O(n) time a piercing set Q for S, of size u = O(p log logp). Preprocess Q for orthogonal range
emptiness queries – this takes O(p log2p) time, and one can decide if a rectangle is not pierced by
Q in O(logp) time. Lemma 3.1 implies that at most δn rectangles unpierced by Q, where

δ =
p log8 n

n
.

Namely, the unhit set has size δn = O(n/ log7 n). Running time algorithm of Theorem 2.10 on
this set of rectangles, takes O(n) time, and yields a second piercing set Q′ of size O(p log logp).
Combining the two sets results in the desired piercing set.

4. Dynamic Algorithm for piercing

We present a data structure for maintaining a near-optimal piercing set for a set B of boxes in
R2 as boxes are inserted into or deleted from B. By adapting the multi-round sampling based
algorithm described in Section 3, we obtain a Monte Carlo algorithm that maintains a piercing
set of O(p log logp) size with high probability and that can update the piercing set in O∗(n1/2)
amortized expected time per update. (The O∗() notation hides polylogarithmic factors). The
update time can be improved to O∗(n1/3) if B is a set of squares in R2.
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Overview of the Algorithm. We observe that the size of the optimal piercing set changes by at
most one when a box is inserted or deleted. We periodically reconstruct the piercing set using a
faster implementation of the multi-round sampling based algorithm in Section 3, as described below.
More precisely, if s is the size of the piercing set computed during the previous reconstruction, then
we reconstruct the piercing set after ⌈s/2⌉ updates. To expedite the reconstruction, we maintain B
in a data structure as follows. We map a box b = [a1, a2]× [b1, b2] to the point b∗ = (a1, b1, a2, b2) in
R4, and let B∗ be the resulting set of points in R4. We store B∗ into a 4-dimensional dynamic range
tree T , which is a 4-level tree. Each node v of T is associated with a canonical subset B∗v ⊆ B∗ of
points. Let Bv be the set of boxes corresponding to B∗v . For a box □ in R4, □∩B∗ can be represented
as the union of O(log4 n) canonical subsets, and they can be computed in O(log4 n) time. The size
of T is O(n log4 n), and it can be updated in O(log4 n) amortized time per insertion/deletion of
point. See [BCKO08].

Between two consecutive reconstructions, we use a lazy approach to update the piercing set, as
follows: Let P be the current piercing set. When a new box b is inserted, we insert it into T . If
P ∩ b = ∅, we choose an arbitrary point p inside b and add p to P. When we delete a box b, we
simply delete b∗ from T but do not update P. If ⌈s/2⌉ updates have been performed since the last
reconstruction, we discard the current P and compute a new piercing set as described below.

We show below that a piercing set of size s := O(p log logp) of B can be constructed in

O∗
(
(pn)1/2 +min{p2, n}

)
expected time, where p is the size of the optimal piercing set of B. This implies the amortized
expected update time is O∗ ((n/p)1/2 +min{p, n/p}

)
, including the time spent in updating T .

The second term is bounded by n1/2, so the amortized expected update time is O∗(n1/2).

Reconstruction algorithm. Here is how we construct the piercing set of boxes in R2. Let B be
the current set of boxes. We follow the algorithm in Theorem 3.3 and set the number of rounds
to 2. More precisely, perform an exponential search on the value of k, the guess for the size of the
optimal piercing set, every time we reconstruct the piercing set. For a fixed k, the reconstruction
algorithm consists of the following steps:

(I) Choose a random sample B1 of B of size r = c1(kn)
1/2, where c1 is a suitable constant.

(II) Construct a piercing set P1 of B1 of size s = O(k log log k) in O∗(r) time using the algorithm
in Section 2.2.

(III) Compute B2 ⊆ B, the subset of boxes that are not pierced by P1. If |B2| > c2(kn)
1/2, where

c2 is a suitable constant, we return to Step 1. As described below, this step can be computed
in O∗(min{k2, n}+ (kn)1/2) time.

(IV) Compute a piercing set P2 of B2, again using the algorithm in Section 2.2.
(V) Return P1 ∪ P2.

The expected running time of this algorithm is O∗(min{k2, n}+ (kn)1/2), as desired.

Computing B2. We now describe how to compute B2 efficiently using T . If p ≥ n1/2, then we
simply preprocess P into a 2-dimensional range tree in O(s log s) time. By querying with each box
in B, we can compute B2 in O(n log n) time [BCKO08]. The total time spent is O(n log n). So
assume p< n1/2. For a point p = (xp, yp) ∈ R2, let Qp ⊂ R4 be the orthant Qp = {(x1, x2, x3, x4) |
x1 ≤ xp, x2 ≤ yp, x3 ≥ xp, x4 ≥ yp}. Then, a box b ⊂ R2 contains p if and only if B∗ ∈ Qp.
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Therefore, an input box b ∈ B is not pierced by P1 if b∗ ̸∈
⋃
p∈P

Qp. Let K = R4 \
⋃
p∈P

Qp. It is well

known that the complexity of K is O(s2). Furthermore, K can be partitioned into O(s2) boxes with
pairwise-disjoint interiors, as follows.

Let Q = {Qp | p ∈ P}, and let P̂ = {(xp, yp, xp, yp) | p ∈ P} be their corners. We sort P̂ by the
x4-coordinates of its points. Let ∆ be an x4-interval between the x4-coordinates of two consecutive
points of P̂. For any value a ∈ ∆, the cross-section Qa of Q with the hyperplane ha : x4 = a is
a collection of s 3-dimensional octants, and Ka := K ∩ ha is the complement of the union of Qa.
Furthermore, the cross-section Ka remains the same for any value of a ∈ ∆. It is well known that
the complexity of Ka is O(s), and that it can be partitioned into a set Ra of 3-dimensional boxes in
O∗(s) time. Hence, we can partition K inside the slab R3 ×∆ by the set R∆ = {R×∆ | R ∈ Ra}.
By repeating this procedure for all x4-intervals between two consecutive points of P̂, we partition
K into a family R of O(s2) boxes.

Next, we query T with each box R ∈ R. The query procedure returns a set VR of O(log4 n)
nodes of T such that B∗ ∩ R =

⋃
v∈VR

B∗v . We thus obtain a set V of O(s2 log4 n) nodes of T such

that B∗2 =
⋃
v∈V
B∗v . If

∑
v∈V
|B∗v | ≤ c2(kn)

1/2, we return
⋃
v∈V
Bv as B2. Otherwise, we return NULL.

The total time spent by this procedure is O∗(min{n, k2} + (kn)1/2). Putting everything together
we obtain the following.

