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Abstract

Approximation algorithms for the prize-collecting Steiner forest problem (PCSF) have been a subject

of research for over three decades, starting with the seminal works of Agrawal, Klein, and Ravi [1, 2]

and Goemans and Williamson [13, 14] on Steiner forest and prize-collecting problems. In this paper, we

propose and analyze a natural deterministic algorithm for PCSF that achieves a 2-approximate solution

in polynomial time. This represents a significant improvement compared to the previously best known

algorithm with a 2.54-approximation factor developed by Hajiaghayi and Jain [18] in 2006. Furthermore,

Könemann, Olver, Pashkovich, Ravi, Swamy, and Vygen [23] have established an integrality gap of at

least 9/4 for the natural LP relaxation for PCSF. However, we surpass this gap through the utilization

of a combinatorial algorithm and a novel analysis technique. Since 2 is the best known approximation

guarantee for Steiner forest problem [2] (see also [14]), which is a special case of PCSF, our result

matches this factor and closes the gap between the Steiner forest problem and its generalized version,

PCSF.

1 Introduction

The Steiner forest problem, also known as the generalized Steiner tree problem, is a fundamental NP-hard

problem in computer science and a more general version of the Steiner tree problem. In this problem,

given an undirected graph G = (V, E, c) with edge costs c : E → R≥0 and a set of pairs of vertices D =

{(v1, u1), (v2, u2), · · · (vk, uk)} called demands, the objective is to find a subset of edges with the minimum

total cost that connects vi to ui for every i ≤ k. In this paper, our focus is on the prize-collecting Steiner

forest problem (PCSF), which is a generalized version of the Steiner forest problem.

Balas [4] first introduced general prize-collecting problems in 1989 and Bienstock, Goemans, Simchi-Levi,

and Williamson [8] developed the first approximation algorithms for these problems. In the prize-collecting

version of the Steiner forest problem, we are given an undirected graph G = (V, E, c) with edge costs

c : E → R≥0 and a set of pairs of vertices D = {(v1, u1), (v2, u2), · · · (vk, uk)} called demands, along with

non-negative penalties πi j for each demand (i, j). The objective is to find a subset of edges and pay their

costs, while also paying penalties for the demands that are not connected in the resulting forest. Specifically,

we aim to find a subset of demands Q and a forest F such that if a demand (i, j) is not in Q, its endpoints i

and j are connected in F, while minimizing the total penalty of the demands in Q and the sum of the costs of

the edges in F. Without loss of generality, we assign a penalty of 0 to pairs that do not represent a demand,

ensuring that there is a penalty associated with each pair of vertices. This allows us to define the penalty
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function π : V × V → R≥0, where V × V represents the set of all unordered pairs of vertices with i , j. In

this paper, we significantly improve the approximation factor of the best-known algorithm for PCSF.

For the Steiner forest problem, the first approximation algorithm was introduced by Agrawal, Klein, and

Ravi [2]. Their algorithm addressed a more generalized version of the Steiner forest problem and achieved

a 2-approximation for Steiner forest. Later, Goemans and Williamson [14] provided a simplified simulation

of their algorithm, which yields a (2− 2
n
)-approximate solution for the Steiner forest problem, where n is the

number of vertices1. However, no further advancements have been made in improving the approximation

factor of this problem since then. There has been a study focused on analyzing a natural algorithm for

the problem, resulting in a constant approximation factor worse than 2 [16]. In this paper, we close the

gap between the Steiner forest problem and its generalized version, PCSF, by presenting a 2-approximation

algorithm for PCSF.

The Steiner tree problem is a well-studied special case of the Steiner forest problem. In the Steiner tree

problem, one endpoint of every demand is a specific vertex known as root. In contrast to the Steiner forest

problem, the approximation factor of the Steiner tree problem has seen significant progress since the intro-

duction of the (2 − 2
n
)-approximation algorithm by Goemans and Williamson [14]. Several improvements

have been made [26, 24, 22], leading to a 1.39 approximation factor achieved by Byrka, Grandoni, Rothvoß,

and Sanità [10]. Lower bounds have also been established, with [21] proving the NP-hardness of the Steiner

tree problem and consequently the Steiner forest problem, and [11, 7] demonstrating that achieving an ap-

proximation factor within 96/95 is NP-hard. These advancements, along with the established lower bounds,

underscore the extensive research conducted in the field of Steiner tree and Steiner forest problems.

Regarding the previous works in the prize-collecting version of these problems, Goemans and Williamson

[14] provided a (2 − 1
n−1

)-approximation algorithm for prize-collecting Steiner tree (PCST) and prize-

collecting TSP problem (PCTSP) in addition to their work on the Steiner forest problem. However, they did

not provide an algorithm specifically for the PCSF problem, leaving it as an open problem. Later, Hajiaghayi

and Jain [18] in 2006 proposed a deterministic primal-dual (3 − 2
n
)-approximation algorithm for the PCSF

problem, which inspired our work. They also presented a randomized LP-rounding 2.54-approximation al-

gorithm for the problem. In their paper, they mentioned that finding a better approximation factor, ideally 2,

remained an open problem. However, no improvements have been made to their result thus far. Furthermore,

other 3-approximation algorithms have been proposed using cost-sharing [15] or iterative rounding [17] (see

e.g. [5, 19, 25] for further work on PCSF and its generalizations). Our paper is the first work that improves

the approximation factor of [18].

Moreover, advancements have been made in the PCST problem since the initial (2 − 1
n−1

)-approximation

algorithm by Goemans and Williamson [14]. Archer, Bateni, Hajiaghayi, and Karloff [3] presented a 1.9672-

approximation algorithm for PCST, surpassing the barrier of a 2-approximation factor. Additionally, there

have been significant advancements in the prize-collecting TSP, which shares similarities with the LP formu-

lation of PCST. Various works have been done in this area [3, 12], and the currently best-known approxima-

tion factor is 1.774 [9]. These works demonstrate the importance and interest surrounding prize-collecting

problems, emphasizing their significance in the research community.

For a while, the best-known lower bound for the integrality gap of the natural LP relaxation for PCSF was 2.

However, Könemann, Olver, Pashkovich, Ravi, Swamy, and Vygen [23] proved that the integrality gap of

this LP is at least 9/4. This result suggests that it is not possible to achieve a 2-approximation algorithm for

1Indeed Goemans and Williamson [20](Sec 4.6.1) explicitly mention “... the primal-dual algorithm we have presented simulates

an algorithm of Agrawal, Klein, and Ravi [AKR95]. Their algorithm was the first approximation algorithm for this [Steiner forest

a.k.a. generalized Steiner tree] problem and has motivated much of the authors’ research in this area.”; the seminal work of Agrawal,

Klein, and Ravi [1, 2] recently received The 30-year STOC Test-of Time Award.
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PCSF solely through primal-dual approaches based on the natural LP, similar to the approaches presented

in [18, 17]. This raises doubts about the possibility of achieving an algorithm with an approximation factor

better than 9/4.

However, in this paper, we provide a positive answer to this question. Our main result, Theorem 1, demon-

strates the existence of a natural deterministic algorithm for the PCSF problem that achieves a 2-approximate

solution in polynomial time.

Theorem 1. There exists a deterministic algorithm for the prize-collecting Steiner forest problem that

achieves a 2-approximate solution in polynomial time.

We address the 9/4 integrality gap by analyzing a natural iterative algorithm. In contrast to previous ap-

proaches in the Steiner forest and PCSF fields that compare solutions with feasible dual LP solutions, we

compare our solution directly with the optimal solution and assess how much the optimal solution surpasses

the dual. It is worth noting that our paper does not rely on the primal and dual LP formulations of the

Steiner forest problem. Instead, we employ a coloring schema that shares similarities with primal-dual ap-

proaches. While LP techniques could be applied to various parts of our paper, we believe that solely relying

on LP would not be sufficient, particularly when it comes to overcoming the integrality gap. Furthermore,

although coloring has been used in solving Steiner problems [6], our approach goes further by incorporating

two interdependent colorings, making it novel and more advanced.

In addition, we analyze a general approach that can be applied to various prize-collecting problems. In any

prize-collecting problem, an algorithm needs to make decisions regarding which demands to pay penalties

for and which demands to satisfy. Let us assume that for a prize-collecting problem, we have a base algo-

rithm A. We propose a natural iterative algorithm that begins by running A on an initial instance and storing

its solution as one of the options for the final solution. The solution generated by algorithm A pays penalties

for some demands and satisfies others. Subsequently, we assume that all subsequent solutions generated

by our algorithm will pay penalties for the demands that A paid, set the penalties of these demands to zero,

and run A again on the modified instance. We repeat this procedure recursively until we reach a state where

algorithm A satisfies every demand with a non-zero penalty, meaning that further iterations will yield the

same solution. This state is guaranteed to be reached since the number of non-zero demands decreases at

each step. Finally, we obtain multiple solutions for the initial instance and select the one with the minimum

cost. This natural iterative algorithm could be effective in solving prize-collecting problems, and in this

paper, we analyze its application to the PCSF problem using a variation of the algorithm proposed in [18]

as our base algorithm.

One interesting aspect of our findings is that the current best algorithm for the Steiner forest problem

achieves an approximation ratio of 2, and this approximation factor has remained unchanged for a sig-

nificant period of time. It is worth noting that the Steiner forest problem is a specific case of PCSF, where

each instance of the Steiner forest can be transformed into a PCSF instance by assigning a sufficiently large

penalty to each demand. Since our result achieves the same approximation factor for PCSF, improving the

approximation factor for the PCSF problem proves to be more challenging compared to the Steiner forest

problem. In future research, it may be more practical to focus on finding a better approximation factor for

the Steiner forest problem, which has been an open question for a significant duration. Additionally, investi-

gating the tightness of the 2-approximation factor for both problems could be a valuable direction for further

exploration.
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1.1 Algorithm and Techniques

In this paper, we introduce a coloring schema that is useful in designing algorithms for Steiner forest, PCSF,

and related problems. This coloring schema provides a different perspective from the algorithms proposed

by Goemans and Williamson in [14] for Steiner forest and Hajiaghayi and Jain in [18] for PCSF. In Section

2, we provide a detailed representation of the algorithm proposed in [18] using our coloring schema. The

use of coloring enhances the intuitiveness of the algorithm, compared to the primal-dual approach utilized in

[18], and enables the analysis of our 2-approximation algorithm. Additionally, we introduce a modification

to the algorithm of [18], which is essential for the analysis of our 2-approximation algorithm. Finally, in

Section 3, we present an iterative algorithm and prove its 2-approximation guarantee for PCSF.

Here, we provide a brief explanation of how coloring intuitively solves the Steiner forest problem. We then

present a 3-approximation algorithm and subsequently a 2-approximation algorithm for PCSF.

Steiner forest. We start with an empty forest F to hold our solution. The set FC represents the connected

components of F at each moment. A connected component of F is considered an active set if it requires

extension to connect with other components and satisfy the demands it cuts. We maintain a subset of FC

as active sets in ActS . Starting from this point, we consider each edge as a curve with its length equal to its

cost.

In each iteration of our algorithm, every active set S ∈ ActS is assigned a distinct color, which is used to

simultaneously color its cutting edges at the same speed. The cutting edges of a set S are defined as the

edges that have exactly one endpoint within S . Our coloring procedure proceeds by coloring the remaining

uncolored sections of these edges. An edge is in the process of getting colored at a given moment if it

connects different connected components of F and has at least one endpoint corresponding to an active set.

Additionally, if an edge is a cutting edge for two active sets, it is colored at a speed twice as fast as an edge

that is a cutting edge for only one active set. We continue this coloring process continuously until an edge

e is fully colored, and then we add it to the forest F. Afterwards, we update FC and ActS accordingly,

as defined earlier. It is important to note that we only add edges to F that connect different connected

components, ensuring that F remains a forest. Furthermore, since the set of all connected components of

F forms a laminar set over time, our coloring schema is also laminar. Refer to Figure 1 for clarity on the

coloring process.

