
Linear-Sized Sparsifiers via
Near-Linear Time Discrepancy Theory

Arun Jambulapati∗ Victor Reis† Kevin Tian‡

Abstract

Discrepancy theory has provided powerful tools for producing higher-quality objects which
“beat the union bound” in fundamental settings throughout combinatorics and computer science.
However, this quality has often come at the price of more computationally-expensive algorithms.
We introduce a new framework for bridging this gap, by allowing for the efficient implementation
of discrepancy-theoretic primitives. Our framework repeatedly solves regularized optimization
problems to low accuracy to approximate the partial coloring method of [Rot17], and simplifies
and generalizes recent work of [JSS23] on fast algorithms for Spencer’s theorem. In particular,
our framework only requires that the discrepancy body of interest has exponentially large Gaus-
sian measure and is expressible as a sublevel set of a symmetric, convex function. We combine
this framework with new tools for proving Gaussian measure lower bounds to give improved
algorithms for a variety of sparsification and coloring problems.

As a first application, we use our framework to obtain an Õ(m · ε−3.5) time algorithm for
constructing an ε-approximate spectral sparsifier of an m-edge graph, matching the sparsity of
[BSS14] up to constant factors and improving upon the Õ(m · ε−6.5) runtime of [LS17]. We
further give a state-of-the-art algorithm for constructing graph ultrasparsifiers and an almost-
linear time algorithm for constructing linear-sized degree-preserving sparsifiers via discrepancy
theory; in the latter case, such sparsifiers were not known to exist previously. We generalize
these results to their analogs in sparsifying isotropic sums of positive semidefinite matrices.
Finally, to demonstrate the versatility of our technique, we obtain a nearly-input-sparsity time
constructive algorithm for Spencer’s theorem (where we recover a recent result of [JSS23]).

∗University of Washington, jmblpati@uw.edu
†University of Washington, voreis@cs.washington.edu
‡Microsoft Research, tiankevin@microsoft.com

1

ar
X

iv
:2

30
5.

08
43

4v
1

 [
cs

.D
S]

 1
5

M
ay

 2
02

3

Contents

1 Introduction 1
1.1 Our results . 2
1.2 Technical overview . 5
1.3 Related work . 6

2 Preliminaries 7

3 Approximate partial coloring framework 8

4 Gaussian measure lower bounds 13
4.1 Reduction to Gaussian distance bound . 13
4.2 Operator norm discrepancy bodies . 15

5 Linear-sized sparsifiers 16
5.1 Approximate Gaussian rounding in nearly-linear time 16
5.2 Linear-sized sparsifiers in nearly-linear time . 17
5.3 Graph sparsification . 20

6 Ultrasparsifiers 21

7 Degree-preserving sparsifiers 23
7.1 Approximate Gaussian rounding with linear constraints 23
7.2 Degree-preserving linear optimization oracle . 25
7.3 Degree-preserving rounding via link/cut trees . 27
7.4 Degree-preserving sparsifiers in almost-linear time . 28
7.5 Runtime-sparsity tradeoffs . 29

8 Spencer’s theorem 31

A Proof of Theorem 4 39

B Optimization subroutines 42
B.1 Discussion of Proposition 5 . 42
B.2 Proof of Lemma 23 . 43

C Low-distortion subgraph construction 44

1 Introduction

Throughout the history of theoretical computer science and combinatorics, the development of dis-
crepancy theory has yielded techniques for producing high-quality objects which minimize deviation
from typical behavior. As a well-known example which has received significant recent attention,
Spencer’s “six standard deviations suffice” theorem [Spe85] says that for any matrix A ∈ {0, 1}n×n,
whose rows indicate n sets Si ⊆ [n], there exists at least one coloring x ∈ {−1, 1}n such that
‖Ax‖∞ ≤ 6

√
n; we remark that the problem has a combinatorial interpretation as choosing colors

to minimize the largest color discrepancy in any set. Notably, this result improves upon the quality
of a random coloring x, which achieves ‖Ax‖∞ = Θ(

√
n log n) with high probability for random

set systems, by standard concentration and anti-concentration arguments. Discrepancy-theoretic
arguments of a similar nature have led to significant progress in a variety of fields spanning compu-
tational geometry, complexity theory, approximation algorithms, numerical analysis, graph theory,
and experimental design [Mat99, Cha01, BSS14, HSSZ19, ZBG+22].

However, the development of computationally-efficient algorithms for discrepancy minimization
is comparatively rather nascent. To use Spencer’s theorem as an example, while [Spe85] shows the
existence of low-discrepancy colorings, these colorings are highly atypical and it is not immediately
clear how to find one algorithmically. Roughly a decade ago, a sequence of works [Ban10, LM15,
HSS14, Rot17, ES18] gave constructive discrepancy algorithms in settings including Spencer’s set
coloring problem and variants thereof, settling the polynomial-time computability of high-quality
colorings of set systems. The works of [Rot17, ES18] in particular provided very general frameworks
for discrepancy minimization. For example, given a symmetric, convex “discrepancy body” K (e.g.
K := {x ∈ Rn | ‖Ax‖∞ = O(

√
n)} in Spencer’s setting) with an exp(−O(n)) Gaussian measure

lower bound, [Rot17] showed that the nearest point in K∩ [−1, 1]n to a random Gaussian vector has
a constant fraction of tight hypercube constraints with high probability. A similar statement was
shown by [ES18] for the solution to a suitable linear program, and these “partial coloring by Gaussian
rounding” subroutines naturally induce full discrepancy minimization algorithms via recursion.

While the constructive frameworks of [Ban10, LM15, HSS14, Rot17, ES18] are elegant and
simple to state, their straightforward implementation requires the black-box use of powerful convex
programming primitives such as high-accuracy linear or semidefinite programming solvers, which
incur substantial runtime overhead. This has led to a recurring theme in algorithmic discrepancy
theory: attaining higher object quality may come at the price of worse computational efficiency.

A recent exciting work by [JSS23] was able to overcome this hurdle for the specific setting of
Spencer’s theorem, by leveraging approximate linear programming solvers running in near-linear
time. Specifically, [JSS23] designed an algorithm which produces a coloring x ∈ {−1, 1}n satisfying
‖Ax‖∞ = O(

√
n) in time Õ(nnz(A) +n), by efficiently solving the linear programs required by the

[ES18] framework and quantifying their approximation tolerance. However, the [JSS23] analysis
relied on properties tailored to the setting of Spencer’s theorem, specifically an exponential lower
bound on the probability that a random coloring achieves ‖Ax‖∞ = O(

√
n). Such a statement is

not known to hold in various other discrepancy-theoretic settings of interest, such as the Komlós
problem, even when the corresponding Gaussian measure lower bound required by the [Rot17,
ES18] frameworks is known. Our work is motivated by the current lack of a general-purpose,
approximation-tolerant framework for discrepancy minimization under the minimal requirements
of symmetry, convexity, and a Gaussian measure lower bound, which may pave the way towards
near-linear time algorithms in discrepancy-theoretic settings beyond Spencer’s theorem.

1

1.1 Our results

Discrepancy minimization framework. We introduce a new approximation-tolerant variant
of the Gaussian rounding framework of [Rot17]. Before stating its guarantees, we first briefly recall
the main result of [Rot17], deferring a more extended discussion to Section 3. Given a symmetric
convex set1 K ⊆ Rm with γm(K) = exp(−O(m)) (see Section 2 for notation), Theorem 2 of [Rot17]
shows that with high probability over a randomly sampled Gaussian vector g ∼ N (0m, Im), letting

x? := arg min
x∈K∩[−1,1]m

‖x− g‖2 ,

we have |{i | |[x?]i| = 1}| = Ω(m). In other words, by rounding g to the intersection of K and
[−1, 1]m, a constant fraction of the hypercube constraints |[x?]i| ≤ 1 are saturated. When K is
taken to be a discrepancy body, e.g. K = {x ∈ Rm | ‖Ax‖∞ = O(

√
m)} in Spencer’s setting, the

result of [Rot17] implies that we can freeze a constant fraction of colors at ±1 without incurring
much discrepancy, and recurse on the uncolored coordinates. High-precision computation of x? is
further polynomial-time tractable, as it is the solution to a convex optimization problem.

Our approximation-tolerant framework also applies to any symmetric, convex K ⊆ Rm with
large γm(K) (as in [Rot17]), but is most easily described when

K = {x ∈ Rm | f(x) ≤ ρ} ,

where K is expressed as a sublevel set of a symmetric, convex function f : Rm → R, and ρ ≥ 0 is a
“discrepancy radius.” All symmetric convex sets trivially satisfy this description by letting ρ = ∞
and f be the indicator function of the set, but in many applications of interest (explored throughout
the paper), K is naturally characterized as a sublevel set with finite ρ. In Section 3, we show that
for a parameter β ∈ (0, 1), solving Õ(1) regularized problems of the form2

min
x∈[−1,1]m

f(x) + λ ‖x− g‖22

to additive accuracy Θ(ρβ2) suffices to produce a point x ∈ K ∩ [−1, 1]m with |{i | |xi| ≥ 1 −
β}| = Ω(m). In other words, by approximately solving a sequence of regularized optimization
problems to accuracy Θ(ρβ2), our framework yields a point with low discrepancy and many nearly-
saturated hypercube constraints. In applications such as Spencer’s setting, this additive accuracy
is fairly generous: taking β to be inverse-polylogarithmic means we only need to optimize the
regularized objective to error ≈

√
m, which is efficiently implementable in input-sparsity time (after

applying reductions from [JSS23]) via stochastic first-order methods. Furthermore, these nearly-
saturated coordinates of our approximate solution x can then be randomly rounded to exactly be
in {±1} without incurring much additional discrepancy. In our graph-theoretic applications of our
approximation-tolerant framework, we handle the nearly-saturated coordinates recursively.

As a direct application of our framework in Section 3, we show how to combine it with exist-
ing stochastic optimization methods from [CJST20] to recover the main result of [JSS23] through
arguably a simpler approach, which does not rely on structural properties of Spencer’s problem
beyond a Gaussian measure lower bound. This result is provided in Section 8.

1Throughout the exposition in this section, we let the dimensionality of our coloring variable x be denoted m
for consistency with our graph-theoretic applications, and state the implications of our results in Spencer’s setting
(whose dimension is typically denoted by n) consistently in an abuse of notation.

2Here and throughout the paper, we use the notation Õ(·) to hide polynomial factors in logn and log(1
ε
) and Ŏ(·)

to hide polynomial factors in log log n and log log(1
ε
). We defer our notational conventions to Section 2.

2

Linear-sized sparsifiers. We next illustrate how our framework allows us to leverage powerful
discrepancy-theoretic tools to design fast algorithms for the problem of graph sparsification. Given
a parameter ε ∈ (0, 1) and a graph G on n vertices and m edges, with Laplacian LG ∈ Rn×n, the
goal is to find a reweighted subgraph H of G with much fewer edges and Laplacian LH , satisfying

(1− ε)LG � LH � (1 + ε)LG.

A well-known result of [SS11] shows that randomly sampling edges of G proportionally to their
effective resistances yields a reweighted subgraph H satisfying the above guarantee with O(n log n ·
ε−2) edges. The proof of correctness of such a sampling strategy is via a direct application of a
matrix Chernoff concentration bound. Further, by using sketching techniques and specialized linear
system solvers, the [SS11] sparsifiers can be constructed in nearly-linear time Õ(m). However, this
size bound is not optimal: a breakthrough work by [BSS14] gave a polynomial-time algorithm for
constructing a spectral sparsifier H with O(n · ε−2) edges, later shown to be tight [CKST19]. We
call such a subgraph H a linear-sized sparsifier (an accurate description for constant ε).

The [BSS14] sparsification result is discrepancy-theoretic in nature, as it improves the quality
of a randomly sampled sparsifier (where the quality is the number of edges). Interestingly, however,
the techniques used to construct linear-sized sparsifiers are quite different than those employed by
the aforementioned works [Ban10, LM15, HSS14, Rot17, ES18]. Indeed, the original announcement
of [BSS14] predates all of these works, so at the time Spencer’s theorem was not even algorithmic.
Instead, the sparsifier of [BSS14] is constructed one edge at a time, guided by the careful use of a
potential function which controls the discrepancy. A sequence of follow-up works [ZLO15, LS18]
culminated in the current state-of-the-art algorithm of [LS17], which obtains a linear-sized sparsifier
in time Õ(m · ε−6.5), using structured semidefinite program solvers to efficiently implement updates
against a modification of [BSS14]’s potential based on the trace of a matrix exponential.

We give an improved algorithm for linear-sized sparsification via our framework. We prove the
following in Section 5 as a special case of a result on sparsifying isotropic matrix sums (Theorem 5).
Our result almost quadratically improves upon the ε dependence of [LS17].

Theorem 1. Given a graph G = (V,E,wG) with m = |E|, n = |V |, and ε ∈ (0, 1), there is a
randomized algorithm which in time Ŏ(m log4(m) log(1

ε)·ε−3.5) returns w ∈ RE≥0 satisfying nnz(w) =
O(n

ε2
), such that with high probability in n,

(1− ε)LG �
∑
e∈E

webeb
>
e � (1 + ε)LG.

We remark that Theorem 1 follows from an instantiation of our framework in Section 3, using
an approximate Laplacian linear system solver of [KMP11] and a recent approximate semidefinite
program solver from [JT23] to solve the resulting subproblems. Both of these results lie in active
areas of research, and improvements therein immediately imply faster algorithms for linear-sized
sparsification via our framework. We find it a promising proof-of-concept that we rely on more
conventional discrepancy-theoretic techniques (motivated by [Rot17, RR20]) to establish Theorem 1,
eschewing conventional wisdom that the use of such techniques comes at a computational price.

To our knowledge, no analog of the structural fact used in [JSS23] (where the set of sparse
reweightings which spectrally approximate G has inverse-exponentially large measure) is known in
the setting of spectral sparsification. In demonstrating Theorem 1, it is thus important that our
framework only relies on measure lower bounds known for the relevant operator norm balls.

Ultrasparsifiers. Ultrasparsifiers were introduced in [ST04] to dramatically reduce the number
of edges in a graph at a cost of a larger approximation factor, and can be viewed as “one-sided
ε > 1” variants of the sparsifiers in our earlier discussion. We define ultrasparsifiers as follows.

3

Definition 1 (Graph ultrasparsifiers). Let G be a graph on n vertices. A graph H is an (κ, `)-
ultrasparsifier of G if it has n− 1 + n

` edges and satisfies

LH � LG � κLH .

In general, taking ` → n and the fact that no tree is better than an O(n) approximation of a
clique implies the tightest ultrasparsifiers we can hope for in all regimes must have κ = Ω(`). The
first construction of graph ultrasparsifiers was achieved by [ST04], who gave a nearly-linear time
algorithm to construct (` logO(1)(n), `)-ultrasparsifiers for any ` ≥ 1. By applying a matrix Chernoff-
based random sampling argument, [KMP11] then gave a simpler construction of (Ŏ(` log2(n)), `)-
ultrasparsifiers in nearly-linear time. Further, using techniques inspired by the [BSS14] potential-
based argument, higher-quality ultrasparsifiers are known to be constructible in polynomial time:
[KMST10] constructed (Ŏ(` log(n)), `)-ultrasparsifiers based on state-of-the-art low-stretch span-
ning trees, and recently [JS21] constructed (`1+o(1) logo(1)(n), `)-ultrasparsifiers by going beyond
the low-stretch spanning tree framework. To the best of our knowledge, it is unknown how to adapt
the tools developed for fast linear-sized sparsification in [ZLO15, LS18, LS17] to the ultrasparsifier
setting, limiting the algorithmic uses of the higher-quality ultrasparsifiers of [KMST10, JS21].

In Section 6, we prove Theorem 6, a generalization of Theorem 1 which extends our discrepancy
minimization techniques to the ultrasparsifier setting. In fact, Theorem 6 follows as a corollary
of Theorem 1 in light of a new discrepancy-theoretic result we prove as Theorem 4. We then
apply Theorem 6 to obtain the following ultrasparsifier construction, matching the guarantees of
[KMST10, JS21] in nearly-linear time and potentially paving the way for their use in fast algorithms.

Corollary 1. Given a graph G = (V,E,wG) with m = |E|, n = |V |, and ` ≥ 1, there is a
randomized algorithm which in time Ŏ(m log4(m)) returns a (min(Ŏ(` log(n)), `1+o(1) logo(1)(n)), `)-
ultrasparsifier of G, with high probability in n.

Degree-preserving sparsifiers. As a final application of our framework, we turn our attention
to degree-preserving sparsification, a primitive introduced by [CGP+18] which asks for a spectral
sparsifier that also preserves the weighted degrees of all vertices. Degree-preserving sparsification
has arisen as a natural middle ground between undirected graph sparsification and directed graph
sparsification. Concretely, Eulerian sparsifiers of Eulerian graphs have become the de facto notion
of directed graph sparsification due to e.g. [CKP+16, PS22], which show how to reduce linear system
solving in directed graph Laplacians to Eulerian sparsification. A technique known as short-cycle
decomposition, introduced in [CGP+18] and refined in [LSY19, PY19], was previously used to obtain
efficient constructions of both (undirected) degree-preserving sparsifiers and (directed) Eulerian
sparsifiers by repeatedly performing degree-preserving operations. This motivates the study of
degree-preserving sparsification as a stepping stone towards more complex notions of sparsifiers.

Perhaps surprisingly, even the existence of linear-sized degree-preserving sparsifiers (with O(n ·
ε−2) edges) is not known. The state-of-the-art existential result in the literature is degree-preserving
sparsifiers with O(n log2 n · ε−2) edges, constructible in polynomial time [CGP+18, PY19]; we note
that [PY19] also gives an almost-linear time construction of O(n log3 n ·ε−2)-sized degree-preserving
sparsifiers.3 In Section 7, we give the following improved degree-preserving sparsification result.

Theorem 2. Given a graph G = (V,E,wG) with m = |E|, n = |V |, and ε ∈ (0, 1), there is a
randomized algorithm which returns w ∈ RE≥0 satisfying nnz(w) = O(n

ε2
), |B|>w = |B|>wG in time

O

(
(m+ Troute(α)) · α2 · poly

(
logm

ε

))
,

3We additionally remark that a size bound of O(n logn · ε−2) is known as folklore in the community: it follows
from combining the short-cycle decomposition of [CGP+18] with [BSS14].

