
ar
X

iv
:2

40
1.

02
91

8v
1

 [
cs

.D
S]

 5
 J

an
 2

02
4

Approximation Algorithms for the Weighted Nash Social

Welfare via Convex and Non-Convex Programs

Adam Brown*1, Aditi Laddha †2, Madhusudhan Reddy Pittu ‡3, and Mohit Singh*1

1Georgia Institute of Technology
2Yale University

2Carnegie Mellon University

Abstract

In an instance of the weighted Nash Social Welfare problem, we are given a set of m in-
divisible items, G, and n agents, A, where each agent i ∈ A has a valuation vij ≥ 0 for each
item j ∈ G. In addition, every agent i has a non-negative weight wi such that the weights
collectively sum up to 1. The goal is to find an assignment σ : G → A that maximizes

∏i∈A

(
∑j∈σ−1(i) vij

)wi
, the product of the weighted valuations of the players. When all the

weights equal 1
n , the problem reduces to the classical Nash Social Welfare problem, which

has recently received much attention. In this work, we present a 5 · exp
(

2 · DKL(w ||
~1
n)
)
=

5 · exp (2 log n + 2 ∑
n
i=1 wi log wi)-approximation algorithm for the weighted Nash Social Wel-

fare problem, where DKL(w ||
~1
n) denotes the KL-divergence between the distribution induced

by w and the uniform distribution on [n].
We show a novel connection between the convex programming relaxations for the un-

weighted variant of Nash Social Welfare presented in [CDG+17, AGSS17], and generalize the
programs to two different mathematical programs for the weighted case. The first program
is convex and is necessary for computational efficiency, while the second program is a non-
convex relaxation that can be rounded efficiently. The approximation factor derives from the
difference in the objective values of the convex and non-convex relaxation.

1 Introduction

In an instance of the weighted Nash Social Welfare problem, we are given a set of m indivisible
items G, and a set of n agents,A. Every agent i ∈ A has a weight wi ≥ 0 such that ∑i∈A wi = 1 and
an additive valuation function vi : 2G → R≥0. Let vij := vi({j}). The goal is to find an assignment

*ajmbrown@gatech.edu, msingh94@gatech.edu; supported in part by NSF CCF-2106444 and NSF CCF-1910423.
†aditi.laddha@yale.edu; supported in part by the Institute for Foundations of Data Science at Yale and NSF CCF-

2007443.
‡mpittu@andrew.cmu.edu; supported in part by NSF awards CCF-1955785 and CCF-2006953.

1

http://arxiv.org/abs/2401.02918v1

of items, σ : G → A, to maximize the following welfare function:

∏
i∈A

 ∑

j∈σ−1(i)

vij

wi

. (1)

For ease of notation, we will work with the log objective and denote

NSW(σ) = ∑
i∈A

wi log

 ∑

j∈σ−1(i)

vij

 . (2)

Let OPT = maxσ:G→ANSW(σ) denote the optimal log objective. The case where wi =
1
n for each

i ∈ A is the much-studied “symmetric” or unweighted Nash social welfare problem, where the
objective is the geometric mean of agents’ valuations.

Fair and efficient division of resources among agents is a fundamental problem arising in various
fields [BT05, BT96, BCE+16, RW98, Rot15, You94]. While there are many social welfare functions
which can be used to evaluate the efficacy of an assignment of goods to the agents, the Nash
Social Welfare function is well-known to interpolate between fairness and overall utility. The un-
weighted Nash Social Welfare function first appeared as the solution to an arbitration scheme
proposed by Nash for two-person bargaining games and was later generalized to multiple play-
ers [NJ50, KN79]. Since then, it has been widely used in numerous fields to model resource alloca-
tion problems. An attractive feature of the objective is that it is invariant under scaling by any of
the agent’s valuations, and therefore, each agent can specify its utility in its own units (see [CM04]
for a detailed treatment). While the theory of Nash Social Welfare objective was initially devel-
oped for divisible items, more recently, it has been applied in the context of indivisible items.
We refer the reader to [CKM+19] for a comprehensive overview of the problem in the latter set-
ting. Indeed, optimizing the Nash Social Welfare objective also implies notions of fairness, such
as envy-free allocation in an approximate sense [CKM+19, BKV18].

The Nash Social Welfare function with weights (also referred to as asymmetric or non-symmetric
Nash Social Welfare) was first studied in the seventies [HS72, Kal77] in the context of two-person
bargaining games. For example, in the bargaining context, it allows different agents to have dif-
ferent weights. Due to this flexibility, problems in many diverse domains can be modeled us-
ing the weighted objective, including bargaining theory [CM04, LV07], water resource allocation
[FKL12, HLZ13], and climate agreements [YIWZ17]. From a context of indivisible goods, the
study of this problem has been much more recent [GKK20, GHV21, GHL+23]. In this work, we
aim to shed light on the weighted Nash Social Welfare problem, mainly focusing on mathematical
programming relaxations for the problem.

1.1 Our Results and Contributions

Our main result is an exp
(
2 log 2 + 1

2e + 2DKL(w || u)
)
≈ 4.81 · exp

(
2 log n− 2 ∑

n
i=1 wi log 1

wi

)
-

approximation algorithm for the weighted Nash Social Welfare problem with additive valuations.
When all the weights are the same, this gives a constant factor approximation. Our algorithm
builds on and extends a convex programming relaxation for the unweighted variant of Nash Social
Welfare presented in [CG15, CDG+17, AGSS17]. In the following theorem, we state the guarantee
in terms of the log-objective, and therefore, the guarantee becomes an additive one.

2

Theorem 1. Let (A,G, v, w) be an instance of the weighted Nash Social Welfare problem with ∑i∈A wi =
1 and |A| = n agents. There exists a polynomial time algorithm (Algorithm 1) that, given (A,G, v, w),
returns an assignment σ : G → A such that

NSW(σ) ≥ OPT− 2 log 2−
1

2e
− 2 · DKL(w || u),

where OPT is the optimal log-objective for the instance and DKL(w||u) = log n−∑i∈A wi log 1
wi

.

Observe that the KL-divergence term DKL(w || u) =
(

log n−∑i∈A wi log 1
wi

)
is always upper

bounded by log(nwmax), which is exactly the guarantee of previous work [GHL+23]. In many
settings, the term 2 ·DKL(w || u) can be significantly smaller than nwmax. For example, consider the
setting where w1 = 1

log n and wi =
1

n−1(1−
1

log n) for i = 2, . . . , n, i.e., one agent has a significantly

higher weight than the others. Then

DKL(w || u) =
1

log n
log

(
n

log n

)
+

(
1−

1

log n

)
log

(
n

n− 1

(
1−

1

log n

))

= 1−
log log n

log n
+

(
1−

1

log n

)
log

(
n

n− 1

)
+

(
1−

1

log n

)
log

(
1−

1

log n

)

≤ 1 + log

(
n

n− 1

)
≤ 2.

In this case, our results imply an O(1)-approximation, while previous results imply an O(n
log n)-

approximation.

Our algorithm relies on two mathematical programming relaxations for the weighted Nash So-
cial Welfare problem, both of which generalize the convex relaxation for the unweighted version
[CG15, CDG+17, AGSS17]. The first relaxation, (NCVX-Weighted), is non-convex but retains a lot
of structural insights obtained for the convex relaxation in the symmetric version. We show that
the same rounding algorithm as in the symmetric version [CG15] gives an O(1)-approximation for
the weighted version when applied to a fractional solution of the non-convex program. Although
(NCVX-Weighted) can be rounded efficiently, unfortunately, we cannot solve this relaxation due to
its non-convex nature. Now, the second mathematical programming relaxation, (CVX-Weighted),
comes to the rescue. This relaxation is convex and thus can be solved efficiently, but is challeng-
ing to round. Our algorithm solves the convex relaxation, then uses the non-convex relaxation to
measure the change in objective as it processes the solution and eventually rounds to an integral
assignment. The approximation factor of DKL(w || u) arises due to the difference in objective val-
ues of these two programs. Section 1.3 provides a technical overview of the properties of the two
relaxations.

Before stating our second result, we describe the two previous convex programming relaxations
for the unweighted Nash Social Welfare problem presented in [CDG+17] and [AGSS17].

Equivalence of Relaxations. Building on the algorithm of [CG15], [CDG+17] introduced the fol-
lowing relaxation for the unweighted Nash Social Welfare problem.

max
b,q

∑
i∈A

∑
j∈G

bij log
(
vij

)
−∑

j∈G

(

∑
i∈A

bij

)
log

(

∑
i∈A

bij

)
(CVX-Unweighted)

3

s.t. ∑
j

bij = 1 ∀i ∈ A

∑
i

bij ≤ 1 ∀j ∈ G

bij ≥ 0 ∀(i, j) ∈ A× G.

They showed that (CVX-Unweighted) is a convex relaxation of the Nash Social Welfare objective,
and the prices used by the algorithm presented in [CG15] can be obtained as dual variables of
(CVX-Unweighted). Interestingly, the convex relaxation is not in terms of the assignment vari-
ables. Indeed, given an optimal assignment σ : G → A, the corresponding setting of the variables
bij is

bij =

{ vij

∑k∈σ−1(i)
vik

if σ(j) = i

0 otherwise.
(3)

One can verify that b satisfies all the constraints in (CVX-Unweighted), and its objective value is
equal to the log of the geometric means of the valuations.

[AGSS17] presented a different convex programming relaxation1, (LogConcave-Unweighted), for
unweighted NSW. They showed that the objective of (LogConcave-Unweighted) is a log-concave
function in x and convex in log y to obtain an e-approximation for unweighted NSW.

max
x≥0

inf
y>0

∑
i∈A

log

(

∑
j∈G

xij vij yj

)
(LogConcave-Unweighted)

s.t. ∑
i∈A

xij = 1 ∀j ∈ G

∏
j∈S

yj ≥ 1 ∀S ∈

(
G

n

)
.

Here, (Gn) denotes the collection of subsets of G of size n, where n = |A|.

On the surface, the programs (LogConcave-Unweighted) and (CVX-Unweighted), and their cor-
responding rounding algorithm are quite different: [CDG+17] used intuition from economics and
market equilibrium to both arrive at (CVX-Unweighted) and also to round it, while [AGSS17] uses
the properties of log-concave polynomials to round (CVX-Unweighted).

However, our next result shows that these two convex programs indeed optimize the same objec-
tive.

Theorem 2. The optimal values of (LogConcave-Unweighted) and (CVX-Unweighted) are the same.

The proof of this theorem, presented in Appendix B.1, relies on a series of transformations using
convex duality.

Besides providing a novel connection between two very different approaches to the unweighted
problem, Theorem 2 is also vital to derive our main algorithm for weighted Nash Social Wel-
fare. Independently generalizing either of these approaches to the weighted case is challenging:
[CDG+17, CG15] use intuition from economics to arrive at (CVX-Unweighted), and these concepts

1The program is concave in x and convex in log(y). A change of variable yj 7→ exp(−zj) gives a concave-convex
program in x and z.

4

do not generalize to the weighted case. On the other hand, there is a natural convex generaliza-
tion of (LogConcave-Unweighted) for the weighted case2, it is not log-concave, and therefore the
machinery introduced in cannot be used to analyze it.

Our approach leverages the connection between [CDG+17] and [AGSS17] stated in Theorem 2 to
derive a more natural convex relaxation of weighted Nash Social Welfare, given by (CVX-Weighted).
We provide more concrete details on this relationship and how it leads to the two programs for
weighted NSW in Appendix B.