Theorem 4.1. A set B of n boxes in R2 can be stored in a data structure so that a piercing set
of B of size O(p log logp) can be maintained with high probability under insertion and deletion of
boxes with amortized expected time O(n1/2 polylog(n)) per insertion or deletion; p is the piercing
number of B.

Dynamic algorithm for squares in 2D. If we have squares instead of boxes, then the reconstruc-
tion time reduces to O∗(p2/3n1/3), which leads to an amortized update time of O∗((n/p)1/3) =
O∗(n1/3). We proceed in a similar manner as before. There are two differences. First, we now
choose a random sample of size O(k2/3n1/3), and the algorithm works in three rounds. After the
first round, we have a piercing set P1 of size O(p log logp), and we need to represent the set of
squares not pierced by P1 as O∗(p) canonical subsets, so that we can choose a random sample
B2 from this subset of squares. After the second round, we have a piercing set P2 of B2 of size
O(p log logp). Finally, we find the subset B3 ⊆ B of squares not pierced by P1 ∪ P2 and compute
a piercing set of B. It suffices to describe how we compactly represent the set B2.

We map a square, which is centered at a point c and of radius (half side length) a, to the point
b∗ = (c, a) ∈ R3. A point p = (xp, yp) ∈ R2 is now mapped to the cone Cp = {(x, y, z) ∈ R3 |
∥(x, y)− p∥∞ ≤ z, z ≥ 0} with the square cross-section and p its apex; Cp is the graph of the
L∞-distance function from p. It is easily seen that p ∈ b if and only if b∗ ∈ Cp. Hence, a box
b ∈ B2 if it lies below all the cones of C = {Cp | p ∈ P1}. Using a 3D orthogonal range-searching
data structure, we can compute B2 as the union of O∗(k) canonical subsets. We omit the details
from here and obtain the following.

Theorem 4.2. A set B of n squares in R2 can be stored in the data structure described above so
that a piercing set of B of size O(p log logp) can be maintained with high probability under insertion
and deletion of boxes in O(n1/3 polylog(n)) amortized expected time per insertion or deletion.
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5. Data structure for maintaining weights of boxes

In this section, we describe how to implement the data structure needed for our algorithms whose
specifications are given in Definition 2.1. Let B be a set of axis-aligned boxes in Rd. For simplicity,
we assume the boxes in B are in general position. Let C be a set of active boxes (initially empty)
and let V(C) be the set of vertices of the arrangement A(C). Let S ⊆ B be a multi-set of update
boxes (initially empty). For a point p ∈ V, recall that the doubling weight of p is defined to be
wS(p) := 2|S⊓p|, where let S ⊓ p = {b ∈ S | p ∈ b} is the multi-set of all boxes in S containing p.
We require a data-structure that supports the following operations:

(I) weight(b): given a box b, computes wS(V(C) ∩ b).

(II) double(b): given a box b ∈ B, adds a copy of b to the multi-set of update boxes S.
(III) halve(b): given a box b ∈ B, removes a copy of b from the multi-set of update boxes S.
(IV) sample: returns a random point p ∈ V(C) with probability wS(p)/wS(V(C)).
(V) insert(b): inserts b into the set of active boxes C.
(VI) delete(b): removes b from the set of active boxes C.

For a set Z ⊆ Rd and i ∈ JdK, let Z↓xi
= {xi | (x1, . . . , xd) ∈ Z} be the projection of Z to the

xi-axis. For a multiset S of boxes in Rd and i ∈ JdK, let S↓xi
= {b↓xi

| b ∈ S} be the multiset of
intervals resulting from projecting S on the xi-axis.

We first describe the data structure for the line in Section 5.1, then for the the plane in Sec-
tion 5.2, and finally extend it to higher dimensions in Section 5.3.

5.1. Data structure in 1D

A segment tree with minor tweaking provides the desired data-structure for 1D, as described next.
The set of vertices V is simply the endpoints of the intervals of B. We construct the segment

tree T of B, where the endpoints of B are stored at the leaves of T (thus, a node v in T corresponds
to an “interval” which is the set of all endpoints stored in its subtree). The idea is to update the
weights in a lazy fashion — for completeness we describe this in detail, but this is by now folklore.

We modify the segment tree so that each internal node v has a total weight ω(v) of all the
vertices in its subtree, and a count α(v). In any given point in time, if v has two children x and y,
we have that ω(v) = 2α(v)(ω(x) + ω(y)). The value of α(v) is pushed down to its children in a lazy
fashion. Specifically, whenever the algorithm traverses from a node v to one of its children, it adds
the value of α(v) to α(x) and α(y), and sets α(v) to zero. It immediately also recomputes ω(x)
and ω(y). Similarly, whenever the traversal returns from a child, the weight of the parent node is
recomputed.

For the operation weight(b), the data-structure locates the O(log n) nodes of T such that
their (disjoint) union covers the interval b, and it returns the sum of their weights (note, that
this propagates down the values of α(·) at all the ancestors of these nodes to them – thus, all the
ancestors have α(·) with value zero). The operation double(b) (resp. halve(b)) works in a similar
fashion, except that the data-structure increases (resp. decreases) the α(·) of the all the O(log n)
nodes of T covering b by one.

The operation sample performs a random traversal down the tree. If the traversal is at node
v, with children x and y, it continues to x with probability ω(x)/ω(v), and otherwise it continues
to y. The function returns the endpoint stored in the leaf where the traversal ends.
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Finally, if we want to support insert and delete, we initially set the weight of endpoints
associated with each interval to zero. When an interval (a, b) ∈ B is inserted to the set of active
intervals C, we locate the leaves corresponding to a and b and set their weights to one. We
then traverse up the tree from the leaves recomputing ω(·) for the ancestors of either leaf. The
deletion sets the weight of the endpoints to zero and proceeds analogously. Therefore, we obtain
the following:

Lemma 5.1. Let B be a set of n intervals in R1. A data-structure of size O(n log n) can be
constructed in O(n log n) time that supports each of the operations described in Definition 2.1 in
O(log n) time.

5.2. Data Structure in the plane

Basic idea. Let B be the set of input rectangles, and let φ be an axis-parallel box that does not
contain a vertex of a rectangle of B in its interior. Any edge e of a rectangle b ∈ B that intersects
the interior of φ, cuts it into two pieces by the line supporting e. Let X (resp. Y ) be the set of
all the x-values (resp. y-values) of all edges that are orthogonal to the x-axis (resp. y-axis) and
that intersect φ. Clearly, the vertices of V in the interior of φ are formed by the Cartesian product
X × Y (we refer to this set somewhat informally, as a grid). Weights on such a grid of vertices can
be maintained implicitly by maintaining weights on the sets X and Y separately (using the one
dimensional data-structure). It is easy to verify that all the operations of Definition 2.1 decompose
into these one-dimensional data-structures.

