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Abstract

Let W ⊂ R2 be a planar polygonal environment (i.e., a polygon potentially with holes) with
a total of n vertices, and let A,B be two robots, each modeled as an axis-aligned unit square,
that can translate inside W. Given source and target placements sA, tA, sB , tB ∈ W of A and
B, respectively, the goal is to compute a collision-free motion plan π∗, i.e., a motion plan that
continuously moves A from sA to tA and B from sB to tB so that A and B remain inside W

and do not collide with each other during the motion. Furthermore, if such a plan exists, then
we wish to return a plan that minimizes the sum of the lengths of the paths traversed by the
robots, |π∗|. Given W, sA, tA, sB , tB and a parameter ε > 0, we present an n2ε−O(1) log n-time
(1 + ε)-approximation algorithm for this problem. We are not aware of any polynomial time
algorithm for this problem, nor do we know whether the problem is NP-Hard. Our result is the
first polynomial-time (1 + ε)-approximation algorithm for an optimal motion planning problem
involving two robots moving in a polygonal environment.

1 Introduction

The basic motion-planning problem is to decide whether a robot (i.e., a rigid or multi-link moving
object) can move from a given start position to a given target position without colliding with
obstacles on its way, and avoiding collision of different parts of the robot. If the answer is positive,
we also want to plan such a motion. With the advancement of robotics, we witness the growing
deployment of teams of robots in logistics, wildlife monitoring, buildings and bridges inspection and
more. Motion planning for many robots requires that, in addition to not colliding with obstacles,
the robots should not collide with one another, which in turn necessitates studying the problem in
high-dimensional configuration spaces. Furthermore, we wish to ensure a good quality of the motion,
such as being short or having a small makespan. Already for two simple robots, such as unit squares
or discs, translating in a planar polygonal environment, little is known when it comes to optimizing
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the robot motion. Although polynomial-time algorithms are known for computing a collision-free
motion plan of two simple robots [35], no polynomial-time algorithm is known for computing a plan
such that the sum (or the maximum) of the path lengths of the two robots is minimized, nor is the
problem known to be NP-hard. Even a polynomial-time constant-factor approximation algorithm is
not known for this problem (without further restrictions).

Problem statement. Let □ = {x ∈ R2 | ||x||∞ ≤ 1} denote the unit-radius axis-aligned square
centered at the origin, referred to as a unit square for short. For a point p ∈ R2 and a real value
λ ≥ 0, we use p + λ□ to denote the axis-parallel square of radius λ centered at p. Let A and B
be two robots, each modeled as a unit square, that can translate inside the same closed planar
polygonal environment (a connected polygon possibly with holes) W with n vertices. A placement
of A or B is represented by a point in W — the position of its center. For such a placement to be
free of collision with ∂W, the boundary of W, the representing point should be at L∞-distance at
least 1 from ∂W. We denote by F, the free space of a single robot, the subset of W consisting of
such points. Note that the robots may be at L∞-distance 1 from ∂W and hence they are allowed
to make contact with the obstacles. A (joint) configuration of A and B is represented as a pair
(pA, pB) ∈ W × W, where pA (resp., pB) is the placement of A (resp., B). We also represent a
configuration as a point p ∈ R4, where the first (resp., last) pair of coordinates represent the
placement of A (resp., B). The configuration space, called C-space for short, namely the set of all
configurations, is thus represented as W ×W ⊂ R4. A configuration p = (pA, pB) ∈ R4 is called
free if pA, pB ∈ F, that is, pA +□, pB +□ ⊆ W, and ||pA − pB||∞ ≥ 2. Such a free configuration
is called a kissing configuration if ||pA − pB||∞ = 2, i.e., the robots touch each other (but their
interiors remain disjoint). Let F := F(W) denote the (four-dimensional) free space, namely the set
of all free configurations. Clearly, F ⊂ F × F.

Two free configurations s, t ∈ F are reachable if they lie in the same connected component
of F, i.e., there is a path contained in F from s to t. For two reachable free configurations
s := (sA, sB), t := (tA, tB) ∈ F, a path π ⊆ F from s to t is called a (feasible) plan of A and B from
s to t, or an (s, t)-plan for brevity. With a slight abuse of notation, we also use π as a (continuous)
parameterization π : [0, 1] → F, with π(0) = s and π(1) = t. For a path π ⊆ F, let πA (resp.,
πB) be the projection of π onto the two-dimensional plane spanned by the first (resp., last) two
coordinates, which specifies the path followed by A (resp., B) that π induces; we have πA, πB ⊂ F.
Let ¢(πA), ¢(πB) denote the (Euclidean) arc length of the paths πA, πB, respectively, in R2. We
define ¢(π), the cost of π, to be the sum of the lengths of πA and πB, i.e., ¢(π) = ¢(πA) + ¢(πB).
Let π∗(s, t) denote an optimal (s, t)-plan, i.e., a plan that minimizes the sum of the lengths of the
two paths.1 If s and t are not reachable, i.e., they lie in different connected components of F, then
π∗(s, t) does not exist. We refer to the problem of computing π∗(s, t) as the (optimal) min-sum
motion-planning problem. In this paper we study the min-sum motion-planning problem for two
translating axis-aligned unit squares, and present a (1 + ε)-approximation algorithm that runs in
n2ε−O(1) log n time.

Related work. Algorithmic motion planning has been studied for well over fifty years in computer
science and beyond. The rigorous study of algorithmic motion planning dates back to the work of
Schwartz and Sharir [33] and Canny [9]. See [16, 17, 26, 28] for a review of key relevant results. We
mention here only a small sample of these results—the ones that are most closely related to the
problem at hand.

1The existence of π∗ can be proved using a simple compactness argument, since F and F are closed.
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When only one square robot translates, or more generally when only one convex polygonal
robot of a constant description complexity (that is, with a constant number of vertices) translates,
the problem is equivalent—through C-space formulation—to moving a point robot amid polygonal
obstacles with O(n) vertices, and it can be solved in O(n log n) time [10, 19, 43]. Interestingly,
the analogous problem in 3D, namely finding the shortest path for a point robot amid polyhedral
obstacles, is NP-hard [8] and fast (1 + ε)-approximation algorithms are known [8, 34]. Note that
this hard problem has only three degrees of freedom of motion, and there are other optimal motion-
planning problems for robots with three degrees of freedom that are NP-hard [4, 5]. Our two-square
problem has four degrees of freedom, which suggests it might be NP-hard as well, though, as we
have remarked earlier, this is an open problem.

Computing a feasible (not necessarily optimal) plan for a team of translating unit square robots in
a polygonal environment is PSPACE-hard [38] (see also [6, 7, 18, 20, 40, 46] for related intractibility
results). Notwithstanding a rich literature on multi-robot motion planning in both continuous and
discrete setting (robots moving on a graph in the latter setting), see, e.g., [11, 22, 23, 32, 36, 41, 42],
little is known about algorithms producing paths with provable quality guarantees. Approximation
algorithms for minimizing the total path-length are given in [2, 37, 39] for a set of unit-disc robots
assuming a certain separation between the start and goal positions, as well as from the obstacles.
The separation assumption makes the problem considerably easier. A feasible plan always exists,
and one can first compute an optimal path for each robot independently, ignoring other robots and
then locally modify them so that the robots do not collide with each other during their motion.
An O(1)-approximation algorithm was proposed in [13] for computing a plan that minimizes the
makespan for a set of unit discs (or squares) in the plane without obstacles, again assuming some
separation. Computing the min-sum motion plan for two unit squares/discs even in the absence of
obstacles is non-trivial [14, 24]. We are unaware of any constant-factor approximation algorithms
for the min-sum motion-planning problem even for two unit squares/discs in a planar polygonal
environment without any assumptions on the work environment or on the start/final configurations.

Quite a few of the algorithmic results for teams of robots distinguish between the labeled and
unlabeled versions: In the labeled version, like in the two-square problem studied here, each robot is
designated its own unique target position. In the unlabeled case, each robot can finish at any of the
(collective) target positions, as long as at the end of the motion all the target position are occupied
by robots. For a team of unlabeled unit discs, an approximate solution for the minimum total path
length is given in [39], assuming a certain separation between the start and goal positions of the
robots, as well as from the obstacles. A similar result has also been obtained for a team of labeled
unit discs in [37], using the slightly more relaxed requirement of the existence of revolving areas
around the start and target positions. In both cases the approximation bounds are crude, and we
omit them here. The latter result for labeled unit discs has recently been improved [2], to give an
O(1)-approximation of the optimal total length of the paths, under exactly the same conditions as
in [37].

The central and prevalent family of practical motion-planning techniques in robotics is based
on sampling of the underlying C-space; see, e.g., [23, 26, 27], and [32] for a recent review. The
original sampling-based motion-planning techniques aimed at finding a feasible solution by creating
a roadmap of free configurations and connections between them in the C-space, while deferring the
(necessarily suboptimal) optimization to a graph search on the resulting roadmap. This two-stage
approach has detrimental effect on the quality of the approximation. For example, for a point robot
moving amid polyhedra in 3-space, this approach could lead to paths that are hundredfold longer
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than optimal with high probability [29]. This shortcoming was rectified in a breakthrough paper by
Karaman and Frazzoli [22], who presented a series of variants of the fundamental sampling-based
techniques, that are guaranteed to be asymptotically optimal, namely converge to an optimal (e.g.,
shortest) path, when the number of samples tends to infinity. Most sampling-based planners come
with only asymptotic guarantees of this type. Finite-time guarantees for sampling-based planners
for a team of unit-disc robots are given in [11].

Another major line of work on optimizing multi-robot motion plans addresses a discrete version
of the problem, where robots are moving on graphs. In this setting the robots are often referred to
as agents, and the problem is called Multi Agent Path Finding (MAPF). There is a rich literature on
MAPF, and we refer the reader to the recent survey [41]. A commonly used optimization criterion
(particularly in the study of MAPF, but elsewhere as well) is makespan, where we wish to minimize
the time by which all the robots reach their destination, assuming they move in some prespecified
maximum speed; see, e.g., [13, 46].

There are a variety of additional optimization criteria in robot motion planning. A common one,
related to motion safety, is requiring high clearance, namely, requiring that the robot stays far from
the obstacles in its environment—this can be obtained using Voronoi diagrams (e.g., [30]). In the
context of multi-robot planning we may also require that the robots stay sufficiently far from one
another (e.g., [11]). A natural requirement is to produce paths that are at once short and far away
from obstacles, which is a more intricate task even for a single robot translating in the plane; see,
e.g., [1, 44, 45].

Our contributions. We consider the following simple case of min-sum motion-planning for two
unit-square robots. Let W be a polygonal environment, i.e., a polygon possibly with holes. As
already stated, we assume that the two robots A and B are axis-parallel squares of side-length
2. Given a source and a target free configurations (sA, sB), (tA, tB) ∈ W, the goal is to compute
a collision-free motion plan for A from sA to tA and B from sB to tB, such that the sum of the
lengths of the two tours traversed by the robots is minimized, or otherwise report that there is no
such collision-free motion plan. Our main result is the following theorem, which provides an efficient
ε-approximation algorithm for this problem2.

Theorem 1.1. Let W be a closed polygonal environment with n vertices, let A,B be two axis-parallel
unit-square robots translating inside W, and let s, t be source and target configurations of A,B. For
any ε ∈ (0, 1), a motion plan π from s to t with ¢(π) ≤ (1+ ε)¢(π∗), if there exists a such a motion,
can be computed in n2ε−O(1) log n time, where π∗ is an optimal (s, t)-plan.

Although our result falls short of answering whether the min-sum problem for two robots
is in P, it is a significant contribution to the theory of optimal multi-robot motion planning.
First, as mentioned above, a polynomial-time algorithm was not known, even for constant-factor
approximation, and we present an FPTAS for this problem. Second, we prove several structural
properties of an optimal plan, which could lead to a polynomial-time algorithm in some special
cases, e.g., when W is rectilinear and we consider the L1-length of a path. Note that our FPTAS
does not rule out the possibility of the problem being NP-hard because, as in other NP-hard optimal
motion-planning problems, the construction might use a polynomial number of bits. Finally, our
algorithm is very simple and follows the widely-used sampling paradigm. More precisely, we sample
a finite set V ⊂ F of free configurations that contains s, t. We connect a pair of configurations

2In principle, our approach extends to two identical centrally-symmetric regular convex polygons, but the analysis
becomes even more technical, so for simplicity we only focus on unit squares.
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p := (pA, pB) and q := (qA, qB) in V by an edge if there is a simple (feasible) plan from p to q,
namely, we can move A from pA to qA (not necessarily along a straight segment) while keeping B
parked at pB and then move B from pB to qB while A is parked at qA, or vice-versa. The cost of
the edge (p, q) is the minimum cost of such a plan. We then compute a shortest path in this graph.
The question is, of course, how we (efficiently) choose a small number of free configurations (linear
in n) so that the resulting graph is guaranteed to contain a path from s to t that corresponds to a
near-optimal (s, t)-plan. Most of this paper is about answering this question. We note that the
runtime of our algorithm nearly matches that of the best known algorithm for finding any (s, t)-plan
for two unit squares in a planar polygonal environment, which takes O(n2) time [35].

There are four main technical contributions of this paper. First, we prove a few key properties of
an optimal plan (Section 3). Concretely, we show that there is always an optimal plan in which only
one robot moves at any given time while the other robot is parked (remains stationary). Thus an
optimal plan can be represented as a sequence of moves, where each move is specified as a 3-tuple
(R, π, p), where R ∈ {A,B} is the robot that is moving along a path π ⊆ W and the other robot is
parked at p ∈ F, where π × {p} or {p} × π is in F (π also encodes the starting and terminating
placements of R in this move). We refer to such a plan as a decoupled plan.3

Second, we show that among all decoupled plans, there exists one in which for each move
(R, π, p), except possibly the first and the last moves, there is a point q ∈ π such that (p, q) (or (q, p)
as the case might be) is a kissing configuration. We refer to such a plan as a kissing plan. We use
the kissing property to prove that there exists an optimal, kissing plan composed of O(¢(π) + 1)
moves. Our usage of kissing configurations is different from earlier work (see, e.g., [3, 15, 21])
in a few ways. First, the focus of these works is on motion in contact. For example, Aronov
et al . [3] use a continuum of kissing configurations to reduce the dimension of the underlying joint
configuration space of a pair or of a triple of robots, under various extra conditions. In contrast,
kissing configurations in this paper arise as part of individual robot moves, often a singular/discrete
configuration, in a (possibly long) alternating sequence of moves. Second, earlier work deals with
feasible motion, while we show that there exists optimal plans in which almost every move contains
a kissing configuration.

Finally, we prove that there is always a kissing plan in which neither of the robots is ever parked
deep inside corridors. A formal definitions of corridors is given in Section 2, but intuitively a corridor
is a (narrow) region of F bounded by two of its edges that is far from all vertices of F and not wide
enough to let one robot pass the other.

Next, using these three properties of an optimal plan, we show that we can deform an optimal
kissing plan to a tame plan, at a slight increase of its cost, in which (roughly speaking) a robot
is always parked near a vertex of W or of a corridor at each move. Furthermore, the deformed
plan π̃ is composed of O(¢(π) + 1) moves and remains a kissing plan (Section 5). Ensuring the
kissing property in this deformation is delicate and requires a rather involved argument, so we first
prove the existence of a tame plan without ensuring the kissing property (Section 5). This weaker
property already leads to an n3ε−O(1) log n-time (1 + ε)-approximation algorithm. A key ingredient
in computing these deformations is the notion of revolving areas within F, the two-dimensional
free space with respect to one robot, roughly a unit square inside F (again see below for a precise
definition). We can show that if each of sA, sB, tA, tB lies in a revolving area, then there is an
(s, t)-plan π composed of O(1) moves with cost ¢(π) ≤ ϱ(sA, sB) + ϱ(tA, tB) +O(1), where ϱ(·, ·) is

3We note that the notion of decoupled has been used in multiple ways in the context of multi-robot motion
planning [25].
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sB = p1

p2

tA = p2 tB = p3

π1
π3

π2

sA = p0

W

F

π3 ⊕�

Figure 1. An (s, t)-plan π with ⟨π⟩ = (A, π1, sB), (B, π2, p2), (A, π3, tB). (sA, sB) is x-separated and not y-separated.

the geodesic distance between two points in F. The notion of revolving areas was used in [2, 37]
to make a strong separation assumption on each of the start and target configurations, which was
exploited to compute a near-optimal plan. Here, we prove the existence of revolving areas in the
neighborhood of a non-tame plan and use them for auxiliary parking spots to convert the plan into
a near-optimal tame plan.

The existence of an kissing, tame, near-optimal (s, t)-plan π∗ enables us to choose a set V of
nε−O(1) (nearly) kissing configurations and to build a graph G over them so that π∗ can be retracted
to a path in G at a slight increase in its cost, thereby reducing the problem to computing a shortest
path in G. Ensuring that the two robots do not collide with each other in the retracted path
requires care and thus the retraction map is somewhat involved. This retraction step introduces
O(ε) additive error, so we need a separate procedure to handle the case when ¢(π∗) is small, say, at
most 1/4. By exploiting the topology of F, we describe an O(n log2 n)-time O(1)-approximation
algorithm for computing an optimal (s, t)-plan when ¢(π∗) ≤ 1/4 (Section 8). We then plug it into
the above algorithm to obtain a (1 + ε)-approximation algorithm for all values of ¢(π∗).

2 Preliminaries

Definitions. Let F be the free space of one robot as defined above. For a point p ∈ W, let
F[p] := {x ∈ F | ||x− p||∞ ≥ 2} be the set of all placements x ∈ F of A such that A does not collide
with B if B is placed at p, i.e., int(x+□) ∩ int(p+□) = ∅. It is well known that F and F[p] are
polygonal and have O(n) vertices, and that they can be computed in O(n log2 n) time [12]. See
Figure 1. Let X be the set of vertices of F. We regard sA, sB, tA, tB as additional vertices of F and
add them to X. For p, q ∈ F, let ϱ(p, q) denote the geodesic distance between p and q in F. We call
a configuration (a, b) ∈ F x-separated if |x(a)− x(b)| ≥ 2 and y-separated if |y(a)− y(b)| ≥ 2. (a, b)
is always x-separated or y-separated (or both) since ||a− b||∞ ≥ 2.

Given source and target configurations s, t ∈ F, we call an (s, t)-plan π : [0, 1] → F decoupled if
only one robot moves at any time while the other robot is parked at some point in F, and if there is
only a finite number of switches between the moving and parking robots. A decoupled plan can be
represented as a finite sequence

(R1, π1, p1), (R2, π2, p2), . . . , (Rk, πk, pk),

where, for each i, (Ri, πi, pi) is called a move, with Ri ∈ {A,B}, pi ∈ F, and πi ⊆ F[pi]. At such
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p

sA tAsB tB

p + 2�

Figure 2. The optimal (s, t)-plan moves A from sA to p, then moves B from sB to tB , and then moves A from p to
tA. This example is adapted from [31].

a move, Ri moves along πi and the other robot is parked at pi. The plan π is the concatenation
of Cartesian products of the form πi × {pi} or {pi} × πi, depending on which robot is moving and
which is parked. If R1 is A (resp., B), then we set, for completeness, p0 := sA (resp., p0 := sB). If
Ri ̸= Ri−1, then the initial point of πi is pi−1 and pi is the final point of πi−1. Otherwise Ri = Ri−1

and the initial point of πi is the final point of πi−1 and pi = pi−1. We call a move-sequence minimal
if Ri ̸= Ri−1 for all 1 < i ≤ k. If Ri = Ri−1, we can replace (Ri−1, πi−1, pi−1) ◦ (Ri, πi, pi) with
(Ri, πi−1∥πi, pi), and obtain a shorter sequence (recall that in this case pi−1 = pi). Most of the time
we will be working with a minimal sequence, but sometimes, when we deform a plan, it will be
convenient to describe a non-minimal sequence, which can then be compressed as above. For a
given plan π, there is a unique minimal move sequence into which π can be compressed, which we
represent as ⟨π⟩, and we define α(π) := |⟨π⟩| to be the number of moves in π.