1.2 Preliminaries

KL-Divergence. For two probability distributions p, q over the same discrete domain X , the
KL-divergence between p and q is defined as

DKL(p || q) = ∑
x∈X

p(x) log

(
p(x)

q(x)

)
.

It is well-known, via Gibb’s inequality, that the KL-divergence between two distributions is non-
negative and is zero if and only if p and q are identical.

We use this fact crucially in the following claim.

Claim 1.1. Given positive reals z1, . . . , zd, for any y1, y2, . . . , yd ≥ 0,

d

∑
j=1

yj log

(
d

∑
j=1

zj

)
−

d

∑
j=1

yj log

(
d

∑
j=1

yj

)
≥

d

∑
j=1

yj log zj −
d

∑
j=1

yj log yj.

Proof. Define vectors y = (y1, . . . , yd) and z = (z1, . . . , zd). Then ỹ = y
‖y‖1

and z̃ = z
‖z‖1

define two

probability distributions on [d]. The inequality is equivalent to DKL(ỹ || z̃) ≥ 0.

Moreover, if q is the uniform distribution on X and p is an arbitrary distribution on the same
domain, then

DKL(p || q) = log |X | − ∑
x∈X

p(x) log
1

p(x)
.

Feasibility Polytope. Consider a complete bipartite graph G = (G ∪ A, E) where E contains an
edge (i, j) for each i ∈ A and j ∈ G. LetM(A) denote the set of all matchings in G of size |A|, i.e.,
matchings which have an edge incident to every vertex in A. The convex hull ofM(A), denoted
by P(A,G), is defined by the following polytope.

Definition 1 (Feasibility Polytope). For a set of m indivisible items, G, and a set of n agents, A, the
feasibility polytope, denoted by P(A,G), is defined as

P(A,G) :=

{
b ∈ R

|A|×|G|
≥0 : ∑

j∈G

bij = 1 ∀i ∈ A , ∑
i∈A

bij ≤ 1 ∀j ∈ G

}
.

2We present this generalization in Appendix B.2

5

The constraint ∑j∈G bij = 1 is called the Agent constraint for agent i, and the constraint ∑i∈A bij ≤ 1 is
referred to as the Item constraint for item j.

We call P(A,G) the feasibility polytope of (A,G) and will refer to points in P(A,G) as either
feasible points or solutions. In the next section, we use P(A,G) to define the feasible regions for
both mathematical programs.

1.3 Technical Overview

Programs for Weighted NSW. We introduce two mathematical programs, (CVX-Weighted) and
(NCVX-Weighted) below as relaxations of the weighted Nash Social Welfare objective. By setting
b to be the same value as (3), it is natural to see that both programs are indeed relaxations. The
first program (CVX-Weighted) is a convex program for any non-negative weights w, whereas the
second program is not a convex program when the weights are not identical.

max
b

fcvx(b) := ∑
i∈A

∑
j∈G

wi bij log vij

−∑
j∈G

∑
i∈A

wi bij log

(

∑
i∈A

wi bij

)

+ ∑
i∈A

wi log wi

s.t. ∑
j∈G

bij = 1 ∀i ∈ A

∑
i∈A

bij ≤ 1 ∀j ∈ G

bij ≥ 0 ∀(i, j) ∈ A× G

(CVX-Weighted)

max
b

fncvx(b) := ∑
i∈A

∑
j∈G

wi bij log vij

−∑
j∈G

∑
i∈A

wi bij log

(

∑
i∈A

bij

)

s.t. ∑
j∈G

bij = 1 ∀i ∈ A

∑
i∈A

bij ≤ 1 ∀j ∈ G

bij ≥ 0 ∀(i, j) ∈ A× G

(NCVX-Weighted)

Lemma 3. (CVX-Weighted) and (NCVX-Weighted) are relaxations of the weighted Nash Social Wel-
fare problem. Moreover, when the weights are symmetric, i.e., wi = 1/n for all i ∈ A, the programs
(CVX-Weighted) and (NCVX-Weighted) are equivalent to the convex program (CVX-Unweighted).

We formally prove Lemma 3 in Appendix A.

Note that the constraints for both (CVX-Weighted) and (NCVX-Weighted) are identical to the fea-
sibility polytope P(A,G).

While analogous to (CVX-Unweighted), (CVX-Weighted) does not inherit a crucial property of
(CVX-Unweighted), making (CVX-Weighted) challenging to round: optimal solutions of (CVX-Weighted)
need not be acyclic. Furthermore, the integrality gap of (CVX-Weighted) is non-trivial even in the
case when there are exactly n items. To circumvent these issues, we use (NCVX-Weighted) as
an intermediate step in our rounding algorithm which has a desirable property: given a point

b ∈ P(A,G), one can efficiently find another point b̃ ∈ P(A,G) without decreasing the objective

6

fncvx such that the graph formed by support of b̃ is a forest, as stated in the following lemma. We
formally define the support graphs in Definition 2.

The two relaxations. We observe that the objective of (CVX-Weighted) is a concave function, and
thus, it is a polynomial time tractable convex program. However, the objective of (NCVX-Weighted)
is not necessarily concave when the weights wi are not uniform. Despite this, (NCVX-Weighted)
still satisfies many desirable properties:

Lemma 4. Let b be any feasible point in P(A,G). Then there exists an acyclic solution, bforest, in the
support of b such that

fncvx(b
forest) ≥ fncvx(b).

Moreover, such a solution can be found in time polynomial in |A| and |G|.

Next, we establish that one can efficiently round any feasible point whose support graph is a forest
to an integral assignment.

Theorem 5. For a Nash Social Welfare instance (A,G, v, w), given a vector b ∈ P(A,G) such that the
support of b is a forest, there exists a deterministic polynomial time algorithm (Algorithm 2) which returns
an assignment σ : G → A such that

NSW(σ) ≥ fcvx(b)− DKL(w || u)− 2 log 2−
1

2e
.

We remark that our algorithm for rounding (NCVX-Weighted) (Algorithm 2) is the same as that
in [CG15]. However, our analysis is quite different. Rather than using ideas from market inter-
pretations of the problem, we utilize properties of (CVX-Weighted) and (NCVX-Weighted), which
generalize to both the unweighted and the weighted versions of the problem.

Our analysis relies crucially on two facts: the relative stability of optimal points of (CVX-Weighted)
and the interplay between the values of fcvx and fncvx. First, we establish that any optimal point of
(CVX-Weighted) is relatively stable; the difference between the objective values of an optimal so-
lution and any feasible solution is independent of the valuations v and, therefore, can be bounded
effectively. Second, we show that for any feasible solution, the difference between fcvx and fncvx

is, at most, the KL-Divergence between the weights and the constant vector.

Our analysis uses this stability property along with the structure of the feasibility polytope to
iteratively sparsify an optimal solution and obtain a matching between the agents and bundles of
items while only losing a constant factor in the objective. It is worth noting that the first term in
the objective fncvx (and fcvx) is linear in the variable b. As the constraint set on b is a matching
polytope, the solution that optimizes a linear objective would be a matching in which all agents
receive exactly one item. While such a matching would be very suboptimal compared to OPT,
our algorithm constructs an augmented graph containing a matching with a value comparable to
OPT. The crux of our algorithm is to find a feasible vector in the matching polytope for which
fncvx is close to OPT, and the additional non-linear terms in fncvx are relatively small.

The remaining challenge to our approach is that (NCVX-Weighted) is not a convex program, and
therefore, we cannot efficiently find a global optima that maximizes fncvx. However, we show
that the objective of (NCVX-Weighted) and (CVX-Weighted) differ by at most the DKL(w || u),
as stated in the following lemma. We leverage this fact to initialize (NCVX-Weighted) with the
globally optimal solution of (CVX-Weighted) to obtain the approximation guarantee.

7

Lemma 6. For any b ∈ P(A,G) and weights w1, . . . , wn > 0 with ∑i∈A wi = 1,

0 ≤ fcvx(b)− fncvx(b) ≤ DKL(w || u) = log n− ∑
i∈A

wi log
1

wi
.

We obtain our main result in Theorem 1 by combining Lemma 4, Theorem 5, and Lemma 6.

1.4 Related Work

The problem of finding the allocation that maximizes the Nash Social Welfare objective is an NP-
hard problem, as was proven by [NNRR14]. Additionally, [Lee17] showed that finding such an
allocation is also APX-hard. From an algorithmic perspective, the first constant factor approxi-
mation for the unweighted version was provided in [CG15] using analogies from market equi-
librium. [CDG+17] provided an improved analysis of the algorithm from [CG15] and introduced
a convex programming relaxation. Using an entirely different approach, [AGSS17] also provided
a constant factor approximation for the unweighted variant, where their analysis employed the
theory of log-concave polynomials. The best-known approximation factor with linear valuations
of 1.45 is due to [BKV18], where they provide a pseudopolynomial-time algorithm that finds an
allocation that is envy-free up to one good. Their algorithm is entirely combinatorial and runs in
polynomial time when the valuations are bounded.

Another setting of interest is when the valuation of each agent is submodular instead of additive.
For instance, [GHV21] gave a constant factor approximation algorithm for maximizing the un-
weighted Nash Social welfare function when the agents’ valuations are Rado, a special subclass
of submodular functions. In the weighted case, the approximation factor of this algorithm de-
pends on the ratio of the maximum weight to the minimum weight. [LV22] provided a constant
factor approximation algorithm for the unweighted case with submodular valuations. More re-
cently, [GHL+23] gave a local search-based algorithm to obtain an O(nwmax)-approximation for
the weighted case and a 4-approximation for the unweighted case with submodular valuations.
Note that this O(nwmax)-approximation factor was also the previously best-known approximation
for the weighted case, even when considering additive valuations.

2 Approximation Algorithm

Before describing our algorithm, we need the following definitions.

Definition 2 (Support Graph). For a vector b ∈ P(A,G), the support graph of b, denoted by Gsupp(b),
is a bipartite graph with vertex set A∪ G. For any i ∈ A and j ∈ G, the edge (i, j) belongs to the edge set
of G if and only if bij > 0.

Definition 3 (Acyclic Solution). A vector b ∈ P(A,G) is called an acyclic solution if the support graph
of b, Gsupp(b), does not contain any cycles.

For ease of notation, given any feasible point b ∈ P(A,G), we use vector q ∈ R
|G| to denote the

projection of b to G, i.e.,
qj := ∑

i∈A

bij

8

for each j ∈ G. Since q is completely defined by b, with abuse of notation, we will interchangeably
use P(A,G) to denote feasible vectors b as well as (b, q). Similarly, we will use fncvx(b, q) and
fcvx(b, q) to also denote the objective fncvx(b) and fcvx(b), respectively. With a slight abuse of
notation, we define

fncvx(b, q) := ∑
i∈A

∑
j∈G

wi bij log vij − ∑
i∈A

∑
j∈G

wi bij log qj.

for any b ∈ P(A,G) and its projection q ∈ R
|G|.

Our main algorithm, Algorithm 1, begins by finding the optimal solution b to the convex pro-
gram (CVX-Weighted). It then constructs another feasible point, bforest, in support of b such that
the support graph of bforest is a forest and fncvx at bforest is at least fncvx at b. In the final step, the
algorithm rounds bforest to an integral solution using Algorithm 2. Theorem 5 establishes a bound
on the rounding error incurred during Algorithm 2.