Thus, the data-structure is going to decompose the arrangement of B into cells, where the
vertices inside each cell would be represented by such a grid. Importantly, each box would appear
directly in only O(

√
n) grids. A technicality is that update box might contain many such cells in

their interior (and thus their grids are contained inside the update box). Fortunately, by storing
these cells in an appropriately constructed tree, such updates could be handled by implicit updates
on the nodes of this tree.

Partitioning scheme. Let B be a set of axis-aligned boxes in R2, and let □ be a rectangle that
contains all boxes of B in its interior. We first partition □ into ⌈2

√
n⌉ vertical slabs, i.e., by drawing

y-parallel edges, so that each slab contains at most
√
n vertical edges of boxes in B. Next, we further

partition each slab σ into O(
√
n) rectangles by drawing horizontal edges as follows. If a corner

(vertex) ξ of a box of B lies in σ, we partition σ by drawing a horizontal edge passing through
ξ. Finally, if a rectangle ϱ in the subdivision of σ intersects more than

√
n horizontal edges of B,

we further partition ϱ into smaller rectangles by drawing horizontal edges, so that it intersects at
most

√
n horizontal edges. Let Π be the resulting rectangular subdivision of □. Observe that Π

has O(n) cells. By construction, no vertex of B lies in the interior of a cell of Π, the boundary of
any box intersects O(

√
n) cells of Π, and each cell φ intersects at most 2

√
n edges of B. For a cell

φ of Π, let V ∩ φ be the set of all vertices of V = V(B) that lie in the interior of φ. Observe that
we have V ∩ φ = (V ∩ φ)↓x × (V ∩ φ)↓y.

Weights decompose in a cell. Consider a multiset Sφ ⊆ B that intersect the interior of a cell
φ. The multiset Sφ can be partitioned into two multisets of intervals:

Xφ = {b↓x | b ∈ Sφ and φ↓x ̸⊂ b↓x} and Yφ = {b↓y | b ∈ Sφ and φ↓y ̸⊂ b↓y} .
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Note, that a box b ∈ Sφ contributes an interval (more formally, its multiplicity of intervals) to
exactly one of these sets, as no box of Sφ can have a vertex in the interior of φ.

Lemma 5.2. Let φ be a cell of Π, Sφ ⊆ B a multiset of rectangles whose boundaries intersect the
interior of φ, and let b be a rectangle. For U = V ∩ φ ∩ b, X = U↓x and Y = U↓y, we have that
wSφ

(U) = wXφ

(
X
)
· wYφ

(
Y
)
,

Proof: Since no box b ∈ Sφ has a vertex in the interior of φ, it follows that either the vertical or
the horizontal edges of b intersect φ (but not both). As such, we have U = X × Y . Furthermore,
for p = (x, y) ∈ U , we have that |p ⊓ Sφ| = |x ⊓ Xφ| + |y ⊓ Yφ|, which implies that wSφ

(p) =

wXφ
(x) · wYφ

(y). As such, we have

wSφ
(U) =

∑
p∈U

wSφ
(p) =

∑
(x,y)∈X×Y

wXφ
(x) ·wYφ

(y) =
∑
x∈X

wXφ
(x) ·

∑
y∈Y

wYφ
(y) = wXφ

(X) ·wYφ
(Y ).

p2

p1

R1

R2

R3

R4

R5

Figure 5.1: ∆ = Ix× Iy denotes a cell in Π. Sφ = {R1, R2, R3, R4} intersects ∆. Let Ri = Rx
i ×R

y
i

for i ∈ {1, 2, 3, 4}. X∆ = {Rx
2 , R

x
3 , R

x
4}, Y∆ = {Ry

1, R
y
5}. Observe that wSφ

({p1}) = wX∆
({p1}↓x) ·

wY∆
({p1}↓y) = 16 and wSφ

({p2}) = wX∆
({p2}↓x) · wY∆

({p2}↓y) = 32.

Tree data structure. We construct a balanced binary tree T storing the cells of Π in the leaves
– the top levels form a balanced binary tree over the slabs, say from left to right. A “leaf” that
stores a slab is then the root of a balanced binary tree on the cells within the slab, with cells
ordered from bottom to top. Each node u of T is associated with a rectangle □u. The root is
associated with □ itself and each leaf is associated with the corresponding cell of Π. For an internal
node u with children w and z, □u = □w ∪ □z. Let Vu := V ∩ int(□u). If u is an internal node
with w and z as children and e being the common edge of □w and □z (i.e. e = □w ∩ □z), then
Vu = Vw ∪ Vz ∪ (V ∩ e). If e does not lie in the horizontal edge of a rectangle of B then V ∩ e = ∅.
If e ∈ ∂b for some rectangle b ∈ B then Vu ∩ e is the set of intersection points of e ∩ ∂b with the
x-edges of B that intersect e.

18



T

b ∆

Figure 5.2: The figure represents the partition Π and the tree T built on Π. σ is a strip of Π, ∆
is a cell of σ. Tσ is the tree built on the cells of σ. R is a rectangle in B. The highlighted nodes
represent C(b). ( Note that the axes are flipped.)

Let b = bx× by be an arbitrary rectangle. The rectangle b is long , at a node u, if □u ⊆ b, and
short if □u ∩ ∂b ̸= ∅. A node u is canonical for b, if (i) u is a leaf and b is short at u, or (ii) if b
is long at u but short at p(u), the parent of u in T . Let C(b) denote the set of canonical nodes for
b and let C∗(b) be the set of ancestors of nodes in C(b) including C(b) itself. By the construction
of Π, b is short at O(

√
n) leaves of T , therefore |C(b)| = |C∗(b)| = O(

√
n log n).

For simplicity, in the subsequent discussion we assume that all boxes are active. Notice that
the construction of T is not affected by the set of active boxes. Later, we describe how to insert or
delete from the set of active boxes C while preserving the invariants of the data structure. Recall
that S is the multi-set of update boxes. For a node u ∈ T , let Su ⊆ S (resp. Lu ⊆ S) be the set
of update boxes that are short (resp. long) at u. Note that u is a canonical node for all boxes in
Lu \ Lp(u) and also for Su if u is a leaf. We maintain two values at each node u of T :

(i) λu =
∣∣Lu \ Lp(u)∣∣: the number of boxes of S that are long at u but short at p(u); and

(ii) ωu = wSu
(Vu): the total weight of points in Vu with respect to the update boxes that are

short at u.

