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Abstract

We study mechanisms for selling a single item when buyers have private costs for participat-

ing in the mechanism. An agent’s participation cost can also be interpreted as an outside option

value that she must forego to participate. This substantially changes the revenue maximiza-

tion problem, which becomes non-convex in the presence of participation costs. For multiple

buyers, we show how to construct a (2 + ϵ)-approximately revenue-optimal mechanism in poly-

nomial time. Our approach makes use of a many-buyers-to-single-buyer reduction, and in the

single-buyer case our mechanism improves to an FPTAS. We also bound the menu size and the

sample complexity for the optimal single-buyer mechanism. Moreover, we show that posting

a single price in the single-buyer case is in fact optimal under the assumption that either (1)

the participation cost is independent of the value, and the value distribution has decreasing

marginal revenue or monotone hazard rate; or (2) the participation cost is a concave function of

the value. When there are multiple buyers, we show that sequential posted pricing guarantees

a large fraction of the optimal revenue under similar conditions.

1 Introduction

In the textbook example of revenue optimization, a monopolist seller wishes to sell a single item

to a collection of buyers whose values are drawn independently from known distributions. In

this idealized economic environment, the nature of the optimal mechanism was solved by Myerson

(1981). However, actual economic environments depart significantly from this ideal. One significant

assumption is that each buyer’s cost from participation is normalized to zero. While convenient, this

assumption is not without loss: it requires that agents are perfectly indifferent between participating

in an auction and leaving empty-handed, versus not attending the auction in the first place.

In this paper we relax this assumption, allowing each buyer to have a private cost for partici-

pation in the mechanism (or, equivalently, a private value for an outside option she must forgo to
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participate). Thus, a buyer’s type includes both a valuation of the item for sale and a cost for par-

ticipation, and the seller chooses a mechanism for selling the item to maximize the expected revenue

given a Bayesian prior over each buyer’s type. This is a generalization of the model in Menezes and

Monteiro (2000) and Celik and Yilankaya (2009) where the participation cost is public information.

Our model can be interpreted in various ways. One interpretation is an oligopoly model with

exclusive competition (Champsaur and Rochet, 1989). For example, suppose there are multiple

firms who wish to sell different items to a single buyer by holding auctions simultaneously in

different locations, and the buyer can participate in at most one auction. Then from the perspective

of any one seller, if we fix the other sellers’ strategies (selling mechanisms), the utility of the

buyer for participating in a competing auction can be modeled as a private cost for participation.

Thus, the best response problem in this oligopoly model is the optimal mechanism for buyers with

participation costs. Another example is to view our model as a setting where buyers must make

investment decisions for boosting their values for winning the auction (Gershkov et al., 2021).

Without investment, the buyers have no value for winning the auction. The investments are costly

for the buyers, and the buyers must decide whether to invest before the auction starts. In these

interpretations, the previous papers (Champsaur and Rochet, 1989; Gershkov et al., 2021) have

focused on settings equivalent to public, commonly known participation costs. In contrast, the

model that we study has private participation costs, which can be arbitrarily correlated to the

value of the item.

At first glance, one may wonder whether this setting is in fact equivalent to a single-dimensional

setting in which a buyer’s type is simply her value minus her participation cost. However, such a

transformation can substantially impact a buyer’s choices. Consider a single buyer with the choice

between paying $3.1 for getting the item for sure or paying $1 for getting the item with probability

50%1 (or not participating at all). If the buyer has a value of $5 for the item and a participation

cost of $1, she would strictly prefer the first option (paying $3.1 and getting the item for sure, for a

resulting utility of 5−3.1−1 = $0.9). However, if instead of having a value of $5 and a participation

cost of $1, the buyer has a value of 5−1=$4 and a participation cost of $0, she would strictly prefer

the second option (paying $1 and getting the item with probability 50%, for a resulting expected

utility of 1
2 · 4− 1 = $1). So there is more at play here than is conveyed by the difference between

the value and the participation cost.

As we show, known results about the structure of the revenue-maximizing mechanism in the

standard setting without participation costs may fail to hold in the presence of participation costs,

even in the single-buyer case. Indeed, even when there is only one buyer, the seller can strictly

benefit by offering lotteries (see Example 1 below). This is in sharp contrast to the idealized

environment with participation costs normalized to zero, where it is always optimal to simply post

a single take-it-or-leave-it price (Myerson, 1981). We therefore embark on a study to adapt and

extend canonical economic and computational results on revenue maximization to this generalized

1Note that with the remaining 50% probability, the buyer will not get the item and she still needs to pay the cost
since she chose to participate in the mechanism.
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environment.

1.1 Our Contributions

A Characterization of Incentive Compatible Mechanisms. We begin by providing a struc-

tural characterization of incentive compatible mechanisms in the presence of participation costs. Re-

call that in the classic setting where participation costs are normalized to zero, a (direct-revelation)

mechanism has each buyer i declare her valuation vi, then maps this profile of values into an al-

location xi and payment pi for each buyer. In our setting, a direct-revelation mechanism takes

as input a tuple (vi, ci) of value and participation cost from each agent. The question is which

(two-dimensional) allocation and payment rules are incentive compatible and individually rational

in this environment.

For a single buyer, one way to construct a truthful mechanism is to ignore the participation

cost entirely and choose a monotone allocation rule that depends only on the reported value. The

agent is then free to opt out whenever her expected utility under the allocation rule is less than her

participation cost. We call such mechanisms opt-out-or-revelation mechanisms. Our first result is

that, in fact, every mechanism for a single buyer is revenue-equivalent to an opt-out-or-revelation

mechanism, which further allows us to therefore restrict attention to such mechanisms without

loss, and incentive compatibility reduces to monotonicity of the allocation rule. This enables us to

establish a payment identity for our setting, analogous to the classic one of Myerson (1981), and

establish a virtual-value interpretation of revenue maximization in the presence of participation

costs.

We would like to extend this characterization of incentive compatibility to multiple buyers.

However, since each agent’s expected utility from the mechanism can depend on which other agents

participate, we must be careful when modeling participation choices. Given a fixed allocation rule,

there may be multiple equilibria of the “participation game” between agents choosing whether or

not to opt in.2 The choice of equilibrium can impact the mechanism’s revenue, and hence what we

mean by the revenue of a given allocation rule is potentially ambiguous.

One way to resolve this ambiguity is to encode participation choices into the mechanism proto-

col itself. For example, we could imagine the mechanism approaching agents one at a time, asking

them sequentially whether they would like to opt in or out (potentially after revealing informa-

tion about the agents who had previously chosen to opt in). After all participation decisions have

been made, the mechanism then applies a direct-revelation allocation rule that depends only on

the participating agents’ reported values. We call such mechanisms sequential opt-out-or-revelation

mechanisms. As in the single-buyer case, we show that every mechanism (and every equilibrium

of agent participation behavior) is outcome-equivalent to a sequential opt-out-or-revelation mech-

anism. This allows us to extend our characterization of incentive compatible mechanisms and our

2For example, consider the mechanism that chooses a participating agent at random to receive the item for free.
If there are two agents, each with value 3 and participation cost 2, then there will be three equilibria of participation:
one where only the first agent participates, one where only the second agent participates, and one where each agent
participates with probability 2/3.
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virtual-value interpretation of revenue maximization to the setting with multiple buyers.

Computing an Approximately Revenue-Optimal Mechanism. Characterization in hand,

we next turn to the problem of constructing an approximately revenue-optimal mechanism. Our

benchmark is the highest revenue achievable by any mechanism and any equilibrium of participation

choices by the agents. We show how to construct a mechanism that achieves a constant fraction of

this benchmark, less an additive ϵ loss. Moreover, the equilibrium of participation in our mechanism

is unique up to tie-breaking.3

Theorem 1. For any ϵ > 0 and any n buyers with types drawn from a product distribution supported

on [0, 1]2n, a mechanism with expected revenue 1
2OPT − ϵ can be computed in time polynomial in

n, 1/ϵ, and either the maximum density of the participation cost in any agent’s type distribution

(for continuous distributions) or the maximum support size of any one agent’s type distribution

(for discrete distributions).

Our assumption only requires independence across different buyers. For each buyer, the value

can be arbitrarily correlated with the participation cost. Our construction employs a reduction from

the many-buyer mechanism design problem to a single-agent problem. Such methods have been

used with great success in related settings, such as selling to agents with budget constraints and

other revenue optimization problems (Alaei, 2014; Alaei et al., 2012a). This reduction framework

typically has three steps:

1. Compute an approximately revenue-optimal mechanism for a single buyer, possibly subject

to additional constraints (e.g., an upper bound on the ex-ante probability of selling the item).

2. Optimize over the choice of constraints for each buyer participating in the mechanism, then

construct the optimal interim allocation rule for each buyer subject to their constraints.

3. Combine the constructed interim allocation rules into a multi-agent ex post allocation rule.

As it turns out, implementing each of these three steps poses substantial challenges in our

setting with participation costs. We will discuss each of them in turn.

Step 1: Solving The Single-Buyer Problem.

Our first step is to construct a revenue-optimal mechanism for a single buyer. Recall that when

there is only one buyer, we can restrict attention to opt-out-or-revelation mechanisms. For this

case we provide an FPTAS algorithm for computing the optimal mechanism.

Theorem 2. For any ϵ > 0 and any distribution over buyer types supported on [0, 1]2, a single-buyer

mechanism with expected revenue OPT− ϵ can be computed in time poly (1/ϵ).

3In other words, an agent might be indifferent between participating or not participating, and either choice could
be supported at equilibrium. Such indifference occurs with vanishing probability and does not impact the mechanism’s
revenue.
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A key challenge in this mechanism design problem is that revenue maximization is inherently

non-convex in the presence of participation costs. Recall that a given buyer type will opt out

of the mechanism entirely if her expected utility drops below her participation cost. This means

that over the space of incentive compatible allocation rules, revenue can be a discontinuous and

not necessarily concave function of allocation probability.4 This immediately rules out many con-

vex programming and duality-based approaches to revenue maximization that are common in the

algorithmic mechanism design literature.

To address this challenge, we instead discretize the type space and directly optimize over feasible

allocation rules. This involves tracking not only the allocation rule itself, but also the utility

obtained by each buyer type, as this is necessary for determining which buyer types will opt into

the mechanism.

We note that the mechanism returned by our FPTAS can have a menu of lotteries of size

potentially linear in the number of buyer costs. We show that this is not an artefact of the

approximation: the menu size of the revenue-maximizing mechanism is also at most linear in the

number of possible costs. Moreover, this bound on the menu size is tight up to a multiplicative

factor of 2, even in the special case that the participation cost is perfectly correlated with the value.

We also bound the number of samples required to learn an up-to-ϵ revenue-maximizing mechanism

absent direct access to the underlying distribution.

Step 2: Optimizing Bounds on the ex-ante Allocation Probabilities

We now turn back to the multi-agent mechanism design problem. In any valid mechanism,

the total sum of ex-ante probabilities of allocating the item to each buyer can be at most 1. The

next step of our reduction is to choose how to divide this unit of probability among the agents

in our mechanism. Unfortunately, we face the same challenge as in the single-buyer problem: the

non-convexity of revenue maximization in the presence of participation costs. This blocks us from

using convex-programming techniques to optimize over the allocation constraints, as is typical for

applications of this approach.

We address this challenge by discretizing the set of potential ex-ante allocation probabilities,

then directly optimizing over potential assignments of constraints to individual buyers via dynamic

programming. One important observation is that we must take a buyers’ participation decisions

into account when estimating the ex-ante probability of allocation. I.e., if we want to find the

allocation rule that optimizes revenue subject to allocating the item with total probability at

most q, then any buyer type who opts out of the mechanism should not count toward this q, and

of course the allocation rule itself determines which types opt in or out. Moreover, these decisions

can be distorted by the discretization of the type space. For this reason, we permit some slack in

our ex-ante allocation constraints and we must bound the accumulation of errors in the estimated

4For example, suppose the agent’s type (vi, ci) is equally likely to be (7, 4) or (3, 1). A mechanism that sells
the item for sure at a price of 2.5 would sell to the agent of type (7, 4), whereas the agent of type (3, 1) wouldn’t
participate. On the other hand, a mechanism that charges a price of 1.2 for a 50% chance at the item would sell
to the agent of type (3, 1) whereas agent type (7, 4) would opt out. But a mechanism that randomizes uniformly
between these two allocation rules obtains revenue 0, since neither agent type would choose to participate.
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probability of allocation.

An additional complication arises when adapting our single-buyer FPTAS analysis to revenue

maximization with ex-ante allocation constraints. As it turns out, the revenue-optimal mechanism

that sells with probability at most q < 1 might not be a single allocation rule. Rather, the seller

may want to randomize over multiple mechanisms with different (and potentially also random)

allocation and payment rules. This can be beneficial because the seller is permitted to announce

the realized mechanism before the buyer chooses whether to opt in, and doing so could influence

the buyer’s participation decision. Searching over all possible distributions over mechanisms is

computationally infeasible. Fortunately, we show that to maximize revenue subject to an ex-

ante allocation probability it suffices to consider distributions over at most two mechanisms, each

satisfying one of our discretized allocation probabilities. The optimal mechanism in this restricted

class can be computed efficiently by dynamic programming.

Step 3: Contention Resolution.

The final step in our construction is to combine the single-agent interim allocation rules into

a single multi-agent allocation mechanism. One way to do this is to try allocating to each agent

independently using her own interim allocation rule, then use contention resolution techniques if

any conflicts arise. (I.e., if we try to allocate to multiple agents at the same time, choose which of

them should receive the item, if any.) Unfortunately, the presence of participation costs once again

creates a problem: contention resolution modifies the interim allocation rule experienced by each

agent, and this can influence each agent’s decision of whether to participate in the mechanism.

We address this challenge by employing an online contention resolution scheme, such that the

order in which we resolve allocations is aligned with a sequential opt-out-or-revelation implemen-

tation of our mechanism. Specifically, we employ a variation of an online rounding method due

to Alaei et al. (2012b). For each agent sequentially, the mechanism will pre-determine whether that

agent is eligible to participate in the mechanism or not. If so, that agent will face an allocation

rule that is identical to the single-agent interim rule constructed in our reduction, and hence her

participation incentives will be unchanged. An appropriate choice of eligibility probabilities for

each agent yields an ex post implementable allocation rule while reducing the total revenue by at

most one half. This ultimately leads to the mechanism promised in Theorem 1.

Conditions for the Optimality of Posted-Price Mechanisms. Even for a single buyer,

we’ve shown that the optimal mechanism may require the use of lotteries. But are there conditions

under which it is optimal to post a fixed take-it-or-leave-it price, as is the case without participation

costs?