For a path π ⊂ F and two values λ, λ′ ∈ [0, 1], λ < λ′, we denote by π(λ, λ′) the pathlet of
π between times λ and λ′, which itself is a path (with a suitable reparameterization). It will be
convenient to specify the portion of a path π between two points p, p′ ∈ π using the notation π[p, p′].
We define the distance between closest points in a pair of sets using either the L2-distance or the
L∞-distance. For any pair of subsets X,Y ⊂ R2, set

dℓ(X,Y) := min
x∈X,y∈Y

||x− y||ℓ, for ℓ ∈ {2,∞}.

Lastly, throughout the paper, we refer to the robots A and B by their centers: we say that a
robot is “in” a region R (at some time λ) if its center lies in R. Similarly, we say that a robot
“enters” (resp., “exits”) a region R (at some time λ) its center point is crossing into (resp., out of)
R. To describe that the entire robot is contained in R, we say p+□ ⊆ R where p is the placement
of its center.

Optimal plan for W = R2. Suppose the work environment is the entire plane R2, i.e., there are
no obstacles. In this case, Esteban et al . [14] proved that an optimal plan is a piecewise-linear
decoupled plan consisting of at most three moves, and each move consists of at most three line
segments. See Figure 2 for an example. Note that the parking position in some cases (such as the
one in Figure 2) is not necessarily near the initial/final placements, which is one of the challenges in
developing an efficient algorithm for computing an optimal plan.

Revolving area. A revolving area is a unit(-radius) square p+□, for some p ∈ F, that is contained
in F; we denote it by RA(p) (Figure 3). For pA, pB ∈ ∂RA(p) with ||pA − pB||∞ = 2, (pA, pB) is a
kissing configuration, and we say that this kissing configuration lies in the revolving area RA(p). In
Section 4 we give useful lemmas regarding revolving areas, which play a key role in deforming an
optimal path into a near-optimal tame plan (defined later in Section 5) that is easier to compute.
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p

q

RA(p)

r

1

Figure 3. Example of a kissing configuration (q, r) ∈ F with q, r ∈ ∂RA(p).

ei

ej

uij

uij

vi

vj
σL

σR

S
S

ei

ej
vj

vi

σL

σR
uij uij uij

uij

g
g

Figure 4. Two examples of corridors K (shaded) with blockers ei, ej that contains squares S ⊂ F with radii strictly
less than 2 since their centers lie in the interiors of the corridors. The left (resp., right) corridor has direction vector
uij with angle π/4 (resp., 0). Both examples are maximal since the portals σL have L∞-length 2 and σR contain a
vertex g of F. from portals σL, σR, respectively (not drawn to scale).

Corridor and sanctum. Intuitively, a corridor K is a (narrow) trapezoid in F bounded by two
edges of F, so that if one robot is parked inside K, the other one cannot pass around it (within
K). This implies that when both robots are in the same corridor, their motions are constrained in
ways that we will later explore. We now give a formal definition. Let ei, ej be a pair of edges of F
that support an axis-aligned square (of any size) contained in F, i.e., there exists an axis-aligned
square S ⊂ F such that ei (resp., ej) touches a vertex of S, say vi (resp., vj), but does not intersect
int(S). Let uij ∈ [0, π) be a direction normal to the segment vivj ; uij = kπ/4 for some 0 ≤ k ≤ 3. 4

A corridor K bounded by ei, ej is a trapezoid such that (i) two of the edges of K are portions of
ei, ej , called blockers; (ii) the other edges of K, called portals, are normal to the direction uij ; (iii)
the L∞-length of each portal (i.e., the L∞-distance between its endpoints) is at most 2; and (iv) no
vertex of F lies in the interior of K. See Figure 4. We refer to uij as the direction of the corridor.
The following lemma directly follows from condition (iii).

Lemma 2.1. Let K be a corridor with direction vector u. For any segment vw ⊂ int(K) normal to
u, ||v − w||∞ < 2. Furthermore, ||v − w||2 < 2 if u is axis-parallel, otherwise ||v − w||2 < 2

√
2.

A corridor K is maximal if there is no other corridor that contains K. If K is maximal, condition
(iv) is “tight” for at least one portal σ of K in the sense that there is a vertex of F (not necessarily
an endpoint of ei or ej) on σ. In particular, there is a convex vertex of F on the shorter portal of
K; if both portals have the same length, both contain such vertices.

Let K be the set of all maximal corridors in F. We charge each corridor K ∈ K to a vertex of F
on its shorter portal. The conditions are easily seen to imply that the corridors of K are pairwise
disjoint, from which it follows that any vertex of F is charged at most O(1) times. There are O(n)
vertices of F, which implies |K| = O(n).

4If vi or vj is not unique, i.e., when ei and ej are axis-aligned, we can choose vi or vj (or both) so that uij ∈ {0, π/2}.

8



p

σ(p)

K(10)

σL

σR

σL
(2)

`L
(2) `L

(10) `R
(10) `(p)

= KS
K

Figure 5. Illustrations of various portal-parallel lines supporting segments in K, and the sanctum KS of K.

u

πB(λ1)

πA(λ1)

πA(λ2)

πB(λ2)

πA(λ0)

πB(λ0)

g(λ0) = 0 g(λ2) < 1g(λ1) > 0

Figure 6. Illustration of the proof of Lemma 2.2.

Let ℓL, ℓR be the lines supporting the portals σL, σR of K, and let len(K) be the L∞-distance
between ℓL, ℓR. Let uL (resp., uR) be the inner normal of σL (resp., σR), i.e., pointing toward the
interior of K; uL = −uR. For D = L,R and any value τ ≥ 0, let ℓD

(τ) be the line ℓD shifted in
direction uD at L∞-distance τ from ℓD, let σD

(τ) be the segment K ∩ ℓD(τ), and let K(τ) ⊆ K
be the (possibly empty) trapezoid bounded by the blockers of K and segments σL

(τ), σR
(τ). (We

assume here that τ is sufficiently small so as to guarantee the shifts from ℓL to ℓ(τ) and from ℓR to

ℓ
(τ)
R do not collide.) Note that K = K(0). Similarly, we define portal-parallel lines and segments by
points that they contain: For any point p ∈ K, let ℓp be the line normal to uL (and uR) containing
p, and let σp := K ∩ ℓp. For any corridor K ∈ K with len(K) ≥ 20, we define its sanctum to be
KS := K(10) ⊂ K. See Figure 5. A corridor K ∈ K with len(K) < 20 has an empty sanctum. The
following two lemmas capture the essence of a corridor.

Lemma 2.2. Let K ∈ K be a maximal corridor, and let u its direction, i.e. one of the unit vectors
normal to the portals of K. Let I be a time interval in a plan π of A and B, during which both
robots are in K, i.e., πA(λ), πB(λ) ∈ K for all λ ∈ I. Then the sign of g(λ) := ⟨πA(λ)− πB(λ), u⟩
is the same for all λ ∈ I, where ⟨·⟩ is the inner product.

Proof. Suppose to the contrary that there exist two time instances λ1, λ2 ∈ I, with λ1 < λ2, such
that g(λ1) < 0 and g(λ2) > 0 (or the other way around). Since πA, πB are continuous functions,
there exists λ0 ∈ (λ1, λ2) with g(λ0) = 0. But then πA(λ0) and πB(λ0) lie on a segment parallel to
the portals of K and thus ||πA(λ0)− πB(λ0)||∞ < 2, which means that the robots intersect at these
placements, contradicting the assumption that π is a feasible plan. Hence, g(·) has the same sign
over the entire interval I. See Figure 6.

The following lemma describes a crucial relationship between revolving areas and corridors.

Lemma 2.3. Suppose p ∈ F is a point such that p does not lie in any corridor of K and d∞(p,X) ≥ 1,
where X denotes the set of vertices of F plus {sA, sB, tA, tB} and the vertices of all maximal corridors
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in K, i.e., the endpoints of their portals. Then there is a revolving area q +□ ⊆ F, for some q ∈ F,
that contains p.

Proof. Let S := p+ r□ be the largest axis-aligned square in F centered at p, where r ≥ 0. If r ≥ 1,
then r +□ ⊂ F and the claim holds, so suppose r < 1. S is supported by at least two edges ei, ej
of F, otherwise it could be expanded. Let σ be the segment connecting the vertices vi, vj of S on
edges ei, ej , respectively. The L∞-distance between vi, vj is 2r < 2 by definition, and we have, for
any point q ∈ σ,

d∞(q,X) ≥ d∞(p,X)− r > 0.

Then it is easy to verify that σ is itself a corridor, so there is a maximal corridor K ∈ K such that
σ ⊆ K. So p ∈ K, which is a contradiction.

3 Well-structured Optimal Plans

We present a sequence of transformations for optimal plans, which leads to the existence of an
optimal plan with certain desirable properties. Using the easily established fact that F is polyhedral,
it can be shown that an optimal plan is piecewise linear with its breakpoints lying on 2-faces of
∂F. We show that there always exists a piecewise-linear, decoupled plan such that a robot is never
parked in the sanctum of a corridor, and the moving robot kisses the parked robot in each move,
except possibly in the first and the last moves.

We first observe that each facet (three-dimensional face) of ∂F corresponds to a maximal
connected set of placements at which some vertex (resp., edge) of one of the robots touches some
edge (resp., vertex) of ∂W or of the other robot. This implies that each connected component
of ∂F is a polyhedral region in R4. The distance between two points a, b ∈ F is the sum of the
Euclidean length of the projections of b− a onto the 2-planes formed by the first and the last pairs
of coordinates, so it is the L1-distance of two L2-distances. Still, we claim that an optimal path (in
F) must be piecewise linear, with bends only at 2-faces (or faces of lower dimension) of ∂F. This
follows since both the L2 and L1-distances satisfy the triangle inequality, and since paths that bend
at the relative interior of some 3-face of F can be shortened. Hence, from now on we only consider
piecewise-linear plans.

3.1 Decoupled optimal plans

We begin by proving that there always exists an optimal (piecewise-linear) plan that is decoupled,
i.e., only one robot moves at any given time. Such decoupled plans are desirable, as during the
motion of the moving robot, the parked robot can be treated as an additional obstacle that is part
of the environment. Thus, given the start and target placements, s and t, of the moving robot, at
some single move in the plan, and the position p of the parked robot, the optimal motion for the
moving robot is the shortest path from s to t in F[p].

Lemma 3.1. Given reachable configurations s, t ∈ F, there is always a piecewise-linear, decoupled,
optimal (s, t)-plan.

Proof. Let π = ⟨s = x0, x1, . . . , xR = t⟩ be a piecewise-linear optimal (s, t)-plan in F, where
πi = xi−1xi, for 1 ≤ i ≤ k, is a line segment in F. Let πiA (resp., πiB) be the line segment xi−1

A xiA
(resp., xi−1

B xiB) in F, along which A (resp., B) moves during plan πi, i.e., it is the projection of πi
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xi
B

xi−1
A

xi
A

(P1)

xi−1
B

πi
A(ϕ(1))πi

A(ϕ(0))

< 2 < 2

πB(λ
∗)

πA(ϕ(λ∗))

xi−1
B

xi
A

(P2)

xi−1
A

xi
B

< 2

πB(λB)

πA(ϕ(λB))πA(λA)

< 2

πB(λ
∗)

πA(ϕ(λ∗))

< 2 < 2

Figure 7. Illustrations of the proof of Lemma 3.1. The top illustrates an example where predicate (P1) holds, and
the bottom illustrates an example where predicate (P2) holds, with φ(λB) < λB . The blue and red lines are the
respective projected paths πB and πA, and the dotted blue and red squares are axis-parallel squares of radius 2, i.e.,
copies of 2□, centered at the four endpoints of the two projected paths.

onto the A-plane (resp., B-plane). We also use πi : [0, 1] → F to denote the (linear) parameterization
of the segment xi−1xi, and similarly define the projected parameterizations πiA, π

i
B : [0, 1] → F, i.e.,

πi(t) = (πiA(t), π
i
B(t)), for t ∈ [0, 1]. We claim that we can either move A first along πiA while B is

parked at xi−1
B followed by moving B along πiB while A is parked at xiA or vice-versa. We note that

A can be moved first followed by B if πiA ⊆ F[xi−1
B ] and πiB ⊆ F[xiA]. Similarly, B can be moved

first followed by A if πiA ⊆ F[xiB] and π
i
B ⊆ F[xi−1

A ].
Suppose to the contrary that a decoupled plan does not exist for πi, i.e., the predicate(

πiA ⊆ F[xi−1
B ] ∧ πiB ⊆ F[xiA]

)
∨
(
πiA ⊆ F[xiB] ∧ πiB ⊆ F[xi−1

A ]
)

is not true. Then at least one of the following four predicates must hold:

(P1) πiA ̸⊆ F[xi−1
B ] ∧ πiA ̸⊆ F[xiB].

(P2) πiA ̸⊆ F[xi−1
B ] ∧ πiB ̸⊆ F[xi−1

A ].

(P3) πiB ̸⊆ F[xiA] ∧ πiB ̸⊆ F[xi−1
A ].

(P4) πiB ̸⊆ F[xiA] ∧ πiA ̸⊆ F[xiB].

In each case we show the existence of a time λ∗ ∈ [0, 1] for which

||πiA(λ∗)− πiB(λ
∗)||∞ < 2,

which would imply that πi is not a feasible plan, and thereby yield the desired contradiction. First,
consider (P1). Since πi ⊆ F, πiA, π

i
B ⊆ F. Therefore (P1) implies that

πiA ∩ int(xi−1
B + 2□) ̸= ∅ and πiA ∩ int(xiB + 2□) ̸= ∅.
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Then there exist λ0, λ1 ∈ [0, 1] such that

||πiA(λ0)− πiB(0)||∞, ||πiA(λ1)− πiB(1)||∞ < 2

(recall that xi−1
B = πiB(0), x

i
B = πi−1

B (1)). For a value λ ∈ [0, 1], let φ(λ) ∈ [0, 1] be such that
πiA(φ(λ)) is the point closest to πiB(λ) on the segment xi−1

B xiB. We have

||πiA(φ(0))− πiB(0)||∞, ||πiA(φ(1))− πiB(1)||∞ < 2,

which holds because of the existence of λ0, λ1 above. This means that

|x(πiA(φ(0)))− x(πiB(0))| < 2,

|y(πiA(φ(0)))− y(πiB(0))| < 2,

|x(πiA(φ(1)))− x(πiB(1))| < 2,

|y(πiA(φ(1)))− y(πiB(1))| < 2.

Recalling that πA, πB are line segments, this implies that, for any α ∈ [0, 1], we also have

|x(πiA((1− α)φ(0) + αφ(1)))− x(πiB(α))| < 2,

|y(πiA((1− α)φ(0) + αφ(1)))− y(πiB(α))| < 2.

That is, ||πiA((1−α)φ(0)+αφ(1))−πiB(α)|| < 2. This in turn implies that ||πiA(φ(λ))−πiB(λ)||∞ < 2
for all λ ∈ [0, 1]. Since φ is a continuous function, there exists a λ∗ ∈ [0, 1] such that φ(λ∗) = λ∗.
But then

||πiA(λ∗)− πiB(λ
∗)||∞ = ||πiA(φ(λ∗))− πiB(λ

∗)||∞ < 2,

which contradicts the assumption that πi ⊆ F. Hence (P1) does not hold.
Next, suppose that (P2) holds. Then there exist λA, λB ∈ (0, 1) such that

||πiA(λA)− πiB(0)||∞, ||πiB(λB)− πiA(0)||∞ < 2.

Without loss of generality, assume that λA ≥ λB. For a value λ ∈ [0, λB], let φ(λ) ∈ [0, λA] be the
parameter of the closest point to πiB(λ) on the segment πiA(0)π

i
A(λA). As above,

||πiA(φ(λ)− πiB(λ)||∞ < 2 for all λ ∈ [0, λB].

If φ(λB) ≥ λB, then

||πiA(λB)− πiB(λB)||∞ ≤ max{||πi−1
A (0)− πiB(λB)||∞, ||πiA(φ(λB))− πiB(λB)||∞} < 2,

which contradicts the fact that πi(λB) = (πiA(λB), π
i
B(λB)) ∈ F. Hence, assume that φ(λB) < λB.

Since φ(0) > 0, there exists a value λ∗ ∈ (0, λB] such that φ(λ∗) = λ∗, and we obtain the same
contradiction as above. Hence (P2) does not hold.

Predicates (P3) and (P4) are analogous to (P1) and (P2), respectively, by either switching the
roles of A and B or by reversing the time direction. We thus conclude that none of (P1)–(P4) holds,
implying that there is a decoupled plan for πi. Repeating this argument for all i ≤ k, and observing
that the endpoints of each π do not change by the transformation, we conclude that there is a
decoupled, piecewise-linear optimal plan.
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pi

pi+1

pi+2

πi+2

πi+1

πi

p′i+1

Figure 8. Example of three moves, πi and πi+2 of robot A and πi+1 of robot B, in a plan π. By modifying πi, πi+2

so that A parks at p′i+1 instead of pi+1, B kisses A during move πi.

3.2 Kissing plans

We call a piecewise-linear decoupled plan π a kissing plan if the robots kiss on all but possibly the
first and the last moves. Formally, let ⟨π⟩ = (R1, π1, p1), . . . , (Rk, πk, pk) be the move sequence of
π. Then π is a kissing plan if, for all 1 < i < k, there exists a point qi ∈ πi such that (pi, qi) is a
kissing configuration. We show that a decoupled plan can be converted into a kissing plan, without
changing the images of the paths traveled by A and B in the plan, by reducing the number of moves
and adjusting the parking places (Figure 8). We obtain the following:

Lemma 3.2. Let π be a piecewise-linear, decoupled, optimal plan with the minimum number of
moves. There exists a piecewise-linear, decoupled, kissing, optimal plan π′ with the same number of
moves, such that the first move is made by the same robot as in π, and the pathlet of the first move
in π′ contains that of π.

Proof. The proof is by induction on k. Let ⟨π⟩ = (R1, π1, p1), . . . , (Rk, πk, pk). If k = 2, the claim
holds trivially, that is, vacuously, so assume k > 2. Without loss of generality, A moves first, i.e.,
R1 = A. Then (p1 = sB), p3, p5, . . . are the parking placements of B; (p0 = sA), p2, p4, . . . are the
parking placements of A; pk = tA, pk+1 = tB if k is odd, and pk = tB, pk+1 = tA if k is even;
π1 := πA[sA, p2] is the motion of A in the first move and π2 := πB[sB, p3] is the motion of B in its
first move. There are two cases to consider.

1. If (π3 ⊕□) ∩ (π2 ⊕□) = ∅ then

π′ :=

{
(A, π1∥π3, p1), (B, π2∥π4, p4), (R5, π5, p5), . . . , (Rk, πk, pk) if k > 3

(A, π1∥π3, sB), (B, π2, tA) if k = 3

is a decoupled, optimal plan with fewer than k moves, which contradicts the assumption that
π has the fewest moves among all decoupled, optimal plans.

2. If (π3⊕□)∩(π2⊕□) ̸= ∅, let p′ be the first point reached on π3 such that (p′+□)∩(π2⊕□) ̸= ∅;
note that p′ may be p2. By the choice of p′, the interior of p′ +□ is disjoint from π2 ⊕□, so B
kisses A at that placement when moving along π2. Define π3< := π3[p2, p

′] and π3> := π3[p
′, p4].

Again, the choice of p′ also implies that π3< ⊕□ is interior disjoint from π2 ⊕□. Then

π′ := (A, π1∥π3<, sB), (B, π2, p′), (A, π3>, p3), (R4, π4, p4), . . . , (Rk, πk, pk)
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is a decoupled, optimal (s, t)-plan in which B kisses A, parked at p′, as it moves along π2.