4

for any α ≥ 1 following the notation of Definition 5, such that with high probability in n,

(1− ε)LG �
∑
e∈E

webeb
>
e � (1 + ε)LG.

The runtime of Theorem 2 is parameterized by the quality and runtime of state-of-the-art
oblivous routings, defined formally in Definition 5. As we recall in Proposition 10, current oblivous
routings [KLOS14] achieve Troute(α) = mno(1) for α = no(1), so Theorem 2 runs in almost-linear
time m1+o(1) · poly(ε−1). However, polylogarithmic-quality congestion approximators are known to
be constructible in time m · polylog(n) [Pen16], which are closely-related to oblivous routings; any
improvements on oblivous routing quality would then be reflected in Theorem 2 as well.

Finally, we note that expander decompositions (and the fact that electric routings are good
oblivous routings for expanders) can improve the runtime of Theorem 2, at the cost of a logarithmic
overhead in the sparsity. We give an algorithm achieving this runtime-sparsity tradeoff as Theorem 7.

1.2 Technical overview

Gaussian rounding via regularized optimization. Consider the setting of the [Rot17] frame-
work, where symmetric, convex K ⊆ Rm has exp(−O(m)) Gaussian measure. Further, let g ∼
N (0m, Im), and x? ∈ K ∩ [−1, 1]m minimize the distance to g, (so x? has a constant fraction
of coordinates at ±1). Our starting point is the observation that if x ∈ K ∩ [−1, 1]m satis-
fies ‖x− x?‖22 = O(mβ2) for an appropriate constant, then it must have many coordinates in
[−1,−1 + β] ∪ [1 − β, 1]; a simple proof is provided in Lemma 1. Moreover, strong convexity of
‖x− g‖22 then implies that to achieve this distance bound, it suffices to find x ∈ K ∩ [−1, 1]m

minimizing the squared distance to g up to O(mβ2), formalized in Lemma 2. In settings where
K = {x ∈ Rm | f(x) ≤ ρ}, we wish to find x achieving both small function value (according to f)
and distance to g. This motivates the consideration of regularized mixed objectives of the form

fλ(x) := f(x) + λ ‖x− g‖22 .

The bulk of Section 3 then develops a binary-search procedure which approximately minimizes fλ
over [−1, 1]m for different values of λ, and aggregates these solutions to achieve the desired distance
to x?. We give a formal statement in Proposition 2 quantifying the range of λ under consideration
by our search, as well as the accuracy levels required by our subproblem solvers (for optimizing fλ).

New tools for lower bounding Gaussian measure. To apply the framework of Section 3,
we require methods for proving Gaussian measure lower bounds for various discrepancy bodies.
For Spencer’s setting, since the discrepancy body is a polyhedron with O(m) facets, a Gaussian
measure lower bound follows from a routine application of the Sidak-Khatri correlation inequality
(see e.g. Lemma 8.9, [Rot16]). For non-polyhedral sets such as the operator norm balls arising
in spectral sparsification settings, however, naïve applications of Sidak-Khatri fall short. This
bottleneck was alleviated in part by [RR20], who proved that a different sufficient condition for the
[Rot17] framework holds for operator norm balls K arising in spectral sparsification settings, i.e.
K = {x ∈ Rm | ‖

∑
i∈[m] xiAi‖op ≤ ρ} for matrices {Ai}i∈[m]. Roughly speaking, the main result

of [RR20] shows that for any α, with probability ≥ 1
2 a random Gaussian vector lies at distance

O(α
√
m) from 1

αK (when ρ =
√
n/m). This was proven by conducting a controlled random walk,

where the output of the walk is close to a Gaussian and achieves good discrepancy. The same paper
asked whether a direct Gaussian measure lower bound holds for the relevant operator norm balls.

5

In Section 4, we augment [RR20] with two new results of potentially independent interest. The
first, Theorem 3, generically reduces Gaussian measure lower bounds for convex sets to statements
of the form proven by [RR20], and thus expands the Gaussian measure toolkit for non-polyhedral
sets. We use this result in conjunction with an extension of [Rot17] due to [RR22], which tolerates
intersections with a subspace, in our degree-preserving sparsification algorithms in Section 7. The
second, Theorem 4, generalizes the main result of [RR20] when the matrix set of interest is param-
eterized by an additional trace bound, and is crucial to our ultrasparsifier algorithms in Section 6.

Spectral sparsification and box-spectraplex games. In the remainder of the paper, we focus
on applications of our framework to spectral sparsification. Our algorithms for linear-sized sparsifiers
and ultrasparsifiers are essentially identical in light of Theorem 4, so we discuss the former. We begin
by observing that the subproblems required from our framework, when K is an operator-norm ball,
are structured semidefinite programs. In particular, they are expressible as box-spectraplex games,
which are bilinear minimax optimization problems between a min player living in the box [−1, 1]m,
and a max player living in the spectraplex {Y ∈ Rn×n | Tr(Y) = 1,Y � 0n}. We adapt a recent
nearly-linear time approximation algorithm for box-spectraplex games from [JT23] to solve our
subproblems to sufficiently high accuracy for the linear-sized sparsification recursion in [RR20] to
work out, up to a small error term which can be discarded. By using random initializations, we
only lose polyloglog factors in runtime over the solver of [JT23]. The only additional overhead in
Theorem 1 is from solving a Laplacian linear system to bring the problem into isotropic position.

Executing this strategy for degree-preserving sparsification requires more care: we need to make
sure all of our approximate solvers and intermediate rounding steps preserve the degree constraints.
We first discuss how to solve the subproblems required by our framework. We show that a Frank-
Wolfe method analyzed in the `∞ norm reduces the optimization problem to a small number of
approximate linear optimization problems over the intersection of [−1, 1]m and circulation space
(the kernel of a reweighted B>). We solve these linear optimization problems using oblivous rout-
ings (Definition 5), which both parameterize circulation space and precondition the optimization
problem. Finally, to handle the rounding error due to the recursion scheme, we develop a key sub-
routine implemented in nearly-linear time using dynamic data structures [ST83]. Our subroutine
lets us round a small flow on a bipartite graph efficiently, zeroing out a constant fraction of its
weights while preserving degrees, and without more than doubling any edge weight.

1.3 Related work

Algorithmic discrepancy theory. The theoretical computer science community has developed a
number of constructive discrepancy-theoretic proofs over the past decade, in the form of polynomial-
time algorithms. It is out of our scope to survey this wide body of work, but beyond those discussed
earlier on linear-sized sparsification and Spencer’s theorem, we refer the reader to additional exam-
ples in [BDG19, Coh16, BDGL19, DNTT18, BJSS20, ALS21, BLV22, PV23]. We further find it
interesting to develop an approximate implementation of the framework of [ES18] based on convex
programming under minimal assumptions, analogous to our implementation of [Rot17]. Finally, of
particular relevance to the themes of our paper are two recent algorithms for hereditary discrepancy
minimization in set sytems by [Lar23, DSW22]. The algorithm of [DSW22] runs in input-sparsity
time (in the indicator matrix) in some regimes. We find it potentially fruitful to explore improving
these runtimes, and broadening the range of problems to which their tools are applicable.

Approximate semidefinite programming. Our sparsification algorithms in Sections 5, 6, and 7
all rely on approximate solvers [JT23] for structured semidefinite programs expressible as box-

6

spectraplex games. Such problems naturally arise from our framework applied to operator norm
balls, as the minimization player lives in [−1, 1]m (the box), and the dual best response lives in the
spectraplex. We hence find investigating these games interesting, as any improvements to [JT23]
would reflect in our runtimes, and those of any future applications. For example, could we improve
runtimes via low-rank sketches which have found success in simplex-spectraplex games [KV05,
BBN13, GHM15, AL17, CDST19]? Improvements beyond rank reduction are also interesting, as the
matrix Spencer setting (which was nearly-resolved constructively in [BJM23]) induces an operator
norm ball, but the guarantees of current solvers lose poly(n) factors in the runtime there.

2 Preliminaries

General notation. We let Õ suppress polylogarithmic factors in problem parameters, and we let
Ŏ suppress polyloglogarithmic factors in problem parameters. We use [n] to denote {i ∈ N | i ≤ n}.
The `p norm of a vector argument is ‖·‖p. The all-zeroes and all-ones vectors of dimension d are
0d and 1d. For S ⊆ [d] where d is clear from context, 1S ∈ {0, 1}d is the vector which is 1 for
coordinates in S. We say vector v is s-sparse if at most s of its entries are nonzero. For vectors
u, v of equal dimension, u ◦ v is their coordinatewise product. We let Bd2 := {v ∈ Rd | ‖v‖2 ≤ 1},
and for sets K,K′ ⊂ Rd, K + K′ is their Minkowski sum. For convex sets A,B ⊆ Rd, N(A,B) is
their covering number, the fewest number of translates of B needed to cover A. We let N (µ,Σ)
be the Gaussian distribution of specified mean and covariance, and N≤τ (µ,Σ) sets any draw from
N (µ,Σ) with Euclidean norm more than τ to the zero vector. We use “with high probability in n”
to mean an event succeeds with probability 1− n−O(1), for an arbitrary constant.

Matrices. Matrices are denoted in boldface. The n× n identity matrix and all-zeroes matrix are
respectively In and 0n. The number of nonzero entries of a matrix or a vector argument is nnz(·).
The set of n × n real symmetric matrices (and respectively, real positive semidefinite and positive
definite matrices) is denoted Sn (and respectively, Sn�0 and Sn�0). We equip Sn with the trace inner
product 〈A,B〉 = Tr(AB) and Loewner partial ordering �. The Frobenius, operator, and trace
norms are denoted ‖·‖F, ‖·‖op, and ‖·‖tr, and correspond to the 2-norm, ∞-norm, and 1-norm of
the singular values of a matrix. For matrices {Ai}i∈[m] of equal dimension clear from context, we
associate a pair of operators A and A∗, taking a vector and matrix argument respectively. We let

A(x) :=
∑
i∈[m]

xiAi and A∗(Y) := {〈Ai,Y〉}i∈[m]. (1)

We let N (µ,Σ) denote the multivariate Gaussian with mean µ and covariance Σ, and γd denotes
the standard Gaussian density (of N (0d, Id)) in dimension d. We let Tmv(A) denote the time it
takes to compute Av for any vector v of appropriate dimension. Note that when A is explicit,
Tmv(A) = O(nnz(A)), where we let nnz(A) denote the number of nonzero entries in A. For any
ρ > 0 and operator A associated with a matrix set, we denote the associated “discrepancy body”
by

Kρ,A := {x ∈ Rm | ‖A(x)‖op ≤ ρ}. (2)

We denote the condition number (ratio of largest and smallest eigenvalues) of M ∈ Sn�0 by κ(M).

Graphs. We use the notation G = (V,E,wG) to denote an undirected graph G on vertex set V ,
where wG ∈ RE≥0 is the weight function on the edges E. When G is clear from context we let W :=

diag (wG) ∈ RE×E and we let |B| ∈ RE×V be the unsigned edge-vertex incidence matrix (i.e. with

7

two ones per row corresponding to incident vertices on an edge). We also let B ∈ RE×V be the signed
edge-vertex incidence matrix (where one of the ones per row is arbitrarily but consistently negated)
and L := B>WB be the graph Laplacian. We refer to the rows of B by {be}e∈E ∈ {−1, 0, 1}V . It
is well-known that x>Lx =

∑
e=(u,v)∈E [wG]e(xu−xv)2. The pseudoinverse of L (which has a kernel

in the 1V direction, i.e. it preserves the kernel of L) is denoted L†. When multiple graphs are in
discussion, we will subscript these matrices with G to disambiguate, i.e. LG is the Laplacian of G.
We denote the identity matrix on the subspace of RV orthogonal to the 1V direction by IV \1.

3 Approximate partial coloring framework

In this section, we recall the partial coloring method for discrepancy minimization from [Rot17],
and develop a binary search framework for approximating it efficiently. This framework will be our
primary workhorse in all our applications. First, [Rot17] gave a generic result which transforms
Gaussian measure lower bounds on a symmetric set K ⊂ Rm to a high-probability lower bound
on the number of “tight constraints” encountered by the closest point in K ∩ [−1, 1]m to a random
Gaussian vector. We state a strengthening by [RR22], which works for any exponential measure
lower bound, and also tolerates restriction to a linear subspace of sufficiently large dimension.

Proposition 1 (Theorem 6, [RR22]). Let K ⊆ Rm be symmetric and convex, and suppose there is
a constant C such that γm(K) ≥ exp(−Cm). There are constants ctight ∈ (0, 1) and Cset > 0 such
that if S ⊆ Rm is a linear subspace of dimension at least 2ctightm, g ∼ N (0m, Im), and xg is the
closest point to g in CsetK ∩ [−1, 1]m ∩ S, then with probability 1 − exp(−Ω(m)), at least ctightm
coordinates of xg have magnitude 1.

Proposition 1 is often referred to as a partial coloring result, as it fixes a number of coordinates
of x to ±1 (“colors”), and the remaining coordinates can be recursively handled. When the set K
is a discrepancy body (as it will be throughout this paper), this recursive application then leads to
discrepancy minimization algorithms. However, in this section we state our framework for a more
general abstract setting, which may be of further utility. Our framework yields an approximate
partial coloring result, i.e. it will only guarantee that x has many coordinates near ±1, but has the
benefit that in settings of interest it can be implemented efficiently via customized solvers.

Specifically, we consider the setting where K is a sublevel set of a nonnegative, symmetric convex
function f : Rm → R≥0 (i.e. f(x) = f(−x) for all x), and we are given a “discrepancy radius” ρ ≥ 0
fixed throughout. We then define our set of interest

K := {x ∈ Rm | f(x) ≤ ρ} . (3)

We also assume that we are given a vector g ∈ Rm fixed throughout, which will ultimately be a
random Gaussian vector. We use the following assumption which holds except with exponentially
small probability exp(−Ω(m)) by standard Gaussian concentration.

Assumption 1. We assume that ‖g‖2 ≤ 2
√
m.

We are now ready to describe our binary search framework. In light of Proposition 1, our goal
is to approximately compute the value r? and point x? defined as

r? := ‖x? − g‖2 , where x? := arg min
x∈[−1,1]m∩K

‖x− g‖2 , (4)

and K is defined as in (3). We remark that our framework extends to handle linear constraints as
suggested by Proposition 1, e.g. Ax = b, by optimizing over [−1, 1]m ∩ {x | Ax = b}. However, for

8

simplicity of exposition we focus our attention to the case of optimizing over a hypercube in this
section, and give a formal application of our framework which handles additional linear constraints
in Section 7. Our approximate partial coloring methods are developed as follows.

1. We show x approximating x? up to a distance ≈
√
mβ for an approximation tolerance β > 0,

set differently in each specific instantiation, suffices for the partial coloring frameworks of e.g.
[Rot17, RR20] up to a rounding error component (Lemma 1). We typically handle this error
recursively. We further exploit strong convexity of the squared distance function to show that
approximately minimizing the objective in (4) suffices for this goal (Lemma 2).

2. We develop an efficient binary-search based reduction from approximating r? in (4) to approx-
imating the values of a sequence of regularized convex optimization problems which balance
f(x) with a multiple of the squared distance to g (Proposition 2).

3. We approximate the solutions of these regularized optimization problems in each of our appli-
cations using customized solvers. For sparsification-related settings, these solvers will usually
be modifications of the recent box-spectraplex game solver of [JT23].

Item 3 of our framework will be treated differently in each of our applications, so in this section
we focus on providing results encapsulating Items 1 and 2 for ease of use.

Approximating x? suffices. We first observe that in applications of Proposition 2, any feasible
point x ∈ [−1, 1]m ∩K which is sufficiently close to x? must have many nearly-tight coordinates. In
our applications we will apply Proposition 2 to both g and −g for a random Gaussian g, and f in
(3) will always be symmetric. So, without loss of generality we state our results when x? defined in
(4) has at least a constant fraction of coordinates at −1, which will be convenient later.

Lemma 1. Suppose x? ∈ [−1, 1]m is −1 in at least ctightm
2 coordinates, and x ∈ [−1, 1]m satisfies

‖x− x?‖22 ≤
ctightmβ

2

4
.

Then, at least ctightm
4 coordinates xi satisfy xi ≤ −1 + β.

Proof. Assume otherwise, and let I ⊆ [m] be the set of coordinates where [x?]i = −1. More than
half of the coordinates i ∈ I have xi ≥ −1 + β (since we assumed less than ctightm

4 coordinates of x
in total are below this threshold), which gives a contradiction since

‖x− x?‖22 ≥
∑
i∈I

xi≥−1+β

(xi − [x?]i)
2 >

ctightmβ
2

4
.

We next show that by strong convexity, we can certify a bound on ‖x̃− x?‖2 by finding any
feasible point x̃ ∈ Kρ ∩ [−1, 1]m with near-minimal distance to g.

Lemma 2. Suppose x̃ ∈ K ∩ [−1, 1]m and ‖x̃− g‖22 ≤ r2
? +

ctightmβ
2

4 . Then ‖x̃− x?‖22 ≤
ctightmβ

2

4 .

9

Proof. Recall that by definition, x? = arg minx∈K∩[−1,1]m ‖x− g‖22. Since ‖x− g‖22 is 2-strongly
convex in the `2 norm and x̃ ∈ K ∩ [−1, 1]m, optimality of x? implies the claim by rearranging

‖x̃− x?‖22 + r2
? = ‖x̃− x?‖22 + ‖x? − g‖22 ≤ ‖x̃− g‖

2
2 ≤ r

2
? +

ctightmβ
2

4
.

In light of Lemma 2, we find a point in [−1, 1]m∩K with near-minimal distance to g by repeatedly
solving optimization problems which balance the objectives f(x) and ‖x− g‖22, described next.

Testing via regularized optimization. Our algorithm is based on a binary search subroutine,
each iteration of which is based on approximately solving an optimization problem fλ parameterized
by a regularization parameter λ, belonging to the following family:

min
x∈[−1,1]m

fλ(x) := f(x) + λ ‖x− g‖22 . (5)

We will discuss how to efficiently approximate the optimizer of fλ in (5) using tools from [JT23] and
other optimization subroutines in the other sections of this paper. Here, we show how approximate
solutions to (5) can be used to perform a binary search on λ and approximate x?. Throughout, we
will denote our desired additive error threshold (as specified in Lemma 2) by

τ :=
ctightmβ

2

4
.

