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Abstract

We continue the study of selection and sorting of n numbers under the adversarial comparator
model, where comparisons can be adversarially tampered with if the arguments are sufficiently
close.

We derive a randomized sorting algorithm that does O(n log2 n) comparisons and gives a
correct answer with high probability, addressing an open problem of Ajtai, Feldman, Hassadim,
and Nelson [AFHN15]. Our algorithm also implies a selection algorithm that does O(n log n)
comparisons and gives a correct answer with high probability. Both of these results are a log
factor away from the naive lower bound. [AFHN15] shows an Ω(n1+ε) lower bound for both
sorting and selection in the deterministic case, so our results also prove a discrepancy between
what is possible with deterministic and randomized algorithms in this setting.

We also consider both sorting and selection in rounds, exploring the tradeoff between accu-
racy, number of comparisons, and number of rounds. Using results from sorting networks, we
give general algorithms for sorting in d rounds where the number of comparisons increases with
d and the accuracy decreases with d. Using these algorithms, we derive selection algorithms
in d + O(log d) rounds that use the same number of comparisons as the corresponding sorting
algorithm, but have a constant accuracy. Notably, this gives selection algorithms in d rounds
that use n1+o(1) comparisons and have constant accuracy for all d = ω(1), which still beats the
deterministic lower bound of Ω(n1+ε).

1 Introduction

Comparison-based sorting and selection are two of the most well-studied computational problems,
with applications in all aspects of computing. Often, these problems are studied with the goal to
minimize the number of comparisons needed. Classical results show that sorting takes Θ(n log n)
comparisons [GVN47] and selection takes Θ(n) comparisons [BFP+73].

Comparison-based sorting and selection have also been extensively studied in the parallel case.
The round-based model of parallelism we consider was introduced by Valiant [Val75] for comparison-
based problems, where groups of comparisons are done in rounds of interaction. There followed a
long line of research in parallel sorting and selection [BR81, HH81, HH82, BT83, Pip87, AA88b,
Bol88, WZ93]. Particularly similar to the problems studied in this paper are parallel sorting
with limited closure [BT83, Alo86] and sorting networks of arity k with low depth [TL85, PP89,
NHAT89, BG90, CS92, Chv92, LB95, GL97, ZLG98, SYW14, DKP22], the latter of which we will
use to derive our general sorting algorithms.

However, often it is not possible to guarantee comparisons are completely precise. For example,
when ranking chess players, or comparing job applicants. Due to this, the problems of sorting and
selection with imprecise comparators have also been widely considered.
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Depending on the model, the manner in which the comparator is imprecise differs. The adver-
sarial comparison model we will study was introduced in [AFHN15]. If the values being compared
differ by more than some threshold δ, the comparison is correct, otherwise the result of the com-
parison can be chosen arbitrarily by an adversary. There are two adversary models that have been
considered (as described in [AFJ+18]): the non-adaptive model, where all of the comparisons must
be predetermined by the adversary before the algorithm is run, and the adaptive model, where the
comparisons can be chosen by the adversary at the time they are queried, possibly depending on
the previous queries made by the algorithm. In this paper, we focus entirely on the adaptive model,
and as our results are all upper bounds, all of our results imply equivalent results for the easier
non-adaptive model. By scaling, we assume δ = 1.

Since the comparisons are imprecise, it is impossible to always determine the correct result, so
algorithms in this setting instead strive to achieve a small approximation factor, which measures
how far away the returned solution is from the correct one. More precisely, we say an ordering
Y of a set X is a k-approximate sorting if all inversions differ in value by at most k. In their
original paper, Ajtai, Feldman, Hassidim, and Nelson [AFHN15] give deterministic k-approximate

algorithms for sorting and selection that use O(4k · n1+1/2k−1

) and O(2k · n1+1/2k−1

) comparisons

respectively. They also give a lower bound of Ω(n1+1/2k−1

) for deterministic k-approximate sorting
and selection. Special consideration is given to the case of selecting the maximum element, for which
they give a randomized algorithm that uses O(n) comparisons and returns a 3-approximation with
probability 1 − n−r. This maximum selection result was then improved by Acharya, Falahatgar,
Jafarpour, Orlitsky, and Suresh [AFJ+18] who gave a randomized algorithm that uses O(n log 1

ε )
comparisons and returns a 2-approximation with probability 1− ε. The study of these problems in
the parallel setting was introduced by Gopi, Kamath, Kulkarni, Nikolov, Wu, and Zhang [GKK+20],

where they gave a randomized d-round algorithm that uses O(n
1+ 1

2d−1 d) comparisons and returns a
3-approximate maximum with probability 0.9. This raises the following questions: can randomized
algorithms yield an improvement in sorting and general selection? How many comparisons are
required to do sorting and general selection in d rounds?

1.1 Results, Techniques, and Discussion

To describe our results, we more formally define the model and the problems of approximate sorting
and selection.

Definition 1.1. Suppose we are given n items x1, . . . , xn with unknown real values. An adversarial
comparator C is a function that takes two items xi and xj and returns max{xi, xj} if |xi − xj| > 1
and xi or xj adversarially otherwise.

Throughout this paper, we assume the adaptive adversary model [AFJ+18], where the adver-
sarial comparisons may depend on previous queries made by the algorithm.

We first define a notion of k-approximate sorting, in which inversions may only occur between
values that differ by at most k.

Definition 1.2. We say xi ≥k xj if xi ≥ xj−k. For sets of items Y,Z, we say Y ≥k Z if xi ≥k xj
for all xi ∈ Y , xj ∈ Z. We say some ordering x1, . . . , xn of items in a set X is a k-approximate
sorting if xj ≥k xi for all j > i. Equivalently, for any pair xi, xj in the wrong order, they must
differ by at most k.

This leads to a notion of approximate i-selection, in which the result must be the i-th element
of some approximate sorting.
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Definition 1.3. We say an item x∗ in a set X is a k-approximate i-selection if there exists a
k-approximate sorting x1, . . . , xn of X such that xi = x∗.

We show that this definition is equivalent to the result differing from the ”actual” i-th smallest
element by at most k.

Lemma 1.4. An item xj is a k-approximate i-selection if and only if |xj − xi| ≤ k where xi is the
actual i-th smallest element of X.

We proceed with our results. We begin in the non-parallel setting (although our algorithms
still have good round guarantees). We provide the following near-optimal approximate sorting
algorithm.

Theorem 1.5. There exists a randomized algorithm that takes O(n log2 n) comparisons, uses
O(log n) parallel rounds, and returns a 4-approximate sorting with probability > 1− 1

n2 .

Since any approximate sorting algorithm must be able to correctly sort any list of numbers
after scaling, such an algorithm must take Ω(n log n) comparisons by the well-known lower bound.
Thus, this result is a log factor away from optimal. Note that no algorithm can give better than a
2-approximation, as the adversary can force 0 > 1 > 2 > 0, which can make 0, 1, 2 indistinguishable
[AFJ+18]. The best prior result is of [AFJ+18], where they show quicksort gives a 2-approximate
sorting in O(n log n) expected comparisons against the non-adaptive adversary. This approach falls
apart against the adaptive adversary, however, as if all values are the same, the adversary can force
all pivots to compare less than all elements, forcing the algorithm to do Ω(n2) comparisons. Our
result shows that it is possible to get a constant approximate sorting in near-optimal number of
comparisons even against the adaptive adversary. Previously, this problem had also been studied in
the deterministic case [AFHN15], where an upper bound of O(4k · n1+1/2k−1

) and a lower bound of

Ω(n1+1/2k−1

) comparisons were proven for k-approximate sorting. Taking this result with k = 4, we
get a lower bound of Ω(n9/8) for 4-approximate deterministic sorting. Thus, our algorithm shows
a distinction between randomized and deterministic algorithms in this problem. To get an Õ(n)
deterministic algorithm, one could at best provide a Ω(log log n)-approximation.