Algorithm 1: Approximation Algorithm for Weighted Nash Social Welfare

1 Input. NSW instance (A,G, v, w)

2 b← optimal solution of (CVX-Weighted)

3 q← vector in R
|G| with qj = ∑i∈A bij

4 (bforest, qforest)← acyclic solution in support of b such that fncvx(bforest) ≥ fncvx(b)

5 σ← output of Algorithm 2 with input (A,G, v, w, bforest, qforest)
6 Output. σ

Lemma 4, which we re-state below for the reader’s convenience, guarantees the existence of bforest,
ensuring that the algorithm is well-defined. It is worth mentioning that for the unweighted case,
the existence of an acyclic optimum was utilized by [CG15, CDG+17] for the convex program
(CVX-Unweighted). In the weighted setting, this structural property is not inherited by the convex
program (CVX-Weighted) but by the non-convex program (NCVX-Weighted).

Lemma 4. Let b be any feasible point in P(A,G). Then there exists an acyclic solution, bforest, in the
support of b such that

fncvx(b
forest) ≥ fncvx(b).

Moreover, such a solution can be found in time polynomial in |A| and |G|.

Proof. Let Gsupp(b̄) contain a cycle (i0, j0, i1, . . . , jℓ−1, iℓ) with i0 = iℓ, where ix ∈ A and jy ∈ G.
The main idea is to modify the variables b̄ on this cycle while ensuring the value of q̄ does not
change. If q̄ is fixed, then fncvx(·, q̄) is linear in the input, and as a result, we can cancel the cycle
by considering the following vector. Define δ ∈ R

|A|×|G| with δix jx := 1 and δix+1jx := −1 for
x ∈ {0, . . . , ℓ− 1}, and δij := 0 otherwise.

Note that ∑i∈A δij = 0 for any item j. As a result, for each j ∈ G,

∑
i∈A

b̄ij + εδij = ∑
i∈A

b̄ij = q̄j.

Therefore, the change in fncvx is given by

fncvx(b̄ + εδ, q̄)− fncvx(b̄, q̄) = ∑
i∈A

∑
j∈G

ε wi δij log vij − ∑
i∈A

∑
j∈G

ε wi δij log q̄j := ε h(δ, q̄).

9

Note that h(δ, q̄) is a linear function in δ. So, if h(δ, q̄) > 0, then setting ε = maxx bix+1 jx ensures
that fncvx(b̄ + εδ, q̄) ≥ fncvx(b̄, q̄), and b̄ + εδ ∈ P(A,G). In addition, the number of cycles in
Gsupp(b̄ + εδ) is strictly less than the number of cycles in Gsupp(b̄).

Similarly, if h(δ, q̄) ≤ 0, setting ε = −maxx bix jx gives the same guarantees. Iterating this cycle
canceling process until the support contains no cycles leads to the required solution.

By combining Lemma 4 with Lemma 6, we obtain the following corollary.

Corollary 7. Let b be any feasible point in P(A,G). Then, there exists an acyclic solution, bforest, in the
support of b such that

fcvx(b
forest) ≥ fcvx(b)− DKL(w || u).

Moreover, such a bforest can be found in time polynomial in |A| and |G|.

Before presenting Algorithm 2, we give the proof of Theorem 1, which now follows directly from
Theorem 5 and Corollary 7, as outlined below.

Proof of Theorem 1. Let (b, q) and (bforest, qforest) denote the feasible points defined in Step 1 and
Step 3 of Algorithm 1, respectively. Let σ⋆ be the assignment returned by Algorithm 2 on input
(bforest, qforest). By Theorem 5, we have

NSW(σ⋆) ≥ fcvx(b
forest, qforest)− DKL(w || u)− 2 log 2−

1

2e
(i)

≥ fcvx(b, q)− 2 · DKL(w || u)− 2 log 2−
1

2e
(ii)

≥ OPT− 2 · DKL(w || u)− 2 log 2−
1

2e
.

Here, (i) follows from Corollary 7 and (ii) follows from Lemma 3.

2.1 Rounding an Acyclic Solution

Given an acyclic solution b, Algorithm 2 returns an assignment, σ⋆, such that NSW(σ⋆) is compa-
rable to fcvx(b), as stated in Theorem 5.

In the first step, Algorithm 2 finds an optimal solution, denoted by b⋆, to (CVX-Weighted) re-
stricted to the support of b, i.e., b⋆ is the optimal solution to (CVX-Weighted) on input (A,G, ṽ, w),
where ṽij = 0 if bij = 0, and ṽij = vij otherwise. This step is crucial as it allows us to utilize the
stability properties of stationary points of (CVX-Weighted).

Next, the algorithm implements a “pruning” step to sparsify b⋆: it removes edges between any
item with q⋆j < 1/2 and its children in F⋆. Here, F⋆ is the support graph of b⋆ with every tree

rooted at agent nodes. This step is equivalent to assigning each item j with q⋆j < 1/2 to its parent

agent in F⋆. As a result, any item with q⋆j < 1/2 is a leaf in the pruned forest, F̃. Since removing

edges will exclude certain items from being assigned to some agents, pruning can lead to a sub-
optimal solution. We bound this loss in objective by showing the existence of a fractional solution

3If agent i in unmatched in M, we let viM(i) = 0

10

Algorithm 2: Algorithm for Rounding an Acyclic Solution

1 Input. NSW instance (A,G, v, w), acyclic solution (b, q) ∈ P(A,G)
2 (b⋆, q⋆)← optimal solution of (CVX-Weighted) restricted to the support of (b, q)
3 F⋆ ← Gsupp(b⋆) with every tree rooted at an agent node

4 F̃ ← Forest obtained by removing edges between item j and its children in F⋆ whenever
q⋆j < 1/2 /* pruning step */

5 L⋆
i ← set of leaf children of agent i in F̃ and let L⋆ = ∪i{L

⋆
i }

6 M⋆ ← matching betweenA → G\L⋆ in F̃ which maximizes weight function

wF̃(M) := ∑i∈A wi log
(

viM(i) + ∑j∈L⋆
i

vij

)
3

7 σ⋆ ← assignment of G to A with σ⋆(j) = i if j ∈ {L⋆
i ∪M⋆(i)} /* matching step */

8 Output. σ⋆

(bpruned, qpruned) whose support graph is a subset of the pruned forest, F̃, and fcvx(bpruned) is
comparable to fcvx(b⋆). For concrete details, see Section 3.

It is important to emphasize that the algorithm does not need to find (bpruned, qpruned). The mere
existence of (bpruned, qpruned) is enough to guarantee that the assignment returned by the algo-
rithm will be good, as explained below.

After the pruning step, the algorithm assigns every leaf item in the pruned forest to its parent.
We use L⋆

i to denote the set of leaf items whose parent is agent i and L⋆ = ∪i∈AL⋆
i to denote the

set of all leaf items in the pruned forest. So, each agent i receives all the items in the bundle L⋆
i .

In the matching step, the algorithm assigns at most one additional item to each agent by finding
a maximum weight matching between agents A and items G\L⋆ (the set of non-leaf items in the
pruned forest). This matching is determined using an augmented weight function, denoted by
wF̃. The weight of a matching M betweenA and G \ L⋆ in the pruned forest is defined as follows:

wF̃(M) := ∑
i∈A

wi log

viM(i) + ∑

j∈L⋆
i

vij

 ,

where viM(i) = 0 if i is not matched in M. Observe that this weight function exactly captures the
weighted Nash Social Welfare objective when agent i is assigned the item set Si := {M(i)∪ L⋆

i } for
each i ∈ A. Moreover, finding the optimal matching M can be easily formulated as a maximum
weight matching problem in a bipartite graph.

Since the standard linear programming relaxation for the bipartite matching problem is integral,
it is enough to demonstrate the existence of a fractional matching with a large weight wF̃ in the
pruned forest. In Section 3.2, we show how to construct a fractional matching corresponding to
bpruned, such that the weight of this matching is comparable to the objective fncvx(bpruned). We
emphasize that this matching corresponding to bpruned is only required for the sake of analysis:
to lower bound the performance of the matching returned by the algorithm. We do not need to
know bpruned for the execution of the algorithm.

11

3 Rounding via the Non-Convex Relaxation

In this section, we prove Theorem 5 by establishing properties of support-restricted optimal so-
lutions of (CVX-Weighted). First, in Lemma 8, we show that any optimum whose support is
restricted to a forest can be “pruned” to a feasible solution while only losing a constant factor
in the objective. Specifically, we show that given a support restricted optimum (b⋆, q⋆), we can

construct a feasible solution (bpruned, qpruned) such that any item with q
pruned
j < 1/2 is a leaf in

support graph of bpruned, and fcvx(bpruned, qpruned) ≥ fcvx(b⋆, q⋆)− log 2.

Second, in Lemma 9, we demonstrate the existence of a matching in the support graph of bpruned

such that the augmented weight function of this matching differs from fncvx(bpruned) by a constant
factor. After presenting these two lemmas, we provide the proof of Theorem 5.

Lemma 8. Let (b⋆, q⋆) be the optimal solution of (CVX-Weighted) in the support of some acyclic feasible
point bforest. Let F be a directed forest formed by Gsupp(b⋆) when every tree is rooted at an agent node.

Then, there exists an acyclic feasible point (bpruned, qpruned) in P(A,G) such that Gsupp(bpruned) is a
subgraph of Gsupp(b⋆) and

• q
pruned
j ≥ q⋆j for any item j with q⋆j ≥ 1/2,

• each item with q⋆j < 1/2 is a leaf in Gsupp(bpruned) connected to its parent in F, and

• fcvx(bpruned, qpruned) ≥ fcvx(b⋆, q⋆)− log 2.

The proof of Lemma 8 relies on the stability properties of optimal solutions of (CVX-Weighted), as
outlined in Section 3.1.

Lemma 9. Let (b, q) be an acyclic solution in P(A,G) such that every item with qj < 1/2 is a leaf in

Gsupport(b). Let S : A → 2G be a function such that for each agent i, S(i) is a subset of the leaf items
connected to agent i in Gsupp(b), and S(i) contains all children of agent i with qj < 1/2. Then, there exists
a matching M in Gsupp(b) between the vertices in A and {G\ ∪i {S(i)}} such that

∑
i∈A

wi log

viM(i) + ∑

j∈S(i)

vij

 ≥ fncvx(b, q)− log 2−

1

2e
,

where viM(i) = 0 if agent i is not matched in M.

We prove this lemma in Section 3.2.

Proof of Theorem 5. Given (b, q) such that Gsupp(b) is a forest, let (b⋆, q⋆) be the optimal solu-

tion of (CVX-Weighted) restricted to support of b, let F̃ denote the forest obtained after pruning
Gsupp(b⋆). Let L⋆

i denote the set of leaf children of agent i in F̃.

Let (bpruned, qpruned) be a feasible solution guaranteed by Lemma 8 on input (b⋆, q⋆). Since
Lemma 8 guarantees that Gsupp(bpruned) is a subset of Gsupp(b⋆), and every item with q⋆j < 1/2 is

a leaf in Gsupp(bpruned), we conclude that Gsupp(bpruned) is a subgraph of F̃.

