
ar
X

iv
:2

21
1.

03
93

9v
1

 [
m

at
h.

C
O

]
 8

 N
ov

 2
02

2

Detecting Hidden Communities by Power Iterations with

Connections to Vanilla Spectral Algorithms

Chandra Sekhar Mukherjee ∗

Department of Computer Science
University of Southern California
chandrasekhar.mukherjee@usc.edu

Jiapeng Zhang †

Department of Computer Science
University of Southern California

jiapengz@usc.edu

November 9, 2022

Abstract

Community detection in the stochastic block model is one of the central problems of graph
clustering. Since its introduction by Holland, Laskey and Leinhardt (Social Networks, 1983),
many subsequent papers have made great strides in solving and understanding this model. In
this setup, spectral algorithms have been one of the most widely used frameworks for the design
of clustering algorithms. However, despite the long history of study, there are still unsolved
challenges. One of the main open problems is the design and analysis of “simple”(vanilla)
spectral algorithms, especially when the number of communities is large.

In this paper, we provide two algorithms. The first one is based on the power-iteration
method. This is a simple algorithm which only compares the rows of the powered adjacency
matrix. Our algorithm performs optimally (up to logarithmic factors) compared to the best
known bounds in the dense graph regime by Van Vu (Combinatorics Probability and Comput-
ing, 2018). Furthermore, our algorithm is also robust to the “small cluster barrier”, recovering
large clusters in the presence of an arbitrary number of small clusters. Then based on a connec-
tion between the powered adjacency matrix and eigenvectors, we provide a “vanilla” spectral
algorithm for large number of communities in the balanced case. This answers an open question
by Van Vu (Combinatorics Probability and Computing, 2018) in the balanced case. Our meth-
ods also partially solve technical barriers discussed by Abbe, Fan, Wang and Zhong (Annals of
Statistics, 2020).

In the technical side, we introduce a random partition method to analyze each entry of a
powered random matrix. This method can be viewed as an eigenvector version of Wigner’s trace
method. Recall that Wigner’s trace method links the trace of powered matrix to eigenvalues.
Our method links the whole powered matrix to the span of eigenvectors. We expect our method
to have more applications in random matrix theory.

1 Introduction

Community detection (graph clustering) is a fundamental problem in computer science that has
applications in diverse areas including but not limited to physics, social sciences and biology.

∗Research supported by NSF CAREER award 2141536.
†Research supported by NSF CAREER award 2141536.

1

http://arxiv.org/abs/2211.03939v1

Among others, the stochastic block model (SBM) is one of the most widely used frameworks for
studying community detection, offering both theoretical arena for rigorous analysis of performance
of clustering algorithms as well serving as a simulation benchmark in practice. Before proceeding
ahead we briefly describe the model. There is a set of = vertices + = {E1, . . . , E=} with a hidden
partition {+1, . . . ,+: }. A graph � is then sampled through a random process, governed by a : × :
symmetric matrix , . For any pair of vertices E ∈ +8 and D ∈ +9 an edge is added between them
independently at random with probability,8, 9 . This sampling process is called (�" (=, {+8 }:8=1,,)
Naturally, intra cluster edge probabilities are higher than inter cluster edge probabilities. Given
such a sampled graph � (+, �) (its adjacency matrix being denoted as �), the task is to recover the
hidden partition.

From the perspective of theoretical computer science, there has been a lot of progress towards
understanding the information theoretic and computational limits of solving the SBM problem
since the 1980s [HLL83, BCLS87, DF89, Bop87]. We refer to the recent survey by Abbe [Abb17]
for a comprehensive list of such results. In this paper we study one of the prominent problems
in relation to SBM, which is designing of simple spectral algorithm for community detection.
Spectral algorithms have a long history of being used in the random graph paradigm [Bop87,
AKS98, McS01, Vu18, AFWZ20, MPZ22]. Several papers in this area have concentrated on finding
simplest spectral algorithms, (sometimes called vanilla algorithms [AFWZ20]) that can solve the
SBM problem [McS01, Vu18, AFWZ20].

Vanilla spectral algorithms: motivation and challenges Spectral algorithms broadly refer to
algorithms that analyze the eigenvectors of the (random) adjacency matrix �. In this direction
most works either analyze the entries of the eigenvectors or the projection of� onto the eigenspace
of the top eigenvectors. In general, there are several steps that precede and/or follow the obtaining
of the eigenvectors/eigenspace-projection. For example, the projection is sometimes preceded by
trimming steps (such as random partition in [Vu18]), and the post projection embedding is then
subjected to further iterative cleaning ([YP14]) , or other clustering techniques such as K-means
([LR15]) are then implemented. The goal of obtaining a “vanilla” spectral algorithm is to avoid
such steps. On a high level, there are two motivations. The first is to understand if an algorithm
that just applies some threshold on the entries of the eigenvectors or the rows of the projected
matrix is able to recover the partition. This also gives intuition about power of spectral algorithms
used in practice that are often “vanilla” in this sense (such as PCA).

The next is technical motivation. As we shall explain going forward, the difficulty in obtaining
a provably correct vanilla algorithm is due to certain technical barriers in random matrix theory.
Thus, analysis of vanilla spectral algorithm promises to improve our understanding of these
hurdles which may have application in other problems/domains. One may refer to Section 1.1.2
for a more detailed description on motivations and progress made so far.

Although there have been several efforts and progresses made towards designing such algo-
rithms [AFWZ20, EBW18, Vu18], the problem of obtaining a vanilla spectral algorithm for large :

remains open. We describe the approaches and limitations of existing work in Section 1.3.
Motivated by these questions and hurdles, in this paper we continue on the direction of

obtaining vanilla spectral algorithms for SBM through resolving barriers in random matrix theory.
In our first attempt, we focus on the symmetric SBM framework (SSBM).

Definition 1.1 (Symmetric SBM). In this model, given an=-vertex set+ with a hidden partition+ = ∪:
8=1+8

such that+8 ∩+9 = ∅ for all 8 ≠ 9 , we say a graph� = (+, �) is sampled from SSBM(=, :, ?, @), if for all pairs

2

of vertices E8, E 9 ∈ + ,

• an edge (E8, E 9) is added independently with probability ?, if E8, E 9 ∈ +ℓ for some ℓ ;

• an edge (E8, E 9) is added independently with probability @, otherwise.

Although SSBM is a basic version of SBM, due to its simplicity it’s often used as a starting
point for design of community detection algorithms, as in [AFWZ20]. Furthermore, we work

in the “dense graph” setting (@ ≫ log=
=

) which is commonly the area of interest for spectral
algorithms [McS01, Vu18, AFWZ20].

Against this backdrop, we now describe the results of our paper on a high level.

1.1 Our Contribution

Our contribution is two part.
In the algorithm part, we design a simple algorithm for the SSBM model based on powering of

the adjacency matrix of � . Our algorithm is simple, and matches the best known algorithms for
large : [Vu18, MPZ22] upto logarithmic factor even in the presence of an arbitrary number of small
(size <<

√
=) clusters. Next, by connecting power matrix and eigenvectors of symmetric matrix, we

convert our power iteration algorithm into a “vanilla” spectral algorithm for the balanced SSBM
case, making significant progress w.r.t open questions (in the balanced case) raised by [Vu18] and
[AFWZ20]. More details will be discussed in Section 1.1.2.

In doing so, we also make contribution in technical analysis. We give an analysis of eigenspaces
of random matrices by using power matrix, providing another perspective to understand random
matrices. Our analysis is built on a random partition idea. We discuss more connections between
our analysis and known analysis in Section 1.3.

1.1.1 Our Algorithm to Recover the Largest Partition

Our first contribution is a simple algorithm based on the power iteration method. Given the
adjacency matrix � of a graph � drawn in from SSBM(=, :, ?, @), we obtain � by subtracting each
entry of � by @. That is, � := � − @ · 1=×= , where 1=×= is all one = × = matrix . We show that the
largest partition of� (under reasonable constraints) can be recovered by comparing the euclidean
distance of rows of �A for A ≈ log=. We describe the procedure in Algorithm 1.

For a vertex E8 ∈ + , let the 8-th row of � (and �) correspond to E8 , and +1 be the largest (hidden)
partition of � . For any fixed E8 ∈ +1, we show that there is a threshold Δ such that with high
probability for all E 9 ∈ +1, the distance between the 8-th and 9-th row of �A is less than Δ. Otherwise
(E 9 ∉ +1) the distance is larger than 1.1Δ, which is sufficient to recover+1.

The correctness of Algorithm 1 can be formalized as follows.

Theorem 1.2 (Recovering largest cluster). There are constants�,�0 > 0 such that the following holds. Let
?, @ ≤ 0.75 be parameters such that max{? (1−?), @(1−@)} ≥ �0(log=)/=. Let� be a random graph sampled

from SSBM(=, :, ?, @), and let B∗ be the size of the largest cluster. If B∗ ≥ � · (log=)7 ·
√
? (1 − @) ·

√
=/(? −@),

then with probability 1 − O(1/=) one of the cluster output by Algorithm 1 is the largest cluster of � for
suitable choice of Δ and A .

3

Algorithm 1: Detecting Communities by Power Iterations

1: Input: A graph � and parameters ?, @ > 0.
2: Let � be the adjacent matrix of �
3: � ← � − @ · 1=×= # (Here 1=×= is the all 1 matrix.)
4: Let Δ > 0 and A > 1 be parameters # (We will explain how to choose them later)

5: for E8, E 9 ∈ � do

6: if ‖�A8 − �A9 ‖2 ≤ Δ then

7: Put E8 and E 9 in a same cluster # (�A8 represents the 8-th row of �A)

8: end if

9: end for

10: Output the sets thus formed.

Comparison to best known result. In the line of spectral algorithms, the state of the art for
large : is provided by Vu [Vu18] which proved that if each cluster has size larger than � · (log=) ·√
? (1 − @) · √=/(? − @), then a spectral algorithm can recover all clusters. In fact, most community

recovery algorithms require “all” clusters to be large. This constraint was termed as the “small
cluster barrier” by Ailon et al. [ACX13]. Recently the work by Mukherjee et al. [MPZ22] provided
an algorithm for this problem building on Vu’s algorithm that does not need any size constraint
on the clusters that are not the largest. They showed that if (? − @)B∗ ≥ �0

√
? (1 − @)

√
= log=, then

their algorithm is able to recover the largest cluster. Our algorithm is also able to bypass the small
cluster barrier and recover the largest cluster in the presence of small clusters. Our algorithm has
an additional (log=)6 factor than [MPZ22] but is far simpler in comparison.

1.1.2 Towards Vanilla Spectral Algorithms

Now we discuss the study of simple (vanilla) spectral algorithms, further describing the motivation,
progress made so far and the open problems, before recording our contribution.

There are two primary motivations. The first, as stated in [Vu18] is to design theoretically
provable natural algorithms. Many spectral algorithms used in practice, such as PCA do not have
any pre-processing or post-processing steps akin to that of [LR15, Vu18, YP14]. The second is to
simply understand the power of just SVD projection in community recovery, and understanding
the extent of its success w.r.t information theoretic bounds, which was the motivation in [AFWZ20].

Beyond these, since the present analysis is limited by certain hurdles in random matrix theory
(as we discuss in later sections), we hope that studying this problem also furthers our understand-
ing of random matrices, which is the technical motivation of this paper.