We will also denote for convenience,

xg := arg min
x∈[−1,1]m

‖x− g‖2 , xλ := arg min
x∈[−1,1]m

fλ(x) for all λ ≥ 0. (6)

We begin by establishing crude bounds on our λ binary search, assuming the bounds

Θ ≥ f(x) ≥ 0 for all x ∈ [−1, 1]m, and f(0m) = 0. (7)

We remark that because f is symmetric and convex, it is minimized at 0m, and in all our applications
we have f(0m) = 0; otherwise, one may first perform an additive shift to f to use our framework.

Lemma 3. Suppose f satisfies (7). For λ ≥ 4Θ
τ , xg minimizes fλ to additive error λτ

4 over [−1, 1]m.

Proof. Defining xλ, xg as in (6), and using optimality of xg and (7),

fλ(xg) ≤ Θ + λ ‖xg − g‖22 ≤
λτ

4
+ f(xλ) + λ ‖xλ − g‖22 .

Lemma 4. Suppose f satisfies (7). For λ ≤ ρ
8m , and under Assumption 1, any x minimizing fλ to

additive error ρ
4 over [−1, 1]m has f(x) ≤ 3ρ

4 .

Proof. Since 0m ∈ [−1, 1]m and f(0m) = 0, we have by the assumption on ‖g‖2 ≤ 2
√
m that

f(x) ≤ λ
(
‖g‖22 − ‖x− g‖

2
2

)
+
ρ

4
≤ 4λm+

ρ

4
≤ 3ρ

4
.

10

We also require a helper lemma that rounds a near-feasible point with bounded distance increase.

Lemma 5. Suppose f satisfies (7). If x ∈ [−1, 1]m satisfies f(x) ≤ ρ(1+c), then defining x̃← 1
1+cx,

under Assumption 1 we have x̃ ∈ K ∩ [−1, 1]m and ‖x̃− g‖22 ≤ ‖x− g‖
2
2 + 4cm.

Proof. The first conclusion follows by definition of x̃ and convexity of f , where we use f(0m) = 0.
The second uses ‖g‖2 ‖x‖2 ≤ 2m, and so we may bound

‖x̃− g‖22 − ‖x− g‖
2
2 =

2c

1 + c
〈g, x〉 −

(
1−

(
1

1 + α

)2
)
‖x‖22 ≤ 4cm.

Finally, we show that for nearby values of λ, we can aggregate approximate minimizers of fλ to
obtain a point in K ∩ [−1, 1]m with nearly-optimal distance to g. In the statement of the following
result, we assume only multiplicative error guarantees on querying the value of f . This is because
in our applications where f(x) = ‖A(x)‖op, a full eigendecomposition is prohibitively expensive so
we will approximate operator norms via the power method (see Proposition 4).

Lemma 6. Let λ′ ∈ (λ, (1 + τ
10m)λ), and suppose x, x′ respectively minimize fλ and fλ′ to additive

error λ′τ
4 over [−1, 1]m. Further assume for c := min(τ

12m ,
τλ
3ρ) that we know scalar values A ≤ ρ

and A′ ≥ (1 + c)ρ such that f(x) ∈ [(1− c)A,A] and f(x′) ∈ [(1− c)A′, A′]. Define α := 1− ρ−A
A′−A

and x̃ := αx+ (1− α)x′. Then under Assumption 1,

‖x̃− g‖22 ≤ r
2
? + τ and x̃ ∈ [−1, 1]m ∩ K.

Proof. By convexity of the set [−1, 1]m and the function f , and because αA + (1 − α)A′ = ρ by
construction, we clearly have y ∈ [−1, 1]m ∩ K, so it suffices to show the distance bound. Recall
from (4) that there exists x? ∈ [−1, 1]m ∩ K with ‖x? − g‖22 = r2

? by definition. Since

(1− c)A+ λ ‖x− g‖22 ≤ f(x) + λ ‖x− g‖22 ≤ f(x?) + λr2
? +

λ′τ

4
≤ ρ+ λr2

? +
λ′τ

4
,

(1− c)A′ + λ
∥∥x′ − g∥∥2

2
≤ f(x′) + λ′

∥∥x′ − g∥∥2

2
≤ f(x?) + λ′r2

? +
λ′τ

4
≤ ρ+ λ′r2

? +
λ′τ

4
,

we have by a convex combination of the above display that, for λ̄ := αλ+ (1− α)λ′,

(1− c)ρ+ αλ ‖x− g‖22 + (1− α)λ′ ‖x− g‖22 ≤ ρ+ λ̄r2
? +

λ′τ

4
.

Rearranging and dividing by λ̄ ∈ (λ, λ′), we have

‖x̃− g‖22 ≤ r
2
? +

cρ

λ̄
+
λ′τ

4λ̄
+

1

λ̄

(
λ̄ ‖x̃− g‖22 − αλ ‖x− g‖

2
2 − (1− α)λ′

∥∥x′ − g∥∥2

2

)
≤ r2

? +
τ

3
+
τ

3
+

1

λ̄

(
(λ̄− λ)α ‖x− g‖22

)
≤ r2

? +
2τ

3
+

10m(λ′ − λ)

λ
≤ r2

? + τ.

The second inequality used ‖x̃− g‖22 ≤ α ‖x− g‖22 + (1 − α) ‖x′ − g‖22 by convexity as well as our
bounds on c and λ′

λ , and the third used ‖x− g‖22 ≤ 2 ‖x‖22 + 2 ‖g‖22 ≤ 10m by Assumption 1.

We combine these developments to give our final procedure for approximate partial coloring.

11

Proposition 2. Let β ∈ (0, 1), ρ > 0, and let τ = Θ(mβ2), T = O(log 1
β +log log Θ

ρ) for appropriate
constants. Let symmetric and convex f : Rm → R≥0 satisfy (7), and define K as in (3). Under
Assumption 1 and following notation (4), there is an algorithm returning x̃ ∈ K ∩ [−1, 1]m with

‖x̃− g‖22 ≤ r
2
? + τ.

The runtime is the cost of solving fλ to additive error λτ
4 for T values of λ ≥ ρ

8m , and computing
f(x) to within τ

64m multiplicative error for T values of x ∈ [−1, 1]m.

Proof. Let c := τ
64m = Θ(β2), and divide the range [ρ

8m ,
4Θ
τ] into multiplicative intervals of the form

[λ, (1 + c)λ]; there are clearly O(1
c log mΘ

τρ) = O(1
β2 log Θ

βρ) such intervals. We will initialize λ← ρ
8m

and λ′ ← 4Θ
τ , and throughout our binary search we maintain the following invariants.

1. λ, λ′ are lower and upper endpoints of different multiplicative intervals.

2. x and x′ respectively minimize fλ and fλ′ to additive error λτ
4 and λ′τ

4 over [−1, 1]m.

3. A and A′ respectively satisfy f(x) ∈ [(1− c)A,A] and f(x′) ∈ [(1− c)A′, A′].

4. A ≤ ρ and A′ ≥ (1 + c)ρ.

At initialization, since τρ
32m ≤

ρ
4 , we can set x to any τρ

32m -approximate minimizer of fλ and A to
be any value satisfying f(x) ∈ [(1 − c)A,A], since A will necessarily be less than ρ by Lemma 4.
Further, Lemma 3 shows that it suffices to initialize x′ ← xg, and let A′ be any value satisfying
‖A(x′)‖op ∈ [(1− c)A′, A′]. If A′ ≤ (1 + c)ρ, we can apply Lemma 5 to xg yielding x̃ with

‖x̃− g‖22 ≤ ‖xg − g‖
2
2 + 4cm ≤ r2

? +
τ

16
, x̃ ∈ Kρ ∩ [−1, 1]m. (8)

Hence it suffices to return x̃. Otherwise, A′ ≥ (1 + c)ρ so all invariants are met at initialization.
Next, let λtest be the lower endpoint of the middle interval between λ and λ′, let xtest be a λtestτ

4 -
approximate minimizer to fλtest , and let f(xtest) ∈ [(1− c)Atest, Atest]. If Atest ∈ [ρ, (1 + c)ρ],

f(xtest) + λtest ‖xtest − g‖22 ≤ f(x?) + λtestr
2
? +

λtestτ

4

≤ Atest + λtestr
2
? +

λtestτ

4

≤ 1

1− c
f(xtest) + λtestr

2
? +

λtestτ

4
,

so rearranging and dividing by λtest ≥ ρ
8m proves that

‖xtest − g‖22 ≤
c

1− c
· (1 + c)ρ

λtest
+ r2

? +
τ

4
≤ 2cρ · 8m

ρ
+ r2

? +
τ

4
≤ r2

? +
τ

2
,

where we used our choice of c. Therefore, letting x̃ be the result of applying Lemma 5 to xtest with
parameter c, the same calculation as (8) shows

‖x̃− g‖22 ≤ r
2
? + τ, x̃ ∈ K ∩ [−1, 1]m.

Otherwise, we either have Atest ≤ ρ or Atest ≥ (1 + c)ρ, so we may update λ or λ′ to λtest and
continue. At termination we must have λ and λ′ within a multiplicative factor of 1+c, and therefore
applying Lemma 6 yields the desired point x̃, where we check that indeed c ≤ min(τ

12m ,
τ
3ρ ·

ρ
8m).

Finally, we test T = O(log(1
β2 log Θ

βρ)) values of λ, and the runtime is from running approximate
minimization routines to maintain x, x′ and approximate function calls to maintain A, A′.

12

In a typical application of the framework of this section, we will first specify a discrepancy radius
ρ such that the body K from (3) has an exponential Gaussian measure lower bound. We then can
combine Proposition 1, Lemma 1, Lemma 2, and Proposition 2 to efficiently obtain an approximate
partial coloring, by approximating x? for both g and −g (in the notation of (4)). Both of our
approximations via Proposition 2 will lie in [−1, 1]m ∩ K, and then the other three results imply
that one of the approximations has a constant fraction of coordinates in [−1,−1 + β].

4 Gaussian measure lower bounds

In this section, we give two new tools for obtaining Gaussian measure lower bounds, a key ingredient
of the [Rot17] framework. In Section 4.1, we first state a general reduction from bounding Gaussian
measure for a set K to proving a closely related notion introduced by [RR20], which roughly says
that a random Gaussian vector is not too far from a multiple of K with constant probability. This
can be seen as a generalization of Conjecture 1 in [RR20]. We complement this reduction with a
strengthening of the main result of [RR20], which is parameterized by a trace bound, and is needed
to prove our ultrasparsifier results in Section 6. Finally, in Section 4.2 we prove as corollaries of
these tools the main Gaussian lower bounds we will use in the paper.

4.1 Reduction to Gaussian distance bound

In this section, we prove the following reduction holds.

Theorem 3. Suppose K ⊂ Rm is symmetric and convex, and that for a constant C0,

γm

(
C0

α
K + α

√
mBm2

)
≥ 1

2
for all α ∈ (0, 1).

Then there is a constant C such that γm(K) ≥ exp(−Cm).

The main technical tool we use is the existence of 1-regular M -ellipsoids. We state a variant of
[Pis89], which gives a result for p-regular M -ellipsoids for all p ∈ (0, 2); we only use p = 1.

Proposition 3 (Corollary 7.16, [Pis89]). There is a constant C1 such that for any symmetric convex
K ⊆ Rm, there is an ellipsoid E with

max{N(K, tE), N(E , tK)} ≤ exp(C1mt
−1).

Before giving our main technical result Lemma 9, we need a few facts about covering numbers.
For the following standard facts, see Theorem 4.1.13 and Facts 4.1.7, 4.1.8 and 4.1.9 in [AAGM15].

Fact 1. For any convex sets A,B,C ⊆ Rm, we have N(A,B) ≤ N(A,C)N(C,B).

Fact 2. For any convex sets A,B,C ⊆ Rm, we have N(A+ C,B + C) ≤ N(A,B).

Fact 3. For any convex sets A,B ⊆ Rm, we have N(A,B) ≥ Vol(A)
Vol(B) . Similarly, N(A,B) ≥ γm(A)

γm(B) .

Fact 4. For any convex sets A,B ⊆ Rm with B symmetric, N(A,B) ≤ Vol(2A+B)
Vol(B) .

Fact 5. For any convex sets A,B ⊆ Rm with A symmetric, N(A, 2(A ∩B)) ≤ N(A,B).

For the following fact, see Lemma 3.3 in [DJR22].

13

Fact 6. For any symmetric convex set K ⊆ Rm with γm(K) ≥ 1
2 , we have N(

√
mBm2 ,K) ≤ exp(C2m)

for a universal constant C2 > 0.

As a corollary of Fact 4 we also have the following.

Lemma 7. For symmetric convex sets A,B ⊆ Rm, N(A,B) ≤ 3m · Vol(A)
Vol(A∩B) .

Proof. Since A ∩B is also symmetric, by Fact 4 we have

N(A,B) ≤ N(A,A ∩B) ≤ Vol(2A+ (A ∩B)))

Vol(A ∩B)
≤ Vol(3A)

Vol(A ∩B)
= 3m · Vol(A)

Vol(A ∩B)
.

We will also need a more specific result about covering numbers of slices by subspaces.

Lemma 8. For any symmetric convex A,B ⊆ Rm and any d-dimensional subspace U ⊆ Rm,
N(A ∩ U,B ∩ U) ≤ 6d ·N(A,B).

Proof. By Lemma 7, we have

N(A ∩ U,B ∩ U) ≤ N(A ∩ U,A ∩B ∩ U) ≤ 3d · Vol(A ∩ U)

Vol(A ∩B ∩ U)
.

It remains to note that by Fact 5, we can cover A with N(A,B) copies of 2(A ∩B), so that Fact 3
yields Vol(A ∩ U) ≤ N(A,B) ·Vol(2(A ∩B) ∩ U) = 2d ·N(A,B) ·Vol(A ∩B ∩ U).

We are now ready to state and prove our main technical lemma.

Lemma 9. Let K ⊆ Rm be a symmetric convex set such that γm(C0
α K+α

√
mBm2) ≥ 1

2 for all α > 0
and let E be a 1-regular M -ellipsoid for K. Then there is a universal constant C ′ such that for every
r > 0, the number of axes of E of length at most r is at most C ′

√
r ·m

3
4 .

Proof. Let U denote the span of directions corresponding to the axes of E of length at most r with
d := dim(U). To simplify notation, let K(α) := C0

α K+α
√
mBm2 , so that we still have γU (K(α)∩U) ≥

γm(K(α)) ≥ 1
2 , where γU is the d-dimensional Gaussian measure in U . In particular, letting BU2

denote the unit Euclidean ball restricted to U , N(
√
dBU2 ,K(α) ∩ U) ≤ exp(C2d) by Fact 6.

Further, note that for any α > 0 we have

N
(
K(α) ∩ U,

(C0

α
· mr
d

+ α
√
m
)

BU2
)
≤ N

(
K(α) ∩ U,

(C0

α
· m
d
E + α

√
mBm2

)
∩ U

)
≤ 6d ·N

(
K(α),

C0

α
· m
d
E + α

√
mBm2

)
≤ 6d ·N(K, m

d
E) ≤ 6d · exp(C1d),

where in the second inequality we use Lemma 8, in the third we use Fact 2 and in the fourth we use
Proposition 3. Setting α :=

√
C0

mr
d ·m

− 1
4 , we have C0

α ·
mr
d + α

√
m =

√
C0

r
d ·m

3
4 , so by Fact 1,

N

(
√
dBU2 , 2

√
C0r

d
m

3
4 BU2

)
≤ N

(√
dBU2 ,K(α) ∩ U

)
·N

(
K(α) ∩ U, 2

√
C0r

d
m

3
4 BU2

)
≤ exp(C2d) · 6d · exp(C1d).

On the other hand, by Fact 3,

N

(
√
dBU2 , 2

√
C0r

d
m

3
4 BU2

)
≥ Vold(

√
dBU2)

Vold(2
√

C0r
d m

3
4 BU2)

=

(
d

2
√
C0rm

3
4

)d
.

Combining the above two displays yields the claim.

14

Proof of Theorem 3. First we show a Gaussian measure lower bound for a 1-regular M -ellipsoid E
of K with axes of lengths {λi}i∈[m] sorted in increasing order. Let k denote the maximum index
with λk ≤

√
m and let E ′ denote the ellipsoid with the same eigenvectors as E and compressed axes

of length min{λi,
√
m}, so that in particular E ′ ⊆ E . Note that

γm(E) ≥ γm(E ′) ≥
∫
E ′

1

(2π)m/2
exp(−1

2 ‖x‖
2
2︸︷︷︸

≤m

)dx ≥ exp(−C ′m) ·Vol(E ′) ≥ exp(−C ′′m)
∏
i∈[k]

λi√
m
,

for some constants C ′, C ′′ > 0. Denote Ir := {i ∈ [k] : λi ∈ [r2 , r]}. We apply Lemma 9 as follows:

∏
i∈[k]

λi√
m
≥

∏
r∈
√
m·2Z≤0

(r

2
√
m

)|Ir|
≥

∏
r∈
√
m·2Z≤0

(r

2
√
m

)C′√rm 3
4

.

Denoting r
2
√
m

= 2−a, the product becomes, for a constant C3,

∏
i∈[k]

λi√
m
≥

(∞∏
a=0

(2−a)2−
a
2

)C′m
= exp(−C3m).

Finally, we may use Fact 3 and Proposition 3 to lower bound the Gaussian measure of K:

γm(K) ≥ γm(E)

N(E ,K)
≥ exp(−(C ′′ + C1 + C3)m).

4.2 Operator norm discrepancy bodies

In this section, we combine Theorem 3 with the following generalization of the main result in [RR20]
to obtain new Gaussian measure lower bounds. The argument we use to prove Theorem 4 is almost
identical to [RR20], where we simulate a random walk while blocking “dangerous” directions to
control a potential function, which results in a measure lower bound. The main difference is in the
choice of the potential function we use to capture our trace condition. Due to the significant overlap
with [RR20], we defer a proof of the following result to Appendix A for completeness.