In addition, for any agent i, L⋆
i is a subset of the leaf children of i in Gsupp(bpruned) as Gsupp(bpruned)

is a subgraph of F̃. Furthermore, if q
pruned
j < 1/2, then we claim that j is a leaf in Gsupp(bpruned)

12

with parent i such that j ∈ L⋆
i in F̃. Since q

pruned
j < 1/2, by the first point of Lemma 8, we have

q⋆j < 1/2. As a result, item j is a leaf in Gsupp(bpruned) connected to its parent in F̃. So, item j

would be pruned in F̃, and therefore, by definition, j ∈ L⋆
i .

Therefore, for each agent i, the set L⋆
i is a subset of the set of leaves of agent i in Gsupp(bpruned), and

L⋆
i contains all the items with q

pruned
j < 1/2 in Gsupp(bpruned). So, the function S(i) = L⋆

i satisfies

the constraints of Lemma 9 with input (bpruned, qpruned).

Using Lemma 9 on (bpruned, qpruned) with function S(i) = L⋆
i , we conclude that there exists a

matching, M, in Gsupp(bpruned) such that

∑
i∈A

wi log

viM(i) + ∑

j∈L⋆
i

vij

 = ∑

i∈A

wi log

viM(i) + ∑

j∈S(i)

vij

≥ fncvx(b
pruned, qpruned)− log 2−

1

2e
.

Since Gsupp(bpruned) is a subgraph of F̃, the matching M is also present in F̃. Therefore, the match-
ing M⋆ (and corresponding assignment σ⋆) returned by Algorithm 2 satisfies

NSW(σ⋆) = ∑
i∈A

wi log

viM⋆(i) + ∑

j∈L⋆
i

vij

(i)

≥ ∑
i∈A

wi log

viM(i) + ∑

j∈L⋆
i

vij

(ii)

≥ fncvx(b
pruned, qpruned)− log 2−

1

2e
(iii)

≥ fcvx(b
pruned, qpruned)− DKL(w || u)− log 2−

1

2e
(iv)

≥ fcvx(b
⋆, q⋆)− DKL(w || u)− 2 log 2−

1

2e
(v)

≥ fcvx(b, q)− DKL(w || u)− 2 log 2−
1

2e
.

Here, (i) follows from the optimality of M⋆, (ii) follows from Lemma 9, (iii) follows from Lemma
6, (iv) follows from Lemma 9, and (v) follows from the optimality of b⋆.

3.1 Pruning Small Items

In this section, we prove Lemma 8 by establishing some properties of the set of (support restricted)
optimal solutions of (CVX-Weighted) in Lemma 10 and Lemma 11.

First, we show that any optimal solution of (CVX-Weighted) is relatively stable, i.e., the change in
function value when moving away from the optimal solution can be quantified in terms of how
much we deviate from that solution. We formalize the stability property as follows.

Lemma 10. Let (b⋆, q⋆) be the optimal solution of (CVX-Weighted) in the support of some acyclic feasible
point bforest. Let (b, q) be a feasible point in P(A,G) such that the support of b is a subset of the support

13

of b⋆, and for any j ∈ G, if q⋆j = 1, then qj = 1. Then

fcvx(b
⋆, q⋆)− fcvx(b, q) = ∑

j∈G
∑
i∈A

wi bij log

(
∑i∈A wi bij

∑i∈A wi b⋆ij

)
.

We provide the proof of this lemma in Appendix A.

Second, in Lemma 11, we show that any acyclic optimal solution of (CVX-Weighted) can be
pruned to a feasible solution, denoted by bpruned, which is amenable to rounding. Specifically,
we show that given a first-order stationary point (b⋆, q⋆), we can construct a feasible solution

(bpruned, qpruned) such that any item with q
pruned
j < 1/2 is a leaf in support of bpruned and b

pruned
ij ≤

min{1, 2b⋆ij} for any agent i and item j.

Lemma 11. Let (b⋆, q⋆) be an acyclic feasible point in P(A,G). Let F be a directed forest formed by
Gsupp(b⋆) when every tree is rooted at an arbitrary agent node. Then, there exists a feasible solution

(bpruned, qpruned) such that Gsupp(bpruned) is a subgraph of Gsupp(b∗),

• q⋆j ≤ q
pruned
j for each item j with q⋆j ≥ 1/2,

• each item with q⋆j < 1/2 is a leaf in Gsupp(bpruned) connected to its parent in F, and

• for any (i, j) ∈ A× G, b
pruned
ij ≤ min{1, 2 · b⋆ij}.

Before proving Lemma 11, we use Lemma 11 along with Lemma 10 to prove Lemma 8.

Proof of Lemma 8. By Lemma 11, there exists a feasible solution (bpruned, qpruned) such that the sup-
port graph, Gsupp(bpruned), is a subgraph of Gsupp(b) and (bpruned, qpruned) satisfies the first two

items claimed in the lemma. Furthermore, for any (i, j) ∈ A× G, b
pruned
ij ≤ min{1, 2 · b⋆ij}.

So using Lemma 10, the difference in objective between (b⋆, q⋆) to (bpruned, qpruned) is bounded
as follows

fcvx(b
⋆, q⋆)− fcvx(b

pruned, qpruned) = ∑
j∈G

∑
i∈A

wi b
pruned
ij log

∑i∈A wi b

pruned
ij

∑i∈A wi b⋆ij

.

Since b
pruned
ij ≤ min{1, 2 b⋆ij} for each (i, j), we have ∑i wi b

pruned
ij ≤ 2 ∑i wi b⋆ij.

fcvx(b
⋆, q⋆)− fcvx(b

pruned, qpruned) ≤ ∑
j∈G

∑
i∈A

wi b
pruned
ij log 2. (4)

The feasibility of bpruned implies

∑
j∈G

∑
i∈A

wi b
pruned
ij = ∑

i∈A

wi ∑
j∈G

b
pruned
ij = ∑

i∈A

wi = 1.

Plugging this bound in equation (4) completes the proof.

14

Proof of Lemma 10. If b⋆ is an optimal solution of (CVX-Weighted), then using the KKT conditions,
there exist real numbers λi for each i ∈ A, ηj ≥ 0 for each j ∈ G, and αij ≥ 0 for every (i, j) ∈ A×G
such that

∂L

∂b⋆ij
= wi log vij − wi − wi log

(

∑
i∈A

wib
⋆
ij

)
− λi − ηj + αij = 0.

In addition, by complementary slackness, we have ηj(1−∑i∈A b⋆ij) = 0 for each item j and αijb
⋆
ij =

0 for each (i, j) ∈ A× G. Using these complementary slackness conditions, if b⋆ij > 0, then

wi log vij = wi + wi log

(

∑
i∈A

wib
⋆
ij

)
+ λi + ηj. (5)

Now, expanding the difference between the two function values, we get

fcvx(b
⋆, q⋆)− fcvx(b, q) = ∑

i∈A
∑
j∈G

(
b⋆ij − bij

)
· wi log vij −∑

j∈G
∑
i∈A

wi b⋆ij log

(

∑
i∈A

wi b⋆ij

)

+ ∑
j∈G

∑
i∈A

wi bij log

(

∑
i∈A

wi bij

)
. (6)

Substituting the value of vij from equation (5) in equation (6) gives

fcvx(b
⋆, q⋆)− fcvx(b, q) = ∑

i∈A
∑
j∈G

(b⋆ij − bij)

(
wi log

(

∑
i∈A

wi b⋆ij

)
+ λi + wi + ηj

)

−∑
j∈G

∑
i∈A

wi b⋆ij log

(

∑
i∈A

wi b⋆ij

)
+ ∑

j∈G
∑
i∈A

wi bij log

(

∑
i∈A

wi bij

)

= ∑
j∈G

∑
i∈A

wi bij log

(
∑i∈A wi bij

∑i∈A wi b⋆ij

)
+ ∑

i∈A

(λi + wi)

(

∑
j∈G

b⋆ij −∑
j∈G

bij

)

+ ∑
j∈G

ηj

(

∑
i∈A

b⋆ij − ∑
i∈A

bij

)
.

Using ∑j∈G bij = ∑j∈G b⋆ij = 1 for every i ∈ A, we get

fcvx(b
⋆, q⋆)− fcvx(b, q) = ∑

j∈G
∑
i∈A

wi bij log

(
∑i∈A wi bij

∑i∈A wi b⋆ij

)
+ ∑

j∈G

ηj

(
q⋆j − qj

)
,

where the last equation follows from the definitions of qj and q⋆j .

Note that by complementary slackness, ηj(1− q⋆j) = 0 for any j ∈ G. So if q⋆j < 1, then ηj = 0 and

therefore ηj(q
⋆
j − qj) = 0. If q⋆j = 1, then by the hypothesis of the Lemma, qj = 1, and again we

15

obtain that ηj(q
⋆
j − qj) = 0. Using this bound in the above equation gives

fcvx(b
⋆, q⋆)− fcvx(b, q) = ∑

j∈G
∑
i∈A

wi bij log

(
∑i∈A wi bij

∑i∈A wi b⋆ij

)
.

Before proving Lemma 11, we need the following lemma about the feasibility of a solution when
we decrease the bij for some edge (j, i) in the support forest of b.

Lemma 12. Let (b, q) be an acyclic feasible point in P(A,G), and let F be a directed forest formed by
Gsupp(b) when every tree is rooted at an arbitrary agent node. For a non-root agent i in F, let item j be
its parent. Then, for any 0 ≤ δ ≤ min{bij, 1− bij}, there exists a feasible solution, (bδ, qδ) such that

bδ
ij = bij − δ, qδ

j = qj − δ, qδ
j′ ≥ qj′ for all j′ ∈ G\{j}, and

bδ
i′ j′

{
≤ min{1, 2bi′ j′} if i′, j′ ∈ T(i)

= bi′ j′ otherwise ,

where T(x) denotes the sub-tree rooted at x in F.

Proof of Lemma 11. We will iteratively build the solution (bpruned, qpruned) satisfying these proper-
ties while ensuring it remains feasible. For a vertex x ∈ A ∪ G, let par(x) denote its parent in
Gsupp(b⋆), let C(x) denote the set of its children in Gsupp(b⋆), and let T(x) denote the sub-tree
rooted at vertex x in Gsupp(b⋆).

Consider an item j with q⋆j < 1/2. To make the vertex corresponding to j a leaf, the algorithm

removes all the edges between item j and its children C(j). To reflect this change, we will update

the solution (b⋆, q⋆) to an intermediate solution (b̃, q̃) such that the support of b̃ does not contain
any edges between item j and its children. To maintain feasibility, we require:

q̃j = b̃par(j)j = b⋆par(j)j

b̃ij = 0 for all i ∈ C(j) (7)

Note that q⋆j < 1/2 implies b⋆ij < 1/2 for each i ∈ C(j). As a result, the decrease in bij satisfies

b⋆ij − b̃ij ≤ min{b⋆ij, 1− b⋆ij}

for each i ∈ C(j). So, we update (b̃, q̃) by iteratively applying Lemma 12 to edge (j → i) with

δ = bij for each i ∈ C(j). The updated solution satisfies b̃ij = 0 for each i ∈ C(j) and q̃j =
qj −∑i∈C(j) bij = bpar(j)j < 1/2. Note that T(j) is the disjoint union of the sub-trees rooted at nodes
in C(j). So for distinct i1, i2 ∈ C(j), updating the edge (j → i1) (and the sub-tree for i1) does not
affect the b values for any edge in T(i2) and vice versa. Therefore, by Lemma 12, we have q⋆j′ ≤ q̃j′

for any item j′ ∈ T(j) and b̃i′ j′ ≤ min{1, 2b⋆i′ j′} for any i′, j′ ∈ T(j).