Set s′ := (p′, sB). Let π′
0 be the decoupled (s′, t)-plan composed of all but the first move

of π′. Then α(π′
0) = α(π′) − 1 = α(π) − 1. Furthermore, π′

0 is a decoupled, optimal
(s′, t)-plan. We apply the induction hypothesis to π′0 to obtain a decoupled, kissing, optimal
(s′, t)-plan π′′

0 satisfying the lemma, with B making the first move (B, π′2, p
′). Since the

lemma guarantees that π2 ⊂ π′2, B kisses A (parked at p′) during the first move of π′′
0 . Set

π′′ := (A, π1∥π3<, sA)∥π′′
0 . Then the robots kiss on all moves of π′′ except possibly in the first

and the last moves. Furthermore

α(π′′) = α(π′′
0) + 1 = α(π′

0) + 1 = α(π),

and π1 ⊆ π1∥π3<. Hence π′′ satisfies the lemma, which establishes the induction step and
thus completes the proof of the lemma.

3.3 Bounding alternations

In a sequence of lemmas, we show that for any s, t ∈ F, there exists a decoupled, kissing, optimal
(s, t)-plan π with α(π) = O(¢(π) + 1). We begin with a simple observation whose proof is omitted.

Lemma 3.3. Let e be a horizontal or vertical segment of length at most 2. Then e∩F is a connected
(possibly empty) interval.

For any region ∇ ⊆ F and any two points p, q ∈ ∇, let ϱ∇(p, q) be the length of the shortest
(p, q)-path in ∇∩ F. Note that ϱ(p, q) = ϱF(p, q).

Lemma 3.4. Let S be any axis-aligned unit-radius square. (i) S ∩ F is composed of xy-monotone
components (without holes). (ii) At most two components intersect ∂S. (iii) For any p, q that lie in
the interior of a common component of S ∩ F, there exists an xy-monotone (p, q)-path P such that
|P | = ϱS(p, q) = ϱ(p, q).

Proof.

(i) The claim is immediate from Lemma 3.3.

(ii) By Lemma 3.3, at most one connected component of S ∩ F intersects each edge of S. So
if three connected components of S ∩ F intersect ∂S, two opposite edges, say, horizontal
edges of S intersect different connected components of S ∩ F. Let C1 (resp., C2) with
C1 ≠ C2 be the connected component of S ∩ F that intersects the bottom (resp., top) edge
of S, and let a1, b1 (resp., a2, b2) be the left and right endpoints of C1 (resp., C2) with the
bottom (resp., top) edge. Without loss of generality assume that x(a1) < x(a2). Then by
Lemma 3.3, x(a1) < x(b1) < x(a2) < x(b2). Let C3 be the third component of S ∩ F that
intersects, say, the left edge of S, and let a3, b3 be the intersection segment of C3 ∩ ∂S, with
y(a3) < y(b3). Since C1 does not intersect the top edge of S, the highest point of C1, denoted
by q, lies inside S, i.e., y(a1) = y(b1) < y(q) < y(a2) = y(b2). Furthermore, by Lemma 3.3,
x(a3) < x(q) < x(a2) and y(a3) > y(q). Finally, since q ∈ ∂F, there is a point q̂ ∈ ∂W such
that ||q − q̂||∞ = 1 and y(q̂) = y(q) + 1. Note that a2 /∈ int(q̂ + □). Since y(a2) − y(q) < 2,
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Figure 9. Examples of x-separated configurations s, t and squares QA, QB that satisfy Lemma 3.5, sA is left of sB .
(left) sA, sB are both left of their respective target placements, tA, tB . B moves first from sB to tB and then A moves
from sA to tA. (right) sA is left of tA but sB is right of tB , so both 2-move plans are feasible.

y(a2)− y(q̂) < 1 implying that x(a2)− x(q̂) ≥ 1. On the other hand, x(q̂) ≥ x(q)− 1. Putting
these together, we obtain that y(q̂)− y(a3) < y(q̂)− y(q) = 1, y(a3)− y(q̂) < y(a2)− y(q̂) < 1,
x(a3)−x(q̂) < x(q)−x(q̂) ≤ 1. x(q̂)−x(a3) ≤ x(a3)−1−x(a3) < 1 since x(a2)−x(a3) < 2. In
other words, |x(a3)−x(q̂)|, |y(a3)−y(q̂)| < 1, so ||a2−q||∞ < 1 and hence a3 /∈ F, contradicting
the assumption that a3 ∈ ∂F. Hence, c3 does not exist. A similar argument shows that a third
component of S ∩ F cannot intersect the right edge of S.

(iii) Let C be a connected component of S∩F. Since C is xy-monotone, for any two points a, b ∈ C,
the shortest path from a to b within C is xy-monotone, implying that ϱS(a, b) ≤ ||a− b||1. Let
p, q ∈ C be two points such that ϱ(p, q) < ϱS(p, q). Then the shortest path, denoted by ψ,
from p to q in F leaves S. Let a, b be two consecutive intersection points of ψ with ∂S where ψ
crosses ∂S, i.e., a, b ∈ ∂S and ψ(a, b)∩S = {a, b}. But ψ(a, b) is longer than following ∂S from
a to b (along the shorter of the two portions of ∂S), which implies that ¢(ψ(a, b)) > ||a− b||1.
On the other hand, ϱS(a, b) ≤ ||a− b||1, contradicting that ψ is the shortest path from p to q
in F. Hence, ϱS(p, q) = ϱ(p, q).

The next lemma shows that there is a simple optimal motion between configurations as long as
they are sufficiently close and both x-separated or both y-separated.

Lemma 3.5. Let QA, QB be axis-aligned unit-radius squares. For s = (sA, sB), t = (tA, tB) ∈ F
such that sA, tA (resp., sB, tB) lie in a common component of int(QA) ∩ F (resp., int(QB) ∩ F)
and s and t are both x-separated or both y-separated, there exists a (trivially kissing) plan π with
¢(π) = ϱ(sA, tA) + ϱ(sB, tB) and α(π) ≤ 2.

Proof. Without loss of generality, the configurations are x-separated. Using standard transformations
as necessary, we can assume x(sA) − x(sB) ≥ 2. Then x(sA) − 2 < x(tA) < x(sA) + 2 (resp.,
x(sB) − 2 < x(tB) < x(sB) + 2) since sA, tA (resp., sB, tB) lie in the interior of QA (resp., QB).
(tA, tB) is x-separated so |x(tA)−x(tB)| ≥ 2. If x(tA)−x(tB) ≤ −2 then x(tA) < x(sB) ≤ x(sA)−2,
which is a contradiction. Hence x(tA) − x(tB) ≥ 2. Let PA be the xy-monotone (sA, tA)-path in
QA ∩ F and let PB be the xy-monotone (sB, tB)-path in QB ∩ F from Lemma 3.4. There are two
cases.

First, suppose x(sA)− x(tA) and x(sB)− x(tB) are zero or their signs are the same, say, non-
negative for concreteness. See Figure 9(left). Then PB lies to the right of line x = sA + 2 and hence
PB ⊂ F[sA]. Similarly, PA lies to the left of line x = tB − 2 and hence PA ⊂ F[tB].
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Otherwise, x(sA) − x(tA) and x(sB) − x(tB) are non-zero and their signs are different; for
concreteness, suppose x(sA) − x(tA) < 0 < x(sB) − x(tB). See Figure 9(right). Then x(sA) <
x(tA) ≤ x(tB)− 2 < x(tA)− 2. See Figure 9. Then PB lies to the right of line x = x(tA) + 2, and
hence right of line x = x(sA) + 2, so PB ⊂ F[sA]. Similarly, PA lies to the left of line x = x(tB)− 2
so PA ⊂ F[tB].

Thus, in either case, the desired plan π is to first move B along PB while A is parked at sA,
then move A along PA while B is parked at tB, which is trivially kissing since it has at most two
moves. The other cases are symmetric.

The previous lemma allows us to shortcut kissing plans and to use a packing argument to
establish a useful upper bound on the number of moves in an optimal plan.

Lemma 3.6. Given reachable configurations s, t ∈ F, there exists a decoupled, kissing, optimal
(s, t)-plan π = (πA, πB) with α(π) ≤ c(min{¢(πA), ¢(πB)}+ 1), for some global constant c ≥ 1.

Proof. Without loss of generality, assume ¢(πA) ≤ ¢(πB). Let G be the axis-aligned uniform grid
with square cells of radius 1 such that all parking places lie in the interior of grid cells and π does
not pass through a vertex of G. Let G ⊂ G be the set of grid cells that contain at least one parking
place of A. It is easily seen that |G| ≤ 4¢(πA). We will show that we can shortcut π to obtain a
new plan π′ if necessary so that ¢(π′) ≤ ¢(π), A is parked only O(1) times in each cell of G, the
parking places of A in π′ are a subset of those in π and π′ is also a kissing plan. For a cell g ∈ G,
let N(g) ⊂ G be the set of cells g′ ∈ G such that there exists a pair of points p ∈ g, q ∈ g′ with
||p− q||∞ = 2, i.e., (p, q) is a kissing configuration. Note that |N(g)| ≤ 25.

Fix a cell g ∈ G. Let C be a connected component of g ∩ F that contains a parking place of A.
Recall that π is a kissing plan so B kisses A at each parking place of A. For each parking place ξ
of A in C, we label it with cell τ ∈ G if B was in cell τ when it kissed A at ξ. If there are more
than one such cell, we arbitrarily choose one of them. If C contains more than two parking places
of A with the same label τ such that all of them are x-separated or all of them are y-separated,
then we shortcut π as follows. Let λ− (resp., λ+) be the first (resp., last) time instance such
that π(λ−) (resp., π(λ+)) is a x-separated kissing configuration with πA(λ

−) ∈ ξ, πB(λ
−) ∈ τ

(resp., πA(λ
+) ∈ ξ, πB(λ

+) ∈ τ). We replace π(λ−, λ+) with the (π(λ−),π(λ+))-plan described in
Lemma 3.5 of cost ϱ(πA(λ

−), πA(λ
+)) + ϱ(πB(λ

−), πB(λ
+)). We repeat this procedure in C until

there are no such parking places of A in g. We repeat this step for all cells g ∈ G. Let π′ be the
resulting plan. By construction, ¢(π′) ≤ ¢(π) and π′ is a kissing plan.

We now bound α(π′). First note that π intersects at most two components of g ∩ F for each
cell g ∈ G. For each such connected component, the plan π′ has at most 4|N(g)| ≤ 100 parking
places. Therefore g contains at most 200 parkings of A in the plan π′. Summing over all cells of G,
we obtain that A is parked O(⌈|πA|⌉) = O(¢(πA) + 1) times in the plan π′. Since A and B park
alternately, α(π′) = O(¢(πA) + 1).

4 Paths Inside a Corridor

In this section we prove the existence of a decoupled, kissing, optimal plan in which neither of the
two robots is ever parked in the sanctum of a corridor. We prove this result by introducing some
convenient notations and establishing a few properties of a decoupled path inside a corridor.

Suppose π is an decoupled, kissing, optimal (s, t)-plan, and let K ∈ K be a corridor such
that one of the robots, say, A, enters K and parks inside the sanctum KS of K. We have that

16



sA, sB, tA, tB /∈ int(K) since no point in X lies in the the interior any corridor by definition. Let
IA := [λ−A, λ

+
A] be a maximal time interval during which (the center of) A is inside K(2), which

contains the time λ at which πA(λ) ∈ KS . Let σ0, σ1 be the (not necessarily distinct) portals of K
last crossed in πA(0, λ

−
A) and first crossed in πA(λ

+
A, 1), respectively. Then πA(λ

−
A), πA(λ

+
A) lie on

the edges of σ0
(2) and σ1

(2) of K(2), respectively, which again are not necessarily distinct.
We show that π can be transformed to another decoupled, kissing, optimal (s, t)-plan without

increasing the cost, so that A does not park inside the sanctum KS during the interval IA. We
accomplish this in stages. First, we show that B enters K for an interval IB, with IA ∩ IB ̸= ∅,
and it also enters (resp., exits) K through the portal σ0 (resp., σ1) (Lemma 4.1). Next, we show
(in Lemma 4.3) that if σ0 = σ1, i.e., A (and B) enters and exits K at the same portal then A does
not enter the sanctum KS during the interval IA and B also does not enter the sanctum during
the interval IB. If σ0 ̸= σ1, then both A and B cross the sanctum KS . In this case, we first argue
that π can be deformed so that πA(IA ∩ IB) consists of at most one breakpoint and the breakpoint
lies near the portals of K, so it is outside K(6) and A is not parked inside KS during IA. A similar
claim holds for B (see Lemma 4.4). This deformation may result in losing the kissing property of
π during the interval IA ∩ IB. Finally, we show that we can reparameterize the paths πA and πB
without changing their images, i.e., merging two or more moves into one or adjusting the parking
places, so that the resulting (s, t)-plan is decoupled, kissing, and optimal, and neither A nor B is
parked inside KS during the interval IA (Lemma 4.5).

Lemma 4.1. There is a maximal interval IB such that IA ∩ IB ̸= ∅ and B is in K during IB, i.e.,
πB(λ) ∈ K for all λ ∈ IB. Furthermore B enters and exits K during IB through the same portals
as A.

Proof. If πB(λ) /∈ K for all λ ∈ IA, then KS ⊆
⋂

λ∈IA F[πB(λ)] and there is no need to park A

inside KS . That is, we can first move A along πA(IA) while B is parked at πB(λ
−
A), then park A

at the portal σ1 and move B along πB(IA), and then follow the rest of the plan, π(λ−A, 1). So we
assume that πB(λ) ∈ K for some λ ∈ IA.

Let IB := [λ−B, λ
+
B] be a maximal interval with IA ∩ IB ̸= ∅ during which B is in K. Let u be a

vector normal to σ0. By Lemma 2.2, the sign of ⟨πA(λ)−πB(λ), u⟩ is the same for all λ ∈ IA∩ IB. If
A and B enter through different portals of K, then we claim that π is not an optimal plan. Indeed,
if A enters and exits at the same portal, (i.e., σ0 = σ1), then we can shortcut πA(IA) along σ0

(2) to
obtain a cheaper (s, t)-plan, and if A exits at the other portal (i.e., σ0 ̸= σ1), we can shortcut πB(IB)
along that portal (at which B entered) to obtain a cheaper (s, t)-plan. A similar short-cutting
argument holds if B does not exit through the same portal as A. This completes the proof of the
lemma.

For simplicity, we make some assumptions about the orientation of the features of K without
loss of generality. Recall that if at least one blocker of K is vertical (resp., horizontal) its portals are
horizontal (resp., vertical). First, we assume that the portals of K are vertical or have slope −1 by
rotating the setting by π/2 as necessary. Then the slopes of the blockers of K are strictly positive if
its portals have slope −1, otherwise one blocker has non-negative slope and the other blocker has
non-positive slope. Second, we assume that A and B enter K from its “left portal,” which formally
is the portal whose endpoint is the leftmost vertex of K (if the portals are vertical this is obvious);
let σL be this portal and σR be the other. See Figure 10.

In the following, we prove that neither A nor B is parked inside the sanctum of K during the
interval IA ∩ IB. Without loss of generality, assume that λ−A ≤ λ−B because otherwise we can swap
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Figure 10. Illustrations of corridors with the left portals σL shown as thick. The left and top-right examples have
portals with slope −1 and the bottom-right example has vertical portals.
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Figure 11. Illustrations of ξ, ζ when σ0 = σ1 (top) and σ0 ̸= σ1 (bottom), not to scale.
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A and B. We modify the plan π, without changing the images of πA, πB, so that B is “near” A
when A enters or exits K: Let ∆0 be the trapezoid formed by the blockers of K and segments
σ0, σ0

(2). If σ0 = σ1, let ∆1 = ∆0, otherwise let ∆1 be the trapezoid formed by the blockers of
K and segments σ1

(4), σ1
(2). See Figure 11. Set ξA := πA(λ

−
A), ζA := πA(λ

+
A). If πB(λ

−
A) ∈ ∆0, we

set ξB := πB(λ
−
A). If πB(λ

−
A) /∈ ∆0, we park A at ξA and move B from πB(λ

−
A) until B enters ∆0

through σ0 and park B at this point, which we denote by ξB. Then we follow the plan π as before.
We use λ̂−A to denote the time instance at which A is at ξA and B is at ξB , and we continue to use π
to denote the unmodified plan. Similarly, if πB(λ

+
A) ∈ ∆1, then set ζB := πB(λ

+
A). If πB(λ

+
A) /∈ ∆1

then we park A at ζA := πA(λ
+
A) ∈ σ1

(2) and move B along πB until it enters ∆1 through a point

ξB ∈ σ0 if σ0 = σ1 or through a point ξB ∈ σ1
(4) otherwise. See Figure 11 again. We use λ̂+A to

denote the time instance at which A (resp., B) is at point ξA (resp., ζB). We continue to use π to
denote the modified plan. It can be verified that the modified plan is feasible. Since the images
of πA and πB remained the same, the cost also remains the same. Set ξ = (ξA, ξB) = π(λ̂−A) and

ζ = (ζA, ζB) = π(λ̂+A). We note that the resulting plan may not be kissing during the interval
[λ−A, λ

+
A], e.g., A may not kiss B on its move to ζA and B may not kiss A on its move to ζB. We

will convert it into a kissing plan after we are done modifying the plan inside K (see Lemma 4.5).
We extend our notation for portal-parallel lines and segments to define them by points that

they contain: For any point p ∈ K, let ℓp the line normal to uL (and uR) containing p, and let
σp := K ∩ ℓp. We next prove the following technical lemma, which shows that if A is sufficiently
deep inside and ahead of B in K, then B does not obstruct A from reaching further inside the
corridor; moreover, the shortest path for A inside the corridor is the shortest path in the plane that
avoids B. By swapping the roles of A and B and reflecting the setting over the y = −x line, it can
be used more generally.

Lemma 4.2. Let K be a corridor with direction vector u ∈ {0, π/4}. For any configurations
(sA, pB), (tA, pB) ∈ F such that sA ∈ K(2), pB, tA ∈ K, ⟨pB, u⟩ < ⟨sA, u⟩ < ⟨tA, u⟩, and d∞(ℓsA , ℓtA) ≥
2, the shortest path PA from sA to tA in cl(R2 \ (pB + 2□)) is such that:

(i) PA is contained in cl(K \ (pB + 2□)) ⊂ K ∩ F[pB],

(ii) if the portals of K are vertical then PA is segment sAtA and ¢(PA) = ||sA − tA||2, and

(iii) if the portals of K have slope −1 then PA is segment sAtA if sAtA ∩ int(pBw) = ∅ and
PA = sAw∥wtA otherwise, where w is the top-right vertex w of pB + 2□, and ¢(PA) <
2
√
5 + ||sA − tA||2.

Proof. See Figure 12. Let PA be the shortest path from sA to tA in cl(R2 \ (pB +2□)). If PA has no
breakpoints, PA is segment sAtA so PA ⊂ K \ (pB + 2□) since sA, tA ∈ K and K is convex. Then
(i) holds when PA is a segment. We will prove (i) when PA is not a segment later.

We next prove (ii). Assume the portals are vertical. Since the portals are vertical, we have

x(σL) ≤ x(pB) ≤ x(sA) ≤ x(tA)− 2 ≤ x(σR)− 4.

If x(sA) ≥ x(pB) + 2 then sA, tA lie to the right of (the right vertical edge of) pB + 2□ and hence
PA = sAtA. So assume |x(sA)− x(pB)| < 2 for sake of contradiction. By definition, (sA, pB) ∈ F, so
|y(sA)− y(pB)| ≥ 2. sA, pB ∈ K so the segment pBsA ⊂ K because K is convex. For concreteness,
suppose y(pB) ≤ y(sA) − 2 so the segment pBsA has positive slope; the other case is symmetric.
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Figure 12. Illustrations of the proof of Lemma 4.2. (top) K has vertical portals so PA is a segment. (bottom) K has
portals with slope −1 and segment sAtA (not shown) intersects int(pB + 2□) and hence segment pBw. The region ∆
contains vertex w of pB + 2□.