Our algorithm uses the fact that randomized quicksort has good comparison complexity if there
are not big groups of close elements, as the adversary cannot force the pivots too far away. Thus,
if randomized quicksort does not work, there must be a large cluster of close elements that we can
exploit. We then estimate the order of each element using a O(log n) size sample of items, using the
existence of this cluster to guarantee our estimates are accurate. Finally, we use these approximate
orders to find a partition of the input items, and recursively solve as in quicksort.

Our algorithm also implies a similar selection algorithm.

Corollary 1.6. For any i, there exists a randomized algorithm that takes O(n log n) comparisons
and returns a 4-approximate i-selection with probability > 1− 1

n2 .

Similarly, this result is a log factor away from optimal. Again, the best prior result is of
[AFJ+18], where their analysis also shows that quickselect gives a 2-approximate selection in O(n)
expected comparisons against the non-adaptive adversary. Against the adaptive adversary, this
approach fails in an identical way to quicksort. Our result shows that it is possible to get a constant
approximate selection in near-optimal number of comparisons even against the adaptive adversary.
This was also studied in the deterministic setting [AFHN15], where an equivalent Ω(n9/8) lower
bound was shown, so we also show a distinction between randomized and deterministic in this case.
Similarly, any Õ(n) deterministic algorithm could at best return a Ω(log log n)-approximation.
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Our approach is identical to the sorting algorithm, except we only have to recursively solve on
the relevant side of the partition, as in quickselect.

Next, we provide a family of algorithms that explore the tradeoff between number of rounds,
number of comparisons, and approximation factor in the sorting case.

Theorem 1.7. For any integer d > 0, there exists a deterministic algorithm that takes d rounds,
uses n1+O(1/d)d comparisons, and returns a 2d-approximate sorting.

Again, any approximate sorting algorithm must be able to correctly sort any list of numbers,
so such an algorithm must take Ω(n1+1/d) comparisons [BT83]. Thus, this algorithm is optimal
up to a constant factor of 1/d in the exponent. However, this constant factor is large, as it arises
from the notoriously bad constant of the AKS sorting network [AKS83]. The best prior result is
the aforementioned deterministic algorithms from [AFHN15]. Their k-approximate algorithm uses

Ω(n
1− 1

2k−1 ) rounds and O(4kn1+1/2k−1

) comparisons. Thus, their algorithm uses Ω(n2/3) rounds at
best. We drastically improve this by giving algorithms that can use an arbitrarily small number
of rounds, which could not be done by any prior algorithm (except for the trivial 1 round round
robin tournament). However, our comparison bound is worse than that of [AFHN15], as it is not
possible to achieve their comparison complexity even for regular sorting in rounds.

Our algorithm uses a connection between this problem and the problem of sorting networks
that use a sorting oracle of arity k. We use a result based on the AKS sorting network [AKS83]
that gives sorting networks with asymptotically optimal depth O(logk n). We then show that these
networks imply good algorithms for adversarial sorting, by showing that each round can incur at
most 2 additional approximation error.

Since the constant factor in the exponent is large, we also provide an asymptotically worse
algorithm (with respect to d) with smaller constant that is better for small constant d.

Theorem 1.8. For any integer d > 0, there exists a deterministic algorithm that takes d rounds,

uses n1+2/
√
dd comparisons, and returns a 2d-approximate sorting.

Our final result is an extension of these algorithms to selection algorithms that guarantee a
constant approximation.

Theorem 1.9. For any integer d > 1 and i, there exists a randomized algorithm that takes d +
O(log d) rounds, uses n1+O(1/d)d log n comparisons, and returns a 202-approximate i-selection with
probability > 1− 1

n2 .

This result uses the previous sorting result, as well as the maximum selection in rounds re-
sult from [GKK+20]. Similarly, such an algorithm must take Ω(n1+1/(d+O(log d))) comparisons, so
our algorithm is optimal up to a constant factor of 1/d in the exponent. The best prior result
is again the deterministic selection algorithms of [AFHN15], but their algorithms similarly use

Ω(n
1− 1

2k−1 ) = Ω(n2/3) rounds. Thus, our algorithm is again a drastic improvement in terms of
round complexity. On top of this, for d = ω(1), our algorithm uses n1+o(1) comparisons, which still
beats the deterministic lower bound of [AFHN15], regardless of the number of rounds the determin-
istic algorithm uses. Thus, we show that randomized algorithms can beat the best deterministic
algorithms even when restricted to an arbitrarily small number of rounds (as long as it increases
with n).

Our algorithm repeatedly approximates the k-th element by taking n2/3 log n random subsets
of size n1/3, sorting them with depth d, and splitting around position k/n2/3. This results in us
reducing the problem to that of size n5/6, which we can then solve with a constant approximation
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using one of our sorting algorithms. The depth d sorting does not guarantee a good approximation,
so we instead use a gap-preserving property of all approximate sorting algorithms to show that this
must give a good approximation if there are few elements close to the k-th smallest. If there are
many close elements, we can instead sample a large subset and estimate the k-th smallest directly,
which is likely to give us one of the close elements. We then show a method of combining these
two algorithms to show it is possible to always get a good approximation.

The following tables summarize the previous results for the problems of approximate sorting
and selection along with our contributions.

Paper Adversary Randomized? Approximation Query Complexity Round Complexity

[AFJ+18] Non-Adaptive Deterministic 2 O(n log n) O(log n)

[AFHN15] Adaptive Deterministic k O(4kn1+1/2k−1

) O(n1−1/(2k−1))

Our Paper Adaptive Randomized 4 O(n log2 n) O(log n)

Our Paper Adaptive Deterministic 2d n1+O(1/d)d log n d

Table 1: Sorting

Paper Adversary Randomized? Approximation Query Complexity Round Complexity

[AFJ+18] Non-Adaptive Deterministic 2 O(n) O(log n)

[AFHN15] Adaptive Deterministic k O(2kn1+1/2k−1

) O(n1−1/(2k−1))

Our Paper Adaptive Randomized 4 O(n log n) O(log n)

Our Paper Adaptive Deterministic 2d n1+O(1/d)d log n d

Our Paper Adaptive Randomized 202 n1+O(1/d)d log n d+O(log d)

Table 2: Selection

1.2 Related Work

Imprecise comparisons were first considered by Rényi [Rén61] and Ulam [Ula91] in the setting of
binary search. The model described allows for a bounded number of incorrect comparisons. An
optimal algorithm for this problem was given by Rivest, Meyer, Kleitman, Winklmann, and Spencer
[RMK+80] that uses O(log n) comparisons. This problem was considered in the parallel setting by
Negro, Parlati, and Ritrovato [NPR95] where they give optimal algorithms for a fixed number of
rounds and errors.

Binary search has also been considered in the setting where comparisons are incorrect with
some probability p < 1

2 [Hor63, BZ74, FRPU94]. Pelc [Pel89] gave an algorithm that uses O(log n)
comparisons and gives the correct answer with probability 1 − ε if p < 1

3 . For 1
3 ≤ p < 1

2 , he gave
an algorithm that uses O(log2 n) comparisons. A later result from Borgstrom and Kosaraju [BK93]
implies an optimal O(log n) algorithm for all p < 1

2 .
Sorting with imprecise comparisons was first considered by Lakshmanan, Ravikuman, and Gane-

san [LRG91] in the model where the number of incorrect comparisons is bounded by a function e(n).
They gave a lower bound of Ω(n log n+en) comparisons and an upper bound of O(n log n+en+e2)
comparisons. The upper bound was later improved to match the lower bound by Bagchi [Bag92]
and Long [Lon92].
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Sorting with comparisons that are incorrect with probability p < 1
2 was considered by Feige,

Peleg, Raghavan, and Upfal [FRPU94] where they gave an algorithm that uses O(n log(n/ε)) queries
and gives the correct answer with probability 1− ε.

Another common model is that of sorting networks with faulty comparisons. In the model
where e gates may be faulty (i.e. do nothing), Yao and Yao [YY85] gave an algorithm that uses
O(n log n + en) gates. This model has been further studied in the cases where faulty gates may
arbitrarily permute their inputs [AU90, LMP97] and where gates are faulty with some probability
[Pio96].