At the end of the algorithm, we construct F′ from F by removing every edge that is not part of any path

between the endpoints of any demand. We then analyze the cost of the optimal solution and our algorithm.

Let yS represent the amount of time that a set S was active and colored its cutting edges. We can show that

the cost of the optimal solution is at least
∑

S⊂V yS , while our algorithm will find a solution with a cost of at

most 2
∑

S⊂V yS .

For each active set S , there exists at least one edge in the optimal solution that has exactly one endpoint

inside S and the other endpoint outside. This is due to the fact that every active set cuts at least one demand,

and the optimal solution must connect all demands. While a set S is active, it colors all of its cutting edges.

As the optimal solution includes a cutting edge from S , we can conclude that an amount of yS from the

optimal solution is colored by S . Since each set colors an uncolored portion of the edges, the cost of the

optimal solution is at least
∑

S⊂V yS .

Furthermore, considering the fixed final forest F′, we can observe that at each moment of coloring, when

we contract each connected component in FC, it results in a forest where every leaf corresponds to an active

set. This observation is based on the fact that if a leaf does not correspond to an active set, it implies that the

only edge adjacent to that leaf is unnecessary and should have been removed from F′. Based on this insight,

4



S 1 S 3

S 2

Figure 1: Illustration of the static coloring and the coloring used for Steiner forest problem. In the graph,

S 2 is inactive and does not color its cutting edges, while S 1 colors edges in red and S 3 colors in blue. It is

worth noting that edges within a connected component will not be further colored and will not be added to

F.

we can conclude that the number of edges being colored from F′ at that moment, which is equivalent to the

sum of the degrees of the active sets in the aforementioned forest, is at most twice the number of active sets

at that moment. This means that the amount of the newly colored portion of all edges at that moment is at

most twice the total value added to all yS . Therefore, considering that every edge in F′ is fully colored, we

can deduce that the total length of edges in F′ is at most 2
∑

S⊂V yS .

A 3-approximation algorithm for prize collecting Steiner forest. Similar to the Steiner forest problem,

we utilize coloring to solve PCSF. In PCSF, we encounter penalties that indicate it is not cost-effective

to connect certain pairs (i, j) if the cost exceeds a specified threshold πi j. To address this challenge, we

introduce a coloring schema that assigns a color to each pair (i, j), ensuring that the color is not used to color

edges for a duration exceeding its associated potential πi j. However, assigning colors to pairs introduces

some challenges. We are not aware of the distribution of potential between the endpoints of a pair, and each

set may cut multiple pairs, making it unclear which color should be used at each moment.

To address these challenges, we use two types of coloring. The first type is called static coloring, which

is similar to the coloring schema used in the Steiner forest problem. In static coloring, each set S ⊂ V is

assigned a distinct color. It is referred to as static coloring since the colors assigned to edges corresponding

to a set S remain unchanged throughout the algorithm. The second type is dynamic coloring, which involves

coloring edges based on pairs (i, j) ∈ V × V . Unlike static coloring, dynamic coloring allows the colors of

edges to change during the algorithm, adapting to the evolving conditions. By utilizing both static color-

ing and dynamic coloring, we can effectively handle the coloring requirements of PCSF, accounting for the

potential constraints and varying edge coloring needs.

Similar to the Steiner forest algorithm, we begin by running the static coloring procedure. Whenever an

edge is fully colored, we add it to the forest F. However, unlike static coloring, we do not maintain a

separate dynamic coloring throughout the algorithm, as it would require constant reconstructions. Instead,

we compute the dynamic coloring whenever needed. To obtain the dynamic coloring, we map each moment

of coloring for each set S in the static coloring to a pair (i, j) such that S ⊙ (i, j), which means S cuts

(i, j). This assignment is achieved using a maximum flow algorithm, as described in Section 2.1. We ensure
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that our static coloring can always be converted to a dynamic coloring. Let yi j represent the total duration

assigned to pair (i, j) in the dynamic coloring. It is important to ensure that yi j does not exceed the potential

πi j associated with that pair. If we encounter an active set S for which assigning further coloring to any pair

that S cuts would exceed the pair’s potential, we deactivate S by removing it from ActS .

We define a pair as “tight” if yi j = πi j. At the end of the algorithm, when every set is inactive, our goal is to

pay the penalty for every tight pair. To minimize the number of tight pairs, we perform a local operation by

assigning an ǫ amount of color assignment for set S from pair (i, j) to another pair (i′, j′), such that (i, j) was

tight and after the operation, both pairs are no longer tight. Finally, we pay the penalty for every tight pair

and construct F′ from F by removing any edges that are not part of a path between pairs that are not tight. It

is important to note that if a pair is not tight, it should be connected in F. Otherwise, the sets containing the

endpoints of that pair would still be active. Thus, every pair is either connected or we pay its penalty. Let us

assume the optimal solution chooses forest F∗ and pays penalties for pairs in Q∗.

Since we do not assign more color to each pair (i, j) than its corresponding potential πi j, i.e., yi j ≤ πi j, we can

conclude that the optimal solution pays at least
∑

(i, j)∈Q∗ yi j in penalties. Moreover, similar to the argument

for the Steiner forest, the cost of F∗ is at least
∑

(i, j)<Q∗ yi j. Therefore, the cost of the optimal solution is at

least
∑

S⊂V yS =
∑

(i, j)∈V×V yi j, while, similar to the argument for the Steiner forest, the cost of F′ is at most

2
∑

S⊂V yS . Moreover, the total penalty we pay is at most
∑

(i, j)∈V×V yi j, since we only pay for tight pairs.

This guarantees a 3-approximation algorithm.

A 2-approximation algorithm for prize collecting Steiner forest. Let’s refer to our 3-approximation

algorithm as PCSF3. Our goal is to construct a 2-approximation algorithm called IPCSF, by iteratively

invoking PCSF3. In IPCSF, we first invoke PCSF3 and obtain a feasible solution (Q1, F
′
1
), where Q1 repre-

sents the pairs for which we pay their penalty, and F′
1

is a forest that connects the remaining pairs. Next, we

set the penalty for each pair in Q1 to 0. We recursively call IPCSF with the updated penalties. Let’s assume

that (Q2, F
′
2
) is the result of this recursive call to IPCSF for the updated penalties. It is important to note

that (Q2, F
′
2
) is a feasible solution for the initial instance, as it either connects the endpoints of each pair or

places them in Q2. Furthermore, it is true that Q1 ⊆ Q2, as the penalty of pairs in Q1 is updated to 0, and

they will be considered as tight pairs in further iterations of PCSF3. By induction, we assume that (Q2, F
′
2
)

is a 2-approximation of the optimal solution for the updated penalties. Now, we want to show that either

(Q1, F
′
1
) or (Q2, F

′
2
) is a 2-approximation of the optimal solution for the initial instance. We will select the

one with the lower cost and return it as the output of the algorithm.

To analyze the algorithm, we focus on the dynamic coloring of pairs in Q1 that are connected in the optimal

solution. Let CP denote the set of pairs (i, j) ∈ Q1 that are connected in the optimal solution. We concentrate

on this set because the optimal solution connects these pairs, and we will pay their penalties in both (Q1, F
′
1
)

and (Q2, F
′
2
). Let’s assume cp represents the total duration that we color with a pair in CP in dynamic

coloring. Each moment of coloring with a pair (i, j) ∈ CP in dynamic coloring corresponds to coloring with

a set S in static coloring such that S ⊙ (i, j). Since (i, j) ∈ CP is connected in the optimal solution, we know

that S cuts at least one edge of the optimal solution, and S colors that edge in static coloring, while (i, j)

colors that edge in dynamic coloring. Thus, for any moment of coloring with pair (i, j) ∈ CP in dynamic

coloring, we will color at least one edge of the optimal solution. Let cp1 be the total duration when pairs in

CP color exactly one edge of the optimal solution, and cp2 be the total duration when pairs in CP color at

least two edges. It follows that cp1 + cp2 = cp.

We now consider the values of cp1 and cp2 to analyze the algorithm. If cp2 is sufficiently large, we can estab-

lish a stronger lower bound for the optimal solution compared to our previous bound, which was
∑

S⊂V yS .

In the previous bound, we showed that each moment of coloring covers at least one edge of the optimal
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solution. However, in this case, we can demonstrate that a significant portion of the coloring process covers

at least two edges at each moment. This improved lower bound allows us to conclude that the output of

PCSF3, (Q1, F
′
1
), becomes a 2-approximate solution.

Alternatively, if cp1 is significantly large, we can show that the optimal solution for the updated penalties

is substantially smaller than the optimal solution for the initial instance. This is achieved by removing the

edges from the initial optimal solution that are cut by sets whose color is assigned to pairs in CP and that set

only colored one edge of the optimal solution. By minimizing the number of tight pairs at the end of PCSF3,

we ensure that no pair with a non-zero penalty is cut by any of these sets, and removing these edges will not

disconnect those pairs. Consequently, we can construct a feasible solution for the updated penalties without

utilizing any edges from the cutting edges of these sets in the initial optimal solution. In summary, since

(Q2, F
′
2
) is a 2-approximation of the optimal solution for the updated penalties, and the optimal solution for

the updated penalties has a significantly lower cost than the optimal solution for the initial instance, (Q2, F
′
2
)

becomes a 2-approximation of the optimal solution for the initial input.

Last but not least, we conduct further analysis of our algorithm to achieve a more refined approximation

factor of 2 − 1
n
, which asymptotically approaches 2.

1.2 Preliminaries

For a given set S ⊂ V , we define the set of edges that have exactly one endpoint in S as the cutting edges of

S , denoted by δ(S ). In other words, δ(S ) = {(u, v) ∈ E : |{u, v} ∩ S | = 1}. We say that S cuts an edge e if e

is a cutting edge of S , i.e., e ∈ δ(S ). We say that S cuts a forest F if there exists an edge e ∈ F such that S

cuts that edge.

For a given set S ⊂ V and pair {i, j} ∈ V ×V , we say that S cuts (i, j) if and only if |{i, j}∩S | = 1. We denote

this relationship as S ⊙ (i, j).

For a forest F, we define c(F) as the total cost of edges in F, i.e., c(F) =
∑

e∈F ce.

For a set of pairs of vertices Q ⊆ V × V , we define π(Q) as the sum of penalties of pairs in Q, i.e., π(Q) =
∑

(i, j)∈Q πi j.

For a given solution SOL to a PCSF instance I, the notation cost(SOL) is used to represent the total cost of

the solution. In particular, if SOL uses a forest F and pays the penalties for a set of pairs Q, then the total

cost is given by cost(SOL) = c(F) + π(Q).

For a graph G = (V, E) and a vertex v ∈ V , we define dG(v) as the degree of v in G. Similarly, for a set S ⊂ V ,

we define dG(S ) as the number of edges that S cuts, i.e., |E ∩ δ(S )|.

Since we use max-flow algorithm in Section 2.1, we provide a formal definition of the MaxFlow function:

Definition 2 (MaxFlow). For the given directed graph G with source vertex source and sink vertex sink,

the function MaxFlow(G, source, sink) calculates the maximum flow from source to sink and returns three

values: ( f ∗,Cmin, f ). Here, f ∗ represents the maximum flow value achieved from source to sink in G, Cmin

represents the min-cut between source and sink in G that minimizes the number of vertices on the source

side of the cut, and f is a function f : E → R+ that assigns a non-negative flow value to each edge in the

maximum flow.

Throughout this paper, it is important to note that whenever we refer to the term “minimum cut” or “min-

cut,” we specifically mean the minimum cut that separates source from sink. Furthermore, we refer to the

minimum cut that minimizes the number of vertices on the source side of the cut as the “minimal min-cut”.