Recall that because K has vertical portals, K has one blocker with non-positive slope and the
other has non-negative slope and |ση| < 2 for all points η ∈ int(K) by Lemma 2.1. Let Q be the
rectangle with sA (resp., pB) as its bottom-left (resp., top-right) vertex and let e1 (resp., e2) be
the left (resp. right) vertical edge of Q; |e1|, |e2| ≥ 2. The blocker with non-positive slope must not
intersect int(Q) and the blocker with non-negative slope must intersect at most one of int(e1) or
int(e2) (otherwise a blocker would intersect int(pBsA) which is impossible since pBsA ⊂ K). Then
either e1 ⊂ K or e2 ⊂ K. If e1 ⊂ K (resp. e2 ⊂ K) then |σpB | ≥ |e1| ≥ 2 (resp., |σsA | ≥ |e2| ≥ 2),
which is a contradiction. So PA = sAtA as claimed. This proves (ii).

We next prove (i) when PA ̸= sAtA. Assume the portals have slope −1. If PA = sAtA then
(iii) holds by the discussion above, so assume otherwise. Let h be the halfspace containing tA
defined by the line supporting σsA . ⟨pB, u⟩ < ⟨sA, u⟩ ≤ ⟨tA, u⟩ implies pB /∈ h since tA ∈ h and u
is normal to σsA . Then the top-right vertex w of pB + 2□ is the only vertex that lies in int(h).
It is easy to see that the shortest path PA ⊂ h since tA ∈ h (otherwise PA must leave h, wrap
around pB + 2□ \ h, and then re-enter h, which can only be longer). Since PA ̸= sAtA, sAtA
must intersect pB + 2□) ∩ h, and hence it intersects segment pBw. Then PA = sAw∥wtA, as w
is the only vertex of cl(R2 \ (pB + 2□)) in h. It follows that either x(sA) < x(w) < x(tA) and
y(sA) > y(w) > y(tA) or all of the inequalities are reversed. For concreteness, assume the former;
the other case is symmetric. We have ⟨pB, u⟩ < ⟨sA, u⟩ < ⟨tA, u⟩, and d∞(ℓsA , ℓtA) ≥ 2 by definition.
The latter implies d2(ℓsA , ℓtA) ≥ 2

√
2. Then

⟨w, u⟩ = ⟨pB, u⟩+ 2
√
2 < ⟨sA, u⟩+ 2

√
2 ≤ ⟨sA, u⟩+ d2(ℓ

(sA), ℓ(tA)) = ⟨tA, u⟩.

Then we have
⟨sA, u⟩ < ⟨w, u⟩ < ⟨tA, u⟩,

where the first inequality follows from the fact w ∈ int(h). Now let ∆ be the trapezoid with edges
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on σsA , σtA and horizontal lines y = y(sA), y = y(tA); sA (resp., tA) is top-left (resp., bottom-right)
vertex of ∆. It follows that w ∈ ∆ since y(sA) ≥ x(w) ≥ y(tA) and the previous inequalities. Recall
that the blockers of K have positive slope. Then the top (resp., bottom) blocker of K lies above the
top (resp. bottom) horizontal edge of ∆ and hence ∆ ⊂ K(2). Then the segments sAw,wtA lie in
K(2) because it is convex. It follows that PA = sAw∥wtA ⊂ cl(K(2) \ (pB + 2□)) as desired.

It remains to prove ¢(PA) ≤ 2
√
5 + ||sA − tA||2 in (iii) when PA has w as a breakpoint. By

assumption that ⟨pB, u⟩ ≤ ⟨sA, u⟩, we have x(sA) ≥ x(pB)−2 ≥ x(w)−4, where the second inequality
follows from the fact w is the top-right vertex of pB+2□. The L∞-distance between the endpoints of
σsA , σtA are less than 2 by Lemma 2.1 because sA, tA ∈ int(K), so y(sA)−y(w) ≤ y(sA)−y(tA) < 2.
Putting everything together, we have |x(sA) − x(w)| ≤ 4 and |y(sA) − y(w)| < 2, and hence
||sA − w||2 <

√
42 + 22 = 2

√
5. Clearly ||w − tA||2 ≤ ||sA − tA||2, so

¢(PA) = ||sA − w||2 + ||w − tA||2 ≤ 2
√
5 + ||sA − tA||2.

Having shown (i)–(iii), this concludes the proof.

Now we are ready to prove the the first main lemma of this section.

Lemma 4.3. If σ0 = σ1, i.e., A enters and exits K from the same portal during interval IA then
A does not enter the sanctum KS during IA. Similarly B does not enter KS during the interval
IA ∩ IB.

Proof. For sake of contradiction, suppose A enters KS during interval IA. Then πA(IA) intersects
segments σ0

(2) and σ0
(10). Let γ0A ∈ σ0

(4) (resp., γ1A ∈ σ0
(4)) be the first (resp., last) point of πA(IA)

on σ0
(4). See Figure 13. We now deform π by replacing π(IA) with another plan π̂ := (π̂A, π̂B):

(1) Move A from ξA to γ0A while B is parked at ξB,

(2) move B from ξB to ζB while A is parked at γ0A,

(3) move A from γ0A to γ1A while B is parked at ζB, and

(4) continue moving A from γ1A to ζA while B is parked at ζB.

In each move (i), i = 1, . . . , 4, the moving robot follows the shortest feasible path π̂i between its
start and target placements, while the other robot is parked. Note that ξB, ξA, γ

0
A and ζB, ζA, γ

1
A

satisfy the conditions as pB, sA, tA in the statement of Lemma 4.2, respectively, by definition. Then
¢(π̂1) ≤ 2

√
5 + ||ξA − γ0A||2 and ¢(π̂4) ≤ 2

√
5 + ||ζA − γ1A||2. Furthermore, d∞(∆0, σ0

(4)) ≥ 2 by
definition. It follows that segment ξBζB ⊂ F[γ10 ] and segment γ0Aγ

1
B ⊂ F[ζB], so π̂2 = ξBζB and

π̂3 = γ0Aγ
1
A. Then

¢(π̂) ≤ (2
√
5 + ||ξA − γ0A||2) + ||ξB − ζB||2 + ||γ0A − γ1A||2 + (2

√
5 + ||ζA − γ1A||2)

≤ ||ξB − ζB||2 + ||ξA − γ0A||2 + ||ζA − γ1A||2 + 4
√
5 + 2

√
2,

where the last inequality follows from the fact |σ0(4)| < 2
√
2 by Lemma 2.1. On the other hand,

¢(πB) ≥ ||ξB − ζB||2 and

¢(πA) ≥ ||ξA − γ0A||2 + ||ζA − γ1A||2 + ¢(πA[γ0A, γ
1
A]) ≥ ||ξA − γ0A||2 + ||ζA − γ1A||2 + 12,
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Figure 13. Illustration of Lemma 4.3. πA[γ
0
A, γ

1
A] is depicted as dashed and π̂i are thick for i = 1, . . . , 4. Note that

this example is not drawn to scale.

where the last inequality follows from the fact ¢(πA[γ0A, γ
1
A]) ≥ 2d∞(σ0

(4), σ0
(10)) ≥ 2(6) = 12 by

definition. Putting everything together, we have

¢(π)− ¢(π̂) ≥ 12− 4
√
5− 2

√
2 > 0.

But then π is not optimal, which is a contradiction. We conclude that our assumption that πA(IA)
enters the sanctum KS is false. By Lemma 2.2, πB(IA∩IB) also does not enter the sanctum KS .

In the rest of this section we further assume that A and B exit K through its right portal in
addition to the assumption that they enter K through its left portal, i.e., σL = σ0 and σR = σ1.

Lemma 4.4. There exists a decoupled, optimal (ξ, ζ)-plan ψ = (ψA, ψB) ⊂ K ×K that consists
of two moves: first move A along the shortest (ξA, ζA)-path in F[ξB] while B is being parked at ξB,
and then move B along the shortest (ξB, ζB)-path in F[ζA] while A is being parked at ζA.

Proof. Let u be the direction of K. We have ξA ∈ σ1
(2), ξB ∈ ∆0, ζA ∈ σ1

(4), ζB ∈ ∆1 and
⟨ξB, u⟩ < ⟨ξA, u⟩ < ⟨ζB, u⟩ < ⟨ζA, u⟩ by definition.

Let ψA be the shortest path from ξA to ζA in R2 \ (ξB + 2□), and let ψB be the shortest path
from ξB to ζB in R2 \ (ζB + 2□). Then we have ψA ⊂ F[ξB] and ψB ⊂ F[ζA] by Lemma 4.2, where
the latter is obtained by swapping the roles of A and B and reflecting the setting over the y = −x
line to apply the lemma. Let ψ = (ψA, ψB) be the (ξ, ζ)-plan. It remains to show that ψ is an
optimal plan, which does not follow immediately from the fact each of ψA, ψB are “locally” optimal
in the sense they are shortest paths between specific placements while the other robot is at another
specific placement. Recall that some optimal plans have more than two (but at most three) moves
even for the case W = F = R2 [14, 31], as mentioned in Section 2 (see the example in Figure 2). So
we have to rely on the structure of ξ, ζ.

We first rule out the easy case, which is when ψA, ψB are both segments. See Figure 14(top-
left,bottom). Then ¢(ψ) = ||ξA − ζA||2 + ||ξB − ζB||2, which is optimal since any plan must have
at least this cost. By Lemma 4.2, ψA, ψB are segments when the portals are vertical, in which
case we are done. So suppose one of them, say, ψA is not the segment ξAζA; the case where
ψB ≠ ξBζB is symmetric. Then ξAζA ∩ int(ξB + 2□) ̸= ∅, and by Lemma 4.2, ψA = ξAw∥wζA,
where w is the top-right vertex of ξB + 2□. It follows that either x(ξA) < x(w) < x(ζA) and
y(ξA) > y(w) > y(ζA), or all inequalities are reversed. We assume the former; the latter case is
symmetric. See Figure 14(top-right).

The current ξ, ζ satisfy a case in [31], specifically case “Zone III(2)” in their Section 4.3.1, which
implies that ψ is optimal in the plane without obstacles, and hence in our setting, since we have
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Figure 14. Illustrations of cases from the proof of Lemma 4.4. Top-left: The portals have slope −1, and ψA, ψB are
segments. Top-right: The portals have slope −1 and ψA has a breakpoint w which is a vertex of ξB + 2□; ψB is a
segment. Bottom: The portals are vertical, so ψA, ψB are segments. Only in the bottom example are ξ, ζ kissing
configurations, which is necessary when portals are axis-aligned since the lines containing the placements are at
Euclidean distance 2 in that case.

already shown ψ is feasible in our setting (i.e., inside K). To verify that ξ, ζ satisfies their case
“Zone III(2),” it suffices5 to have the following properties in addition to the inequalities on the x-
and y-coordinates above:

(P1) ξB ∈ int(ξAζA ⊕ 2□),

(P2) ξA ∈ int(ξBζB ⊕ 2□),

(P3) ||ξB − ζB||∞ ≥ 2,

(P4) |x(ξB)− x(ξA)| < 2 and y(ξB) ≤ y(ξA)− 2, i.e., ξB lies below ξA + 2□.

(P5) |y(ζB)− y(ζA)| < 2 and x(ζB) ≤ x(ζA)− 2, i.e., ζB lies left of ζA + 2□.

See Figure 14 (top-right) again. (P1) follows from the fact ξAζA ∩ int(ξB + 2□) ̸= ∅. Since
⟨ξB, u⟩ < ⟨ξA, u⟩ < ⟨ζB, u⟩, ξBζB crosses σξA . Then we have

σξA ⊂ int(ξA + 2□) ⊂ int(ξAζA ⊕ 2□),

where the first containment follows from Lemma 2.1, and hence (P2) holds. We next prove (P3).
We have that

||ξB − ζB||∞ ≥ d∞(∆0,∆1) ≥ d∞(ℓ0
(2), ℓ1

(4)) ≥ len(K)− 2− 4 ≥ 14,

where the second inequality follows from the definitions of ∆0,∆1 being trapezoids bounded between
σ0, ℓ0

(2) and ℓ0
(4), ℓ0

(2), respectively, and the last inequality follows from the fact len(K) ≥ 20 since
K has a non-empty sanctum KS = K(10) ⊂ K. So (P3) holds.

Next, we have that the segment σ0
(2) = σξA (resp., σ1

(2) = σζA) has slope −1, and the L∞-
distance between its endpoints is than 2 by Lemma 2.1. We have ||ξA − ξB||∞, ||ζA, ζB− ≥||∞2
since ξ, ζ ∈ F are configurations. It follows that, with ⟨ξB, u⟩ < ⟨ξA, u⟩ (resp., ⟨ζB, u⟩ < ⟨ξA, u⟩),
x(ξB) < x(ξA)+2 (resp., x(ζB) < x(ζA)+2). We have x(ξB)+2 = x(w) > x(ξA), so together we have

5We note that their case “Zone III(2)” is more general in the sense that properties (P1)–(P5) are only sufficient
conditions, which is easy to verify from their paper.
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|x(ξB)− x(ξA)| < 2, the first part of (P4). The second part follows from y(ξB)− 2 = y(w) < y(ξA),
so we have (P4).

It remains to prove (P5). We have y(ζA) < y(ξA). Then y(ζA) ≤ y(ξA). For sake of contradiction,
suppose we have y(ζB) ≤ y(ζA)− 2. The bottom endpoint q of ℓ0

(2) has y(q) > y(ξA)− 2 since ξA
lies on the segment and its L∞-length is less than 2 as described above. But then

y(ζB) ≤ y(ζA)− 2 < y(ξA)− 2 ≤ y(q),

which is a contradiction since the blockers of K have positive slope, i.e., the bottom endpoint
of segment σζB , which contains ζB, lies on or above y = y(q). So y(ζB) > y(ζA) − 2. A similar
argument implies y(ζB) < y(ζA) + 2. So we have |y(ζB)− y(ζA)| < 2, the first part of (P5). Since
ζ is a configuration, so we have ||ζA − ζB||∞ ≥ 2. Since |y(ζB) − y(ζA)| < 2, it must be that
|x(ζB) − x(ζA)| ≥ 2. It cannot be the case that x(ζB) ≥ x(ζA) + 2 since ⟨ζB, u⟩ < ⟨ζA, u⟩. So
x(ζB) ≤ x(ζA)− 2, and we have (P5). This concludes the proof.

Lemma 4.5. Suppose a robot, say A, is parked inside the sanctum of a corridor K at time λ ∈ [0, 1]
in a decoupled, kissing, optimal (s, t)-plan π, and let IA be a maximal time interval with λ ∈ IA
during which A is inside K(2). Let IB be the maximal time interval with IA ∩ IB ≠ ∅ as given by
Lemma 4.1. Then there exists a decoupled, kissing, optimal (s, t)-plan π′ and an interval I ⊇ IA∪IB
such that neither A nor B parks inside the sanctum KS of K during π′(I) and π(λ) = π′(λ) for
all λ ̸∈ I.

Proof. Following the notation above, by Lemma 4.3, σ0 ̸= σ1. We then modify the plan during the
interval IA as described above (preceding Lemma 4.1). Note that π(λ̂−A, λ̂

+
A) is a (ξ, ζ)-plan. By

Lemma 4.4, we can replace [λ̂−A, λ̂
+
A] with the (ξ, ζ)-plan ψ without increasing the cost of the overall

plan. We thus obtain a decoupled, optimal (s, t)-plan π′ such that πA(IA)∩K(4) and πB(IA)∩K(4)

are line segments, π′(IA) consists of two moves, and no robot is parked inside K(4). However,
the resulting plan π′ = (π′A, π

′
B) may not be kissing. We convert it into a kissing plan without

changing the images of π′A and π′B by applying the construction described in the proof of Lemma 3.2
repeatedly, as follows.

Let ψA (resp., ψB) be the path followed by A (resp., B) in the (ξ, ζ)-plan. Let ψ−
A (resp., ψ−

B)
be the move of A (resp., B) that brought it to ξA (resp., ζA), and let p−A (resp., p−B) be the initial
point of ψ−

A (resp., ψ−
B), i.e., where A (resp., B) was parked before ξA (resp., ξB). Similarly, let ψ+

A

(resp., ψ+
B) be the move of A (resp., B) that took it from ζA (resp., ζB) to its next parking position

denoted by p+A (resp., p+B). These six moves are the only moves which might not be kissing. For
simplicity, assume that none of them is the first or last move of π′. First consider the case where
λ̂−A = λ−A, i.e., B has already parked at ξB when A reached ξA, in which case the sequence of moves
is

. . . , (B,ψ−
B , p

−
A), (A,ψ

−
A , ξB), (A,ψA, ξB), (B,ψB, ζA), . . .

We note that A moves in both the second and third move, so we can transform the sequence as

. . . , (B,ψ−
B , p

−
A), (A,ψ

−
A∥ψA, ξB), (B,ψB, ζA), . . .

Since the original plan was kissing, B kisses A while moving along the path ψ−
B . If A kisses B

during ψ−
A∥ψA, we do not need to modify the moves ψB, ψ

−
A∥ψA. So assume A does not kiss B in

this move. Consider the first point of ψB, denoted by η, that intersects ψ−
A∥ψA⊕ 2□. Since both ψA
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and ψB cross σ0
(2) and the L∞-distance between its endpoints is less than 2 by Lemma 2.1, η lies

to the left of σ0
(2). Let ψ<

B := ψB[η, ζB]. We now park B at η instead of ξB, i.e., the plan becomes

. . . , (B,ψ−
B∥ψ

<
B , p

−
A), (A,ψ

−
A∥ψA, η), (B,ψ

>
B , ζA), . . .

Now both (B,ψ−
B∥ψ

<
B , p

−
A) and (A,ψ−

A∥ψA, η) are kissing moves and the plan remains feasible.

Next, suppose λA < λ̂−A, i.e., A is parked at ξA while B moves from p−B to ξB, i.e., the plan π′ is
of the form

. . . , (A,ψ−
A , p

−
B), (A,ψ

−
B , ξA), (A,ψA, ξB), (B,ψB, ζA), . . .

Since ξB ∈ σ0 and ξA ∈ σ0
(2) in this case and the original plan was a kissing plan, it is easily seen

that A kisses B during the ψ−
A move. Next, the path ψ−

B lies to the left of σ0 while ξA ∈ σ0
(2),

so if B kisses A while moving along ψ−
B , it happens only at ξB in which case A also kisses B

during the move ψA. Suppose B does not kiss A during ψ−
B . Since ψA lies to the right of σ0

(2),
int(ψA + 2□) ∩ ψ−

B = ∅. Therefore, we can combine ψ−
A and ψA, i.e., the plan becomes

. . . , (A,ψ−
A∥ψA, p

−
B), (B,ψ

−
B , ζA), (B,ψB, ζA), . . .

Of course, A kisses B during ψ−
A∥ψA. B moves in both the second and third move, so we can

transform the sequence as

. . . , (A,ψ−
A∥ψA, p

−
B), (B,ψ

−
B∥ψB, ζA), . . . .

In summary, we convert π′ into another plan without changing the images of the paths so that it
is kissing until the move that contains ψA. Furthermore, the new parking place η we added (only in
the first case) lies outside K(2). We continue this process until the moves containing paths ψB, ψ

+
A ,

and ψ+
B also become kissing. However, they push the parkings of A and B only later, i.e., beyond

the time at which B leaves ζB. Hence, we conclude that the transformation converts π′ into a
kissing plan without adding a parking in KS during the interval IA and also without changing the
images of the paths π′A, π

′
B. This concludes the proof of the lemma.

By applying Lemma 4.5 repeatedly, we obtain the following corollary.

Corollary 4.6. For any reachable configurations s, t ∈ F, there exists a decoupled, kissing, optimal
(s, t)-plan in which no robot parks inside the sanctum of a corridor of K.