Against this background, Abbe et al. in their beautiful work [AFWZ20] designed a vanilla
spectral algorithm for : = 2 clusters that recovers up to the information-theoretic bound. The
algorithm is very simple. Obtain the second eigenvector of �, and if an entry is positive, then the
corresponding vertex belongs to one cluster, otherwise to a different cluster. However, they could
not extend analysis for : ≥ 3.

Spectral algorithms for large :: In this paper we concentrate on the case of : = l (log=). In this
domain the seminal work by McSherry [McS01] provided a spectral algorithm to solve the hidden
partition problem. However, this algorithm required a combinatorial and iterative partition of the

4

vertices based on SVD projection of �. McSherry asked whether this step can be simplified, and
this was answered by Vu [Vu18]. To our best knowledge, this is the simplest spectral algorithm for
: = l (log=). We describe this in Algorithm 2, described as the SVD-II algorithm by Vu 1.

Algorithm 2: Vu’s Spectral Algorithm to Detect Hidden Communities (SVD II in [Vu18])

1: Input: A graph � = (+, �) and parameters ?, @, : > 0.
2: Let � be the adjacent matrix of �
3: Randomly partition+ into two parts +1 and +2

4: Let �1 be the adjacency matrix of the subgraph induced by +1

5: for u ∈ +2 do

6: Let %:�1
u be the projection of u into the space spanned by the first : eigenvectors of �1

7: end for

8: Choose a parameter Δ > 0
9: for u, v ∈ +2 do

10: if ‖%:�1
u − %:�1

v‖2 ≤ Δ then

11: Put u and v in a same cluster
12: end if

13: end for

In brief, the adjacency matrix � is partitioned randomly in two halves �1 and �2, and then
columns of�2 are projected onto the first : eigenvectors of�1, and then the post projected columns
of �2 can be separated by clustering via distance based on some threshold. The key reason behind
this partition is that the eigenvectors of �1 and the columns of �2 are uncorrelated, which aids the
analysis. Once �2 is clustered, recovering the communities from �1 is relatively straightforward.
Although this algorithm is simpler in comparison to [McS01], there is a step that seems redundant.
Specifically, the partition before projection step. This was also noted by Vu [Vu18], and he proposed
the following algorithm, that he named SVD-I.

SVD-I and the barrier in analysis First we describe the conjectured algorithm by Vu [Vu18] in
Algorithm 3.

Algorithm 3: SVD I in [Vu18]

1: Input: A graph � = (+, �) and parameters ?, @, : > 0.
2: Let � be the adjacency matrix of �
3: Let %:� be the projection operator into the space spanned by the first : eigenvectors of �
4: Choose a parameter Δ > 0
5: for u, v ∈ + do

6: if ‖%:�u − %:�v‖2 ≤ Δ then

7: Put u and v in a same cluster
8: end if

9: end for

Note that compared to SVD-II, SVD-I does not have any partition. � is simply projected onto

1This is not exactly the same as Vu’s algorithm but captures the main idea.

5

the space of its first : eigenvectors. The main barrier in analysis is as follows. In SVD-I, the
eigenvectors and columns of � are correlated. This was also pointed out by Vu.

Compared to SVD I, the extra steps in SVD II are the random partitions, done in order to reduce
correlation.

In this regard, SVD-I is a more natural and intuitive algorithm, akin to widely popular al-
gorithms used in practice such as principle component analysis (PCA). The problem of whether
SVD-I can be proven to be correct was left as an open problem in [Vu18]. In this note Vu remarked

While SVD I could well win the contest for being the simplest algorithm, and perhaps the first
one that most practitioners of the spectral method would think of, it is hard to analyse in the
general case. In what follows, we analyse a slightly more technical alternative, SVD II

This presence of correlation is the technical barrier that we address in this paper. We show
that a slightly different algorithm from SVD-I works in the balanced case using our power iteration
based analysis.

The USSBM model and our centered-SVD algorithm The USSBM setup is the balanced case of
the symmetric SBM case. That is, if there are : hidden partitions, then each vertex is assigned a
partition uniformly at random. This implies the size of the partitions are fairly balanced. We note
that the USSBM could be the first step towards the general SBM problem.

In this paper, our main focus is on addressing the correlation barrier in [Vu18]. In this model
we show Algorithm 4 recovers the hidden communities under conditions comparable to that of
the more complex SVD-II algorithm by Vu [Vu18].

Algorithm 4: Centered-SVD

1: Input: A graph � = (+, �) and parameters ?, @, : > 0.
2: Let � be the adjacent matrix of �
3: � ← � − @ · 1=×= # (This is the extra step compared to SVD-I)

4: Let %:� be the projection operator into the space spanned by the first : eigenvectors of �
5: Choose a parameter Δ > 0 depending on =, :, ?, @

6: for u, v ∈ + do

7: if ‖%:
�
u − %:

�
v‖2 ≤ Δ then

8: Put u and v in a same cluster
9: end if

10: end for

As we aim for a vanilla algorithm, the idea is very simple. Given the adjacency matrix �, shift
each entry by @ to obtain �. Then project the columns of � onto the span of the first: eigenvectors of
�, and cluster based on a threshold on distance between the projected rows. We have the following
theorem for its correctness.

Theorem 1.3 (Centered SVD algorithm). There are constants �0,�1 > 0 such that the following holds.
Let ?, @ ≤ 0.75 be parameters such that max{? (1 − ?), @(1 − @)} ≥ �0(log=)/=. Let � be a random graph
sampled from USSBM(=, :, ?, @). If = ≥ �1 · (log=)14 · ? (1 − @) · :2/(? − @)2 then the centered SVD
(Algorithm 4) recovers all the clusters with probability 1 − O(1/=).

6

To the best of our knowledge, this is the first spectral algorithm without pre-SVD partition or
post-SVD trimming steps that recover algorithm in the balanced case for?,@ = > (1) and: = l (log=).
In fact, our parameters are comparable to that of SVD-II, which is a more complex (non-vanilla)
algorithm. We finish this discussion with some remarks about our algorithm.

Remark 1.4 (Notes on centering). We further emphasize that even though we slightly deviate from SVD-I,
our additional step of shifting is not synthetic. The step of shifting each entry of � by @ is essentially a
centering step. Centering is a common step done in clustering algorithms, even beyond the SBM setup.

For example, the algorithm PCA can be thought of as SVD projection of the centered matrix. Centering
is done to remove the effect of the top eigenvector of the matrix, which often aligns close to the data mean
and does not reveal knowledge about cluster identities. Our analysis of the centered-SVD algorithm thus
provides insight towards the success of simple algorithms used in practice.

Furthermore, � and � are only separated by a constant (@). Thus we believe an analysis of the eigenspace
of � is also possible in a similar manner. This remains an interesting problem.

Now we describe the outline of our proofs.

1.2 Proof Outlines

1.2.1 Proof Outline of Theorem 1.2

We first revisit some notations. Recall that � ∼ SSBM(=, :, ?, @) is the adjacency matrix of the
random graph, and � := � − @ · 1=×= is the matrix obtained by shifting each entry of � by @. As
described in Algorithm 1, we aim to recover the largest cluster based on the ℓ2 distance of rows of
the power matrix �A where A = log=.

Specifically, our goal is the following. Let E8 and E 9 be two vertices corresponding to the 8-th
and 9-th row of � (and thus, �). We want to show that if E8 and E 9 both belong to a large enough
cluster then the distance of 8-th and 9-th row of �A is small. On the other hand, if E8 belongs to a
large enough cluster and E 9 belongs to a different cluster, the distance between the rows of �A is
much larger. This allows us to recover a large cluster through distance based separation.

With this aim, we decompose � = ! + ' where ! := E[�] is the “structure part” of this matrix
containing the hidden community information, and ' is the “noise part”. We notice that ' is a
symmetric matrix where each entry is a 0 mean independent random variable.

In this regard, we can write �A as (! + ')A and our aim is to show that when considering the
distance between two rows of �A , the distance due to !A is the dominating component. Here ! is a
well structured matrix. By a simple calculation, for any two vertices E8 and E 9 ,

• If E8 and E 9 belong to the same cluster, then the distance between 8-th and 9-th row of !A is 0.

• Otherwise if E8 ∈ +ℓ and E 9 ∈ +ℓ ′ are from two different clusters, the distance between their

rows is more than max
{√
|+ℓ | (? − @)A |+ℓ |A−1,

√
|+ℓ ′ | (? − @)A |+ℓ ′ |A−1

}
.

We then show that the ℓ2 norm of rows of �A − !A is small (compared to the gap provided by !A)
by using ideas from random matrix theory and concentration bounds on low degree polynomials.
We use a two step decomposition to achieve this. In the first step we decompose

�A = (! + ')A = !A + !A−1' + !A−2'� + · · · !'�A−2︸ ︷︷ ︸
"

+'�A−1

This is a decomposition based on the first location of ' in the product terms.

7

Analysis of " . We first show that the ℓ2 norm of rows of " is small with high probability. To
achieve this, we start by showing that the absolute value of entries of !C' is sufficiently small (with
high probability), which is fairly straightforward as the entries of !C' is just a linear combination
of independent random variables '8, 9 . This gives us an upper bound on the norm of rows of !C'.
We shall show that once this is upper bounded, bounding the norm of rows of !C'�A−C−1 follows
from some useful tools of random matrix theory [FK81, Vu05].

Analysis of '�A−1. Then, we are left with bounding the term '�A−1. This time we decompose
based on the first location of !, obtaining

'�A−1
= '!�A−2 + '2!�A−3 + · · ·'A−1!︸ ︷︷ ︸

"′

+'A

We can view 'A as a completely noisy component. One can also get a high level intuition behind
the success of power method from the analysis of 'A . According to condition of Theorem 1.2, we
have that spectral norm of ! is much larger than that of '. However, the ℓ2 norm of rows of !
corresponding to the largest cluster can still be smaller than the ℓ2 norm of rows of '. But when we
raise the matrix to its A -th power for a large enough A , we will observe that rows of !A have much
higher norm than that of 'A . This shows that powering reduces the effect of noise on the ℓ2 norm
of the rows.

Analysis of " ′. Finally, we upper bound norm of rows of " ′, for which we bound the absolute
value of the entries of 'C!. This is our main technical contribution. We observe that each entry
of this matrix is a low degree (C ≤ log=) polynomial of the random variables '8, 9 where there is
correlation between the different monomials. We use a random partition based analysis to bound
the entries, and this is arguably the most non-trivial step in our analysis.

Analyzing entries of 'C! via random partition. We can write down the (0,1)-th entry of 'C!
(where 1 ≤ 0, 1 ≤ =) as

('C!)0,1 =

∑
(ℓ1,...,ℓC) ∈[=]C

'0,ℓ1'ℓ1,ℓ2 · · ·'ℓC−1,ℓC!ℓC ,1

Then ('C!)0,1 is a sum of multivariate monomials, where each monomial is uniquely defined by
an index list L = (ℓ1, . . . , ℓC). Against this setup, we divide the lists L into several groups through
an encoding (that we describe in Section 5) into a C-length array- based on duplicacy in the entries
of the index lists. All the index lists that are mapped into the same encoding - are assigned into a
group Z- . Let the set of all - be X. Then we have

('C!)0,1 =

∑
- ∈X

©«
∑

(ℓ1,...,ℓC) ∈Z-
'0,ℓ1'ℓ1,ℓ2 · · ·'ℓC−1,ℓC!ℓC ,1

ª®¬︸ ︷︷ ︸
/C
0,1
(-)

We show that |X| ≤ CC and then upper bound
���/ C

0,1
(-)

��� for any arbitrary - , and complete the proof

through an union bound.