7



2 Representing a 3-approximation Algorithm

In this section, we present an algorithm that utilizes coloring to obtain a 3-approximate solution. Although

the main part of this algorithm closely follows the approach presented by Hajiaghayi and Jain in [18], our

novel interpretation of the algorithm is crucial for the subsequent analysis of the 2-approximation algorithm

in the next section. Furthermore, we introduce a modification at the end of the 3-approximation algorithm,

which plays a vital role in achieving a 2-approximation algorithm in the next section.

From this point forward, we consider each edge as a curve with a length equal to its cost. In our algorithm,

we use two types of colorings: static coloring and dynamic coloring. Both of these colorings are used to

assign colors to the edges of the graph, where each part of an edge is assigned a specific color. It is important

to note that both colorings have the ability to assign different colors to different portions of the same edge.

First, we introduce some variables that are utilized in Algorithm 2, and we will use them to define the

colorings. Let F be a forest that initially is empty, and we are going to add edges to in order to construct

a forest that is a superset of our final forest. Moreover, we maintain the set of connected components of

F in FC, where each element in FC represents a set of vertices that forms a connected component in F.

Additionally, we maintain a set of active sets ActS ⊆ FC, which will be utilized for coloring edges in static

coloring. We will provide further explanation on this later. Initially, we set ActS = FC.

Static Coloring. We construct an instance of static coloring iteratively by assigning colors to portions of

edges. In static coloring, each set S ⊂ V is assigned a unique color. Once a portion of an edge is colored in

static coloring, its color remains unchanged.

During the algorithm’s execution, active sets color their cutting edges simultaneously and at the same speed,

using their respective unique colors. As a result, only edges between different connected components are

colored at any given moment. When an edge e is fully colored, we add it to F and update FC to maintain the

connected components of F. Since e connects two distinct connected components of F, F remains a forest.

Furthermore, we update ActS by removing sets that contain an endpoint of e and replacing them with their

union. Within the loop at Line 11 of Algorithm 2, we check if an edge has been completely colored, and

then merge the sets that contain its endpoints. In addition, we provided a visual representation of the static

coloring process in Figure 1.

Definition 3 (Static coloring duration). For an instance of static coloring, define yS as the duration during

which set S colors its cutting edges using the color S .

It is important to note that we do not need to store the explicit portion of each edge that is colored. Instead,

we keep track of yS , which represents the amount of coloring associated with set S . The portion of edge e

that is colored can be computed as
∑

S :e∈δ(S ) yS .

Now, we will explain the procedure FindDeltaE, which determines the first moment in time, starting from

the current moment, when at least one new edge will become fully colored. This procedure is essential for

executing the algorithm in discrete steps.

Finding the maximum value for ∆e. In FindDeltaE, we determine the maximum value of ∆e such that

continuing the coloring process for an additional duration ∆e does not exceed the length of any edges. We

consider each edge e = (v, u) where v and u are not in the same connected component, and at least one of

them belongs to an active set. The portion of edge e that has already been colored is denoted by
∑

S :e∈δ(S ) yS .

The remaining portion of edge e requires a total time of (ce −
∑

S :e∈δ(S ) yS )/t to be fully colored, where t

is the number of endpoints of e that are in an active set. It is important to note that the coloring speed is
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doubled when both endpoints of e are in active sets compared to the case where only one endpoint is in an

active set. To ensure that the edge lengths are not exceeded, we select ∆e as the minimum time required to

fully color an edge among all the edges.

Corollary 4. After coloring for ∆e duration, at least one new edge becomes fully colored.

In Algorithm 1, we outline the procedure for FindDeltaE.

Algorithm 1 Fidning the maximum value for ∆e

Input: An undirected graph G = (V, E, c) with edge costs c : E → R≥0, an instance of static coloring

represented by y : 2V → R≥0, active sets ActS , and connected components FC.

Output: ∆e, the maximum value that can be added to yS for S ∈ ActS without violating edge lengths.

1: procedure FindDeltaE(G, y, ActS , FC)

2: Initialize ∆e ← ∞

3: for e ∈ E do

4: Let S v, S u ∈ FC be the sets that contain each endpoint of e.

5: t ← |{S v, S u} ∩ ActS |

6: if S v , S u and t , 0 then

7: ∆e ← min(∆e, (ce −
∑

S :e∈δ(S ) yS )/t)

8: return ∆e

Now, we can utilize FindDeltaE to perform the coloring in discrete steps, as shown in Algorithm 2. In

summary, during each step, at Line 6, we call FindDeltaE to determine the maximum duration ∆e for which

we can color with active sets without exceeding the length of any edge, ensuring that at least one edge will

be fully colored. Similarly, at Line 7, we utilize FindDeltaP to determine the maximum value of ∆p that

ensures a valid static coloring when extending the coloring duration by ∆p using active sets. The concept

of a valid static coloring, which avoids purchasing edges when it is more efficient to pay penalties, will be

further explained in Section 2.1.

Then, at Line 10, we advance the static coloring process for a duration of min(∆e,∆p). In the subsequent

loop at Line 11, we identify newly fully colored edges and merge their endpoints’ sets. Additionally, within

the loop at Line 17, we will identify and deactivate sets that should not remain active, as their presence

would lead to an invalid static coloring. We continue updating our static coloring until no active sets remain.

Finally, we set Q equal to the set of pairs for which we need to pay penalties in Line 20, and we derive

our final forest F′ from F by removing redundant edges that are not necessary for connecting demands in

(V × V) \ Q.

In Algorithm 2, we utilize three functions other than FindDeltaE: FindDeltaP, CheckSetIsTight, and

ReduceTightPairs. The purpose of FindDeltaP is to determine the maximum value of ∆p that allows for

an additional coloring duration of ∆p resulting in a valid static coloring. CheckSetIsTight is responsible

for identifying sets that cannot color their cutting edges while maintaining the validity of the static coloring.

Lastly, ReduceTightPairs aims to reduce the number of pairs for which penalties need to be paid and deter-

mine the final set of pairs that we pay their penalty. All of these functions utilize dynamic coloring, which

will be explained in Section 2.1.

It is important to note that we do not store a dynamic coloring within PCSF3 since it changes constantly.

Instead, we compute a dynamic coloring based on the current static coloring within these functions, as

they are the only parts of our algorithm that require a dynamic coloring. Note that at the end of PCSF3,

we require a final dynamic coloring for the analysis in Section 3. This final coloring will be computed in

ReduceTightPairs at Line 20.

9



Algorithm 2 A 3-approximation Algorithm

Input: An undirected graph G = (V, E, c) with edge costs c : E → R≥0 and penalties π : V × V → R≥0.

Output: A set of pairs Q with a forest F′ that connects the endpoints of every pair (i, j) < Q.

1: procedure PCSF3(I = (G, π))

2: Initialize F ← ∅

3: Initialize ActS , FC ← {{v} : v ∈ V}

4: Implicitly set yS ← ∅ for all S ⊂ V

5: while ActS , ∅ do

6: ∆e ← FindDeltaE(G, y, ActS , FC)

7: ∆p ← FindDeltaP(G, π, y, ActS )

8: ∆← min(∆e,∆p)

9: for S ∈ ActS do

10: yS ← yS + ∆

11: for e ∈ E do

12: Let S v, S u ∈ FC be sets that contains each endpoint of e

13: if
∑

S :e∈δ(S ) yS = ce and S v , S u then

14: F ← F ∪ {e}

15: FC ← (FC \ {S p, S q}) ∪ {S p ∪ S q}

16: ActS ← (ActS \ {S p, S q}) ∪ {S p ∪ S q}

17: for S ∈ ActS do

18: if CheckSetIsTight(G, π, y, S ) then

19: ActS ← ActS \ {S }

20: Q← ReduceTightPairs(G, π, y)

21: Let F′ be the subset of F obtained by removing unnecessary edges for connecting demands (V ×

V) \ Q.

22: return (Q, F′)

Now, let’s analyze the time complexity of FindDeltaE as described in Lemma 6. In Lemma 31, we will

demonstrate that the overall time complexity of PCSF3 is polynomial. This will be achieved after explaining

and analyzing the complexity of the subroutines it invokes.

Lemma 5. In the PCSF3 algorithm, the number of sets that have been active at some point during its

execution is linear.

Proof. During the algorithm, new active sets are only created in Line 16 by merging existing sets. Initially,

we start with n active sets in ActS . Symmetrically, for each creation of a new active set, we have one merge

operation over sets in FC, which reduces the number of sets in FC by exactly one. Since we start with n

sets in FC, the maximum number of merge operations is n − 1. Therefore, the total number of active sets

throughout the algorithm is at most 2n − 1. �

Lemma 6. The runtime of FindDeltaE is polynomial.

Proof. In Line 3, we iterate over the edges, and the number of edges is polynomial. In addition, since

each set S with yS > 0 has been active at some point, the number of these sets is linear due to Lemma 5.

Consequently, for each edge, we calculate the sum in Line 7 in linear time by iterating through such sets.

Therefore, we can conclude that FindDeltaE runs in polynomial time. �
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2.1 Dynamic Coloring

The dynamic coloring is derived from a given static coloring. In dynamic coloring, each pair (i, j) ∈ V × V

is assigned a unique color. The goal is to assign each moment of coloring in static coloring with each active

set S ⊂ ActS , to a pair (i, j) ∈ V × V where S ⊙ (i, j) holds, and color the same portion that set S colored

at that moment in static coloring with the color of pair (i, j) in dynamic coloring. Furthermore, there is a

constraint on the usage of each pair’s color. We aim to avoid using the color of pair (i, j) for more than a

total duration of πi j. It’s important to note that for a specific static coloring, there may be an infinite number

of different dynamic colorings, but we only need to find one of them.

Now, we will introduce some notations that are useful in our algorithm and analysis.

Definition 7 (Dynamic Coloring Assignment Duration). In a dynamic coloring instance, for each set S and

pair (i, j) where S ⊙ (i, j), yS i j represents the duration of coloring with color S in static coloring that is

assigned to pair (i, j) for coloring in dynamic coloring.

Definition 8 (Dynamic Coloring Duration). In a dynamic coloring instance, yi j represents the total duration

of coloring with pair (i, j) in dynamic coloring, denoted as yi j =
∑

S :S⊙(i, j) yS i j.

Definition 9 (Pair Constraint and Tightness). In a dynamic coloring instance, the condition that each pair

(i, j) should not color for more than πi j total duration (i.e., yi j ≤ πi j) is referred to as the pair constraint. If

this condition is tight in the dynamic coloring for a pair (i, j), i.e., yi j = πi j, we say that pair (i, j) is a tight

pair.

Definition 10 (Valid Static Coloring). A static coloring is considered valid if there exists a dynamic color-

ing for the given static coloring. In other words, the following conditions must hold:

• For every set S ⊂ V , we can distribute the duration of the static coloring for S among pairs (i, j) that

satisfy S ⊙ (i, j), such that
∑

(i, j):S⊙(i, j) yS i j = yS .

• For every pair (i, j) ∈ V × V , the pair constraint is not violated, i.e., yi j =
∑

S :S⊙(i, j) yS i j ≤ πi j.

If there is no dynamic coloring that satisfies these conditions, the static coloring is considered invalid.

Note that in the definition of valid static coloring, the validity of a static coloring is solely determined by

the duration of using each color, denoted as yS , and the specific timing of using each color is not relevant.

Moreover, a function y : 2V → R≥0 is almost sufficient to describe a static coloring, as it indicates the

duration for which each set S colors its cutting edges. Therefore, this function provides information about

the portion of each edge that is colored with each color. This information is enough for our algorithm

and analysis. We are not concerned with the precise location on an edge where a specific color is applied.