The following inequalities follow easily from the definitions for any rectangle b:

wS(Vu) = wSu
(Vu)× wLu

(Vu) = ωu ×
∏

v∈anc(u)

2λv (5.1)

wS(Vu ∩ b) = wSu
(Vu ∩ b)×

∏
v∈anc(u)

2λv , (5.2)

where anc(u) is the set of ancestors of u, including u itself. Let u be an internal node of T with
children y and z, and let eu = □y ∩□z be the common edge shared by □y and □z. Then, for any
rectangle b, we have

ωu = ωy2
λy + ωz2

λz + wSu
(V ∩ eu) (5.3)

and wSu
(Vu ∩ b) = wSy

(Vw ∩ b)2λy + wSz
(Vz ∩ b)2λz + wSu

(V ∩ eu), (5.4)

If eu is a vertical edge then V ∩ eu = ∅, so the last term is positive only if eu is a horizontal edge
of a cell in Π.

19



By Eq. (5.3), ωu can be maintained recursively if the value at the leaves of T is known, and one
can compute wSu

(V ∩ eu) efficiently. To this end, we use the ”lazy segment tree” data structure
from Section 5.1, as secondary data structures, to maintain ωu at the leaves. The same data
structure will also be used to maintain wSu

(V ∩ eu).
Let z be a leaf of T , and let □z be the cell in Π corresponding to z. Let X = (□z ∩ V)↓x and

Y = (□z ∩ V)↓y. Note that, |X| = |Y | = O(
√
n) because only O(

√
n) rectangle boundaries intersect

the interior of □z. Then we construct lazy segment trees Ψx
z and Ψy

z on X, and Y respectively.
Recall that Sz ⊆ S is the set of update rectangles that are short at z. We can decompose Sz into
the following multi-sets of intervals:

Xz = {b↓x | b ∈ Sz and (□z)↓x ̸⊂ b↓x} and Yz = {b↓y | b ∈ Sz and (□z)↓y ̸⊂ b↓y} .

By Lemma 5.2, ωz = wSz
(Vz) = wXz

(X) · wYz
(Y ). Hence, we can maintain ωz by maintaining

Ψx
z and Ψy

z . Furthermore, for each internal node u with children v, w such that □u lies in a slab of
Π, we also have a lazy segment tree Ψe

u for handling the vertices in V ∩ e where e = □v ∩□w. We
omit the details from here.

This completes the description of the data structure. The tree T , as well as the secondary
data structures at all leaves and relevant internal nodes of T can be constructed and initialized in
O(n3/2 log n) time.

Operations on T . We now briefly describe how to perform the operations mentioned in Section 2.1
using the data structure.

• weight(b): Given a rectangle b = bx × by, the goal is to return wS(Vρ ∩ b) where ρ is the
root of T . We start at the root node and visit T in a top-down manner to find the set of
canonical nodes in T with respect to b. Then, starting from the canonical set of nodes we
visit T bottom-up computing wSu

(Vu ∩ b) for each node u we visit. In particular, for each
internal node u we visit, if b is long at u then wSu

(Vu ∩ b) = ωu. If b is short at u, and w, z
are its children then,

wSu
(Vu ∩ b) = 2λwwSw

(Vw ∩ b) + 2λzwSz
(Vz ∩ b) + wSu

(V ∩ e)

where e = □w∩□z. We recursively compute each of the terms. If u is a leaf node, we compute
wSu

(Vu ∩ b) by calling weight(bx) and weight(by) on Ψx
u and Ψy

u, respectively and taking
their product. Lemma 5.2 guarantees correctness in this case. In the case of the internal
nodes, correctness follows from Eq. (5.1), Eq. (5.2), Eq. (5.3), and Eq. (5.4).

• double(b): Given a rectangle b = bx × by ∈ B, we first add a copy of b to the set of update
boxes S. We then need to modify the data structure to ensure all the invariants are preserved.
We start at the root of T and we traverse T in a top-down manner. If b is long at u, we
increment λu by 1. If b is short at u and u is an internal node with children w and z, and
e = □w ∩ □z, we first update Ψe

u and then recurse on w and z. If we reach a leaf u, and
vertical (resp. horizontal) edges of b intersect □u, we call double(bx) (resp. double(by)) on
Ψx

u (resp. Ψy
u). We also update the values of ωu for every node u we visit. It is easy to verify

that the operation preserves the invariants captured by Eq. (5.1), Eq. (5.2), Eq. (5.3), and
Eq. (5.4).
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• halve(b): Given a rectangle b = bx × by ∈ B, we proceed analogously to the way we do for
double. We start at the root of T and traverse in a top-down manner. If b is long at u, we
decrement λu by 1. If b is short at u and u is an internal node with children w and z and
e = □w ∩ □z, we first update Ψe

u and then recurse on w and z. If we reach a leaf u, and
vertical (resp. horizontal) edges of b intersect □u, we call halve(bx) (resp. halve(by)) on Ψx

u

(resp. Ψy
u).

• sample: We start at the root of T and we traverse T in a top-down manner. For a node u with
children w, z, we pick one of w, z and e = □w∩□z with probabilities wS(V ∩□w),wS(V ∩□z),
and wS(V ∩ e) respectively. These probabilities can easily be computed using the secondary
data structures and the values maintained at each node, as done in the weight operation. If
e is picked, we then use the sample operation on the secondary data structure Ψe

z to sample
a point from V ∩ e. If w or z is picked we recurse on it. If at any stage we reach a leaf l, we
pick a and b by calling sample on Ψx

l and Ψy
l , respectively, and return the point (a, b).

• insert(b): Given a rectangle b = bx×by, we first add a copy of b to the set of active boxes C.
Although a new active box does not affect weights of existing vertices, it can add new vertices
thereby making the value of ωu inconsistent for a node u. We proceed in the same way we
do for double, except we do not modify the λu values and use the insert operation on the
secondary data structures. We also update the values of ωu for every node u we visit. It is
easy to verify that the operation preserves the invariants captured by Eq. (5.1), Eq. (5.2),
Eq. (5.3), and Eq. (5.4).
• delete(b): Given a rectangle b = bx × by, we first remove a copy of b to the set of active

boxes C. The rest of the procedure is the same as insert, except we use the delete operation
on the secondary data structures in the leaves.

Running time. As discussed above, a rectangle b has at most O(
√
n log n) canonical nodes.