Theorem 4. Suppose {Ai}i∈[m] ⊂ Sn�0 satisfy A(1m) � In and Tr(A(1m)) ≤ τ for sufficiently
large m and n ≤ 2

m
5 . Following notation (2), there is a constant C0 such that

γm

(
C0

α
K√ τ

m
,A + α

√
mBm2

)
≥ 1

2
, for all α ∈ (0, 1).

As a first application of our techniques, we prove the following new Gaussian measure lower
bound on the operator norm ball, which shows Conjecture 1 of [RR20] is true.

Corollary 2. Suppose {Ai}i∈[m] ⊂ Sn�0 satisfy A(1m) � In, and m
n is at least a sufficiently large

constant. Following notation (2), there is a constant C > 0 such that

γm

(
K√ n

m
,A

)
≥ exp (−Cm) .

Proof. It suffices to directly combine Theorem 3 and Theorem 1 from [RR20].

We also prove the following variant of Corollary 2, which will be used to design ultrasparsifiers.

15

Corollary 3. Suppose {Ai}i∈[m] ⊂ Sn�0 satisfy A(1m) � In and Tr(A(1m)) ≤ τ for sufficiently
large m and n ≤ 2

m
5 . Following notation (2), there is a constant C > 0 such that

γm

(
K√ τ

m
,A

)
≥ exp (−Cm) .

Proof. It suffices to directly combine Theorem 3 and Theorem 4.

5 Linear-sized sparsifiers

In this section we will be concerned with the following problem: we are given a set of matrices
{Mi}i∈[m] ⊂ Sn�0 satisfying M(1m) = In where M is the operator associated with the set in
the sense of (1), and a parameter ε ∈ (0, 1) (both fixed throughout). Our goal is to construct a
vector w ∈ Rm≥0 such that nnz(w) = O(n

ε2
), and ‖M(w)− In‖op ≤ ε. We will achieve this goal by

an instantiation of the framework in Section 3, combined with recursive rounding. We state the
main regularized optimization and approximate function query subroutines we use (as required by
Proposition 2) in Section 5.1, and put the pieces together to prove our main result in Section 5.2.
Finally, we discuss implications and runtime considerations for sparsifying graphs in Section 5.3.

5.1 Approximate Gaussian rounding in nearly-linear time

In the applications of the framework in Section 3 to the sparsification setting, we will define a
discrepancy body with respect to f(x) := ‖A(x)‖op, where A is the operator associated to a family
of matrices {Ai}i∈[m]. The matrix family will always be a reweighting of a subset of our original
matrices {Mi}i∈[m]. To leverage Proposition 2 to approximate Gaussian roundings, we require two
helper tools. We first recall a guarantee on approximate top singular value computation.

Proposition 4 (Theorem 1, [MM15]). For any c ∈ (0, 1) and x ∈ Rm, we can return a scalar value
A such that ‖A(x)‖op ∈ [(1− c)A,A] with probability ≥ 1− δ in time

O

∑
i∈[m]

Tmv(Ai)

 · log m
δ√
c

 .

Proposition 2 also requires approximate solvers for regularized optimization problems of the
form fλ defined in (5). When f(x) = ‖A(x)‖op, we have the characterization

fλ(x) = ‖A(x)‖op + λ ‖x− g‖22 = max
Y∈∆2n×2n

〈
Y,
∑
i∈[m]

xiÃi

〉
+ λ ‖x− g‖22 ,

where Ãi :=

(
Ai 0n
0n −Ai

)
, and ∆2n×2n := {Y ∈ S2n

�0 | TrY = 1}.

(9)

The recent work [JT23] developed a generic framework for solving box-spectraplex games, which
(9) is almost a case of; the main difference is that (9) is regularized. We prove the following
modification of Theorem 3 of [JT23] in Appendix B, which handles the extra part of the objective.

Proposition 5. Let δ,∆ ∈ (0, 1), λ ≥ 0, and g ∈ Rm. There is an algorithm which returns
x̃ ∈ [−1, 1]m minimizing fλ (defined in (9)) to additive error ∆, with probability ≥ 1− δ, in time

O

∑
i∈[m]

Tmv(Ai)

 · ‖A(1m)‖3.5op log2
(
mn
δ∆

)
log(n)

∆3.5

 .

16

5.2 Linear-sized sparsifiers in nearly-linear time

Finally, we put the pieces together to prove our main result. To warm start our algorithm, we use
the following standard random sampler which loses a logarithmic factor from the desired sparsity.

Lemma 10. Let {Mi}i∈[m] ⊂ Sn�0 satisfy M(1m) � In and Tr(M(1m)) ≤ τ , and let K =
Θ(τ

ε2
log n

δ) for an appropriate constant. Define independently distributed random matrices {Xk}k∈[K]

such that
Xk =

1

Kpi
Mi with probability pi :=

Tr(Mi)∑
i∈[m] Tr(Mi)

for all k ∈ [K].

Then with probability ≥ 1− δ, ‖
∑

k∈[K] Xk −M(1m)‖op ≤ ε.

Proof. First, it is clear that {pi}i∈[m] is a valid sampling distribution. Next we define random
matrices Yk := 1

Kpi
Mi − 1

KM(1m), which are mean-zero and satisfy ‖Yk‖op ≤
τ
K . Further, recall

(A−B)2 � 2A2 + 2B2,
1

TrA
A2 � A,

for all A,B ∈ Sn�0. The first inequality follows from (A+B)2 ∈ Sn�0 and the second follows because
the two sides commute and we compare eigenvalues. Using these claims andM(1m) � In, we have∑

k∈[K]

EY2
k =

1

K

∑
i∈[m]

pi

(
1

pi
Mi −M(1m)

)2

� 2

K

∑
i∈[m]

1

pi
M2

i +
2

K
M(1m)2

� 2τ

K

∑
i∈[m]

1

Tr(Mi)
M2

i +
2

K
In �

4τ

K
In.

The desired conclusion then follows by the matrix Bernstein bound (Theorem 1.6.2, [Tro15]).

Combining Propositions 2, 4, and 5 with Lemma 10 gives our main subroutine, which reweights
a sum of matrices into a “sparse” component and a “small” component which we can recurse on.

Proposition 6. Let ε ∈ (0, 1), δ ∈ (exp(−Ω(n)), 1) for an appropriate constant, and let {Mi}i∈[m] ⊂
Sn�0 satisfyM(1m) � In. There is an algorithm returning u = v + w for v, w ∈ Rm≥0 satisfying

‖M(u− 1m)‖op ≤ ε, nnz(w) ≤ Csparsen

ε2
, ‖M(v)‖op ≤

1

10
, (10)

with probability ≥ 1− δ, for a universal constant Csparse, in time

O

∑
i∈[m]

Tmv(Mi)

 · log(m) log2(mδ) log log11+o(1)(mδ)

ε3.5

 .

Proof. Without loss of generality, assume ε is sufficiently small, and let v0 := 0m. Lemma 10 with
τ ← n produces an initial reweighting w0 of the matrices such that nnz(w0) = O(n

ε2
log n

δ), and
‖M(w0 − 1m)‖op ≤ ε. Our algorithm proceeds in K = O(log log n

δ) phases indexed by k ∈ [K]. We
define β := 1

20K , and for all k ∈ [K], we let mk−1 := nnz(wk−1), and set the discrepancy radius

ρk := max

(
2Cset

√
n

mk−1
,

ε

(K − k + 1) log2(K − k + 1)

)
.

17

We terminate if some phase has mk ≤ Csparsen
ε2

. Otherwise, each phase k computes xk such that for
at least ctight

4 mk−1 coordinates i, [xk]i ≤ −1 + β and

‖M(wk−1 ◦ xk)‖op = O(ρk). (11)

We then let Sk be the set of coordinates where [xk]i ≤ −1 + β, and update

[wk]i ← 0, [vk]i ← [vk−1]i + [wk−1]i(1 + [xk]i) for all i ∈ Sk,
[wk]i ← (1 + [xk]i)[wk−1]i for all i 6∈ Sk with [wk−1]i 6= 0.

Evidently the update rules imply that in every iteration, letting uk := vk + wk,

‖M(uk − uk−1)‖op = ‖M(wk−1 ◦ xk)‖op = O(ρk),

nnz(wk) ≤
(

1−
ctight

4

)
nnz(wk−1).

Inducting on the second line above, mk is geometrically decreasing and at least Ω(n
ε2

) by the
termination condition, so

∑
k∈[K] ρk = O(ε). Hence, telescoping the first line above using the

triangle inequality shows that for each k ∈ [K], we have ‖M(uk)‖op ≤ ‖M(u0)‖op + O(ε) ≤ 2 for
sufficiently small ε. This in turn implies by the update rule on vk that

‖M(vK)‖op ≤
∑
k∈[K]

β ‖M(wk−1)‖op ≤
∑
k∈[K]

β ‖M(uk−1)‖op ≤
1

10
.

Hence, at termination we have all three guarantees in (10), after adjusting ε by a constant.
To produce xk in each phase satisfying (11), we first draw g ∼ N (0mk−1

, Imk−1
), and define the

matrices Ai ← [wk−1]iMi for all i where [wk−1]i 6= 0; note that under this definition, A(1mk−1
) �

2In as proven earlier. The precondition of Corollary 2 is satisfied, so the conclusion of Proposition 1
holds except with exponentially small probability. We then apply Proposition 2 (with Propositions 4
and 5 as subroutines) to solve both of the following problems (following notation (2))

min
x∈Kρk,A∩[−1,1]mk−1

‖x− g‖22 , min
x∈Kρk,A∩[−1,1]mk−1

‖x+ g‖22 ,

to additive error τ =
ctightmk−1β

2

4 . In the context of Proposition 2, K = Kρk,A is defined with
respect to the discrepancy radius ρk, f(x) = ‖A(x)‖op, and A is the operator associated with the
{A}i∈[mk−1]. Note that f(x) satisfies (7) with Θ = 2 by the assumption A(1mk−1

) � 2In. Hence,
both Assumption 1 and the conclusion of Proposition 1 both hold over all phases with probability
at least 1− δ

2 by a union bound, so Lemmas 1 and 2 show at least one of the approximate solutions
(to g or −g) has at least ctightmk−1

4 coordinates in [−1,−1 + β]. The runtime follows from applying
Propositions 4, 5 with failure probability δ

4K , since each accuracy parameter in Proposition 2 satisifes

λτ

4
= Ω(ρkβ

2) = Ω

(
ε

log log3+o(1) m
δ

)
,

by the second term in the definition of ρk and our upper bound on K. We lose two additional
log log m

δ factors: one from running K phases, and one from the T overhead in Proposition 2.

By recursively applying Proposition 6, we finally obtain the main result of this section.

18

Theorem 5. Let ε ∈ (0, 1), δ ∈ (exp(−Ω(n)), 1) for an appropriate constant, and let {Mi}i∈[m] ⊂
Sn�0 satisfyM(1m) = In. There is an algorithm which returns w ∈ Rm≥0 satisfying nnz(w) = O(n

ε2
)

and ‖M(w)− In‖op ≤ ε, with probability ≥ 1− δ, in time

O

∑
i∈[m]

Tmv(Mi)

 · log(m) log2(mδ) log log11+o(1)(mδ)

ε3.5

 .

Proof. We proceed in K = O(log 1
ε) phases indexed by k ∈ [K], and in each iteration we set

εk = ε · (1 + c)k,

where K satisfies 10K ≥ 1
ε and c is a small enough constant such that εK < 1. We initialize

v̄0 ← 1m and w̄0 ← 0m. In each phase k ∈ [K], we then run the algorithm in Proposition 6 on
{[v̄k−1]iMi}i∈Sk−1

where Sk−1 is the set of i with [v̄k−1]i 6= 0, with parameter εk. Proposition 6
then produces uk = wk + vk satisfying the conclusions of Proposition 6, i.e.

‖M(v̄k−1 − uk)‖op ≤ εk, nnz(wk) ≤
Csparsen

ε2
k

, ‖M(vk)‖op ≤
1

10
.

Finally, we update v̄k ← 10vk and w̄k ← w̄k−1 + 1
10k−1wk. We observe that for all k ∈ [K], the above

guarantees imply that ‖M(v̄k)‖op ≤ 1 and hence it was valid to run Proposition 6. Moreover,

w̄K =
∑
k∈[K]

(w̄k − w̄k−1) =
∑
k∈[K]

1

10k−1
(uk − vk)

=
∑
k∈[K]

1

10k−1
(uk − v̄k−1) +

∑
k∈[K]

1

10k−1
(v̄k−1 − vk)

=
∑
k∈[K]

1

10k−1
(uk − v̄k−1) + v̄0 −

1

10K−1
vK .

Therefore, since v̄0 = 1m, we can rearrange the above and apply the triangle inequality to obtain

‖M(w̄K)− In‖op ≤
∑
k∈[K]

1

10k−1
‖M(v̄k−1 − uk)‖op +

1

10K−1
‖M(vK)‖op

≤
∑
k∈[K]

εk
10k−1

+
1

10K
= O(ε).

Finally, the sparsity of w̄K is clearly O(n
ε2

) since the sparsities of each wk are geometrically decreas-
ing, and the conclusion follows by shifting ε by a constant and δ by a factor of K. We note that we
do not pay a K-factor overhead in the runtime of Proposition 6 as εk is geometrically increasing.

We remark that Theorem 5 does not strongly rely on the assumption thatM(1m) = In: indeed,
any initially O(1)-bounded operator norm matrix sum enjoys the same guarantees up to constant
factors. However, to obtain a ε-multiplicative spectral sparsification guarantee via Theorem 5, we
require a constant spectral lower bound as well. Finally, the restriction δ ≥ exp(−Ω(n)) can be
removed at a logarithmic overhead by running independent copies with constant failure probability.

19

5.3 Graph sparsification

We now specialize the machinery in this section to the setting of graphs. Throughout this section
let G = (V,E,wG) be a weighted graph, and let m := |E| and n := |G|; we define the matrices B,
W, and L as in Section 2. We recall the following result on constructing an approximation to L†.

Proposition 7 ([KMP11]). Given a graph G = (V,E,wG) with m = |E|, n = |V |, and ε ∈ (0, 1),
there is a randomized algorithm which returns a linear operator L̃ : RV → RV such that we can run
the algorithm and apply L̃ in time O(m log1+o(1)(n) log 1

ε), and with high probability in n,

(1− ε)L† � L̃ � (1 + ε)L†.

We now consider applying Theorem 5 to the matrices

Me := W
1
2 BL̃(webeb

>
e)L̃B>W

1
2 , for all e ∈ E,

where L̃ is the matrix from Proposition 7 with parameter ε, and w := wG. Since

(1− ε)2L† � L̃LL̃ � (1 + ε)2L†,

andM(1E) = W
1
2 BL̃LL̃B>W

1
2 , defining ΠL := W

1
2 BL†B>W

1
2 , we have

(1− ε)2ΠL �M(1E) � (1 + ε)2ΠL.

Notice that ΠL is the projection matrix onto the column span of W
1
2 B. It is straightforward to

check that the argument in Section 5.2 then returns a reweighting x such thatM(x− 1E) � εΠL,
with nnz(x) = O(n

ε2
); this is made explicit by Theorem 4, which only cares about the trace bound

on M(1E) (which is n), rather than the ambient dimension m. Finally, assuming ε is sufficiently
small, we may rewrite this condition as

(1− 4ε)ΠL �M(w) � (1 + 4ε)ΠL

=⇒ (1− 4ε)L � LL̃

(∑
e∈E

xewebeb
>
e

)
L̃L � (1 + 4ε)L

=⇒ (1− 7ε)L �
∑
e∈E

xewebeb
>
e � (1 + 7ε)L.

In the second line, we left-multiplied all matrices by B>W
1
2 and right-multiplied by W

1
2 B, and in

the third line, we first multiplied on both sides by L†, and then multiplied on both sides by L̃† (using
that L̃ and L share a kernel) and used Proposition 7. Finally, the matrix-vector multiplication time
to all {Me}e∈E is dominated by applying L̃. Adjusting ε by a constant, we obtain our claimed
result on linear-sized sparsification, reproduced here for convenience.

Theorem 1. Given a graph G = (V,E,wG) with m = |E|, n = |V |, and ε ∈ (0, 1), there is a
randomized algorithm which in time Ŏ(m log4(m) log(1

ε)·ε−3.5) returns w ∈ RE≥0 satisfying nnz(w) =
O(n

ε2
), such that with high probability in n,

(1− ε)LG �
∑
e∈E

webeb
>
e � (1 + ε)LG.

20

6 Ultrasparsifiers

In this section, we give a short application of the techniques in Section 5 to the setting of ul-
trasparsifiers. We will be concerned with the following problem: we are given a set of matrices
{Mi}i∈[m] ⊂ Sn�0 and an additional matrix N ∈ Sn�0, satisfyingM(1m) + N = In whereM is the
operator associated with the set in the sense of (1). We also are promised

Tr(M(1m)) ≤ τ,

for a parameter τ such that nτ is sufficiently large. We also require the relatively mild assumption that
n is subexponential in m; indeed, in our applications m ≥ n. Our goal is to construct w ∈ Rm≥0 such
that nnz(w) = O(τ), and ‖M(w) + N− In‖op ≤

1
2 . We explain the connections of this problem to

primitives in spectral graph theory at the end of the section, after giving our sparsification algorithm
in Theorem 6. We begin by stating the following variant of Proposition 6.

Corollary 4. Let ε ∈ (0, 1), δ ∈ (exp(−Ω(τ)), 1) for an appropriate constant, and let {Mi}i∈[m] ⊂
Sn�0 satisfyM(1m) � In and Tr(M(1m)) ≤ τ , where n

τ is sufficiently large and n = exp(O(m)) for
an appropriate constant. There is an algorithm returning u = v + w for v, w ∈ Rm≥0 satisfying

‖M(u− 1m)‖op ≤ ε, nnz(w) ≤ Csparseτ

ε2
, ‖M(v)‖op ≤

1

10
,

with probability ≥ 1− δ, for a universal constant Csparse, in time

O

∑
i∈[m]

Tmv(Mi)

 · log(n) log2(mnδ) log log11+o(1)(nδ)

ε3.5

 .