Since every item with q⋆j < 1/2 must become a leaf, we repeat the above process for any such

item. The following fact is crucial to bound the values after multiple pruning processes: Pruning

16

item j only changes b values for edges in T(j), and item j becomes a leaf after that. So, if we prune
ancestors of j after pruning j, the b values of edges in T(j) do not change further.

Let (bpruned, qpruned) be the solution obtained by pruning the set of items J = {j ∈ G : q⋆j < 1/2}

in decreasing order of their height4. Pruning item j does not decrease the q value of any item other

than j. Therefore, if q
pruned
j < 1/2, then q⋆j < 1/2, so item j has been pruned and is a leaf. For any

item j with q⋆j ≥ 1/2, its q value only increases when its nearest ancestor is pruned, and this is the

only time its q-value changes. So we conclude that q
pruned
j ≥ q⋆j for each j ∈ G.

To establish the third claim of the lemma, observe that the b-value of any edge in Gsupp(b⋆)
changes at most twice during the pruning process: If q⋆j ≥ 1/2, then item j itself is not pruned,

and the b values of edges incident to j may change only when the nearest ancestor of j is pruned.

By Lemma 12, b
pruned
ij ≤ min{1, 2b⋆ij} for each i ∈ A. If q⋆j < 1/2, the b value of any edge from

j to its children becomes zero when j is pruned, satisfying the claim. The b value of the edge
(par(j) → j) does not change when we prune j, and it may increase when the nearest ancestor of

j in J is pruned. If so, we have b
pruned

par(j)j
≤ min{1, 2b⋆

par(j)j
}.

3.2 Fractional Matching and Analysis

In this section, we prove Lemma 9, which completes the proof of Theorem 5.

We establish Lemma 9 by proving two inequalities (in Lemmas 13 and 14) about the properties
of fncvx at any feasible point whose support is a forest. Lemma 13 shows that fncvx can be upper
bounded by a linear function in b while only losing a constant factor.

Lemma 13. Let (b, q) be an acyclic solution in P(A,G) such that every item with qj < 1/2 is a leaf in

Gsupport(b). Let S : A → 2G be a function such that for each agent i, S(i) is a subset of leaf items connected
to agent i in Gsupp(b), and S(i) contains all children of agent i with qj < 1/2. Then

∑
i∈A

wi

 ∑

j/∈S(i)

bij log vij + ∑
j∈S(i)

bij log

 ∑

j∈S(i)

vij

 ≥ fncvx(b, q)− log 2−

1

2e
.

Lemma 14 demonstrates how the linear function obtained in Lemma 13 can be used as a lower
bound for the maximum weight matching with the augmented weight function. A crucial com-
ponent of the proof of this lemma is the fact that any feasible b in P(A,G) corresponds to a point
in the matching polytope where all agents are matched.

Lemma 14. Let (b, q) be an acyclic solution in P(A,G) such that every item with qj < 1/2 is a leaf

in Gsupport(b). Let S : A → 2G be a function such that for each agent i, S(i) is a subset of leaf items
connected to agent i in Gsupp(b), and S(i) contains all children of agent i with qj < 1/2. Then, there
exists a matching M in Gsupp(b) between vertices in A and {G\ ∪i {S(i)}} such that

∑
i∈A

wi log

viM(i) + ∑

j∈S(i)

vij

 ≥ ∑

i∈A

wi

 ∑

j/∈S(i)

bij log vij + ∑
j∈S(i)

bij log

 ∑

j∈S(i)

vij

 , (8)

4Note that pruning items in decreasing order of their height is only an artifact of the analysis. The algorithm can
prune items with q⋆j < 1/2 in any order.

17

where viM(i) = 0 if agent i is not matched in M.

Lemma 13 and Lemma 14 together establish Lemma 9. In the rest of this section, we provide the
proofs of Lemma 13 and Lemma 14.

Proof of Lemma 13. Let S := ∪i{S(i)}. Recall that

fncvx(b, q) = ∑
i∈A

wi ∑
j∈G

bij log vij − ∑
i∈A

wi ∑
j∈G

bij log qj

= ∑
i∈A

wi ∑
j/∈S(i)

bij log vij − ∑
i∈A

wi ∑
j/∈S(i)

bij log qj + ∑
i∈A

wi

 ∑

j∈S(i)

bij log vij − bij log bij

 ,

(9)

where the last equation follows from the fact that every item in S(i) is a leaf, i.e., if j ∈ S(i), then
bi′ j = 0 for every i′ 6= i.

For an item j /∈ S, we have qj ≥ 1/2. As a result,

− ∑
i∈A

wi bij log qj ≤ log 2 ∑
i∈A

wi bij. (10)

Plugging this bound into equation (9) gives

fncvx(b, q) ≤ ∑
i∈A

wi ∑
j/∈S(i)

bij log vij − ∑
i∈A

wi ∑
j/∈S(i)

bij log 2 + ∑
i∈A

wi

 ∑

j∈S(i)

bij log vij − bij log bij

 .

(11)

As b ∈ P(A,G), we have ∑j/∈S(i) bij = 1− ∑j∈S(i) bij for every agent i. Substituting this in equa-
tion (11) yields

fncvx(b, q) ≤ ∑
i∈A

wi ∑
j/∈S(i)

bij log vij + ∑
i∈A

wi log 2 + ∑
i∈A

wi

 ∑

j∈S(i)

bij log vij − bij log bij − bij log 2

= ∑
i∈A

wi ∑
j/∈S(i)

bij log vij + log 2 + ∑
i∈A

wi

 ∑

j∈S(i)

bij log vij − bij log bij − bij log 2

 , (12)

where the last equation follows from ∑i wi = 1.

For each agent i ∈ A, Claim 1.1 implies that

∑
j∈S(i)

bij log vij − bij log bij ≤ ∑
j∈S(i)

bij log

 ∑

j∈S(i)

vij

− ∑

j∈S(i)

bij log

 ∑

j∈S(i)

bij

 .

So, for any agent i,

∑
j∈S(i)

bij log vij − bij log bij − bij log 2

18

≤ ∑
j∈S(i)

bij log

 ∑

j∈S(i)

vij

− ∑

j∈S(i)

bij log

 ∑

j∈S(i)

bij

− ∑

j∈S(i)

bij log 2

≤ ∑
j∈S(i)

bij log

 ∑

j∈S(i)

vij

+

1

2e
, (13)

where the last inequality follows from −x log(x) − x log 2 ≤ 1/(2e) for all x ≥ 0 applied to x =

∑j∈S(i) bij.

Substituting equation (13) in equation (12), we get

fncvx(b, q) ≤ ∑
i∈A

wi ∑
j/∈S(i)

bij log vij + log 2 + ∑
i∈A

wi

 ∑

j∈S(i)

bij log

 ∑

j∈S(i)

vij

+

1

2e

= ∑
i∈A

wi

 ∑

j/∈S(i)

bij log vij + ∑
j∈S(i)

bij log

 ∑

j∈S(i)

vij

+ log 2 +

1

2e
,

where the last inequality again follows from ∑i∈A wi = 1.

Proof of Lemma 14. In this proof, we will analyze a matching that either assigns the bundle S(i) to
an agent or a single item j /∈ ∪i{S(i)}. Observe that the algorithm clearly finds an assignment
with a larger objective as

log

viM(i) + ∑

j∈S(i)

vij

 ≥ max

log viM(i), log

 ∑

j∈S(i)

vij

 .

So, for each agent i ∈ A, we create a new leaf item ℓi with viℓi
= ∑j∈S(i) vij corresponding to

the set of items in S(i). Define S := ∪i{S(i)} and G̃ := {G\S} ∪ {ℓi}i∈A. We show that the
maximum weight matching in the bipartite graph (A, G̃) suffices to prove the lemma. As the
matching polytope is integral, it is enough to demonstrate the existence of a fractional matching
of a large value.

Using b, we define fractional assignment variables x as follows:

xij := bij ∀i ∈ A, j ∈ {G\L}

xiℓi
:= ∑

j∈S(i)

bij ∀i ∈ A.

The L.H.S. of equation (8) can be stated in terms of x as

∑
i∈A

wi

 ∑

j/∈S(i)

bij log vij + ∑
j∈S(i)

bij log

 ∑

j∈S(i)

vij

 = ∑

i∈A
∑
j∈G̃

xij wi log vij. (14)

Observe that x lies in the convex hull of matchings between agentsA and items G̃ in which every

19

agent is matched as x satisfies the following properties:

∑
j∈G̃

xij = ∑
j/∈S(i)

bij + ∑
j∈S(i)

bij = 1 ∀i ∈ A

∑
i∈A

xij ≤ 1 ∀j ∈ G̃.

Here, for item j /∈ S, the second inequality is inherited from the feasibility of b. The constraint for
ℓi′ for some i′ ∈ A is implied by the constraint ∑i∈A xij = xi′ j = ∑j∈S(i) bij ≤ ∑j∈G bij ≤ 1, where
the last constraint again follows from the feasibility of b.

Using the integrality of the matching polytope, there exists a matching M̃ : A → G̃ such that

∑
i∈A

∑
j∈G̃

xij wi log vij ≤ ∑
i∈A

wi log viM̃(i). (15)

Now consider a matching M : A → G with M(i) = ∅ if M̃(i) = ℓi, and M(i) = M̃(i) otherwise.
Then

∑
i∈A

wi log viM̃(i) ≤ ∑
i∈A

wi log

viM(i) + ∑

j∈S(i)

vij

 . (16)

Then equations (14), (15), and (16) together imply

∑
i∈A

wi log

viM(i) + ∑

j∈S(i)

vij

 ≥ ∑

i∈A

wi

 ∑

j/∈S(i)

bij log vij + ∑
j∈S(i)

bij log

 ∑

j∈S(i)

vij

 .

4 Conclusion and Open Questions

This paper introduces a convex and a non-convex relaxation for the weighted (asymmetric) Nash
Social Welfare problem to give an O(exp (2DKL(w || u)))-approximation. Both of these relaxations
play a crucial role in obtaining the approximation algorithm for the problem. There are two natu-
ral open questions. First, is the factor exp (2DKL(w || u)) necessary in the approximation guaran-
tee? Equivalently, is it possible to obtain a constant factor approximation for the weighted Nash
Social Welfare problem? It is important to emphasize that we lose the exp (2DKL(w || u)) when
relating the objectives of the two relaxations; we only lose a constant factor when rounding the
non-convex relaxation. A direct approach may exist to solve the non-convex formulation that
gives an improved approximation guarantee.

The second question is whether the techniques introduced in this work generalize to more general
valuation functions, particularly submodular valuations for the weighted Nash Social Welfare
problem. While there are constant factor approximation algorithms for unweighted Nash Social
Welfare with submodular valuations, obtaining anything better than O(nwmax)-approximation for
the weighted variant of the problem remains an open question.

20

References

[AGSS17] Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. Nash Social Wel-
fare, Matrix Permanent, and Stable Polynomials. In Christos H. Papadimitriou, ed-
itor, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), volume 67
of Leibniz International Proceedings in Informatics (LIPIcs), pages 36:1–36:12, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[BCE+16] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D.Editors Procac-
cia. Handbook of Computational Social Choice. Cambridge University Press, 2016.

[BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and
efficient allocations. In Proceedings of the 2018 ACM Conference on Economics and Com-
putation, pages 557–574, 2018.