We show that if either (1) the valuation distribution is independent of the participation cost

distribution and has decreasing marginal revenue or monotone hazard rate (Definition 2); or (2)

the participation cost is a concave function of the value; then the optimal mechanism simply posts

a (carefully chosen) single price for the item. It turns out that, under these conditions, the optimal

price is in fact equal to the standard monopoly price for the (single-dimensional) distribution of
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the difference between the value and the participation cost. This is not a coincidence: conditional

on only posting a single take-it-or-leave-it price, a mechanism cannot distinguish between types

with the same difference between value and participation cost, and hence the mechanism’s revenue

depends only on this difference.

Finally, in the multi-buyer setting, as suggested by Gershkov et al. (2021), characterizing the

exact revenue-optimal mechanism may not be tractable even when the participation costs are

known and all buyers are symmetric. This is because the buyers do not satisfy the von Neu-

mann–Morgenstern expected utility characterization for their preference over lotteries, and the

revenue-optimal mechanism may not be symmetric even in this simplified case, as the set of feasi-

ble mechanisms is not convex (see Appendix D for more details). In contrast, we show that even in

the asymmetric setting, if for each buyer, either (1) the valuation distribution is independent of the

participation cost distribution and has decreasing marginal revenue; or (2) the participation cost

is a concave function of the value; then a sequential posted price mechanism guarantees a constant

fraction of the optimal revenue.5 Relative to our general mechanism construction from Theorem 1,

this result imposes more constraints on the buyers but yields an improved approximation factor

and takes the simpler form of sequential take-it-or-leave-it prices.

1.2 Related Work

Our paper closely relates to the literature on auctions with private outside options and endogenous

participation. Rochet and Stole (2002) illustrate that some general lessons from that work are

not robust to the presence of a private value for the outside option when there are production

costs (which our model does not have). Follow-up work in economics focuses mainly on qualitative

features of the optimal mechanisms with costly participations, such as showing that distortion at

the top or bottom is not required. There are various extensions of the model by considering the

optimal mechanisms when selling congestible goods (Jebsi and Thomas, 2006), when principals are

risk-averse (Basov and Yin, 2010), or when considering the optimal income taxation rule (Lehmann

et al., 2011). A recent paper by Ashlagi et al. (2021) considers consumer surplus maximization

when buyers have outside options, and buyers can only misreport their outside-option values by

downward deviation. Relative to that economics literature, our work provides a general characteri-

zation of the optimal mechanism through a payment identity and virtual-value analysis, polynomial

time algorithms for computing the (approximately) optimal mechanisms, and natural sufficient dis-

tributional conditions for price posting to be optimal or to guarantee a large fraction of the optimal

revenue.

There is a body of literature examining mechanism design with perfectly correlated outside

options, i.e., the outside-option value is a deterministic and publicly known function of each agent’s

item value (Jehiel et al., 1996; Krishna and Perry, 1998; Jullien, 2000; Figueroa and Skreta, 2009).6

5Our result for the multi-buyer setting allows for a setting in which some of the buyers satisfy condition (1) while
the others satisfy condition (2).

6Jehiel et al. (1996); Figueroa and Skreta (2009) motivate the perfectly correlated outside options through agents’
externalities in allocations. In their model, the principal can control the outside option each agent receives, while in
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The assumption of perfectly correlated outside options significantly simplifies the optimal design

problem, as illustrated in Jullien (2000) and Section 5.2 of our paper. However, in our study, the

main challenges arise when the agents’ outside option values are still stochastic even conditional

on their item values.

The model of costly participation also relates to the literature on return on investment (ROI)

constraints (Golrezaei et al., 2021a,b; Lucier et al., 2023). In these papers, the ROI constraints for

each agent can be seen as the additional utility the agent can gain by investing money in activities

beyond the auction.

Our setting also relates to so-called “one-and-a-half dimensional” or “interdimensional” mech-

anism design settings. In that domain, a buyer has one dimension representing her willingness to

pay, and an additional “half dimension” representing a constraint on her demand. For example, in

the FedEx problem (Fiat et al., 2016) the “half dimension” is the buyer’s deadline, and the buyer

is only willing to accept the item before this deadline. For buyers with budgets (Che and Gale,

1998; Devanur and Weinberg, 2017), the “half dimension” is the buyer’s budget constraint, which

places a cap on the maximum value she can pay for the item offered by the seller. In our setting,

a buyer’s participation cost can also be viewed as a “half dimension” of sorts since it only affects

her decision of whether or not to participate in the auction; conditional upon participating in the

auction, the cost does not affect the buyer’s utility in the auction.

Our paper also falls into the scope of designing simple and approximately optimal mechanisms

(Hartline and Roughgarden, 2009). This line of work mainly focuses on the case in which all buyers

have zero cost for participation. For the single-item setting, sequential posted pricing guarantees a

1−1/e fraction of the optimal revenue (Yan, 2011). For multi-item setting, sequential posted pricing

guarantees a constant fraction of the optimal revenue when buyers have unit-demand valuations

(Chawla et al., 2010; Cai et al., 2019), and selling items separately or as bundles guarantees a

constant fraction of the optimal revenue when buyers have additive valuations (Babaioff et al.,

2020; Cai et al., 2019). When buyers have non-linear utilities (e.g., budgeted utility), Feng et al.

(2020) show that constant-fraction approximation results (e.g., sequential posted pricing) for linear

buyers can be generalized to non-linear buyers when the type distributions of the buyers satisfy

some closeness property. There are numerous results on this topic. See the survey of Roughgarden

and Talgam-Cohen (2019) for a detailed discussion on approximately optimal mechanisms in various

other settings.

Finally, our results on the menu and sampling complexity of the revenue-optimal mechanism

also contribute to the literature on menu sizes of optimal and approximately optimal mechanisms

(e.g., Fiat et al., 2016; Hart and Nisan, 2017; Babaioff et al., 2017; Devanur and Weinberg, 2017;

Gonczarowski, 2018; Saxena et al., 2018; Devanur et al., 2020) and to the literature on the sample

complexity of learning up-to-ϵ optimal mechanisms (e.g., Cole and Roughgarden, 2014; Morgenstern

and Roughgarden, 2015; Devanur et al., 2016; Gonczarowski and Nisan, 2017; Hartline and Taggart,

2019; Gonczarowski and Weinberg, 2018; Guo et al., 2019).

our model, the outside option values are exogenous and stochastic.
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1.3 Roadmap

In Section 2 we formalize our model and describe our revelation principle: that any mechanism is

revenue-equivalent to a truthful equilibrium of a sequential opt-out-or-revelation mechanism. In

Section 3 we characterize the truthful allocation rules for sequential opt-out-or-revelation mecha-

nisms, and provide a virtual-value interpretation of revenue maximization.

In Section 4 we consider revenue optimization for a single buyer. We present our FPTAS in

Section 4.1, and bound the menu and sample complexity of the optimal mechanism in Sections 4.2

and 4.3. Continuing with the single-buyer setting, in Section 5 we present sufficient conditions for

a posted-price mechanism to be revenue optimal.

In Section 6 we turn to the multi-agent setting. We present our O(1)-approximate mechanism

in Section 6.1. In Section 6.2 we establish conditions under which sequential posted pricing is

approximately optimal. We discussion two alternative models for costly participation and open

questions in Section 7.

2 Model and Preliminaries

A seller has a single item to offer for sale to n buyers. Each buyer i has a private valuation vi ≥ 0

for getting the item and a private cost ci for participating in the mechanism.7 Let ti ≡ (vi, ci)

represent the private type of buyer i and let F̄i be the seller’s prior distribution over ti with density

f̄i. Let Fi and Gi be the marginal distributions of values and costs with densities fi, gi. Note that

a buyer’s value and cost may be correlated under F̄i. Let F̄ = ×iF̄i be the product distribution of

the buyers’ type profiles.

Mechanisms. A (possibly non-direct-revelation) mechanism is a communication protocol. This

protocol can be represented by a game tree that determines which players can (simultaneously) send

and/or receive messages at each round (i.e., node of the tree) and how those messages influence

the progression of the protocol. The leaves of the game tree specify rounds in which the protocol

halts, at which point the mechanism terminates and outputs the allocation and payments for each

buyer. To capture participation decisions, we will assume that each agent’s message space includes

a special message ψ. If the first message (and only the first message) sent by an agent is ψ, then

the agent is said to have opted out of the mechanism and they receive utility equals zero.

We provide a generalized notion of a revelation mechanism, such that any mechanism can be

transformed into an outcome-equivalent sequential opt-out-or-revelation mechanism. Intuitively,

in such a mechanism agents only report their values, and there are fixed allocation and payment

rules that map these reports to the mechanism’s outcome. But the mechanism is not restricted to

simultaneous reports: it can approach agents sequentially to solicit their reports, and when it is an

7Although it is most natural to consider non-negative values for participation costs, negative values for participa-
tion costs can capture the potential social benefit for the buyer to participate the auction, which is not modeled in
her valuation for the item. Introducing negative values for participation costs will lead to different observations for
the optimality of posted pricing, which will be discussed formally in Appendix E.
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agent’s turn to report she can opt out of the mechanism rather than report her value. We formalize

this class of mechanisms below.

Definition 1. A sequential opt-out-or-revelation mechanism proceeds as follows:

• There is a (possibly random, possibly adaptive) order τ over the agents. For each agent i in

this order, the mechanism sends a message Ei that can depend on the protocol history. Agent

i then either opts out (by reporting ψ) or reports a declared value ṽi ≥ 0. Write R̄ = R∪{ψ}
for this message space.

• Once all agents have reported, the outcome is determined by an allocation function x : R̄n →
∆({0, 1}n) and payment function p : R̄n → Rn, such that each buyer i reporting ψ receives

xi = pi = 0.

• There exists an equilibrium in which each buyer i that opts into the mechanism reports her

value vi truthfully. That is, there exists a profile of strategies σ such that for any buyer i,

any σi(ti, Ei) ∈ {ψ, vi}, and any order τ ,

Et−τi∼F̄−τi
[uτi(M(σ(t, E))) | Eτi ] ≥ Et−τi∼F̄−τi

[uτi(M(b, σ−τi(t−τi , E−τi))) | Eτi ] , ∀b ∈ R̄.

Note that this class includes traditional simultaneous-move direct revelation mechanisms, as this

corresponds to each Ei being an empty message. When there is only a single buyer, a sequential

opt-out-or-revelation mechanism has an especially natural form: it is simply a direct-revelation

mechanism (characterized by a truthful allocation and payment rule) in which each buyer type

(vi, ci) is permitted to opt out, and will do so precisely if her expected utility from the mechanism

is less than ci.

In Appendix A we prove that any mechanism protocol can be converted into a sequential

opt-out-or-revelation mechanism with the same distribution over outcomes (and hence the same

expected revenue).

Lemma 1. For any type distribution F̄ , any mechanism M, and any Bayes-Nash equilibrium of

the corresponding game, there exists a sequential opt-out-or-revelation mechanism M̂ and a truthful

equilibrium of M̂ that generates the same distribution over outcomes.

Posted-Price Mechanisms. When there is a single buyer (n = 1), we say that a sequential

opt-out-or-revelation mechanism M posts a price if there exists a price p such that the mechanism

awards the item with probability 1 for a price of p if the buyer participates and reports a value of

no less than p, and otherwise the item is not awarded and p = 0. With n ≥ 2 buyers, we say that a

sequential opt-out-or-revelation mechanism M is a sequential posted price mechanism if there exist

prices pi and an order over the buyers such that the mechanism awards the item with probability 1

for a price of pi to the first buyer i—according to this order—who participates and reports a value

of no less than pi (and no other buyers are charged any price), and the item is not awarded and no

10



buyer is charged any price if no such buyer exists. Each buyer is informed about the availability of

the item when he sees the price.

Revenue Maximization. For any mechanism M, let Rev(t, σ;M) =
∑

i pi(σ(t)) be the rev-

enue of mechanism M given type profile t and strategy profile σ, and let Rev(F̄, σ;M) =

Et∼F̄ [Rev(t, σ;M)] be the expected revenue given distribution F̄ . We will omit the strategy σ

in the notation if it is clear from the context. Let

OPT(F̄ ) = max
M

max
σ∈BNE(F̄,M)

Rev(F̄, σ;M)

be the optimal expected revenue of the seller given distribution F̄ under the Bayes–Nash equilibrium

with highest expected revenue. Let ϕ(v) = v − 1−F (v)
f(v) be the virtual value of the buyer with value

v and valuation distribution F .

Definition 2. For any valuation distribution F with density function f and virtual value function ϕ,

• F is regular if the virtual value ϕ(v) is non-decreasing;

• F has decreasing marginal revenue (DMR) if f(v)ϕ(v) is non-decreasing;

• F has monotone hazard rate (MHR) if ϕ′(v) ≥ 1 for all v.

3 Virtual Values and the Suboptimality of Posted Prices

Lemma 1 shows that it is without loss to restrict to mechanisms that employ single-dimensional

allocation and payment rules and give agents the opportunity to opt out. But which allocation

and payment rules are truthful for the buyers who choose to opt in? In this section we show that,

similar to the case without participation costs, truthfulness corresponds to monotonicity of interim

allocation rules. We establish a Myerson-style payment identity and virtual value characterization

of truthful revenue maximization.

For most of this section we will focus on the setting where there is only a single buyer in the

market, so we will omit the subscript i from our notation. That said, all of the characterization

results in this section extend directly to the multi-buyer setting by interpreting them as conditions

on the interim allocation and payment experienced by each bidder; see the remark at the end of

this section. Note also that all results in this section apply even when the distribution over types

allows for correlation between valuations and participation costs.

In the following example, we show that the private participation costs setting is qualitatively

different from the setting in which the participation costs are normalized to zero, by providing a

distribution over values and participation costs—these will even be independently distributed—

such that offering lotteries to the buyer can strictly improve the expected revenue compared to

posting a single fixed price.8

8There is an interesting conceptual connection between this example and the observation of Deneckere and McAfee
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Example 1. The value and cost of the buyer will be independently distributed. The value dis-

tribution has CDF F (v) = 1 − 1
v−1 for v ∈ [2, 5) and F (v) = 1 for v ≥ 5. Note that F is a

regular distribution. The participation cost is 0 with probability 0.15 and 2 with probability 0.85.

In this example, the optimal posted-price mechanism is to post price 2, resulting in revenue 0.86̄.

However, consider the mechanism that offers two probability-price lotteries (1, 3), (23 ,
4
3). The buyer

with value 5 will choose the lottery (1, 3) and receives utility 2 regardless of his participation cost.