Recently, a comparison model has been considered where some comparisons are not allowed
to be made at all. This model was introduced by Huang, Kannan, and Khanna [HKK11] where
they give a randomized algorithm that uses Õ(n3/2) comparisons with high probability provided
the input is sortable. They also give an algorithm that uses Õ(min(n/p2, n3/2√p)) comparisons
if the graph of forbidden comparisons is random with edge probability 1 − p. This was recently
improved by Kuszmaul and Narayanan [KN22] who give corresponding algorithms using Õ(

√
nm)

and O(n log(np)) comparisons respectively.
None of these results apply to our comparison model, as the incorrect comparisons are either

bounded or random. In our model, however, there can be any number of incorrect comparisons,
which can be chosen adversarially. There is a notion of ’closeness’ of elements that allows compar-
isons to be incorrect, for which there does not exist an analogue in other models. We note that if we
were to ’disallow’ all comparisons between items that differ by at most 1, using the aforementioned
algorithms would give a good approximation. However, this would require additional knowledge of
which pairs of elements are sufficiently close, which the algorithm does not have in our model.

Solving comparison-based problems in rounds has also been widely considered [BR81, HH81,
HH82, Kru83, Lei84, BH85, AAV86, AV87, AA88a, Bol88, BB90, AP90, WZ93, FRPU94, BMW16,

BMP19, CAMTM20]. For sorting in k rounds, Bollobás [Bol88] showed that O(n1+1/k (logn)2−2/k

(log logn)1−1/k )

comparisons are sufficient, while Alon and Azar [AA88b] showed that Ω(n1+1/k(log n)1/k) compar-
isons are necessary. For merging two sorted arrays in k rounds, Haggkvist and Hell [HH82] showed

that Θ(n1+1/(2k−1)) comparisons is necessary and sufficient. For selecting an element of arbitrary

order in k rounds, Pippenger [Pip87] showed that O(n1+1/(2k−1)(log n)2−2/(2k−1)) comparisons are

sufficient, while Alon, Azar, and Vishkin [AAV86] showed that Ω(n1+1/(2k−1)(log n)2/(2
k−1)) com-

parisons are necessary for a deterministic algorithm. Bollobás and Brightwell showed that, using
a randomized algorithm, O(n) comparisons is sufficient to select in k ≥ 4 rounds with high prob-
ability. For sorted top-m in k rounds, Braverman, Mao, and Peres [BMP19] recently showed
that Θ̃(n2/km(k−1)/k + n) comparisons are both necessary and sufficient. Similar consideration of
round complexity has also been done in the setting of best arm selection with multi-armed bandits
[AAAK17, TZZ19].

These algorithms do not easily generalize to our setting, as they often heavily rely on the
existence of a ”correct” sorted order that is adhered to by the comparisons, as to derive information
from the transitive closure of the comparison graph. We also note that the faulty comparison
models considered in [BMP19, CAMTM20] suffer the same drawbacks as the previously described
comparison models when extended to our model.

2 Techniques

Throughout, we use the fact that the naive round robin tournament algorithm that does all com-
parisons (denoted Tournament) guarantees a 2-approximate sorting [AFJ+18]. We also use the fact
that any approximate sorting algorithm must preserve gaps in the input set of size at least 1, as one
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could move the values on each side of the gap arbitrarily far apart without affecting any compar-
isons. We say some item x∗ is a k-left-approximation of another item xi if x

∗ ≥ xi−k. Similarly, x∗

is a k-right-approximation of xi if x
∗ ≤ xi + k. Intuitively, x∗ is a left-approximation if it not ”too

far left” of xi, and similarly for a right-approximation. If an element is both a k-left-approximation
and a k-right-approximation of xi it must be a k-approximate i-selection.

2.1 Randomized Sorting

The main issue with sorting in the adversarial comparison setting is balancing worst-case approxi-
mation factor with worst-case number of comparisons. Standard sorting algorithms either always
guarantee a good approximation, but can be forced to do many comparisons (i.e. quicksort), or
always guarantee few comparisons, but can be forced to be give a bad approximation (i.e. merge-
sort). With deterministic algorithms, it was shown in [AFHN15] that it is not possible to get the
best of both worlds, where they gave a tradeoff between approximation factor and comparisons.
Our algorithm shows that in the randomized case, however, it is possible to be near-optimal in
both aspects.

In the style of quicksort, our algorithm aims to partition the input set X into two sets Y and Y
such that Y ≥4 Y . If we can guarantee this in every recursive call, we must return a 4-approximate
sorting, as no pair differing by more than 4 can ever be put in the wrong order [AFJ+18]. To ensure
a good bound on the number of comparisons, we also require |Y |, |Y | ≥ n/8.

The first phase of our algorithm attempts to partition using random pivots O(log n) times. Let
xL and xR be the n/8-th smallest and n/8-th largest elements of X respectively. For a fixed pivot
xp, if xp > xL +1, at least n/8 items must compare less than xp. Thus, if |X ∩ [xL, xL +1]| ≤ n/4,
by a Chernoff bound, less than half of the pivots we try will have less than n/8 items compare less
with high probability. Similarly, if |X ∩ [xR − 1, xR]| ≤ n/4, less than half of the pivots we try will
have less than n/8 items compare greater with high probability. If both of these inequalities are
satisfied, it follows that we will find a ”good” partition from one of our pivots with high probability.
Otherwise, without loss of generality we assume more than half of the pivots had less than n/8
compare less. In this case, we have |X ∩ [xL, xL + 1]| > n/4 with high probability. We will exploit
this property in the other phases of the algorithm.

The second phase of our algorithm estimates the order of each element xi by comparing it to
a small subset of X. Then, we create a partition by taking Y to be the elements with estimated
order less than n/4, and Y the elements with estimated order at least n/4. For some fixed item
xi < xL − 1, there must be 7n/8 items that compare greater than it, so by a Chernoff bound,
xi ends up in Y with high probability. Similarly, if xi > xL + 2, there must be 3n/8 items that
compare less than it (since |X ∩ [xL, xL + 1]| > n/4), so by a Chernoff bound it ends up in Y
with high probability. Thus, by a union bound, Y ≥3 Y with high probability. We note that if we
did not have such high density in [xL, xL + 1], the elements of order around n/4 (which could be
arbitrarily far apart value-wise) would be impossible to differentiate with a small sample.

The final phase of our algorithm ensures |Y |, |Y | ≥ n/8. Without loss of generality we assume
|Y | ≤ |Y |. If |Y | ≥ n/8, nothing needs to be done as both sets are sufficiently large. Otherwise, we
repeatedly sample m = O(log n) elements of Y , sort them, and move the m/8 smallest elements
to Y until |Y | ≥ n/8. Since |Y | < n/8 and |X ∩ [xL, xL + 1]| > n/4 before any iteration, there
must be at least n/4 items ≤ xL that are not in Y . Thus, by a Chernoff bound, the m/8 smallest
elements are all ≤ xL with high probability. Since Tournament incurs error at most 2, it follows
that |Y | ≥4 Y at the end with high probability. Note that by choosing a random permutation to
guarantee disjoint subsets, we can do this sampling in parallel.
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2.2 Sorting in Rounds

The main issue with sorting in rounds is guaranteeing good comparison complexity. Many of the
state of the art algorithms for sorting in rounds heavily rely on the existence of a ”correct” sorting
order to guarantee a low number of comparisons.

We use low-depth sorting networks of arity m using Tournament to implement the sorting oracle.
Since each call to Tournament incurs error at most 2, each round incurs error at most 2, so we can
show the total error is bounded by 2 times the number of rounds.

2.3 Selection in Rounds

Our algorithm improves the approximation factor from the previous sections algorithm with a
small O(log d) additional round overhead. We use a similar approach to the maximum selection
algorithm given in [GKK+20], where we first describe an algorithm that gives a good approximation
if there are few elements around the actual answer, then describe an algorithm that gives a good
approximation if there are many elements around the actual answer, then show a way to combine
them to guarantee a good approximation always. Since we are looking for an element in the middle
of the sorted order, however, there is some additional complexity with considering close elements
on each side of the desired element.