[BT96] Steven J. Brams and Alan D. Taylor. Fair Division: From Cake-Cutting to Dispute Resolu-
tion. Cambridge University Press, 1996.

[BT05] Julius B. Barbanel and Alan D. Taylor. The Geometry of Efficient Fair Division. Cambridge
University Press, 2005.

[CDG+17] Richard Cole, Nikhil Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V Vazi-
rani, and Sadra Yazdanbod. Convex program duality, fisher markets, and nash social
welfare. In Proceedings of the 2017 ACM Conference on Economics and Computation, pages
459–460, 2017.

[CG15] Richard Cole and Vasilis Gkatzelis. Approximating the nash social welfare with in-
divisible items. In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pages 371–380, 2015.

[CKM+19] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg Shah,
and Junxing Wang. The unreasonable fairness of maximum nash welfare. ACM Trans-
actions on Economics and Computation (TEAC), 7(3):1–32, 2019.

[CM04] Suchan Chae and Hervé Moulin. Bargaining among groups: An axiomatic viewpoint.
International Journal of Game Theory, 39, 02 2004.

[FKL12] Hu Fu, Robert Kleinberg, and Ron Lavi. Conditional equilibrium outcomes via as-
cending price processes with applications to combinatorial auctions with item bid-
ding. In Proceedings of the 13th ACM Conference on Electronic Commerce, EC ’12, page
586, New York, NY, USA, 2012. Association for Computing Machinery.

[GHL+23] Jugal Garg, Edin Husić, Wenzheng Li, László A Végh, and Jan Vondrák. Approximat-
ing nash social welfare by matching and local search. In Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, pages 1298–1310, 2023.

[GHV21] Jugal Garg, Edin Husić, and László A Végh. Approximating nash social welfare under
rado valuations. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 1412–1425, 2021.

[GKK20] Jugal Garg, Pooja Kulkarni, and Rucha Kulkarni. Approximating nash social welfare
under submodular valuations through (un) matchings. In Proceedings of the fourteenth
annual ACM-SIAM symposium on discrete algorithms, pages 2673–2687. SIAM, 2020.

[HLZ13] Harold Houba, Gerard Laan, and Yuyu Zeng. Asymmetric nash solutions in the river
sharing problem. Strateg. Behav. Environ., 4, 03 2013.

21

[HS72] John C. Harsanyi and Reinhard Selten. A generalized nash solution for two-person
bargaining games with incomplete information. Management Science, 18(5):P80–P106,
1972.

[Kal77] Ehud Kalai. Nonsymmetric nash solutions and replications of 2-person bargaining.
International Journal of Game Theory, 6:129–133, 1977.

[KN79] Mamoru Kaneko and Kenjiro Nakamura. The nash social welfare function. Economet-
rica: Journal of the Econometric Society, pages 423–435, 1979.

[Lee17] Euiwoong Lee. Apx-hardness of maximizing nash social welfare with indivisible
items. Information Processing Letters, 122:17–20, 2017.

[LV07] Annick Laruelle and Federico Valenciano. Bargaining in committees as an extension
of nash’s bargaining theory. Journal of Economic Theory, 132(1):291–305, 2007.

[LV22] Wenzheng Li and Jan Vondrák. A constant-factor approximation algorithm for nash
social welfare with submodular valuations. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 25–36. IEEE, 2022.

[NJ50] John F Nash Jr. The bargaining problem. Econometrica: Journal of the econometric society,
pages 155–162, 1950.

[NNRR14] Nhan-Tam Nguyen, Trung Thanh Nguyen, Magnus Roos, and Jörg Rothe. Compu-
tational complexity and approximability of social welfare optimization in multiagent
resource allocation. Autonomous agents and multi-agent systems, 28(2):256–289, 2014.

[Rot15] Jrg Rothe. Economics and Computation: An Introduction to Algorithmic Game Theory, Com-
putational Social Choice, and Fair Division. Springer Publishing Company, Incorporated,
1st edition, 2015.

[RW98] J. Robertson and W. Webb. Cake-cutting algorithms: Be fair if you can. CRC Press, 1998.

[Sio58] Maurice Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171 –
176, 1958.

[YIWZ17] S. Yu, E. C. Ierland, H.-P. Weikard, and X. Zhu. Nash bargaining solutions for inter-
national climate agreements under different sets of bargaining weights. International
Environmental Agreements: Politics, Law and Economics, 17(5):709–729, October 2017.

[You94] H. Peyton Young. Equity: In Theory and Practice. Princeton University Press, 1994.

A Omitted Proofs and Lemmas

Proof of Lemma 3. Let σ : G → A be the optimal assignment of an instance of NSW, (A,G, v, w).
For each agent i ∈ A, define Vi = ∑j∈σ−1(i) vij. Using σ, we define a vector b ∈ P(A,G) as

bij :=

{
vij

Vi
if σ(j) = i

0 otherwise.

It is easy to verify that ∑i∈A bij ≤ 1 for each j ∈ G and ∑i∈G bij = 1 for each i ∈ A. We will now

22

show that fcvx(b) and fncvx(b) are both equal to NSW(σ).

fcvx(b) = ∑
j∈G

wσ(j)vσ(j)j

Vσ(j)
log vσ(j)j −∑

j∈G

wσ(j)vσ(j)j

Vσ(j)
log

(
wσ(j)vσ(j)j

Vσ(j)

)
+ ∑

i∈A

wi log wi

= ∑
j∈G

wσ(j)vσ(j)j

Vσ(j)
log

(
Vσ(j)

wσ(j)

)
+ ∑

i∈A

wi log wi

= ∑
i∈A

wi ∑
j∈σ−1(i)

vij

Vi
log

(
Vi

wi

)
+ ∑

i∈A

wi log wi

(i)
= ∑

i∈A

wi log

(
Vi

wi

)
+ ∑

i∈A

wi log wi = ∑
i∈A

wi log Vi = NSW(σ) ,

where (i) follows from definition of Vi.

Similarly, we have

fncvx(b) = ∑
j∈G

wσ(j)vσ(j)j

Vσ(j)
log vσ(j)j −∑

j∈G

wσ(j)vσ(j)j

Vσ(j)
log

(
vσ(j)j

Vσ(j)

)

= ∑
j∈G

wσ(j)vσ(j)j

Vσ(j)
log Vσ(j) = ∑

i∈A

wi ∑
j∈σ−1(i)

vij

Vi
log Vi

= ∑
i∈A

wi log Vi = NSW(σ).

For the second claim in the lemma, when wi = 1/n for each i, for any b ∈ P(A,G), we have

fcvx(b) =
1

n ∑
i∈A

∑
j∈G

bij log vij −
1

n ∑
i∈A

∑
j∈G

bij log

(
∑i∈A bij

n

)
− log n

=
1

n ∑
i∈A

∑
j∈G

bij log vij −
1

n ∑
i∈A

∑
j∈G

bij log

(

∑
i∈A

bij

)
+

1

n ∑
i∈A

∑
j∈G

bij log n− log n

=
1

n ∑
i∈A

∑
j∈G

bij log vij −
1

n ∑
i∈A

∑
j∈G

bij log

(

∑
i∈A

bij

)
,

where we used ∑j∈G bij = 1 for every i in the last inequality. Similarly, substituting wi = 1/n for
each i in fncvx completes the proof.

Proof of Lemma 6. We will show that

fcvx(b)− fncvx(b) = DKL(w || u)− DKL(µ || θ) ,

where µ, θ are two probability distributions on G given by

µ(j) = ∑
i∈A

wi bij and θ(j) =
∑i∈A bij

n
.

23

Using ∑i∈A wi = 1 and ∑j∈G bij = 1 for each i ∈ A, one can verify that ∑j∈G µ(j) = 1 = ∑j∈G θ(j).

Expanding the difference between the functions gives

fcvx(b)− fncvx(b) = ∑
i∈A

wi log wi −∑
j∈G

∑
i∈A

wi bij log

(

∑
i∈A

wi bij

)
++∑

i,j

wi bij log

(

∑
i∈A

bij

)

= ∑
i∈A

wi log wi −∑
j∈G

∑
i∈A

wi bij log

(
∑i∈A wi bij

∑i∈A bij

)

= ∑
i∈A

wi log wi + ∑
j∈G

∑
i∈A

wi bij log n−∑
j∈G

µ(j) log

(
µ(j)

θ(j)

)

= ∑
i∈A

wi log(nwi)−∑
j∈G

µ(j) log

(
µ(j)

θ(j)

)
(using ∑j bij = 1)

= DKL(w || u)− DKL(µ || θ).

As DKL(µ, θ) ≥ 0, the above equation implies

fcvx(b)− fncvx(b) ≤ DKL(w || u).

For the lower bound, it suffices to show that DKL(µ || θ) ≤ DKL(w || u). To see this, we expand the
definition:

DKL(µ || θ) = ∑
j∈G

(

∑
i∈A

wibij

)
log

(
n ∑i∈A wibij

∑i∈A bij

)

= log(n) + ∑
j∈G

(

∑
i∈A

wibij

)
log

(
∑i∈A wibij

∑i∈A bij

)

= log(n) + ∑
j∈G

(

∑
i∈A

bij

)(

∑
i∈A

bij

∑i∈A bij
· wi

)
log

(

∑
i∈A

bij

∑i∈A bij
· wi

)

≤ log(n) + ∑
j∈G

(

∑
i∈A

bij

)(

∑
i∈A

bij

∑i∈A bij

)
wi log(wi)

= log(n) + ∑
j∈A

wi log(wi) ∑
j∈G

bij

= log(n) + ∑
i∈A

wi log(wi) = DKL(w || u).

Here, the only inequality uses the convexity of x log(x), and the last equality follows from the
feasibility of b.

Proof of Lemma 12. For x ∈ A ∪ G, let C(x) denote the children of node x in F and let T(x) denote
the sub-tree rooted at node x. We will prove this lemma by induction on the height of agent i,
building (bδ, qδ) ∈ P(A,G) in the process.

For the base case, assume agent i has height 1, i.e., T(i) consists of only leaf item nodes that are
the children of node i. We define a new vector bδ with bδ

i′ j′ = bi′ j′ for any i′ 6= i and j′ ∈ G. Note

24

that setting bδ
ij = bij − δ and qδ

j = qj − δ only violates the Agent constraint for agent i. So we will

update the values of b in T(i) to make the solution feasible.

By the feasibility of b, bij + ∑k∈C(i) bik = 1, and for every item node k ∈ C(i), qk = bik < 1. Using
Lemma 15 with α = bij and βk = bik, there exist δk for each k ∈ C(i) such that

bij − δ + ∑
k∈C(i)

bik(1 + δk) = 1

bik(1 + δk) ≤ 1 ∀k ∈ C(i)

0 ≤ δk ≤ 1 ∀k ∈ C(i).

So, for each k ∈ C(i), we set bδ
ik = bik(1 + δk). Note that bδ

ik ≤ 1, and as δk ≤ 1, we have

bδ
ik = bik(1 + δk) ≤ 2bik.

As every item in C(i) is a leaf, we also have

qk ≤ qδ
k = bδ

ik = bik(1 + δk) ≤ 1

for each item k ∈ C(i). The Agent constraint for agent i satisfies

∑
k∈C(i)

bδ
ik = bij − δ + ∑

k∈C(i)

bik(1 + δk) = 1.

Therefore, bδ ∈ P(A,G) and bδ
i′ j′ ≤ min{1, 2bij′} for each j′ ∈ T(i).