Moreover, the buyer with value in [2, 5) will choose the lottery (23 ,
4
3) if his participation cost is

0, and not participate in the auction if his participation cost is 2. The expected revenue of this

mechanism is 1
4 × 3+ 3

4 × 0.15× 4
3 = 0.9, which is strictly higher than 0.86̄. The multiplicative gap

between the optimal mechanism and optimal pricing is therefore higher than 1.038.

A classic approach to designing the revenue-optimal mechanism for a single-item setting when

the participation cost is known to the seller is to use a payment identity and virtual value analysis.

Lemma 2 (Myerson, 1981). In the single-item single-buyer setting, if the buyer has participation

cost 0, for any truthful mechanism M with allocation x and payment p, it holds that x is non-

decreasing and the payment satisfies p(v) = vx(v) −
∫ v
0 x(z) dz + p0 for some constant p0. The

expected revenue given distribution F is

Rev(F ;M) = Ev∼F [x(v)ϕ(v)] + p0.

In this section, we provide an analog of the payment identity when buyers have private par-

ticipation costs. That is, we show that it is without loss to consider a truthful mechanism as if

the participation cost is 0, in which case the buyer will participate if and only if her utility from

participating is at least her participation cost.

Lemma 3. It is without loss for the seller to commit to a monotone non-decreasing allocation rule

x(v) and payment rule p(v) = vx(v) −
∫ v
0 x(z) dz + p0 for some constant p0, and for the buyer

to participate and truthfully reveal v if and only if u(v;x, p) =
∫ v
0 x(z) dz − p0 ≥ c where c is the

participation cost.

Proof. In Section 2, we have shown that it is without loss to consider the opt-out-or-revelation

mechanism where the buyer truthfully reveals her value conditional on participation. By Lemma 2,

the allocation satisfying the incentive constraint must be non-decreasing, and the payment satisfies

p(v) = vx(v)−
∫ v
0 x(z) dz+p0 for some constant p0. Finally, the utility of the buyer for participating

(1996) that a seller may be able to strictly increase her revenue by introducing a damaged good into the market. Note
that our setting with a private participation cost can be converted into a two-item setting. In this two-item setting,
one of the items would correspond to participating and winning while the other would correspond to participating and
not winning—the latter having negative value with probability 1 (if the original participation cost is positive)—and
the mechanism is constrained to ex-post allocate exactly one item to the buyer. Example 1 shows that price posting
in our costly participation setting— which in the transformed two-item setting translates to preventing the item
with negative value from being sold—may not maximize revenue. Therefore, in the transformed two-item setting,
Example 1 is interpreted as showing that the seller can strictly increase her revenue by introducing a new item with
negative value—a good so damaged that its value to the buyer is in fact always negative.
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vc(x) v

p(v)− p0

c+ p0

x(v)

0 vc(x) v

pc(v)− p0

xc(v)

0

Figure 1: The figure on the left is an illustration of the payment p(v) and the cutoff value vx(c)
where c − p0 ≥ 0. The figure on the right illustrates the interim allocation rule xc(v) when the
participation cost is c. Here pc(v) is the incentive compatible payment rule for allocation rule xc(v).
The figure illustrates that pc(v) = p(v) + c for any v ≥ vx(c).

the auction is u(v;x, p) = v · x(v)− p(v) =
∫ v
0 x(z) dz − p0, and she therefore maximizes utility by

participating in the auction if and only if her utility is at least c.

Given any allocation rule x and corresponding payment p(v) = v · x(v) −
∫ v
0 x(z) dz + p0, let

vx(c) = infv≥0{v · x(v)− p(v) ≥ c}, and

xc(v) =

x(v) v ≥ vx(c)

0 v < vx(c).

That is, vx(c) is the minimum value at which a buyer with participation cost c will choose to

participate in a mechanism with allocation rule x, and xc(v) is the resulting allocation rule taking

the participation decision into account. For any joint distribution F̄ , let F̄c be the conditional

value distribution when the participation cost is c. We define the virtual value of the buyer given

conditional valuation distribution F̄c as ϕc(v) = v − 1−F̄c(v)

f̂c(v)
.

Lemma 4. Given any distribution F̄ with marginal cost distribution G, and any mechanism M
with allocation x and payment rule p with parameter p0, the revenue of the seller is

Rev(F̄ ;M) = Ec∼G

[
Ev∼F̄c

[xc(v)ϕc(v)]− (1− F̄c(vx(c))) ·max{−p0, c}
]
.

The proof of Lemma 4 is given in Appendix B. Intuitively, the term Ev∼F̄c
[xc(v)ϕc(v)] represents

the difference in social welfare and the agent’s expected utility, similar to the characterization in

Myerson (1981). The additional term (1− F̄c(vx(c))) ·max{−p0, c} in our setting is the additional

utility the agent obtains from either saving her participation cost c, or the utility−p0 the mechanism

provides to the lowest type. Such additional utility for the buyer are subtracted to correctly

calculate the expected revenue.

In this paper, we focus on the problem of revenue maximization, so it is without loss to consider

p0 ≥ 0. When participation costs are non-negative, it is without loss to further assume that p0 = 0.

The proof of the following lemma is given in Appendix B.
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Lemma 5. For any mechanism with allocation and payment x, p such that p(v) = vx(v) −∫ v
0 x(z) dz + p0 for some constant p0, there exists another mechanism with allocation and pay-

ment x̂, p̂ with weakly higher revenue and p̂(v) = vx̂(v)−
∫ v
0 x̂(z) dz+ p̂0 where p̂0 ≥ 0. This can be

strengthened to p̂0 = 0 if the participation costs are non-negative.

Remark: Multiple Buyers. We note that Lemmas 3, 4, and 5 extend immediately to the case

of multiple buyers by interpreting x and p as a buyer’s interim allocation and payment rules. In the

multi-buyer case it is important to note that the interim allocation rule for agent i is evaluated in

expectation not only over the types of the other agents, but also over their (possibly randomized)

participation decisions. For weakly monotone interim allocation rules, the revenue obtained by the

seller from each buyer is the virtual surplus less the participation cost adjustment, as in Lemma 4.

4 Revenue Optimization for a Single Buyer

4.1 An FPTAS Algorithm

We now turn to the problem of optimizing over the space of allocation rules identified in the previous

section. We will assume that both the value and the cost are supported in [0, 1].9 We show that

by discretizing the valuation space and the allocation space of the mechanism, the loss in optimal

revenue is small, and for the discretized problem, the optimal mechanism can be computed efficiently

using dynamic programming. The following two lemmas quantify the discretization errors, with

proofs provided in Appendix B.

Lemma 6. Let (Ω,F , P ) be any probability measure, and let t1, t2 : Ω → R2 be two 2-dimensional

random variables. If supω∈Ω ∥t1(ω)− t2(ω)∥∞ ≤ ϵ, then |OPT(t1)−OPT(t2)| ≤ 3ϵ, where OPT(tk)

is the optimal expected revenue when the valuation and participation cost follow the same distribu-

tion as the random variable tk.

Lemma 7. For any distribution F̄ supported on [0, 1]2 and for any pair of mechanisms M and

M̂ with allocation rules x and x̂ such that x(v) ∈ [x̂(v), x̂(v) + ϵ] for all ϵ, we have Rev(F̄ ;M) ≥
Rev(F̄ ;M̂)− ϵ.

Having bounded the errors we accumulate due to discretization, we are ready to describe our

FPTAS. The following is a restatement of Theorem 2 from the introduction.

Theorem 3. For any distribution F̄ supported on [0, 1]2, for any ϵ ∈ (0, 1), there exists an algorithm

with running time poly
(
1
ϵ

)
that computes a mechanism with revenue at least OPT(F̄ )−O(ϵ).

Proof. Let F̄ ′ be the type distribution F̄ with each value rounded down to the nearest multiple of

ϵ. Let qi be the marginal probability that the value equals i · ϵ, and let F̄ ′
i be the distribution over

participation costs conditional on the event that the rounded value is i · ϵ. By Lemma 6, we have

9Any bounded distribution can be normalized such that the support is in [0, 1].
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OPT(F̄ ′) ≥ OPT(F̄ ) − 3ϵ. Let M be the optimal mechanism for distribution F̄ ′ with allocation

only taking values on the discretization grid. By Lemma 7, we have Rev(F̄ ′;M) ≥ OPT(F̄ ′) − ϵ.

Combining the inequalities, we have

Rev(F̄ ;M) ≥ Rev(F̄ ′;M) ≥ OPT(F̄ ′)− ϵ ≥ OPT(F̄ )− 4ϵ

where the first inequality holds since the value distribution in F̄ first order stochastically domi-

nates F̄ ′.

We now turn to computing the mechanism M, which we will do by dynamic programming. For

i, j ≤ 1
ϵ and k ≤ 1

ϵ2
, let R(i, j, k) be the optimal revenue from types with value at or below i · ϵ

when the allocation and utility of buyers with value i · ϵ are j · ϵ and k · ϵ2 respectively. We initialize

the matrix by R(1, j, k) = 0 for any k ≤ j and R(1, j, k) = −∞ for k > j. For any i ≥ 2, we have

R(i, j, k) = max
j′≤j

R(i− 1, j′, k − j) + qi · F̄ ′
i (k · ϵ2) · (i · j − k) · ϵ2. (1)

To interpret this expression, we note that first term of (1), maxj′≤j R(i−1, j′, k− j), is the revenue
from types with value at most (i − 1)ϵ. Indeed, the allocation of type with value (i − 1)ϵ should

not exceed the allocation of type with value i · ϵ, and hence the choice of j′ is at most j. Moreover,

when the allocation and utility of type with value i · ϵ are j · ϵ and k · ϵ2 respectively, Lemma 3

implies that the utility of type with value (i− 1)ϵ is exactly (k − j)ϵ2 (which is why we have k − j

as the third argument), which is independent of the choice of j′.

The second term of (1) is the expected revenue from types with value at most i · ϵ. Note that

qi · F̄ ′
i (k ·ϵ2) is the total probability of those types that have incentives to participate in the auction,

and (i · j − k) · ϵ2 is the payment of those types, which is derived by subtracting the utility k · ϵ2

from the expected value i · j · ϵ2, if they choose to participate.

In order to compute the matrix of R, we need to compute 1
ϵ × 1

ϵ × 1
ϵ2

= 1
ϵ4

numbers, and

computing each number requires taking the maximum over at most 1
ϵ numbers. Thus the matrix

R can be computed in time O( 1
ϵ5
).

Once R has been filled, note that Rev(F̄ ′;M) = maxj,k R(1/ϵ, j, k). To recover the allocation

rule of M from R, note that if j′ is the value of j maximizing R(1/ϵ, j, k) then M allocates jϵ

to agents with value 1. The rest of the allocation rule can be recovered similarly by unrolling the

recursion from (1): for each i ≤ 1/ϵ, if j′ is the choice that maximizes R(i−1, j′, k− j), then agents

with value (i− 1)ϵ are allocated j′ϵ.

4.2 Menu Complexity

By the taxation principle, the optimal mechanism for the single buyer problem is essentially posting

a menu of allocations and payments for the buyer to choose from. Let d be the size of the support

for the cost distribution. Example 1 shows that it can be optimal to offer a menu of at least 2

options to the buyer when d ≥ 2. In this section, we provide an upper bound, as a function of d,

on the number of menu entries required in the optimal mechanism, i.e., on the menu size of the
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optimal mechanism. The main idea is to reduce the problem to d different revenue maximization

problems with public budgets. The proof is deferred to Appendix B.

Theorem 4. For selling a single item to a single buyer with private participation cost, when the

size of the support for the cost distribution is d, the menu size required for the optimal mechanism

is at most 2d+ 1.

The following proposition provides a lower bound on the menu complexity even when the

participation cost is perfectly correlated with the value. This implies that the bound for the menu

complexity in Theorem 4 is tight up to a multiplicative factor of 2.

Proposition 1 (Jullien, 2000; Li, 2022). For selling a single item to a single buyer with private

participation cost, for any d ≥ 1, there exists an instance where the participation cost cv is a non-

negative, increasing, and strictly convex function of v, the support sizes of both the marginal value

and marginal cost distribution are d, and the menu size required for the optimal mechanism is d.10

4.3 Sample Complexity

In this section, we consider a setting in which the joint distribution F̄ is unknown to the seller, who

instead only has access to samples from this distribution, and upper bound the number of samples

required to learn an up-to-ϵ optimal auction. The proof is deferred to Appendix B.

Theorem 5. For selling a single item to a single buyer with private participation cost, for any

constant ϵ > 0, if the joint distribution F̄ is supported on [0, 1] × [0, 1], there exists a mechanism

with access to O(ϵ−6 log ϵ−1) samples that obtains expected revenue at least OPT(F̄ )− ϵ.

Note that in contrast to the traditional single-item auction for a single buyer without partici-

pation costs where the sample complexity is Õ(ϵ−2) (c.f., Guo et al., 2019), the sample complexity

bound in our model is significantly higher. The increase of sample complexity originates from

two sources. First, we are learning a two-dimensional correlated distribution instead of a single-

dimensional distribution, which is intrinsically harder. Second, the space of optimal mechanisms

we search for is larger. Instead of only considering posted pricing mechanisms for auction without

participation costs, we need to optimize over mechanisms with menu complexity O(d).

5 Optimality of Posted Pricing in the Single-Buyer Setting

Recall that as illustrated in Example 1, in general it is not revenue-optimal to post a single take-it-

or-leave-it price when buyers have participation costs. In Theorem 3 we compute an approximately

10Li (2022) considers a single-agent setting about selling information. They characterize the optimal mechanism in
their setting by solving a relaxed problem that looks identical to selling a single item with costly participation where
the cost of participation is a deterministic and convex function of the valuation. Therefore, we can directly apply the
characterization in their relaxed problem to immediately show our lower bound on menu complexity. However, note
that Li (2022) does not derive any result when the cost can be stochastic (e.g., independent of the value) or when
there are multiple agents.
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revenue-optimal mechanism, which may involve a menu with multiple lotteries. But are there

conditions under which this complexity is unnecessary, and we recover the simplicity of the posted-

price mechanisms that are optimal when participation costs are zero?

In this section, we show that under natural assumptions on the joint distribution, posting a

deterministic take-or-leave-it price is optimal for the seller. We will focus on the case in which

the private participation cost is non-negative, and by Lemma 5, we set p0 = 0 and omit it in the

notation.

5.1 Independent Participation Costs

In this section, we consider the setting where the cost distribution is independent from the valuation

distribution. In this case, we provide two sufficient conditions on the valuation distribution such

that posted pricing is optimal for revenue maximization.