Instead, our focus is on determining the amount of coloring applied to each edge with each color. Similarly,

the function y : 2V × V × V → R≥0 is enough for determining a dynamic coloring.

Definition 11 (Set Tightness). For a valid instance of static coloring, we define a set S ⊂ V as tight if

increasing the value of yS by any ǫ > 0 in the static coloring without changing the coloring duration of other

sets would make the static coloring invalid.

Lemma 12. In a valid static coloring, if set S is tight, then for any corresponding dynamic coloring, all

pairs (i, j) such that S ⊙ (i, j) are tight.

Proof. Consider an arbitrary dynamic coloring of the given valid static coloring. Using contradiction, as-

sume there is a pair (i, j) such that S ⊙ (i, j), and this pair is not tight. Let ǫ = πi j − yi j. If we increase

yS , yS i j, and yi j by ǫ, it results in a new static coloring and a new dynamic coloring. In the new dynamic

coloring, since for every set S ′ we have
∑

(i′, j′):S ′⊙(i′, j′) yS ′i′ j′ = yS ′ , and for every pair (i′, j′) we have
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Figure 2: SetPairGraph

yi′ j′ =
∑

S ′:S ′⊙(i′, j′) yS ′i′ j′ ≤ πi′ j′ , based on Definition 10, increasing yS by ǫ results in a valid static coloring.

According to Definition 11, this contradicts the tightness of S . Therefore, we can conclude that all pairs

(i, j) for which S ⊙ (i, j) holds are tight. �

However, it is possible for every pair (i, j) satisfying S ⊙ (i, j) to be tight in a dynamic coloring, while the

set S itself is not tight. We will describe the process of determining whether a set is tight in Algorithm 4.

So far, we have explained several key properties and concepts related to dynamic coloring. Now, let us

explore how we can obtain a dynamic coloring from a given valid static coloring. To accomplish this, we

introduce the concept of SetPairGraph, which represents a graph associated with each static coloring. By

applying the max-flow algorithm to this graph, we can determine a corresponding dynamic coloring. The

definition of SetPairGraph is provided in Definition 13, and Figure 2 illustrates this graph.

Definition 13 (SetPairGraph). Given a graph G = (V, E, c) with edge costs c : E → R≥0, and penalties

π : V ×V → R≥0, as well as an instance of static coloring represented by y : 2V → R≥0, we define a directed

graph G initially consisting of two vertices source and sink. For every set S ⊂ V such that either yS > 0 or

S ∈ ActS , we add a vertex to G and a directed edge from source to S with a capacity of yS . Additionally,

for each pair (i, j) ∈ V ×V , we add a vertex to G and a directed edge from (i, j) to sink with a capacity of πi j.

Finally, we add a directed edge from each set S to each pair (i, j) such that S ⊙ (i, j), with infinite capacity.

We refer to the graph G as SetPairGraph(G, π, y).

Now, we compute the maximum flow from source to sink in SetPairGraph(G, π, y). We assign the value

of yS i j to the amount of flow from S to (i, j), representing the allocation of coloring from set S in static

coloring to pair (i, j) in dynamic coloring. Similarly, we set yi j equal to the amount of flow from (i, j) to

sink, indicating the duration of coloring for pair (i, j) in dynamic coloring. In Lemma 14, we show that if

the maximum flow equals
∑

S⊂V yS , the static coloring is valid, and the assignment of yS i j and yi j satisfies

all requirements.

Lemma 14. For a given graph G = (V, E, c), penalties π : V × V → R≥0, and an instance of static color-

ing represented by y : 2V → R≥0, let ( f ∗,Cmin, f ) = MaxFlow(SetPairGraph(G, π, y), source, sink), the

static coloring is valid if and only if f ∗ =
∑

S⊂V yS .

Proof. Assume that f ∗ =
∑

S⊂V yS . Since the sum of the capacities of the outgoing edges from source is

equal to the maximum flow, the amount of flow passing through S is yS . Hence, given that the total flow
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coming out from S is equal to
∑

(i, j)∈V×V yS i j, we have yS =
∑

(i, j)∈V×V yS i j. It should be noted that yS i j > 0

only if S ⊙ (i, j), as we only have a directed edge from S to (i, j) in that case.

Furthermore, since the capacity of the edge from (i, j) to sink is πi j, the sum of incoming flow to (i, j) is at

most πi j. Thus, yi j =
∑

S⊂V:S⊙(i, j) yS i j ≤ πi j.

Now, assume that the given static coloring is valid. Consider its corresponding SetPairGraph and dynamic

coloring. Let the amount of flow from source to S be yS . Let the amount of flow in the edge between S

and (i, j) be yS i j, representing the assignment duration in the dynamic coloring. Similarly, let the amount of

flow in the edge between (i, j) and sink be yi j, representing the duration in the dynamic coloring. According

to Definition 10, in a valid static coloring, the following conditions hold:
∑

(i, j):S⊙(i, j) yS i j = yS and yi j =
∑

S :S⊙(i, j) yS i j ≤ πi j. Therefore, in the SetPairGraph, the assignment of flow satisfies the edge capacities and

the equality of incoming and outgoing flows for every vertex except source and sink. Furthermore, since we

fulfill all outgoing edges from source, the maximum flow is
∑

S⊂V yS . �

Let us define Csource as the cut in SetPairGraph that separates source from other vertices. Since the sum of

the edges in Csource is
∑

S⊂V yS , the following corollary can easily be concluded from Lemma 14.

Corollary 15. For a given graph G = (V, E, c), penalties π : V × V → R≥0, and an instance of static

coloring represented by y : 2V → R≥0, the static coloring is valid if and only if Csource is a minimum cut

between source and sink in SetPairGraph(G, π, y).

To analyze the size of the SetPairGraph and the complexity of running the max-flow algorithm on it, we

can refer to the following lemma.

Lemma 16. At any point during the algorithm, the size of the SetPairGraph remains polynomial.

Proof. In the SetPairGraph, vertices are assigned to sets that are either active or have yS > 0. This implies

that for each set that is active at least once, there is at most one corresponding vertex in the graph. According

to Lemma 5, the number of such vertices is linear.

In addition to the active set vertices, the SetPairGraph also includes vertices source, sink, and pairs (i, j).

The total number of such vertices is 2 + n2. Thus, the overall size of the graph is polynomial. �

Now that we understand how to find a dynamic coloring given a static coloring using the max-flow algorithm,

we can use this approach to develop the functions FindDeltaP, CheckSetIsTight, and ReduceTightPairs.

Finding the maximum value for ∆p. In FindDeltaP, our goal is to determine the maximum value of ∆p

such that if we continue coloring with active sets for an additional duration of ∆p in the static coloring, it

remains a valid static coloring. The intuition behind this algorithm is to start with an initial upper bound

for ∆p and iteratively refine it until we obtain a valid static coloring. This process involves adjusting the

parameters and conditions of the coloring to gradually tighten the upper bound. Algorithm 3 presents the

pseudocode for FindDeltaP. The proof of the following lemma illustrates how the iterations of this algorithm

progress toward the correct value of ∆p.

Lemma 17. In a valid static coloring, the maximum possible duration to continue the coloring process

while ensuring the validity of the static coloring is ∆p = FindDeltaP(G, π, y, ActS ).

Proof. Consider the SetPairGraph of the given valid static coloring. If increasing the capacity of edges

from source to S for every set S ∈ ActS by ∆p results in an increase in the min-cut by |ActS | · ∆p, then the
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resulting static coloring remains valid since Csource remains a min-cut. This is based on Corollary 15. Thus,

our goal is to find the maximum value for ∆p that satisfies this condition.

First, in Line 3, we initialize ∆p with an upper-bound value of (
∑

i j πi j −
∑

S yS )/|ActS |. This value serves as

an upper-bound because the increase in min-cut cannot exceed (
∑

i j πi j −
∑

S yS ), as determined by the cut

that separates sink from the other vertices. Next, we update the capacity of edges from source to the active

sets in SetPairGraph by the value of ∆p, and then calculate the minimal min-cut Cmin. If Cmin separates

source from the other vertices, it indicates that the new static coloring is valid according to Corollary 15.

At this point, the function terminates and returns the current value of ∆p in Line 8.

Otherwise, if Csource is not a min-cut after updating the edges, we want to prove that Cmin has at least one

active set in the side of source. Let’s assume, for contradiction, that Cmin does not have any active sets on

the side of source. According to Corollary 15, prior to updating the edges, Csource was a min-cut since we

had a valid static coloring. Thus, the weight of Cmin was at least equivalent to the weight of Csource before

the edges were modified. Given that Cmin and Csource include all the edges connecting source to the active

sets, adding ∆p to active sets leads to an increase in the weight of both Cmin and Csource by |ActS | · ∆p.

Consequently, the weight of Cmin remains at least as large as the weight of Csource. However, if Csource is

not a minimum cut after updating the edges, it implies that Cmin cannot be a minimum cut either, which

contradicts the definition of Cmin. Therefore, we can conclude that Cmin must have at least one active set on

the same side as source.

Let k ≥ 1 represent the number of active sets on the same side as source in Cmin. Referring to Definition 2,

it is evident that Cmin minimizes k. If we decrease ∆p by ǫ, it deducts |ActS | · ǫ from the weight of Csource

and (|ActS | − k) · ǫ from weight of Cmin. Given that the weight of Csource is |ActS | · ∆p +
∑

S⊂V yS , and the

weight of Cmin is f ∗, in order to establish Csource as a minimum cut, we want to find the minimum value of

ǫ satisfying:

f ∗ − (|ActS | − k) · ǫ ≥ |ActS | · ∆p +
∑

S⊂V

yS − |ActS | · ǫ

f ∗ + kǫ ≥ |ActS | · ∆p +
∑

S⊂V

yS

kǫ ≥ |ActS | · ∆p +
∑

S⊂V

yS − f ∗

ǫ ≥
|ActS | · ∆p +

∑

S⊂V yS − f ∗

k

Now, let us define ǫ∗ = (|ActS | · ∆p +
∑

S⊂V yS − f ∗)/k. When we decrease ∆p by ǫ∗, we effectively tighten

the upper bound on ∆p. This is crucial because reducing ∆p by a smaller value would make it impossible

for Csource to become a min-cut. Such a violation would contradict the validity of the static coloring, as

indicated by Corollary 15. After updating ∆p to its new value, if Csource indeed becomes a minimum cut, the

procedure is finished. However, if the new minimal min-cut still contains active sets on the side of source,

their number must be less than k.

To prove this by contradiction, let’s assume that in the new minimal min-cut, the number of active sets on

the side of source is greater than or equal to k. Due to the minimality of the new minimum cut, it can be

observed that all minimum cuts for the updated ∆p have at least k active sets on the source side. In other

words, these minimum cuts have at most |ActS | − k active sets on the other side. Consequently, the weight of

these minimum cuts is reduced by at most (|ActS |−k) ·ǫ∗. Since we have specifically reduced (|ActS |−k) ·ǫ∗

from Cmin, it remains a minimum cut. Moreover, after decreasing ǫ∗ from ∆p based on how we determine

ǫ∗, Cmin and Csource have the same weight. This implies that Csource is also a valid minimum cut and should
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be the minimal min-cut. This contradiction suggests that after the reduction, the number of vertices on the

source side has indeed decreased.

Finally, we repeat the same procedure until Csource becomes a min-cut. Given that there are at most n active

sets in ActS , and each iteration reduces the number of active sets on the side of source in the minimal min-

cut by at least one, after a linear number of iterations, all active sets will be moved to the other side, and the

desired value of ∆p will be determined. Since each time we have demonstrated that the value of ∆p serves

as an upper bound, it represents the maximum possible value that allows for a valid static coloring. �

Lemma 18. In a valid static coloring, the static coloring remains valid if we continue the coloring process

by at most ∆p = FindDeltaP(G, π, y, ActS ).