8

For the purpose of explanation, here we focus on the group Z- ′ such that any index list
(ℓ1, . . . , ℓC) ∈ Z- ′ is made of C many different values. As a consequence, / C

0,1
(- ′) is a multilinear

polynomial. As we shall see, this fact simplifies our analysis. Note that / C
0,1
(- ′) is a “sum of

correlated product terms” (SOP), as the same random variable '8, 9 can occur in many monomials.
Against this setup, we layout our random partition idea. Let) be a random partition of {1, . . . , =}

into C many sets)1, . . . ,)C where each element in [=] is assigned to one of the C many sets uniformly
at random. Then we denote

|() | :=
�����

∑
ℓ1∈)1,...,ℓC ∈)C

'0,ℓ1'ℓ1,ℓ2 · · ·'ℓC−1,ℓC!ℓC ,1

����� =
�����

∑
ℓ1∈)1,...,ℓC−1∈)C−1

'0,ℓ1'ℓ1,ℓ2 · · ·'ℓC−2,ℓC−1

(∑
ℓC ∈)C

'ℓC−1,ℓC!ℓC , 9

)

︸ ︷︷ ︸
� (C−1,ℓC−1)

�����

We first observe that for each ℓC−1, � (C − 1, ℓC−1) is a summation of independent random variables
with range in [−1, 1]. Hence we can apply a Chernoff bound on random variables 'ℓC−1,ℓC where
ℓC−1 ∈)C−1 and ℓC ∈)C to upper bound |� (C − 1, ℓC−1) |. Assume that we upper bound this quantity by
V with high probability. We can carry out this process recursively to analyze () . Precisely, we have

|() | =
�����

∑
ℓ1∈)1,...,ℓC−2∈)C−2

'0,ℓ1'ℓ1,ℓ2 · · ·'ℓC−3,ℓC−2

∑
ℓC−1∈)C−1

'ℓC−2,ℓC−1� (C − 1, ℓC−1

︸ ︷︷ ︸
� (C−2,ℓC−2)

)
�����

We want to upper bound |� (C − 2, ℓC−2) | in a similar manner. Here observe that since 'ℓC−2,ℓC−1 is a
zero mean random variable, so is 'ℓC−2,ℓC−1� (C −1, ℓC−1), as � (C −1, ℓC−1) is a constant for any ℓC−1 ∈)C−1.
This is because we have already sampled (fixed) the random variables 'ℓC−1,ℓC .

Furthermore, as |'ℓC−2,ℓC−1 · � (C − 1, ℓC−1) | ≤ V with high probability, we can then apply Chernoff
bound to upper bound |� (C − 2, ℓC−2) |. We keep repeating this step recursively and bound |() | =
|� (0, ℓ0) | with high probability for any fixed) . The crux here is that)1, . . . ,)C are disjoint, so we can
iteratively apply the Chernoff bound C times.

However, for any fixed partition) , () does not cover all monomials in / C
0,1
(- ′). But as) is

designed uniformly at random, any monomial in/ C
0,1
(- ′) has an equal and a relatively large chance

of being represented in () . We use this fact to show |/ C
0,1
(- ′) | ≤ 5 (C) · E) [|() |] for a reasonably

small 5 (C).
We have so far bound |() | with high probability only for any fixed) . What we want is to bound

E[|() |]. Here taking a union bound on all choices of) is not a possibility due to the fact that there
can be exponentially many such sets) . Instead we use Markov’s higher moment ideas to obtain
bounds, which completes our proof.

We remark that the intuition behind our encoding scheme is to generalize the conversion from
SOP into POS beyond the simple case described above, which is aided by our scheme. Next, we
consider the summation/ C

0,1
(-) for a generic- ∈ X. Here we encounter sums of monomials where

individual variables may have degree more than 2 in the monomials. We use similar arguments
as the case above to bound the sum for all such groups. Then taking an union bound on all / C

0,1
(-)

upper bounds | ('C!)0,1 |. Again, once the absolute value of the entries of 'C! is bounded, an upper
bound on the norm of rows of 'C!�A−C−1 follows.

The complete proof of the random partition analysis can be found in Section 5. Next we describe
the outline of the proof for our centered SVD algorithm, which builds up on the power iteration.

9

1.2.2 Outline of Theorem 1.3

We use our analysis in the spectral algorithm for the USSBM model. The key observation is as
follows. Let %:

�
be the SVD projection operator onto the first : eigenvectors of �. Let u and v

be the 8-th and 9-th column of �. Then we show that the distance between %:
�
u and %:

�
v is well

approximated by the distance between the 8-th and 9-th row of �A+1. Then the result follows from
the power iteration method. This analysis implies that in the centered case, the partition step
for reducing correlation described in SVD-II is indeed a technical step, and is not a necessity (at
least for the nearly balanced case). To the best of our knowledge, this is the first analysis of a
“simple” spectral algorithm that is applicable for ?, @ = > (1) and : = l (log=). Next, we discuss
some connections between our result and existing works.

1.3 Connections to Other Techniques

In this section, we discuss connections between our analysis and some standard techniques in
random matrix theory, and the challenges therein. We believe that our method can be helpful in
resolving some barriers in previous analysis.

An analogue of Wigner’s trace method. In random matrix theory, it is very important to un-
derstand the distribution of eigenvalues (or singular values) of random matrices. However, it is
always not easy to analyze eigenvalues directly. To solve this question, Wigner [Wig58] proposed
to use the following equality: ∑

8

_8 (�): = Trace(�:),

where _8 is the 8-th singular value of �. Then this question can be translated to the analysis of
the diagonal entries (trace) of the power matrix �: . Please see [FK81, Vu05] for more details. The
entries of �: is a more intuitive notion than eigenvalues and we have combinatorial tools, such as
the tree encoding scheme [FK81, Vu05], to analyze it. However, in many applications (including
but not limited to analysis of vanilla spectral algorithms), one needs to analyze the eigenvectors
of �, and/or the eigenspace formed by top eigenvectors of �. In this direction, our idea can be
considered as a link between entries of power matrices and projection onto eigenspace for random
matrices, as we analyze eigenspace projection (Theorem 1.3) through entry-wise analysis (not only
diagonal entries) of �: .

Next, we discuss some of the standard tools used in the analysis of eigenvectors and eigenspaces,
along with their limitations and potential ways forward.

Beyond Davis-Kahan. The SBM problem can be thought as a “structure+noise” problem, where
the mean (E[�]) contains the hidden partition and ' := �−E[�] is the random perturbation (noise).
One of the core ideas behind the spectral algorithms is to show that the eigenspaces due to the top
eigenvectors of � and E[�] are similar. In this direction, the Davis-Kahan sin(Θ) theorems [DK69]
are arguably the most standard way of bounding the distances between these eigenspaces. How-
ever, although Davis-Kahan is tight when the perturbation is chosen adversarially, it is sometimes
sub-optimal when the perturbation is random, as is the case of the SBM problem. Then one needs
to either use Davis-Kahan sin(Θ) more subtly, or avoid it altogether. Please see [EBW18] for more
discussions about Davis-Kahan and SBM. In this direction, Eldridge et al. [EBW18] made an effort
to analyze SBM beyond Davis-Kahan (a part of their proof also used power iteration). However,

10

their analysis seems complicated and hard for large : (the number of clusters). Furthermore, Abbe
et al. [AFWZ20] also indicated some vague connections between power iteration and Davis-Kahan.
They comment,

Nevertheless, we believe the iterative perspective is helpful to many other (nonconvex) problems
where a counterpart of Davis-Kahan theorem is absent.

To summarize, power iteration based techniques seems to be promising in analysis of many
applications beyond the limits of Davis-Kahan.

Beyond individual eigenvector analysis. Although the aforementioned works improved on
Davis-Kahan bounds, a common theme in both of the papers is analysis of the individual eigen-
vectors. Specifically, they analyze the distance between individual eigenvectors of the expectation
and perturbed matrices. However, if the expectation matrix E[�] has high duplicity for any one
eigenvalue (which is the case with the balanced SBM model, _2(E[�]) = · · · = _: (E[�])), either
the methods do not apply directly, or there is an adversarial cost in the bounds depending on this
duplicity.

In comparison, we do not analyze individual eigenvectors. Our analysis studies the whole
eigenspace generated by top eigenvectors. We note that McSherry [McS01] and then Vu [Vu18]
(SVD-II) also analyzed whole eigenspace. Hence, they do not have the multiple eigenvalue barrier.
However, they needed to use a partition step in their algorithm to analyze it, to reduce correlation.
In contrast, we analyze the entries of power matrices, which addresses the technical barriers
mentioned above.

1.4 Conclusion and Future Directions

In this paper we present a simple algorithm based on the power iteration method to recover
communities in the SSBM model. Our algorithm works in the presence of small clusters, with
recovery conditions being logarithmically close to the state of the art [Vu18, MPZ22].

Next, we connect SVD projection to the power iteration method in the (almost) balanced case,
and obtain a vanilla spectral algorithm for : = l (log=) and ?, @ = > (1), with recovery guarantee
comparable to that of Vu [Vu18].

The central idea behind analysis of entries of power matrices of � (the shifted adjacency matrix)
is the random partition technique. We analyze entries of powers of the matrices as low degree
polynomials, that can be seen as a sum of correlated monomials. We convert these into product
of sums of lower-degree uncorrelated monomials. This perspective allows us to improve on
restrictions of related existing works, such as the pre-projection partition of Vu [Vu18], and need
for number of clusters to be constant ([EBW18]) among others. Furthermore, we believe these tools
can be of independent interest in analysis of the “structure+noise” model.

Challenges. In the current form we can only establish the link between the power iteration
method and SVD projection when the top : eigenvectors of � have similar eigenvalues. This is the
reason we only focus on the uniform SSBM model. Extending this method for a more general case
remains a very interesting research direction.

Another question of interest is replacing the shifting procedure in the power iteration method.
Analyzing whether a shifting procedure based on � (instead of knowledge of @) works is an
interesting vertical, making the algorithm more practical.

11

2 Preliminaries

Here we define the notations and definitions we use throughout the paper. We start with spectral
properties of the random matrices related to the graph generated through SSBM.

Eigenvalues of the (centered) adjacency matrix Recall that we are given the random adjacency
matrix � that is sampled according to the underlying SSBM framework. In this paper we work
with the centered adjacency matrix �, which is obtained by subtracting @ from every entry of �.
The expectation matrix of �, denoted as � is thus a block diagonal matrix, with each entry being
? − @ or 0. Then we have that _8 (�) = (? − @) |+8 |, 1 ≤ 8 ≤ :. The primary difference in our algorithm
from SVD I is that we consider the matrix � instead of �. Now, we define some norm notations,
followed by results on spectral norms of symmetric matrices.

Definition 2.1 (Norm-related notations). For any matrix " , we denote by "8 the 8-th row of " . In this
direction, for a matrix " ,

• ‖" ‖ denotes the spectral norm of the matrix.

• ‖"8 ‖ denotes the ℓ2-norm of the 8-th row of "

• ‖" ‖A>F denotes the maximum of the ℓ2-norm of the rows of " .