5.1.1 DMR Valuation Distribution

We start by analyzing the case in which the valuation distribution has decreasing marginal revenue.

We begin with a technical lemma that encapsulates a useful implication of the decreasing marginal

revenue property, with proof provided in Appendix C.

Lemma 8. If the valuation distribution F has decreasing marginal revenue, then for any c ≥ 0

and any v ≥ c, we have that f(v)(ϕ(v)− c) is monotone non-decreasing in v.

Theorem 6. With independent values and participation costs, and with non-negative participation

costs, if the value distribution F has decreasing marginal revenue and bounded support,11 there

exists a revenue-maximizing mechanism that is a posted price mechanism.

The details of the proof is provided in Appendix C. Intuitively, DMR is an assumption stating

that the seller can always extract higher revenue (or equivalently increase virtual welfare) by allo-

cating the item to the agent with higher value instead of lower value when there is no participation

cost. In Theorem 6, we show that the extra negative impact of the participation cost on revenue

is decreasing as we reduce the probability of selling the item to a given agent (this is transparent

from Lemma 4). So by shifting the allocation from lower-value agents to higher-value agents, we

simultaneously increase the virtual welfare and decrease the negative impact of participation costs

(as the agent will participate less often). Shifting the allocation in this way as much as possible

ultimately leads to a step function corresponding to posted pricing, which must then be optimal.

Remark. In this section we have focused on the case in which the participation cost is non-negative.

In Appendix E, we show that a deterministic mechanism can guarantee at least 50% of the optimal

11The boundedness assumption is to avoid a situation in which the optimal mechanism is not well defined, i.e.,
for any mechanism, there exists another mechanism with strictly higher revenue. For example, if the buyer has
participation cost 0, and the CDF of the value is F (v) = 1 − 1

v+1
for v ≥ 0, the supreme of the revenue is only

attained in the limit by offering a take-or-leave-it price p → ∞. Note that bounded support is a sufficient condition
to guarantee this property, but it may not be necessary.
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revenue when the participation cost could be positive or negative. Note that, in this context, a

deterministic mechanism is equivalent to setting a price p0 for participating the auction, and an

additional price p for winning the item. The presence of the additional participation cost p0 is

intuitive: a negative participation cost means that an agent has a strict incentive to participate in

the auction regardless of outcome, and p0 serves to extract a portion of that participation utility

as revenue.

5.1.2 MHR Valuation Distribution

We move on to analyzing the case in which the valuation distribution has monotone hazard rate.

Note that if the valuation distribution F satisfies monotone hazard rate, the derivative of the virtual

value is ϕ′(v) ≥ 1 for all v ≥ 0, and hence distribution F is regular as well.

Lemma 9 (Devanur and Weinberg, 2017). If the valuation distribution F is regular, then f(v)ϕ(v)

is non-decreasing in v for v ∈ [0, v∗] where v∗ = infv{ϕ(v) ≥ 0}.

Theorem 7. With independent values and participation costs, and with non-negative participa-

tion costs, if the value distribution F has monotone hazard rate, there exists a revenue optimal

mechanism that is a posted price mechanism.

The details of the proof is provided in Appendix C. Note that there is asymmetry between the

conditions we require on the value distribution and the cost distribution to establish optimality of

posting a price. We have shown that, for any distribution over participation costs, posting a price

is optimal as long as the value distribution satisfies monotone hazard rate or decreasing marginal

revenue. However, even if the cost distribution is uniform, posting a fixed take-it-or-leave-it price

need not be optimal without further assumptions on the value distribution. The following example

illustrates such a scenario.

Example 2. The value of the buyer is 1 or 2 with probability 1
2 each. The participation cost

is uniformly distributed in [0, 1]. The optimal posted price mechanism is to post a price of 1,

generating revenue 1
2 . However, the mechanism that offers the menu of two probability-price

lotteries (1, 1), (23 ,
1
3) has revenue 5

9 . The multiplicative gap between the optimal mechanism and

optimal pricing is therefore higher than 1.111.

5.2 Perfectly Correlated Participation Costs

In this section, we assume the participation cost is perfectly correlated with the value. That is,

there is a publicly known mapping from each value v to the unique corresponding participation cost

cv, and moreover cv is monotone increasing in v.12 Note that as illustrated in Proposition 1, when

the participation cost is convex in the value, the optimal mechanism may not be posted pricing. In

12The case in which the participation cost cv is monotone non-increasing in v is rather trivial since the individual
rationality constraint only binds for the lowest type.
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fact, the menu complexity can be infinite for continuous valuation distributions. In contrast, when

the participation cost cv is concave in v, posted pricing is always revenue maximizing. The proof

of the following theorem is provided in Appendix C.

Theorem 8. If the participation cost cv is a non-negative and concave function of v, then for any

value distribution F , there exists a revenue optimal mechanism that is a posted price mechanism.

6 Mechanisms for Multiple Buyers

6.1 An Approximately Optimal Mechanism for Multiple Buyers

For the multi-buyer setting, as illustrated in Section 2 (and in Appendix A), optimizing revenue

involves not only the mechanism’s allocation rule but also the equilibrium participation behavior

of the agents. As with the single-buyer case, revenue maximization is inherently non-convex in this

environment (see Appendix D.1 for further discussion).

In this section, we provide a polynomial time algorithm for computing a mechanism that is a

constant approximation to the optimal revenue. Our solution will take the form of a sequential

opt-out-or-revelation mechanism in which the agents’ participation decisions are unambiguous.13

We will describe our algorithm for continuous type distributions. At the end of this section we

discuss how to adapt our procedure to discrete distributions provided as an explicit assignment of

probabilities to a finite collection of types. The following restates Theorem 1 from the introduction.

Theorem 9. For any product distribution F̄ = ×i=nF̄i with F̄i supported on [0, 1]2 with density of

the conditional participation cost being at most η ≥ 1, for any ϵ ∈ (0, 1), there exists an algorithm

with running time poly
(nη

ϵ

)
that computes a mechanism with revenue at least 1

2OPT− ϵ.

As discussed in the introduction, the main idea of our construction is to reduce to the single-

buyer revenue maximization problem, employing a reduction framework introduced by Alaei (2014).

To do this we consider the ex-ante relaxation of the optimal mechanism, efficiently compute the

ex-ante optimal mechanism for each buyer, and sequentially offer those mechanisms to the buyers.

One challenge for adopting this approach is that given an ex-ante constraint in the single-buyer

problem, the efficient computation result through dynamic program only finds the best fixed mech-

anism, while it might be necessary for the seller to randomize over mechanisms. That is, the seller

chooses a distribution over mechanisms, informs the buyer about the realization, offers the buyer

the realized mechanism, and then the buyer makes the participation decision. Such randomiza-

tion cannot be collapsed as a single mechanism with randomized allocations since it affects the

buyer’s participation decisions and eventually the expected revenue. The issue of requiring ran-

domized mechanisms also arises when discretizing the allocation spaces. If we only consider a fixed

mechanism, even if randomized allocation rules are allowed in the fixed mechanism, increasing the

13Each agent will be offered a menu of allocations and payments. While the menu offered to agent i can depend on
the behavior of others, the agent’s outcome will be otherwise independent of other agents’ decisions given the menu.
Agent i will therefore opt in precisely when the expected utility from the menu exceeds the participation cost.
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allocation probabilities to the discretized grid may violated the interim feasibility constraints, while

decreasing the allocation probabilities may exclude the buyer from participating in the auction. For-

tunately, such issue of randomization can be alleviated by showing that in order to approximate the

optimal ex-ante revenue, it is sufficient to consider the randomization over two fixed mechanisms

over a discretized space of allocation rules. We formalize this in Lemma 15 below, but first we

describe the way to discretize the type distributions.

Formally, given a type distribution F̄ , we will approximate F̄ via the following sequence of

rounding operations. First consider the discretization grid Ψ0 = {0, ϵ, 2ϵ, . . . , 1}. Given type

distribution F̄ , let F̄ ′ be the distribution that rounds all values down to the discretization grid Ψ0

(i.e., down to the nearest multiple of ϵ). Write zk for the marginal probability that the rounded

value equals kϵ, and let F̄ ′
k be the distribution over participation costs conditional on the event

that the rounded value is kϵ. Moreover, consider an additional distribution F̄ † that is like F̄ ′ but

with two changes. First, each marginal value probability zk is rounded up to the nearest multiple

of ϵ2; call these rounded probabilities z†k. Second, for each conditional cost distribution F̄ ′
k, we will

round all participation costs up to the nearest multiple of ϵ2. Write F̄ †
k for the resulting rounded

conditional cost distribution.14 Write Ψ1 for the discretization grid consisting of {0, ϵ2, 2ϵ2, . . . , 1},
so that each F̄ †

k is supported on Ψ1. Let OPTq(F̄ ) be the optimal revenue for distribution F̄ given

ex-ante allocation constraint q and let ÔPTq(F̄ ) be the optimal revenue for distribution F̄ given

ex-ante constraint q,15 only randomizing over two fixed mechanisms with allocations and ex-ante

probabilities on the discretized grid Ψ0.

Now that we have described our intended rounding of the type distribution, we can show that

the errors obtained under this rounding is small when we restrict our mechanism to have ex-ante

sale probabilities that are multiples of ϵ. Moreover, such rounding errors allow us to compute the

profile of optimal ex ante probabilities efficiently. The proof of the following lemma is provided in

Appendix D.2.

Lemma 10. For any ϵ̂ > 0, there exists an algorithm with running time poly
(
n
ϵ̂

)
that computes a

profile of {q†i }i∈[n] subject to the constraint that
∑

i∈[n] q
†
i ≤ 1, and the corresponding mechanisms

{M
i,q†i

}i∈[n] such that {q†i }i∈[n] maximizes
∑

i∈[n]Rev(F̄i;Mi,q†i
) and

Rev(F̄i;Mi,q†i
) ≥ ÔPT

q†i
(F̄ †

i )− ϵ̂, ∀i.

Proof of Theorem 9. By Lemma 10, for any ϵ̂ > 0, with running time poly
(
n
ϵ̂

)
, we compute the

profile of {q†i }i∈[n] and the corresponding mechanisms {M
i,q†i

}i∈[n] such that

∑
i∈[n]

Rev(F̄i;Mi,q†i
) ≥

∑
i∈[n]

ÔPT
q†i
(F̄ †

i )− nϵ̂.

14Note that distribution F̄ † is not a well defined distribution since the total probability measure may exceed 1.
However, the expected revenue Rev(F̄ †;M) given any mechanism M is well defined.

15An ex-ante allocation constraint is an upper bound on the probability that the agent will receive the item, in
expectation over all sources of randomness including the agent’s own type.
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Finally, to complete the proof of Theorem 9 we must show how to combine the single-agent

mechanisms M
i,q†i

to construct a multi-agent mechanism with similar total revenue. Fix any order

of the buyers, and consider a sequential mechanism that attempts to sell the item to each buyer

i in order. As long as the item has not yet been sold, each buyer i will be offered the mechanism

(i.e., the allocation rule) M
i,q†i

with probability 1

2−
∑

j<i q
†
j

(and with the remaining probability

buyer i will not be given an opportunity to participate). We claim that under this procedure, each

buyer i is offered the mechanism M
i,q†i

with probability between 1/2 − nηϵ̂ and 1/2, and hence

the total probability that buyer i obtains the item is at least (12 − nηϵ̂)q†j and at most 1
2(q

†
i + ηϵ̂).

Indeed, by induction, each buyer j < i receives the item with total probability at most 1
2(q

†
j + ηϵ̂),

and hence the probability that the item is unsold when buyer i is to be approached is at least

1 − 1
2

∑
j<i(q

†
j + ηϵ̂). Taking into account the probability that we offer anything to buyer i when

the item is unsold, we conclude that buyer i is offered mechanism M
i,q†i

with probability at least

1− 1
2

∑
j<i(q

†
j+ηϵ̂)

2−
∑

j<i q
†
j

≥ 1/2 − nηϵ̂ and at most
1− 1

2

∑
j<i q

†
j

2−
∑

j<i q
†
j

= 1/2, as claimed. Therefore, the expected

revenue from this sequential mechanism is at least(
1

2
− nηϵ̂

) ∑
i∈[n]

Rev(F̄i;Mi,q†i
) ≥

(
1

2
− nηϵ̂

) ∑
i∈[n]

(
ÔPT

q†i
(F̄ †

i )− nϵ̂
)

≥
(
1

2
− nηϵ̂

) max
{qi}i∈[n]

∑
i∈[n]

OPTqi(F̄i)− 6nϵ̂


≥

(
1

2
− nηϵ̂

)
OPT− 3nϵ̂ ≥ 1

2
OPT− 4nηϵ̂

where the second inequality holds by applying Lemma 15. For any ϵ > 0, by setting ϵ̂ = ϵ
4nη , the

expected revenue loss is ϵ, and the running time is poly
(nη

ϵ

)
.

Remark: Relationship to Correlation Gap. Note that the technique of correlation gap (Yan,

2011; Alaei et al., 2013) for obtaining the approximation of e/(e− 1) does not apply here directly since

the buyers does not satisfy the expected utility representation given the allocation and payment

rules, and the ex-ante optimal mechanisms for each agent offers complex menus instead of posting

prices.

Remark: Continuous versus Discrete Type Distributions. Our analysis above introduces

runtime a dependency on η, the maximum density of the conditional participation cost in type

distribution F̄ . This dependency arises because of errors in estimated agent utility that are intro-

duced when rounding values to the nearest multiples of ϵ, which was needed to define our dynamic

program over allocation rules. Of course, η is well-defined only for continuous type distributions.

Alternatively, if each agent i’s type distribution were listed explicitly as a discrete set of types

Ti and their associated probabilities, then instead of rounding values to multiples of ϵ we could

replace the value grid Ψ0 with the (at most) |Ti| values in the support of agent i’s distribution.
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Doing so would remove the errors in our utility estimates (since we are using the exact values) and

therefore avoid any dependency on η. However, this introduces a polynomial runtime dependence

on maxi |Ti| since our dynamic program for agent i will need to include |Ti| values. Also, since the

distribution is not continuous it might happen that there is a non-vanishing fraction of agent types

who are indifferent between participating and not participating in the resulting allocation rule, but

in this case the rule can be perturbed by an arbitrarily small amount to make the participation

probability unambiguous. The end result is that in Theorem 9 we could replace η with maxi |Ti| if
each distribution F̄i is a discrete distribution over Ti types.