5 Near-Optimal Tame Plans

Let X be the set of vertices of F plus {sA, sB, tA, tB} and the vertices of all maximal corridors in
K, i.e., the endpoints of their portals. In this section, we show that a kissing, decoupled, optimal
plan can be deformed by paying a fixed (constant) cost so that all robots are parked near a point of
X. For two parameters ∆−,∆+ with 0 ≤ ∆− ≤ ∆+, we say that a point p ∈ F is (∆−,∆+)-close
(to X) if d∞(p,X) ∈ [∆−,∆+]. Often we will be interested in only one of ∆− and ∆+, so we say is
∆-close (resp., ∆-far, ∆-tight) if d∞(p,X) ≤ ∆ (resp., d∞(p,X) ≥ ∆, d∞(p,X) = ∆). A decoupled
(s, t)-plan π = (πA, πB) is called ∆-tame (or tame if the value of ∆ is clear from the context) if
every parking place on πA, πB is ∆-close. The following lemma is the main result of this section
and one of the crucial properties on which our algorithm relies. Throughout this section, we set
∆0 := 30, which is simply a constant that is sufficiently large for our needs.
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Lemma 5.1. Given reachable configurations s, t ∈ F, let π be a decoupled, kissing (s, t)-plan. For
any parameter ∆ ≥ ∆0, there exists a decoupled, kissing, ∆-tame (s, t)-plan π′ such that π′ = π if
¢(π) ≤ ∆, and ¢(π′) ≤ ¢(π) + c1 and α(π′) ≤ α(π) + c2 otherwise, where c1 ≥ ∆0 and c2 > 0 are
absolute constants that do not depend on ∆.

For any ε ∈ (0, 1] and optimal plan π∗, if ¢(π∗) ≤ c1/ε, then π
∗ is obviously (c1/ε)-tame

(recalling that sA, sB, tA, tB are in X). Otherwise, by Lemma 5.1, there exists a (c1/ε)-tame
(s, t)-plan of cost at most ¢(π∗) + c1 ≤ (1 + ε)¢(π∗). Hence, using Lemma 3.6 to bound the number
of moves, we obtain:

Corollary 5.2. Given reachable configurations s, t ∈ F and ε ∈ (0, 1], there exists a decoupled,
kissing, (c1/ε)-tame (s, t)-plan π with ¢(π) ≤ (1+ε)¢(π∗) and α(π) ≤ c2(¢(π∗)+1), where c1 ≥ ∆0

and c2 > 0 are absolute constants that do not depend on ε.

Let π be an optimal, decoupled, kissing (s, t)-plan. By Corollary 4.6, we can assume that no
robot is parked inside the sanctum of a corridor. Let ℓ := α(π) and let (R1, π1, p1), . . . , (Rℓ, πℓ, pℓ)
be the sequence of moves of π. Let i (resp., j), 1 < i ≤ j < ℓ, be the smallest (resp., largest) index
such that pi, pj are (∆− 4)-far, i.e., pi (resp. pj) is the first (resp. last) (∆− 4)-far parking place
in π. If there are no such indices, then π is ∆-tame and we are done. So suppose i, j exist. Note
that it can be that i = j. By the definitions of corridors and sanctums, pi and pj do not lie inside a
corridor K ∈ K because any point in K \KS is (∆0 − 4)-close, pi, pj are (∆− 4)-far, and ∆ ≥ ∆0.
Therefore there is a revolving area around each of pi and pj by Lemma 2.3.

The proof of Lemma 5.1 is based on the following observation, which is proved in Lemma 5.8.
Let s = (sA, sB), t = (tA, tB) ∈ F be reachable kissing configurations with the property that there
exist r−, r+ ∈ F such that sA, sB ∈ RA(r−), tA, tB ∈ RA(r+), and r−, r+ are 3-far. Then there
exists a decoupled, kissing (s, t)-plan π̃ with ¢(π̃) ≤ ϱ(sA, tA) + ϱ(sB, tB) +O(1) and α(π̃) = O(1),
and all parking places in π̃ lie in RA(r−) or RA(r+). Since π is a kissing plan, there are kissing
configurations q = (qA, qB) and q

′ = (q′A, q
′
B) on moves i and j. If qA, q

′
A, qB, q

′
B each is (∆− 2)-close

and lies in a revolving area then Lemma 5.1 follows from Lemma 5.8 but we may not be so lucky—qA
or q′A may not be (∆− 2)-close or may not lie in revolving areas, so the proof is much more involved.

The proof of Lemma 5.8, however, can be slightly adapted to prove the following variant:

Lemma 5.3. Let u = (uA, uB),v = (vA, vB) ∈ F be two configurations such that there exist
four points uA, uB, vA, vB ∈ F with uA ∈ RA(uA), uB ∈ RA(uB), vA ∈ RA(vA), vB ∈ RA(vB),
and uA, uB, vA, vB are 3-far, then there exists a decoupled (u,v)-plan π̃ with ¢(π̃) ≤ ϱ(uA, uB) +
ϱ(vA, vB) + 78, α(π̃) ≤ 40, and all parking places of π̃ lie in the four revolving areas.

Using Lemma 5.3, we can prove the following weaker version of Lemma 5.1, which guarantees
that π̃ is ∆-tame but does not guarantee the kissing property.

Lemma 5.4. Given reachable configurations s, t ∈ F, let π be a decoupled, kissing (s, t)-plan. For
any parameter ∆ ≥ ∆0, there exists a decoupled ∆-tame (s, t)-plan π̃ such that π̃ = π if ¢(π) ≤ ∆
and ¢(π̃) ≤ ¢(π) + c1 and α(π̃) ≤ α(π) + c2 otherwise, for some absolute constants c1, c2 > 0
independent of ∆.

Proof. Let pi, pj be as defined above. Suppose Ri = B, i.e., A moves from pi−2 to pi in the (i− 1)-st
move along πi−1 and is parked at pi, then B moves from pi−1 to pi+1 along πi in the i-th move.
Let uA be the last point along πi−1 that is (∆− 4)-close, i.e., d∞(πi−1[uA, pi],X) ≥ ∆− 4. Recall
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that pi−2 is (∆− 4)-close. Note that uA may be pi−2 or pi, and uA is (∆− 4)-tight. Since pi does
not lie in a corridor, we claim that uA also does not lie inside a corridor. Indeed if uA ∈ K for
some K ∈ K, then A exits K at some point ξ ∈ πi−1[uA, pi] but then d∞(ξ,X) < ∆0 − 4 ≤ ∆− 4,
contradicting that uA is the last (∆− 4)-close point on πi−1. Since uA does not lie in a corridor, by
Lemma 2.3, there is a (∆− 5,∆− 3)-close point uA ∈ F such that uA ∈ RA(uA).

Next, B kisses A parked at pi during the i-th move. Since pi is (∆ − 4)-far, πi contains a
(∆− 6)-far point. If πi ∩ (uA + 2□) = ∅, let uB be the last (∆− 6)-close point on πi if there exists
one and uB = pi−1 otherwise (i.e., all points on πi are (∆− 6)-far). Then uB is (∆− 6)-tight. On
the other hand, if πi ∩ (uA + 2□) ̸= ∅, let uB be the first intersection point of πi with uA + 2□, i.e.,
πi[pi−1, uB] ∩ int(uA + 2□) = ∅. Since uA is (∆− 4)-tight, uB is (∆− 6,∆− 2)-close.

Since pi and uA are not inside a corridor, a similar argument as above implies that uB is also
not in a corridor. Therefore there exists a (∆− 7,∆− 1)-close point uB such that uB ∈ RA(uB).
Set u = (uA, uB).

Without loss of generality, assume that Rj = B. Then using a symmetric argument, we find
points vA ∈ πj+1 such that vA ∈ RA(vA) and vA is (∆ − 4)-close, and vB ∈ πj such that vB
is (∆ − 6,∆ − 4)-close and vB ∈ RA(vB), for some (∆ − 7,∆ − 1)-close points vA, vB ∈ F. Set
v = (vA, vB).

Since uA, uB, vA, vB each is (∆−7)-far and ∆−7 ≥ ∆0−7 ≥ 3, each is (3,∆−1)-close. Let ψ =
(ψA, ψB) be the decoupled (u,v)-plan according to Lemma 5.3, with ⟨ψ⟩ = (S1, ψ1, q1), . . . , (Sh, ψh, qh).
We obtain a new (s, t)-plan π̃ by replacing πA[uA, vA] and πB[uB, vB ] with ψA and ψB, respectively.
More precisely,

⟨π̃⟩ =(R1, π1, p1), . . . , (Ri−2, πi−2, pi−2), (A, πi−1[pi−2, uA], pi−1), (B, πi[pi−1, uB], uA)

◦ ⟨ψ⟩◦
(B, πj [vB, pj+1], vA), (A, πj+1[vA, pj+2], pj+1), (Rj+2, πj+2, pj+2), . . . , (Rℓ, πℓ, pℓ).

It is easily seen that π̃ is a (feasible) (s, t)-plan. By Lemma 5.3, all parking places in ψ and thus in
π̃ are ∆-close, ¢(π̃) ≤ ¢(π) + 78, and α(π̃) ≤ α(π) + 40.

A similar argument as for Corollary 5.2, but using Lemma 5.4, implies the following corollary.

Corollary 5.5. Given reachable configurations s, t ∈ F and ε ∈ (0, 1], there exists a decoupled
(c1/ε)-tame (s, t)-plan π with ¢(π) ≤ (1 + ε)¢(π∗) and α(π) ≤ c2(¢(π∗) + 1), where c1, c2 > 0 are
absolute constants that do not depend on ε.

Returning to the proof of Lemma 5.1, we first briefly sketch the idea. Let λi ∈ [0, 1] (resp.,
λj ∈ [0, 1]) be the earliest (resp., latest) time during the move i (resp., j) such that π(λi) (resp.,
π(λj)) is a kissing configuration; there exists such a value since π is kissing. If Ri = B then
πA(λi) = pi and πB(λi) ∈ πi, and πA(λi) ∈ πi and πB(λi) = pi otherwise; the same holds
for λj . We similarly define λi−1 (resp., λj+1) to be the latest (resp., earliest) time during the
move i− 1 (resp., j + 1) such that π(λi−1) (resp., π(λj+1)) is a kissing configuration; if no such
configuration exists, then i− 1 = 1 (resp., j + 1 = ℓ) and we set λi−1 = 0 (resp., λj+1 = 1). Then
0 ≤ λi−1 ≤ λi ≤ λj ≤ λj+1 ≤ 1. If i = j then πA(λi, λj) and πB(λi, λj) are points. For 0 ≤ r ≤ 3,
let ar := πA(λi−1+r) and br := (λi−1+r). Without loss of generality, Ri−1 = A and Ri = B, so A
moves first from a0 = pi−2 to a1 = pi then B moves from b0 to b1 in the given motion plan π(λi, λj).
The proof of Lemma 5.1 is divided into two cases:
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Figure 15. Illustration of the plan described in the proof of Lemma 5.6, where sA, tB lie on the left edge of RA(q)
and tA, sB lie on the right edge of RA(q).

(i) There exists a (∆−6)-close point on πA[λi, λj ] or πB[λi, λj ], say, on πA[λi, λj ]. In this case, we
find two (∆−6)-close points q−, q+ on πA[λi, λj ] and modify πA[λi−1, λj+1] and πB [λi−1, λj+1],
using the above observation, so that A and B are parked at ∆-close points near a0, b0, a3, b3, q

−,
or q+ and they lie in revolving areas. The surgery on πA, πB increases their lengths by O(1)
and adds O(1) new alternations (Section 5.2).

(ii) There is no (∆ − 6)-close point on πA[λi, λj ] or πB[λi, λj ]. In this case, we find ∆-close
parking places in the vicinity of πA[λi−1, λi], πB[λi−1, λi], πA[λj , λj+1], and πB[λj , λj+1] and
again modify πA[λi−1, λj+1] and πB[λi−1, λj+1]. We cannot always guarantee the existence of
revolving areas that contain parking places. Therefore the surgery as well as the analysis is
more involved. Nevertheless, we are able to argue that the increase in the cost of the plan and
in the number of alternations is O(1) (Section 5.3).

5.1 Auxiliary lemmas

We next prove a sequence of lemmas for the that show the existence of near-optimal plans so that
parking places lie in revolving areas containing initial or final placements. For simplicity, we do
not try to minimize the error terms. They are used heavily when proving Lemma 5.1. For a point
q ∈ ∂RA(p), we define anti(q, p) := (2x(p)−x(q), 2y(p)−y(q)) as the point of intersection of ∂RA(p)
with the open ray emanating from q towards p. Note that ||q − anti(q, p)||∞ = 2. We may omit the
second parameter of anti(·, ·) when it is clear from context.

Lemma 5.6. For any revolving area RA := q ⊕ □ ⊆ F and configurations s = (sA, sB), t =
(tA, tB) ∈ F with sA, sB, tA, tB ∈ RA, there exists a kissing (s, t)-plan π such that all parking places
lie in RA, πA, πB ⊂ RA, ¢(π) ≤ 12, and α(π) ≤ 8.

Proof. Let πA be the shortest (sA, tA)-path on ∂RA; ¢(πA) ≤ 4. Without loss of generality, assume
sA lies on the left edge of RA, sB lies on the right edge of RA, and πA traces ∂RA from sA to tA
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Figure 16. Illustration of the plan described in the proof of Lemma 5.7. Only the first part, from (sA, sB) to
(v−, anti(v−)), is shown. A, centered at v− and depicted as blue, kisses B, centered at anti(v−) and depicted as red.

in clockwise direction. See Figure 15. If tA lies on the same edge as sA, then tB lies on the same
edge as tB and we move A to tA and B to tB with total length at most 4. Otherwise, we make A,B
y-separated by moving A up to the top-left vertex v0 of RA (above sA) and moving B down to the
bottom-right vertex anti(v0) of RA (below sB). This consists of two moves with total length at
most 4.

If tA lies on the top edge of RA, tB lies on the bottom edge of RA and we move A right to tA
and B left to tB. This consists of two more moves with total length of at most 4, so the overall
length is at most 8. Otherwise, tA, tB lie on the right and left edges of RA, respectively, and we
move A right to the top-right vertex v1 of RA then move B to the bottom-left vertex anti(v1) of
RA for total length 4. Finally, we move A down to tA and move B up to tB with total length 4.
The overall length is 12 in this case there are at most six moves.

The following lemma proves that if one robot lies in a revolving area far enough from the set of
vertices X, there is a simple near-optimal kissing plan that moves the other robot between any two
points that do not lie in the interior of the revolving area.

Lemma 5.7. Let r ∈ F be a 3-far point such that RA := RA(r) ⊆ F. Let sB, tB ∈ RA and
(sA, sB), (tA, tB) ∈ F such that sA, tA lie in the same component of F. Then there exists a kissing
((sA, sB), (tA, tB))-plan π such that all parking places lie in RA, ¢(π) ≤ ϱ(sA, tA) + 24, and
α(π) ≤ 14.

Proof. Let P be a shortest (sA, tA)-path in F. If P ⊂ F[sB], then define π as the simple plan where
A moves directly from sA to tA along P , and then moves B from sB to tB along the shortest path
in (r + 2□) ∩ F[tA] (such a path must exist). In this case ¢(π) ≤ ϱ(sA, sB) + 4 and α(π) ≤ 2 and
we are done. So suppose otherwise.

Let C be the component of (r + 3□) ∩ F containing r (and sB, tB). Since sB, tB ∈ RA(r),
sB + 2□,tB + 2□ ⊂ C. By assumption, P intersects int(sB + 2□), so P intersects int(C). Let c−

and c+ be the first and last points on P such that c−, c+ ∈ C. Note that c−, c+ may be sA, tA,
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respectively. Let v−, v+ be the closest vertices of ∂RA to c−, c+, respectively. See Figure 16. Note
that sA, tA /∈ int(RA) since (sA, sB), (tA, tB) ∈ F and sB, tB ∈ RA.

Let π0 be the kissing ((sA, sB), (v
−, anti(v−)))-plan where we move B to anti(v−) along segment

sBanti(v
−) then move A to v− along P [sA, c

−]∥c−v−. Then ¢(π0) ≤ ¢(P [sA, c−]) + 4
√
2 and

α(π0) ≤ 3. A similar construction gives a kissing ((v+, anti(v+)), (tA, tB))-plan π2 with ¢(π2) ≤
¢(P [c+, tA]) + 4

√
2 and α(π2) ≤ 3. Next, let π1 be the kissing ((v−, anti(v−)), (v+, anti(v+)))-plan

from Lemma 5.6 with α(π1) ≤ 8 and ¢(π1) ≤ 12. Putting everything together, π := π1 ◦ π2 ◦ π3 is
a kissing ((sA, sB), (tA, tB))-plan with

¢(π) ≤ ¢(P [sA, c−]) + ¢(P [c+, tA]) + 8
√
2 + 12 ≤ ϱ(sA, tA) + 24

and α(π) ≤ 3 + 3 + 8 ≤ 14.

With the previous lemma in hand, we describe simple near-optimal kissing plans that move both
robots from one revolving area to another, provided they are far enough from vertices of F.

Lemma 5.8. Let r1, r2 ∈ F be 3-far points such that RA1 := RA(r1),RA2 := RA(r2) ⊂ F. Let
s = (sA, sB), t = (tA, tB) ∈ F be two kissing configurations such that sA, sB ∈ RA1 and tA, tB ∈ RA2.
Then there exists a kissing (s, t)-plan π such that all parking places lie in RA1 or RA2,

¢(π) ≤ ϱ(sA, tA) + ϱ(sB, tB) + 78,

and α(π) ≤ 40.

Proof. Let v1 ∈ ∂RA1 and v2 ∈ ∂RA2 be any two points such that ||v1 − v2||∞ ≥ 2. (Note that
v1, v2 must exist.) Then (v1, v2) ∈ F. Let π0,π3 be the kissing ((sA, sB), (v1, anti(v1, r1)))-plan
and ((anti(v2, r2), v2), (tA, tB))-plan by Lemma 5.6, respectively. Next, let π1,π2 be the kiss-
ing ((v1, anti(v1, r1)), (v1, v2))-plan and ((v1, v2), (anti(v1, r2), v2)-plan by Lemma 5.7, respectively.
Putting everything together, π := π0 ◦ π1 ◦ π2 ◦ π3 is a kissing ((sA, sB), (tA, tB))-plan with

¢(π) =
3∑

i=0

¢(πi) ≤ 12 + (ϱ(anti(v1, r1), v2) + 24) + (ϱ(v1, anti(v1, r2)) + 24) + 12

≤ ϱ(anti(v1, r1), v2) + ϱ(v1, anti(v1, r2)) + 72

≤ ϱ(sA, tA) + ϱ(sB, tB) + 78,

where the last inequality follows because ϱ(p, q) =
√
2 < 3/2 for any two points p, q on the boundary

of a revolving area. Finally,

α(π) =
3∑

i=0

α(πi) ≤ 6 + 14 + 14 + 6 = 40.

The following lemma shows that if the initial and final configurations are kissing configurations,
the paths traversed by the robots in any optimal plan have similar lengths.

Lemma 5.9. Let s, t ∈ F be two kissing configurations such that sA, sB, tA, tB lie in revolving areas
RA(sA),RA(sB),RA(tA),RA(tB), respectively, where rsA , rsB , rtA , rtB ∈ F each is 3-far, and let π
be an optimal (s, t)-plan. Then

∣∣¢(πA)− ¢(πB)
∣∣ ≤ 150.
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b1 b2 b3b0

a1 a2 a3a0

q+q−a′1 a′2

r+
b′1 b′2

r−

π0 π2

π1

Figure 17. Abstract diagram of the paths πA[a0, a3], πB [b0, b3] and various points as defined in Section 5.2. The
thick pathlets are (∆− 6)-far, the black dashed lines represent segments in F between kissing configurations, and the
grey dashed squares are revolving areas. The dotted red path represents the path of B followed during the new plan.