For the induction hypothesis, assume that the lemma is true whenever the height of agent i is at
most ℓ− 1 for some integer ℓ > 1. We now show that the statement also holds when the height of
agent i is ℓ.

Again, setting bδ
ij = bij − δ and qδ

j = qj − δ violates the Agent constraint for agent i. Similar to the

base case, we can find δk ∈ (0, 1) for each k ∈ C(i) such that bik(1 + δk) ≤ 1 and

bij − δ + ∑
k∈C(i)

bik(1 + δk) = 1.

Setting bδ
ik = bik(1 + δk) for each k ∈ C(i) will ensure that bδ satisfies the Agent constraint for

agent i. However, this can violate the Item constraint for some item k ∈ C(i), as qδ
k = qk + δkbik.

So, we inductively update the values of bδ and qδ for the sub-tree rooted at item k for which such
a violation occurs.

Consider an item k ∈ C(i) such that qδ
k = qk + δkbik > 1. So we decrease bi′k for each i′ ∈ C(k)

to ensure that qδ
k is at most 1 as follows. Define γ := qk + δkbik − 1. Using the fact that qk =

∑i′∈C(k) bi′k + bik, we bound γ as follows.

γ = qk + δkbik − 1 = ∑
i′∈C(k)

bi′k + bik + δkbik − 1

≤ ∑
i′∈C(k)

bi′k. (using bik(1 + δk) ≤ 1)

25

Therefore, there exist numbers γi′ ≥ 0 for each i′ ∈ C(k) such that γi′ ≤ bi′k and ∑i′∈C(k) γi′ = γ.

We would like to update bδ
i′k = bi′k − γi′ for each i′ ∈ C(k), but this violates the Agent constraint

for agent i′ when γi′ > 0. We inductively update the solution for subtree T(i′) as follows.

First, note that qδ
k = 1 ≥ qk after this update, as shown below.

qδ
k = bδ

ik + ∑
i′∈C(k)

bδ
i′k = bik(1 + δk) + ∑

i′∈C(k)

(bi′k − γi′) = qk + δibik − ∑
i′∈C(k)

γi′

= 1− γ + ∑
i′∈C(k)

γi′ (by definition of γ)

= 1. (as ∑i′∈C(k) γi′ = γ)

So now, (bδ, qδ) only violates Agent constraints for agents in C(k).

We claim that for each agent i′ ∈ C(k)

γi′ ≤ min{bi′k, 1− bi′k}. (17)

Before proving this inequality, we use it to complete the proof.

Using the induction hypothesis, for each i′ ∈ C(k), there exists feasible (bγi′ , qγi′) which differs
from (bδ, qδ) only in the sub-tree rooted at i′ such that for any ĵ ∈ T(i′),

q
γi′

ĵ
≥ qδ

ĵ
= q ĵ.

and for any î, ĵ ∈ T(i′),
b

γi′

î ĵ
≤ min{1, 2 · bδ

î, ĵ
} = min{1, 2 · bî, ĵ}.

So for each i′ ∈ C(k) with γi′ > 0, we set bδ
î ĵ
= b

γi′

î ĵ
for every î, ĵ ∈ T(i′) to get the required solution.

We now only need to establish equation (17). By definition, γi′ ≤ bi′k for each i′ ∈ C(k). Addition-
ally, γi′ ≤ γ, so it suffices to show that γ ≤ 1− bi′k for every i′ ∈ C(k). Recall that

γ = qk + δkbik − 1

(i)

≤ δkbik

(ii)

≤ bik

(iii)

≤ qk − bi′k

(iv)

≤ bi′k.

Here, (i) and (iv) follow from qk ≤ 1, (ii) follows from δk ≤ 1, and (iii) holds as bik +∑i′∈C(k) bi′k =
qk. This completes the proof of (17).

Lemma 15. Let α > 0 and β1, . . . , βk > 0 with α + ∑
k
j=1 βi = 1. For any 0 < δ ≤ min{α, 1− α}, there

exist real numbers δ1, . . . , δk such that

α− δ + ∑
j∈[k]

β j(1 + δj) = 1 (18)

β j(1 + δj) ≤ 1 ∀j ∈ [k]

0 ≤ δj ≤ 1 ∀j ∈ [k].

Proof. As the above system contains only linear constraints in δ, we use Farkas’ Lemma to show

26

the existence of {δj}
k
j=1. Re-arranging the constraints gives

∑
j∈[k]

β jδj = δ (19)

β jδj ≤ 1− β j ∀j ∈ [k]

0 ≤ δj ≤ 1 ∀j ∈ [k]

If there do not exist real numbers {δj}
k
j=1 satisfying (19), then by Farkas’ Lemma, there exist real

numbers η, {γj}
k
j=1, {λj}

k
j=1 such that

β jη + β jγj + λj ≥ 0 ∀j ∈ [k] (20)

γj, λj ≥ 0

δη + ∑
j∈[k]

(1− β j)γj + ∑
j∈[k]

λj < 0 (21)

Adding equation (20) for all j ∈ [k], we get

η ∑
j∈[k]

β j + ∑
j∈[k]

β jγj + ∑
j∈[k]

λj ≥ 0.

Since α + ∑j∈[k] β j = 1, this implies η(1− α) + ∑j∈[k] β jγj + ∑j∈[k] λj ≥ 0. In addition, since βi > 0,
we also have α < 1. Therefore, dividing by 1− α and re-arranging gives

∑
j∈[k]

β jγj

1− α
+ ∑

j∈[k]

λj

1− α
≥ −η. (22)

On the other hand, equation (21) implies

−η > ∑
j∈[k]

(1− β j)γj

δ
+ ∑

j∈[k]

λj

δ
. (23)

On comparing equations (22) and (23), we obtain

∑
j∈[k]

β jγj

1− α
+ ∑

j∈[k]

λj

1− α
> ∑

j∈[k]

(1− β j)γj

δ
+ ∑

j∈[k]

λj

δ
. (24)

We will now derive a contradiction to (24).

As δ ≤ 1− α , we have 1/(1− α) ≤ 1/δ, and therefore,

∑
j∈[k]

λj

1− α
≤ ∑

j∈[k]

λj

δ
, (25)

where we use the fact that λj > 0 for all j ∈ [k].

27

In addition, for any j ∈ [k]

β j

1− α
−

(1− β j)

δ
≤

β j

1− α
−

(1− β j)

α
=

α + β j − 1

α(1− α)
≤ 0. (26)

Here, the first inequality follows from δ ≤ α, and the last inequality follows from the facts that
α + ∑j∈[k] β j = 1 and α, β j > 0.

On adding equation (25) and equation (26) for all j ∈ [k], we obtain

∑
j∈[k]

β jγj

1− α
+ ∑

j∈[k]

λj

1− α
≤ ∑

j∈[k]

(1− β j)γj

δ
+ ∑

j∈[k]

λj

δ
,

which contradicts equation (24). Therefore, there exist real numbers {δj}
k
j=1 satisfying (18).

B Relationships Between the Mathematical Programs

This section provides the proof of Theorem 2 by establishing a relationship between two natural
convex programming relaxations for the unweighted Nash Social Welfare problem. We then build
upon this relationship to derive (CVX-Weighted) for the weighted Nash Social Welfare problem.

To ensure that the optimum values of all the convex programs mentioned below are bounded, we
assume that the instance of Nash Social Welfare (A,G, v, w) satisfies the following assumption.

Assumption B.1. Let G[G,A, v] denote the support graph of the valuation function. The support graph
is the bipartite graph between agents and items with an edge between agent i and item j iff vij > 0. We
assume that there exists a matching of size |A| in G[G,A, v]. In other words, the objective of the Nash
Social Welfare problem is not zero for (A,G, v, w).

It is straightforward to verify this assumption given an instance of Nash Social Welfare.

The proof of Theorem 2 uses the following two results. The first result is the classical Sion’s
Minimax Theorem, which can be found as Corollary 3.3 from [Sio58].

Theorem 16 (Sion’s Minimax Theorem). Let M and N be convex spaces, one of which is compact, and
f (x, y) a function on M× N that is quasi-concave-convex and (upper semicontinuous)-(lower semicontin-
uous). Then

sup
x∈M

inf
y∈N

f (x, y) = inf
y∈N

sup
x∈M

f (x, y).

The second result was proved in [AGSS17].

Lemma 17 (Lemma 4.3 in [AGSS17]). Let p : R
m
≥0 → R≥0 be a positive function satisfying the following

properties:

• p(αy) = αn p(y) for all y ≥ 0,

• log p(y) is convex in log y.

Then the following inequality holds

inf
y>0:yS≥0,∀S∈([m]

n)
log p(y) = sup

α∈[0,1]m,∑j αj=n

inf
y>0

log p(y)−
m

∑
j=1

αj log(yj).

28

While the original result in [AGSS17] assumed p to be a homogeneous polynomial with positive
coefficients, their proof only relies on the two properties presented in Lemma 17.

B.1 Proof of Theorem 2

To prove Theorem 2, we start with the (LogConcave-Unweighted) and derive the convex program
(CVX-Unweighted) via a sequence of duals presented in Lemmas 19, 20, and 21.

Let P and Q denote the feasible regions for x and y in (LogConcave-Unweighted), respectively.

P :=

{
x ∈ R

A×G
≥0 : ∑

i∈A

xij = 1 ∀j ∈ G

}

Q :=

{
y ∈ R

G
>0 : ∏

j∈S

yj ≥ 1 ∀S ∈

(
G

n

)}
.

Note that the inner function in the objective

f (x) = inf
y∈Q

∑
i∈A

log

(

∑
j∈G

xij vij yj

)
,

is bounded above (y = 1 belongs toQ), and the domain of x, P , is compact (Bounded and Closed
sets in Euclidean space are compact using Heine-Borel Theorem).

Lemma 18 shows that the inner infimum of (LogConcave-Unweighted) is > −∞ for any integral
allocation x that assigns at least one item to each agent in the support of v. We know such an
allocation exists by Assumption B.1.

Lemma 18. For any integral allocation x ∈ P ∩ {0, 1}|A|×|G|,

inf
y∈Q

∑
i∈A

log

(

∑
j∈G

xij vij yj

)
= ∑

i∈A

log

(

∑
j∈G

xij vij

)
.

Proof. Let σ : G → A be the allocation corresponding to x, i.e., σ(j) = i iff xij = 1 and let

S = {S ∈ (Gn) : ∀i ∈ A, ∃j ∈ S such that xij = 1}. For any y ∈ Q,

∑
i∈A

log

(

∑
j∈G

xij vij yj

)
= log

(

∑
S∈S

yS ∏
j∈S

xσ(j)jvσ(j)j

)

≥ log

(

∑
S∈S

∏
j∈S

xσ(j)jvσ(j)j

)
= ∑

i∈A

log

(

∑
j∈G

xij vij

)
.

Here, the only inequality holds because yS ≥ 1 for each S ∈ S .

Setting yj = 1 for each j ∈ G gives the equality.