6.2 Approximate Optimality of Posted Pricing

In this section, we show that with additional assumptions on buyers’ type distributions, sequential

posted pricing is approximately optimal for revenue maximization. The following lemma provides

a reduction framework for single-item environments that lifts approximation results for posted

pricing from a single buyer to multiple buyers, and so avoids the direct analysis of interaction

among different buyers.

Lemma 11 (Feng et al., 2020). For a single-item environment, if there exists γ ≥ 1 such that

for each buyer i, for any constraint on the sale probability qi ≤ 1, the approximation ratio of

(possibly randomized) posted pricing for the single-buyer problem given sale probability constraint

qi is at most γ, then the approximation ratio of sequential posted pricing is at most γe/(e− 1) for the

multi-buyer problem.

Note that when agents have private participation costs, it is important to specify the timeline

for the agents to make participation decisions, as different timeline will affect the equilibrium choice

of the agents for participation. In this section, for sequential posted pricing mechanisms, we assume

that each agent only needs to make the participation decision after seeing the realized price offered

by the seller.

Since Lemma 11 allows us to reduce the analysis to the single-buyer problem with allocation

constraints, in the following two Lemmas, we will prove such approximation results for both in-

dependent participation costs and perfectly correlated participation costs. Both of the proofs are

provided in Appendix D.3.

Lemma 12. In the single-buyer setting with independent and non-negative participation costs, if the

value distribution F has decreasing marginal revenue and bounded support, for any mechanism that

sells the item with probability q ∈ [0, 1], there exists a (possibly randomized) posted price mechanism

with weakly higher expected revenue that sells the item with probability at most q.

Lemma 13. In the single-buyer setting with the participation cost being a non-negative and concave

function of v, for any mechanism that sells the item with probability q ∈ [0, 1], there exists a (possibly

randomized) posted price mechanism with at least half of the expected revenue that sells the item

with probability at most q.
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Combining Lemma 11 with Lemmas 12 and 13, we have the following approximation result.

Theorem 10. In the multi-buyer setting, if for each buyer both the participation cost is non-negative

and either of the following holds:

• the participation cost is independent of the value, and the value distribution F has decreasing

marginal revenue and bounded support; or

• the participation cost is a concave function of the value;

then there is a sequential posted pricing mechanism that generates at least a 1
2(1− 1/e) fraction of

the optimal revenue. If the former condition holds for each buyer, then the guaranteed fraction of

the optimal revenue is 1− 1/e.

7 Discussions

In this paper we characterize the optimal mechanisms when buyers have private participation costs,

show how to compute approximately revenue-optimal mechanisms in polynomial time, and provide

sufficient conditions on the value distributions or the cost distributions such that posted pricing

is optimal or approximately optimal. In this section, we will provide further discussions on the

alternative models for costly participation and the remaining open questions.

7.1 Alternative Communication Models

In this paper we focus on the class of sequential opt-out-or-revelation mechanisms, in which the

seller has the capability to send messages to the buyers before they choose whether to participate.

This advance communication is useful for coordinating the buyers’ participation decisions. One

might naturally wonder about alternative models that differ in how much communication is allowed

before participation decisions are made. We enumerate some possibilities here, each suitable for

different applications.

Two-Way Communication. The buyers and the seller can communicate repeatedly in an un-

restricted manner before participation decisions are made. For example, the seller can elicit private

value and cost information from the buyers and provide recommendations for participation. A

generalized revelation principle by Myerson (1982) is applicable in this context.

One-Way Communication. The seller can send messages to the buyers before participation

decisions are made, but a buyer cannot communicate with the seller before paying the cost of

participation. The sequential opt-out-or-revelation mechanisms studied in this paper fall within

this model.
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No Communication. Neither the seller nor the buyers can communicate prior to participation.

All buyers must make their participation decisions simultaneously. In this case, the classic revelation

principle by Myerson (1981) applies.

In the single-buyer setting, these three models coincide. As a result, all the results presented

in Sections 4 and 5 apply seamlessly in any of these models. In the multi-buyer setting, however,

a more restrictive communication model reduces the space of feasible mechanisms, which has the

potential to reduce optimal revenue. Nevertheless, it turns out that the mechanisms we devised in

Section 6 – which employ one-way communication – are also approximately optimal with respect

to the broader class of mechanisms in the two-way communication model. This is because the

approximation mechanisms we devised in Section 6 remain approximately optimal when compared

to the ex-ante relaxation benchmark. This benchmark serves as an upper bound for the optimal

revenue even in the two-way communication model. Therefore, the approximation mechanisms

proposed in Section 6 are still approximately optimal when two-way communication is allowed.

On the other hand, our designed mechanisms heavily rely on the ability to make sequential

participation decisions, rendering them infeasible in the no-communication model. An important

future direction to explore is whether it’s possible to compute an (approximately) optimal mech-

anism in the no-communication model for multiple buyers in polynomial time. Additionally, it’s

intriguing to investigate whether the revenue gap between the no-communication model and the

two-way communication model is at most a constant.

7.2 Open Questions

Following our work, many interesting questions remain open even in the single-buyer setting, in-

cluding:

1. For the setting with independent item values and non-negative participation costs, is posted

pricing a constant approximation to the optimal revenue without additional assumptions?

2. Can the exact optimal mechanism be computed in time polynomial in the size of the support?

3. For multi-item settings (e.g., unit-demand valuations) with non-negative participation costs,

do there exist simple mechanisms (e.g., item pricing) that generate a constant fraction of the

optimal revenue, under assumption such as DMR or MHR on the item value distributions?
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A A Generalized Revelation Principle

Let R̂ ≡ R2 ∪ {∅} be the augmented outcome space, where ∅ represents not participating the

auction. Hence the utility of any buyer i for outcome ∅ is 0.

For the private participation cost setting, consider any interactive protocol between the seller

and the buyer. For any i, let τi be the ith buyer that first interacts with the seller. Let Ei be

the message the seller send to buyer τi before the interaction. Similar to the argument in Myerson

(1981), any mechanism can be transformed into a generalized version of revelation mechanism

M̂ : R2n → R̂n where all buyers participate the auction. Moreover, conditional on information Ei,
for any buyer τi and any (vτi , cτi), if there exists (v−τi , c−τi) such that M̂((vτi , v−τi), (cτi , c−τi)) = ∅,
then M̂((vτi , v

′
−τi), (cτi , c

′
−τi)) = ∅ for all (v′−τi , c

′
−τi). Note that since the buyers’ utility conditional

on participation is invariant of the participation cost, for any buyer τi with value vτi , for any pair of

participation cost (cτi , c
′
τi) such that M̂((vτi , v−τi), (cτi , c−τi)) ̸= ∅ and M̂((vτi , v−τi), (c

′
τi , c−τi)) ̸= ∅

for some (v−τi , c−τi), we have

Ev−τi ,c−τi

[
uτi(M̂((vτi , v−τi), (cτi , c−τi))) | Ei

]
=Ev−τi ,c−τi

[
uτi(M̂((vτi , v−τi), (c

′
τi , c−τi))) | Ei

]
.

Finally, it is sufficient to show that this mechanism can be implemented as a sequential opt-

out-or-revelation mechanism in our setting. For any order i and corresponding buyer τi, let F̄
′
τi be

the distribution over (vτi , cτi) conditional on M̂((vτi , v−τi), (cτi , c−τi)) = ∅ for some (equivalently

all) (v−τi , c−τi). Moreover, let Gτi(vτi) be the distribution over participation costs cτi conditional

on value vτi and M̂((vτi , v−τi), (cτi , c−τi)) ̸= ∅ for some (equivalently all) (v−τi , c−τi). Recall that

R̄ ≡ R ∪ {ψ} is the augmented report space where ψ represents not participating the auction. Let

M be the sequential opt-out-or-revelation mechanism that interacts with buyers according to order

τ , sends information Ei to buyer τi before the interaction, and maps the reported valuations to the

profile of allocations and payments constructed as follows. For any buyer τi not participating the

auction, or equivalently reporting ψ, the allocation and payment for buyer i is zero. Moreover,

when buyer i reports ψ, mechanism M resamples (vτi , cτi) according to distribution F̄ ′
τi , and when

buyer i reports vτi , mechanism M resamples cτi according to distribution Gτi(vτi). Then mech-

anism M runs M̂ on the generated type profile of all n buyers. It is easy to verify that for the

mechanism M, there exists an equilibrium where each buyer participates (i.e., does not play ψ) in

M and reports truthfully on her valuation if and only if her outcome is not ∅ in M̂. Moreover,

under mechanism M, this equilibrium generates the same distribution over outcomes for all buyers

as the truthful equilibrium of M̂, and therefore the same revenue as in M̂.
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B Missing Proof for Characterization and Computation

Lemma 4. Given any distribution F̄ with marginal cost distribution G, and any mechanism M
with allocation x and payment rule p with parameter p0, the revenue of the seller is

Rev(F̄ ;M) = Ec∼G

[
Ev∼F̄c

[xc(v)ϕc(v)]− (1− F̄c(vx(c))) ·max{−p0, c}
]
.

Proof. For any participation cost c, the buyer with cost c participates in the mechanism if and only

if v ≥ vx(c). First we consider the case c+ p0 > 0, in which case vx(c) > 0. Moreover, the payment

of a buyer having any value v ≥ vx(c) is v · x(v)−
∫ v
0 x(z) dz + p0 = v · xc(v)−

∫ v
0 xc(z) dz − c, and

the payment of a buyer having any value v < vx(c) is 0 since such a buyer does not participate the

auction. This is illustrated in Figure 1. Note that by Myerson (1981), we have

Ev∼F̄c

[
v · xc(v)−

∫ v

0
xc(z) dz

]
= Ev∼F̄c

[xc(v)ϕc(v)]

and thus the expected revenue given cost c ≥ −p0 is

Ev∼F̄c

[
v · xc(v)−

∫ v

0
xc(z) dz − c · 1 [v ≥ vx(c)]

]
=Ev∼F̄c

[xc(v)ϕc(v)]− (1− F̄c(vx(c))) · c,

where 1 is the indicator function. For the case c ≤ −p0, we have vx(c) = 0. Thus the payment of a

buyer having any value v ≥ 0 is v · x(v)−
∫ v
0 x(z) dz + p0 = v · xc(v)−

∫ v
0 xc(z) dz + p0, and again

by Myerson (1981), the expected revenue given cost c is

Ev∼F̄c

[
v · xc(v)−

∫ v

0
xc(z) dz + p0

]
= Ev∼F̄c

[xc(v)ϕc(v)] + p0.

Taking expectation over c ∼ G gives us the desired characterization.

Lemma 5. For any mechanism with allocation and payment x, p such that p(v) = vx(v) −∫ v
0 x(z) dz + p0 for some constant p0, there exists another mechanism with allocation and pay-

ment x̂, p̂ with weakly higher revenue and p̂(v) = vx̂(v)−
∫ v
0 x̂(z) dz+ p̂0 where p̂0 ≥ 0. This can be

strengthened to p̂0 = 0 if the participation costs are non-negative.

Proof. Suppose first that p0 < 0. Given any allocation x and letting v′ = supv{v·x(v)−
∫ v
0 x(z) dz ≤

p0}, define

x̂(v) =

x(v) v ≥ v′

x(v′) v < v′,

p̂(v) = vx̂(v)−
∫ v

0
x̂(z) dz.
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One can verify that the revenue of the seller is weakly higher with allocation x̂ and payment p̂ since

the types in mechanism with x and p with negative payment will not participate under the new

mechanism while the types with positive payment will participate and pay the same amount.

When p0 > 0 and the participation costs are non-negative, given any allocation and payment

x, p, we can instead define

x̂(v) =

x(v) v ≥ supv{
∫ v
0 x(z) dz ≤ p0}

0 v < supv{
∫ v
0 x(z) dz ≤ p0},

p̂(v) = vx̂(v)−
∫ v

0
x̂(z) dz.

The revenue of the seller is then unchanged if we use the mechanism with allocation x̂ and payment

p̂, instead of x and p, since all types of the buyer have the same allocation and payment in best

response.

Lemma 6. Let (Ω,F , P ) be any probability measure, and let t1, t2 : Ω → R2 be two 2-dimensional

random variables. If supω∈Ω ∥t1(ω)− t2(ω)∥∞ ≤ ϵ, then |OPT(t1)−OPT(t2)| ≤ 3ϵ, where OPT(tk)

is the optimal expected revenue when the valuation and participation cost follow the same distribu-

tion as the random variable tk.

Proof. Due to the symmetry between t1 and t2, it is sufficient to show that OPT(t1)−OPT(t2) ≤ 3ϵ.

For simplicity, we write tk(ω) for the pair (vk(ω), ck(ω)). Note that by Lemma 3, it is sufficient to

assume x(v), p(v) are the optimal allocation and payment function with parameter p0. Let x̂(v) =

x(v + ϵ) and p̂(v) = vx̂(v)−
∫ v
0 x̂(z) dz − 2ϵ+ p0. Next we show that Rev(t2; x̂, p̂) ≥ OPT(t1)− 3ϵ.

Since x̂ is non-decreasing, x̂ and p̂ are incentive compatible for the buyer without participation cost,

and the buyer will truthfully reveal her valuation to the mechanism if the utility for participation

is at least her participation cost. Note that

p̂(v) = vx̂(v)−
∫ v

0
x̂(z) dz − 2ϵ+ p0 = vx(v + ϵ)−

∫ v

0
x(z + ϵ) dz − 2ϵ+ p0

= vx(v + ϵ)−
∫ v+ϵ

ϵ
x(z) dz − 2ϵ+ p0 ≥ vx(v + ϵ)−

∫ v+ϵ

0
x(z) dz − 3ϵ+ p0

= p(v + ϵ)− 3ϵ.

The above inequality holds since x(z) ≤ 1 for any z. Moreover, we have

u(v; x̂, p̂) =

∫ v

0
x̂(z) dz + 2ϵ+ p0 =

∫ v

0
x(z + ϵ) dz + 2ϵ+ p0

≥
∫ v+ϵ

0
x(z) dz + ϵ+ p0 = u(v + ϵ;x, p) + ϵ

where the inequality holds again because x(z) ≤ 1 for any z. Finally, combining the inequalities,
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we have

Rev(t2; x̂, p̂) =

∫
Ω
p̂(v2(ω)) · 1 [u(v2(ω); x̂, p̂) ≥ c2(ω)] dP (ω)

≥
∫
Ω
(p(v2(ω) + ϵ)− 3ϵ) · 1 [u(v2(ω) + ϵ;x, p) + ϵ ≥ c2(ω)] dP (ω)

≥
∫
Ω
(p(v1(ω))− 3ϵ) · 1 [u(v1(ω);x, p) ≥ c1(ω)] dP (ω) ≥ OPT(t1)− 3ϵ.