Let xi be the actual i-th smallest element of X. The first part of our algorithm guarantees a
good left-side approximation if |X ∩ [xi− 1, xi]| ≤ 1

10n
2/3. Similarly, it guarantees a good right-side

approximation if |X ∩ [xi, xi+1]| ≤ 1
10n

2/3. We aim to partition X into three sets Z, Y,Γ such that
elements of Z are ”less than” xi, elements of Γ are ”greater than” xi, and Y is the set of ”candidate”
elements to be xi. We sample cn2/3 log n subsets of X of size n1/3, each time sorting using the depth
d algorithm from the previous subsection. We then take the elements within n1/6 of the k/n2/3-th
element of each subset and add them to Y (the set of candidates). We say that elements in positions
to the left of k/n2/3 − n1/6 are on the left side, and the rest of the elements are on the right side.
After sampling all subsets, elements which are not in the set of candidates are partitioned into Z
and Γ based on how frequently they are on the left side. Assume |X∩[xi−1, xi]| ≤ 1

10n
2/3, the other

case is symmetric. In this case, roughly 90% of the sampled subsets will contain no elements in
[xi−1, xi]. For each of these subsets, since our sorting algorithm must be gap-preserving, the sorting
must be correct with respect to [xi − 1, xi]. It thus follows by a tail bound of the Hypergeometric
distribution and a union bound that for all xj < xi−1, xj will end up in Z∪Y with high probability.
Similarly, for xj > xi, xj will end up in Y ∪ Γ with high probability. Finally, if |Z| ≥ k, we return
the maximum element of Z computed with a depth O(log d) maximum finding algorithm from
[GKK+20]. If |Z|+ |Y | < k, we return the minimum element of Γ similarly. Otherwise, we return
the (i − |Z|)-th element of Y as determined by a constant depth, constant approximate sorting
algorithm from the previous section (since |Y | = O(n5/6)). If |Z| ≥ i, there must be some element
of Z that is ≥ xi, so since the maximum finding algorithm returns a constant approximation, we
return a constant left-approximation. If |Z|+|Y | < i, we return some element of Γ, and all elements
of Γ are ≥ xi − 1. Otherwise, there can be at most i− |Z| − 1 elements of Y that are < xi, so the
actual (k− |Z|)-th element is ≥ xi, so since we use a constant approximate sorting, the element we
return is a constant left-approximation as desired.

The second part of our algorithm guarantees a good left side approximation given |X ∩ [xi −
1, xi]| > 1

10n
2/3 (and there is a symmetric algorithm that guarantees a good right side approxima-

tion). The idea is simple: sample O(n5/6) elements of x, sort them with a constant approximation
algorithm in constant rounds, and then take the (k/n1/6−n5/12)-th element. By another Hyperge-
ometric tail bound, it follows that we always get a good right-approximation, and also get a good
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left-approximation if |X ∩ [xi − 1, xi]| > 1
10n

2/3 as desired.
Finally, we describe how to combine these algorithms. First, we run the sparse algorithm and

get the result x∗. Then, we count the number of elements that compare less than the result. If this
value is ≤ i − 1, we must have x∗ ≤ xi + 1. We then call the left-side dense algorithm and return
the greater of the two results (according to the comparator). Since one of the two algorithms
must return a constant left-approximation, the latter algorithm always returns a constant right
approximation, and we already know that x∗ is a constant right approximation, it follows that in
the end we return a constant approximation. The case where the number of elements that compare
less is ≥ i is handled symmetrically.

3 Preliminaries

In this section, we give some basic definitions and results in the adversarial comparison setting
which will serve as the basis for many of our algorithms.

Definition 3.1. Element xj in the set X = {x1, . . . , xn} is of k-order i if there exists a partition
S1, S2 of X\{xj} such that |S1| = i− 1, and S2 ∪ {xj} ≥k S1 ∪ {xj}.

This the notion of approximate selection that was originally introduced in [AFHN15]. We show
that this is equivalent to the intuitive notion we previously described, and then show that it is
equivalent to something that is easier to work with.

Lemma 3.2. An item xj in X is of k-order i if and only if xj is a k-approximate i-selection.

Proof. Assume S1, S2 exist as in the definition of xj being k-order i. Then, since S2 ∪ {xj} ≥k

S1 ∪ {xj}, the concatenation of the sorted order of S1, xj, and the sorted order of S2 in that order
is a k-approximate sorting by definition. Thus, xj is a k-approximate i-selection as desired.

Similarly, assume there exists a k-approximate sorting Y of X where yi = xj . Then, taking S1

to be the first i − 1 elements of Y , and S2 to be the final n − i elements, it follows by definition
that S2 ∪ {xj} ≥k S1 ∪ {xj}. Thus, xj is of k-order i as desired.

Lemma 3.3. An item xj in X is a k-approximate i-selection if and only if |xj − xi| ≤ k where xi
is the actual i-th smallest element of X.

Proof. Consider some k-approximate sorting Y of X where yi = xj. Without loss of generality,
assume xj ≤ xi. Since xi is the i

th smallest element of X, there must be at least n− i+1 elements
of X that are ≥ xi. Thus, there must exist some element xℓ ≥ xi that is to the left of xj in Y since
there are only n − i places to the right that they can be. It follows that xj ≥k xℓ, which implies
xj ≥k xi since xℓ ≥ xi. Thus, xi ≥ xj ≥ xi − k, so |xj − xi| ≤ k.

Consider some element xj in X such that |xj − xi| ≤ k. Let Y be the sorted order of X, but
with xj and xi swapped. All pairs that do not contain xi or xj must still be in the right order.
Pairs (xi, xℓ) that are in the wrong order must have xℓ between xi and xj (or equal to xj), so xℓ
and xi must differ by at most k. An identical argument applies to pairs (xj , xℓ), so it follows that
Y is a k-approximate sorting as desired.

Corollary 3.4. If Y is a k-approximate sorting of X, and S is the actual sorting of X, |yi−si| ≤ k
for all i.

We define the notion of a gap-preserving algorithm, where elements must be correctly sorted
with respect to a gap of size 1. This will be useful in proving the correctness of our later algorithms.
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Definition 3.5. We say a sorting algorithm is gap-preserving if, given there exists a gap of length
1 in the input, the sorting algorithm returns all elements before the gap before all elements after the
gap. Formally, given input X such that there exists a gap [y, y + 1) where X ∩ [y, y + 1) = ∅, the
sorting algorithm must return all elements of X less than y before all elements of X greater than
y.

Lemma 3.6. All approximate sorting algorithms are gap-preserving.

Proof. We can shift the elements on one side of the gap arbitrarily far away without affecting any
comparison results. Thus, if there exists an input for which a τ(n)-approximate algorithm is not
gap-preserving, then we can make the approximation factor larger than τ(n) by shifting one side
by more than that, a contradiction.

Recall that the Tournament algorithm for sorting a set X of items, as originally defined in
[AFHN15], does all pairwise comparisons, and orders the items by the number of ”wins” they have
(i.e. the number of elements that compare less).

Lemma 3.7. Tournament is a 2-approximate sorting algorithm.

Proof. If xi > xj + 2, xi must compare greater than all elements ≤ xj + 1 including xj . However,
xj can at most compare greater than all elements ≤ xj +1 excluding itself, so it must come before
xi as desired.

We show that partitioning as in quicksort guarantees a good approximation factor, which will
be the basis of our randomized sorting algorithm. This was originally shown in [AFJ+18].

Lemma 3.8. Let xi be some item in a set X. Let S = {xj | xj <c xi} and T = X\S. We must
have T ≥2 S.

Proof. All elements of S must be ≤ xi + 1, and all elements of T must be ≥ xi − 1. Thus, for
xj ∈ S, xk ∈ T , xj − xk ≤ xi + 1− (xj − 1) = 2 as desired.