Proof. Consider the SetPairGraph of the given valid static coloring. We want to show that for every value

∆′p ≤ ∆p, the coloring remains valid. According to Lemma 17, we know that increasing the duration of

the active sets by ∆p results in a valid static coloring. Therefore, by increasing the capacity of edges from

source to S for each set S ∈ ActS by ∆p, Csource represents a minimum cut. Decreasing the capacities of

these edges by a non-negative value d = ∆p − ∆
′
p results in a decrease in the weight of Csource by |ActS | · d,

while other cuts are decreased by at most this value. Consequently, Csource remains a minimum cut, and as

indicated in Corollary 15, the static coloring remains valid after increasing yS for active sets by ∆′p ≤ ∆p. �

Based on the proof of Lemma 17, it is clear that the while loop in the FindDeltaP function iterates a linear

number of times. Furthermore, during each iteration, we make a single call to the MaxFlow procedure on

the SetPairGraph, which has a polynomial size according to Lemma 16. Consequently, we can deduce the

following corollary.

Corollary 19. Throughout the algorithm, each call to the FindDeltaP function executes in polynomial time.

Now, we can prove a significant lemma that demonstrates that our algorithm behaves as expected.

Lemma 20. Throughout the algorithm, we always maintain a valid static coloring.

Proof. We can establish the validity of the static coloring throughout the algorithm using induction. Initially,

since yS = 0 for all sets S , assigning yS i j = 0 and yi j = 0 results in a dynamic coloring, satisfying the

conditions of a valid static coloring.

Assuming that at the beginning of each iteration, we have a valid static coloring based on the induc-

tion hypothesis. Furthermore, during each iteration, we continue the coloring process for a duration of

min(∆p,∆e) ≤ ∆p. According to Lemma 18, this coloring preserves the validity of the static coloring.

Therefore, by induction, we can conclude that throughout the algorithm, we maintain a valid static coloring.

�

Check if a set is tight. Here, we demonstrate how to utilize max-flow on SetPairGraph to determine if a

set S is tight. If it is indeed tight, we proceed to remove it from ActS in Line 19 of PCSF3.

Checking the tightness of a set is straightforward, as outlined in Definition 11. To determine if set S is tight,

we increase the capacity of the directed edge from source to S and check if the flow from source to sink

exceeds
∑

S⊂V yS . The pseudocode for this function is provided in Algorithm 4.

Lemma 21. Each call to the CheckSetIsTight function during the algorithm runs in polynomial time.
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Algorithm 3 Finding the maximum value for ∆p

Input: An undirected graph G = (V, E, c) with edge costs c : E → R≥0, penalties π : V × V → R≥0,

an instance of static coloring represented by y : 2V → R≥0, and active sets ActS .

Output: ∆p, the maximum value that can be added to yS for S ∈ ActS without violating the validity

of the static coloring.

1: function FindDeltaP(G, π, y, ActS )

2: G ← SetPairGraph(G, π, y)

3: ∆p ←
(

∑

i j πi j −
∑

S yS

)

/|ActS |

4: while true do

5: Set the capacity of edges from source to S ∈ ActS equals to yS + ∆p in graph G.

6: ( f ∗,Cmin, f )← MaxFlow(G, source, sink)

7: if f ∗ = |ActS | · ∆p +
∑

S⊂V yS then

8: return ∆p

9: Let k represent the number of active sets on the same side of the cut Cmin as source.

10: ∆p ← ∆p −
(

|ActS | · ∆p +
∑

S⊂V yS − f ∗
)

/k

Algorithm 4 Check if set S ∈ ActS is tight

Input: An undirected graph G = (V, E, c) with edge costs c : E → R≥0, penalties π : V × V → R≥0,

an instance of static coloring represented by y : 2V → R≥0, and a set S ⊂ V .

Output: True if set S is tight, False otherwise.

1: function CheckSetIsTight(G, π, y, S )

2: G ← SetPairGraph(G, π, y)

3: Set the capacity of the edge from source to S in graph G equals to yS + 1.

4: ( f ∗,Cmin, f )← MaxFlow(G, source, sink)

5: if f ∗ >
∑

S⊂V yS then

6: return False

7: else

8: return True

Proof. The CheckSetIsTight function call MaxFlow once on the SetPairGraph, whose size remains poly-

nomial throughout the algorithm according to Lemma 16. Therefore, both the MaxFlow and the Check-

SetIsTight function run in polynomial time. �

Reduce the number of tight pairs. At the end of PCSF3, we obtain a final valid static coloring, from

which we can derive a corresponding final dynamic coloring which corresponds to a max-flow in SetPairGraph.

Next, we present the process of reducing the number of tight pairs in the final dynamic coloring, aiming to

achieve a minimal dynamic coloring. This step is essential to obtain a 2-approximate solution for PCSF in

the next section.

Definition 22 (Minimal Dynamic Coloring). A dynamic coloring is considered minimal dynamic coloring if

there are no pairs (i, j), (i′, j′) ∈ V × V and set S ⊂ V such that pair (i, j) is a tight pair while (i′, j′) is not a

tight pair, S ⊙ (i, j), S ⊙ (i′, j′), and yS i j > 0.

To obtain a minimal dynamic coloring, we first check if there exist pairs (i, j), (i′, j′) and a set S meeting the

following criteria: pair (i, j) is tight, pair (i′, j′) is not tight, S ⊙ (i, j), S ⊙ (i′, j′), and yS i j > 0. If such pairs

and set exist, we proceed with the following adjustments. Since (i′, j′) is not tight, we have πi′ j′ − yi′ j′ > 0.

Additionally, yS i j > 0 is assumed. Therefore, there exists ǫ > 0 such that ǫ < min(yS i j, πi′ j′ − yi′ j′). Given
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Figure 3: By choosing a small positive value ǫ < min( f , πi′ j′ − f ′′), we can remove one tight pair. The red

variables represent the amounts of flow on each edge, while the black variables represent their capacity.

that ǫ < yS i j ≤ yi j, we can reduce yS i j and yi j by ǫ, while adding ǫ to yS i′ j′ and yi′ j′ . Since ǫ > 0, pair

(i, j) is no longer tight, and since ǫ < πi′ j′ − yi′ j′ for the previous value of yi′ j′ , pair (i′, j′) will not become

tight. It is important to note that the dynamic coloring prior to these changes corresponds to a max-flow in

SetPairGraph. Implementing these adjustments on the flow of edges associated with yS i j, yi j, yS i′ j′ , and yi′ j′

results in a new max-flow that corresponds to the updated dynamic coloring. This provides an intuition for

why the assignment in the new dynamic coloring remains valid. We illustrate these flow changes in Figure

3, and the complete process for achieving a minimal dynamic coloring is described in Algorithm 5.

After applying these adjustments, the number of tight pairs is reduced by one. If there are no tight pairs where

their tightness can be removed through this operation, the result is a minimal dynamic coloring. Given that

the number of tight pairs is at most n2, and after each operation, the number of tight pairs is reduced by one,

after a maximum of n2 iterations in ReduceTightPairs, the number of tight pairs becomes minimal.

Considering that the number of iterations in the ReduceTightPairs function is polynomial and the MaxFlow

operation on the SetPairGraph in Line 3 has a polynomial size (Lemma 16), it can be concluded that the

runtime of ReduceTightPairs is polynomial.

Corollary 23. The ReduceTightPairs function runs in polynomial time.

Algorithm 5 Reduce the number of tight pairs

Input: An undirected graph G = (V, E, c) with edge costs c : E → R≥0 and penalties π : V × V → R≥0.

Output: The set Q of tight pairs for which we will pay penalties.

1: function ReduceTightPairs(G, π, y)

2: G ← SetPairGraph(G, π, y)

3: ( f ∗,Cmin, f )← MaxFlow(G, source, sink)

4: Let yS i j ← f (e) for each set S and each pair (i, j) that S ⊙ (i, j), where e is the edge from S to (i, j).

5: Let yi j ← f (e) for each pair (i, j), where e is the edge from (i, j) to sink.

6: for (i, j), (i′, j′) ∈ V × V and S ⊂ V that S ⊙ (i, j), S ⊙ (i′, j′), yi j = πi j, yi′ j′ < πi′ j′ , and yS ′i j > 0 do

7: yS i j ← yS i j − ǫ

8: yi j ← yi j − ǫ

9: yS i′ j′ ← yS i′ j′ + ǫ

10: yi′ j′ ← yi′ j′ + ǫ

11: Let Q← {(i, j) ∈ V × V :
∑

S :S⊙(i, j) yS i j = πi j}

12: return Q
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Finally, after obtaining a minimal dynamic coloring, we consider it as our final dynamic coloring, which

will be used in the analysis presented in Section 3.1.

Corollary 24. The final dynamic coloring obtained at the end of procedure PCSF3 is a minimal dynamic

coloring.

Furthermore, in a minimal dynamic coloring, we establish the following lemma, which is necessary for the

analysis presented in the next section.

Lemma 25. In a minimal dynamic coloring, if a set S ⊂ V cuts a tight pair (i, j) ∈ V ×V with yS i j > 0, then

all pairs (i′, j′) satisfying S ⊙ (i′, j′) are also tight.

Proof. Assume there exists a pair (i′, j′) satisfying S ⊙ (i′, j′) that is not tight. This implies that the pairs

(i, j) and (i′, j′), along with set S , contradict the definition of minimal dynamic coloring (Definition 22). �

2.2 Analysis

In this section, we demonstrate the validity of our algorithm’s output for the given PCSF instance. We

also present some lemmas that are useful for proving the approximation factor of PCSF3. However, we

do not explicitly prove the approximation factor of PCSF3 in this section, as it is not crucial for our main

result. Nonetheless, one can easily conclude the 3-approximation factor of PCSF3 using Lemmas 35, 37,

and 34 provided in the next section. Additionally, in Lemma 31, we show that PCSF3 has a polynomial time

complexity. The lemmas provided in this section are also necessary for the analysis of our 2-approximation

algorithm, which is presented in the next section.

To conclude the correctness of our algorithm, it is crucial to show that our algorithm pays penalties for all

pairs that are not connected in F′. In other words, every pair that is not tight will be connected in F′. This

ensures that by paying the penalties for tight pairs and the cost of edges in F′, we obtain a feasible solution.

To prove this, we introduce some auxiliary lemmas. First, in Lemma 28, we demonstrate that when a set

becomes tight during PCSF3, it remains tight until the end of the algorithm. This lemma is essential because

if a set becomes tight and is subsequently removed from the active sets, but then becomes non-tight again,

it implies that some pairs could contribute to the coloring in the dynamic coloring, but their colors may no

longer be utilized.

Furthermore, in Lemma 29, we establish that every connected component of F at the end of PCSF3 is a tight

set. This provides additional evidence that the algorithm produces a valid solution.

Finally, we use these lemmas to prove the validity of the solution produced by PCSF3 in Lemma 30.

Let Csource be the cut in SetPairGraph that separates source from the other vertices.

Lemma 26. At every moment of PCSF3, in the SetPairGraph representation corresponding to the static

coloring of that moment, Csource is a minimum cut between source and sink.

Proof. According to Lemma 20, the static coloring is always valid during PCSF3. Moreover, based on

Corollary 15, when the static coloring is valid, Csource represents a minimum cut. �

Lemma 27. A set S ⊂ V is tight if and only if there exists a minimum cut between source and sink in

SetPairGraph representation of a valid dynamic coloring that does not contain the edge e from source to S .
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Proof. Using contradiction, let’s assume that S is tight and all minimum cuts contain the edge e. Let ǫ > 0

be the difference between the weight of the minimum cut and the first cut whose weight is greater than the

minimum cut. By increasing the capacity of the edge e by ǫ, the weight of any minimum cut increases by

a positive value ǫ, as well as the maximum flow. This implies that we can increase yS and still maintain a

valid static coloring. Therefore, based on the definition of set tightness (Definition 11), we can conclude

that set S is not tight. This contradicts the assumption of the tightness of S and proves that there exists a

minimum cut that does not contain the edge e.