The first inequality holds by combining the above inequalities, and the second inequality holds

since ∥t1(ω)− t2(ω)∥∞ ≤ ϵ and both p and u are monotone in v.

Lemma 7. For any distribution F̄ supported on [0, 1]2 and for any pair of mechanisms M and

M̂ with allocation rules x and x̂ such that x(v) ∈ [x̂(v), x̂(v) + ϵ] for all ϵ, we have Rev(F̄ ;M) ≥
Rev(F̄ ;M̂)− ϵ.

Proof. Let p, p̂ and u, û be the payment functions and utility functions in mechanisms M and M̂
respectively. By Lemma 3, we have

p(v) = vx(v)−
∫ v

0
x(z) dz ≥ vx̂(v)−

∫ v

0
(x(z) + ϵ) dz ≥ p̂(v)− ϵ

and

u(v) =

∫ v

0
x(z) dz ≥

∫ v

0
x̂(z) dz = û(v).

For any type with value v and participation cost c, since the utility for participation is higher in

mechanism M, the agent has incentive to participate in mechanism M only if he also has incentive

to participate in mechanism M̂. Moreover, the payment difference is at most ϵ. Combining the

observations, the expected revenue loss of mechanism M is at most ϵ.

Theorem 4. For selling a single item to a single buyer with private participation cost, when the

size of the support for the cost distribution is d, the menu size required for the optimal mechanism

is at most 2d+ 1.

Proof. Suppose the support of the cost distribution is {c1, . . . , cd} where cj < cj+1 for any 1 ≤
j ≤ d− 1. By Lemma 3, it is without loss to consider a single allocation rule and a corresponding

incentive compatible payment rule and let the buyer decide whether to participate or not and,

contingent on participation, choose her desired allocation and price. Suppose x∗ is the optimal

allocation function and p∗(v) = vx∗(v) −
∫ v
0 x

∗(z) dz + p∗0 is the corresponding payment. Recall

that vx∗(c) is the threshold value at which a buyer with participation cost c will participate in the

mechanism with allocation rule x∗. Define c0 ≡ −p∗0 and vx∗(c0) ≡ 0. Note that for any allocation
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x satisfying ∫ vx∗ (cj+1)

vx∗ (cj)
x(z) dz =

∫ vx∗ (cj+1)

vx∗ (cj)
x∗(z) dz (2)

for all j ∈ {0, . . . , d − 1}, the cutoff value for the buyer to participate the auction vx∗(cj) is not

affected for any j ∈ {1, . . . , d}. Thus it is sufficient to consider the optimization problem between

vx∗(cj) and vx∗(cj+1) respectively for any j ∈ {0, . . . , d − 1}. Note that the allocation x must

be non-decreasing between vx∗(cj) and vx∗(cj+1), and satisfy the integration constraint in Equa-

tion (2). Thus the revenue maximization problem is reduced to maximizing the expected virtual

value xc(v)ϕc(v) for values between vx∗(cj) and vx∗(cj+1), subject to the integration constraint for

the allocation rule. This is mathematically equivalent to solving a revenue maximization problem

subject to a public budget constraint, which is also virtual value maximization subject to an in-

tegration constraint on the allocation rule. In Devanur and Weinberg (2017), the authors have

shown that the menu size of the optimal mechanism for this optimization problem is at most 2.

Thus we need at most 2d menu entries for d separate programs to optimize the allocation below

the cutoff vx∗(cd). Note that for optimizing the allocation above the cutoff vx∗(cd), the integration

constraint is not required, and similar to Myerson (1981), a single menu entry is sufficient for the

revenue maximization problem with linear buyers. Thus in total the menu size required is at most

2d+ 1.

Before the proof of Theorem 5, we first show that the difference in optimal revenue is small

when the estimation error on the discrete probability distribution is small.

Lemma 14. Let T ⊆ [0, 1] × [0, 1] be a set with finite size, and let F̄1, F̄2 be two distributions

supported on T . If maxt∈T
∥∥F̄1(t)− F̄2(t)

∥∥
∞ ≤ ϵ, then |Rev(F̄1;M)−Rev(F̄2;M)| ≤ |T | · ϵ for any

mechanism M with non-negative payment.

Proof. Again it is sufficient to show that Rev(F̄1;M) − Rev(F̄2;M) ≤ |T | · ϵ, and the case for

Rev(F̄1;M)− Rev(F̄1;M) ≤ |T | · ϵ holds symmetrically. Note that

Rev(F̄1;M)− Rev(F̄2;M) =
∑
t∈T

Rev(t;M)(F̄1(t)− F̄2(t)) ≤ |T | · ϵ

since Rev(t;M) ≤ 1 for any t ∈ T by individual rationality. Hence Lemma 14 holds.

Theorem 5. For selling a single item to a single buyer with private participation cost, for any

constant ϵ > 0, if the joint distribution F̄ is supported on [0, 1] × [0, 1], there exists a mechanism

with access to O(ϵ−6 log ϵ−1) samples that obtains expected revenue at least OPT(F̄ )− ϵ.

Proof. For any joint distribution F̄ , we construct the discrete distribution F̄ ′ supported on the

grid with increment ϵ
6 in support [0, 1] × [0, 1] by rounding down the value and rounding up the

participation cost to the discretized points. By Lemma 6, we have OPT(F̄ ′) ≥ OPT(F̄ )− ϵ
2 .
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Note that the size of the support of distribution F̄ ′ is 36ϵ−2. We construct the distribution

F̄ ′′ by rounding down the value and rounding up the participation cost to the multiples of ϵ
6 for

any sample t ∼ F̄ .16 Note that it is easy to verify that F̄ ′′ is the empirical distribution for F̄ ′.

Moreover, for any t in the support of distribution F̄ ′, by Hoeffding’s inequality (Lemma 17), with

O(ϵ−6 log ϵ−1) samples, |F̄ ′(t) − F̄ ′′(t)| ≤ ϵ3

288 with probability at least 1 − ϵ3

288 . By union bounds,

with probability at least 1 − ϵ
8 we have that |F̄ ′(t) − F̄ ′′(t)| ≤ ϵ3

288 for all t in the support of

distribution F̄ ′. Let M be the optimal mechanism for empirical distribution F̄ ′′ and let M′ be the

optimal mechanism for distribution F̄ ′. By Lemma 5, both M and M′ have non-negative payment,

and

Rev(F̄ ;M) ≥ Rev(F̄ ′;M) ≥ (1− ϵ

8
)(Rev(F̄ ′′;M)− ϵ

8
)

≥ OPT(F̄ ′′)− ϵ

4
≥ Rev(F̄ ′′;M′)− ϵ

4

≥ (1− ϵ

8
)(Rev(F̄ ′;M′)− ϵ

8
)− ϵ

4
≥ OPT(F̄ ′)− ϵ

2
≥ OPT(F̄ )− ϵ.

The first inequality holds since decreasing the value and increasing the participation cost weakly

decreases the expected revenue of the mechanism. The second and the fifth inequalities hold

by applying Lemma 14 and the observation that with probability at least 1 − ϵ
8 , we have that

|F̄ ′(t)− F̄ ′′(t)| ≤ ϵ3

288 for all t in the support of distribution F̄ ′.

C Missing Proofs for Pricing in Single-Buyer Setting

Lemma 8. If the valuation distribution F has decreasing marginal revenue, then for any c ≥ 0

and any v ≥ c, we have that f(v)(ϕ(v)− c) is monotone non-decreasing in v.

Proof. If f ′(v) ≤ 0, we have

∂f(v)(ϕ(v)− c)

∂v
=
∂f(v)ϕ(v)

∂v
− f ′(v) · c ≥ 0.

If f ′(v) > 0, we have

∂f(v)(ϕ(v)− c)

∂v
=
∂f(v)(v − c)− (1− F (v))

∂v
= f ′(v)(v − c) + 2f(v) ≥ 0

where the inequality holds for v ≥ c.

Theorem 6. With independent values and participation costs, and with non-negative participation

costs, if the value distribution F has decreasing marginal revenue and bounded support,17 there

16To clarify, F̄ ′ rounds the true underlying distribution to the discrete support while F̄ ′′ rounds the empirical
distribution to the discrete support.

17The boundedness assumption is to avoid a situation in which the optimal mechanism is not well defined, i.e.,
for any mechanism, there exists another mechanism with strictly higher revenue. For example, if the buyer has
participation cost 0, and the CDF of the value is F (v) = 1 − 1

v+1
for v ≥ 0, the supreme of the revenue is only

attained in the limit by offering a take-or-leave-it price p → ∞. Note that bounded support is a sufficient condition
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vc(x̂)0

c

v̄µ

x̂(v)

x(v)

1

Figure 2: Given any allocation rule x(v) (dashed line), x̂ (solid line) is the allocation rule for a
posted price mechanism such that

∫ v̄
0 x(v) dv =

∫ v̄
0 x̂(v) dv. The area of the shaded region is c.

exists a revenue-maximizing mechanism that is a posted price mechanism.

Proof. Here we will prove the result for a slightly more general setting, where the participation

costs can be correlated with the values, but the conditional value distribution F̄c has identical and

bounded support, and has decreasing marginal revenue for any participation cost c.

Denote the value upper bound by H < ∞. For any allocation rule x and associated payment

rule p, let v̄ = supv≤H{x(v) < 1}, and µ =
∫ v̄
0 (1− x(z)) dz. Note that µ is finite since H <∞. Let

x̂(v) =

1 v ≥ µ

0 v < µ.
(3)

Allocation rule x̂ is illustrated in Figure 2. For any participation cost c, it is easy to verify that

x̂c(v) =

1 v ≥ vc(x̂)

0 v < vc(x̂).

where vc(x̂) = v̄ − µ + c. Moreover,
∫ H
0 x(z) dz =

∫ H
0 x̂(z) dz and

∫ v
0 x(z) dz ≥

∫ v
0 x̂(z) dz for any

v ∈ [0, H]. Thus by Lemma 4, for any c ≥ 0, the revenue of mechanism with allocation x given

to guarantee this property, but it may not be necessary.
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participation cost c is

R(x; c) = Ev∼F [xc(v)ϕc(v)]− (1− F̄c(vx(c))) · c =
∫ H

vx(c)
f̄c(v)(xc(v)ϕc(v)− c) dv

≤
∫ H

vx(c)
f̄c(v)xc(v)(ϕc(v)− c) dv

= f̄c(v)(ϕc(v)− c)

∫ v

0
xc(z) dz

∣∣∣∣∣
H

v=vx(c)

−
∫ H

vx(c)

∫ v

0
xc(z) dz d[f̄c(v)(ϕc(v)− c)]

≤ f̄c(v)(ϕc(v)− c)

∫ v

0
x̂c(z) dz

∣∣∣∣∣
H

v=vx̂(c)

−
∫ H

vx̂(c)

∫ v

0
x̂c(z) dz d[f̄c(v)(ϕc(v)− c)]

=

∫ H

vx̂(c)
f̄c(v)x̂c(v)(ϕc(v)− c) dv =

∫ H

vx̂(c)
f̄c(v)(x̂c(v)ϕc(v)− c) dv = R(x̂; c). (4)

The first inequality holds because c ≥ 0 and xc(v) ∈ [0, 1] for any v. The third and the fourth

equalities hold by integration by parts. The fifth equality holds because x̂c(v) = 1 for any v ≥ vx̂(c).

The second inequality follows from the combination of two observations:

1. xc(v) = 0 for any v ≤ vx(c) and x̂c(v) = 0 for any v ≤ vx̂(c). This further implies that∫ vx(c)
0 xc(z) dz =

∫ vx̂(c)
0 x̂c(z) dz = 0. Hence

f̄c(v)(ϕc(v)− c)

∫ v

0
xc(z) dz

∣∣∣∣∣
H

v=vx(c)

= f̄c(v)(ϕc(v)− c)

∫ v

0
x̂c(z) dz

∣∣∣∣∣
H

v=vx̂(c)

.

2. By the construction of x̂, we have
∫ v
0 x(z) dz ≥

∫ v
0 x̂(z) dz ≥ 0 for any v ≥ 0, which implies

vx(c) ≤ vx̂(c) for any c. Moreover, by Lemma 8, f̄c(v)(ϕc(v) − c) is non-decreasing in v for

any v ≥ vx̂(c) ≥ c and v ≤ H. Hence, we have∫ H

vx(c)

∫ v

0
xc(z) dz d[f̄c(v)(ϕc(v)− c)]

≥
∫ H

vx̂(c)

∫ v

0
xc(z) dz d[f̄c(v)(ϕc(v)− c)]

≥
∫ H

vx̂(c)

∫ v

0
x̂c(z) dz d[f̄c(v)(ϕc(v)− c)]

where the first inequality holds since vx(c) ≤ vx̂(c),
∫ v
0 x(z) dz ≥ 0 and f̄c(v)(ϕc(v)−c) is non-

decreasing in v. The second inequality holds since
∫ v
0 x(z) dz ≥

∫ v
0 x̂(z) dz and f̄c(v)(ϕc(v)−c)

is non-decreasing in v.

Taking expectation over c, Theorem 6 holds.

Theorem 7. With independent values and participation costs, and with non-negative participa-

tion costs, if the value distribution F has monotone hazard rate, there exists a revenue optimal
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0 µ v′ = v̄

1

Figure 3: Given any allocation rule x(v) (black dashed line), x̂ (red solid line) is the allocation
rule that increases the allocation to 1 for value aboves v′ and x̂′ (blue dashed line) is the allocation
rule that corresponds to posting price µ. The two shaded regions in the figure have the same area.

mechanism that is a posted price mechanism.

Proof. For any allocation rule x(v), let c′ = infc≥0{ϕ(vx(c)) − c ≥ 0} and let v′ = vx(c
′). We first

focus on the case that both c′ and v′ are finite, i.e., there exists c ≥ 0 such that ϕ(vx(c))− c ≥ 0.18

For any allocation rule x(v), let

x̂(v) =

1 v ≥ v′

x(v) v < v′.

Allocation x̂ is illustrated in Figure 3. By Lemma 4, since we set p0 = 0, the expected revenue of

any mechanism with allocation rule x from the buyer with participation cost c ≥ 0 is

Ev∼F [xc(v)ϕ(v)]− (1− F (vx(c))) · c =
∫ ∞

vx(c)
f(v)(xc(v)ϕ(v)− c) dv.