Lemma 3.9. If a sorting algorithm repeatedly partitions the input set X into two sets S, T such
that T ≥k S, recursively sorts S and T and then concatenates them, it is guaranteed to result in a
k-approximate sorting.

Proof. Assume for the sake of contradiction that there exist xi, xj for i > j in the final order such
that xi 6≥k xj. We must have put xi in T and xj in S in some recursive call, but this contradicts
T ≥k S, as desired.

Throughout, when referring to a sorted order, we assume a fixed sorted order with ties broken
arbitrarily. Unless otherwise stated, all logarithms are base e. We often ignore rounding errors that
vanish for large n.

4 A Randomized Sorting (and Selection) Algorithm

In this section we prove Theorem 1.5 by describing an algorithm RSort. This algorithm is similar to
quicksort in the sense that we aim to partition the original set of itemsX into two sets S, T , and then
recursively sort S and T and concatenate them. Recall by Lemma 3.9 that it is sufficient to have
T ≥4 S in every call. Thus, our algorithm aims to find a partition S, T of X such that T ≥4 S. To
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ensure the recursion depth is O(log |X|), we also aim to have |S|, |T | ≥ |X|
8 . Our algorithm consists

of three phases, which we will analyze independently. Throughout the algorithm, we let n be the
size of the current set X the function is being called on, and we let N be the size of the initial set
X that RSort was called on. This distinction is important, as we want our probability guarantees
to be with respect to the size of the original caller.

4.1 The Pivot Phase

Algorithm 1 Pivot Phase

1: R← 0
2: L← 0
3: loop 8c1 logN times
4: pick a pivot xp at random
5: Y ← {x ∈ X : x <c xp}
6: Y ← X\Y
7: if min(|Y |, |Y |) ≥ n

8 then

8: return (Y, Y )
9: else if |Y | < n

8 then

10: L← L+ 1
11: else

12: R← R+ 1
13: end if

14: end loop

In this phase, we aim to use a pivot as in quicksort to find the desired partition, in which case
we return early. If we do not find such a pivot, the input set has additional structure with high
probability, which we will use in the rest of the algorithm.

8c1 logN elements xp are randomly chosen and used as pivots. This splits X into two sets Y
and Y such that Y ≥2 Y by Lemma 3.8. If both of these sets are sufficiently large, then we have
found our desired partition, and we return early. Otherwise, if |Y | < n

8 , we say xp goes left and
if |Y | < n

8 , we say xp goes right. Let xL be the n/8-th smallest element of X and xR the n/8-th
largest. If xp > xL + 1, then xp cannot go left, and symmetrically, if xp < xR − 1, then xp cannot
go right. Let XL = {xp ∈ X : xp ≤ xL + 1} and XR = {xp ∈ X : xp ≥ xR − 1}. The elements in
X\(XL∪XR) are thus guaranteed to neither go left or go right. Intuitively, if this set is sufficiently
big, we expect to find such a pivot. Otherwise, either XL or XR must be large. The variables L and
R in the code count how many pivots go left and right respectively. Again intuitively, we expect
L > R if XR is small and vice versa. These intuitive statements are captured in the following
lemmas:

Lemma 4.1. If |XL| < 3n
8 , for any constant r > 0, we can choose c1 sufficiently large such that

Pr[L ≥ 4c1 logN after pivot phase] < 1
Nr .

Proof. Let Ai be a random variable that takes value 1 if the ith pivot xp is in XL, and 0 otherwise.
Note that if Ai is 0, we cannot increment L in the ith iteration, so we have L ≤ A =

∑
iAi. Let

µ = E[A] = 8c1 logN
|XL|
n ≥ c1 logN . By a Chernoff bound, we have:

Pr[L ≥ 4c1 logN at line 20] ≤ Pr[A ≥ 4c1 logN ]

= Pr[A ≥ (1 + δ)µ]

11



Where δ = n
2|XL| − 1 > 1

3

≤ e−
δ2µ
2+δ

< e−
µ
21

≤ e− logN
c1
21

= N− c1
21

Thus, choosing c1 ≥ 21r, we get

Pr[L ≥ 4c1 logN at line 20] <
1

N r
.

Corollary 4.2. If |XR| < 3n
8 , for any constant r > 0, we can choose c1 sufficiently large such that

Pr[R ≥ 4c1 logN after pivot phase] < 1
Nr .

Proof. Symmetric.

Throughout the rest of the analysis, we will assume L ≥ R. The other case is handled symmet-
rically.

4.2 The Sample Phase

Algorithm 2 Sample Phase

1: Y ← ∅
2: for xi ∈ X do

3: C ← 0
4: loop 8c2 logN times
5: Choose z ∈ X at random
6: if z <c xi then
7: C ← C + 1
8: end if

9: end loop

10: if C < 2c2 logN then

11: Y ← Y ∪ {xi}
12: end if

13: end for

In this phase, for each element xi we estimate its position in the sorted array by comparing it
to a small subset of X. All elements with estimated position less than n

4 are put in set Y and the
remaining elements are put in Y . Since |XL| ≥ 3n

8 , all elements with positions between n
8 and 3n

8
are in [xL, xL + 1]. Thus, since all elements < xL − 1 compare less than all of these elements, we
intuitively expect them to have estimated position less than n

4 even on a small subset. Similarly,
since all elements > xL + 2 compare greater than all of those elements, we intuitively expect them
to have estimated position greater than n

4 . These statements are captured in the following lemmas:

Lemma 4.3. If |XL| ≥ 3n
8 , for any constant r > 0 we can choose c2 sufficiently large such that

Pr[∃xi < xL − 1 : C ≥ 2c2 logN ] <
1

N r
.
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Proof. Let U be the set of the smallest n/8 elements of X. Consider some iteration of the loop
on line 25 where xi < xL − 1. Let Ai be a random variable that takes value 1 if the ith random
element is ∈ U and 0 otherwise. Note that if Ai is 0, we cannot increment C in the ith iteration.
Thus, C ≤ A =

∑
iAi. Let µ = E[A] = 8c2 logN

|U |
n = c2 logN , we have:

Pr[C ≥ 2c2 logN ] ≤ Pr[A ≥ 2c2 logN ]

= Pr[A ≥ (1 + δ)µ]

Where δ = 1

≤ e−
δ2µ
2+δ

= e−
µ
3

= e− logN
c2
3

= N− c2
3

Thus, choosing c2 ≥ 3(r + 1), we get

Pr[C ≥ 2c2 logN ] ≤ 1

N r+1

By a union bound:

Pr[∃xi < xL − 1 : C ≥ 2c2 logN ] ≤ #{xi < xL − 1} 1

N r+1

<
1

N r
.

Lemma 4.4. If |XL| ≥ 3n
8 , for any constant r > 0 we can choose c2 sufficiently large such that

Pr[∃xi > xL + 2 : C < 2c2 logN ] <
1

N r
.

Proof. Similar to the previous Lemma, using the fact that |XL| ≥ 3n
8 =⇒ #{xi ≤ xL+1} ≥ 3n

8 .

Corollary 4.5. If |XL| ≥ 3n
8 , for any constant r > 0 we can choose c2 sufficiently large such that

after the sample phase, Pr[max(Y ) > xL + 2] < 1
Nr .

Proof. If max(Y ) > xL + 2 then we must have had C < 2c2 logN for some xi > xL + 2, which
happens with probability < 1

Nr by the previous Lemma.