Lemma 2.2 (Norm of a random matrix [Vu18]). There is a constant �0 > 0 such that the following
holds. Let � be a symmetric matrix whose upper diagonal entries 48 9 are independent random variables
where 48 9 = 1 − ?8 9 or −?8 9 with probabilities ?8 9 and 1 − ?8 9 respectively, where ?8 9 ∈ [0, 1]. Let f2 :=
max8 9 {?8 9 (1 − ?8 9)}. If f2 ≥ �0 log=/=, then

Pr[‖�‖ ≥ �0f=
1/2] ≤ =−3

Lemma 2.3 (Weyl’s inequality). Let � = � + � be a matrix. Then _C+1 (�) ≤ _C+1 (�) + ‖�‖.

We have the following simple corollary.

Corollary 2.4. Let � = � + � be the empirical adjacency matrix. Then with probability at least 1 − =−3,we
have that

_8 (�) −�0f=
1/2 ≤ _8 (�) ≤ _8 (�) +�0f=

1/2

for every 8 ∈ [=].

Next we write down the Chernoff-Hoeffding bound for small probability events.

Theorem 2.5 (Chernoff Hoeffding bound [Hoe63]). Let -1, . . . , -= be i.i.d random variables that can
take values in {0, 1}, with E[-8] = ? for 1 ≤ 8 ≤ =. Then we have

1. Pr
(

1
=

∑=
8=1 -8 ≥ ? + Y

)
≤ 4−� (?+Y | |?)=

2. Pr
(

1
=

∑=
8=1 -8 ≤ ? − Y

)
≤ 4−� (?−Y | |?)=

We have now also presented the notions needed to define a suitable constant� in Theorem 1.2.

Definition 2.6 (The constant �). We define � := �0 · 107 where �0 is the constant referred in Lemma 2.2.

12

Thus, under the condition of Theorem 1.2 we have (? − @)B∗ ≥ 106 ·�0 ·
√
? (1 − @ · √= · (log=)7.

We conclude this section by defining some more notations and assumptions that we use
throughout the paper.

1. We denote the vertices of the graph with the corresponding row/column. For two integers
8 and 9 , we write 8 ∼ 9 if the 8-th and 9-th vertices belong to the same cluster, and 8 ≁ 9

otherwise.

2. For the cluster +ℓ , we denote the size of the cluster by Bℓ . Furthermore, by B∗ and Bmin we
denote the size of the largest and the smallest cluster respectively.

3 Analysis of the Power-iteration Method

In this section, we prove Theorem 1.2. Recall that � ∼ SSBM(=, :, ?, @) is the adjacency matrix and
� := � − @ · 1=×= is the centered matrix. Let+1 be the largest hidden cluster with B∗ = |+1 |. Theorem
1.2 aims to show that there exists some threshold Δ such that with high probability for any E8 and
E 9 ,

1. If E8, E 9 ∈ +1 then ‖�A8 − �A9 ‖ ≤ Δ/2.

2. If E8 ∈ +1 and E 9 ∉ +1, then ‖�A8 − �A9 ‖ ≥ Δ.

This separation shows that Algorithm 1 is able to detect +1 correctly, which finishes the proof
Theorem 1.2. We choose Δ := 0.5

√
B∗ (? − @)A (B∗)A−1 for Algorithm 1.

Continuing from Section 1.2.1, we decompose � = ! + ' where ! = E[�] is the structure part
and ' is the noise part. Hence, �A can be decomposed as

�A = !A +" +" ′ + 'A (1)

where " = !A−1' + !A−2'� + · · · + !'�A−2 and " ′ = '!�A−2 + '2!�A−3 + · · · + 'A−1!.
As we discussed in Section 1.2.1, we would like to show that !A is the dominant part in �A . That

is, ‖�A8 − �A9 ‖ ≈ ‖!A8 − !A9 ‖ for every 8, 9 . From Equation 1 we have for any 8, 9

��‖�A8 − �A9 ‖ − ‖!A8 − !A9 ‖��
≤‖(�A8 − !A8) − (�A9 − !A9)‖
≤‖"8 −"9 ‖ + ‖" ′8 −" ′9 ‖ + ‖'A8 − 'A9 ‖
≤2(‖" ‖A>F + ‖" ′‖A>F + ‖'A ‖A>F)

The proof then progresses in the following manner.

• Lemma 3.2 first shows there is separation on !. That is, for every E8, E 9 ∈ +1, ‖!A8 − !A9 ‖ = 0; for
every E8 ∈ +1 and E 9 ∉ +1, ‖!A8 − !A9 ‖ ≥ 2Δ

• Corollary 3.6 shows that ‖" ‖A>F ≤ 0.1Δ with probability 1 − O(1/=).

• Lemma 3.7 shows that ‖'A ‖A>F ≤ 0.1Δ with probability 1 − O(1/=).

• Corollary 3.9 shows that ‖" ′‖A>F ≤ 0.1Δ with probability 1 − O(1/=).

13

Then we get that if E8 ∈ +1 with |+1 | = B∗, for any 8 ∼ 9 we have with probability 1 − O(1/=),
‖�A8 − �A9 ‖ ≤ 0.6Δ. On the other hand, if 8 ≁ 9 then ‖�A8 − �A9 ‖ ≥ 2Δ − 0.6Δ ≥ 1.4Δ. This completes the
proof.

Now we obtain these bounds. The conditions on B∗ and ?, @ are the same as in Theorem 1.2 in
all of the following lemmas/corollaries, and thus we do not repeat them in each statement.

3.1 Bounding the Maximum Norm of the Rows

We start by recording some facts about ! and '.

Fact 3.1. Let !, ' be the matrices defined above. We have the following properties for them.

1. For every A ≥ 1 and 8, 9 ∈ +ℓ , !A8, 9 = (? − @)A · BA−1
ℓ

2. For every A ≥ 1 and 8 ≁ 9 , and !A8, 9 = 0

3. '8, 9 are zero mean independent random variables (modulo the symmetry)

4. For every 8, 9 ∈ +ℓ , '8 9 = 1 − ? or −? with probabilities ? and 1 − ? respectively. For every 8 ≁ 9 ,
'8 9 = 1 − @ or −@ with probabilities @ and 1 − @ respectively.

5. The maximum variance of '8, 9 , f
2 is upper bounded by ? (1 − @).

Now we analyze ‖!A8 − !A9 ‖, obtaining the following result.

Lemma 3.2. Let ! be the matrix defined above. Let E8 ∈ +1. Then for every 8 ∼ 9 , ‖!A8 − !A9 ‖ = 0. Otherwise
if 8 ≁ 9 then ‖!A8 − !A9 ‖ ≥ 2Δ.

Proof. If 8 ∼ 9 , then according to Fact 3.1, the 8-th and 9-th row are same in !A , and thus ‖!A8 −!A9 ‖ = 0.
On the other hand, if 8 ≁ 9 , then the 8-th and 9-th row of !A differ in at least B∗ positions

because E8 ∈ +1. If we consider the 8-th row, there are B∗ positions where (!A)8,ℓ = (? −@)A (B∗)A−1 and
(!A) 9,ℓ = 0. This implies ‖!A8 − !A9 ‖ ≥

√
B∗ · (? − @)A (B∗)A−1 ≥ 2Δ. �

We spend rest of the section upper bounding the maximum ℓ2 norm of rows of "," ′ and 'A

with high probability. We start by upper bounding ‖�‖.

Lemma 3.3. Let ! and ' be the matrices defined above. Then

Pr[‖�‖ ≥ (? − @)B∗ +�0f=
1/2] ≤ =−3

Proof. We recall that � = !+'. Hence, ‖�‖ ≤ ‖!‖ + ‖'‖. By Fact 3.1, we also have that ‖!‖ = (?−@)B∗,
which implies

Pr[‖�‖ ≥ (? − @)B∗ +�0f=
1/2] ≤ Pr[‖'‖ ≥ �0f=

1/2] ≤ =−3

where the second inequality follows from Lemma 2.2. �

Now we observe a simple and useful property on the ℓ2 norm of product of matrices, that
follows from the definition of spectral norm.

Fact 3.4. For any = × = matrices � and �,

‖� ·� ‖A>F ≤ ‖�‖A>F · ‖� ‖

14

Bounding the rows of " . Recall that " = !A−1' + !A−2'� + · · · + !' · �A−2. To bound each of the
individual term, we first look at the matrix !C' for 1 ≤ C ≤ A − 1.

Lemma 3.5. With probability at least 1 − =−3, the absolute value of all entries of !C' is upper bounded by
96 · (

√
? (1 − @) ·

√
B∗ · log=) · (? − @)C · (B∗)C−1 for C ≤ log=.

Proof. For each pair (8, 9), the (8, 9)-th entry of !C' is∑
ℓ

!C8,ℓ · 'ℓ, 9

Let the 8-th vertex belong to +0 for some 0. Then by Fact 3.1, we have that∑
ℓ

!C8,ℓ · 'ℓ, 9 =
∑
ℓ ∈+0

!C8,ℓ · 'ℓ, 9 +
∑
ℓ∉+0

!C8,ℓ · 'ℓ, 9 = (? − @)C · (|+0 |)C−1 ·
∑
ℓ ∈+0

'ℓ, 9

We notice that
∑

ℓ ∈+0 'ℓ, 9 is a summation of at most B∗ many zero-mean independent random
variables. Then by the Chernoff bound (Theorem 2.5), we have that

Pr

[�����
∑
ℓ ∈+0

'ℓ, 9

����� ≥ 48
√
? · B∗ · log=

]
≤ =−5

Then the absolute value of (8, 9)-th entry of !C' is upper bounded by (?−@)C · (B∗)C−1 ·48
√
? ·
√
B∗ · log=

with probability 1−=−5. Here we use that 1 ≥
√

1 − @ ≥ 1/2 and then taking an union bound on all
=2 (8, 9)-pairs completes the proof. �

We use this result to upper bound ‖" ‖A>F.

Corollary 3.6. Let A = log= and Δ = 0.5
√
B∗ (? − @)A (B∗)A−1. Then the ℓ2 norm of each row of the matrix

" = !A−1' + !A−2'� · · · + !' · �A−2 is upper bounded by 0.1Δ with probability 1 − Õ(=−3).
Proof. We have with probability 1 − O(=−3), all entries of !C' are upper bounded by

ℎC := 96 · (
√
? (1 − @) ·

√
B∗ · log=) · (? − @)C · (B∗)C−1.

Thus, the ℓ2-norm of any row of !C' is upper bounded by ℎC
√
=. Then from Fact 3.4 we have

‖!C'�A−C−1‖A>F ≤ ‖!C'‖A>F · ‖�‖A−C−1. Substituting ‖�‖ from Lemma 3.3 we get

‖!C'�A−C−1‖A>F ≤ ℎC
√
= ·

(
(? − @)B∗ +�0f=

1/2
)A−C−1

with probability 1 − O(=−3). Then the fact that (? − @)B∗ ≥ (log=)7�0f
√
= and A − C − 1 ≤ log= gives

us the bound

‖!C'�A−C−1‖A>F ≤ (192
√
? (1 − @)

√
= log=). ·

√
B∗ · (? − @)A−1(B∗)A−2

Since " = !A−1' + !A−2'� + · · · + !' · �A−2 we have

‖" ‖A>F ≤ ‖!A−1'‖A>F + ‖!A−2'�‖A>F + · · · + ‖!'�A−2‖A>F .