We separate the discussion into two cases. For any participation cost c such that vx(c) ≤ v′, we

have vx(c) = vx̂(c). In this case, since ϕ(v) ≥ 0 for any v ≥ v′, allocation x̂ only increases the

allocation to types with positive virtual value ϕ(v) compared to x, which increases the expected

revenue. For any participation cost c such that vx(c) > v′, we have vx(c) ≥ vx̂(c) > v′ ≥ 0. In this

case, for any ṽ ∈ [vx̂(c), vx(c)], we have

ϕ(ṽ)− c ≥ ϕ(vx̂(c))− c ≥ ϕ(v′)− c′ = 0,

where the first inequality holds since ṽ ≥ vx̂(c). The second inequality holds because ϕ(v) − v is

non-decreasing in v due to the MHR assumption, and vx̂(c) ≥ v′. Thus increasing the allocation

to 1 for values between [vx̂(c), vx(c)] only weakly increases the revenue. Therefore, the mechanism

with allocation rule x̂ generates weakly higher revenue compared to x.

Let v̄ = supv{x̂(v) < 1 and F (v) < 1} and µ =
∫ v̄
0 (1−x(z)) dz. We claim that µ is finite. In the

case that v′ is finite or the maximum value in the support is H <∞, we have that v̄ ≤ min{v′, H}
18Since the value is independent of the participation cost, the virtual value function is invariant of the participation

cost of the buyer.

37



is finite, and hence µ is finite. In the case that v′ is infinite and v̄ is infinite, let m be the value

such that ϕ(m) = 0.19 Suppose µ is infinite. Then for sufficiently large c, we have

ϕ(vx(c))− c ≥ vx(c)−m− c = c+

∫ vx(c)

0
(1− x(z)) dz −m− c > 0

where the first inequality holds because ϕ′(v) ≥ 1 since F is MHR, and the equality holds by the

definition of vx(c). The last inequality holds since because µ is infinite, for any m there exist a

sufficiently large c such that
∫ vx(c)
0 (1 − x(z)) dz > m. Note that this contradicts to the condition

that v′ is infinite, and hence µ must be finite. Let

x̃(v) =

1 v ≥ µ

0 v < µ.

This is well defined since µ is finite. Allocation x̃ is illustrated in Figure 3. For any participation

cost c such that vx̂(c) ≥ v̄, we have that vx̂(c) = vx̃(c) and the revenues are the same for both

mechanisms. For any participation cost c such that vx̂(c) < v̄, we have that c < c′ since vx̃(c
′) =

vx(c
′) = v′ and v̄ ≤ v′. In this case, let ϕ̂ be the virtual value function such that ϕ̂(v) = ϕ(v) − c

if and only if ϕ(v) − c < 0, and ϕ̂(v) = 0 otherwise. By Lemma 9, it is easy to verify that the

valuation distribution with virtual function ϕ̂ has decreasing marginal revenue. we have that

R(x̂; c) =

∫ v̄

vx̂(c)
f(v)(x̂c(v)ϕ(v)− c) dv +

∫ ∞

v̄
f(v)(x̂c(v)ϕ(v)− c) dv

≤
∫ v̄

vx̂(c)
f(v)x̂c(v)(ϕ(v)− c) dv +

∫ ∞

v̄
f(v)(x̃c(v)ϕ(v)− c) dv

=

∫ v̄

vx̂(c)
f(v)x̂c(v)ϕ̂(v) dv +

∫ v̄

vx̂(c)
f(v)(x̂c(v)(ϕ(v)− c− ϕ̂(v))) dv +

∫ ∞

v̄
f(v)(x̃c(v)ϕ(v)− c) dv

=

∫ v̄

vx̂(c)
f(v)x̂c(v)ϕ̂(v) dv +

∫ v̄

vx̃(c)
f(v)(x̃c(v)(ϕ(v)− c− ϕ̂(v))) dv +

∫ ∞

v̄
f(v)(x̃c(v)ϕ(v)− c) dv

≤
∫ v̄

vx̃(c)
f(v)x̃c(v)ϕ̂(v) dv +

∫ v̄

vx̃(c)
f(v)(x̃c(v)(ϕ(v)− c− ϕ̂(v))) dv +

∫ ∞

v̄
f(v)(x̃c(v)ϕ(v)− c) dv

= R(x̃; c).

The first inequality holds because the allocation x̂c(v) ∈ [0, 1] for any v and x̂c(v) = x̃c(v) for

any v ≥ v̄. The third equality holds since ϕ(v) − c − ϕ̂(v) is non-negative, vx̃(c) ≥ vx̂(c), and

ϕ(v)− c− ϕ̂(v) = 0 for any value v ≤ vx̃(c). The last statement holds because under allocation x̃,

we have c′−c = vx̃(c
′)−vx̃(c) and hence ϕ(v)−c ≤ ϕ(x̃(c))−c ≤ ϕ(vx̃(c

′))−c′ = 0 for any value v ≤
x̃(c) since the valuation distribution is MHR. The second inequality holds by applying Inequality

(4) since ϕ̂ can be viewed as the virtual value function for distribution with decreasing marginal

revenue, and the allocation rules are converted through the same format. Taking expectation over c,

19For an MHR distribution, the value m with virtual value zero is always finite (Hartline et al., 2008).
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v0

u0

0

Figure 4: The black (respectively red) solid curve is the utility function of the agent (without
paying the cost) given any mechanism M (respectively M′), and the black dashed curve is the
participation cost function cv. All three curves intersect at point (v0, u0).

Theorem 7 holds.

Theorem 8. If the participation cost cv is a non-negative and concave function of v, then for any

value distribution F , there exists a revenue optimal mechanism that is a posted price mechanism.

Proof. For any mechanism M, let v0 be the minimum value of any agent that participates the

auction. Then agents of this type will be indifferent between participating and not participating,

and hence have utility u0 = cv0 . Let x0 =
u0
v0
.

Now consider the following alternative revenue maximization problem for a single buyer. This

alternative problem will have the same distribution over values as the original setting, but all

participation costs are set equal to 0. Instead of participation costs, we impose three constraints

on the class of mechanisms that can be used. First, the seller is constrained to only sell the item

to agents with value above v0 subject to the incentive constraint. Second, the allocation returned

by the mechanism is constrained to be at least x0. Third, the utility of an agent with value v0 is

constrained to be exactly u0.

What is the revenue-optimal mechanism for this alternative problem? Since there are no par-

ticipation costs, a direct implication of Myerson (1981) is that the revenue optimal mechanism

M′ in this alternative setting, subject to the allocation and utility constraints, is a step function.

Specifically, since the minimum allocation is at least x0, this corresponds to a mechanism with

menu size 2, where one of the menu entries is (x0, 0) and the other is (1, p) with p ≥ v0 − u0. The

utility function of mechanism M′ is illustrated in Figure 4 as the red solid line. Note that since

mechanism M is also a feasible mechanism for this alternative revenue maximization problem, we

must have Rev(M) ≤ Rev(M′) (where revenue is calculated with respect to the new setting).

Now consider any mechanism that is feasible for the new setting. Since the participation cost

cv is concave in v, the utility of an agent participating in the mechanism with value v ≥ v0 is at

least v · x0 ≥ cv. Therefore, returning to the original problem formulation with participation costs,

any agent with value v ≥ v0 (and hence participation cost cv) will choose participate in the auction

in the original setting. This means that for both M and M′ (both of which are feasible in the new

setting), the revenue remains unchanged when executing the mechanism in the original setting.

This implies that in the original setting, Rev(M) ≤ Rev(M′). Finally, since the payment for
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menu entry (x0, 0) is 0, removing this entry from the mechanism M′ weakly improves the expected

revenue. The resulting mechanism is a posted-price mechanism. Hence, if the participation cost cv

is non-negative and concave in v, posted pricing is a revenue optimal mechanism.

D Multi-buyer Setting

D.1 Non-Convexity

When there are multiple buyers, a common approach in mechanism design is to represent the

mechanism by interim allocations and payments. In particular, let

xi(vi, ci) ≜ Ev−i,c−i [xi(v, c)] and pi(vi, ci) ≜ Ev−i,c−i [pi(v, c)] .

In Border (1991); Che et al. (2013), the authors provide sufficient and necessary conditions on the

set of interim allocations that are implementable. Then the revenue maximization problem can be

formalized as the following optimization program.

max
x,p

Ev,c

[∑
i

pi(vi, ci)

]
s.t. xi(vi, ci) · vi − pi(vi, ci) ≥ xi(v

′
i, c

′
i) · vi − pi(v

′
i, c

′
i), ∀i, v, v′, c, c′

xi(vi, ci) = pi(vi, ci) = 0 or xi(vi, ci) · vi − pi(vi, ci) ≥ c, ∀i, v, c

x is implementable according to Border (1991).

It is easy to see that the above optimization problem is not a convex program. A natural conjecture

is that whether one could reformulate the problem such that it can be represented as a convex

program. In the following example, we show that this is not the case.

Example 3. There are two identical buyers. For each buyer, with probability 1, his value is 2

and his participation cost is 1. In this case, the optimal mechanism is to sell the item to buyer 1

with price 1 (or sell the item to buyer 2 with price 1) with expected revenue 1. Note that this

mechanism is asymmetric. In fact, for any symmetric mechanism, the probability the item is sold

to each buyer is at most 1/2, and to satisfy the individual rationality constraint, the payment from

each buyer is non-positive. Thus the revenue from the symmetric mechanism is at most 0, which

is smaller than the optimal revenue.

Note that if the environment is symmetric and the problem can be represented as a convex

program, there must exist a symmetric mechanism that is optimal. However, the above example

illustrates that the optimal mechanism is not symmetric for the multi-buyer setting in symmetric

environments, which rules out the possibility of restructuring the optimization program into a con-

vex one. This observation illustrates a distinction between our model and other inter-dimensional

problems, where the optimization program for the latter cases are often linear programs. Note
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that in general for non-convex programs, we cannot hope to derive succinct closed-form solutions

or compute it in polynomial time. However, for the problem of revenue maximization for buy-

ers with participation costs, we propose simple mechanisms that are approximately optimal under

reasonable assumptions on the distributions.

D.2 Missing Proofs for Computation

Before the proof of Lemma 10, we introduce the following two lemmas for bounding the discretiza-

tion errors.

Lemma 15. For any product distribution F̄ = ×i=nF̄i with F̄i supported on [0, 1]2, for any ϵ ∈ (0, 1)

and the corresponding discretized distribution F̄ †, for any profile of ex-ante probabilities {qi}i∈[n]
with

∑
i qi ≤ 1, there exists another profile of ex-ante probabilities {q†i }i∈[n] in grid Ψ0 with

∑
i q

†
i ≤ 1

such that ∑
i∈[n]

ÔPT
q†i
(F̄ †

i ) ≥
∑
i∈[n]

OPTqi(F̄i)− 5nϵ.

Proof. Recall that F̄ ′ is the distribution that rounding the values down to the discretization grid Ψ0.

Let M,M′ and M† be the optimal mechanisms with allocation and payment rule (x, p), (x′, p′)

and (x†, p†) under distributions F̄i, F̄
′
i and F̄ †

i .

First note that OPTqi(F̄
†
i ) ≥ OPTqi(F̄

′
i ) since F̄

†
i is constructed by decreasing the participation

cost compared to F̄ ′
i . Next we bound the expected revenue loss between F̄i and F̄

′
i given any ex-

ante constraint qi. Consider a random boosting zj drawn from the distribution over value difference

within in interval [j · ϵ, (j + 1)ϵ) between distributions F̄ and F̄ ′ for all j ≤ 1
ϵ . Let M0 be the

mechanism that announces the realization of zj for all j, and then offer allocation x(j · ϵ2+zj) with
payment p(j · ϵ2+ zj)−x(j · ϵ2+ zj) · zi if the buyer reports value j · ϵ2.20 It is easy to verify that all

values in the support of F̄ ′
i has incentives to report truthful in mechanism M0, and the expected

allocation of mechanism M0 given F̄ ′
i coincide with the expected allocation of M given F̄i. Thus,

OPTqi(F̄
†
i ) ≥ OPTqi(F̄

′
i ) ≥ Rev(F̄ ′

i ;M0) ≥ Rev(F̄i;M)−max
j,zj

x(j · ϵ2 + zj) · zj

≥ Rev(F̄i;M)− ϵ = OPTqi(F̄i)− ϵ. (5)

Now consider another mechanism M1 with parameter j∗ such that for any value below j∗ · ϵ2,
allocation x† is rounded down to the multiples of ϵ, and for any value above j∗ · ϵ2, allocation x†

is round up to the multiples of ϵ. Allocation for value j∗ · ϵ2 is rounded randomly. Parameter j∗

and the rounding probability at j∗ · ϵ2 is chosen such that the ex-ante feasibility is preserved. Note

that in M1, the realization of the random rounding is disclosed to the buyer. Let ÕPTqi(F̄
†
i )

be the optimal revenue for distribution F̄ †
i given ex-ante constraint qi only using randomize over

20Mechanism M may be a distribution over mechanisms, and in this case, mechanism M0 is also a distribution
over mechanisms by applying this procedure for each realization of the mechanisms in M.
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mechanisms with allocations on the discretized grid Ψ0. We have

ÕPTqi(F̄
†
i ) ≥ Rev(F̄ †

i ;M1) ≥ Rev(F̄ †
i ;M

†)− ϵ = OPTqi(F̄
†
i )− ϵ. (6)

Given a profile of ex-ante constraints {qi}i∈[n], there exists a profile over random ex-ante constraints

{q′i}i∈[n] with corresponding fixed mechanisms Mi,q′i
that are q′i feasible such that E[q′i] = qi and

Eq′i

[
Rev(F̄ †

i ;Mi,q′i
)
]
= ÕPTqi(F̄

†
i ). This is done by essentially examining the ex-ante allocation

probability of each realized mechanism for each buyer i, and rename that realized ex-ante alloca-

tion probability as variable q′. Moreover, consider another profile of random ex-ante probabilities

{q̃i}i∈[n] by rounding each realization of q′i to the grid Ψ0. We have
∑

i∈[n]E[q̃i] ≤
∑

i∈[n]E[q′i] ≤ 1.