Proof. Suppose not. Without loss of generality, ¢(πA) < ¢(πB) − 150. Since rsA , rsB , rtA , rtB are
3-far, we have that segments rsArsB and rtArtB lie in F. Let π0 be the ((sA, sB), (sA, anti(sA, rsA))-
plan from Lemma 5.7, let π1 be the ((sA, anti(sA, rsA)), (tA, anti(tA, rtA)))-plan from Lemma 5.8,
and let π2 be the ((tA, anti(tA, rtA)), (tA, tB))-plan from Lemma 5.7. Then π′ := π0 ◦ π1 ◦ π2 is a
(s, t)-plan with

¢(π′) =
2∑

i=0

¢(πi)

=(ϱ(sB, anti(sA, rsA))) + 24)

+ (ϱ(sA, tA) + ϱ(anti(sA, rsA), anti(tA, rtA)) + 78)

+ (ϱ(anti(tA, rtA), tB) + 24)

≤(|sBanti(sA, rsA)|+ |sAsB|)
+ 2ϱ(sA, tA) + |sAanti(sA, rsA)|+ |tAanti(tA, rtA)|
+ (|tAtB|+ |anti(tA, rtA)tA|) + 126

≤9 + 2(¢(πA)) + 3 + 3 + 9 + 126 < 2¢(πA) + 150

Then, by assumption, we have ¢(π′) < ¢(πA) + ¢(πB) = ¢(π), which contradicts the optimality of
π.

5.2 Case (i): Existence of a (∆− 6)-close point on πA(λi, λj) or πB(λi, λj).

We next prove case (i) of Lemma 5.1. For concreteness, suppose there is a (∆− 6)-close point on
πA(λi, λj); the other case is similar. Let q− (resp., q+) be the first (resp., last) point on πA(λi, λj)
which is (∆− 6)-far and thus (∆− 6)-tight. Then there are revolving areas RA− := r− +□ and
RA+ := r+ +□ containing q−, q+ respectively, for points r−, r+ ∈ F. The high-level idea for the
plan is to move A,B from (a0, b0) into RA−, then move both to RA+, then finally move both to
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(a3, b3). All parking places during the plan are near a0, b0, a3, b3, q
−, q+, so they are ∆-close, as

desired.
Let a′1 be the first point on πA[a1, q

−]∩RA−, and set b′1 := anti(a′1, r
−), and define a′2, b

′
2 ∈ RA+

similarly. r−, r+ are (∆− 7,∆− 5)-close, so a′1, b
′
1, a

′
2, b

′
2 are (∆− 8,∆− 4)-close. We next describe

a decoupled, kissing ((a0, b0), (a
′
1, b

′
1))-plan π0. There are two cases.

1. Suppose πA[a1, q
−] ⊂ F[b0]. Since Ri−1 = A, πA[a0, a1] ⊂ F[b0], and hence πA[a1, q

−] ⊂ F[b0].
Let a′1 be the first point on πA[a1, q

−] ∩ RA−, and set b′1 := anti(a′1, r
−). See Figure 17. In

this case, we first move A from a0 directly to a′1 in a single move. Then we move B from b0
to b′1 using the decoupled, kissing plan from Lemma 5.7. Let π0 be the resulting decoupled,
kissing ((a0, b0), (a

′
1, b

′
1))-plan.

2. Otherwise, πA[a1, q
−] ̸⊂ F[b0]. Then πA[a1, q

−] intersects the interior of b0 + 2□. Since all
points on πA[a1, q

−] are (∆−6)-far, b0 is (∆−4)-far. Furthermore, b0 = pi−1 is (∆−6)-close by
definition of pi; b0 is (∆− 8,∆− 4)-close. Let (a∗, b∗) be a decoupled, kissing configuration on
the revolving area containing b0. Then a

∗, b∗ are (∆−10,∆−2)-close. Let π0 be the decoupled,
kissing ((a0, b0), (a

′
1, b

′
1))-plan obtained by first applying the kissing ((a0, b0), (a

∗, b∗))-plan
from Lemma 5.7 then applying the ((a∗, b∗), (a′1, b

′
1))-plan from Lemma 5.8.

It is easy to verify that, in either case, all parking places in π0 except a0, b0, a
′
1, a

′
1 are (∆−10,∆−

2)-close, ¢(π0) ≤ ¢(πA[a0, a1]) + ¢(πB[b0, b1]) + 2¢(πA[a1, a′1]) + 200 and α(π0) ≤ 40. Similarly, we
construct a decoupled, kissing ((a′2, b

′
2), (a3, b3))-plan π2 where all parking places except a′2, b

′
2, a3, b3

are (∆−10,∆−2)-close, ¢(π2) ≤ ¢(πA[a2, a3])+¢(πB[b2, b3])+2¢(πA[a′2, a2])+200 and α(π0) ≤ 40.
Let π1 be the decoupled, kissing ((a′1, b

′
1), (a

′
2, b

′
2))-plan from Lemma 5.8 with

¢(π1) ≤ ϱ(a′1, a
′
2) + ϱ(b′1, b

′
2) + 78 ≤ 2¢(πA[a′1, a

′
2]) + 150

and α(π1) ≤ 40. Then π′ := π0 ◦ π1 ◦ π2 is a decoupled, kissing ((a0, b0), (a3, b3))-plan with

¢(π′) ≤ ¢(πA[a0, a3]) + ¢(πB[b0, b1]) + ¢(πA[a1, a2]) + ¢(πB[b2, b3]) + 550

≤ ¢(πA[a0, a3]) + ¢(πB[b0, b3]) + 750,

where the last inequality follows the fact ¢(πA[a1, a2]) ≤ ¢(πB[b1, b2]) + 150 by Lemma 5.9. Further-
more, all parking places besides a0, b0, a3, b3 are (∆− 2)-close. We replace π(λi, λj) with π

′ in π,
which completes the proof.

5.3 Case (ii): No (∆− 6)-close point on πA(ti, tj) or πB(ti, tj).

Without loss of generality, Ri−1 = A and Ri = B. For concreteness, we assume Rj = A and
Rj+1 = B; the other case is similar. Then πA[a0, a1] ⊂ F[b0] and πB[b2, b3] ⊂ F[a3].

The high-level idea is to try to follow the approach taken in the previous proof and find
revolving areas centered at (∆ − c)-close points near πA[a0, a1] and πB[b2, b3] that B and A can
reach, respectively, “without straying too far” from their original paths in π, for a sufficiently
large constant c. If we find such revolving areas, we first move A then B to the former revolving
area, then move them both to the latter revolving area, then finally move A then B to (a3, b3).
Otherwise, if we are unable to find such revolving areas, we instead find and use a sequence of
kissing configurations whose points may not be in revolving areas. We need to be more careful when
choosing such configurations, as not only must they be ∆-close and kissing, we must be able to
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b1 b2 b3b0

a1 a2 a3a0
q−A

q+B

b′3
a′3

p+B

k+B

π0

π1

q−B

q+A

Figure 18. Abstract diagram of the paths πA[a0, a3], πB[b0, b3] and various points as defined in Section 5.3 when
p+B is distant. The thick pathlets are (∆ − 6)-far, the black dashed lines represent segments in F between kissing
configurations, and the grey dashed square is a revolving area containing q+B . The dotted blue path represents the
path of A followed during the new plan; B mainly follows πB .

move the robots to one from (a0, b0), between them, and from one to (a3, b3) but without relying on
the auxiliary lemmas for plans between configurations with at least one robot in a revolving area as
done in the previous case.

Let q−A (resp., q+A) be the last (resp., first) (∆− 6)-close point on πA[a0, a1] (resp., on πA[a2, a3]).
Let q−B , q

+
B be defined similarly. If πA[a0, q

−
A ] ∩ int(πB[b0, q

−
B ] ⊕ 2□) ̸= ∅, let p−A be the last point

on πA[a0, q
−
A ] ∩ (πB[b0, q

−
B ]⊕ 2□) and let k−A be the last point on πB[b0, q

−
B ] contained in p−A + 2□;

otherwise, p−A, k
−
A are nil. Define p+B, k

+
B similarly: If πB[q

−
B , b3] ∩ int(πA[q

+
A , a3] ⊕ 2□) ̸= ∅, let

p+B be the first point on πB[q
+
B , b3] ∩ (πA[q

+
A , a3] ⊕ 2□) and let k+B be the last point on πA[q

−
A , a3]

contained in p+B + 2□; otherwise, p+B, k
+
B are nil. Note that none of these points lie in sanctums of

corridors by definition and the fact that none of ai, bi lie in sanctums, for i = 0, 1, 2, 3. Indeed, if q−A
lies in the sanctum of a corridor K, then πA[q

−
A , a1] crosses the portals of K, and such crossings

are within L1-distance 1 of the portal endpoints in X; the same holds for q+A , q
−
B , q

+
B . If p−A lies

in a sanctum KS of a corridor K, then k−A ∈ K and πA[a0, q
−
A ] and πB[b0, q

−
B ] span KS . Then

πA[a0, q
−
A ] ∩KS ⊂ int(πB[b0, q

−
B ]⊕ 2□, by definition of sanctum, so p−A lies outside KS . A similar

argument shows k−A , p
+
B, k

+
B do not lie in sanctums. Note that when p−A is nil, a0 may be sA, and

when p+B is nil, b3 may be tB. See Figure 18. We say p−A or p+B is distant if it is not nil and it is
(∆− 8)-far. There are two main cases.

At least one of p−A, p
+
B is distant. (This is the case that most closely resembles that of case (i).)

Without loss of generality, p+B is distant. We set (a′3, b
′
3) to be any kissing configuration where the

points lie in (the boundary of) the revolving area centered at a (∆ − 7,∆ − 5)-close point that
contains q+B . a

′
3, b

′
3 are (∆− 8,∆− 4)-close. Let

PA := πA[a0, a2]∥a2b2∥πB[b2, q+B ]∥q
+
Ba

′
3.

Note that a2b2 ⊂ F since a2, b2 are (∆− 6)-far, and hence PA ⊂ F. See Figure 18 again. There are
two cases.

1. Suppose PA ⊂ F[b0]. Then we let π0 be the decoupled, kissing ((a0, b0), (a
′
3, b

′
3)-plan by
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b1 b2 b3 = b′3b0

a1 a2 a3 = a′3a0
q−A

q+B

p−A = a′0

k−A = b′0

q+A

q−B

π0

π1

Figure 19. Abstract diagram of the paths πA[a0, a3], πB[b0, b3] and various points as defined in Section 5.3 when
neither p−A, p

+
B are distant. In this example, p−A is not nil and p+B is nil.

first moving A from a0 to a′3 along PA, then applying the kissing ((a′3, b0), (a
′
3, b

′
3)-plan from

Lemma 5.7 to move B from b0 to b′3.

2. Otherwise, PA ̸⊂ F[b0]. We have that the prefix P [a0, q
−
A ] ⊆ F[b0] and that all points on the

suffix PA[q
−
A , a

′
3] are (∆− 6)-far, so if PA intersects the interior of b0+2□, it must intersect on

PA[q
−
A , a

′
3]. Then b0 is (∆− 8)-far, and hence is contained in a revolving area. We have that b0

is (∆− 6)-close by definition of pi. Let (a
∗, b∗) be a kissing configuration on the revolving area

centered at a (∆− 9,∆− 5)-close point that contains b0. a
∗, b∗ are (∆− 10,∆− 4)-close. Let

π0 be the decoupled, kissing ((a0, b0), (a
′
3, b

′
3))-plan obtained by first applying the decoupled,

kissing ((a0, b0), (a
∗, b∗))-plan from Lemma 5.7 then applying the ((a∗, b∗), (a′3, b

′
3))-plan from

Lemma 5.8.

In either case, we have a kissing ((a0, b0), (a
′
3, b

′
3))-plan π0 where all parking places except

a0, b0, a
′
3, b

′
3 are (∆− 10,∆− 4)-close. Then let π1 be the kissing ((a′3, b

′
3), (a3, b3))-plan where we

first apply the kissing ((a′3, b
′
3), (a3, q

+
B))-plan from Lemma 5.7 then move B from q+B to b3 along

πB[q
+
B , b3]. Then π′ := π0 ◦ π1 is a kissing ((a0, b0), (a3, b3))-plan with all parking places except

a0, b0, a3, b3 being (∆− 2)-close.
Let (π′A, π

′
B) = π

′. An argument similar to that in the proof of Lemma 5.9 implies that∣∣¢(πA[a2, k+B ])− ¢(πB[b2, p+B])
∣∣ = O(1).

Similar to the proof of case (i), a tedious but straightforward analysis that incorporates each upper
bound on the costs and number of moves from the O(1) applications of Lemmas 5.7 and 5.8 implies
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that

¢(π′) =¢(π′A) + ¢(π′B)
≤
(
¢(πA[a0, a2]) + ¢(πB[b2, p+B]) + ¢(πA[k+B , a2])

)
+(

¢(πB[b0, b2]) + ¢(πB[b2, p+B]) + ¢(πB[p+B, b3])
)
+O(1)

≤
(
¢(πA[a0, a2]) + ¢(πA[a2, k+B ]) + ¢(πA[k+B , a2])

)
+(

¢(πB[b0, b2]) + ¢(πB[b2, p+B]) + ¢(πB[p+B, b3])
)
+O(1)

≤¢(πA[a0, a3]) + ¢(πB[b0, b3]) +O(1)

≤¢(π(λi, λj))

for a constant c1 > c0. A similar bound α(π′) ≤ α(π) + c2 for a constant c2 > 0 follows. We replace
π(λi, λj) with π

′ in π, which completes the proof for this subcase.

Neither of p−A, p
+
B are distant. Since p−A is not distant, either (i) p−A is nil or (ii) p−A is (∆−8)-close.

If p−A is nil, let (a′0, b
′
0) := (a0, b0) and let π0 be the trivial ((a0, b0), (a0, b0))-plan where neither

robot moves. Otherwise, let (a′0, b
′
0) := (p−A, k

−
A) and let π0 be the ((a0, b0), (p

−
A, k

−
A))-plan obtained

by moving A from a0 to p−A along πA[a0, p
−
A] then moving B from b0 to k−A along πB[b0, k

−
A ]. In

either case, π0 is a kissing ((a0, b0), (a
′
0, b

′
0))-plan and a′0, b

′
0 are (∆− 6)-close. We similarly define

(a′3, b
′
3) and a kissing ((a′3, b

′
3), (a3, b3))-plan π2. See Figure 19. It remains to define a kissing

((a′0, b
′
0), (a

′
3, b

′
3))-plan, π1.

By the choice of a′0, b
′
0, a

′
3, b

′
3, we have

• πA[a
′
0, q

−
A ] ⊂ F[z] for any point z ∈ πB[b

′
0, q

−
B ],

• πA[q
+
A , a

′
3] ⊂ F[z] for any point z ∈ πB[q

+
B , b

′
3],

• πB[b
′
0, q

−
B ] ⊂ F[z] for any point z ∈ πA[a

′
0, q

−
A ], and

• πB[q
+
B , b

′
3] ⊂ F[z] for any point z ∈ πA[q

+
A , a

′
3].

Furthermore, we have that all points on πA[q
−
A , q

+
A ] and πB[q

−
B , q

+
B ] are (∆− 6)-far. There are

two cases.

1. Suppose πA[q
+
A , a

′
3] ∩ int(πB[b

′
0, q

−
B ] ⊕ 2□) = ∅. Then πB[b

′
0, q

−
B ] ⊂ F[a′3]. Furthermore, if

πA[q
−
A , q

+
A ] intersects the interior of πB[b

′
0, q

−
B ], then b

′
0 is (∆− 6)-far, and hence is contained

in a revolving area centered at a (∆− 7)-far point. Since b′0 is (∆− 6)-close, the center of the
revolving area is (∆− 5)-close. So we either move A directly to a′3 from a′0 on πA[a

′
0, a

′
3] or we

apply Lemma 5.7 if that path is not in F[b′0]. Similarly, we either move B directly to b′3 from
b′0 on πB[b

′
0, b

′
3] or we apply Lemma 5.7 if that path is not in F[a′3]. Let π1 be the resulting

kissing ((a′0, b
′
0), (a

′
3, b

′
3))-plan. All parking places in π1 except a′0, b

′
0, a

′
3, b

′
3 are (∆− 4)-close.

2. Otherwise, πA[q
+
A , a

′
3] ∩ int(πB[b

′
0, q

−
B ] ⊕ 2□) ̸= ∅. Let p∗A be the first point on πA[q

+
A , a

′
3]

such that p∗A ∈ πB[b
′
0, q

−
B ] ⊕ 2□, and let k∗B be the last point on πB[b

′
0, q

−
B ] such that k∗B ∈

p∗A +2□. Then (p∗A, k
∗
B) is a kissing configuration, πA[q

+
A , p

∗
A] ⊂ F[b′0], and πB[k

−
B , q

−
B ] ⊂ F[p∗A].

Then we proceed similar to the earlier case where p+B is distant: If p∗A is (∆ − 8)-close
we construct a kissing ((a′0, b

′
0), (a

′
3, b

′
3))-plan π1 by applying Lemma 5.7 at most twice as

necessary. Specifically, we move A to p∗A on πA[a
′
0, p

∗
A], possibly moving B within a revolving

area containing b′0 if A collides with B, then move B to k∗A on πB[b
′
0, b

′
3], possibly moving
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b1 b2 b′3b′0

a1 a2 a′3a′0
q−A q+A

q−B q+B

k∗A

b1 b2 b′3b′0

a1 a2 a′3a′0
q−A q+A

q−B q+B

p∗A

k∗A

p∗A

Figure 20. Abstract diagrams of the paths πA[a
′
0, a

′
3], πB [b

′
0, b

′
3] and various points as defined in Section 5.3 when

q−A , q
+
B are not distant and πA[q

+
A , a

′
3] intersects the interior of πB [b′0, q

−
B ]⊕ 2□. The thick pathlets are (∆− 6)-far, the

black dashed lines represent segments in F between kissing configurations, and the grey dashed square is a revolving
area containing q+A . The dotted blue and red paths represent the paths of A and B followed during the new plan,
respectively. (top) p∗ is (∆− 8)-close. (bottom) p∗ is (∆− 8)-far.
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A within a revolving area containing a′3 if B collides with A, and then finally move A to a′3
on πA[p

∗
A, a

′
3]. See Figure 20(top). Otherwise, p∗A is (∆− 8)-far, so we cannot park A there.

Instead, we construct a kissing ((a′0, b
′
0), (a

′
3, b

′
3))-plan π1 by first moving A then B to the

revolving area containing q+A using a plan similar to that in case (1). See Figure 20(bottom).
Then we move A to a′3 using the plan from Lemma 5.7, move B to b′3 along the reversal of
πA[a2, q

∗
A] followed by a2b2∥πB[b2, b′3], possibly moving A within a revolving area containing

a′3 if B collides with A. In either case, it can be verified that all parking places in π1 except
a′0, b

′
0, a

′
3, b

′
3 are (∆− 2)-close.

In either case we have a ((a′0, b
′
0), (a

′
1, b

′
1))-plan π1 where all parking places are (∆− 4)-close. Let

(π1A, π
1
B) = π1. Suppose case (2) occurs. An argument similar to that in the proof of Lemma 5.9

implies that ∣∣¢(πA[a2, p∗A])− ¢(πB[k∗A, b1])
∣∣ = O(1).

Then again, in either case (1) or (2), a tedious but straightforward analysis that incorporates each
upper bound on the costs and number of moves from the O(1) applications of Lemmas 5.7 and 5.8
implies that

¢(π′) =¢(π1A) + ¢(π1B)
≤
(
¢(πA[a′0, a2]) + ¢(πA[a2, p∗A]) + ¢(πA[p∗A, a

′
3])

)
+(

¢(πB[b′0, k
∗
B]) + ¢(πA[a2, p∗A]) + ¢(πB[b2, b′3])

)
+O(1)

≤
(
¢(πA[a′0, a2]) + ¢(πA[a2, p∗A]) + ¢(πA[p∗A, a

′
3])

)
+(

¢(πB[b′0, k
∗
B]) + ¢(πB[k∗B, b2]) + ¢(πB[b2, b′3])

)
+O(1)

≤¢(πA[a′0, a
′
3]) + ¢(πB[b′0, b

′
3]) +O(1).