Then by a union bound, we have with probability 1 − O(A · =−3)

‖" ‖A>F ≤ A · (192
√
? (1 − @)

√
= log=) ·

√
B∗ · (? − @)A−1(B∗)A−2

Substituting A · (192
√
? (1 − @)

√
= log=) < 0.1(? − @)B∗ then completes the proof.

�

15

Bounding the Rows of 'A . Now we upper bound rows of 'A .

Lemma 3.7. With probability 1 − O(=−3), the ℓ2 norm of all rows of 'A is upper bounded by 0.1Δ for
A = log=.

Proof. We know that ‖'A ‖A>F ≤ ‖'A ‖. Combined with Lemma 2.2 this implies that with probability
1 − O(=−3),

‖'A ‖A>F ≤ ‖'A ‖ ≤ ‖'‖A ≤ (�0

√
? (1 − @) ·

√
=)A .

Now we use (? − @)B∗ ≥ 10000�0 (log=)7f
√
= to get the following inequality.

‖'A ‖A>F ≤ (�0f
√
=)A ≤

(
(? − @)B∗
(log=)7

)A
≤ 0.1Δ

�

Bounding the rows of " ′. Here we want to bound the norm of rows of " ′ = '!�A−2 + . . . + 'A−1!.
To bound the norm of rows of 'C!�A−C−1, we start with bounding the norm of rows of 'C!. In this
direction we obtain the following result.

Lemma 3.8. The absolute value of each entry of 'C! is upper bounded by

�2

√
? (1 − @) (log=)6 · ((? − @)

√
B∗) ((? − @)B∗)C−1

for C ≤ log= with probability 1 − O(=−3) for some constant �2 < 0.05�.

Due to the non trivial and technical nature of the proof, we place it in Section 5. Finally, we use the
aforementioned result to bound ‖" ′‖A>F.

Corollary 3.9. The maximum ℓ2-norm of the rows of " ′ is upper bounded by ‖" ′‖A>F ≤ 0.1Δ with
probability 1 − Õ(=−3).

Proof. We have " ′ = '!�A−2 + . . . + 'A−1!. This implies ‖" ′‖A>F ≤ ‖'!�A−2‖A>F + . . . + ‖'A−1!‖A>F.
Lemma 3.8 gives upper bounds for each entries of 'C! with probability 1 − O(=−3). Then we have

‖'C!‖A>F ≤
√
= ·

(
�2

√
? (1 − @) (log=)6 · (? − @)

√
B∗ · ((? − @)B∗)C−1

)

with probability 1 − O(=−3). Furthermore ‖'C!�A−C−1‖A>F ≤ ‖'C!‖A>F · (‖�‖)A−C−1. This implies that
with probability 1 − O(=−3),

‖'C!�A−C−1‖A>F ≤ 2�2

√
? (1 − @) (log=)6

√
= ·
√
B∗ · (? − @)A−1(B∗)A−2

for all 1 ≤ C ≤ A − 1. Summing over the A − 1 terms we get with probability 1 − O(log= · =−3),

‖" ′‖A>F ≤ 2�2

√
? (1 − @) (log=)7

√
= ·
√
B∗ · (? − @)A−1 (B∗)A−2

Substituting 2�2

√
? (1 − @) (log=)7

√
= ≤ 0.1(? − @)B∗ results in the bound ‖" ′‖A>F ≤ 0.1

√
B∗ (? −

@)A (B∗)A−1 ≤ 0.1Δ with probability 1 − O(log= · =−3).
�

This completes our proof of Theorem 1.2.

16

4 An Analysis of Simple Spectral Algorithms

In this section we use the analysis of the power iteration method (Algorithm 1) to prove the
correctness of the centered-SVD algorithm (Algorithm 4) and thus prove Theorem 1.3. Let us first
briefly recall the algorithm. We are given the random adjacency matrix � from USSBM(=, :, ?, @),
where the: hidden communities are formed by putting each vertex into the communities uniformly
at random (this implies that the communities are fairly balanced). Let %:� the projection operator
onto the eigenspace of the top : eigenvectors of the shifted adjacency matrix �. Let E8 and E 9 be
the 8-th and 9-th vertices of � and correspondingly the 8-th and 9-th row (column) of � be u and
v respectively. We intend to show with high probability that there is a threshold Δ so that if E8
and E 9 belong to the same community then ‖%:

�
u − %:

�
v‖ ≤ Δ. Otherwise if they belong to different

communities then ‖%:
�
u − %:

�
v‖ ≥ 1.1Δ. As we focus on the more specific USSBM case here, we

show that this recovery works for all clusters (in comparison to Algorithm 1 where we consider
recovering the largest cluster).

Furthermore we work under the condition that = ≥ �2 · :2 (log=)14 · ? (1 − @)/(? − @)2. We now
give a sketch of the proof. It can be broken down into two steps.

Sketch of proof

• First we show that in the USSBM case under the condition of Theorem 1.3, all communities
are separable using the power analysis method. That is, for A = log= and a threshold

Δ
′ := 0.5

√
=/: (? − @)A+1(=/:)A we show in Lemma 4.2 that with probability 1 − O(1/=) if two

vertices E8 and E 9 belong to the same community then ‖�A+18 −�A+19 ‖ ≤ 0.7Δ′. Otherwise if they

belong to different communities then ‖�A+18 − �A+19 ‖ ≥ 1.2Δ′.

• Next we connect %:
�

with �A . We show that if u is the 8-th column of �, then %:
�
u is well

approximated by 1
(?−@)A (=/:)A · �A+18 . In fact, we prove in Lemma 4.4 that ‖%:�u −

�A+1
8

(?−@)A (=/:)A ‖ =
>

(
Δ
′

(?−@)A (=/:)A
)

with probability 1 − O(=−2).

From hereon we denote B := =/:, 5A := 1
(?−@)A (B)A and define the threshold of Algorithm 4 as

Δ := 5A · Δ′ = 0.5(? − @)
√
B . Then combining the results above we get the following.

For any two vertices E8 , E 9 and corresponding columns/rows u and v,

1. If E8, E 9 ∈ +ℓ for some ℓ then by the triangle inequality,

‖%:�u − %:�v‖ ≤ ‖%:�u − 5A�
A+1
8 ‖ + ‖ 5A�A+18 − 5A�

A+1
9 ‖ + ‖%:�v − 5A�

A+1
9 ‖

From Lemma 4.2 with probability 1 − O(1/=) we have ‖ 5A�A+18 − 5A�
A+1
9 ‖ ≤ 5A · 0.7Δ′ ≤ 0.7Δ.

Next, both ‖%:�u − 5A�
A+1
8 ‖ and ‖%:�v − 5A�

A+1
9 ‖ are upper bounded by > (Δ) from Lemma 4.4.

Combining the two we get that ‖%:
�
u − %:

�
v‖ ≤ 0.7Δ +> (Δ) ≤ 0.8Δ with probability 1−O(1/=).

2. Similarly if E8 ∈ +ℓ and E 9 ∈ +ℓ ′ then

‖%:�u − %:�v‖ ≥ ‖ 5A�A+18 − 5A�
A+1
9 ‖ − ‖%:�u − 5A�

A+1
8 ‖ − ‖%:�v − 5A�

A+1
9 ‖

Here the first term is lower bounded by 5A1.2Δ
′
= 1.2Δ and the next two terms are upper

bounded by > (Δ). This implies ‖%:�u − %:�v‖ ≥ 1.1Δ with probability 1 − O(1/=), which
completes the proof.

17

Now, we obtain Lemma 4.2 and 4.4, to obtain separation based on �A and then upper bound
‖%:

�
u − 5A�

A+1
8 ‖.

4.1 Separation in the Rows of Power Matrix in the USSBM Case

We start with formalizing the balancedness in the size of the communities. Since each vertex is
assigned a community uniformly at random, the expected size of any cluster is B := =/:. Under
the choices of parameters ?, @, :, = from Theorem 1.3 we have =/: ≫

√
=(log=)7 and then applying

Chernoff’s bound on the size of the communities we get

Fact 4.1 (Size of the clusters). In the USSBM(=, :, ?, @) model under the condition of Theorem 1.2, for any
cluster +8 we have Pr(|+8 − =/: | ≥ 1

(log=)5 · =/:) ≤ =−4.

This gives us a relation between the largest and smallest cluster in the USSBM framework. Let
B∗ and Bmin be the sizes of the largest and the smallest clusters respectively. We then have the
following lemma.

Lemma 4.2. Let Δ′ = 0.5
√
B (? − @)A+1 (B)A . In the USSBM case under the condition of Theorem 1.3, if E8

and E 9 belong to the same cluster then ‖�A+18 − �A+19 ‖ ≤ 0.7Δ′ and ‖�A+18 − �A+19 ‖ ≥ 1.2Δ′ otherwise.

Proof. Recall that��‖�A+18 − �A+19 ‖ − ‖!A+18 − !A+19 ‖
�� ≤ 2(‖" ‖A>F + ‖" ′‖A>F + ‖'A+1‖A>F)

Now combining Corollary 3.6, Lemma 3.7 and Corollary 3.9 we have that with probability
1 − O(1/=), 2(‖" ‖A>F + ‖" ′‖A>F + ‖'A+1‖A>F) ≤ 0.1

√
B∗ (? − @)A+1 (B∗)A . Fact 4.1 implies that for any

A ≤ log= with probability 1 − O(=−4),

• (B∗)A+1 ≤ BA+1 · (1 + log−5 =)A+1 ≤ BA+1 · (1 + log−4 =) ≤ 1.01BA+1.

• (Bmin)A+1 ≥ BA+1 · (1 − log−5 =)A+1 ≥ BA+1 · (1 − log−4 =) ≥ 0.99BA+1.

Thus we get with probability 1 − O(1/=),

2(‖" ‖A>F + ‖" ′‖A>F + ‖'A ‖A>F) ≤ 0.33
√
B · (? − @)A+1BA ≤ 0.7Δ′

Next, Lemma 3.2 implies that if E8 and E 9 do not belong to the same community then ‖!A+18 −
!A+19 ‖ ≥

√
Bmin (? − @)A+1 (Bmin)A ≥ 0.99

√
B (? − @)A+1BA ≥ 1.9Δ′ with probability 1 − O(1/=).

Combining this we get that with probability 1− O(1/=) ‖�A+18 −�A+19 ‖ ≤ 0.7Δ′ if E8 and E 9 belong

to the same cluster, and ‖�A+18 − �A+19 ‖ ≥ 1.9Δ′ − 0.7Δ′ ≥ 1.2Δ′, which completes the proof.
�

Next, we connect the SVD projection with the power matrix.

4.2 Relation Between Eigenspace and Power Matrix

We aim to show that ‖%:�u − 5A�
A+1
8 ‖ = > (Δ) with high probability. To obtain this we first show that

‖ 5A�A+18 ‖ = Θ(Δ) and then ‖%:�u − 5A�
A+1
8 ‖ = > (‖ 5A�A+18 ‖).

Lemma 4.3. Let Δ = 0.5(? − @)
√
B . Then under the condition of Theorem 1.3 we have ‖ 5A�A+18 ‖ = Θ(Δ)

with probability 1 − O(1/=) for any 8.