Note that a feasible mechanism given ex-ante constraint q̃i is to offer the mechanism Mi,q′i
with

probability q̃i
q′′i

and offer the mechanism with constant zero allocation and payment with probabil-

ity 1 − q̃i
q′′i

where q′′i is rounding qi up to the multiples of ϵ. The buyer is informed about which

mechanism is offered before participation. Note that in this construction, mechanism Mi,q′i
is also

q′′i feasible. Therefore, given this randomized mechanism, the ex-ante sale probability is q̃i and the

expected revenue is

Eq̃i

[
ÔPTq̃i(F̄

†
i )
]
≥ Eq̃i,q′i,q

′′
i

[
q̃i
q′′i

· Rev(F̄ †
i ;Mi,q′i

)

]
≥ Eq′i

[
Rev(F̄ †

i ;Mi,q′i
)− 2ϵ · Rev(F̄ †

i ;Mi,q′i
)
]

≥ Eq′i

[
Rev(F̄ †

i ;Mi,q′i
)
]
− 2ϵ = ÕPTqi(F̄

†
i )− 2ϵ (7)

where the second inequality holds since |q′′i − q̃i| ≤ 2ϵ and the third inequality holds since

Rev(F̄ †
i ;Mi,q′i

) ≤ 1. Note that given the distribution over ex-ante probabilities {q̃i}i∈[n], to improve

the sum of ex-ante revenue, we can greedily select a deterministic profile of ex-ante probabilities

{q̃†i }i∈[n] by ranking the realizations according to the ratio of realized
ÔPTq̃i

(F̄ †
i )

q̃i
, with the exception

that there may exist one buyer i∗ such that q̃†i is selected randomly over two possible realizations.

Note that q̃†i ∈ Ψ0 for any i ̸= i∗ since q̃i only randomize over ex-ante probabilities in grid Ψ0.

Finally, by setting q†i = q̃†i for any i ̸= i∗, and letting q†i∗ be the expected value of q̃†i round down to

multiples of ϵ, we have∑
i∈[n]

ÔPT
q†i
(F̄ †

i ) ≥
∑
i∈[n]

E
q̃†
i∗

[
ÔPT

q̃†i
(F̄ †

i )
]
− ϵ ≥

∑
i∈[n]

Eq̃i

[
ÔPTq̃i(F̄

†
i )
]
− ϵ

≥
∑
i∈[n]

ÕPTqi(F̄
†
i )− 3nϵ ≥

∑
i∈[n]

OPTqi(F̄
†
i )− 4nϵ ≥

∑
i∈[n]

OPTqi(F̄i)− 5nϵ

where the last three inequalities are implied by inequalities (5), (6) and (7).

Lemma 16. In the single-buyer setting, for any distribution F̄ supported on Ψ0 × Ψ1 and any

q ∈ [0, 1], there exists an algorithm with running time poly
(
1
ϵ

)
that computes the mechanism with

ex-ante sale probability at most q that optimizes ÔPTq(F̄
†
i ).

Proof. We first use dynamic program to compute the optimal revenue from fixed mechanisms for q
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in grid Ψ0. For i, j ≤ 1
ϵ , k ≤ 1

ϵ2
and s ≤ 1

ϵ3
, let R(i, j, k, s) be the optimal revenue from types with

value below i · ϵ when the allocation and utility of value i · ϵ are j · ϵ and k · ϵ2 respectively, and

the total ex-ante allocation probability for types at most i · ϵ is at most s · ϵ3. The optimal revenue

from ex-ante constraint q is determined by the entry maxj,k R(
1
ϵ , j, k,

q
ϵ3
).

To simplify notation, let pi be the integer such that the probability of value i · ϵ in distribution

F̄ is pi · ϵ, and zij be the integer such that conditional on value, the probability such that the

participation cost is at most j · ϵ2 is zij · ϵ. We initialize the matrix by R(1, j, k, s) = 0 for any k ≤ j

and s ≥ pi · j · z1k, and R(1, j, k, s) = −∞ otherwise. For any i ≥ 2, we have

R(i, j, k, s) = max
j′≤j

R(i− 1, j′, k − j, s− pi · j · zik) + qi · F̄ ′
i (k · ϵ2) · (i · j − k) · ϵ2.

To interpret this expression, R(i− 1, j′, k− j, s− pi · j · zik) is the revenue from types with values at

most (i−1)ϵ. Note that the expected allocation from value (i−1)ϵ is pi ·j ·zik the the utility is k ·ϵ2,
and hence the total ex-ante allocation from values at most (i− 1) · ϵ cannot exceed s− pi · j · zik.
Moreover, the allocation of type with value (i − 1)ϵ should not exceed the allocation of type with

value i · ϵ, and hence the choice of j′ is at most j. Finally, when the allocation and utility of type

with value i · ϵ are j · ϵ and k · ϵ2 respectively, by Lemma 3, the utility of type with value (i− 1)ϵ

is exactly (k − j)ϵ2. This utility is independent of the choice of j′.

The second term is the expected revenue from types with value at most i · ϵ. Note that qi ·
F̄ ′
i (k · ϵ2) is the total probability of those types that have incentives to participate in the auction,

and (i · j − k) · ϵ2 is the payment of those types, which is derived by subtracting the utility k · ϵ2

from the expected value i · j · ϵ2, if they choose to participate.

Finally, given any q ∈ [0, 1], it is sufficient to brute-force search for all pairs of ex-ante prob-

abilities in grid Ψ0 such that their convex combination coincides with q. This operation takes at

most 1
ϵ2

comparisons.

Lemma 10. For any ϵ̂ > 0, there exists an algorithm with running time poly
(
n
ϵ̂

)
that computes a

profile of {q†i }i∈[n] subject to the constraint that
∑

i∈[n] q
†
i ≤ 1, and the corresponding mechanisms

{M
i,q†i

}i∈[n] such that {q†i }i∈[n] maximizes
∑

i∈[n]Rev(F̄i;Mi,q†i
) and

Rev(F̄i;Mi,q†i
) ≥ ÔPT

q†i
(F̄ †

i )− ϵ̂, ∀i.

Proof. First we compute the mechanism M
i,q†i

that generates revenue ÔPT
q†i
(F̄ †

i ) for any buyer i

and q†i in grid Ψ0. By Lemma 16 this requires n
ϵ̂ · poly

(
1
ϵ̂

)
computations. For i ∈ [n] and j ∈ [⌊1ϵ̂ ⌋],

let R(i, j) be the optimal revenue from the first i buyers with total allocation probability j · ϵ̂. We

initialize by R(1, j) = ÔPTj·ϵ̂(F̄
†
1 ) for any j ∈ [⌊1ϵ̂ ⌋]. We set

R(i, j) = max
j′≤j

R(i− 1, j′) + ÔPT(j−j′)·ϵ̂(F̄
†
i ), ∀i ≥ 2, j ∈ [⌊1ϵ̂ ⌋].

The dynamic program takes at most 1
ϵ̂3

operations. Therefore, we compute the profile of ex-ante
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probabilities {q†i }i∈[n] in time poly
(
n
ϵ̂

)
.

Note that directly running mechanism M
i,q†i

on the actual distribution F̄i for buyer i, rather

than the rounded distribution F̄ †
i , may violate the desired ex-ante constraint q†i . This is because the

fraction of agents who opt out of the mechanism may differ between q†i and F̄i, since our rounding

of values can change the utility enjoyed by the agent by as much as ϵ̂. However, since the density

of the cost distribution is at most η, this change in utility can influence the probability the item is

sold by at most ηϵ̂, and hence the ex-ante probability the item is sold given F̄i is at most q†i + ηϵ̂.

Moreover, the revenue given F̄i is

Rev(F̄i;Mi,q†i
) ≥ ÔPT

q†i
(F̄ †

i )− ϵ̂.

D.3 Missing Proofs for Approximations of Pricing

Lemma 12. In the single-buyer setting with independent and non-negative participation costs, if the

value distribution F has decreasing marginal revenue and bounded support, for any mechanism that

sells the item with probability q ∈ [0, 1], there exists a (possibly randomized) posted price mechanism

with weakly higher expected revenue that sells the item with probability at most q.

Proof. For any mechanism with allocation rule x and sale probability q ≤ 1, construct the posted

price mechanism x̂ as in Equation (3). By Theorem 6, the revenue of the mechanism with allocation

x̂ is weakly higher than x. Next we consider two cases.

If the probability the item is sold given allocation rule x̂ is at most q, then x̂ is a feasible posted

price mechanism with higher revenue, which implies that Lemma 12 holds.

If the probability the item is sold given allocation rule x̂ is higher than q, then there exists

an allocation rule x̃ that posts (a possibly randomized) price higher than x̂ that sells the item

with probability q. To prove Lemma 12, it is sufficient to show that the per-unit price (expected

payment divided by expected allocation) charged in mechanism with allocation rule x̃ is always

higher than x for any type of the buyer, since mechanism with allocation rule x̃ sells the item with

probability exactly q, while mechanism with allocation rule x sells the item with probability at

most q.

Note that by the definition of allocation rule x̃, the per-unit price charged under allocation rule

x̃ is always higher than x̂, where the latter equals
∫ v̄
0 (1− x(z)) dz. For allocation rule x, if a type

with value v ≤ v̄ participates the auction, the per-unit price for this type is

vx(v)−
∫ v
0 x(z) dz

x(v)
≤ v −

∫ v

0
x(z) dz ≤

∫ v̄

0
(1− x(z)) dz.

Finally, for a type with value v > v̄ participating the auction, the per-unit price for this type equals

that for a type with value v̄, which is also upper bounded by
∫ v̄
0 (1− x(z)) dz.

Lemma 13. In the single-buyer setting with the participation cost being a non-negative and concave

function of v, for any mechanism that sells the item with probability q ∈ [0, 1], there exists a (possibly
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randomized) posted price mechanism with at least half of the expected revenue that sells the item

with probability at most q.

Proof. We first show that given any sale probability constraint q, the ex-ante optimal mechanism

has menu complexity of 3. Similar to the proof of Theorem 8, for any ex-ante feasible mechanism

M, let v0 be the minimum value of the agent that participates the auction with utility u0, and let

x0 =
u0
v0
. Consider the following revenue maximization problem without concerns for participation

costs. The seller can only sell the item to agents with value above v0 subject to the incentive

constraint and the sale probability constraint q. In addition, the minimum allocation of the agent

is x0, and the utility of the agents with value v0 is u0. It is easy to verify that by Alaei et al. (2013),

the revenue optimal mechanism M′ in this setting has at most two steps. Since the minimum

allocation is at least x0, this corresponds to a mechanism with menu size 3. Moreover, one of the

menu entries is (x0, 0). Note that this menu entry does not contribute to the expected revenue.

Again similar to the proof of Theorem 8, both M and M′ have the same revenue across the two

settings, and hence in the original setting, Rev(M) ≤ Rev(M′).

Now we focus our attention on the original setting. In mechanism M′, for any menu entry

(x, p) with p > 0, let qx be the probability the agent chooses this menu entry in the ex-ante optimal

mechanism. By definition we have qx < q. Thus by posting price p to the agent, with probability

qp ≥ qx, the agent will accept the price and the expected revenue is at least p · qp ≥ p · qx. If qp ≤ q,

then posting price p is feasible and generates higher revenue than the contribution of the menu

entry (x, p) in the ex-ante optimal mechanism. If qp > q, there exists a higher price p̂ ≥ p such

that the item is sold with probability exactly q. In this case, the revenue from posting price p̂ is

p̂q ≥ pq ≥ p · qx. Therefore, by posting the optimal price such that the item is sold with probability

at most q, the revenue is a 2-approximation to the ex-ante optimal.

E Negative Participation Costs

In this section, we show that posted pricing is approximately optimal when the participation cost

can take negative value with positive probability. Note that in this case, by Lemma 5, the parameter

in the payment function satisfies p0 ≥ 0.

Proposition 2. For the single-buyer setting, if the conditional value distribution F̄c has identical

and bounded support, and has decreasing marginal revenue for any participation cost c, there exists

a deterministic mechanism with at least half of the optimal revenue.

Proof. Let H < ∞ be the maximum value of the buyer. For any allocation rule x and associated

payment rule with parameter p0 ≥ 0, let q be the probability the agent participates the auction

given allocation and payment x and p. Let v̄ = supv≤H{x(v) < 1}, µ =
∫ v̄
0 (1− x(z)) dz, and let

x̂(v) =

1 v ≥ µ

0 v < µ.
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For any participation cost c, it is easy to verify that

x̂c(v) =

1 v ≥ max{vc(x̂), µ}

0 v < max{vc(x̂), µ},

where vc(x̂) = 0 if c ≤ −p0 and vc(x̂) = v̄ − µ + c + p0 if c > −p0. Moreover,
∫ H
0 x(z) dz =∫ H

0 x̂(z) dz and
∫ v
0 x(z) dz ≥

∫ v
0 x̂(z) dz for any v ≥ 0. By Inequality (4), for any c ≥ 0, we have

R(x, p0; c) ≤ R(x̂, p0; c). Next we consider the case that c < 0. For the case that −p0 < c < 0, the

revenue of mechanism with parameter p0 is

R(x, p0; c) =

∫ H

vx(c)
f̄c(v)xc(v)ϕc(v) dv − (1− F̄c(vx(c))) · c

≤
∫ H

vx̂(c)
f̄c(v)x̂c(v)ϕc(v) dv − (1− F̄c(vx(c))) · c

≤
∫ H

vx̂(c)
f̄c(v)x̂c(v)(ϕc(v)− c) dv − (1− F̄c(vx(c))) · c

= R(x̂, p0; c)− (1− F̄c(vx(c))) · c.

The first inequality holds by applying Inequality (4), and the second inequality holds since c < 0.

Finally we consider the case c ≤ −p0. Here the buyer will always participate the auction for all

values, vx(c) = vx̂(c) = 0, and

R(x, p0; c) =

∫ H

0
f̄c(v)xc(v)ϕc(v) dv + p0

≤
∫ H

0
f̄c(v)x̂c(v)ϕc(v) dv + p0 = R(x̂, p0; c),

and the inequality holds again by applying Inequality (4). Combining three cases and taking

expectation over c, we have

R(x, p0) = Ec∼G[R(x, p0; c)]

≤ Ec∼G[R(x̂, p0; c)]−Ec∼G

[
(1− F̄c(vx(c))) · c · 1 [−p0 < c < 0]

]
≤ R(x̂, p0) +Ec∼G

[
(1− F̄c(vx(c))) · p0

]
.

Note that the term of Ec∼G

[
(1− F̄c(vx(c))) · p0

]
= p0 · q. Moreover, there exists a mechanism that

charges price p0 for the item, and buyer participates in it with probability at least q. The revenue of

this posted price mechanism is at least p0 · q. Thus the revenue of allocation x with with parameter

p0 ≥ 0 is upper bounded by twice of the optimal revenue of posted pricing.
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F Hoeffding’s inequality

Lemma 17 (Hoeffding’s inequality). For any Bernoulli random variable with probability p for

value 1, let H(n) be the number of 1 values given n trials. For any ϵ > 0, we have

Pr

[∣∣∣∣ 1nH(n)− p

∣∣∣∣ ≥ ϵ

]
≤ 2 exp(−2ϵ2n).
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