Furthermore, if we have a minimum cut that does not contain edge e, increasing the capacity of e does not

affect the value of that minimum cut and respectfully the maximum flow. By using Lemma 14, we conclude

that increasing yS would result in an invalid static coloring. Therefore, based on Definition 11, we can

conclude that set S is tight. �

Lemma 28. Once a set S becomes tight, it remains tight throughout the algorithm.

Proof. According to Lemma 26, Csource is always a minimum cut. Let us assume that at time t, the set

S becomes tight. Based on Lemma 27, there exists a minimum cut CS that has S on the side of source.

Therefore, at time t, Csource and CS have the same weight. Now, let us consider a contradiction by assuming

that there is a time t′ > t when S is not tight. The only difference between SetPairGraph at time t and time

t′ is the increased capacity of some edges between source and sets S ′ ⊂ V . Let us assume that the total

increase in all yS ′ from time t to t′ is d. Since all of these edges are part of the cut Csource, the weight of the

cut Csource is increased by d. Furthermore, since the total capacity of all edges in SetPairGraph from time

t to t′ has increased by d, the weight of CS cannot have increased by more than d. That means, the weight

of CS cannot exceed the weight of Csource at time t′. Since Csource is a minimum cut at time t′ according to

Lemma 26, we can conclude that CS remains a minimum cut at time t′. Therefore, based on Lemma 27, the

set S is still tight at time t′, which contradicts the assumption that it is not tight. �

Lemma 29. At the end of PCSF3, all remaining sets in FC are tight.

Proof. In Line 3 of the algorithm, both ActS and FC are initialized with the same set of sets. Additionally,

in Lines 15 and 16, the same sets are removed from ActS and FC or added to both data structures. The only

difference occurs in Line 19, where tight sets are removed from ActS but not from FC. Given Lemma 28,

these sets are tight at the end of PCSF3. Therefore, at the end of the algorithm, since there are no sets

remaining in ActS , all sets in FC are tight. �

Lemma 30. After executing ReduceTightPairs, the endpoints of any pair that is not tight will be connected

in the forest F′.

Proof. The forest F′ is obtained by removing redundant edges from F, which are edges that are not part of a

path between the endpoints of a pair that is not tight. Hence, we only need to show that every pair that is not

tight is connected in F. Let us assume, for the sake of contradiction, that there exists a pair (i, j) that is not

tight and the endpoints i and j are not connected in F. Consider the set S ∈ FC at the end of the algorithm

that contains i. Since i and j are not connected in F, and S is a connected component of F, it follows that S

cuts the pair (i, j). According to Lemma 29, S is a tight set. This contradicts Lemma 12 because we have a

tight set S such that S ⊙ (i, j) is not tight. Therefore, our assumption is false, and every pair that is not tight

is connected in F. As a result, after executing ReduceTightPairs, the endpoints of any pair that is not tight

will be connected in the forest F′. �
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Now we will prove that the running time of PCSF3 is polynomial.

Lemma 31. For instance I, the runtime of PCSF3 is polynomial.

Proof. We know that ∆e denotes the time it takes for at least one new edge to be fully colored according

to Corollary 4, and ∆p signifies the time required for at least one active set to be deactivated based on

the maximality of ∆p demonstrated in Lemma 17. During each iteration of the while loop at Line 5, it is

guaranteed that at least one of these events takes place.

If an edge becomes fully colored, it results in the merging of two sets into one in FC. As a result, two sets

are removed and one set is added at Line 15, leading to a decrease in the size of FC. Alternatively, if an

active set is deactivated, it is removed from ActS at Line 19, which leads to a decrease in the size of ActS .

It is important to note that the number of active sets in ActS does not increase at Line 16 (it either decreases

by one or remains the same). From this, we can conclude that after each iteration of the while loop, either

the number of active sets in ActS decreases by at least one, or the number of sets in FC decreases by one,

or both events occur. Since both ActS and FC initially contain n elements, the while loop can iterate for a

maximum of 2n times.

In each iteration, we perform the following operations with polynomial runtime: FindDeltaE, which is

polynomial due to Lemma 6; FindDeltaP, which is polynomial according to Corollary 19; iterating through

active sets to extend the static coloring, which is polynomial based on the size of ActS ; iterating through

edges to update active sets if they fully color edges, which is polynomial; and checking if each active set is

tight using CheckSetIsTight, which is polynomial according to Lemma 21.

In the end, we also run ReduceTightPairs, which is polynomial according to Corollary 23.

Therefore, we can conclude that PCSF3 runs in polynomial time. �

3 The Iterative Algorithm

In this section, we present our iterative algorithm which uses the PCSF3 procedure from Algorithm 2 as

a building block. We then provide a proof of its 2-approximation guarantee in Section 3.1. Finally, in

Section 3.2, we provide a brief overview of a more refined analysis to establish a (2 − 1
n
)-approximation for

an n vertex input graph.

Our algorithm, described in Algorithm 6, considers two solutions for the given PCSF instance I. The first

solution, denoted as (Q1, F
′
1
), is obtained by invoking the PCSF3 procedure (Line 2). If the total penalty of

this solution, π(Q1), is equal to 0, the algorithm returns it immediately as the solution.

Otherwise, a second solution, denoted as (Q2, F
′
2
), is obtained through a recursive call on a simplified

instance R. The simplified instance is created by adjusting penalties: penalties are limited to pairs that

Algorithm 2 does not pay, and the penalties for other pairs are set to 0 (Lines 6-12). Essentially, we assume

that pairs whose penalties are paid in the first solution will indeed be paid, and our objective is to find a

solution for the remaining pair connection demands. We note that setting the penalties for these pairs to

0 guarantees their inclusion in Q2. This is because Q2 represents the set of tight pairs for a subsequent

invocation of PCSF3, and any pair with a penalty of 0 is trivially tight.

To compare the two solutions, the algorithm computes the values cost1 = c(F′
1
) + π(Q1) and cost2 =

c(F′
2
) + π(Q2), which represent the costs of the solutions (Lines 5 and 14). In the final step, the algorithm

simply selects and returns the solution with the lower cost.
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Algorithm 6 Iterative PCSF algorithm

Input: An undirected graph G = (V, E, c) with edge costs c : E → R≥0 and penalties π : V × V → R≥0.

Output: A set of pairs Q with a forest F′ that connects the endpoints of every pair (i, j) < Q.

1: procedure IPCSF(I = (G, π))

2: (Q1, F
′
1
)← PCSF3(I)

3: if π(Q1) = 0 then

4: return (Q1, F
′
1
)

5: cost1 ← c(F′
1
) + π(Q1)

6: Initialize π′ as a new all-zero penalty vector

7: for (i, j) ∈ V × V do

8: if (i, j) ∈ Q1 then

9: π′
i j
← 0

10: else

11: π′
i j
← πi j

12: Construct instance R of the PCSF problem consisting of G and π′

13: (Q2, F
′
2
)← IPCSF(R)

14: cost2 ← c(F′
2
) + π(Q2)

15: if cost1 ≤ cost2 then

16: return (Q1, F
′
1
)

17: else

18: return (Q2, F
′
2
)

3.1 Analysis

We now analyze the approximation guarantee of Algorithm 6. In the following, we consider an arbitrary

instance I = (G, π) of the PCSF problem, and analyze the solutions found by the IPCSF algorithm. In our

analysis, we focus on the first call of IPCSF. By the output of PCSF3, we refer to the result of the first

call of PCSF3 on instance I at Line 2. Similarly, when we mention the output of the recursive call, we are

referring to the output of IPCSF on instance R at Line 13. We compare the output of IPCSF on I, which is the

minimum of the output of PCSF3 and the output of the recursive call, with an optimal solution OPT of the

instance I. We denote the forest selected in OPT as F∗ and use Q∗ to refer to the set of pairs not connected

in F∗, for which OPT pays the penalties. Then, the cost of OPT is given by cost(OPT ) = c(F∗) + π(Q∗).

In the following, when we refer to coloring, we specifically mean the coloring performed in the first call

of PCSF3 on instance I. In particular, when we mention dynamic coloring, we are referring to the final

dynamic coloring of the first call of PCSF3 on instance I. The values yS , yS i j, and yi j used in the analysis

all refer to the corresponding values in the final static coloring and dynamic coloring.

Definition 32. For an instance I, we define four sets to categorize the pairs based on their connectivity in

both the optimal solution OPT of I and the result of PCSF3(I), denoted as (Q1, F
′
1
):

• Set CC contains pairs (i, j) that are connected in the optimal solution and are not in the set Q1 returned

by PCSF3.

• Set CP contains pairs (i, j) that are connected in the optimal solution and are in the set Q1 returned by

PCSF3.

• Set PC contains pairs (i, j) that are not connected in the optimal solution and are not in the set Q1

returned by PCSF3.
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• Set PP contains pairs (i, j) that are not connected in the optimal solution and are in the set Q1 returned

by PCSF3.

Based on the final dynamic coloring of PCSF3(I), we define the following values to represent the total

duration of coloring with pairs in these sets.

cc =
∑

(i, j)∈CC

yi j, cp =
∑

(i, j)∈CP

yi j

pc =
∑

(i, j)∈PC

yi j, pp =
∑

(i, j)∈PP

yi j

The following table illustrates the connectivity status of pairs in each set:

PCSF3

Connect Penalty

Optimal Solution
Connect CC CP

Penalty PC PP

So far, we have classified pairs into four categories. Now, we categorize the coloring moments involving

pairs in set CP into two types: those that color exactly one edge of the optimal solution, and those that color

at least two edges of the optimal solution. Since pairs in CP are connected in the optimal solution, they are

guaranteed to color at least one edge of the optimal solution during their coloring moments. Furthermore,

we allocate the value of cp between cp1 and cp2 based on this categorization.

Definition 33 (Single-edge and multi-edge sets). For an instance I, we define a set S ⊂ V as a single-edge

set if it cuts exactly one edge of OPT , i.e., dF∗ (S ) = 1, and as a multi-edge set if it cuts at least two edges of

OPT , i.e., dF∗ (S ) > 1. Let cp1 represent the duration of coloring with pairs in CP in dynamic coloring that

corresponds to coloring with single-edge sets in static coloring. Similarly, let cp2 represent the duration of

coloring with pairs in CP in dynamic coloring that corresponds to coloring with multi-edge sets in static

coloring. These values are formally defined as follows:

cp1 =
∑

(i, j)∈CP

∑

S :S⊙(i, j),
dF∗ (S )=1

yS i j

cp2 =
∑

(i, j)∈CP

∑

S :S⊙(i, j),
dF∗ (S )>1

yS i j.

Figure 4 displays a single-edge set on the left and a multi-edge set on the right.

Lemma 34. For an instance I, we have cp1 + cp2 = cp.

Proof. Since pairs in CP are connected by the optimal solution OPT , any set S cutting a pair in CP must

cut at least one edge of OPT . Therefore, S is either a single-edge set or a multi-edge set. Hence, we have

cp1 + cp2 = cp. �

Now, we use these definitions and categorizations to analyze our algorithm. All of the following lemmas

are based on the assumption that IPCSF is executed on instance I. First, in Lemma 35, we provide a lower
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Figure 4: A comparison between a single-cut set (left) and a multi-cut set (right).

bound on the cost of the optimal solution, which is cost(OPT ) ≥ cc+cp+cp2+ pc+ pp. Next, in Lemma 37,

we present an upper bound on the output of PCSF3(I), which is cost1 ≤ 2cc + 2pc + 3cp + 3pp. Moreover,

in Lemma 38, we show that this value is at most 2cost(OPT ) + cp1 − cp2 + pp.