18

Proof. Recall that �A+18 = !A+18 +"8+" ′8 +'A+18 . From Section 3 we have that with probability 1−O(1/=),
‖" ‖A>F + ‖" ′‖A>F + ‖'A ‖A>F ≤ 0.15

√
B∗ (? − @)A+1 (B∗)A ≤ 0.16

√
B (? − @)A+1BA . Furthermore,

• ‖!A+18 ‖ ≥
√
Bmin (? − @)A+1(Bmin)A ≥ 0.99

√
B (? − @)A+1BA with probability 1 − O(=−3).

• ‖!A+18 ‖ ≤
√

2B∗ (? − @)A+1 (B∗)A ≤ 2.2
√
B (? − @)A+1BA with probability 1 − O(=−3).

Thus, with probability 1 − O(1/=) we have

‖ 5A�A+18 ‖ ≥ 5A (‖!A+18 ‖ − ‖" ‖A>F − ‖" ′‖A>F − ‖'A ‖A>F) ≥ (? − @)−AB−A · 0.5
√
B (? − @)A+1BA

≥ 0.5
√
B (? − @) ≥ 0.5Δ

Similarly, with probability 1 − O(1/=), ‖ 5A�A+18 ‖ ≤ 5Δ. This completes the proof.
�

Furthermore, let us also upper bound Δ. Recall that (? − @)B ≫
√
? (1 − @)

√
=(log=)7. This implies

Δ = 0.5(? − @)
√
B ≥ (log=)7/

√
= (2)

We then have the following bound on ‖ 5A�A+18 − %:
�
u‖.

Lemma 4.4. Let Δ = 0.5(?−@)
√
B , 5A =

1
(?−@)A BA and the relation between= and: be as stated in Theorem 1.3.

Let u be the 8-th column of �. Then with probability 1 − O(=−4) we have

‖%:�u − 5A�
A+1
8 ‖ = > (Δ)

Proof. We first note that �A+18 = �Au. This follows from the fact that u is the 8-th column of � and
that � is a symmetric matrix. Then we observe %:�u − 5A�

A
u.

Let p i, 1 ≤ 8 ≤ = be the = the orthonormal eigenvectors of � in descending order of eigenvalues
_1(�) ≥ . . . ≥ _= (�). We denote _8 (�) simply as _8 . Then any column u can be represented as
u =

∑=
9=1〈pj, u〉pj. It implies �Au =

∑=
9=1 (_8)A 〈pj, u〉pj .

On the other hand, as %:
�

is the projection operator onto the top : eigenvectors of �, we have

%:
�
=

∑:
8=1〈p i, u〉p i. Substituting these descriptions we get

5A�
A
u − %:�u =

=∑
9=1

5A (_ 9)A 〈pj, u〉pj −
:∑
8=1

〈p i, u〉p i

=

:∑
8=1

(5A (_8)A − 1)〈p i, u〉p i +
=∑

9=:+1
5A (_ 9)A · 〈pj, u〉pj

≤
:∑
8=1

| 5A (_8)A − 1| 〈p i, u〉p i +
=∑

9=:+1
5A (_ 9)A · 〈pj, u〉pj

=⇒ ‖ 5A�Au − %:�u‖2 ≤
:∑
8=1

(|5A (_8)A − 1|2 〈p i, u〉)2 +
=∑

9=:+1
(5A (_ 9)2A 〈pj, u〉)2 (3)

Now we analyze 5A (_8)A . Recall that _8 = _8 (�) and � = ! + '. Then Weyl’s inequality implies
_8 (!) − ‖'‖ ≤ _8 (�) ≤ _8 (!) + ‖'‖ for 8 ≤ : and _8 (�) ≤ ‖'‖ for 8 > : as ! has rank :. In this direction,
_8 (!) = (? − @) |+8 | where +8 is the 8-th largest community. Furthermore, ‖'‖ ≤ �0

√
? (1 − @)

√
=

with probability 1 − O(=−3). We also have (? − @)Bmin ≥ �0

√
? (1 − @)

√
=(log=)7. We then have two

observations.

19

1. Let 8 ≤ :. Then |_8 (�) − (? −@)B | ≤ ‖'‖ + (? −@) (B∗ − B) + (? −@) (B − Bmin) Then with probability
1−O(=−3) this implies |_8 (�)− (?−@)B | ≤ (?−@)B (log=)−6+2(?−@)B (log=)−4 ≤ (?−@)B (log=)−3.
This implies 5A (_8)A = 1 ± (log=)−3 and thus (5A (_8)A − 1)2 = > ((5A_8)2A).

2. Let 8 > :. Then _8 ≤ (? − @)B (log=)−5 with probability 1 − O(=−3). Then with the same
probability 5A (_8)A ≤ 5A (? − @)ABA (log=)−5A ≤ (log=)−5A ≪ =−2.

Substituting this in Equation (3) we get

‖ 5A�Au − %:�u‖2 =
:∑
8=1

> (5A (_8)A)2(〈p i, u〉)2 +
=∑

9=:+1

1

=4
(〈pj, u〉)2

=> (‖ 5A�A+1 | ‖2) + > (=−2) [From definition of 5A�
A+1 and ‖D‖2 ≤ =]

=> (Δ2) [Lemma 4.3 and Equation (2)]

This implies that with probability 1 − O(=−3) we have ‖ 5A�A+18 − %:
�
u‖ = > (Δ) for any 8 and then

applying union bound on 8 completes the proof. �

5 Proving Entry-wise Concentration Bounds of via Random Partition

In this section we bound the absolute value of the entries of 'C! for any C ≤ log=, proving
Lemma 3.8. Let us first recall the statement of the lemma. We want to show that with high
probability (1 − O(=−3)) the absolute value of entries of 'C!, denoted as ('C!)0,1 is upper bounded
by ��('C!)0,1 �� ≤ �2

√
? (log=)6 · (? − @)

√
B∗ · ((? − @)B∗)C−1

for some constant�2. We first expand ('C!)0,1 as follows.

('C!)0,1 =

∑
ℓ1,...,ℓC

'0,ℓ1'ℓ1,ℓ2 · · ·'ℓC−1,ℓC!ℓC ,1

Thus, each entry of 'C! is a sum of multivariate monomials, with the degree of each monomial
being C + 1. We can denote each monomial with their index list L := (ℓ1, . . . , ℓC) ∈ [=]C which
establishes a one-to-one correspondence between monomials %L and index lists L. Then we have
('C!)0,1 =

∑
L∈[=]C %L .

Against this setting, we break the set of L into several groups based on the similarity of the
indices. We define an encoding of the lists to a C-length array - . Then all L that map into the same
encoding - form one such group. The encoding is as follows.

Definition 5.1 (Encoding index lists to -). Given any index list L = (ℓ1, . . . , ℓC) ∈ [=]C , we encode it
into a C-length array - as follows.

• Set - [1] = 1.

• For all 8 ≥ 2, let ~ := max{- [1], . . . , - [8 − 1]}. If ℓ8 ≠ ℓ9 for all 9 < 8, we set - [8] = ~ + 1. Otherwise,
- [8] = - [9] for any 9 < 8 s.t ℓ8 = ℓ9 .

Let the set of all such - be X. Then the size of X follows simply from its definition.

20

Lemma 5.2. The size of X is upper bounded by CC , i.e. |X| ≤ CC .

Now, corresponding to any - ∈ X, we define by / C
0,1
(-) the sum of monomials %L such that L

maps to that particular - . Let C ′ := max{- [1], . . . , - [C]}. Then / C
0,1
(-) can be expressed as follows,

/ C
0,1 (-) =

∑
ℓ1,...,ℓC′∈([=])C

′

s.t ℓ81≠ℓ82∀81,82∈[C
′]

'0,ℓ- [1]'ℓ- [1],ℓ- [2] · · ·'ℓ- [C−1],ℓ- [C]!ℓ- [C],1

And we have the inequality

| ('!)0,1 | ≤
∑
- ∈X

���/ C
0,1 (-)

��� (4)

We prove upper bounds on
���/ C

0,1
(-)

��� for any arbitrary - with probability 1− (C−C ·=−5), and then

use Lemma 5.2 to upper bound the total value using a union bound.
We first prove it for the simplest case, which is for the encoding- where all indices are different.

That is, the corresponding - has - [8] = 8, 1 ≤ 8 ≤ C . We denote, C
0,1

:= / C
0,1
(-) for this particular - ,

and bound
���, C

0,1

���. Then we extend our result for a generic - ∈ X.

The case with all different indices.

In this part we denote ℓ0 := 0 and ℓC+1 := 1 for ease of presentation. We want to to upper bound the
sum ��, C

ℓ0,ℓC+1

�� =
������

∑
(ℓ1,...,ℓC):ℓG≠ℓ~∀G,~

'ℓ0,ℓ1 · · ·'ℓC−1,ℓC!ℓC ,ℓC+1

������
We use a random partition idea to bound this summation. Let [=] := {1, . . . , =}. We partition [=]

into C many sets) = {)1, . . . ,)C } by putting each element into one of the sets uniformly at random.
Then we consider the summation

, C
ℓ0,ℓC+1 ()) =

∑
ℓ1∈)1,...,ℓC ∈)C

'ℓ0,ℓ1'ℓ1,ℓ2 · · ·'ℓC−1,ℓC!ℓC ,ℓC+1

As) is a partition formed uniformly at random, the probability that any monomial of, C
ℓ0,ℓC+1

is
present in, C

ℓ0,ℓC+1
()) is (1/C)C . Then we have

, C
ℓ0,ℓC+1 = CC · E

)
[, C

ℓ0,ℓC+1 ())]

=⇒
��, C

ℓ0,ℓC+1

�� = CC
����E) [, C

ℓ0,ℓC+1 ())]
����

We then have the following Lemma.

Lemma 5.3. For any 0 < C < log= and ℓ0, ℓC+1 we have
���, C

ℓ0,ℓC+1

��� ≤ CC · E
)

[���, C
ℓ0,ℓC+1
())

���] .
Against this setup we first upper bound

���, C
ℓ0,ℓC+1
())

��� for a fixed) , and then obtain E
)
[|, C

ℓ0,ℓC+1
()) |]

using the higher moment method.

21

Analyzing
���, C

ℓ0,ℓC+1
())

��� for a fixed) : Since all of the random variables in any monomial is different,

we can write ��, C
ℓ0,ℓC+1 ())

�� =
�����

∑
ℓ1∈)1,...,ℓC−1∈)C−1

'ℓ0,ℓ1 · · ·'ℓC−2,ℓC−1

∑
ℓC ∈)C

'ℓC−1,ℓC!ℓC ,ℓC+1

�����
To bound this term we define

� (8, ℓ8) =
∑

ℓ8+1∈)8+1,...,ℓC ∈)C
'ℓ8 ,ℓ8+1 · · ·'ℓC−1,ℓC!ℓC ,ℓC+1

This implies for every 8 and ℓ8−1, |� (8 − 1, ℓ8−1) | =
��∑

ℓ8 ∈)8 'ℓ8−1,ℓ8� (8, ℓ8)
�� . We plan to recursively upper

bound |� (8, ℓ8) | in the descending order of 8, starting with � (C − 1, ℓC−1) :=
∑

ℓC ∈)C 'ℓC−1,ℓC!ℓC ,ℓC+1 and
ending at |� (0, ℓ0) |. We upper bound this using the fact that since 'ℓ8−1,ℓ8 is a zero mean random
variable, so is 'ℓ8−1,ℓ8� (8, ℓ8). Then an upper bound on |� (8, ℓ8) | allows us to apply Chernoff bound
on this sum.