Corollary 4.6. If |XL| ≥ 3n
8 , for any constant r > 0 we can choose c2 sufficiently large such that

after the sample phase, Pr[min(X\Y ) < xL − 1] < 1
Nr .
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4.3 The Shifting Phase

Algorithm 3 Shifting Phase

1: Let P be a random permutation of X\Y
2: i← 0
3: B ← 4c3 logN
4: while |Y | < n

8 do

5: Z ← P [i..i+ 7B)
6: Tournament(Z)
7: Y ← Y ∪ Z[0..B)
8: i← i+ 7B
9: end while

10: Let P be a random permutation of Y
11: i← 0
12: while |Y | > 7n

8 do

13: Z ← P [i..i+ 7B)
14: Z ← Tournament(Z)
15: Y ← Y \Z[6B..7B)
16: i← i+ 7B
17: end while

18: Let Y = X\Y
19: return (Y, Y )

In this phase, if either Y or Y is too big, we move some elements to the other set to ensure they
both have size ≥ n/8. Since the two cases are symmetric, without loss of generality, we assume
|Y | ≤ |Y |. We partition Y into small subsets, and move the minimum 1/8-th of each subset into Y
until |Y | ≥ n/8. Since at least 3n/8 elements of X are ≤ xL + 1, at least 1/4-th of the elements in
Y are ≤ xL + 1, so even for small subsets we expect the smallest 1/8-th to be all ≤ xL + 1. Thus,
since Tournament returns a 2-approximate sorting by Lemma 3.7, we expect the elements we add
to Y to be ≤ xL + 3. These intuitive statements are captured in the following lemmas:

Lemma 4.7. If |XL| ≥ 3n
8 and max(Y ) ≤ xL + 2 after the sample phase, for any constant r > 0

we can choose c3 sufficiently large such that after the shifting phase, Pr[max(Y ) > xL + 3] < 1
Nr

Proof. Consider some iteration of the loop on line 40. Recall that Tournament returns a 2-
approximate sorting. Thus, if in each iteration of the loop, Z has at least B elements ≤ xL + 1,
then we are guaranteed to only add elements ≤ xL + 3 to Y . Since |XL| ≥ 3n

8 and |Y | < n
8 ,

there must be at least n
4 elements x ∈ X\Y such that x ≤ xL + 1. Let U be the set of

the n
4 smallest elements of X\Y , breaking ties arbitrarily. Let Ai be a random variable that

takes value 1 if Zi 6∈ U (before sorting), and 0 otherwise. Note that for any subset S of {Ai},
Pr

[∧
i∈S Ai

]
= Pr[AS0

] Pr[AS1
|AS0

] . . .Pr
[
AS|S|

|AS0
, . . . , AS|S|−1

]
= 3

4

3n
4
−1

n−1 . . .
3n
4
−|S|

n−|S| ≤
(
3
4

)|S|
. Let
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C = #{xi ∈ Z|xi > xL + 1}. Clearly, xi > xL + 1 =⇒ xi 6∈ U , so C ≤ A =
∑

iAi. We have:

Pr[C ≥ 6B] ≤ Pr[A ≥ 6B]

≤ e
−7B

(

2( 6

7
− 3

4)
2
)

= e−
9B
56

= e− logN
9c3
14

= N− 9c3
14

Thus, choosing c3 ≥ 14(r+1)
9

≤ 1

N r+1

By a union bound:

Pr[C ≥ 5B on some iteration] ≤ n

B

1

N r+1

<
1

N r
.

Here we use the generalized Chernoff bound from Theorem 1.1 of [IK10].

Lemma 4.8. If |XL| ≥ 3n
8 and min(X\Y ) ≥ xL−1 after the sample phase, for any constant r > 0

we can choose c3 sufficiently large such that after the shifting phase, Pr[min(X\Y ) < xL − 2] < 1
Nr .

Proof. Similar to Lemma 9, noting that since xL is the n
8
th smallest element of X and |X\Y | < n

8 ,
there must be at least 3n

4 elements x ∈ Y such that x ≥ xL.

4.4 Tying it together

We conclude the probability bounds for the algorithm and describe the comparison and round
complexity.

Lemma 4.9. For any constant r > 0, we can choose c1, c2, c3 sufficiently large such that the
probability that we split X into sets Y, Y such that Y ≥4 Y is > 1− 1

Nr .

Proof. As described in the previous sections, there are 6 failure points at which something may go
wrong and we may end up with Y 6≥4 Y . By a union bound, it follows that the probability that
Y ≥4 Y is at least 1− 6

Nr+1 > 1− 1
Nr for sufficiently large c1, c2, c3 as desired.

Theorem 4.10. For any constant r > 0, we can choose c1, c2, c3 sufficiently large such that RSort
returns a 4-approximate sorting with probability > 1− 1

Nr .

Proof. Recall that it is sufficient for every recursive call to satisfy Y ≥4 Y . Since we reduce the size
of the input by a constant factor in each recursive call, there must be O(N) total recursive calls.
Thus, by a union bound, we return a 4-approximate sorting with probability at least 1−O(N) 1

Nr+2 >
1− 1

Nr as desired.

Theorem 4.11. RSort uses O(N log2N) comparisons.

Proof. It is clear that any recursive call takes O(n logN) comparisons. It follows by a well known
recurrence that O(N log2N) comparisons are thus required in total.

Theorem 4.12. RSort uses in O(logN) rounds.
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Proof. The different iterations of each loop in RSort are clearly independent, so we can do them in
parallel. Thus each call to RSort takes O(1) rounds. Additionally, each layer of the recursion can
also be done in parallel. Since we reduce the size of the input by a constant factor in each call, the
recursion depth is O(logN) and thus the algorithm works in O(logN) rounds.

Theorem 1.5 thus follows from the previous three Theorems.

By only recursively solving on the relevant side, this sorting algorithm implies a selection algo-
rithm that returns a 4-approximation with probability > 1− 1

Nr that uses O(N logN) comparisons
and O(logN) rounds. Corollary 1.6 thus follows.

5 A General Sorting Algorithm In Rounds

In this section, we use a connection to sorting networks to give a general sorting algorithm in
rounds. We consider sorting networks of arity k: rather than being able to compare and swap two
elements, we can sort any k elements.

Theorem 5.1. [Chv92] For all m ≥ 2, there exists an arity m sorting network of depth O(logm n).

Corollary 5.2. For any integer d > 0, there exists a sorting network of arity nO(1/d) and depth d.

This result comes from the AKS sorting network construction [AKS83], which has a notoriously
big constant factor. Thus, we also consider asymptotically worse (with respect to d) networks with
smaller constant factors, which are better for small d.

Theorem 5.3. [PP89] For all m ≥ 2, there exists an arity m sorting network of depth 4 log2m n.

Corollary 5.4. For any integer d > 0, there exists a sorting network of arity n2/
√
d and depth d.

We connect this result to the adversarial comparison setting by showing that these sorting
networks imply approximate sorting algorithms. Since Tournament gives a 2-approximate sorting,
by implementing the sorting oracle with Tournament, we in some sense guarantee that the total
approximation error only accumulates by 2 on each level of the network. Thus, for a depth d
network, we get a 2d-approximate algorithm.

Lemma 5.5. Let a and b be arrays of length n. If |ai − bi| ≤ k for all i, then |sorted(a)[i] −
sorted(b)[i]| ≤ k for all i.

Proof. We proceed by induction over n. When n = 1, the result is trivial. Otherwise, let
i = argmin(a), j = argmin(b). Without loss of generality, assume a[i] ≤ b[j]. If i = j, then
|sorted(a)[0] − sorted(b)[0]| ≤ k and the result follows by the induction hypothesis. Otherwise, we
claim that |b[i] − a[j]| ≤ k. If b[i] ≥ a[j], then |b[i]− a[j]| = b[i]− a[j] ≤ b[i]− a[i] ≤ k. Otherwise,
|b[i]− a[j]| = a[j]− b[i] ≤ a[j]− b[j] ≤ k. Thus, we can swap a[i] and a[j] and the assumption still
holds. We thus reduce to the already solved i = j case as desired.

Lemma 5.6. If there exists a sorting network with arity k and depth d, then there exists a 2d-
approximate sorting algorithm in d rounds that takes O(nkd) comparisons.