Hence, to compute weight(·), double(·), halve(·), insert(·), or delete(·) operations we need to
visit O(

√
n log n) nodes. Also, O(

√
n) secondary data structure operations are performed each of

which takes O(log n) time. Hence, the running time for these operations is bounded by O(
√
n log n).

For sample, it is clear that we visit O(log n) nodes and perform a total of O(1) secondary data
structure operations. Hence, sample takes O(log n) time.

5.3. Extending to higher dimensions

The basic idea of 2D can be extended to higher dimensions. Namely, let φ be an axis-aligned box
that does not contain any (d − 2)-face of a box b ∈ B. If a facet f of a box b ∈ B intersects the
interior of φ then f splits φ into two boxes by the hyperplane supporting f . For i = 1, ..., d, let Xi

be the xi-values of the facets of the boxes in B that are orthogonal to the xi-axis and that intersect
φ. Then V(B) ∩ φ = X1 × ...×Xd. We thus extend the 2D data structure to higher dimensions.

Partitioning scheme. To extend the above data structure to Rd, for d > 2, we generalize the
partition scheme described above. The partition scheme works recursively on the dimensions –
first applying a hyperplane cut every time

√
n faces orthogonal to the first axis are encountered.

Now, we project on the boxes that intersect a slab into its boundary hyperplane. We construct a
partition on this hyperplane, applying the construction in Rd−1, and then lift the partition back to
the slab. We now briefly describe the specifics.

Let □ be a box containing all of B. A facet of a box is an i-side if it is normal to the xi-axis.
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We first partition □ into ⌈2
√
n⌉ slabs, by drawing hyperplanes parallel to the 1-sides of the boxes

so that each slab contains at most
√
n 1-sides of boxes in B. These are level-1 slabs. Next, we

further partition each level-1 slab by drawing hyperplanes along the 2-sides. If a corner (vertex)
ξ of a box of B lies in σ, we partition σ by drawing a hyperplane parallel to the 2-side passing
through ξ. Finally, if a cell φ in the subdivision of σ intersects more than

√
n 2-sides of B, we

further partition φ by drawing hyperplanes parallel to the 2-sides, so that it intersects at most
√
n

2-sides. The above steps partition each level-1 slab σ into O(
√
n) level-2 slabs. Next, we repeat

the previous steps for each level-2 slab γ, i.e. we partition it using hyperplanes along the 3-sides
such that no cell in the resulting subdivision contains more than O(

√
n) 3-sides of boxes in B. We

continue these steps on the resulting level-3 slabs and so on. For more details see [OY91].
Let Π be the resulting partition. By construction, Π is a subdivision of □ into boxes. We have

|Π| = O(nd/2), no vertex of B lies in the interior of a cell of Π, the boundary of any box intersects
at most O(n(d−1)/2) cells of Π, and each cell intersects at most O(

√
n) faces of B. Borrowing the

definition from [OY91], for a cell φ ∈ Π, a box b ∈ B is an i-pile with respect to φ if ∂b ∩ φ ̸= ∅
and for all j ̸= i, the jth interval of b spans the jth interval of φ. The partition ensures that if a
box b ∈ B, has ∂b ∩ int(φ) ̸= ∅ then it is an i-pile with respect to φ for some i.

For a cell φ ∈ Π, let Ei
φ denote the set of i-sides of B that intersect φ, clipped within φ. Let

Zi
φ = (V∩φ)↓xi

be the set of xi-coordinates of the i-sides in Ei
φ. Let Vφ ⊆ V be the subset of vertices

that lie in the interior of φ. Then Vφ =
{
e1 ∩ · · · ∩ ed

∣∣ e1 ∈ E1
φ, . . . , ed ∈ Ed

φ

}
. The following is the

straightforward extension of Lemma 5.2 to higher dimensions.

Lemma 5.3. Let φ be a cell of Π, let Sφ ⊆ B be a multiset of boxes whose boundaries intersect
φ, let Iiφ = {b↓xi

| b ∈ Sφ and φ↓xi
̸⊂ b↓xi

} be the multiset of xi-projections of boxes in Sφ whose
i-sides intersect φ. For an arbitrary box b, we have

wSφ
(Vφ ∩ b) =

d∏
i=1

wIi
φ

(
Zi
φ ∩ b↓xi

)
. (5.5)

We build a d-dimensional tree T on Π analogously to the 2D case. Let z be a leaf of T , and let
□z be the cell corresponding to z . We construct a segment tree Ψi

z on Zi
□z

for each i ∈ {1, .., d}.
The operations of the data structure as well as the analysis are identical to the 2D case and hence
we omit the details. We get the following lemma.

Lemma 5.4. Let B be a set of n axis-aligned rectangles in Rd. A data-structure can be constructed
in O(n(d+1)/2 log n) time that supports every operation specified in Definition 2.1.

6. Weak ε-net for boxes

Let P be a set of n points in Rd, and let ε ∈ (0, 1) be a parameter. We describe an algorithm for
choosing a setN ⊂ Rd ofO

(
ε−1 log log ε−1

)
points such that for any box b in Rd with |b ∩ P| ≥ ε |P|,

B ∩ N ≠ ∅. For d ≤ 3, the algorithm ensures that N ⊆ P, i.e. it computes an ε-net. Our overall
approach is similar to [AES09, Ezr10], but we believe our algorithm is simpler. The algorithm
works in three stages. The first stage chooses a set X ⊆ P of size n= O(ε−1 log ε−1) points so that
for any box b with |b ∩ P| ≥ εn, we have |b ∩ X | ≥ ε

2n. It thus suffices to pierce all ε
2 -heavy boxes

with respect to X . The second stage computes a set C of O(n logt n) canonical boxes, for some
constant t ≥ 1, such that for any box b, if |X ∩ b| ≥ ε

2n then there exists a box b′ ∈ C such that
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b′ ⊆ b and |b′ ∩ X | ≥ ε
2d+1 n. Finally, we construct a set N of O(ε−1 log log ε−1) points that pierces

every ε
2d+1 -heavy box of C with respect to X . Putting these steps together, we obtain a weak ε-net

of P of size O(ε−1 log log ε−1) with respect to boxes. The second stage is the most involved, so we
postpone the construction of C to the end.

6.1. Reducing the number of points

The following lemma follows from the known bound on relative ε-approximation mentioned above
but we give a direct proof here.

Lemma 6.1. Let P be a set of n points in Rd, let ω : P −→ R≥0 be a weight function, let ε ∈ (0, 1)
be a parameter, and let N ⊆ P be a random subset of size n= O(ε−1 log ε−1). Then for every box
b with ω(b ∩ P) ≥ εω(P), we have |b∩N| ≥ (ε/2)n. This holds with probability at least 1− εO(d).