Proof. The proof is essentially identical to the proof of Proposition 6, so we summarize the differences
here, following the notation of our earlier proof. First, we initialize with the reweighting from
Lemma 10 with a sparsity parameterized by τ ; there are still K = log log n

δ phases, each of which
shrinks the sparsity of a maintained wk by a constant factor, until it reaches Csparseτ

ε2
. We use

ρk = max

(
2Cset

√
τ

mk−1
,

ε

(K − k + 1) log2(K − k + 1)

)
,

and so for sufficiently large Csparse we may continue using the measure lower bound from Corollary 3
at each phase with the framework from Section 3 to preserve the necessary invariants. The remaining
parameters and runtime analysis of this algorithm are all the same as in Proposition 6.

Theorem 6. Let δ ∈ (exp(−Ω(τ)), 1) for an appropriate constant, and let {Mi}i∈[m] ⊂ Sn�0 and
N ∈ Sn�0 satisfy M(1m) + N = In and Tr(M(1m)) ≤ τ , where n

τ is sufficiently large and n =
exp(O(m)) for an appropriate constant. There is an algorithm which returns w ∈ Rm≥0 satisfying
nnz(w) = O(τ) and ‖M(w) + N− In‖op ≤

1
2 , with probability ≥ 1− δ, in time

O

∑
i∈[m]

Tmv(Mi)

 · log(n) log2
(n
δ

)
log log11+o(1)

(n
δ

) .

Proof. We recursively apply Corollary 4 in the same way Proposition 6 was used in Theorem 5.
This yields a O(τ)-sparse reweighting w satisfying ‖M(w − 1m)‖op = ‖M(w) + N− In‖op ≤

1
2 ,

where it suffices to take ε ≤ 1
2 to be a sufficiently small constant in the proof of Theorem 5.

21

We now describe consequences of Theorem 6. As discussed in Section 1, the state-of-the-
art ultrasparsifiers constructible in near-linear time have parameters (Ŏ(` log2(n)), `), but there
are higher-quality (min(Ŏ(` log(n)), `1+o(1) logo(1)(n)), `)-ultrasparsifiers constructible in polynomial
time [KMST10, JS21]. We show how to match [KMST10, JS21] in near-linear time. Our starting
point (as is the starting point of prior constructions [ST04, KMST10, KMP11, JS21]) is the fol-
lowing notion of a low-distortion subgraph (generalizing the combinatorial notion of a low-stretch
spanning tree, as is demonstrated formally by Theorem 2.1 of [SW09]).

Definition 2. We say subgraph H is a σ-distortion subgraph of G = (V,E,wG) if Tr(L†HLG) ≤ σ.

We further recall the following known constructions of low-distortion subgraphs. The first result
was used in [KMST10] and the latter was both developed and used in [JS21].

Proposition 8 ([AN19]). Let G = (V,E,wG) have m = |E| and n = |V |. There is an algorithm
running in time O(m log n log logn) which produces a O(m log n log log n)-distortion subgraph of G.
Further, this subgraph is a spanning tree of G.

Proposition 9 ([JS21]). Let G = (V,E,wG) have m = |E| and n = |V |. There is an algorithm
which takes a parameter γ > 1 and runs in time O(m), which produces a O(mγo(1)(log n)o(1))-
distortion subgraph of G with n− 1 + m

γ edges.

Because the statement of Proposition 9 is not explicit in [JS21], we discuss how to obtain it in
Appendix C. We now combine Propositions 8 and 9 with Theorem 6. First, by applying Theorem 1
with constant ε, we may assume that m = O(n) at the cost of constant spectral distortion and a
near-linear runtime overhead. Overloading G to mean the graph after applying this preprocessing,
we let H be a σ-distortion subgraph of G, and for a parameter κ ≥ 1, we let

N := (κLH + LG)
†
2 (κLH) (κLH + LG)

†
2 ,

Me := (κLH + LG)
†
2 (webeb

>
e) (κLH + LG)

†
2 for all e ∈ E.

It is straightforward to see that N+
∑

e∈E Me = IV \1. Further, the distortion definition guarantees

Tr

(∑
e∈E

Me

)
= Tr

(
(κLH + LG)† LG

)
≤ Tr

(
(κLH)† LG

)
≤ τ :=

σ

κ
.

Finally, we note that (spectral approximations of) the square roots of Laplacian pseudoinverses may
be applied in nearly-linear time, using the same strategy as in Section 5.3. Therefore, Theorem 6
(with our other tools) shows that we can efficiently obtain a graph on n − 1 + O(σκ) edges whose
Laplacian is an O(1)-spectral approximation to κLH + LG, which itself is a O(κ)-spectral approxi-
mation to LG. By taking H as in Proposition 8 or 9 and κ large enough, and reparameterizing the
problem in terms of ` (the edge reduction factor), we achieve a min(Ŏ(` log(n)), `1+o(1) logo(1)(n))-
spectral approximation to LG on n− 1 + n

` edges in nearly-linear time. We record this construction
formally in Corollary 1, restated for convenience: the runtime comes from combining Theorem 6
with Section 5.3, as the runtimes of Propositions 8, 9 do not dominate.

Corollary 1. Given a graph G = (V,E,wG) with m = |E|, n = |V |, and ` ≥ 1, there is a
randomized algorithm which in time Ŏ(m log4(m)) returns a (min(Ŏ(` log(n)), `1+o(1) logo(1)(n)), `)-
ultrasparsifier of G, with high probability in n.

In particular, Corollary 1 yields the main ultrasparsifier results of [KMST10, JS21] with an
alternative proof (without going through the [BSS14] analysis), and much faster algorithms.

22

7 Degree-preserving sparsifiers

In this section, we consider a degree-preserving variant of the specialization of Section 5 to graphs.
For an undirected graph G = (V,E,wG) and a parameter ε ∈ (0, 1) (both fixed throughout), we
define associated matrices and vectors L, |B|, B, {be}e∈E and W as in Section 2. Our goal is to
obtain a sparse w ∈ RE≥0 with

(1− ε)L �
∑
e∈E

[w ◦ wG]ebeb
>
e � (1 + ε)L and |B|W(w − 1E) = 0,

i.e. the degrees of the reweighted graph are unchanged from G. In Section 7.1 and Section 7.2 we
develop our main optimization subroutines for implementing the sparsification framework of [RR20]
with linear constraints. We then give a degree-preserving rounding procedure in Section 7.3, and
prove our main result Theorem 2 in Section 7.4. Finally, in Section 7.5 we show how to slightly
improve the runtime of Theorem 2 at the cost of a logarithmic overhead in the sparsity.

7.1 Approximate Gaussian rounding with linear constraints

In this section, we provide a subroutine for optimizing the subproblems required by Proposition 2,
under additional linear constraints denoted C ∈ Rd×m. We assume d ≤ (1− 2ctight)m (where ctight
is the constant from Proposition 1). Consideration of this setting is motivated by the tolerance of
Proposition 1 to constraining a sufficiently small number of linear directions. In applications, C is
a reweighted signed edge-vertex incidence matrix of a subgraph of G, with d ≤ n� m.

As in Section 5.1, we assume we are given {Ai}i∈[m] ⊆ Sn�0 with associated operator A, a vector
g ∈ Rm satisfying Assumption 1, and a parameter ρ fixed throughout. We also explicitly assume
‖A(1m)‖op ≤ 2, and define the discrepancy body Kρ,A as in (2) with respect to the given matrices.
Our goal in this section will be to approximate the value rC? and point xC? defined as

rC? := ‖x? − g‖2 , where x
C
? := arg min

x∈[−1,1]m∩Kρ,A
Cx=0d

‖x− g‖2 . (12)

We recall that fλ is defined in (5) (where f(x) = ‖A(x)‖op in this section), and we define

XC := {x ∈ [−1, 1]m | Cx = 0d}. (13)

In the remainder of this section we will discuss approximately solving fλ over XC. Our algorithm
will use a variant of a Frank-Wolfe method, prompting the following oracle definition.

Definition 3 (Linear optimization oracle). Let X ⊆ Rm be a symmetric convex set, and let ∆ ∈
(0, 1). We say Olin-opt is a ∆-approximate linear optimization oracle over X if on input g ∈ Rm it
returns z ∈ X satisfying c>z ≤ (1−∆) minx∈X c

>x.

We note that because X is symmetric, Definition 3 is sensible as the minimum is always non-
positive. Before giving our optimization procedure for fλ, we give a helper fact, where we collect
several properties of a well-studied smooth approximation to the operator norm.

Fact 7 ([Nes07]). Let µ > 0, let Ã to be the operator associated with {Ãi}i∈[m] ∈ R2n×2n as defined
in (5), and let Aµ(x) := µ logTr exp(1

µÃ(x)). Then ‖A(x)‖op ≤ Aµ(x) ≤ ‖A(x)‖op + µ log(2n) for
all x ∈ Rm, and Aµ is 1

µ -smooth in the `∞ norm, i.e. for all x, x′ ∈ Rm,

Aµ(x′) ≤ Aµ(x) +
〈
∇Aµ(x), x′ − x

〉
+

1

2µ

∥∥x′ − x∥∥2

∞ .

Further, ∇Aµ(x) = Ã∗(Y(x)), where Y(x) = exp(1
µÃ(x)) · (Tr exp(1

µÃ(x)))−1.

23

We also define the notion of an approximate gradient oracle, and recall a (standard) efficient
construction of such an oracle from prior work based on approximations to the exponential.

Definition 4 (Approximate gradient oracle). Following the notation of Fact 7, we say g : [−1, 1]m →
Rm is a ∆-approximate gradient oracle for Aµ if ‖g(x)−∇Aµ(x)‖1 ≤ ∆ for all x ∈ [−1, 1]m.

The following claim applies Proposition 2 of [JT23] with ε← O(∆) and γ ← O(∆
n).

Lemma 11 (Proposition 2, [JT23]). We can implement a ∆-approximate gradient oracle for Aµ
which succeeds with probability ≥ 1− δ in time

O

∑
i∈[m]

Tmv(Ai)

 · log2
(
mn
µ∆δ

)
√
µ∆2


We are now ready to give our main Frank-Wolfe subroutine.

Lemma 12. Let β, ρ, δ ∈ (0, 1), λ ≥ ρ
8m , and let Olin-opt be a ∆-approximate linear optimization

oracle over XC for ∆ :=
ctightβ

2

240 . There is an algorithm which solves fλ to additive error λctightmβ
2

16

over XC using N = O(logn
ρ2β4) calls to Olin-opt and

O

∑
i∈[m]

Tmv(Ai)

 ·
 log3.5

(
mn
ρβδ

)
ρ4.5β9


additional time, with probability ≥ 1− δ.

Proof. Our algorithm will be a Frank-Wolfe method applied to the smooth approximation from
Fact 7. Throughout the proof, define for convenience x? to be the minimizer of fλ over XC, and

µ :=
λctightmβ

2

48 log(2n)
, F (x) := Aµ(x) + λ ‖x− g‖22 .

By the fact that ‖·‖22 ≤ m ‖·‖
2
∞, we have that F is L-smooth in the `∞ norm for

L :=
1

µ
+ 2λm.

Finally, we let g be a ∆′-approximate gradient oracle for Aµ, for

∆′ :=
L

N + 1
.

Our algorithm defines ηt := 2
t+1 for all t ∈ [N] and initializes at x1 = 0m. It then repeatedly

updates xt+1 ← (1− ηt)xt + ηtzt where zt is the result of calling Olin-opt on g(xt) + 2λ(xt − g). In
each iteration, since g(xt) + 2λ(xt − g) approximates ∇F (xt) up to ∆′ in the `1 norm,

F (xt+1) ≤ F (xt) + ηt 〈∇F (xt), zt − xt〉+
Lη2

t

2
‖zt − xt‖2∞ + 2ηt∆

′

≤ F (xt) + ηt 〈∇F (xt), (1−∆)x? − xt〉+ 3Lη2
t ,

since ‖zt − xt‖∞ ≤ 2 for zt, xt ∈ XC, and we applied Definition 3 with x? ∈ XC. Now defining
Et := F (xt)− F ((1−∆)x?), the above display and convexity of F implies

Et+1 ≤ Et + ηt 〈∇F (xt), (1−∆)x? − xt〉+ 2Lη2
t ≤ (1− ηt)Et + 3Lη2

t . (14)

24

We next claim that inductively, Et ≤ 12L
t+1 for all t ∈ [N]. The base case of the induction follows

from nonnegativity of F everywhere, so Fact 7 and Assumption 1 imply

E1 ≤ F (0m) ≤ µ log(2n) + 4λm ≤ 4L.

Further, inductively applying (14) preserves this invariant:

Et+1 ≤
t− 1

t+ 1
· 12L

t+ 1
+

12L

(t+ 1)2
<

12L

t+ 2
.

By taking the constant in front of N large enough, and using λ ≥ ρ
8m , this implies

fλ(xN)− fλ(x?) ≤ F (xN)− F (x?) + µ log(2n)

≤ F (xN)− F ((1−∆)x?) + ∆F (0m) + µ log(2n)

≤
λctightmβ

2

48
+ ∆F (0m) +

λctightmβ
2

48
≤
λctightmβ

2

16
.

where the first inequality used Fact 7, the second used nonnegativity and convexity of F , the third
used our bound on EN , and the last used F (0m) ≤ µ log(2n) + 4λm ≤ 5λm. The runtime comes
from applying Lemma 11 N times, with δ ← δ

N , and union bounding for the failure probability.
Here, we note that it suffices to take ∆′ = Θ(ρβ2) and 1

µ = O(logn
ρβ2).

To complete our use of Lemma 12, we will give an efficient linear optimization oracle in Sec-
tion 7.2 when X = XC and the constraint matrix C is graph-structured.

7.2 Degree-preserving linear optimization oracle

We recall the following standard facts from prior work (e.g. [BCL94]) used in our analysis.

Fact 8. For p ≥ 2, 1
2 ‖·‖

2
p is (p− 1)-smooth in the `p norm where the domain is Rd for any d ∈ N.

Additionally, for any x ∈ Rd and p ≥ q ≥ 1, we have ‖x‖p ≤ ‖x‖q ≤ d
1
q
− 1
p ‖x‖p.

Further, in this section we will require the notion of an oblivious routing.

Definition 5. We say R ∈ RE×V is an α-oblivious routing for a graph G = (V,E,wG) if B>Rx = x
for all x ∈ RV , and

∥∥W−1RB>Wy
∥∥
∞ ≤ α ‖y‖∞ for all y ∈ RE. We let Troute(α) be the time

required to construct and apply an α-oblivious routing when G is clear from context.

We refer the reader to [KLOS14] for more exposition on the history and uses of oblivious routings.
We also recall the following construction of an oblivious routing from that paper.

Proposition 10 (Theorem 19, [KLOS14]). Let G = (V,E,wG) have m = |E| and n = |V |. Then
Troute(α) = mno(1) for some α = no(1), with high probability in n.

Finally, we give two simple helper claims used in our proof.

Lemma 13. For some p ≥ 1, v ∈ Rm, and A ∈ Rm×m, let OPTv,p := min‖Az‖p≤1 〈v,Az〉. Then

min
z∈Rm

〈v,Az〉+
1

2
‖Az‖2p = −1

2
OPT2

v,p.

Further, for any ∆ ∈ (0, 1) and w ∈ Rm with

min
w∈Rm

〈v,Aw〉+
1

2
‖Aw‖2p ≤ −

(1−∆)2

2
OPT2

v,p,

we can obtain w′, a rescaling of w, satisfying ‖Aw′‖p ≤ 1 and 〈v,Aw′〉 ≤ (1−∆)OPTv,p.

25

Proof. Letting z? achieve value OPTv,p ≤ 0, by setting z ← λz? for λ = −OPTv,p, we see that z
attains value −1

2OPT2
v,p in the above display; here we use ‖Az?‖p = 1, as otherwise we could scale

up z?. To see that no z attains smaller value, suppose otherwise, and let z minimize the above
display achieving value −1

2C
2 < −1

2OPT2
v,p. Since rescaling z by any λ does not improve the value,

d
dλ

(
λ 〈v,Az〉+

λ2

2
‖Az‖2p

)
= 0 at λ = 1 ⇐⇒ 〈v,Az〉 = −‖Az‖2p = −C2.

Therefore, 1
C ‖Az‖∞ ≤ 1, and z

C achieves value −C < OPTv,p for the original problem, a con-
tradiction. To see the second claim, suppose without loss of generality we have first rescaled so
that 〈v,Aw〉 = −‖Aw‖2p ≤ −(1−∆)2OPT2

v,p, as otherwise rescaling by a constant λ improves the
function value. We then rescale w′ ← w

‖Aw‖p , and the conclusion follows immediately.

Lemma 14. Let p ≥ 1, and suppose

〈v,Az〉+
1

2
‖Az‖2p ≤ 0,

where OPTv,p is defined as in Lemma 13. Then ‖Az‖∞ ≤ −2OPTv,p.

Proof. First, we claim any z with ‖Az‖p > −2OPTv,p has 〈v,Az〉+ 1
2 ‖Az‖

2
p > 0. To see this,

〈v,Az〉+
1

2
‖Az‖2p ≥ ‖Az‖p

(〈
v,A

z

‖Az‖p

〉)
+

1

2
‖Az‖2p

≥ ‖Az‖p
(
OPTv,p +

1

2
‖Az‖p

)
> 0,

where we used the definition of OPTv,p. The conclusion follows from ‖Az‖∞ ≤ ‖Az‖p.

We are now ready to give our linear optimization oracle.

Lemma 15. We can implement a ∆-approximate linear optimization oracle over XB>W, where B,
W are associated with G = (V,E,wG), in time O(Troute(α) · α

2 log |E|
∆2) for any α ≥ 1.

Proof. Throughout we let R be an α-oblivious routing, identify V and E with [n] and [m] in the
standard way for n = |V | and m = |E|, and define C := Im −RB> and A := W−1CW. By the
definition of an oblivious routing, B>CWz = 0n for all z ∈ Rm. Hence, we may solve

min
‖Az‖∞≤1

〈c,Az〉

to ∆-multiplicative accuracy, and output x = Az, which satisfies

B>Wx = B>CWz = 0n.