Proof. Consider directly running the sorting network, using Tournament to sort. Clearly, O(dn/k)
groups are sorted, and each takes O(k2) time, so the total time taken is O(nkd). We claim that
after the r-th round, the current element at position i differs by the ”correct” element at position
i (the element that would be there if all comparisons were correct) by at most 2r. We prove this
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by induction. When r = 0, the result is trivial. Otherwise, after r − 1 rounds, each element must
differ by at most 2r− 2 from the ”correct” element. By the previous lemma, it follows that in each
group that is being sorted, the elements of the correct sorting of the current elements differ by the
elements of the correct sorting of the correct elements by at most 2r − 2. Since Tournament gives
a 2-approximate sorting, it follows by Corollary 3.4 that after sorting the elements differ by the
”correct” elements by at most 2r by the triangle inequality as desired.

Theorem 1.7 and Theorem 1.8 follow. By letting d be an arbitrarily large constant, we can get
a constant round, constant approximate algorithm that uses O(n1+ε) comparisons for any ε > 0.

6 A General Selection Algorithm In Rounds

In this section, we extend the sorting algorithms in the previous section to selection algorithms
that return a constant approximation regardless of d. We first provide an algorithm that gives a
good approximation if there are few elements close to the answer. Then, we provide an algorithm
that gives a good approximation if there are many elements close to the answer. We then show
that it is possible to combine these to always achieve a constant approximation.

6.1 Sparse Selection

Let Lx = {xi|xk − 1 ≤ xi ≤ xk} and Rx = {xi|xk ≤ xi ≤ xk + 1}. This part of the algorithm
returns a 200-approximation on the left side if |Lx| is sufficiently small, and a 200-approximation
on the right side if |Rx| is sufficiently small. Specifically, if |Lx| ≤ 1

10n
2/3, then x∗ ≥200 xi where

x∗ is the returned item. Similarly, if |Rx| ≤ 1
10n

2/3, then xi ≥200 x
∗.

We aim to partition X into three sets: Z, Y,Γ where Z is the set of elements definitely to the
left of xk, Y is the set of candidate elements to be xk, and Γ is the set of elements definitely to the
right of xk. We also want |Y | = O(n1−ε), so we can sort Y with a constant approximate algorithm.
We sample cn2/3 log n subsets of X of size n1/3, each time sorting with the d round algorithm from
the previous section. We then take the elements of each subset close to the k/n1/3-th position and
add them to the set of candidates. The elements that are not candidates at the end are partitioned
into left and right depending whether they were to the left or the right of the k/n1/3-th position
more frequently. If |Lx| is sufficiently small, we expect most of the subsets to not contain any
elements of Lx, and thus since Sort must be gap-preserving, the subsets must be roughly correctly
sorted around position k/n1/3 − |Lx|

2 . Thus, we expect our candidates to be ≥ xk − 1. Similarly,
when |Rx| is sufficiently small, we expect our candidates to be ≤ xk + 1. This gives us our desired
result.

Let d > 1 be arbitrary. Let Sort be the d round sorting algorithm from Theorem 1.7 and let
100-Sort be the sorting algorithm obtained by taking d = 100 in Theorem 1.8.

Theorem 6.1. [GKK+20] For any r > 0, there exists a log2 d round maximum/minimum finding

algorithm GetMax/GetMin that uses O(n1+ 1

d−1 log d log n) comparisons and returns a 5-approximate
maximum/minimum with probability > 1− 1

nr
∗.

∗Their algorithm guarantees a 3-approximation, but only probability ≥ 0.9. Running it O(log n) times and taking
the tournament maximum/minimum of the results boosts the probability to > 1− 1

nr
, but increases the approximation

factor to 5.
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Algorithm 4 Sparse Selection

1: function SelectSparse(X, k)
2: Y ← ∅
3: L← [0] ∗ n
4: loop cn2/3 log n times
5: Generate a subset S of X of size n1/3

6: S ← Sort(S)
7: T ← S[k/n2/3 − n1/6 : k/n2/3 + n1/6]
8: for xi ∈ S[: k/n2/3 − n1/6] do
9: L[i]← L[i] + 1

10: end for

11: Y ← Y ∪ T
12: end loop

13: Z ← ∅
14: for i = 0..n − 1 do

15: if xi 6∈ Y and L[i] > c
2 log n then

16: Z ← Z ∪ {xi}
17: end if

18: end for

19: Γ← X\(Y ∪ Z)
20: if k ≤ |Z| then
21: return GetMax(Z)
22: else if k ≤ |Z|+ |Y | then
23: Y ← 100-Sort(Y )
24: return Y [k − |Z| − 1]
25: else

26: return GetMin(Γ)
27: end if

28: end function

Lemma 6.2. If |Lx| ≤ 1
10n

2/3, for r > 0 and xi > xL there exists c large enough that Pr
[
L[i] > c

2 log n
]
<

1
nr .

Proof. Consider the iterations in which xi is chosen. By a union bound,

Pr[Lx ∩ S 6= ∅ | xi ∈ S] ≤ |Lx|
n1/3 − 1

n− 1
≤ 1

10
n2/3n

1/3 − 1

n− 1
≤ 2

10

for n sufficiently large. Conditioning on xi being ∈ S, the number of elements of S that are ≤ xk
(call this V ) follows a Hypergeometric(n, k, n1/3)† distribution. By a tail bound:

Pr
[
V ≤ k/n2/3 − n1/6 | xi ∈ S

]
= Pr

[
V ≤ (k/n − n−1/6)n1/3

]

≤ e−2(n−1/6)2n1/3

= e−2.

If Lx ∩ S = ∅ and V > k/n2/3 − n1/6, since Sort is gap-preserving by Lemma 3.6, L[i] cannot
increase in this iteration. It thus follows by a union bound that L[i] increases with probability at

†If there are multiple items with value xk, the second argument can be larger than k, but that can only make the
bounds better.
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most 2
10+e−2 < 0.4. Thus, Pr[xi ∈ S and L[i] increases] < 0.4

n2/3 . Let µ = E[L[i]] ≤ cn2/3 log n 0.4
n2/3 =

0.4c log n. By a Chernoff bound:

Pr
[
L[i] >

c

2
log n

]
≤ Pr[L[i] > (1 + 1/4)µ]

≤ e−(1/4)2µ/(2+1/4)

≤ e−0.4c logn/36

Choosing c > 90r:

<
1

nr

as desired.

Corollary 6.3. If |Lx| ≤ 1
10n

2/3, for any r > 0 there exists c large enough that Pr[Z ∩ (xL,∞) = ∅] >
1− 1

nr .

Proof. This follows by a union bound and the previous lemma.

Corollary 6.4. If |Lx| ≤ 1
10n

2/3, for any r > 0 there exists c large enough that Pr[Γ ∩ (−∞, xL − 1) = ∅] >
1− 1

nr .

Proof. Symmetric.

Let x∗ be the value returned by SelectSparse.

Lemma 6.5. If |Lx| ≤ 1
10n

2/3, for any r > 0 there exists c large enough that Pr[x∗ ≥200 xk] > 1− 1
nr .

Proof. We claim it suffices that Z ∩ (xL,∞) = ∅ and Γ ∩ (−∞, xL − 1) = ∅. If |Z| ≥ k, then
there must be an element of Z that is ≥ xk. Thus, since GetMax returns a 5-approximation with
sufficiently large probability, x∗ ≥5 xk with sufficiently large probability. If |Z| + |Y | < k, then
we return some element of Γ which is ≥1 xk if Γ ∩ (−∞, xL − 1) = ∅. Otherwise, if |Z| < k and
|Z|+ |Y | ≥ k, there must be at most k−|Z|−1 elements of Y that are < xk. Thus, the (k−|Z|)-th
element of Y is ≥ xk. Since 100-Sort returns a 200-approximation, it follows that x∗ ≥200 xk with
sufficiently large probability as desired.

Corollary 6.6. If |Rx| ≤ 1
10n

2/3, for any r > 0 there exists c large enough that Pr[xk ≥200 x
∗] >

1− 1
nr .

Proof. Symmetric.

Theorem 6.7. SelectSparse uses n1+O(1/d)d log n comparisons and d+max(100, log2 d) rounds.