Next, we want to bound the output of the recursive call within IPCSF. In Lemma 40, we initially proof

that cost(OPTR) ≤ cost(OPT ) − pp − cp1, where cost(OPTR) represents the cost of the optimal solution

for the instance R defined at Line 12. Finally, in Theorem 41, we employ induction to demonstrate that

cost(IPCSF) ≤ 2cost(OPT ). Here, cost(IPCSF) denotes the cost of the output produced by IPCSF on

instance I. To accomplish this, we use the same induction to bound the cost of the solution obtained through

the recursive call at Line 14 by cost2 ≤ 2cost(OPTR) + cp + pp, and by utilizing Lemma 40, we can then

conclude that cost2 ≤ 2cost(OPT )− cp1 + cp2 − pp. Taking the average of cost1 and cost2 results in a value

that is at most 2cost(OPT ). Consequently, the minimum of these two values, corresponding to the cost of

IPCSF(I), is at most 2cost(OPT ).

Lemma 35. For an instance I, We can derive a lower bound for the cost of the optimal solution OPT as

follows:

cost(OPT ) ≥ cc + cp + cp2 + pc + pp.

Proof. The optimal solution pays penalties for pairs with labels PC and PP as it does not connect them.

Since yi j ≤ πi j for each pair (i, j), we can lower bound the penalty paid by OPT as

π(Q∗) ≥
∑

(i, j)∈(PC∪PP)

πi j ≥
∑

(i, j)∈(PC∪PP)

yi j = pc + pp.

Now, we want to bound the cost of the forest in the optimal solution by cc + cp + cp2. First, it is important

to note that each part of an edge will be colored at most once. During the execution of the static coloring,

each active set S colors the uncolored parts of all its cutting edges. Therefore, when S is an active set, it

colors parts of exactly dF∗ (S ) edges of the optimal solution. Based on this observation, we can bound the

total cost of the edges in the optimal solution by considering the amount of coloring applied to these edges.

c(F∗) ≥
∑

S⊂V

dF∗ (S ) · yS

=
∑

S⊂V

∑

(i, j):S⊙(i, j)

dF∗ (S ) · yS i j (yS =
∑

(i, j):S⊙(i, j) yS i j)

=
∑

(i, j)∈V×V

∑

S :S⊙(i, j)

dF∗ (S ) · yS i j (change the order of summations)

≥
∑

(i, j)∈CC

∑

S⊙(i, j)

dF∗ (S ) · yS i j +
∑

(i, j)∈CP

∑

S⊙(i, j)

dF∗ (S ) · yS i j. (CC ∩ CP = ∅)
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For each pair (i, j) ∈ (CC ∪ CP), we know that in the optimal solution OPT , the endpoints of (i, j) are

connected. This implies that for every set S satisfying S ⊙ (i, j), the set S cuts the forest of OPT , i.e.,

dF∗ (S ) ≥ 1. Based on this observation, we bound the two terms in the summation above separately. For

pairs in CC, we have
∑

(i, j)∈CC

∑

S⊙(i, j)

dF∗ (S ) · yS i j ≥
∑

(i, j)∈CC

∑

S⊙(i, j)

yS i j =
∑

(i, j)∈CC

yi j = cc.

For pairs in CP, we have
∑

(i, j)∈CP

∑

S⊙(i, j)

dF∗ (S ) · yS i j =
∑

(i, j)∈CP

∑

S⊙(i, j),
dF∗ (S )=1

dF∗ (S ) · yS i j +
∑

(i, j)∈CP

∑

S⊙(i, j),
dF∗ (S )>1

dF∗ (S ) · yS i j

≥
∑

(i, j)∈CP

∑

S⊙(i, j),
dF∗ (S )=1

yS i j +
∑

(i, j)∈CP

∑

S⊙(i, j),
dF∗ (S )>1

2yS i j

= cp1 + 2cp2

= cp + cp2. (Lemma 34)

Summing up all the components, we have:

cost(OPT ) = c(F∗) + π(Q∗) ≥ cc + cp + cp2 + pc + pp

�

Lemma 36. Let F be an arbitrary forest and S be a subset of vertices in F. If S cuts only one edge e in F,

then removing this edge will only disconnect pairs of vertices cut by S .

Proof. Consider a pair (i, j) that is disconnected by removing e. This pair must be connected in forest F, so

there is a unique simple path between i and j in F. This path must include edge e, as otherwise, the pair

would remain connected after removing e. Let the endpoints of e be u and v, where u ∈ S and v < S . Without

loss of generality, assume that i is the endpoint of the path that is closer to u than v. Then i is connected to u

through the edges in the path other than e. As these edges are not cut by S and u ∈ S , it follows that i must

also be in S . Similarly, it can be shown that j is not in S . Therefore, S cuts the pair (i, j). �

Lemma 37. For an instance I, during the first iteration of IPCSF(I) where PCSF3(I) is invoked, we can

establish an upper bound on the output of PCSF3 as follows:

cost1 ≤ 2cc + 2pc + 3cp + 3pp.

Proof. Since cost1 is the total cost of PCSF3(I), we should bound π(Q1) + c(F′
1
). First, let’s observe that

PCSF3 pays the penalty for exactly the pairs (i, j) in CP ∪ PP, where CP ∪ PP = Q1. Since every pair in

Q1 is tight, we have πi j = yi j for these pairs. Therefore, the total penalty paid by PCSF3 can be bounded by

π(Q1) =
∑

(i, j)∈(CP∪PP)

πi j =
∑

(i, j)∈(CP∪PP)

yi j = cp + pp.

Now, it suffices to show that c(F′
1
) ≤ 2(cc+cp+ pc+ pp). We can prove this similarly to the proof presented

by Goemmans and Williamson in [14]. Since each pair belongs to exactly one of the sets CC, CP, PC, and

PP, we can observe that

cc + cp + pc + pp =
∑

(i, j)∈V×V

yi j =
∑

S⊂V

yS .
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Therefore, our goal is to prove that the cost of F′
1

is at most 2
∑

S⊂V yS using properties of static coloring. To

achieve this, we show that the portion of edges in F′
1

colored during each step of PCSF3 is at most twice the

total increase in the yS values during that step. Since every edge in the forest F′
1

is fully colored by PCSF3,

this will establish the desired inequality.

Now, let’s consider a specific step of the procedure PCSF3 where the yS values of the active sets in ActS are

increased by ∆. In this step, the total proportion of edges in F′
1

that are colored by an active set S is ∆dF′
1
(S ).

Therefore, we want to prove that

∆
∑

S ∈ActS

dF′
1
(S ) ≤ 2∆ · |ActS |,

where the left-hand side represents the length of coloring on the edges of F′
1

in this step, while the right-hand

side represents twice the total increase in yS values.

Consider the graph H formed from F′
1

by contracting each connected component in FC at this step in the

algorithm. As the edges of forest F at this step and F′
1

are a subset of the forest F at the end of PCSF3, the

graph H should be a forest. If H contains a cycle, it contradicts the fact that F at the end of PCSF3 is a

forest.

In forest H, each vertex represents a set S ∈ FC, and the neighboring edges of this vertex are exactly the

edges in δ(S ) ∩ F′
1
. We refer to the vertices representing active sets as active vertices, and the vertices

representing inactive sets as inactive vertices. To simplify the analysis, we remove any isolated inactive

vertices from H.

Now, let’s focus on the inactive vertices in H. Each inactive vertex must have a degree of at least 2 in H.

Otherwise, if an inactive vertex v has a degree of 1, consider the only edge in H connected to this vertex. For

this edge not to be removed in the final step of Algorithm 2 at Line 21, there must exist a pair outside of Q1

that would be disconnected after deleting this edge. However, since vertex v is inactive, its corresponding

set S becomes tight before this step. According to Lemma 28, S will remain tight afterward. As a result, by

Lemma 12, any pair cut by S will also be tight in the final coloring and will be included in Q1. By applying

Lemma 36, we can conclude that the only pairs disconnected by removing this edge would be the pairs cut

by S , which we have shown to be in Q1. Therefore, an inactive vertex cannot have a degree of 1, and all

inactive vertices in H have a degree of at least 2. Let Va and Vi represent the sets of active and inactive

vertices in H, respectively. We have

∑

S ∈ActS

dF′
1
(S ) =

∑

v∈Va

dH(v)

=
∑

v∈Va∪Vi

dH(v) −
∑

v∈Vi

dH(v)

≤ 2(|Va| + |Vi|) −
∑

v∈Vi

dH(v) (H is a forest)

≤ 2(|Va| + |Vi|) − 2|Vi| (dH(v) ≥ 2 for v ∈ Vi)

≤ 2(|Va|) = 2|ActS |.

This completes the proof. �

Lemma 38. For an instance I, during the first iteration of IPCSF(I) where PCSF3(I) is invoked, we can

establish an upper bound on the output of PCSF3 as follows:

cost1 ≤ 2cost(OPT ) + cp1 − cp2 + pp
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e

i′ j′

i j

Figure 5: The figure shows the graph of F∗ with pairs (i, j) and (i′, j′), and a single-edge set colored with

pair (i, j) in dynamic coloring. Tightness of (i, j) implies tightness of (i′, j′), and removing edge e does not

disconnect pairs in CC.

Proof. We can readily prove this by referring to the previous lemmas.

cost1 ≤2cc + 2pc + 3cp + 3pp (Lemma 37)

=2(cc + cp + cp2 + pc + pp) + cp − 2cp2 + pp

≤2cost(OPT ) + (cp − cp2) − cp2 + pp (Lemma 35)

=2cost(OPT ) + cp1 − cp2 + pp. (Lemma 34)

�

Lemma 39. For an instance I, it is possible to remove a set of edges from F∗ with a total cost of at least cp1

while ensuring that the pairs in CC remain connected.

Proof. Consider a single-edge set S that cuts some pair (i, j) in CP with yS i j > 0. Since (i, j) is in CP, it is

also in Q1 and therefore tight. By Lemma 25, any other pair cut by S will also be tight. Consequently, the

pairs in CC will not be cut by S since they are not tight. Furthermore, according to Lemma 36, if S cuts

only one edge e of F∗, then the only pairs that will be disconnected by removing edge e from F∗ are the

pairs that are cut by S . However, we have already shown that no pair in CC is cut by S . Therefore, all pairs

in CC will remain connected even after removing edge e. See Figure 5 for an illustration.

For any single-edge set S that cuts a pair (i, j) in CP with yS i j > 0, we can safely remove the single edge of

F∗ that is cut by S . The total amount of coloring on these removed edges is at least

∑

S :dF∗ (S )=1

∑

(i, j)∈CP
S⊙(i, j)
yS i j>0

yS i j =
∑

S :dF∗ (S )=1

∑

(i, j)∈CP
S⊙(i, j)

yS i j = cp1.

As the color on each edge does not exceed its length, the total length of the removed edges will also be at

least cp1. �
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Now, we introduce some useful notation to analyze the output of the recursive call. During the execution

of IPCSF on an instance I, it generates a modified instance R at Line 12, where the penalties for pairs in

Q1 are set to 0. We use the notation π′ to represent the penalties in the instance R as they are defined in

Lines 6-11. Since Line 3 ensures that π(Q1) , 0, we can conclude that R is a reduced instance compared to I,

meaning that the number of pairs with non-zero penalties is smaller in R than in I. Given that we recursively

call IPCSF on instance R, we can bound the output of the recursive call by the optimal solution of R using

induction. Let OPTR be an optimal solution for R. We denote the forest of OPTR as F∗
R

and the set of pairs

not connected by F∗
R

as Q∗
R
. The cost of OPTR is given by cost(OPTR) = c(F∗

R
) + π′(Q∗

R
). We will use these

notations in the following lemmas.