Recall that any column of ! has at most B∗ non zero (each (? −@)) entry and '8, 9 is a zero-mean
independent random variable which is either 1 − ? with probability ? and −? otherwise, or 1 − @
with probability @, or −@ otherwise. Then Chernoff bound (Theorem 2.5) implies the following.

Corollary 5.4. For all ℓC−1 ∈)C−1,

Pr(|� (C − 1, ℓC−1) | ≥ 96(? − @)√?
√
B∗ (log=)3) ≤ =−4(log=)2 .

Then applying the definition recursively we have the following lemma.

Lemma 5.5. Let |� (8, ℓ8) | , 1 ≤ 8 < C − 1 be less than V for all ℓ8 ∈)8 with probability ?V . Then

Pr
(
|� (8 − 1, ℓ8−1) | ≤ V · 96

√
?
√
=(log=)3

)
≥ (1 − =−5(log=)2)?V

Proof. From the definition of � (8 − 1, ℓ8−1) we have

|� (8 − 1, ℓ8−1) | =
�����
∑
ℓ8 ∈)8

'ℓ8−1,ℓ8� (8, ℓ8)
�����

Here 'ℓ8−1,ℓ8� (8, ℓ8) are zero mean random variables, and with probability ?V , |� (8, ℓ8) | ≤ V for all ℓ8 .
Then from the Chernoff bound we have

Pr

(�����
∑
ℓ8 ∈)8

'ℓ8−1,ℓ8� (8, ℓ8)
����� ≥ V · 96

√
?
√
|)8 | (log=)3

)
≤ =−5(log=)2

Then applying |)8 | ≤ = completes the proof. �

Next using the recursive definition of � (8, ℓ8) along with Lemma 5.5 we upper bound |, C
ℓ0,ℓC+1
()) |.

Lemma 5.6. For any fixed partition) and C ≤ log= the sum
���, C

ℓ0,ℓC+1
())

��� is upper bounded by �C :=

(96
√
? (? − @)

√
B∗ (log=)3) · (96

√
?
√
=(log=)3)C−1 with probability 1 − =−3(log=)2 .

22

Proof. From Corollary 5.4 we have that

Pr
(
|� (C − 1, ℓC−1) | ≤ 96

√
? (? − @)

√
B∗ (log=)3

)
≥ 1 − =−4(log=)2

for all values of C − 1. Then application of Lemma 5.5 C − 1 times give us

Pr
(
|� (0, ℓ0) | ≤ (96

√
? (? − @)

√
B∗ (log=)3) · (96

√
?
√
=(log=)3)C−1

)
≥ 1 − C2=−4(log=)2

and putting C ≤ log= completes the proof. �

Furthermore, C
ℓ0,ℓC+1
()) is the sum of =C many monomials for any fixed) , and the absolute value

of each monomial is less than ? − @. This gives us the following fact.

Fact 5.7. For any fixed partition) of [=] into C many sets,
���, C

ℓ0,ℓC+1
())

��� ≤ (? − @)=C .
Now we analyze E

)
[|, C

ℓ0,ℓC+1
()) |] using the higher moment method.

Upper bounding the expectation. Let V be the number of possible partitions of [=] into)

many uniformly formed sets. Since each partition is chosen with equal probability, we have

(:= E
)
[|, C

ℓ0,ℓC+1
()) |] = 1

V

∑
) |, C

ℓ0,ℓC+1
()) |. Then Markov’s inequality implies Pr((≥ W) ≤ E[(2]

W2 for any

2 > 0. We are now left with needing an upper bound on E[(2].

Lemma 5.8. For any 0 < 2 < log=, we have E[(2] ≤ (�C)2

Proof. We have

E[(2] = E

[(
1/V

∑
)

|, C
ℓ0,ℓC+1 ()) |

)2]
= (1/V)2

∑
)1,...,)2

E
[
|, C

ℓ0,ℓC+1 ()1) | · |, C
ℓ0,ℓC+1 ()2) | · · · |, C

ℓ0,ℓC+1 ()2) |
]

We now analyze E

[
|, C

ℓ0,ℓC+1
()1) | · |, C

ℓ0,ℓC+1
()2) | · · · |, C

ℓ0,ℓC+1
()2) |

]
. From Lemma 5.6 we have that for

any fixed) , Pr(|, C
ℓ0,ℓC+1
()) | ≥ �C) ≤ =−3(log=)2 . This implies

Pr
©«
∏
8∈[2]

��, C
ℓ0,ℓC+1 ()8)

�� ≥ �2
C
ª®¬
≤ 2 · =−3(log=)2 ≤ =−2(log=)2

From Fact 5.7 we have |, C
ℓ0,ℓC+1
()) | ≤ (? − @)=C . Then using 2C ≤ (log=)2 we get that for)1, . . . ,)2 ,

E
[
|, C

ℓ0,ℓC+1 ()1) | · |, C
ℓ0,ℓC+1 ()2) | · · · |, C

ℓ0,ℓC+1 ()2) |
]
≤ (1 − =−2(log=)2) (�C)2 + =−2(log=)2 (? − @)2=2C ≤ (�C)2,

as 2, C ≤ log=. Since there are a total of V2 terms, the lemma then follows. �

Then combining with higher moment method we have the following result by setting W =

32 · log= ·�C and 2 = log=.

Corollary 5.9. For any ℓ0, ℓC+1 and C < log= we have |, C
ℓ0,ℓC+1
| ≤ CC · 32 · log= · �C with probability

1 − log=log==−5.

This completes analysis of the summation of all monomials where ℓ1, . . . , ℓC are all different.
Next we extend our proof to a generic - .

23

Monomials with arbitrary individual degrees

Next we bound the absolute value of the sum of the monomials with any index ordering - ∈ X.
Recall the definition

/ C
0,1 (-) =

∑
ℓ1,...,ℓC′∈([=])C

′

s.t ℓ81≠ℓ82∀81,82∈[C
′]

'0,ℓ- [1]'ℓ- [1],ℓ- [2] · · ·'ℓ- [C−1],ℓ- [C]!ℓ- [C],1

and that C ′ := max{- [1], . . . , - [C]}. Here we define the representative monomial

P (C′) (1, . . . , C ′, ℓ1, . . . , ℓC′) := '0,ℓ- [1]'ℓ- [1],ℓ- [2] · · ·'ℓ- [C−1],ℓ- [C]!ℓ- [C],1

Let L(:= {ℓ8 }8∈(for any (⊆ [C ′]. Then we have

/ C
0,1 (-) =

∑
ℓ1,...,ℓC′∈([=])C

′

s.t ℓ81≠ℓ82∀81,82∈[C
′]

P (C′)
(
[C ′],L [C′]

)

Furthermore, we fix all the indices ℓ8 that are to be assigned 0. Since at most one of the index
can be assigned as 0, we define by / C

0,1
(-, 8) as the sum of monomials of / C

0,1
(-) for which ℓ8 = 0.

Furthermore, / (-, 0) is the case where none of the indices are 0. Then��('C!)0,1 �� ≤ ∑
- ∈X

∑
0≤8≤C′

���/ C
0,1 (-, 8)

��� (5)

Here we upper bound
���/ C

0,1
(-, 0)

��� for any arbitrary - using our analysis of, C
0,1

and then extend

it to complete the proof. First we describe a sketch of our proof.

Sketch of proof We start with a random partition of [=] \ {0} into C ′ many sets) = {)1, . . . ,)C′}
and upper bound the term

/ C
0,1 (-, 0,)) :=

∑
ℓ8 ∈)8

1≤8≤C′

P (C′)
(
[C ′],L [C′]

)

Then, as before we have

/ C
0,1 (-, 0) = (C

′)C′ · E
)

[
/ C
0,1 (-, 0,))

]
=⇒ |/ (-, 0) | ≤ CC · E

)

[���/ C
0,1 (-, 0,))

���]
We upper bound |/ C

0,1
(-, 0,)) | with high probability and then the upper bound on expectation

follows from the higher moment method. Let us now focus on / C
0,1
(-, 0,)).

In case of, C
0,1

, we start with a sum of C + 1 degree monomials, and recursively bound a certain
sum based on the index ℓ8 at each round, starting from ℓC and proceeding in the decreasing order.
After each round, we are left with bounding a sum of monomials of degree one less than the
previous round.

In contrast, for / C
0,1
(-, 0,)) we start with ℓC′ and go down. Since some indices may appear in

multiple random variables, the degree of the monomial may go down arbitrarily after each step.
The crux of the idea is to ensure that after we have taken a sum on ℓ8 , there are still random variables
with ℓ9 , 9 < 8 as their indices for all 9 . This is ensured by the way our encoding scheme is defined.
Now we lay out the details.

24

Upper bounding
���/ C

0,1
(-, 0,))

���. Note that in / C
0,1
(-, 0,)), the domain of each index ℓ8 is unique (as

) is a disjoint partition of [=] \ {0}). We also denote the monomial P((,L() simply as P(for ease
of representation. Then we have the following definition.

Definition 5.10. Let (C = [C ′]. Then, given the monomial P (C′)
(
(C′,L(C′

)
,

1. P (8,8) denotes the product of variables in P (8) that have ℓ8 as one of their indices.

2. P (8−1) denotes the monomial obtained by removing P (8,8) from P (8) .

That is,
P (8)
(8

= P (8−1)
(8−1

· P (8,8)
(′8

where (8 is the set of indices present in the variables of the monomial P (8) and (′8 is the set of indices
present in the variables of the monomial P (8,8) .

Here note that ℓ8 ∉ (8−1 and if deg(P (8,8)) > 0, then ℓ8 ∈ (′8 . This in turn implies the following
identity.

P (C
′)

(C
=

∏
1≤8≤C′

P (8,8)
(′8

(6)

Then we have a simple lemma which is a consequence of our encoding scheme 5.1.

Lemma 5.11. For any 1 ≤ 8 ≤ C ′, deg
(
P (8,8)
(′8

)
≥ 1.

Proof. This can be proven by induction. We start with P (C′) . Recall that P (C′−1) is obtained by
removing all variables 'ℓ- [8],- [8+1] or !- [C],1 from P (C′) that contain ℓC′ as an index. Furthermore,

in the monomial P (C′) , ℓC′ has the right-most first appearance, as C ′ has the highest value in the
corresponding- . Thus, the first variable from left in which ℓ8 , 8 < C ′ is first present is strictly left of
the first appearance of ℓC′. Thus, all such variables are present in P (C′−1) .

Similarly consider any P (8) such that it has at least one variable with ℓ9 as an index for any 9 ≤ 8.
Then if P (8,8) is removed, the first variable in which ℓ9 , 9 < 8 appears is still present in P (8−1) . This
completes the proof.

�

Furthermore, it is also easy to see that if - [C] = U then deg
(
P (U,U)

)
≥ 2, as it is product of at

least !ℓU ,1 and some 'ℓU ,ℓ8′ . Having established this setup, we now upper bound
���/ C

0,1
(-, 0,))

���. To

this end we define

� ((8,L(8) :=
∑

ℓ8+1∈)8+1,...,ℓC′∈)C′

(∏
C′≥ 9>8

P (9, 9) ((′9 ,L(′9
)
)

(7)

Then,
� ((8−1,L(8−1) =

∑
ℓ8 ∈)8
P (8,8) ((′8 ,L(′8

)� ((8,L(8)

and / C
0,1
(-, 0,)) = � ((0,L(0) where (0 = ∅.