(Here the sampling is done with repetition, and the probability of a point to be chosen is pro-
portional to its weight.)

Proof: For simplicity, we prove this lemma for the unweighted case. It easily extends to the weighted
case. Let Hi be a minimal set of hyperplanes orthogonal to the ith axis, such that there are at
most εn/(16d) points of P between two consecutive hyperplanes of Hi. We refer to the region lying

between two adjacent hyperplanes of Hi as a slab. Set H =
d⋃

i=1
Hi. |H| = O(dε−1) where the

constant hiding in the O-notation is independent of d. H can be computed in O(n log ε−1) time.
We refer to a box whose all 2d facets lie on the hyperplanes of H as a canonical box.

Given a box b that contains at least εn points of P, let bH be the largest canonical box that is
contained in b, i.e. bH is obtained by shrinking b so that its facets lie on H. Since b \ bH can be
covered by 2d slabs of H, and each slab contains at most εn

16d points of P, it follows that

0 ≤ |b ∩ P| − |bH ∩ P| ≤
ε

8
n.

Let B be the set of all 7ε
8 -heavy canonical boxes. Observe that |B| = O(|H|2d) = O((dε−1)2d).

Let N be a random sample of P with repetition of n= cε−1 log ε−1 points for some constant c > 1.
(Technically N is a multiset, but for simplicity assume it to be a set.)

Consider any box bH ∈ B, and let α = |bH∩P|
εn ≥ 7

8 . Let Y = |N ∩ bH |. The variable Y is a sum

of n random binary variables, each being 1 with probability |bH∩P|
n = αε. Therefore,

µ = E[Y ] = αεn≥ 7

8
εn

Using Chernoff inequality2, we have

γ = Pr
[
Y ≤ ε

2
n
]
≤ Pr

[
Y ≤ (1− 3

7)
7

8
εn

]
≤ Pr

[
Y ≤ (1− 3

7)µ
]
≤ exp

(
−µ(3/7)

2

2

)
≤ exp

(
−7

8
· (3/7)

2

2
· εn

)
≤ exp

(
− c

14
log

1

ε

)
≤ ε−c/14,

2Specifically, Pr
[
Y < (1− δ)E[Y ]

]
≤ exp

(
−(δ2/2)E[Y ]

)
.
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Hence, the probability of a box in B containing ε
2n points of N is at most |B|γ ≤ ε−O(d)

assuming c = Θ(d log d). Hence, with probability at least 1− ε−O(d), N has the desired property.

Remark 6.2. The above lemma provides us with a stronger result than just an ε-net, it shows that
a sample of size Θ(ε−1 log ε−1) has the property that any ε-heavy box contains at least Θ(log ε−1)
points of the sample. On the other hand, Lemma 6.1 proves a weaker property than the one we
get from relative approximations [HS11] but this weaker property is sufficient for our purposes.

Mapping the points to a grid. Assume that

n= 2ℓ = αε−1 log ε−1, for some integer ℓ = log n= O(log ε−1). (6.1)

For simplicity, assume that all the points of Q have unique coordinates. In particular, for a point
p ∈ Q, let G(p) = (i1, i2, . . . , id) be the integral point, where ij is the rank of the jth coordinate
of p among the n values of the points of Q in this coordinate. Consider the “gridified” point set
X = G(Q) = {G(p) | p ∈ Q}. Clearly, it is enough to construct a weak ε/2-net for X , as we can
then map it back to a net for Q.

6.2. Piercing heavy canonical boxes

We defer the construction of a set C of O(n logt n) O( ε
2d+1 )-heavy canonical boxes to Section 6.3,

but describe an efficient algorithm for constructing a piercing set of C of size O(ε−1 log log ε−1).

Lemma 6.3. Let X be a set of n = O(ε−1 log ε−1) points in Rd, and let F be a set of s =
O(ε−1 logt ε−1) boxes in Rd, for some constant t, such that for each b ∈ F , |b∩X | ≥ (ε/2d+1)n. A
set N ⊆ X of size O(ε−1 log log ε−1) that pierces all the boxes of F can be computed in O(n log n+
s logd−1 ε−1) time, and furthermore |b ∩N| = Ω(log log ε−1) for every b ∈ F .

Proof: Pick a random sample N1 with repetition from X of size m = αε−1 log log ε−1, where α > 0
is a sufficiently large constant. For a specific box b ∈ F ,

τ := Pr[b ∩N1 ̸= ∅] =
(
1− |b ∩ X |

|X |

)m

≤ exp
(
− ε

2d+1
m
)
= exp

(
− α

2d+1
log log ε−1

)
<

1

log2t ε−1
,

by picking α to be sufficiently large. By linearity of expectations, the expected number of boxes in
F not pierced by N1 is at most τs = O

(
(ε−1 logt ε−1)/log2t ε−1

)
= O(ε−1/ logt ε−1). We now add

a point from X to each box of F that is not pierced by N1 to a new set N2. Let N = N1 ∪ N2.
Clearly, E[|N |] = O(ε−1 log log ε−1), and it pierces all boxes of F . By preprocessing N1 into an
orthogonal range searching data structure, the subset of boxes of F not pierced by N1 can be
computed in O((m+ s) logd−1m) time [Aga04]. Again using a range searching data structure, N2

can be computed in O(τs logd−1 n) expected time.
The stronger claim follows by working a little harder. Let b be any box in F , and consider

Z = |b ∩N1|. The variable Z is a sum of m random independent binary variables, with the
probability of each of them being 1 is at least ε

2d+1 . Therefore,

µ = E[Z] ≥ ε

2d+1
·m
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As such, by Chernoff’s bound,

τ ′ = Pr
[
Z <

εm

2d+2

]
≤ Pr[Z < µ/2] ≤ exp(−µ/8) < 1

log2t ε−1
,

for α sufficiently large constant. Let F< = {b ∈ F | |b ∩ N1| < ε
2d+2m}. Arguing as above, the

expected size of F< is at most
τ ′ |F| = O

(
ε−1/ logt ε−1

)
. (6.2)

For each box b ∈ F<, we pick at most ε
2d+2m points from b ∩ X into a new set N ′

2 so that
|b ∩X| ≥ ε

2d+2m = Ω(log log ε−1).

Set N ′ = N1 ∪N ′
2. Since E[|F<|] = O(ε−1/logt ε−1),

E
[
|N ′|

]
= O(ε−1 log log ε−1) +O(log log ε−1) ·E

[
|F<|

]
= O(ε−1 log log ε−1)

Clearly, for every b ∈ F , |b ∩N ′| = Ω(log log ε−1).