Lemma 40. For an instance I and the instance R constructed at Line 12 during the execution of IPCSF(I),

we have

cost(OPTR) ≤ cost(OPT ) − pp − cp1.

Proof. To prove this lemma, we first provide a solution for the instance R given the optimal solution of the

instance I, denoted as OPT , and we show that the cost of this solution is at most cost(OPT ) − pp − cp1.

Since OPTR is a solution for the instance R with the minimum cost, we can conclude that cost(OPTR) ≤

cost(OPT ) − pp − cp1.

To provide the aforementioned solution for the instance R, we start with the solution OPT consisting of

the forest F∗ and the set of pairs for which penalties were paid, denoted as Q∗. We create a new set

Q′
R
= Q∗ ∪ CP = PC ∪ PP ∪ CP and a forest F′

R
initially equal to F∗. Since F∗ connects pairs in CC

and CP, but we add pairs in CP to Q′
R

and pay their penalties, we can remove edges from F′
R

that do not

connect pairs in CC.

Let’s focus on Q′
R

first. Since the penalties for pairs in CP and PP are set to 0 in π′, we have

π′(Q′R) = π′(CP) + π′(PC) + π′(PP) (Q′
R
= CP ∪ PC ∪ PP)

= π′(PC) (π′(CP) = π′(PP) = 0)

= π(PC)

= π(Q∗) − π(PP) (Q∗ = PC ∪ PP)

= π(Q∗) −
∑

(i, j)∈PP

πi j

= π(Q∗) −
∑

(i, j)∈PP

yi j (pairs in PP are tight)

= π(Q∗) − pp.

Moreover, using Lemma 39, we construct F′
R

from F∗ by removing a set of edges with a total length of

at least cp1, while ensuring that the remaining forest still connects all the pairs in CC. Therefore, we can

bound the cost of F′
R

as

c(F′R) ≤ c(F∗) − cp1.

Summing it all together, we have

cost(OPTR) ≤ c(F′R) + π′(Q′R) ≤ (c(F∗) − cp1) + (π(Q∗) − pp) = cost(OPT ) − pp − cp1,

where the first inequality comes from the fact that OPTR is the optimal solution for the instance R, while

(Q′
R
, F′

R
) gives a valid solution, i.e., F′

R
connects every pair that is not in Q′

R
. �
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Finally, we can bound the cost of the output of IPCSF. For an instance I, let’s denote the cost of the output

of IPCSF(I) as cost(IPCSF). In Theorem 41, we prove that the output of IPCSF is a 2-approximate solution

for the PCSF problem.

Theorem 41. For an instance I, the output of IPCSF(I) is a 2-approximate solution to the optimal solution

for I, meaning that

cost(IPCSF) ≤ 2cost(OPT ).

Proof. We will prove the claim by induction on the number of pairs (i, j) with penalty πi j > 0 in instance I.

First, the algorithm makes a call to the PCSF3 procedure to obtain a solution (Q1, F
′
1
). If π(Q1) = 0 for

this solution, which means no cost is incurred by paying penalties, the algorithm terminates and returns

this solution at Line 4. This will always be the case in the base case of our induction where for all pairs

(i, j) ∈ Q1, penalties πi j are equal to 0. Since every pair (i, j) ∈ Q1 is tight, we have yi j = πi j = 0. Given that

CP and PP are subsets of Q1, we can conclude that cp = cp1 = cp2 = pp = 0. Now, by Lemma 38, we

have

cost1 ≤ 2cost(OPT ) + (cp1 − cp2) + pp = 2cost(OPT ).

Therefore, when IPCSF returns at Line 4, we have

cost(IPCSF) = cost1 ≤ 2cost(OPT ),

and we obtain a 2-approximation of the optimal solution.

Now, let’s assume that PCSF3 pays penalties for some pairs, i.e., π(Q1) , 0. Therefore, since we set the

penalty of pairs in Q1 equal to 0 for instance R at Line 9, the number of pairs with non-zero penalty in

instance R is less than in instance I. By induction, we know that the output of IPCSF on instance R, denoted

as (Q2, F2), has a cost of at most 2cost(OPTR). That means

c(F2) + π′(Q2) ≤ 2cost(OPTR).

In addition, we have

π(Q2) = π(Q2 \ Q1) + π(Q2 ∩ Q1) ≤ π′(Q2 \ Q1) + π(Q1) ≤ π′(Q2) + π(Q1),

where we use the fact that π′
i j
= πi j for (i, j) < Q1. Now we can bound the cost of the solution (Q2, F

′
2
),

denoted as cost2, by

cost2 = c(F′2) + π(Q2)

≤ c(F′2) + π′(Q2) + π(Q1)

≤ 2cost(OPTR) + π(Q1) (By induction)

≤ 2 (cost(OPT ) − pp − cp1) +
∑

(i, j)∈Q1

πi j (Lemma 40)

= 2 (cost(OPT ) − pp − cp1) +
∑

(i, j)∈Q1

yi j (pairs in Q1 are tight)

= 2cost(OPT ) − 2pp − 2cp1 + cp + pp

= 2cost(OPT ) − cp1 + cp2 − pp. (Lemma 34)

Furthermore, according to Lemma 38, the cost of the solution (Q1, F
′
1
), denoted as cost1, can be bounded by

cost1 ≤ 2OPT + cp1 − cp2 + pp.
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Finally, in Line 15, we return the solution with the smaller cost between (Q1, F
′
1
) and (Q2, F

′
2
). Based on

the upper bounds above on both solutions, we know that

cost(IPCSF) = min(cost1, cost2) ≤
1

2
(cost1 + cost2)

≤
1

2
(2cost(OPT ) + cp1 − cp2 + pp + 2cost(OPT ) − cp1 + cp2 − pp)

=
1

2
(4cost(OPT )) = 2cost(OPT ),

and we obtain a 2-approximation of the optimal solution. This completes the induction step and the proof

of the theorem. �

Theorem 42. The runtime of the IPCSF algorithm is polynomial.

Proof. Let n be the number of vertices in the input graph. There are O(n2) pairs of vertices in total. When-

ever IPCSF calls itself recursively, the number of pairs with non-zero penalties decreases by at least one,

otherwise IPCSF will return at Line 4. Thus, the recursion depth is polynomial in n. At each recursion level,

the algorithm only runs PCSF3 on one instance of the problem and performs O(n2) additional operations.

By Lemma 31, we know that PCSF3 runs in polynomial time. Therefore, the total run-time of IPCSF will

also be polynomial. �

3.2 Improving the approximation ratio

In this section, we briefly explain how a tighter analysis can be used to show that the approximation ratio

of the IPCSF algorithm is at most 2 − 1
n
, where n is the number of vertices in the input graph G. This

approximation ratio more closely matches the approximation ratio of 2 − 2
n

for the Steiner Forest problem.

We first introduce an improved version of Lemmas 37 and 38.

Lemma 43. For an instance I, during the first iteration of IPCSF(I) where PCSF3(I) is invoked, we have

the following upper bound

cost1 ≤ (2 −
2

n
) · cc + (2 −

2

n
) · pc + (3 −

2

n
) · cp + (3 −

2

n
) · pp.

Proof. We proceed similarly to the proof of Lemma 37 and make a slight change. In one of the last steps of

that proof, we use the following inequality:

∑

v∈Va∪Vi

dH(v) −
∑

v∈Vi

dH(v) ≤ 2(|Va| + |Vi|) −
∑

v∈Vi

dH(v).

This is true, as H is a forest and its number of edges is less than its number of vertices. However, as the

number of edges in a forest is strictly less than the number of vertices, we can lower the right-hand side of

this inequality to 2(|Va| + |Vi| − 1) −
∑

v∈Vi
dH(v). Rewriting the main inequality in this step with this change
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gives us

∑

S ∈ActS

dF′
1
(S ) ≤ 2(|Va| + |Vi| − 1) −

∑

v∈Vi

dH(v)

≤ 2(|Va| + |Vi| − 1) − 2|Vi| (dH(v) ≥ 2 for v ∈ Vi)

≤ 2(|Va| − 1) = 2|ActS | − 2 (|Va| = |ActS |)

= (2 −
2

|ActS |
)|ActS |

≤ (2 −
2

n
)|ActS |. (|ActS | ≤ n)

Based on the steps in the proof of Lemma 37, this leads to the desired upper bound. �

Lemma 44. For an instance I, during the first iteration of IPCSF(I) where PCSF3(I) is invoked, we can

establish an upper bound on the output of PCSF3 as follows:

cost1 ≤ (2 −
2

n
) · cost(OPT ) + cp1 − (1 −

2

n
) · cp2 + pp

Proof. We prove this lemma similarly to Lemma 38, except we use Lemma 43 instead of Lemma 37.

cost1 ≤(2 −
2

n
) · cc + (2 −

2

n
) · pc + (3 −

2

n
) · cp + (3 −

2

n
) · pp (Lemma 43)

=(2 −
2

n
)(cc + cp + cp2 + pc + pp) + cp − (2 −

2

n
) · cp2 + pp

≤(2 −
2

n
) · cost(OPT ) + (cp − cp2) − (1 −

2

n
)cp2 + pp (Lemma 35)

=(2 −
2

n
) · cost(OPT ) + cp1 − (1 −

2

n
) · cp2 + pp. (Lemma 34)

�

Finally, we improve Theorem 41.

Theorem 45. For an instance I, the output of IPCSF(I) is a (2 − 1
n
)-approximate solution to the optimal

solution for I, meaning that

cost(IPCSF) ≤ (2 −
1

n
) · cost(OPT ).

Proof. Similarly to the proof of Theorem 41, we use induction on the number of non-zero penalties. If the

algorithm terminates on Line 4 then by Lemma 44 we have

cost1 ≤ (2 −
2

n
) · cost(OPT ) + cp1 − (1 −

2

n
) · cp2 + pp = (2 −

2

n
) · cost(OPT )

since cp1, cp2, and pp are all 0 in this case. As 2− 2
n
≤ 2 − 1

n
, the desired inequality holds in this case. This

establishes our base case for the induction.
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Using the same reasoning as the proof of Theorem 41, based on the induction we have

cost2 ≤ (2 −
1

n
) · cost(OPTR) + π(Q1)

= (2 −
1

n
) · cost(OPTR) + cp + pp

≤ (2 −
1

n
)(cost(OPT ) − cp1 − pp) + cp + pp (By Lemma 40)

≤ (2 −
1

n
) · cost(OPT ) − (1 −

1

n
) · cp1 + cp2 − (1 −

1

n
) · pp.

We can combine this with the following upper bound from Lemma 44

cost1 ≤ (2 −
2

n
) · cost(OPT ) + cp1 − (1 −

2

n
) · cp2 + pp.

As the algorithm chooses the solution with the lower cost between cost1 and cost2, we have

cost(IPCSF) = min(cost1, cost2) ≤
1

2
(cost1 + cost2)

≤
1

2

[

(2 −
2

n
) · cost(OPT ) + cp1 − (1 −

2

n
) · cp2 + pp

+(2 −
1

n
) · cost(OPT ) − (1 −

1

n
) · cp1 + cp2 − (1 −

1

n
) · pp

]

=
1

2

(

(4 −
3

n
) · cost(OPT ) +

2

n
cp2 +

1

n
cp1 +

1

n
pp

)

≤
1

2

(

(4 −
2

n
) · cost(OPT ) +

1

n
[2cp2 + cp1 + pp − cost(OPT )]

)

≤
1

2
(4 −

2

n
) · cost(OPT ) (cost(OPT ) ≥ 2cp2 + cp1 + pp by Lemma 35)

= (2 −
1

n
) · cost(OPT ).

Therefore, the algorithm obtains a (2 − 1
n
)-approximation of the optimal solution. �
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