It is easy to verify that

¢(π0) ≤ ¢(πA[a0, a′0]) + ¢(πB[b0, b′0]) +O(1) and α(π0) = O(1)

and
¢(π2) ≤ ¢(πA[a′3, a3]) + ¢(πB[b′3, b3]) +O(1) and α(π2) = O(1).

Set π′ := π0 ◦ π1 ◦ π2. It follows that ¢(π′) = ¢(πA[a0, a3]) + ¢(πB[b0, b3]) +O(1) and α(π) = O(1).
We replace π(λi, λj) with π

′ in π, which completes the proof for this subcase.

6 Discretizing the Free Space

In this section, we further transform the optimal tame plans described in the previous section by
“retracting” all parking places to a discrete set of points. For any ε ∈ (0, 1), let G be the axis-aligned
grid centered at the origin whose cells are ε-radius squares.

Let ε ∈ (0, 1) be a parameter. We show how to choose a set V ⊂ R2 of O(n(∆/ε)2) points so
that a decoupled, ∆-tame (s, t)-plan π can be deformed into another decoupled, (∆ + 2ε)-tame
(s, t)-plan π̂ such that (i) the robots are parked at points of V, (ii) ¢(π̂) ≤ ¢(π) + εα(π), and (iii)
α(π̂) = cα(π), where c is an absolute constant that does not depend on ε.

Let π be a decoupled, ∆-tame (s, t)-plan. We can assume that α(π) = O(¢(π) + 1). Let G be
the axis-aligned uniform grid with square cells of radius ε such that all parking places lie in the
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interior of grid cells and π does not pass through a vertex of G. Let F# be the overlay of G and F,
restricted to F. Each face of F# is a connected component of F ∩ g for some grid cell g of G. Let V
be the set of vertices of F#. Our goal is to “retract” the parking places of π to the points of V, i.e.,
the robots are parked at the points of V instead of their original parking places. Furthermore, since
π is kissing, we want to ensure that the retracted path is ε-nearly-kissing, i.e., whenever a robot
moves, it comes within L∞-distance 4ε of the boundary of the other robot (parked at a vertex of V).
However, if for a parking place q, say, of A, we pick only one point in V to park A at instead of q,
B may collide with A during its next move, especially since B kisses A at q during the next move
of π. Hence, we may have to choose multiple points of V (in the neighborhood of q) and move A
between them during the next move of B, to ensure that A and B do not collide. Each such move
of A increases the cost of the plan by O(ε), so we cannot move A too many times. Furthermore,
we want to maintain the property of being decoupled (i.e., only one robot moves at a time), which
means that when we move A between nearby points of V to make way for B, we must first park B
somewhere, also in V. These technical constraints make the retraction rather involved. We now
describe the retraction in detail, but first state a lemma which follows easily from Lemma 3.3.

Lemma 6.1. Let π be a decoupled (s, t)-plan, and let ℓ be a horizontal or vertical line. During a
single move of π, if the path P followed by a robot intersects ℓ at two points that are less than two
distance apart, then P can be shortened without affecting the rest of the plan.

We assume that π satisfies Lemma 6.1. Assume that ⟨π⟩ = (R1, π1, p1), . . . , (Rk, πk, pk). Assume
p0 = sA, p1 = sB, i.e., R1 = A. Let λ1 < λ2 < . . . < λk−1 be the time instances at which π switches
from move i to i+ 1. Set λ0 := 0 and λk+1 := 1. Then for 0 ≤ i ≤ k, π(λi) = (pi, pi+1) if i is even
and π(λi) = (pi+1, pi) if i is odd. We describe the retraction of each move one by one. For each
move, the retracted plan consists of O(1) moves and increases the cost by O(ε).

Let e0 := (−1, 0), e1 := (0,−1), e2 := (1, 0), and e3 := (0, 1) be the four standard directions;
ei = −ei+2(mod 4). Set S = {ei | 0 ≤ i ≤ 3}. For an edge γ of an axis-aligned square, the inner
normal of γ is one of the ei’s, namely if γ is the left edge of the square then the inner normal is
e2 = (1, 0), and so on. For a connected component C of g ∩ F of a cell g ∈ G and for 0 ≤ i ≤ 3, let
ξi(C) be an extremal vertex of C in direction ei. (Note that the four vertices may not be distinct.)
For a point q ∈ R2, let C(q) be the face of F# that contains q. With a slight abuse of notation, we
use ξi(q) to denote ξi(C(q)). Set Ξ(q) := {ξi(q) | 0 ≤ i ≤ 3}.

The retracted plan π̂ that we construct maintains the following invariant: for 0 ≤ i ≤ k,
||π̂A(λi) − π̂B(λi)||∞ ≥ 2, π̂A(λi) ∈ F[π̂B(λi)], and π̂B(λi) ∈ F[π̂A(λi)]. We set π̂A(λ0) := sA and
π̂B(λ0) := sB. The invariant obviously holds for λ0. Assume that we have retracted the first i− 1
moves of π. We now describe the retraction of the i-th move. Without loss of generality, assume that
i is even, so Ri = B, A is parked at pi, B moves along πi, π(λi−1) = (pi, pi−1) and π(λi) = (pi, pi+1).
Let C be the face of F# containing pi, □i := pi + 2□, and ⧈i := pi + 2(1 + ε)□. The intersection
of ⧈i \ □i with the line supporting an edge of □i consists of two segments, each connecting the
edges of ⧈i and □i. We refer to these eight segments, over the four edges of □i, as extension chords.
These extension chords partition ⧈i \□i into four corner squares and four side rectangles. Since π
is a feasible plan, πi ∩ int(□i) = ∅. For a point q ∈ R2, let S(q) := {ej ∈ S | |(q − pi) · ej | ≥ 2} and
C(q) := {ξj(q) | ej ∈ S(q)}. Since π is feasible, S(q) ̸= ∅ for all q ∈ πi. To define the retraction of
the i-th move, we define events during the interval [λi−1, λi] at which A is (possibly) moved from
one point of Ξ(pi) to another while B is parked at a point of V. There are two types of events:

(i) Boundary event . A time instance λ is a boundary event if πi(λ) ∈ ∂⧈i and B enters ⧈i
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immediately after λi.

(ii) Separation event . A time instance λ is a separation event if πi(λ) ∈ ⧈i and pi+□ and πi(λ)+□
stop being x-separated or y-separated, i.e., |x(pi)− x(πi(λ))| = 2 or |y(pi)− y(πi(λ))| = 2, and
hence πi(λ) lies on one of the eight extension chords of ⧈i and πi leaves a corner square of ⧈i

and enters a side rectangle.

By Lemma 6.1, πi crosses each edge of ⧈i at most three times and each extension chord
at most once, so there are at most six boundary events and eight separation events during the
i-th move. Hence, there are at most 14 events. We also add λi as an event to ensure that at
the end of the i-th move B is parked at a point of V, so that the invariant is maintained. Let
θ1 < θ2 < . . . < θi−1 < (θi = λi) be the sequence of events along πi. For any time θ between two
consecutive events (θi−1, θi), S(πi(θ)) does not change, so B move along πi(θi−1, θi) and A remains
parked at a vertex in C(πi(θ)). By the above invariant, A is parked at a vertex of C(πi(λi−1)) at
time λi−1. So assume that we have processed events θ1, . . . , θj−1 and retracted the plan until θj . B
crosses an edge of ⧈i or one of its extension chords. Let ek be the inner normal of the extension
chord. If A is currently parked at the vertex ξk(pi) then ξk(pi) ∈ C(πi(θ)) for all [θj , θj+1) and
hence no action is needed. Otherwise, we first move B to the vertex ξk+2(πi(θj)) from πi(θj) along
an xy-monotone path in C(πi(θj)) and park it there, then move A from its current position to the
vertex ξk(pi) within C(pi) by first moving it along an xy-monotone path to pi and then from pi to
ξk(pi) again along an xy-monotone path. After A is parked at ξk(pi), we move B back to πi(θj)
then move it along πi from πi(θj) toward πi(θj+1). It can be verified that these paths are feasible.

If θj = λi, then we have to find an appropriate parking place for B. By construction, A is parked
at a vertex ξk(pi) ∈ C(pi+1). Then we move B from pi+1 to ξk+2(pi+1), i.e., the farthest vertex of
C(pi+1) in direction −ek, as above. This step ensures that the invariant is satisfied after move i.

Let π′ be the plan obtained by retracting the given plan π. Overall, each move of π involves at
most 15 events, and each event involves three new moves along xy-monotone paths in faces of F#.
By definition of F#, each new move has length at most 2ε

√
2 < 3ε. Hence the total increase in cost

is less than 135εα(π). Furthermore, all parking places of π′ are at vertices of V within L∞-distance
2ε of parking places in π. By re-picking ε := ε/135, we have the following lemma.

Lemma 6.2. Let ε ∈ (0, 1) be a parameter, and let π be a decoupled, ∆-tame (s, t)-plan. There
exists a decoupled, (∆+ 2ε)-tame, (s, t)-plan π′ such that ¢(π′) ≤ ¢(π) + εα(π) and α(π′) = cα(π),
and every parking place of π′ is in V, for some constant c > 0 that does not depend on ε,∆. If π is
kissing, then π′ is ε-nearly-kissing.

7 Algorithm

We are now ready to describe our algorithm to compute an (s, t)-plan π with ¢(π) ≤ (1+ε)¢(π∗) for
any ε ∈ (0, 1]. We first describe an n3ε−O(1) log n-time algorithm (Lemma 7.1) under the assumption
that ¢(π∗) > 1/4. With further efforts, we present a near-quadratic time algorithm (Lemma 7.2)
and how to remove the assumption (Section 7.2).

The algorithm consists of three stages. First, we choose a set Ṽ of O(n/ε4) points so that a

robot is always parked at one of the points in Ṽ. Next, we construct a graph G = (C, E) where

C ⊆ Ṽ× Ṽ is a set of (feasible) configurations and each edge is a (decoupled) plan between a pair
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of configurations of C with one move. We compute a shortest path in G, which corresponds to an
(s, t)-plan π̂ with ¢(π̂) ≤ (1 + ε)¢(π∗) +O(ε) ≤ ¢(π) ≤ (1 +O(ε))¢(π∗) for ¢(π∗) ≥ 1/4.

Set ε := ε/c0 and ∆ := c1/ε where c0, c1 > 0 are sufficiently large constants (independent of ε) to
be chosen later. Let G, F#, and V be the same as in Section 6 but using ε for ε. Let Fε be the set of
faces of F# that contain a ∆-close point; any point in a face C ∈ Fε is (∆ + 2ε)-close. Let Ṽ be the

set of vertices of Fε; |Ṽ| = O(n∆2/ε2) = O(n/ε4). We now describe the weighted graph G = (C, E).
We set C := {(a, b) ∈ Ṽ × Ṽ | ||a − b||∞ ≥ 2}. Note that s, t ∈ C and C ⊂ F. We construct E as

follows: For every ordered triple (u, v, p) ∈ Ṽ× Ṽ× Ṽ with u ̸= v and ||p− u||2, ||p− v||2 ≥ 2, we
set ω((u, p) → (v, p)) = ω((p, u) → (p, v)) := ϱF[p](u, v), and if this value is not ∞ we add edges
(u, p) → (v, p) and (p, u) → (p, v) to E with ω((u, p) → (v, p)) = ω((p, u) → (p, v)) as their weight,
which corresponds to moving A (resp., B) from u to v along a shortest path in F[p] while B (resp.,

A) is parked at p. Then |E| = |Ṽ|3 = O(n3/ε12).
Finally, we compute a shortest path (by weight) Φ in G from s to t. After having computed Φ,

the (s, t)-plan corresponding to Φ can be retrieved in a straightforward manner, and the cost of the
resulting plan is the same as the weight of the path. We conclude by stating the following lemma:

Lemma 7.1. Given s, t ∈ F, and ε ∈ (0, 1), there exists a path Φ from s to t in G, if s, t are
reachable, whose weight is at most (1 + ε)¢(π∗) + O(ε), which is (1 + O(ε))¢(π∗) if ¢(π∗) > 1/4,
where π∗ is a decoupled, optimal (s, t)-plan. Conversely, a path Φ from s to t in G corresponds to
an (s, t)-plan π̂ of cost ω(Φ). Furthermore, a shortest path from s to t in G can be computed in
O(n3ε−12 log n) time.

Proof. By Corollary 5.5, there exists a decoupled (∆ = c1/ε)-tame plan π with ¢(π) ≤ (1 + ε)¢(π∗)
and α(π) ≤ c2(α(π

∗) + 1) for some constants c1, c2 > 0. (We make use of the stronger Corollary 5.2
that guarantees π is kissing when we improve the algorithm in the next subsection.) Then, by
Lemma 6.2 with ε as parameter ε, there exists a (∆ + 2ε)-tame, decoupled plan π′ such that all

parking places belong to Ṽ and

¢(π′) ≤ ¢(π) + εα(π) ≤ (1 + ε)¢(π∗) + c2ε(¢(π∗) + 1) ≤ (1 + ε(1 + c2))¢(π∗) + c2ε.

At this point, we have additive error O(ε). Here we make use of our assumption that ¢(π∗) > 1/4
and have

¢(π′) ≤ (1 + ε(1 + 5c2))¢(π∗).

Then by choosing c0 := 1 + 5c2, we have ε = ε/(1 + 5c2) and hence

¢(π′) ≤ (1 + ε)¢(π∗).

Let ⟨π′⟩ = (R1, π1, p1), . . . , (Rℓ, πℓ, pℓ). Without loss of generality, assume that R1 = A. Then
we map π̂ to a path from s to t in G as follows. For each 1 ≤ i ≤ ℓ, πi is a path followed by
one of the robots from pi−1 to pi+1 while the other is parked at pi, so ||pi+1 − pi||∞ ≥ 2 and
ϱF[pi](pi−1, pi+1) ≤ ¢(πi). Therefore (pi−1, pi) → (pi+1, pi), (pi, pi−1) → (pi, pi+1) ∈ E with their
weights being at most ¢(πi). Hence s = (p0, p1) → (p2, p1) → (p2, p3) → . . . → t is a path in G of
weight at most ¢(π).

Converting Φ to a decoupled (s, t)-plan of cost at most ω(Φ) is straightforward and omitted

from here. It remains to analyze the runtime of the algorithm. F and Ṽ can be computed in
O(n log2 n+ |Ṽ|) = O(n(log2 n+ 1/ε4)) time [12]. For any ordered pair (u, p) ∈ Ṽ× Ṽ, F[p] can be
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computed from F in O(n log n) time and processed [19] in O(n log n) time into a data structure that
answers O(log n)-time shortest-path queries from u to any query point v ∈ F[p]. So we can compute

ω((u, p) → (v, p)) = ω((p, u) → (p, v)) in O(n log n+ |Ṽ| log n) = O((n/ε4) log n) time, for all v ∈ Ṽ.

Repeating this process for all O((n/ε4)2) pairs (u, p) ∈ Ṽ× Ṽ, we compute G and its edge weights
in O(|E| log n) = O((n/ε4)3 log n) time. Finally, computing the shortest path Φ in G and reporting
its corresponding plan takes O(|E|+ |C| log|C|) time using Dijkstra’s algorithm, which is dominated
by the O(|E| log n) time to build G. Therefore the overall running time is O(n3ε−12 log n).

7.1 Reducing the runtime

Now we describe how to reduce the runtime to O(n2ε−O(1) log n) using Corollary 5.2 (instead of
Corollary 5.5). The high-level idea is to reduce the number of vertices, |C|, from O(n3 poly(log n, 1/ε))

to O(n2 poly(log n, 1/ε)) while maintaining the O(|Ṽ|) degree of each node. The effect is that the
size of eachof |C|, |E| reduces by a factor of n, which reduces the overall runtime by a factor of n.

We first describe the graph G = (C, E). We set C := {(a, b) ∈ Ṽ× Ṽ | 2 ≤ ||a− b||∞ ≤ 2(1 + ε)}.
Note the new condition that ||a − b||∞ ≤ 2(1 + ε). For a pair of nearby configurations u =
(uA, uB),v = (vA, vB) ∈ C, we consider two possible (u,v)-plans: (i) keep A parked at uA while B
moves from uB to vB along a shortest path in F[uA], then park B at vB and move A from uA to vA
along a shortest path in F[vB], and (ii) keep B parked at uB while A moves from uA to vA along
a shortest path in F[uB], then park A at vA and move B from uB to vB along a shortest path in
F[vA]. Set

ω(u,v) = min{ϱF[uB ](uA, vA) + ϱF[vA](uB, vB), ϱF[uA](uB, vB) + ϱF[vB ](uA, vA)}.

If ω(u,v) < ∞, we add u→ v to E with ω(u,v) as its weight. Then |E| = |Ṽ|2 = O(n2/ε8). For

a fixed configuration u := (uA, uB) ∈ C, we compute the shortest path from uA to all points of Ṽ
within F[uB], using the same data structure as before [19], and do the same for uB to all points

of Ṽ in F[uA]. After repeating this step for all configurations in C, we have all the information to
compute ω(u,v) for all (u,v) ∈ C × C. The overall runtime can be shown to be O(|E| log n) as
before, which is O(n2ε−8 log n) here.

A similar argument for Lemma 7.1 that uses Corollary 5.2 instead of Corollary 5.5 proves the
following lemma, which is the same as Lemma 7.1 except that the plan π̂ is ε-nearly-kissing.

Lemma 7.2. Given s, t ∈ F, and ε ∈ (0, 1), there exists a path Φ from s to t in G, if s, t are
reachable, whose weight is at most (1 + ε)¢(π∗) + O(ε), which is bounded by (1 + O(ε))¢(π∗) if
¢(π∗) > 1/4, where π∗ is a decoupled, kissing, optimal (s, t)-plan. Conversely, a path Φ from s to t
in G corresponds to a decoupled, ε-nearly-kissing (s, t)-plan π̂ of cost ω(Φ). Furthermore, a shortest
path from s to t in G can be computed in O(n2ε−8 log n) time.

7.2 Handling nearby configurations

We now describe how we compute an (s, t)-plan of cost at most (1+ ε)¢(π∗) even when ¢(π∗) ≤ 1/4.
The algorithm described in the following Section 8 (cf . Lemma 8.1) either reports an 8-approximation
γ ≤ 2 of ¢(π∗), i.e., ¢(π∗) ≤ γ ≤ 8¢(π∗), or it reports that ¢(π∗) > 1/4. So we first run this
algorithm. If it reports ¢(π∗) > 1/4, we run the algorithm above (with improved runtime). Otherwise,
we have γ ≤ 2 and ¢(π∗) ≤ γ ≤ 8¢(π∗). Then γ/8 ≤ ¢(π∗) ≤ γ ≤ 2. In this case, we simply run the
above algorithm except we set ε := γε/c0 for a parameter c0 > 0 to be chosen later and set ∆ := γ.
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Then Ṽ contains (γ + 2ε)-close points and |Ṽ| = O(n∆2/ε2) = O(nγ2/(γε)2) = O(n/ε2).
Following the same argument as in the proof of Lemma 7.1, we claim that c0 can be chosen so that
there exists a (∆+ 2ε)-tame plan π′ with ¢(π′) ≤ (1 + ε)¢(π∗) and all parking places of π′ are in Ṽ.

To prove the claim, note that π∗ is trivially (∆ = γ)-tame since ¢(π∗) ≤ γ. By Lemma 3.6, we
have

α(π∗) ≤ c2(¢(π∗) + 1) ≤ 3c2

for a constant c2 > 0. Then, by Lemma 6.2 with ε as parameter ε, there exists a decoupled,
(∆ + 2ε)-tame, ε-nearly-kissing plan π′ with all parking places of π′ in Ṽ and

¢(π′) ≤ ¢(π∗) + εα(π∗) ≤ ¢(π∗) + 3c2ε = ¢(π∗) + 3c2γε/c0 ≤ (1 + 24c2ε/c0)¢(π∗),

where the last inequality follows by ¢(π∗) ≥ γ/8. So we choose c0 := 1/(24c2). This proves the
claim. The rest of the analysis follows from the previous algorithm, including the runtime analysis,
since the algorithm from Lemma 8.1 only takes O(n log2 n) additional time.