6.3. Constructing canonical boxes

Given X , it is easy to construct a set of O(n2d) = ε−O(1) canonical boxes (each facet containing a
point of X ), but we show a much smaller canonical set is sufficient. In particular, we describe the
construction of a set of O(n logt n) ε

2d+1 -heavy canonical boxes mentioned above.

Construction for d = 2. We first describe a simple construction for d = 2, and then a different
construction in higher dimensions.

Lemma 6.4. Let X be a set of n points in the plane. For a parameter k > 0, a set F of O(n log n)
boxes, each of them containing exactly k points of X , can be computed such that any rectangle b
that contains at least 4k points of X fully contains one of the rectangles of F .

Proof: Let l be a horizontal line that partitions X into two equal sets. For every point of p ∈ X ,
consider the vertical segment connecting it to its projection on l. We translate this “curtain”
segment e to the left until the rectangle R swept by e contains k points, and we add R to F . We
compute a similar rectangle by translating e to the right. We now apply the construction recursively
on the points of X above (resp. below) l. This procedure results in a family of F with at most
O(n log n) rectangles each containing exactly k points.

Let b be a rectangle with |b∩X | ≥ 4k. Let l be the first line in the recursive construction that
intersects b. Assume that b∩X contains more points above l than below it. Let b′ be the portion
of b above l. The top edge of b′ contains a point p ∈ X . Let s be the vertical segment connecting
p to its projection on l. The segment s partitions b′ into two closed rectangles, one of them must
contain at least |b′ ∩ P|/2 ≥ |b ∩ P|/4 ≥ k points. In particular, at least one of the two rectangles
in F , induced by (p, l), must be contained in b′, and thus in b, thus implying the claim.

Construction for d ≥ 3. The set of canonical boxes in higher dimensions is constructed in two
steps.

Definition 6.5. Let JℓK = {0, 1, 2, . . . , ℓ}, see Eq. (6.1). Given i = (i1, . . . , id) ∈ Jℓ Kd, we associate
with it the box bi = [0, 2i1 ]× [0, 2i2 ]× . . .× [0, 2id ]. Such a box naturally tiles the bounding cube
[0,n]d ⊃ X into a grid. Let Hi denote this grid, and let B̂ be the set of all boxes that appear as
grid cells in any of these grids.
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b b b Cb

Figure 6.1: Illustration of the proof of Lemma 6.6.

Note, that the number of different grids we have is nH = (ℓ+ 1)d = O
(
logd ε−1

)
.

Lemma 6.6. Let b be an ε/2-heavy box for X (i.e., |b ∩ X | ≥ (ε/2)n), where n = |X |. There
exists a witness grid box c ∈ Hi, for some i ∈ JhKd, such that
(i) |b ∩ c ∩ X | ≥ (ε/2d+1)n, and
(ii) b contains a corner of c, and c contains a corner of b.

Proof: Let c0 = [0,n]d be the initial cell. We partition c0 into half by a hyperplane orthogonal to
the first axis. This results in two grid cells c′1 and c′′1. If one of them contains b, then we continue
the argument recursively on the cell containing b – namely, we repeatedly half the cell along the
first axis until the partitioning hyperplane intersects b. If |c′1 ∩ b ∩ X | ≥ |c′′1 ∩ b ∩ X | then we set
c1 = c′1 (otherwise, c1 = c′′1).

We now continue applying this argument to c1 but on the second dimension (again, halving
until hitting b). We repeat this process for all d coordinates. Clearly, |cd ∩ b ∩ X | ≥ |b ∩ X |/2d,
as we lose a factor of two when moving to the next dimension. It is easy to verify that cd has the
required properties.

Let S be a set of m points in Rd lying in a box g. For an integer k ≥ 0, a box e ⊆ g is a k-crate
if e shares a vertex of g, |int(e)∩S| ≤ k, and it is maximal under containment, where int(e) denotes
the interior of e. We refer to a 0-crate simply as a crate. Let Tk(S, g) denote the set of k-crates
with respect to S and g. By Lemma 6.6, an ε

2 -heavy box b contains a ε
2d+2 -crate e = b ∩ g, where

g ∈ B̂ is a grid cell. As such, it suffices to pierce all ε
2d+2 -crates for boxes of B̂. The following lemma

bounds the number of k-crates in R3.

Lemma 6.7 (A). Let S be a set of m points lying in a box c in R3, Then
(i) T0(S, c) = O(m)
(ii) Tk(S, c) = O(mk2)

Proof: Although (i) is well known, we sketch a proof for the sake of completeness. We assume c
has a corner at the origin, and it is contained in the positive octant. Consider a crate b with a
vertex at the origin. It must have three points of S on its faces not-adjacent to the origin, and let
p and q be the two points that maximizes the x and y coordinates, respectively, out of these three
points. Projecting b, p and q to the xy-plane results in a rectangle b′, having points p′ and q′ on
its boundary. We use the portion of ∂b′ connecting p′ and q′ that does not go through the origin
(its an L shaped curve) and add it to a set Γ. In the end of the process, we have a (degenerate
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drawing) of a planar graph, induced on the vertices of S ′ (the projection of S to the xy-plane),
with the edges of Γ. Importantly, the curves of Γ do not cross (but they can share “legs”), and
there are no parallel edges in Γ. It follows immediately from Euler’s formula that Γ has linear size,
which also bounds the number of crates adjacent to this corner of c. Applying the same claim to
the other corners of C readily implies the claim.

As for (ii), since a k-crate is defined by three points of S (that lie on the faces of the crate), the
Clarkson-Shor technique for bounding the number of ≤ k-sets in a point set implies the number of
k-crates is O(m(k + 1)2).

Lemma 6.8. For d = 3, let k =
⌊
(ε/25)n

⌋
= O(log ε−1), and let T =

⋃
c∈B̂ Tk(X ∩ c, c) be the set

of all k-crates induced by B̂ (see Definition 6.5). Then |T | = O(ε−1 log6 ε−1).

Proof: Since every grid has at most O(nk2) crates, and there are O(log3 ε−1) grids, we conclude
that |T | = O(nk2 log3 ε−1) = O(ε−1 log6 ε−1).