Next, note that for p := 5 logm
∆ , Fact 8 implies(

1− ∆

4

)
OPTc,∞ > OPTc,p > OPTc,∞,

so Lemma 13 implies it suffices to return a solution to

min 〈c,Az〉+
1

2
‖Az‖2p (15)

26

up to ∆
4 OPT2

c,p additive error. Next, the oblivious routing definition and triangle inequality imply

max
‖v‖∞=1

‖Av‖∞ ≤ 1 + α ≤ 2α,

so Fact 8 shows that the objective in (15) is 4α2p-smooth in the `∞ norm. Our linear optimization
oracle iteratively takes a step of the `∞ gradient descent algorithm in Theorem 1 of [KLOS14] (on
the objective (15)), and multiplies the iterate by A. The objective value for iterates of `∞ gradient
descent is monotone non-increasing, and multiplication by A preserves the objective value since
it is simple to verify A2z = Az for all z. Hence, Lemma 14 implies that the `∞ radius of all
iterates is bounded by O(OPTv,p). A direct application of Theorem 1 in [KLOS14] finally implies
the algorithm returns a point with function error ∆

4 OPT2
c,p to (15) in

k = O

(
α2pOPT2

c,p

∆OPT2
c,p

)
= O

(
α2 logm

∆2

)
iterations, each of which is dominated by multiplication through A, giving the runtime.

7.3 Degree-preserving rounding via link/cut trees

In this section, we give a self-contained subroutine solving the following degree-preserving rounding
problem via an application of the link/cut tree dynamic data structure of [ST83].

Lemma 16. Let B, W be associated with G = (V,E,wG), define ue := 2[wG]e for all e ∈ E,
and let n = |V |, m = |E|. There is an algorithm which runs in time O(m log n) and outputs
w ∈

∏
e∈E [0, ue] such that |B|>w = |B|>wG, and we = 0 for at least m−(n−1)

2 of the e ∈ E.

Proof. The algorithm is very similar to the cycle-cancelling data structure via link/cut trees in
Appendix C of [AJJ+22], so we first give a high-level description of the algorithm, and then discuss
how to modify Appendix C of [AJJ+22] to implement the algorithm in O(m log n) time. At the
beginning of the algorithm, all edges in E are marked “alive,” and we set w ← wG. We then
iteratively find a cycle C in the graph restricted to alive edges, and let

∆ := min
e∈C

min (ue − we, we) .

In other words, ∆ is the closest distance of any current weight to saturating either the lower bound
0 or the upper bound ue. We then alternately add and subtract ∆ from w along the cycle so
that one edge is saturated (i.e. either 0 or ue), and mark the saturated edge as “dead.” Inductively,
w ∈

∏
e∈E [0, ue] at all times, and |B|>w = |B|>wG is preserved. Further, at the end of the algorithm

at most n − 1 edges are not saturated. If more saturated edges are set to 0, then we output w.
Otherwise, we output 2wG − w ∈

∏
e∈E [0, ue], which preserves the degrees as

|B|>(2wG − w) = 2|B|>wG − |B|>w = |B|>wG.

We now discuss how to implement this algorithm efficiently, following the notation of Appendix C
of [AJJ+22]. We will maintain four link/cut forests with the same topology, denoted T+

up, T
+
lo , T

−
up,

and T−lo , and process the edges of G sequentially. When we process an edge e, we add it to all
four forests. The role of the forests T−up and T−lo is to maintain the distances of we from ue and 0

respectively, for all e with odd depth; similarly, T+
up and T+

lo maintain distances of the weights of
all even-depth edges from saturation. When we process an edge e = (u, v), if its depth in the tree

27

containing u is odd, we set its weight in T−up and T−lo to [wG]e, and set its weight in T+
up and T+

lo
to 2m ‖wG‖∞; we symmetrically handle even-depth edges. Next, if the endpoints of e belong to
different trees in the forest, we link these trees. Otherwise, we have found a cycle, and we can find
the minimum distance to saturation ∆ along the path between u and v in O(log n) time. By the
weight setting of 2m ‖wG‖∞ on odd-depth edges in T+

up and T+
lo at initialization, these edges will

never minimize the weight on any path throughout the algorithm, since they stay at least 2 ‖wG‖∞;
even-depth edges are handled identically. We then add or subtract ∆ from the path in all four trees
appropriately in O(log n) time, and delete the saturated edge; hence, the runtime is O(m log n).

7.4 Degree-preserving sparsifiers in almost-linear time

We now prove Theorem 2 after stating one helper lemma.

Lemma 17. Let G = (V,E,wG) be bipartite with bipartition V = L ∪ R, and let B ∈ RE×V be its
edge-incidence matrix signed such that for each e = (u, v) ∈ E for u ∈ L and v ∈ R, Be: has a 1 in
the u coordinate and a −1 in the v coordinate. Then B>x = 0 implies |B|>x = 0.

Proof. It suffices to note that |B|> = DB>, where D is a diagonal matrix with

Dvv =

{
1 v ∈ L
−1 v ∈ R

.

Theorem 2. Given a graph G = (V,E,wG) with m = |E|, n = |V |, and ε ∈ (0, 1), there is a
randomized algorithm which returns w ∈ RE≥0 satisfying nnz(w) = O(n

ε2
), |B|>w = |B|>wG in time

O

(
(m+ Troute(α)) · α2 · poly

(
logm

ε

))
,

for any α ≥ 1 following the notation of Definition 5, such that with high probability in n,

(1− ε)LG �
∑
e∈E

webeb
>
e � (1 + ε)LG.

Proof. Our algorithm follows analogously to the proof of Proposition 6 and its specialization in
Section 5.3, so we follow their notation, and identify V and E with [n] and [m] in the standard way.
We initialize w0 ← 1m, and define

Me := W
1
2 BL̃([wG]ebeb

>
e)L̃B>W

1
2 for all e ∈ E,

where we follow the notation of Section 5.3 in defining L̃. Our algorithm proceeds in K = O(logm)
phases indexed by k ∈ [K]. For all k ∈ [K], we let mk−1 := nnz(wk−1), and

ρk := max

(
2Cset

√
n

mk−1
,

ε

(K − k + 1) log2(K − k + 1)

)
.

We again terminate if mk ≤ Csparsen
ε2

for a universal Csparse. Otherwise, each phase k computes xk
such that |B|>(wk−1 ◦ xk) = 0n, and for at least ctight

30 mk−1 coordinates i, [xk]i = −1, and

‖M(wk−1 ◦ xk)‖op = O(ρk).

28

We then update wk ← wk−1 ◦ (1m + xk), and the remainder of the proof follows analogously to
Proposition 6 and Section 5.3. It remains to argue how to compute such a vector xk.

First, we randomly partition the vertices in the support of wk−1 into two sets, and accept if
the number of edges crossing the bipartition is at least mk−1

3 ; this occurs with high probability
in n after O(log n) random bipartitions, since by linearity of expectation and Markov’s inequality,
the number of edges not in the bipartition is at most 2mk−1

3 with constant probability. Let Gk =
(V,Ek, wk−1 ◦ wG) where Ek are the edges crossing the bipartition, let Bk be its signed edge-
vertex incidence matrix, and let Ae = [wk−1]eMe for all e ∈ Ek. By Lemma 17, the condition
|Bk|>([wk−1 ◦ wG ◦ xk]Ek) = 0n is implied by B>k ([wk−1 ◦ wG ◦ xk]Ek) = 0n. Hence, letting Wk =
diag ([wk−1 ◦ wG]Ek), we draw g ∼ N (0mk−1

, Imk−1
), and solve both of the problems

min
x∈Kρk,A∩X

B>
k

Wk

‖x− g‖22 , min
x∈Kρk,A∩X

B>
k

Wk

‖x+ g‖22 ,

to additive error τ =
ctightmk−1ρ

2
k

4 , where we follow the notation (13). By the same induction
argument as in Proposition 6, we maintain

∥∥A(1mk−1
)
∥∥

op ≤ 2 at all times, so combining Lemmas 12
and 15 (with β ← ρk) shows that we can achieve additive error τ with high probability in n in time

O

(
m log1+o(1)(m) log

(
1

ε

)
·
(

log3.5(m)

ρ13.5
k

+
log2(m)

ρ10
k

· α2Troute(α)

))
,

for any α ≥ 1, where we bounded
∑

e∈Ek Tmv(Ae) = O(m log1+o(1)(m) log 1
ε) as in Section 5.3.

Let x̃k be the resulting approximate minimizer with more coordinates ≤ −1 + ρk, and note that
there is a set Sk with size |Sk| ≥

ctightmk−1

12 such that [x̃k]e ≤ −1 + ρk for all e ∈ Sk. By applying
Lemma 16 to the graph (V, Sk, [(1mk−1

+ x̃k) ◦ wk−1 ◦ wG]Sk), we can produce xk which equals x̃k
outside Sk, has at least

ctightmk−1

30 coordinates equal to −1, maintains B>k ([wk−1 ◦ xk]Ek) = 0n, and

‖A([xk − x̃k]Sk)‖op ≤ ρk ‖A(1mk)‖op = O(ρk).

The above inequality used that xk − x̃k is bounded by ±ρk on Sk by the guarantees of Lemma 16.
Combining this with ‖A(x̃k)‖op = O(ρk) completes the proof.

Remark 1. We remark that in the proof of Theorem 2, if the input graph G was bipartite, then
there is no need to perform the step of randomly sampling a bipartition and restricting our algorithm
to the edges crossing the bipartition (as Lemma 17 applies generically in this case, and bipartiteness
is preserved by our reweightings). As a result, all of the graphs for which we construct oblivious
routings for via the machinery in Section 7.2 are 1.1-multiplicative spectral approximations to G
(taking ε sufficiently small), by the same induction argument as in Proposition 6.

7.5 Runtime-sparsity tradeoffs

In this section, we describe how to achieve a slightly worse sparsity guarantee than Theorem 2 in
near-linear time. Our technique in this section leverages an improved oblivious routing procedure in
the case that our input graph is an expander. For completeness, we briefly define expander graphs.

Definition 6 (Expander graphs). Let G = (V,E,wG) be a graph. For a set S ⊆ V , we let
Vol(S) =

∑
v∈S δv be the sum of weighted degrees in S and ∂S = {e ∈ E : e /∈ S and e /∈ E/S} to

be the edge boundary of S. The cut value of S is w(∂S) =
∑

e∈∂S [wG]e. The conductance of S is

Φ(S) =
w(∂S)

min{Vol(S),Vol(V/S)}
.

We say G is a φ-expander if Φ(S) ≥ φ for all S ⊆ V .

29

The main fact we use is that electric flows induce good oblivious routings on expanders. This is
summarized in the following lemma from prior work, where R is an electric routing matrix.

Lemma 18 (Lemma 28, [KLOS14]). Let G = (V,E,wG) be a φ-expander. Define

R = WBL†.

Then R is an α-oblivious routing with Troute(α) = Õ(m) for α = O(logm
φ2

).

Leveraging Lemma 18, we are now ready to give a Õ(m) time algorithm for constructing linear-
sized degree-preserving sparsifiers of bipartite expanders.

Lemma 19. Let G = (V,E,w) be a bipartite φ-expander with m = |E| and n = |V |. Given a
parameter ε ∈ (0, 1), there is a randomized algorithm which returns w ∈ RE≥0 satisfying nnz(w) =

O(n
ε2

), |B|>w = |B|>wG in time

O

(
m

φ2
· poly

(
logm

ε

))
such that with high probability in n,

(1− ε)LG �
∑
e∈E

webeb
>
e � (1 + ε)LG.

Proof. We employ Theorem 2 on G, and use the routings from Lemma 18. In light of Remark 1, all
graphs we compute oblivious routings on are 1.1-sparsifiers of G and are hence Ω(φ)-expanders. As
such, Lemma 18 yields Troute(α) = Õ(m) with α = O(logm

φ2
) for all graphs we construct oblivious

routings for: substituting this into Theorem 2 yields the result.

We now upgrade this sparsification result on expander graphs to general graphs. Our main tool
for this is a expander decomposition result from prior work [SW19].

Lemma 20 (Theorem 4.1, [SW19]). There is a randomized algorithm which takes as input φ ∈
(0, 1) and a graph G = (V,E,wG) with m = |E|, where wG has multiplicative range poly(m), and
total weight W :=

∑
e∈E [wG]e. With high probability in n, it partitions V into {Vi}i∈[k] in time

O(mφ log5m) such that the following properties hold.

• The induced subgraph of G on each Vi is a φ-expander.

• The total edge weight cut by the Vi is O(φW log3m).

We combine this primitive with Lemma 19 to obtain the main result of this section.

Theorem 7. Given a graph G = (V,E,wG) with m = |E|, n = |V |, and ε ∈ (0, 1), assume wG has
multiplicative range poly(m). There is a randomized algorithm which returns w ∈ RE≥0 satisfying
nnz(w) = O(n log(m)

ε2
), |B|>w = |B|>wG in time Õ(m · ε−O(1)) such that with high probability in n,

(1− ε)LG �
∑
e∈E

webeb
>
e � (1 + ε)LG.

Proof. We begin applying Lemma 20 to find bipartite expanders covering a constant fraction of G’s
edge weight. Let S be a set which includes each vertex in G with probability 1

2 : note that since
each edge is cut by S with probability 1

2 E[w(∂S)] = 1
2W by linearity of expectation. By repeating

this O(log n) times, we find a set S with w(∂S) ≥ 1
3W with high probability in n. Let H be the

graph containing all edges cut by S, and note that it is bipartite. Applying Lemma 20 to H with
φ = O(log−3(m)), we obtain induced subgraphs {H[Vi]}i∈[k] of H satisfying the following.

30

• Each H[Vi] is a φ-expander.

• The H[Vi] collectively contain 3
4 of the edge-weight of H.

As subgraphs of bipartite graphs are bipartite, these H[Vi] are bipartite φ-expanders which collec-
tively cover 3

4 ·
1
3 = 1

4 of the edge weight of G. By iterating this procedure on the remaining edges,
we thus obtain disjoint subgraphs {Gi}i∈[K] of G for K = O(logm) satisfying the following.

• G =
⋃
i∈[K]Gi.

• Each Gi is a disjoint union of bipartite O(log−3(m))-expanders.

We apply Lemma 19 to each expander in each Gi and combine the outputs. As the union of
sparsifiers is a sparsifier of the union, the resulting graph is an ε-spectral sparsifier of our original
G. Additionally, as the total number of vertices in all of the Gi is at most nK = O(n logm), the
number of edges in the resulting sparsifier is bounded as O(n logm

ε2
). Finally, as the Gi are disjoint

they collectively contain m edges: the total runtime of the calls to Lemma 19 is thus the desired

O

(
m · poly

(
logm

ε

))
.

8 Spencer’s theorem

In this section, we describe how we recover the main result of [JSS23] within our framework. Specif-
ically, we prove the following result which is identical to Theorem 1.1 of [JSS23] after explicitly
dropping any empty rows and columns of A. We remark that for this section only, we will reverse
the roles of “m” and “n” for consistency with [JSS23] (so there are n colors to choose).

Theorem 8. Let A ∈ Rm×n satisfy maxi∈[m],j∈[n] |Aij | ≤ 1. There is an algorithm running in
Ŏ(nnz(A) · log5(n)) time which, with probability at least 1

2 , returns x ∈ {±1}n such that, for an
absolute constant C,

‖Ax‖∞ ≤ C
√
n log

(m
n

+ 2
)
.

As with the [JSS23] result, the failure probability may be boosted using independent repetitions.
Our strategy to prove Theorem 8 is the framework in Section 3. We need the following standard
fact about the Gaussian measure of the set of Spencer partial colorings, see e.g. Lemma 8.9, [Rot16].

Lemma 21. Let A ∈ Rm×n have maxi∈[m],j∈[n] |Aij | ≤ 1. Then γn(K) ≥ exp(− n
40) where

K :=

{
x ∈ Rn | ‖Ax‖∞ ≤

√
8n log

(m
n

+ 2
)}

. (16)

To handle error induced by near-tight constraints, we use a randomized rounding procedure.

Lemma 22. For K in (16) and universal constants c, C, suppose we have x ∈ CK ∩ [−1, 1]n with

min(|1− xi|, |1 + xi|) ≤
1√

log(m)
for all i ∈ S,

where S ⊆ [n] has |S| ≥ cn. We can compute x′ ∈ C ′K ∩ [−1, 1]n for a universal constant C ′ with
at least cn

3 coordinates in {−1, 1} in O(n) time, with high probability in n.

31

Proof. Set x′i = xi for i 6∈ S and, for i ∈ S, sample uniformly at random x′i ∼ {1, 2xi − 1} if xi > 0
and x′i ∼ {−1, 2xi + 1} if xi < 0. Then E[x′i] = xi and by the triangle inequality,∥∥∥∥∥∥

∑
i∈[n]

x′iAi

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∑
i∈S

(x′i − xi)Ai

∥∥∥∥∥
∞

+

∥∥∥∥∥∥
∑
i∈[n]

xiAi

∥∥∥∥∥∥
∞

.

By a Chernoff bound, at least 1
3 of the coordinates in S will be rounded to ±1 with probability

1− exp(−Ω(n)), and clearly x′ ∈ [−1, 1]n. Moreover, the x′i − xi are Rademacher random variables
scaled by a factor of at most 1√

log(m)
, so Hoeffding’s inequality yields the claim x′ ∈ C ′K.

Finally, we give an efficient algorithm based on stochastic mirror descent for solving subproblems
required by our framework. The next result follows straightforwardly from arguments in [CJST20]
(building on [CHW12]), but we summarize how to obtain it for completeness in Appendix B.

Lemma 23. Let A ∈ Rm×n have ≤ k nonzero entries in every column and maxi∈[m] ‖Ai:‖2 ≤ R,
and let v ∈ Rn, λ, ε ≥ 0, and δ ∈ (0, 1). There is an algorithm which runs in time

O

(
m+

(k + n)nR2 log2(m) log(1
δ)

ε2

)
,

and returns x ∈ [−1, 1]n such that with probability ≥ 1− δ,

‖Ax‖∞ + λ ‖x− v‖22 ≤ min
x′∈[−1,1]n

∥∥Ax′∥∥∞ + λ
∥∥x′ − v∥∥2

2
+ ε.

Now we have all the tools to prove Theorem 8.