8 O(1)-Approximate Plans for Close Configurations

In this section we prove Lemma 8.1, which states we can compute either an 8-approximation γ of
π∗ or detect that ¢(π∗) > 1/4 in O(n log2 n) time. First, we introduce some notations.

If all moves of a plan π are xy-monotone, we say π is xy-monotone. For a (piecewise-linear)
xy-monotone (s, t)-plan π, s, t ∈ F, let $(π) be the L1-cost of π, i.e., if ⟨u1, u2, . . . , ug⟩ (resp.,
⟨v1, v2, . . . , vh⟩) is the sequence of vertices of πA (resp., πB), then

$(π) =

g−1∑
i=1

||ui − ui+1||1 +
h−1∑
i=1

||vi − vi+1||1.

Recall that we say a configuration (a, b) ∈ F is x-separated if |x(a)− x(b)| ≥ 2 and is y-separated if
|y(a)− y(b)| ≥ 2. We now describe the algorithm given in the following main lemma of this section.

Lemma 8.1. Let W be a polygonal environment with n vertices, let A,B be two robots each modeled
as a unit square, and let s = (sA, sB), t = (tA, tB) ∈ F. There is an algorithm that in O(n log2 n)
time either reports a value γ ≤ 2 with ¢(π∗) ≤ γ ≤ 8¢(π∗) or reports that ¢(π∗) > 1/4; when both
such a value γ exists and ¢(π∗) > 1/4, it reports either outcome arbitrarily.

Algorithm. Let □A := (sA + (1/4)□) ∩ (tA + (1/4)□) and □B := (sB + (1/4)□) ∩ (tB + (1/4)□).
The algorithm searches for a (s, t)-plan π = (πA, πB) contained in □A × □B with α(π) ≤ 4 and
minimum L1-cost, $(π). As we will prove, the search only needs to be successful at finding such a
plan when ¢(π∗) ≤ 1/4, so the algorithm is described assuming that is true.

We now describe the rest of the algorithm assuming that A moves first; by repeating the
subroutines with the roles of A and B swapped we cover both cases. There are three main steps.

Step (I). We first do a simple check. Let CA (resp., CB) be the component of □A ∩ F (resp.,
□B ∩ F) containing sA (resp., sB). If tA /∈ CA (resp., tB /∈ CB) then sA, tA (resp., sB, tB) lie in
different components of F ∩ □A (resp., F ∩ □B) and we report that ¢(π∗) > 1/4. Otherwise, we
proceed to Step (II).
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Figure 21. Illustration of sA, tA, sB , tB positioned as assumed in Step (III) of the algorithm in Lemma 8.1, where
sA +□, sB +□ are solid and tA +□, tB +□ are dashed.

Step (II). Now let C ′
A ⊆ CA (resp., C ′

B ⊆ CB) be the component of CA ∩ F[sB] (resp., CB ∩ F[tA])
containing sA (resp., tB). It is possible that CA = C ′

A or CB = C ′
B. We next check if there exists

a plan with at most two moves: We first check if tA ∈ C ′
A and sB ∈ C ′

B. If so, there exists an
xy-monotone path πA from sA to tA in C ′

A, i.e., while B is parked at sB, and an xy-monotone path
from sB to tB in C ′

B, i.e., while A is parked at tA, by Lemma 3.4. Then we report the cost ¢(π) of
the corresponding xy-monotone plan π. Otherwise, we proceed to the next step, Step (III).

We will later prove that if ¢(π∗) ≤ 1/4 and s, t are both x-separated or both y-separated, then
Step (II) must find and report a plan π. Hence s is only x-separated and t is only y-separated, or
vice-versa. So, we continue our search for a plan π assuming without loss of generality that s is
x-separated and t is y-separated in Step (III).

Step (III). For concreteness, assume that

x(sB) ≤ x(sA)− 2 and y(tB) ≤ y(tA)− 2.

Under the assumption ¢(π∗) ≤ 1/4 it can be shown that

x(sB) ≤ x(sA)− 2 and y(sA)− 2 < y(sB) ≤ y(sA)− 7/4,

and
y(tB) ≤ y(tA)− 2 and x(tA)− 2 < x(tB) ≤ x(tA)− 7/4.

See Figure 21. We search for a plan π with at most four moves, i.e., π is of the following form, for
two points pA ∈ □A ∩ F and pB ∈ □B ∩ F:

⟨π⟩ = (A, π1, sB), (B, π2, pA), (A, π3, pB), (B, π4, tA).

If pA (resp., pB) is sA or tA (resp., sB or tB), then the first or last move by A (resp., B) is the
trivial path, respectively. For any configuration (pA, pB) ∈ F, let Π(pA, pB) be the plan where A
moves from sA then parks at pA on the first move, B moves from sB then parks at pB on the second
move, A moves from pA then parks at tA on the third move, and finally B moves from pB to tB
on the fourth move (if possible). We define a set of candidate configurations in F, then we choose
and report the plan Π(pA, pB) which is feasible and minimizes its L1-cost $(Π(pA, pB)) over all
candidate configurations (pA, pB). The details are as follows.

Let LA be the set of axis-parallel lines that contain sA, tA, i.e.,

LA := {x = x(sA), y = y(sA), x = x(tA), y = y(tA)},
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and let LB be the set of axis-parallel lines that contain sB, tB. Let ϕ be the vector (1, 1). Let Q̃ be
the overlay of (C ′

A ∪ LA)− ϕ and (C ′
B ∪ LB) + ϕ. Finally, let Q̃|| be the overlay of Q̃ with a set of

vertical lines through every vertex of Q̃. Then every vertex of Q̃|| lies on a vertical line that contains
at least one real vertex of Q̃. Let Ṽ be the vertices of Q̃||. Let P̃ ⊆ Ṽ × Ṽ be the subset of pairs
(p̃A, p̃B) such that:

(i) p̃A + ϕ ∈ C ′
A and p̃B − ϕ ∈ C ′

B, and

(ii) x(p̃A) = x(p̃B) and y(p̃A) ≥ y(p̃B), i.e., p̃B lies below p̃A on the same vertical line,

(iii) and the plan Π(p̃A + ϕ, p̃B − ϕ) is feasible.

If |P̃| = ∅, we report that ¢(π∗) > 1/4. Otherwise, we report the L2-cost ¢(Π(p̃A + ϕ, p̃B − ϕ))

of the corresponding plan Π(p̃A + ϕ, p̃B − ϕ) for the pair (p̃A, p̃B) ∈ P̃ that minimizes the L1-cost
$(Π(p̃A + ϕ, p̃B − ϕ)).

This concludes the algorithm.

Correctness. It is easy to verify that if the algorithm succeeds to find a plan π and reports its
L2-cost ¢(π) in Step (II) or Step (III) that π ⊂ □A × □B, α(π) ≤ 4, and π is feasible. If the
algorithm reports ¢(π∗) > 1/4 in Step (I), then sA, tA (resp., sB, tB) lie in different components of
CA (resp., CB) and hence the path πA (resp., πB) in any feasible (s, t)-plan (πA, πB) must exit □A

(resp., □B). So the algorithm behaves correctly in this case. If the algorithm reports a plan π in
Steps (II) or (III), all parking places of A (resp., B) are contained in □A (resp., □B) and hence the
L2-cost of each (xy-monotone) move is at most 1/2. It follows that ¢(π) ≤ (1/2)α(π) ≤ 2.

First suppose ¢(π∗) > 1/4. If the algorithm fails in both Step (II) and Step (III) to find any
path and report its cost, it correctly reports ¢(π∗) > 1/4. Otherwise, the algorithm reports the cost
¢(π) of a plan π, where ¢(π) ≤ 2 by the discussion above. Then

¢(π∗) ≤ ¢(π) ≤ 2 ≤ 8¢(π∗).

In either case, the algorithm behaves as claimed.
Next, suppose ¢(π∗) ≤ 1/4. If the algorithm succeeds in Step (II), the cost reported is ¢(π∗),

and the algorithm behaves as claimed. So suppose Step (II) fails. As claimed in the description of
the algorithm, it must be that s is only x-separated and t is only y-separated, or vice-versa. Indeed,
for sake of contradiction, suppose s, t are both, say, x-separated. Then Lemma 3.5 implies there
exists an (optimal xy-monotone) (s, t)-plan with at most two moves since there is a unit square
that contains □A and one that contains □B. Step (II) checks for such plans, so it must succeed in
this case, which is a contradiction. Henceforth, we assume A moves first in π∗ and s, t are oriented
as assumed in the algorithm, i.e., s is only x-separated and t is only y-separated,

x(sB) ≤ x(sA)− 2 and y(sA)− 2 < y(sB) ≤ y(sA)− 7/4,

and
y(tB) ≤ y(tA)− 2 and x(tA)− 2 < x(tB) ≤ x(tA)− 7/4.

To finish the proof, we prove that Step (III) succeeds to find a plan π ⊂ □A ×□B, under the
assumption that ¢(π∗) ≤ 1/4, with ¢(π) ≤ 8¢(π∗). Let (π∗A, π

∗
B) = π

∗. Since π∗A, π
∗
B are continuous,

there is a time instance λ ∈ (0, 1) such that (qA, qB) = π
∗(λ) is both x-separated and y-separated, in

particular, |x(qA)− x(qB)| = 2. Then qA ∈ □A, qB ∈ □B , and x(qB) = x(qA)− 2 since ¢(π∗) ≤ 1/4
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and x(sB) < x(sA)− 2. By Lemma 3.4, there exists an xy-monotone optimal (s, q)-plan π0 with at
most two moves, since s, q are both x-separated, and there exists an xy-monotone optimal (q, t)-plan
π1 with at most two moves, since q, t are both y-separated. Then ⟨π0⟩ ◦ ⟨π1⟩ is an xy-monotone
optimal (s, t)-plan. So assume ⟨π∗⟩ = ⟨π0⟩ ◦ ⟨π1⟩. In particular, π∗ is of the form

⟨π∗⟩ = (A, π1, sB), (B, π2, qA), (A, π3, qB), (B, π4, tA).

Then π1 ⊂ C ′
A (resp., π4 ⊂ C ′

B) and hence qA ∈ C ′
A (resp., qB ∈ C ′

B). Let q̃A := qA − ϕ (resp.,

q̃B := qB +ϕ), and let g̃A (resp., g̃B) be the cell of Q̃|| containing q̃A (resp., q̃B). By definition of Q̃||

and the fact that qA ∈ C ′
A (resp., qB ∈ C ′

B), we have g̃A ⊆ C ′
A − ϕ (resp., g̃B ⊆ C ′

B + ϕ). See that
x(q̃B) = x(q̃A) and y(q̃B) ≤ y(q̃A) since x(qB) = x(qA)− 2 and y(qB) ≤ y(qA)− 2. That is, q̃A, q̃B
lie on the same vertical line with q̃A above q̃B.

Let p̃A := q̃A and p̃B := q̃B initially. Then $(Π(p̃A + ϕ, p̃B − ϕ)) = $(π∗). Using the fact that Q̃
includes the lines of LA −ϕ,LB +ϕ and the convexity of g̃A, g̃B, it can be shown that p̃A, p̃B can be
shifted to vertices of g̃A, g̃B, respectively, while maintaining that x(p̃B) = x(p̃A), y(p̃B) ≤ y(p̃A), and
$(Π(p̃A + ϕ, p̃B − ϕ)) = $(π∗). Then there exists a pair (p̃A, p̃B) ∈ Ṽ × Ṽ where p̃A (resp., p̃B) is a
vertex of g̃A (resp. g̃B) with $(Π(p̃A + ϕ, p̃B + ϕ)) ≤ $(π∗). That is, (p̃A, p̃B) satisfies conditions (i)

and (ii) in the definition of P̃.

To finish the proof, it suffices to prove (p̃A, p̃B) satisfies condition (iii) so that (p̃A, p̃B) ∈ P̃. To
this end, we show that conditions (i) and (ii) imply (iii); i.e., (iii) is only included to make it by
definition that the algorithm only reports costs of feasible plans in Step (III). Let (p̃A, p̃B) ∈ Ṽ × Ṽ
be a pair that satisfies conditions (i) and (ii). Let pA := p̃A + ϕ and pB := p̃B − ϕ. By definition
of C ′

A and C ′
B and conditions (i) and (ii), we have pA ∈ C ′

A, pB ∈ C ′
B, and (pA, pB) ∈ F. Then

there is a xy-monotone path π1 ⊂ F[sB] from sA to pA and an xy-monotone path π4 ⊂ F[tA] from
pB to tB by Lemma 3.4. We next show there is an xy-monotone path π3 ⊂ F[pB] from pA to
tA. Since pA, tA ∈ CA, there exists an xy-monotone path π3 ⊂ CA from pA to tA by Lemma 3.4.
It remains to show π3 ∩ int(pB + 2□) = ∅ so that we may conclude π3 ⊂ CA \ (pB + 2□) ⊂
F[pB]. By definition, C ′

B ⊂ F[tA], and pB ∈ C ′
B, so (tA, pB) ∈ F. Then x(pB) + 2 ≤ x(tA) or

y(pB) + 2 ≤ y(tA). By condition (ii) and the fact π3 is xy-monotone, in the former case we have
x(pB) + 2 = x(pA) ≤ x(tA) so π3 does not cross left of the line x = x(pB) + 2, and in the latter
case we have y(pB) + 2 ≤ y(pA), y(tA) so π3 does not cross below the line y = y(pB) + 2. Hence,
in either case, π3 ∩ int(pB + 2□) = ∅, i.e., π3 ⊂ F[pB], as desired. A symmetric argument implies
there is an xy-monotone path π2 ⊂ F[pA] from sB to pB. Putting everything together, the plan π
with ⟨π⟩ = (A, π1, sB), (B, π2, pA), (A, π3, pB), (B, π4, tA) is a (s, t)-plan with $(π) = $(π∗). Then
¢(π) ≤

√
2$(π∗) ≤ 8¢(π∗), which completes the proof.

Runtime analysis. We first compute the components CA, C
′
A, CB, C

′
B in O(n log2 n) time [12].

Then Step (I) and Step (II) take O(n) time. Consider Step (III). Since C ′
A and C ′

B are xy-monotone
by Lemma 3.4, the O(1) lines in LA − ϕ,LB + ϕ each intersect O(1) segments of C ′

A − ϕ,C ′
B + ϕ, so

the overlay Q̃ has O(n) vertices and is computed in O(n log n) time. Furthermore, the vertical lines
overlayed with Q to define Q̃|| each intersects O(1) segments of Q̃, so Q̃|| and its set of vertices Ṽ is
also computed in O(n log n) time. Then there are O(1) vertices in Ṽ that lie on any vertical line. It

follows that, by condition (ii) in the definition of P̃, |P̃| = O(n); in particular, O(1) pairs in P̃ lie
on any common vertical line. For a given pair (p̃A, p̃B) ∈ Ṽ × Ṽ , condition (i) is checked in O(1)
time by marking the faces g of Q̃|| which of C ′

A − ϕ,C ′
B + ϕ (possibly both) that contain g when Q̃||

is computed. Condition (iii) is implied by (i) and (ii), as argued above, so it does not need to be
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checked directly (it is only included in the defintion so that the algorithm obviously only reports

costs of feasible plans). It follows that P̃ can be computed in O(n) time. If |P̃| = 0 we report
¢(π∗) > 1/4, otherwise we find the pair (p̃A, p̃B) for which ¢(Π(p̃A + ϕ, p̃B − ϕ)) is minimized in
O(1) time per pair, using the fact that

¢(Π(p̃A + ϕ, p̃B − ϕ)) = ||sA− (p̃A+ϕ)||1+ ||(p̃A+ϕ)− tA||1+ ||sB− (p̃B−ϕ)||1+ ||(p̃B−ϕ)− tB||1.

Overall, the algorithm takes O(n log2 n) time.

9 Conclusion

We have described a (1 + ε)-approximation algorithm for the min-sum motion planning problem for
two congruent square robots in a planar polygonal environment with running time n2ε−O(1) log n,
i.e., our algorithm is an FPTAS. We also describe an O(n log2 n)-time 8-approximation algorithm
for the problem when the cost of the optimal plan is less than 1/4, which is used as a subroutine in
our FPTAS. We conclude with some questions for future work. Can our techniques be extended

(i) to obtain a (1 + ε)-approximation algorithm for min-sum motion planning for k > 2 robots
with running time (n/ε)O(k)?

(ii) to work for translating robots with congruent shapes other than squares, such as other
centrally-symmetric regular polygons, disks, or convex polygons?

(iii) to optimize both clearance and the total lengths of the paths in some fashion, where clearance
is the minimum distance from any robot to any other robot or obstacle during the plan?
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References

[1] P. K. Agarwal, K. Fox, and O. Salzman. An efficient algorithm for computing high-quality
paths amid polygonal obstacles. ACM Trans. Alg., 14(4):46:1–46:21, 2018.

[2] P. K. Agarwal, T. Geft, D. Halperin, and E. Taylor. Multi-robot motion planning for unit discs
with revolving areas. Comput. Geom., 114:102019, 2023.

[3] B. Aronov, M. de Berg, A. F. van der Stappen, P. Svestka, and J. Vleugels. Motion planning
for multiple robots. Discret. Comput. Geom., 22(4):505–525, 1999.

[4] T. Asano, D. G. Kirkpatrick, and C.-K. Yap. d1-optimal motion for a rod (extended abstract).
In Proc. 12th Annual Sympos. Comput. Geom., pages 252–263. ACM, 1996.

[5] T. Asano, D. G. Kirkpatrick, and C.-K. Yap. Minimizing the trace length of a rod endpoint in
the presence of polygonal obstacles is NP-hard. In Proc. 15th Canadian Conf. Comput. Geom.,
pages 10–13, 2003.

[6] T. Brocken, G. W. van der Heijden, I. Kostitsyna, L. E. Lo-Wong, and R. J. A. Surtel. Multi-
robot motion planning of k-colored discs is PSPACE-hard. In FUN, volume 157 of LIPIcs,
pages 15:1–15:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

46



[7] J. Brunner, L. Chung, E. D. Demaine, D. H. Hendrickson, A. Hesterberg, A. Suhl, and A. Zeff.
1 X 1 rush hour with fixed blocks is PSPACE-complete. In 10th International Conference on
Fun with Algorithms, volume 157, pages 7:1–7:14, 2021.

[8] J. Canny and J. Reif. New lower bound techniques for robot motion planning problems. In
Proceedings IEEE Symposium on Foundations of Computer Science, pages 49–60, 1987.

[9] J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA, 1988.

[10] D. Z. Chen and H. Wang. Computing shortest paths among curved obstacles in the plane.
ACM Trans. Alg., 11(4):1–46, 2015.

[11] D. Dayan, K. Solovey, M. Pavone, and D. Halperin. Near-optimal multi-robot motion planning
with finite sampling. IEEE Trans. Robotics, 39(5):3422–3436, 2023.

[12] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars. Computational Geometry:
Algorithms and Applications, 3rd Edition. Springer, 2008.

[13] E. D. Demaine, S. P. Fekete, P. Keldenich, H. Meijer, and C. Scheffer. Coordinated motion
planning: Reconfiguring a swarm of labeled robots with bounded stretch. SIAM J. Comput.,
48(6):1727–1762, 2019.

[14] G. Esteban, D. Halperin, V. Rúız, V. Sacristán, and R. I. Silveira. Shortest coordinated motions
for square robots. In Algorithms and Data Structures - 18th International Symposium WADS,
volume 14079 of Lecture Notes in Computer Science, pages 430–443. Springer, 2023.

[15] S. Fortune, G. T. Wilfong, and C.-K. Yap. Coordinated motion of two robot arms. In Proc.
1986 Int. Conf. Robotics and Automation, pages 1216–1223. IEEE, 1986.

[16] D. Halperin, L. Kavraki, and K. Solovey. Robotics. In J. E. Goodman, J. O’Rourke, and
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