We first obtain a bound on sum of variables of the form
∑

8∈)8 '
2
8, 9 where 2 ≥ 2. We shall use

this result as in this part we deal with sum of monomials where the variables may have higher
individual degrees.

25

Lemma 5.12. Let 2 ≥ 2 and) ⊆ [=] so that ? (1−@) · |) | ≥ 1. Then with probability 1−=−4 log(=)2 we have�����
∑
8∈)

'28, 9

����� ≤ 192? (1 − @) · |) | · (log=)3

Proof. Recall that '8, 9 is a zero mean random variable with one of the two distributions.

1. If 8 ∼ 9 , then '28, 9 is (1 − ?)2 with probability ?, and (−?)2 with probability 1 − ?. Then

� ['28, 9] = (1 − ?)2? + (−?)2 (1 − ?) = ? (1 − ?) · ((1 − ?)2−1 − (−?)2−1)

Since
��(1 − ?)2−1 − (−?)2−1

�� ≤ 1, we have
���� ['28, 9]

��� ≤ ? (1 − ?).

2. If 8 ≁ 9 then '28, 9 is (1 − @)2 with probability @ and (−@)2 otherwise. Then
���� ['28, 9]

��� ≤ @(1 − @).

Thus, the random variable is two valued with the two points being less than 1 distance apart,
and has expectation upper bounded as |� ['28, 9] | ≤ ? (1−@). Then Chernoff’s theorem (Theorem 2.5)

implies that with probability 1 − =−4(log=)2 ,

− ? (1 − @) |) | − 192
√
?
√
|) | (log=)3 ≤

∑
8∈)

'28, 9 ≤ ? (1 − @) |) | + 192
√
?
√
|) | (log=)3

=⇒
�����
∑
8∈)

'28, 9

����� ≤ ? (1 − @) |) | + 192
√
?
√
|) | (log=)3

=⇒
�����
∑
8∈)

'28, 9

����� ≤ 192? (1 − @) |) | (log=)3

�

We then have the following result

Lemma 5.13. Let deg(P (8,8)) = F8 . If
��� ((8,L(8)

�� ≤ V with probability ?V , then

1. If - [C] = 8, then with probability ?V (1 − =−3(log=)2)
��� ((8−1,L(8−1)

�� ≤ V · 96(? − @)√?
√
B∗ (log=)3 · (96

√
?
√
=(log=)3)F8−1

2. Otherwise with probability ?V (1 − =−3(log=)2)
��� ((8−1,L(8−1)

�� ≤ V · (96
√
?
√
=(log=)3)F8

Proof. Equation (7) implies that

� ((8−1,L(8−1) =
∑
ℓ8 ∈)8
P (8,8) ((′8 ,L(′8

)� ((8,L(8)

26

We analyze the first case here, and the second case then follows. As in Lemma 5.5, we
P (8,8) ((′8 ,L(′8

)� ((8,L(8) is a zero mean random variable. And since - [C] = 8, then for some (⊆ [8]
and 2 9 being positive integers,

P (8,8) =
∏
9 ∈(

'
2 9
ℓ8 ,ℓ9
· !ℓ8 ,1

Here note that F8 ≥ 2 as P (8,8) contains !ℓ8 ,1 and at least one variable from '. The following

events then happen with probability (1 − =−3(log=)2)?V .

• If F8 = 2, then P (8,8) = 'ℓ8 ,ℓ8′!ℓ8 ,1 for some 8 ′ and
��� ((8−1,L(8−1)

�� can be directly upper bounded

by V · 96(? − @)√?
√
B∗ (log=)3 from Lemma 5.5 (scaling the variables with 1/V and applying

Chernoff bound).

• Otherwise, if F8 > 2,
��E[P (8,8)]�� ≤ ? (1 − @). Then Lemma 5.12 implies that with probability

?V · (1 − =−3(log=)2),
��� ((8−1,L(8−1)

�� ≤ V · 96(? − @) · ? (1 − @)B∗ (log=)3

≤ 96(? − @)√?
√
B∗ (log=)3 · (96

√
?
√
=(log=)3)F8−1 [As B∗ ≤

√
B∗
√
=]

The case for - [C] ≠ 8 also follows in the same manner. �

This result gives us an upper bound on
���/ C

0,1
(-, 0,))

���by iterating C ′−1 times through Lemma 5.13.

Corollary 5.14. Let C ′ ≤ log= and) = {)1, . . . ,)C′} be any fixed partition. Recall that �C = (96
√
? (? −

@)
√
B∗ (log=)3) · (96

√
?
√
=(log=)3)C−1. Then we have

Pr
(���/ C

0,1 (-, 0,))
��� ≤ �C

)
≥ 1 − =−2(log=)2

Finally, to bound the expectation, as before we have

|/ C
0,1 (-, 0) | ≤ (C

′)C′E
)
[|/ C

0,1 (-, 0,)) |] (8)

Once we have an upper bound for an arbitrary) , the same analysis as for , C
ℓ0,ℓC+1

follows for
obtaining E) [|/ C

0,1
(-, 0,)) |], where in we get E) [|/ C

0,1
(-, 0,)) |] ≤ 32 log= · �C and then get the

following bound on / (-, 0) from Equation 8 (we skip redoing the calculation for brevity).

Corollary 5.15.

Pr
(
|/ (-, 0) | ≤ CC · 32 log= ·�C

)
≥ 1 − (log=)log==−5

The same bound follows for any / C
0,1
(-, 8) as we merely fix one of the indices to a single value

(0) and then randomly partition [=] \ {0} into) ′ many sets. That is, Corollary 5.15 implies

Pr
(
|/ (-, 8) | ≤ CC · 32 log= ·�C

)
≥ 1 − (log=)log==−5 (9)

We can now summarize to complete the proof.

27

Proof of Lemma 3.8 Combining Equations (5) and (9) via an union bound on all (C + 1) · CC
possibilities, we get with probability 1 − O(=−4),

| ('C!)0,1 ≤ 32 · (C + 1) · C2C · log= ·�C

≤ 32 · 2C · (C2)C · log= · (96
√
? (? − @)

√
B∗ (log=)3) · (96

√
?
√
=(log=)3)C−1

≤ 32 · 2C · ((log=)2)C log= · (96
√
? (? − @)

√
B∗ (log=)3) · (96

√
?
√
=(log=)3)C−1 [Substituting C ≤ log=]

≤ 128 · 96
√
? (? − @)

√
B∗ (log=)6 · (192

√
?
√
=(log=)5)C−1

≤ 12228(? − @) (log=)6 · ((? − @)
√
B∗) · ((? − @)B∗)C−1 [(? − @)B∗ ≫ 192

√
?
√
=(log=)5]

This completes the proof.

References

[Abb17] Emmanuel Abbe. Community detection and stochastic block models: recent develop-
ments. The Journal of Machine Learning Research, 18(1):6446–6531, 2017. 2

[ACX13] Nir Ailon, Yudong Chen, and Huan Xu. Breaking the small cluster barrier of graph
clustering. In International conference on machine learning, pages 995–1003. PMLR, 2013.
4

[AFWZ20] Emmanuel Abbe, Jianqing Fan, Kaizheng Wang, and Yiqiao Zhong. Entrywise eigen-
vector analysis of random matrices with low expected rank. Annals of statistics,
48(3):1452, 2020. 2, 3, 4, 11

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique
in a random graph. Random Structures & Algorithms, 13(3-4):457–466, 1998. 2

[BCLS87] Thang Nguyen Bui, Soma Chaudhuri, Frank Thomson Leighton, and Michael Sipser.
Graph bisection algorithms with good average case behavior. Combinatorica, 7(2):171–
191, 1987. 2

[Bop87] Ravi B Boppana. Eigenvalues and graph bisection: An average-case analysis. In 28th
Annual Symposium on Foundations of Computer Science (sfcs 1987), pages 280–285. IEEE,
1987. 2

[DF89] Martin E. Dyer and Alan M. Frieze. The solution of some random np-hard problems
in polynomial expected time. Journal of Algorithms, 10(4):451–489, 1989. 2

[DK69] Chandler Davis and W. M. Kahan. Some new bounds on perturbation of subspaces.
Bulletin of the American Mathematical Society, 75(4):863 – 868, 1969. 10

[EBW18] Justin Eldridge, Mikhail Belkin, and Yusu Wang. Unperturbed: spectral analysis be-
yond davis-kahan. In Firdaus Janoos, Mehryar Mohri, and Karthik Sridharan, editors,
Proceedings of Algorithmic Learning Theory, volume 83 of Proceedings of Machine Learning
Research, pages 321–358. PMLR, 07–09 Apr 2018. 2, 10, 11

[FK81] Zoltán Füredi and János Komlós. The eigenvalues of random symmetric matrices.
Combinatorica, 1(3):233–241, 1981. 8, 10

28

[HLL83] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic block-
models: First steps. Social networks, 5(2):109–137, 1983. 2

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963. 12

[LR15] Jing Lei and Alessandro Rinaldo. Consistency of spectral clustering in stochastic block
models. The Annals of Statistics, 43(1):215–237, 2015. 2, 4

[McS01] Frank McSherry. Spectral partitioning of random graphs. In Proceedings 42nd IEEE
Symposium on Foundations of Computer Science, pages 529–537. IEEE, 2001. 2, 3, 4, 5, 11

[MPZ22] Chandra Sekhar Mukherjee, Pan Peng, and Jiapeng Zhang. Recovering unbalanced
communities in the stochastic block model with application to clustering with a faulty
oracle. arXiv preprint arXiv:2202.08522, 2022. 2, 3, 4, 11

[Vu05] V. H. Vu. Spectral norm of random matrices. In Proceedings of the Thirty-Seventh Annual
ACM Symposium on Theory of Computing, STOC ’05, page 423–430, New York, NY, USA,
2005. Association for Computing Machinery. 8, 10

[Vu18] Van Vu. A simple svd algorithm for finding hidden partitions. Combinatorics, Probability
and Computing, 27(1):124–140, 2018. 2, 3, 4, 5, 6, 11, 12

[Wig58] Eugene P Wigner. On the distribution of the roots of certain symmetric matrices. Annals
of Mathematics, pages 325–327, 1958. 10

[YP14] Seyoung Yun and Alexandre Proutière. Accurate community detection in the stochastic
block model via spectral algorithms. ArXiv, abs/1412.7335, 2014. 2, 4

29

	1 Introduction
	1.1 Our Contribution
	1.1.1 Our Algorithm to Recover the Largest Partition
	1.1.2 Towards Vanilla Spectral Algorithms

	1.2 Proof Outlines
	1.2.1 Proof Outline of Theorem 1.2
	1.2.2 Outline of Theorem 1.3

	1.3 Connections to Other Techniques
	1.4 Conclusion and Future Directions

	2 Preliminaries
	3 Analysis of the Power-iteration Method
	3.1 Bounding the Maximum Norm of the Rows

	4 An Analysis of Simple Spectral Algorithms
	4.1 Separation in the Rows of Power Matrix in the USSBM Case
	4.2 Relation Between Eigenspace and Power Matrix

	5 Proving Entry-wise Concentration Bounds of via Random Partition