Proof. All of the comparisons come from Sort, 100-Sort, and GetMax/GetMin. The number of

comparisons is thus bounded by cn2/3 log n(n1/3)1+O(1/d) + n1+ 1

d−1 log d log n + (cn5/6 log n)6/5 =
n1+O(1/d)d log n as desired. All iterations of the loop can be done in parallel, so the number of
rounds is bounded by d+ log2 d if GetMax is called, and by d+ 100 if 100-Sort is called.
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6.2 Dense Selection

Here we give two algorithms: Select+ and Select-, the former of which will return a good ap-
proximation if |Lx| > 1

10n
2/3, and the latter if |Rx| > 1

10n
2/3.

The idea is simple: take a large sample (size cn5/6 log n), sort it with a constant approximate
algorithm, and return the element in roughly the k-th position.

Algorithm 5 Dense Selection

1: function Select±(X, k)
2: n← |X|
3: Generate a subset S of X of size cn5/6 log n
4: S ← 100-Sort(S)
5: return S[ck log n/n1/6 ± cn5/12 log n]
6: end function

Let x∗ be the item returned by Select±.

Lemma 6.8. If |Lx| > 1
10n

2/3, for any r > 0 there exists c large enough such that Select− returns
a 201-approximation with probability > 1− 1

nr .

Proof. It suffices to prove the actual (k/n1/6 − n5/12)-th smallest element of S is in Lx, since
100-Sort returns a 200-approximation. The number of elements of S that are ≤ xk (call this V )
follows a Hypergeometric(n, k, cn5/6 log n)‡ distribution. Thus, by a tail bound:

Pr
[
V ≤ ck log n/n1/6 − cn5/12 log n

]
= Pr

[
V ≤ (k/n − n−5/12)cn5/6 log n

]

≤ e−2(n−5/12)2cn5/6 logn

≤ n−2c.

Similarly, the number of elements of S that are < xk−1 (call this U) follows a Hypergeometric(n, k−
1
10n

2/3, cn5/6 log n)§ distribution. Thus, by a tail bound:

Pr
[
U ≥ k/n1/6 − n5/12

]
= Pr

[
((k − n2/3/10)/n + n−1/3/10− n−5/12)cn5/6 log n

]

≤ e−2(n−1/3/10−n−5/12)2cn5/6 logn

< n−2c.

for n sufficiently large. Thus, the probability of the actual (k/n1/6 − n5/12)-th smallest element is
in Lx is at least 1− 2n−2c > 1− 1

nr for c sufficiently large by a union bound.

Corollary 6.9. If |Rx| > 1
10n

2/3, for any r > 0 there exists c large enough such that Select+
returns a 201-approximation with probability > 1− 1

nr .

Proof. Symmetric.

Lemma 6.10. If x∗ is the item returned by Select-, for any r > 0 there exists c sufficiently large
that xk ≥200 x

∗ with probability > 1− 1
nr .

‡Similarly to before, the second argument can be > k, but it only makes the bounds better.
§Again, the second argument could be larger.
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Proof. This is implicitly proven in the previous lemma, where we prove the position in the original
array of x∗ is less than k.

Corollary 6.11. If x∗ is the item returned by Select+, for any r > 0 there exists c sufficiently
large that x∗ ≥200 xk with probability > 1− 1

nr

Proof. Symmetric.

Theorem 6.12. Select± uses O(n log6/5 n) comparisons and 100 rounds.

Proof. All comparisons are done in 100-Sort, so the number of comparisons is O((n5/6 log n)6/5) =
O(n log6/5 n). Since 100-Sort takes 100 rounds, so does Select±.

6.3 Combining

Algorithm 6 Pivot

1: function Count(X,xi)
2: c← 0
3: for x ∈ X do

4: if x <c xi then
5: c← c+ 1
6: end if

7: end for

8: return c
9: end function

Algorithm 7 Selection

1: function Select(X, k)
2: xi ← SelectSparse(X, k)
3: ci ← Count(X,xi)
4: if ci < k then

5: xj ← Select−(X, k)
6: if xj >c xi then return xj
7: else return xi
8: end if

9: else

10: xj ← Select+(X, k)
11: if xj <c xi then return xj
12: else return xi
13: end if

14: end if

15: end function

Lemma 6.13. For any r > 0, we can choose c sufficiently large that |xk − x∗| ≤ max(200, 1 +
min(|xk − xi|, |xk − xj|)) with probability > 1− 1

nr .

Proof. By symmetry, we may assume without loss of generality that ci < k. In this case, we return
the item with the larger Count. Since we return the maximum of xi and xj (according to the
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comparator), we must have max(xi, xj) − 1 ≤ x∗ ≤ max(xi, xj). By a result from the previous
section, xj ≤ xk+200 with probability > 1− 1

nr . If xi was > xk+1, then it would compare greater
than xk and everything before it, contradicting ci < k. Thus, xi ≤ xk + 1. It follows that with
probability > 1− 1

nr , max(xi, xj) ≤ xk +200. Thus, if either xi > xk or xj > xk, |x∗−xk| ≤ 200 as
desired. Otherwise, if both xi ≤ xk and xj ≤ xk, then |xk−x∗| = xk−x∗ ≤ xk−(max(xi, xj)−1) =
min(|xk − xi|, |xk − xj|) + 1 as desired.

Theorem 6.14. For r > 0 there exists c sufficiently large that Select returns a 202-approximate
k-selection with probability > 1− 1

nr .

Proof. We consider cases based on the sizes of Lx and Rx:
If |Lx| ≤ 1

10n
2/3 and |Rx| ≤ 1

10n
2/3, then we have xi ≥200 xk and xk ≥200 xi with probability

> 1 − 2
nr+1 , in which case we have |xk − xi| ≤ 200. By the previous lemma it follows that

|x∗ − xk| ≤ 201 with probability > 1 − 3
nr+1 , so we return a 201-approximate k-selection with

probability > 1− 3
nr+1 > 1− 1

nr as desired.

If |Lx| > 1
10n

2/3 and |Rx| > 1
10n

2/3, then |xj − xk| ≤ 201 with probability > 1 − 1
nr+1 . Thus,

by the previous lemma, |x∗ − xk| ≤ 202 with probability > 1 − 2
nr+1 . It follows that x∗ is a

202-approximate k-selection with probability > 1− 2
nr+1 > 1− 1

nr as desired.

If |Lx| ≤ 1
10n

2/3 and |Rx| > 1
10n

2/3, we have xi ≥200 xk with probability > 1
nr+1 . Thus, either

xi ≤ xk +1 in which case we have |xi− xk| ≤ 200, or xi > xk +1 in which case xj must come from
Select+ and thus |xj − xk| ≤ 201 with probability > 1

nr+1 . By the previous lemma, it thus follows
that |x∗ − xk| ≤ 202 with probability > 3

nr+1 . It follows that x∗ is a 202-approximate k-selection
with probability > 1− 3

nr+1 > 1− 1
nr as desired.

The case where |Lx| > 1
10n

2/3 and |Rx| ≤ 1
10n

2/3 is symmetric.

Theorem 6.15. Select takes n1+O(1/d)d log n comparisons and d+102+min(100, log2 d) rounds.

Proof. All comparisons are done in SelectSparse, Select± and Count. The number of com-
parisons done by the two calls to Count is bounded by 2n. Thus, the total number of com-
parisons is bounded by n1+O(1/d)d log n + n log6/5 n + 2n = n1+O(1/d)d log n. Each call to Count

takes one round, so the total number of rounds is bounded by d + min(100, log2 d) + 100 + 2 =
d+ 102 + min(100, log2 d).

Theorem 1.9 follows.

7 Open Problems

– Is there an algorithm to find a 3-approximate sorting or selection with high probability in
Õ(n) time?

– Is there an algorithm to find a constant-approximate sorting with high probability inO(n log n)
time?

– Is there an algorithm to find a constant-approximate selection with high probability in O(n)
time?

– Can we improve the lower or upper bounds for k-approximate sorting and selection in d
rounds?
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[Bol88] Béla Bollobás. Sorting in rounds. Discrete Mathematics, 72(1-3):21–28, 1988.
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