Proof of Theorem 8. We first state several simplifying reductions from [JSS23]. First, the proof of
Theorem 1.1 shows it suffices to prove Theorem 8 when n

log2 n
≤ m ≤ n2; for small m, [ALS21]

proves the result, and for large m, a random coloring suffices. Next, the reduction from Theorem
1.1 to Theorem 2.1 in [JSS23] uses [ALS21] to handle columns with less than n · log−2(n) nonzero
entries, so after applying this reduction we may assume n2 = O(nnz(A) · log2(n)). The reduction
from Theorem 2.1 to Theorem 2.2 in [JSS23] shows that it suffices to solve the partial coloring
variant of the problem O(log log n) many times, i.e. to produce a point in O(1)K ∩ [−1, 1]n with
Ω(n) tight constraints, where K is defined as in (16). Finally, the proof of Theorem 2.2 in [ALS21]
shows that columns with a large number of nonzero entries may be colored separately, so we can
reduce to no column having more than k = O(nnz(A) · log(n)

n) nonzero entries.
We now solve the partial coloring problem under the restrictions that the maximum column

sparsity is k = O(nnz(A) · log(n)
n), and n2 = O(nnz(A) · log2(n)). We apply Proposition 2 with

Θ = n, β = 1√
logm

, and ρ = Cset
√

8n log(mn + 2), where Cset is the constant from Proposition 1.
Proposition 2 then requires solving O(log log n) subproblems of the form

arg min
x∈[−1,1]m

‖Ax‖∞ + λ ‖x− g‖22

to error ε := Ω(
√
n

logn). We apply Lemma 23 to do so with error probability O(log−1(n)) in time

O
(
n2 + (k + n)n log3(n) log log(n)

)
= Ŏ

(
nnz(A) · log5(n)

)
where we use R =

√
n and our assumed bounds on k and n2. A union bound over Ŏ(1) subproblems

(with the overhead of Ŏ(1) partial coloring phases) gives the failure probability. The partial coloring

32

follows by applying Lemma 21, Proposition 1, Lemma 1, and Lemma 2 to show the output of
Proposition 2 has Ω(n) nearly-tight constraints, and then using Lemma 22 to round these nearly-
tight constraints to tight ones. Finally, the runtime follows since there are Ŏ(1) calls to Lemma 23.

Acknowledgements

AJ and KT thank Aaron Sidford for several helpful conversations, and Yang P. Liu for the suggestion
to use dynamic data structures for our rounding procedure in Section 7. VR thanks Thomas
Rothvoss for helpful discussions about the Gaussian measure lower bound in Section 4.1.

33

References

[AAGM15] Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali D. Milman. Asymptotic geo-
metric analysis. Part I, volume 202 ofMathematical Surveys and Monographs. American
Mathematical Society, Providence, RI, 2015.

[AJJ+22] Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-
streaming bipartite matching in fewer passes and optimal space. In Proceedings of
the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages 627–669.
SIAM, 2022.

[AL17] Zeyuan Allen-Zhu and Yuanzhi Li. Follow the compressed leader: Faster online learning
of eigenvectors and faster MMWU. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, pages 116–125, 2017.

[ALS21] Ryan Alweiss, Yang P. Liu, and Mehtaab Sawhney. Discrepancy minimization via a
self-balancing walk. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory
of Computing, 2021, pages 14–20. ACM, 2021.

[AN19] Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch
spanning tree. SIAM J. Comput., 48(2):227–248, 2019.

[Ban10] Nikhil Bansal. Constructive algorithms for discrepancy minimization. In 51th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26,
2010, pages 3–10. IEEE Computer Society, 2010.

[BBN13] Michel Baes, Michael Bürgisser, and Arkadi Nemirovski. A randomized mirror-prox
method for solving structured large-scale matrix saddle-point problems. SIAM Journal
on Optimization, 23(2):934–962, 2013.

[BCL94] Keith Ball, Eric A. Carlen, and Elliott H. Lieb. Sharp uniform convexity and smoothness
estimates for trace norms. Inventiones mathematicae, 115(1):463–482, 1994.

[BDG19] Nikhil Bansal, Daniel Dadush, and Shashwat Garg. An algorithm for Komlós conjecture
matching Banaszczyk’s bound. SIAM J. Comput., 48(2):534–553, 2019.

[BDGL19] Nikhil Bansal, Daniel Dadush, Shashwat Garg, and Shachar Lovett. The Gram-Schmidt
walk: A cure for the Banaszczyk blues. Theory Comput., 15:1–27, 2019.

[BJM23] Nikhil Bansal, Haotian Jiang, and Raghu Meka. Resolving matrix Spencer conjecture
up to poly-logarithmic rank. In STOC ’23: 55th Annual ACM SIGACT Symposium on
Theory of Computing, 2023. ACM, 2023.

[BJSS20] Nikhil Bansal, Haotian Jiang, Sahil Singla, and Makrand Sinha. Online vector bal-
ancing and geometric discrepancy. In Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, pages 1139–1152. ACM, 2020.

[BLV22] Nikhil Bansal, Aditi Laddha, and Santosh S. Vempala. A unified approach to discrep-
ancy minimization. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM 2022, volume 245 of LIPIcs,
pages 1:1–1:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

34

[BSS14] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan spar-
sifiers. SIAM Rev., 56(2):315–334, 2014.

[CDST19] Yair Carmon, John C. Duchi, Aaron Sidford, and Kevin Tian. A rank-1 sketch for
matrix multiplicative weights. In Conference on Learning Theory, COLT 2019, pages
589–623, 2019.

[CGP+18] Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junx-
ing Wang. Graph sparsification, spectral sketches, and faster resistance computation,
via short cycle decompositions. In 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, pages 361–372. IEEE Computer Society, 2018.

[Cha01] Bernard Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge
University Press, 2001.

[CHW12] Kenneth L. Clarkson, Elad Hazan, and David P. Woodruff. Sublinear optimization for
machine learning. J. ACM, 59(5):23:1–23:49, 2012.

[CJST19] Yair Carmon, Yujia Jin, Aaron Sidford, and Kevin Tian. Variance reduction for matrix
games. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, pages 11377–11388, 2019.

[CJST20] Yair Carmon, Yujia Jin, Aaron Sidford, and Kevin Tian. Coordinate methods for matrix
games. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020, pages 283–293. IEEE, 2020.

[CKP+16] Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Aaron Sidford, and
Adrian Vladu. Faster algorithms for computing the stationary distribution, simulating
random walks, and more. In IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS 2016, pages 583–592. IEEE Computer Society, 2016.

[CKST19] Charles Carlson, Alexandra Kolla, Nikhil Srivastava, and Luca Trevisan. Optimal lower
bounds for sketching graph cuts. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, pages 2565–2569. SIAM, 2019.

[Coh16] Michael B. Cohen. Ramanujan graphs in polynomial time. In Irit Dinur, editor, IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016, pages 276–
281. IEEE Computer Society, 2016.

[DJR22] Daniel Dadush, Haotian Jiang, and Victor Reis. A new framework for matrix discrep-
ancy: Partial coloring bounds via mirror descent. In Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2022, page 649–658. Asso-
ciation for Computing Machinery, 2022.

[DNTT18] Daniel Dadush, Aleksandar Nikolov, Kunal Talwar, and Nicole Tomczak-Jaegermann.
Balancing vectors in any norm. In 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, pages 1–10. IEEE Computer Society, 2018.

[DSW22] Yichuan Deng, Zhao Song, and Omri Weinstein. Discrepancy minimization in input-
sparsity time. CoRR, abs/2210.12468, 2022.

[ES18] Ronen Eldan and Mohit Singh. Efficient algorithms for discrepancy minimization in
convex sets. Random Struct. Algorithms, 53(2):289–307, 2018.

35

[GHM15] Dan Garber, Elad Hazan, and Tengyu Ma. Online learning of eigenvectors. In Pro-
ceedings of the 32nd International Conference on Machine Learning, ICML 2015, pages
560–568, 2015.

[HSS14] Nicholas J. A. Harvey, Roy Schwartz, and Mohit Singh. Discrepancy without partial
colorings. In Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, APPROX/RANDOM 2014, volume 28 of LIPIcs, pages 258–273.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

[HSSZ19] Christopher Harshaw, Fredrik Sävje, Daniel A. Spielman, and Peng Zhang. Bal-
ancing covariates in randomized experiments using the Gram-Schmidt walk. CoRR,
abs/1911.03071, 2019.

[JS21] Arun Jambulapati and Aaron Sidford. Ultrasparse ultrasparsifiers and faster laplacian
system solvers. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2021, pages 540–559. SIAM, 2021.

[JSS23] Vishesh Jain, Ashwin Sah, and Mehtaab Sawhney. Spencer’s theorem in nearly input-
sparsity time. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2023, pages 3946–3958. SIAM, 2023.

[JT23] Arun Jambulapati and Kevin Tian. Revisiting area convexity: Faster box-simplex games
and spectrahedral generalizations. CoRR, abs/2303.15627, 2023.

[KLOS14] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-
linear-time algorithm for approximate max flow in undirected graphs, and its multi-
commodity generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, pages 217–226. SIAM, 2014.

[KMP11] Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for
SDD linear systems. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, pages 590–598, 2011.

[KMST10] Alexandra Kolla, Yury Makarychev, Amin Saberi, and Shang-Hua Teng. Subgraph
sparsification and nearly optimal ultrasparsifiers. In Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, pages 57–66. ACM, 2010.

[KV05] Adam Tauman Kalai and Santosh S. Vempala. Efficient algorithms for online decision
problems. J. Comput. Syst. Sci., 71(3):291–307, 2005.

[Lar23] Kasper Green Larsen. Fast discrepancy minimization with hereditary guarantees. In
Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023,
pages 276–289. SIAM, 2023.

[LM15] Shachar Lovett and Raghu Meka. Constructive discrepancy minimization by walking
on the edges. SIAM J. Comput., 44(5):1573–1582, 2015.

[LS17] Yin Tat Lee and He Sun. An sdp-based algorithm for linear-sized spectral sparsification.
In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 678–687. ACM, 2017.

36

[LS18] Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-
linear time. SIAM J. Comput., 47(6):2315–2336, 2018.

[LSY19] Yang P. Liu, Sushant Sachdeva, and Zejun Yu. Short cycles via low-diameter decom-
positions. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, pages 2602–2615. SIAM, 2019.

[Mat99] Jiri Matousek. Geometric Discrepancy: An Illustrated Guide. Springer-Verlag, 1999.

[MM15] Cameron Musco and Christopher Musco. Randomized block Krylov methods for
stronger and faster approximate singular value decomposition. In Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information Process-
ing Systems 2015, pages 1396–1404, 2015.

[Nes07] Yurii Nesterov. Smoothing technique and its applications in semidefinite optimization.
Mathematical Programming, Series A, 110:245–259, 2007.

[Pen16] Richard Peng. Approximate undirected maximum flows in O(mpolylog(n)) time. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2016, pages 1862–1867. SIAM, 2016.

[Pis89] Gilles Pisier. The Volume of Convex Bodies and Banach Space Geometry. Cambridge
Tracts in Mathematics. Cambridge University Press, 1989.

[PS22] Richard Peng and Zhuoqing Song. Sparsified block elimination for directed laplacians.
In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, 2022,
pages 557–567. ACM, 2022.

[PV23] Lucas Pesenti and Adrian Vladu. Discrepancy minimization via regularization. In
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
pages 1734–1758. SIAM, 2023.

[PY19] Merav Parter and Eylon Yogev. Optimal short cycle decomposition in almost linear
time. In 46th International Colloquium on Automata, Languages, and Programming,
ICALP 2019, volume 132 of LIPIcs, pages 89:1–89:14, 2019.

[Rot16] Thomas Rothvoss. Lecture notes on integer optimization and lattices, 2016.

[Rot17] Thomas Rothvoss. Constructive discrepancy minimization for convex sets. SIAM J.
Comput., 46(1):224–234, 2017.

[RR20] Victor Reis and Thomas Rothvoss. Linear size sparsifier and the geometry of the oper-
ator norm ball. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2020, pages 2337–2348. SIAM, 2020.

[RR22] Victor Reis and Thomas Rothvoss. Vector balancing in Lebesgue spaces. Random
Structures and Algorithms, 2022.

[Spe85] Joel Spencer. Six standard deviations suffice. Transactions of the American Mathemat-
ical Society, 289(2):679–706, 1985.

[SS11] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM J. Comput., 40(6):1913–1926, 2011.

37

[ST83] Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees.
J. Comput. Syst. Sci., 26(3):362–391, 1983.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In Proceedings of the 36th
Annual ACM Symposium on Theory of Computing, 2004, pages 81–90. ACM, 2004.

[SW09] Daniel A. Spielman and Jaeoh Woo. A note on preconditioning by low-stretch spanning
trees. CoRR, abs/0903.2816, 2009.

[SW19] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster,
stronger, and simpler. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, pages 2616–2635. SIAM, 2019.

[Tro15] Joel A. Tropp. An introduction to matrix concentration inequalities. Found. Trends
Mach. Learn., 8(1–2):1–230, 2015.

[ZBG+22] Sepehr Abbasi Zadeh, Nikhil Bansal, Guru Guruganesh, Aleksandar Nikolov, Roy
Schwartz, and Mohit Singh. Sticky Brownian rounding and its applications to con-
straint satisfaction problems. ACM Trans. Algorithms, 18(4):33:1–33:50, 2022.

[ZLO15] Zeyuan Allen Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and
regret minimization beyond matrix multiplicative updates. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, pages 237–
245. ACM, 2015.

38

A Proof of Theorem 4

In this section we provide a proof of Theorem 4. As much of the proof is the same, we defer
exposition to [RR20] for brevity and only provide technical details here. First we justify that we
may assume τ ≥ 1. If the result holds for τ = 1, then for any τ < 1 we may consider instead the
matrices A′i := 1

τAi which still satisfy
∑m

i=1 |A′i| � In and
∑n

i=1 Tr(|A′i|) = 1. Then in order to
show a measure lower bound for the discrepancy body associated with Ai, it suffices to do so for
the (smaller) body associated with A′i. Hence we will assume τ ≥ 1 from now on.

To parallel [RR20], we let

S := A(1m), S̃ :=
1

2

(
S +

τ

n
· In
)
, AC,D := (C +D‖x‖22) · In −A(x). (17)

Note that S̃ � 1
2nIn by definition. The potential function we will use is:

ΦC,D(x) := Tr(S̃ ·AC,D(x)−1).

In order to analyze changes to the potential, we require a generalization of Lemma 11 in [RR20].

Lemma 24. Let A,B,S ∈ Rn×n be symmetric with A,S � 0n and ‖δA−
1
2 BA−

1
2 ‖op ≤ 1

2 . Then
Tr((A− δB)−1S) = Tr(A−1S) + δTr(A−1BA−1S) + cδ2Tr(A−1BA−1BA−1S) for some c ∈ [0, 2].

Proof. We abbreviate M := δA−1B. As ‖M‖op ≤ 1
2 , the matrix In−M is non-singular. We obtain

(A− δB)−1 = (A(In −M))−1 = (In −M)−1A−1 =
∞∑
k=0

MkA−1,

so that

Tr((A− δB)−1S) =
∞∑
k=0

Tr(MkA−1S) =
2∑

k=0

Tr(MkA−1S) +
∞∑
k=3

Tr(MkA−1S)

= Tr(A−1S) + δTr(A−1BA−1S) + δ2Tr(A−1BA−1BA−1S)

+
∞∑
k=3

Tr(MkA−1S).

We proceed to bound the last sum above. For any k ≥ 3,

|Tr(MkA−1S)| =
∣∣∣∣δk 〈(A−

1
2 BA−

1
2

)k−2
,A−

1
2 BA−1SA−1BA−

1
2

〉∣∣∣∣
≤
∥∥∥(δA−

1
2 BA−

1
2)k−2

∥∥∥
op
· δ2Tr

(
A−

1
2 BA−1SA−1BA−

1
2

)
≤
∥∥∥δA− 1

2 BA−
1
2

∥∥∥k−2

op
· δ2Tr(A−1BA−1BA−1S)

≤ 1

2k−2
δ2Tr(A−1BA−1BA−1S),

where the first line used the cyclic property of trace, the second was the matrix Hölder inequality,
and the third used

∥∥Ak
∥∥

op = ‖A‖kop for symmetric A. The conclusion then follows from combining
the above two displays and applying the triangle inequality.

We next give a variant of how the potential changes in a single step (Lemma 12 in [RR20]).

39

Lemma 25. Fix α ∈ (0, 1
2), D ≤ 1, and m = Ω(α−2) for a sufficiently large constant. Let x ∈ Rm

and suppose AC,D(x) � 0, ΦC,D(x) ≤ Dm2α2

10 , and δ := α
45m5n2 . Define F (y) so that

ΦC+δ2F (y),D(x+ δy) = ΦC,D(x). (18)

Then there is a X ∈ Rm×m with 0 � X � Im and Tr(X) ≥ (1−α2)·m so that Ey∼N≤m(0m,X)[F (y)] ≤
0 while always |F (y)| ≤ 7Dm4n. Further, AC+δ2F (y),D(x+ δy) � 0.

Proof of Lemma 25. To simplify notation, we abbreviate matrices

A := AC,D(x), B̃ := A(y), B := B̃− δ(D‖y‖22 + F (y))In.

Next, we define an index set

I :=
{
i ∈ [m] | Tr(A−1Ai) ≤

1.1

α2m
· Tr(A−1S)

}
.

By Markov’s inequality, we have |I| ≥ (1− α2

1.1)m. Consider the subspace

H :=
{
y ∈ Rm | yi = 0 ∀i /∈ I, 〈x, y〉 = 0,

〈
A(y),A−1S̃A−1

〉
= 0,

〈
A(y),A−1S̃A−2

〉
= 0,〈

A(y),A−2S̃A−1
〉

= 0
}

so dim(H) ≥ |I| − 4 ≥ (1− α2)m. We choose X as the projection matrix onto H. The remaining
proof is organized in two claims: the first bounds |F (y)|, and the second controls EF (y).

Claim 1. If y ∈ H and ‖y‖2 ≤ m, |F (y)| ≤ 7Dm4n, ‖B‖op ≤ 4m, and ‖δA−
1
2 BA−

1
2 ‖op ≤ 1

2 .