For d = 3, the above set T is the desired set of heavy boxes that we want to pierce. However,
for d = 4, the number of crates is Θ(n2). The example in four dimensions follows readily by
taking an example with n/2 crates in two dimensions (anchored at the origin) using n/2 points,
and duplicating it on the other two dimensions. Clearly, the number of crates in this product four
dimensional space is ≥ (n/2)2. This is why we cannot choose k-crates over all grid cells for d ≥ 4 as
the desired set of canonical boxes. Instead, we consider crates of ”sparse” grid cells. In particular,
we call a cell c ∈ B̂ massive if it contains at least w = ℓd+2 = Θ

(
logd+2 ε−1

)
points of X .

Observe that for a fixed grid there are ≤ n/w massive grid cells. Over all grids there are
O((n/w)nH) = O(ε−1) massive cells. We can pierce all the crates that arise from massive cells,
by simply adding the vertices of the massive cells to the new (weak) net. So we consider k-crates
for non-massive grid cells. To this end, let L be the set of all non-massive grid cells in B̂. Clearly,
we have

n1 := |L| = O(ℓdn) = O(ε−1 logd+1 ε−1).

A grid cell that is not massive, has at most w points. As such, it has at most n2 = 2d
(
w
d

)
=

O
(
log2d

2
ε−1

)
k-crates, where k =

⌈
(ε/2d+1)n

⌉
.

Lemma 6.9. Let k =
⌈
(ε/2d+1)n

⌉
, and let T be the set of all the k-crates that are in grid cells of

B̂ that contains at most w = Θ
(
logd+2 ε−1

)
points of X . We have that |T | = O

(
ε−1 log3d

2
ε−1

)
.

Proof: By the above, we have |T | ≤ n1n2 = O
(
ε−1 log3d

2
ε−1

)
.

6.4. Putting it together

Lemma 6.4 (for d = 2) and Lemma 6.8 (for d = 3) imply that there exists a set C of canonical
boxes such that any ε

2 -heavy box b with respect to X contains a box b′ ∈ C with |b′ ∩X | ≥ ε
2d+1 n.

Furthermore |C| = O(ε−1 logO(1) ε−1). Hence, by combining this with Lemma 6.3, we obtain the
following.

Theorem 6.10. Given a set P of n points in Rd for d = 2 or 3, and a parameter ε ∈ (0, 1),
a subset N ⊆ P of size O(ε−1 log log ε−1) can be computed in O(n polylog n) time that is an ε-
net for P with respect to boxes. A somewhat stronger property holds – for any ε-heavy box b,
|b ∩N| = Ω(log log ε−1).
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Proof: For d = 2, the proof follows immediately from Lemma Lemma 6.4. For d = 3, let b be a box
ε
2 heavy box with respect to X . Then by Lemma 6.6, b has a witness c ∈ Hi, for some i ∈ JℓK3,
such that b′ = b ∩ c contains at least ε/24 fraction of the points of X . Namely, b′ contains fully a
k-crate of X defined by c, where k = (ε/16)n = O(log ε−1). Namely, it is enough to stab all the
crates of T . We can now deploy the argument of Lemma 6.3 to these k-crates, as their number is
bounded by O(ε−1 log6 ε−1).

For d ≥ 4, we cannot choose a subset of X because of the large number of k-crates. Instead
we choose the vertices of massive grid cells and construct crates for only non-massive cells. The
vertices of massive cells are not points of P and we only obtain a weak ε-net..

Theorem 6.11. Given a set P of n points in Rd, and a parameter ε, a set N of O(1ε log log
1
ε )

points can be computed in O(n + 1
ε log

O(d2) 1
ε ) time, such that every ε-heavy box b with respect to

P, contains at least one point of N .

Proof: We follow the same steps as the previous constructions, reducing the task to computing
ε/2-net for X . As suggested above, we add the corners of the massive cells to the computed net –
this requires adding O(ε−1) points to the weak net, and let N1 be this set. We only have to worry
about crates that arise from “light” grid cells.

We next compute a piercing set N2 ⊆ X for all these crates using Lemma 6.3 (for X and T ) of
size O(ε−1 log log ε−1). Clearly N1 ∪N2 is the desired weak ε-net for boxes.

The running time readily follows by first sampling P to compute the set X , and then computing
for each grid cell that is not massive its set of k-crates. The sampling of the net N2, and the fixup
can then be done in time proportional to the size of the set system, which is as stated.

6.5. An improved algorithm for weak ε-net

Lemma 6.12. Given a set P of n points in Rd, a parameter ε ∈ (0, 1), and a set B of m boxes in
Rd that all contain at least εn points of P. Then, a weak ε-net N of size O(1ε log log

1
ε ) that pierces

every box b ∈ B can be computed in O(m logd 1
ε ) expected time.

Proof: If m ≤ 1/ε, then we pick a point from each box of B, and we are done. Otherwise, we
roughly follow the above construction. We first sample a set Q of size n = O(ε−1 log ε−1), and
compute X from it, as done above. This takes O(ε−1 log2 ε−1) time. Next, we map every box of
B to the appropriate box in [0,n]d. We shrink it so that its corners all have integral coordinates.
This takes O(m log ε−1) time. Let B′ be the resulting set of boxes. Next, we choose a (second)
sample N2 from X of size O(ε−1 log log ε−1). Using range tree built for N2, we compute all the
boxes in B′ not being hit by N2. Let B′′ be this set of boxes. This takes O((m + ε−1) logd−1 ε−1)
time [Aga04]. We compute for each box of B′′ its witness using the constructive algorithm of
Lemma 6.6. This requires at most O(d log ε−1) orthogonal range counting queries, which overall
takes O((md log ε−1 + ε−1) logd−1 ε−1) = O(m logd ε−1) time.

For each unstabbed box b, let c be its witness. If c is massive, we add its vertices to the weak
ε-net. Otherwise, we compute any k-crate c′ of c that is contained in b ∩ c and pick any point of
X ∩c′ to the net. Computing the crate itself can be implemented using binary search on each of the
d-coordinates - so the crate is canonical and contains a point of X on its one of its faces not attached
to the grid cell vertex. The last step requires O(d log ε−1) orthogonal range searching query per
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failed non-massive witness. Thus, the total running time is thus O
(
m · (d log ε−1) · logd−1 ε−1

)
=

O(m logd ε−1). A minor technicality is that when encountering a crate that was encountered before,
we can skip stabbing it, as a point to this effect was already added to he net.

The resulting set is a weak ε-net as it is just a different implementation of the construction
done above. The overall running time is O(m logd ε−1).

Remark 6.13. Throughout this section we used unweighted points. However, Lemma 6.1 only re-
quires access to the point set via sampling O(ε−1 log ε−1) points (with repetition, proportional to
the weights of the points). In particular, all the results and algorithms of this section holds for
weighted point sets.
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