Proof. Since (18) holds, monotonicity of the inverse shows the difference matrix

AC+δ2F (y),D(x+ δy)−AC,D(x) = δ2(D‖y‖22 + F (y)) · In − δA(y)

has at least one positive and one negative eigenvalue. Since δA(y) � −δ ‖y‖∞ In � −δmIn, in order
for the difference matrix to have a positive eigenvalue we must have F (y) ≥ −2m

δ , and similarly
δA(y) � δmIn implies F (y) ≤ m

δ . Hence, |F (y)| ≤ 2m
δ , which implies the bound:

‖B‖op ≤ ‖A(y)‖op + δ
(
Dm+

m

δ

)
≤ 4m. (19)

Further, since ‖S̃A−1‖op ≤ ΦC,D(x) ≤ Dm2

10 , we have

‖δA−
1
2 BA−

1
2 ‖op ≤ δ‖A−

1
2 ‖2op‖B‖op ≤ 4mδ

∥∥A−1
∥∥

op

≤ 4mδ‖S̃−1‖op‖S̃A−1‖op ≤
2Dm3δ

5
‖S̃−1‖op ≤

4Dm3nδ

5
≤ 1

2
,

(20)

where we used our bounds on B and S̃A−1, and recalled from (17) that S̃ � 1
2nIn. It remains to

obtain a stronger bound on |F (y)|. By using Lemma 24 and the definition of the subspace H,

0 = ΦC+δ2F (y),D(x+ δy)− ΦC,D(x) = Tr
(

(A− δB)−1 S̃
)
− Tr

(
A−1S̃

)
= δTr

(
A−1BA−1S̃

)
+ cδ2Tr

(
A−1BA−1BA−1S̃

)
= δ2

(
−
(
D ‖y‖22 + F (y)

)
Tr(A−2S̃) + cTr

(
A−1BA−1BA−1S̃

))
,

(21)

40

for some c ∈ [0, 2], since Tr(A−1A(y)A−1S̃) = 0. This implies

|F (y)| ≤
cTr

(
A−1BA−1BA−1S̃

)
Tr
(
A−2S̃

) +D ‖y‖22 ≤ 2
∥∥A−1

∥∥
op ‖B‖

2
op +Dm2 ≤ 7Dm4n,

where we used the matrix Hölder inequality, (19), and (20) which implies ‖A−1‖op ≤ Dm2n
5 .

Claim 2. We have

Ey∼N≤m(0m,X)

[
Tr
(
A−1BA−1BA−1S̃

)]
≤
(
Dm

200
+

1.1

α2m
Tr
(
A−1S

))
Tr
(
A−2S̃

)
.

Proof. Let λ := δ(D ‖y‖22 + F (y)) ≤ 7.7δDm4n. By the last two constraints in the definition of H,
and using that B = B̃− λIn, for any y ∈ H with ‖y‖2 ≤ m,∣∣∣Tr(A−1BA−1BA−1S̃

)
− Tr

(
A−1B̃A−1B̃A−1S̃

)∣∣∣ = λ2Tr
(
A−3S̃

)
≤ λ2

∥∥A−1
∥∥

op Tr
(
A−2S̃

)
≤ 12δ2D3m10n3Tr

(
A−2S̃

)
.

Moreover, defining Wi := S̃
1
2 A−1AiA

− 1
2 for all i ∈ [n],

Ey∼N≤m(0m,X)

[
Tr
(
A−1B̃A−1B̃A−1S̃

)]
= Ey∼N≤m(0m,X)

∑
i∈I

∑
j∈I

yiyj 〈Wi,Wj〉


= Ey∼N≤m(0m,X)

∥∥∥∥∥∑
i∈I

yiWi

∥∥∥∥∥
2

F

 ≤∑
i∈I
‖Wi‖2F

=
∑
i∈I

Tr
(
A−1AiA

−1AiA
−1S̃

)
≤
∑
i∈I

Tr
(
A−1AiA

−1S̃
)
Tr
(
A−1Ai

)
≤ 1.1

α2m
Tr
(
A−1S

)
Tr
(
A−2S̃

)
.

The second line used Lemma 9 of [RR20] with the fact that when y is truncated, the norm is zero.
The fourth line used Lemma 10 of [RR20], and the last used the definition of I and A(1m) � In.
The conclusion follows by combining the above two displays with our choice of δ.

Taking expectations over (21) and applying Claim 2 shows

0 ≤
(
−0.44Dm− Ey∼N≤m(0m,X)[F (y)] +

2.2

α2m
Tr
(
A−1S

))
Tr
(
A−2S̃

)
,

where we used dim(H) ≥ 1
2m and Corollary 5 of [RR20] to lower bound Ey∼N≤m(0m,X)[‖y‖22] ≥

0.45Dm. Rearranging, and using S � 2S̃ and our potential bound, then yields

Ey∼N≤m(0m,X)[F (y)] ≤ 4.4

α2m
Tr(A−1S̃)− 0.44Dm ≤ 0.

Finally, note that since Tr(A−1S̃) ≤ Dm2α2

10 and S̃ � 1
2nIn, no eigenvalue of A can be smaller than

5τ
Dm2α2n

. Hence, the last conclusion on positive semidefiniteness follows from

AC+δ2F (y),D(x+ δy)−A = δ2
(
D ‖y‖22 + F (y)

)
In − δA(y) � −3mδIn � −

1

2n
In.

41

Theorem 4. Suppose {Ai}i∈[m] ⊂ Sn�0 satisfy A(1m) � In and Tr(A(1m)) ≤ τ for sufficiently
large m and n ≤ 2

m
5 . Following notation (2), there is a constant C0 such that

γm

(
C0

α
K√ τ

m
,A + α

√
mBm2

)
≥ 1

2
, for all α ∈ (0, 1).

Proof. Assume the bounds in Lemma 25 are met, and define ε :=
√

τ
m . We overload

Ai ←
(

Ai 0
0 −Ai

)
∈ R2n×2n for all i ∈ [n].

We run a hypothetical algorithm for T := 1
δ2

iterations, with parameter choices

C :=
10ε

α
, D :=

2ε

αm
, δ :=

α

45m5n2
.

Our algorithm initalizes x(0) ← 0m and for t ∈ [T], lets X(t) be the covariance matrix given by
Lemma 25 applied to x(t−1), samples y(t) ∼ N (0m,X(t)) and z(t) ∼ N (0m, Im −X(t)), and updates
x(t) ← x(t−1) + δy(t). Analagously to the proof of Theorem 1 in [RR20], Azuma’s inequality and
Gaussian concentration show that all of the following hold with probability at least 1

2 .

1.
∥∥y(t)

∥∥
2
≤ m for all t ∈ [T].

2. δ2
∑

t∈[T] F (y(t)) ≤ C
10 .

3. ‖Y ‖22 ≤ 5m and ‖Z‖22 ≤ 5α2m, where Y :=
∑

t∈[T] y
(t) and Z :=

∑
t∈[T] z

(t).

We remark that the first claim above results in the requirement that n ≤ 2
m
5 , since we are union

bounding over n4poly(m) steps and Gaussian concentration fails with probability 2−m in each step
by Corollary 5 of [RR20]. Further, the initial value of the potential function is 2C−1τ = Dm2α2

10 , so
the potential bound in Lemma 25 is met if we update C by δ2F (y(t)) each iteration. Under these
events, since Y + Z is a draw from N (0m, Im), we have shown

‖A(Y)‖op ≤ (1.1C +D ‖Y ‖22) ≤ 21ε

α
.

Hence, at least half of draws from N (0m, Im) are within distance α
√

5m from 21
α Kε,A. Reparame-

terizing α by a constant and adjusting C0 then yields the claim, up to the restriction m = Ω(α−2) in
Lemma 25. If instead α ≥ C0√

2m
, since ‖A(x)‖2op ≤ ‖A(x)‖2F ≤ 2τ with probability ≥ 1

2 by Markov’s
inequality, C0

α Kε,A already covers the Gaussian measure without the addition of α
√
mBm2 .

B Optimization subroutines

B.1 Discussion of Proposition 5

In this section, we give a discussion of how to modify the algorithm in [JT23] to obtain Proposition 5.
In particular, Proposition 5 follows from modifying Theorem 3 of [JT23] applied to the regularized
box-spectraplex primal-dual formulation of (9), whose notation we will follow throughout this sec-
tion. We observe that Tmv(Ãi) = Tmv(|Ãi|) = Tmv(Ai), since we assumed all the Ai ∈ Sd�0, and
there is no “B” term in the notation of [JT23], Theorem 3. Further,∥∥∥∥∥∥

∑
i∈[m]

Ãi

∥∥∥∥∥∥
op

=

∥∥∥∥∥∥
∑
i∈[m]

Ai

∥∥∥∥∥∥
op

= ‖A(1m)‖op ,

42

so in the notation of [JT23], Theorem 3, it suffices to set Ltot = LA = ‖A(1m)‖op. It remains how
to handle the regularization term, denoted in this section by

q(x) := λ ‖x− g‖22 .

It is known in the literature how to modify extragradient methods to handle composite terms (e.g.
Section 5.2, [CJST19]), but because the algorithm in [JT23] is somewhat nonstandard, we give a
brief description here. As seen in the proofs of Lemma 4, Corollary 2 of [JT23], it suffices to modify
the left-hand sides of Eq. (10) in [JT23] to read for iterates z = (x,Y), z′ = (x′,Y′),

η
〈
g(z) +∇q(x′), z′ − z+

〉
≤ V (α+β)

z (z+)− V (α)
z′ (z+)− V (α)

z (z′),

η
〈
g(z′) +∇q(x′), z+ − u

〉
≤ 2V (α+β)

z (u)− 2V
(α+β)
z+

(u)− 2V (α+β)
z (z+)

+ 2V γh

Y
(uy)− 2V γh

Y
+(uy),

where uy is the spectraplex component of u ∈ [−1, 1]m ×∆2n×2n, and Y, Y
+ are auxiliary iterates

maintained by the extragradient step oracles of [JT23]. Achieving the second equation above is
immediate by giving the extragradient step oracle (Algorithm 5) in [JT23] the linear term g(z′) +
∇q(x′), instead of just g(z′). To achieve the first equation, we modify the subproblems solved in
Lines 3 and 5 of the gradient step oracle (Algorithm 4) in [JT23] to minimize a linear term, plus
r(·,Y), plus ηq. It is simple to check that first-order optimality conditions on x′ in Corollary 3 then
result in the additional ∇q(x′) term in the first line above, and no other proofs are changed.

B.2 Proof of Lemma 23

Lemma 23. Let A ∈ Rm×n have ≤ k nonzero entries in every column and maxi∈[m] ‖Ai:‖2 ≤ R,
and let v ∈ Rn, λ, ε ≥ 0, and δ ∈ (0, 1). There is an algorithm which runs in time

O

(
m+

(k + n)nR2 log2(m) log(1
δ)

ε2

)
,

and returns x ∈ [−1, 1]n such that with probability ≥ 1− δ,

‖Ax‖∞ + λ ‖x− v‖22 ≤ min
x′∈[−1,1]n

∥∥Ax′∥∥∞ + λ
∥∥x′ − v∥∥2

2
+ ε.

Proof. It suffices to prove that in time O((k + n)n2 log2(m)ε−2), we can return a point satisfying

E
[
‖Ax‖∞ + λ ‖x− v‖22

]
≤ min

x′∈[−1,1]n

∥∥Ax′∥∥∞ + λ
∥∥x′ − v∥∥2

2
+
ε

2
,

since Markov’s inequality results in an ε-suboptimal point with probability ≥ 1
2 , and then we can

run O(log 1
δ) independent runs and take the best function value. To do this, we reparameterize A

as the vertical concatenation of
√
nA and −

√
nA, and recast the objective as the minimax problem

min
x∈[− 1√

n
, 1√
n

]n
max
y∈∆m

y>Ax+ λ
∥∥√nx− v∥∥2

2
. (22)

It then suffices to apply Proposition 2 of [CJST20], following the `2-`1 local norm setup in Table 6,
with the composite extension in Lemma 13 (setting Q(x, y) = λ ‖x− v‖22). Specifically, Proposition
2 of [CJST20] requires a local gradient estimator g̃ (see Definition 3 of that paper) for the operator

g(x, y) =
(
A>y,−Ax

)
43

corresponding to the bilinear component of our minimax problem (22). We use

g̃(x, y) =

(
Ai:,−A:j ·

xj
pj

)
,

where i ∈ [m] is randomly selected with probability yi, and j ∈ [n] is randomly selected with
probability pj = x2

j ‖x‖
−2
2 . This estimator g̃ is unbiased for g, meeting the first criterion of Definition

3 in [CJST20]. Further, since all rows of A have `2 norm bounded by R
√
n (after rescaling by

√
n),

Lemma 21 of [CJST20] with w0 set to the all-zeroes vector shows g̃ satisfies the second criterion
of Definition 3 in [CJST20] with L = O(R

√
n). Finally, for the `2-`1 local norm setup, Table 6 in

[CJST20] shows Θ = O(logm). In conclusion, Proposition 2 of [CJST20] shows that after

O

(
L2Θ

ε2

)
= O

(
nR2 log(m)

ε2

)
iterations, we obtain expected suboptimality gap ε

2 as desired. In each iteration, we can explicitly
update the vector x and recompute the sampling distribution proportional to x2 in O(n) time.
Because the update to y is k-sparse, Section 5.1 of [CJST20] (see also Lemma 5.4 of [JSS23] for a
brief summary) shows how to update y and maintain a sampling distribution proportional to it in
time O(k log(m)) per iteration. Hence, each iteration takes time O(n+ k log(m)) as desired.

C Low-distortion subgraph construction

In this section, we give a proof of the low-distortion subgraph construction claimed in Proposition 9.

Proposition 9 ([JS21]). Let G = (V,E,wG) have m = |E| and n = |V |. There is an algorithm
which takes a parameter γ > 1 and runs in time O(m), which produces a O(mγo(1)(log n)o(1))-
distortion subgraph of G with n− 1 + m

γ edges.

Proof. This construction is implicit in the proof of Theorem A.4 in [JS21]: we summarize the details
here for completeness. Theorem 1.9 of [JS21] gives a “path sparsification” algorithm, which takes as
input an n-node m-edge graph G and parameter q ≥ 1 and returns a (q,O(log5 n))-path sparsifier
with O(nq log3 n) edges in O(m+ nq log13 n) time.

In addition, Theorem 2.5 of [JS21] provides an algorithm which takes as input a graph G,
parameters k, γ ≥ 2, and a path sparsification algorithm which runs on n′-vertex m′-edge graphs
and returns a (10β, β)-path sparsifier (for some value β) with S(m′, n′) edges in T (m′, n′) time. It
outputs a subgraph H with at most

n− 1 +O

(
m

γ
+
m log γ

k2

)
+ S

(
O(m), O

(m
k

))
edges such that Tr(L†HLG) ≤ mα̂ for

α̂ = O

(
exp

(√
8 log γ · log

(
48 log k

√
log γ

))
log k

√
log γ

)
.

Additionally, the algorithm runs in O(m+ T (O(m), O(mk)) time.
Choosing q = O(log5 n′) in Theorem 1.9 gives an algorithm which runs on n′-vertex m′-edge

graphs, returns a (10β, β)-path sparsifier for β = O(log5 n′), and has S(m′, n′) = O(n′ log8 n′) and

44

T (m′, n′) = O(m′ + n′ log18 n′). Choosing k = γ log18m in Theorem 2.5 and combining the above
gives an algorithm which takes in G and outputs a subgraph H in time

O
(
m+ T

(
O(m), O

(m
k

)))
= O

(
m+

m

k
log18m

)
= O(m)

with

n− 1 +O

(
m

γ
+
m log γ

k2

)
+ S

(
O(m), O

(m
k

))
= n− 1 +O

(
m

γ

)
+
m

k
log8m

= n− 1 +O

(
m

γ

)
edges, such that Tr(L†HLG) ≤ mα̂ with

α̂ = O

(
exp

(√
8 log γ · log

(
48 log

(
γ log18 n

)√
log γ

))
log
(
γ log18 n

)√
log γ

)
. (23)

To simplify the above expression, note that

log
(
γ log18 n

)√
log γ ≤ 18

√
log γ log logn+ (log γ)

3
2 ≤ 20(log log n)

3
2 + 20(log γ)

3
2 .

Since log(a+ b) ≤ 2 max{log a, log b} for a, b ≥ 2, we have

8 log γ · log
(

48 log
(
γ log18 n

)√
log γ

)
≤ 16 log γ ·

(
log 1000 +

3

2
max (log log γ, log log log n)

)
≤ 400 + 36 max (log γ · log log γ, log γ · log log log n)

≤ 400 + 36 max (log γ · log log γ, log logn · log log log n)

where the last inequality holds since log log log n ≥ log log γ only when γ ≤ log n. Substituting the
above bounds into (23) and using

√
a+ b ≤

√
a+
√
b, we have

α̂ = O
(

exp
(

20 + 6 max
(√

log γ · log log γ,
√

log log n · log log log n
)))(

(log log n)
3
2 + (log γ)

3
2)
)

= Ŏ
(

exp(6
√

log γ · log log γ) exp(6
√

log log n · log log log n)(log γ)
3
2

)
= O(γo(1)(log n)o(1)).

Thus the algorithm described above proves the desired claim.

45

	1 Introduction
	1.1 Our results
	1.2 Technical overview
	1.3 Related work

	2 Preliminaries
	3 Approximate partial coloring framework
	4 Gaussian measure lower bounds
	4.1 Reduction to Gaussian distance bound
	4.2 Operator norm discrepancy bodies

	5 Linear-sized sparsifiers
	5.1 Approximate Gaussian rounding in nearly-linear time
	5.2 Linear-sized sparsifiers in nearly-linear time
	5.3 Graph sparsification

	6 Ultrasparsifiers
	7 Degree-preserving sparsifiers
	7.1 Approximate Gaussian rounding with linear constraints
	7.2 Degree-preserving linear optimization oracle
	7.3 Degree-preserving rounding via link/cut trees
	7.4 Degree-preserving sparsifiers in almost-linear time
	7.5 Runtime-sparsity tradeoffs

	8 Spencer's theorem
	A Proof of Theorem 4
	B Optimization subroutines
	B.1 Discussion of Proposition 5
	B.2 Proof of Lemma 23

	C Low-distortion subgraph construction