29

Lemma 19. The optimal value of (LogConcave-Unweighted) is the same as

inf
δ

max
x∈P

∑
i∈A

log

(

∑
j∈G

xij vij e−δj

)
+ ∑

j∈G

max(0, δj). (Unweighted-Primal)

Proof. For a fixed x ∈ P , using Lemma 17 with px(y) = ∏i∈A

(
∑

j∈G
xij vij yj

)
, we get

inf
y>0:yS≥0,∀S∈(Gn)

log px(y) = inf
y>0:yS≥0,∀S∈(Gn)

∑
i∈A

log

(

∑
j∈G

xij vij yj

)

= sup
α∈[0,1]|G|,∑j αj=n

inf
y>0

∑
i∈A

log

(

∑
j∈G

xij vij yj

)
−∑

j∈G

αj log(yj).

Substituting δj = − log(yj) and taking a maximum over x, we get

max
x∈P

inf
y>0:yS≥0,∀S∈(Gn)

log px(y) = sup
x∈P ,α∈[0,1]|G|,∑j αj=n

inf
δ

∑
i∈A

log

(

∑
j∈G

xij vij e−δj

)
+ ∑

j∈G

αjδj.

As the domains of both x and α are compact, using Theorem 16 on the previous equation, we get

max
x∈P

inf
y>0:yS≥0,∀S∈(Gn)

log px(y) = inf
δ

max
x∈P

max
α∈[0,1]|G|,∑j αj=n

∑
i∈A

log

(

∑
j∈G

xij vij e−δj

)
+ ∑

j∈G

αjδj.

Finally, the following claim completes the proof.

inf
δ

max
x∈P

max
α∈[0,1]|G|,∑j αj=n

∑
i∈A

log

(

∑
j∈G

xij vij e−δj

)
+ ∑

j∈G

αjδj

= inf
δ

max
x∈P

∑
i∈A

log

(

∑
j∈G

xijvije
−δj

)
+ ∑

j∈G

max(0, δj). (27)

For proving the claim, we define functions

f1(δ, x,α) = ∑
i∈A

log

(

∑
j∈G

xij vij e−δj

)
+ ∑

j∈G

αjδj, and

f2(δ, x) = ∑
i∈A

log

(

∑
j∈G

xijvije
−δj

)
+ ∑

j∈G

max(0, δj).

Observe that for any δ and α ∈ [0, 1]|G| , αjδj ≤ max(0, δj). Therefore, for any δ, x and α ∈ [0, 1]|G|,
we have f1(δ, x,α) ≤ f2(δ, x). As a result,

inf
δ

max
x∈P

max
α∈[0,1]|G|,∑j αj=n

f1(δ, x,α) ≤ inf
δ

max
x∈P

f2(δ, x). (28)

30

To establish an inequality in the other direction, first note that f1(δ, x,α) = f1(δ + t · 1, x,α) for
any t ∈ R. So, for a fixed δ, let tδ denote a value of t for which the n largest values of δ+ tδ · 1 are
non-negative and the m− n smallest values of δ are non-positive. Then

max
α∈[0,1]|G|,∑j αj=n

f1(δ, x,α) = max
α∈[0,1]|G|,∑j αj=n

f1(δ + tδ · 1, x,α)

= ∑
i∈A

log

(

∑
j∈G

xijvije
−δj−tδ

)
+ max

α∈[0,1]|G|,∑j αj=n
∑
j∈G

αj(δj + tδ). (29)

The term ∑j∈G αj(δj + tδ) is maximized when αj = 1 for the largest n coordinates of δ + t · 1. As a
result, we get

∑
i∈A

log

(

∑
j∈G

xijvije
−δj−tδ

)
+ ∑

j∈G

max(0, δj + tδ) = f2(δ + tδ · 1, x). (30)

Combining equations (29) and (30), and taking max over x, we have

max
x∈P

max
α∈[0,1]|G|,∑j αj=n

f1(δ, x,α) = max
x∈P

f2(δ+ tδ · 1, x) ≥ inf
γ

max
x∈P

f2(γ, x).

Taking an infimum over δ, we obtain

inf
δ

max
x∈P

max
α∈[0,1]|G|,∑j αj=n

f1(δ, x,α) ≥ inf
δ

inf
γ

max
x∈P

f2(γ, x)

= inf
γ

max
x∈P

f2(γ, x). (31)

Here, the last equality follows as the function being optimized does not depend on δ.

Combining equations (28) and (31) completes the proof of equation (27).

Lemma 20. The optimal values of (Unweighted-Primal) is the same as that of the following program.

inf
δ,r,γ

∑
j∈G

er j + ∑
i∈A

γi + ∑
j∈G

δj − n (Unweighted-Dual)

rj + γi + δj ≥ log vij ∀(i, j) ∈ A× G

δ ≥ 0.

Proof. For a fixed δ, let us first re-write the internal maximum of (Unweighted-Primal) as

max
x,u

∑
i∈A

log ui + f (δ) (32)

ui ≤ ∑
j∈G

xij vij e−δj ∀i ∈ A

∑
i∈A

xij ≤ 1 ∀j ∈ G

x ≥ 0 ,

where f (δ) = ∑j∈G max(0, δj).

31

Let βi, pj, and θij be the Lagrange dual variables associated with the constraints corresponding
to agent i, item j, and agent-item pair(i, j), respectively. The Lagrangian of the above convex
program is defined as follows

L(x, u,β,θ, p) = f (δ) +

[

∑
i∈A

log ui + ∑
i∈A

βi

(

∑
j∈G

xij vij e−δj − ui

)
+ ∑

j∈G

pj(1− ∑
i∈A

xij) +∑
i,j

θijxij

]

= f (δ) +

[

∑
i∈A

(log ui − βiui) + ∑
i∈A

∑
j∈G

xij

(
βi vij e−δj + θij − pj

)
+ ∑

j∈G

pj

]
.

The Lagrange dual of (32) is given by

g(β,θ,p) = max
x∈P ,u≥0

L(x, u,β,θ, p). (33)

Observe that solution xij = 1/n for each (i, j) ∈ A×G lies in the relative interior ofP . Since all the
constraints are affine, Slater’s condition is satisfied for (Unweighted-Primal). Thus, the optimal
value of the infimum of Lagrange dual over β,θ,p ≥ 0 is exactly equal to the optimum of (32).

The KKT conditions imply that the optimal solutions must satisfy

1

ui
− βi = 0 ∀i ∈ A

βi vij e−δj −∑
j∈G

pj + θij = 0 ∀(i, j) ∈ A× G.

The KKT conditions imply that ui = 1/βi for each i ∈ A maximizes the Lagrangian. For the
supremum over x, u in (33) to stay finite, the second KKT condition is necessary and sufficient.
Substituting these conditions in the Langrangian gives the following convex program.

inf
p,β,θ

f (δ) + ∑
j∈G

pj − ∑
i∈A

log βi − n

pj = βi vij e−δj + θij ∀(i, j) ∈ A× G

p,β,θ ≥ 0.

Observe that we can remove θ from the above program while making the first constraint an in-
equality. By substituting rj = log pj, γi = − log βi, the above program is equivalent to

inf
r,γ

f (δ) + ∑
j∈G

er j + ∑
i∈A

γi + ∑
j∈G

−n

rj + γi + δj ≥ log vij ∀(i, j) ∈ A× G.

As (Unweighted-Primal) involves an infimum over δ, whenever δj < 0, we can increase it to
δj = 0 without increasing the value of f (δ) and maintaining feasibility. Using this observation
and taking an infimum over δ, the above program gives (Unweighted-Dual).

Lemma 21. The optimal values of (Unweighted-Dual) and (CVX-Unweighted) are the same.

Proof. Let bij be the Lagrange dual variable associated with constraint rj + γi + δj ≥ log vij of
(Unweighted-Dual) and let τij be the Lagrange dual variable associated with constraint δij ≥ 0.

32

The Lagrangian of (Unweighted-Dual) is defined as follows

L(r,γ, δ, b, τ) = ∑
j∈G

er j + ∑
i∈A

γi + ∑
j∈G

δj − n + ∑
i,j

bij(log vij − rj − γi − δj)−∑
j∈G

δjτj

= ∑
j∈G

(er j − (∑
i∈A

bij)rj) + ∑
i∈A

γi(1−∑
j∈G

bij) ∑
j∈G

δj(1− τj − ∑
i∈A

bij) + ∑
i,j

bij log vij − n.

The Lagrange dual of (Unweighted-Dual) is given by

g(b, τ) = inf
δ≥0,r,γ

L(r,γ, δ, b, τ). (34)

One can verify that Slater’s condition is satisfied by (Unweighted-Dual). So, the supremum of (34)
with b, τ ≥ 0 is equal to the optimum of (Unweighted-Dual).

The KKT conditions for the Langrangian give

er j − ∑
i∈A

bij = 0 1− ∑
j∈G

bij = 0 1− τj − ∑
j∈A

bij = 0.

The KKT conditions imply rj = log

(
∑

i∈A
bij

)
for each j ∈ G minimizes the Lagrangian. For the

infimum over γ, δ in (34) to stay finite, the conditions 1 = ∑
j∈G

bij and 1− τj = ∑
i∈A

bij are necessary

and sufficient. Substituting these conditions in the Lagrangian, we get

sup
b,τ

∑
i,j

bij log vij −∑
j∈G

∑
i∈A

bij log

(

∑
i∈A

bij

)
+ ∑

j∈G
∑
i∈A

bij − n

∑
j∈G

bij = 1

∑
i∈A

bij = 1− τj

b, τ ≥ 0.

Observe that the supremum in the above program can be switched to maximum as the feasible
region is compact and the objective is bounded. Also note that ∑i,j bij = n for any b in the feasible
region. As a result, the last two terms in the objective cancel each other. Finally, on substituting
qj = ∑i∈A bij in the above program, we obtain (CVX-Unweighted).

B.2 Generalization to Weighted Nash Social Welfare

Given an instance of weighted Nash Social Welfare (A,G, v, w) where ∑
i∈A

wi = 1 and w ≥ 0, we

introduce the following program as a generalization of (LogConcave-Unweighted) program.

max
x≥0

min
y>0

∑
i∈A

wi log

(

∑
j∈G

xij vij y1/wi
j

)
(LogConcave-Weighted)

s.t. ∑
i∈A

xij = 1 ∀j ∈ G

33

∏
j∈S

yj ≥ 1 ∀S ∈

(
G

n

)
.

Observe that the feasible region of (LogConcave-Weighted) is given by x ∈ P and y ∈ Q, which
is identical to that of (LogConcave-Unweighted).

The main result of this section is the following.

Theorem 22. The optimal values of (LogConcave-Weighted) and (CVX-Weighted) are the same.

We prove Theorem 22 analogously to Theorem 2, starting with (LogConcave-Weighted) and de-
riving (CVX-Weighted) via a sequence of duals presented in Lemmas 24, 25, and 26.

We start by establishing that LogConcave-Weighted is indeed a relaxation of the weighted Nash
Social Welfare, and the inner infimum is bounded in the following lemma.

Lemma 23. For any integral allocation x ∈ P ∩ {0, 1}|A|×|G|,

inf
y∈Q

∑
i∈A

wi log

(

∑
j∈G

xij vij y1/wi
j

)
= ∑

i∈A

wi log

(

∑
j∈G

xij vij

)

Proof. For each i, let Si = {j ∈ G : xij = 1} be the allocation corresponding to x. Then for any
y ∈ Q,

∑
i∈A

wi log

(

∑
j∈G

xij vij y1/wi
j

)
− ∑

i∈A

wi log

(

∑
j∈G

xij vij

)
= ∑

i∈A

wi log

∑j∈Si
vij y1/wi

j

∑
j∈Si

vij

 . (35)

Now for positive reals c1, . . . , cm with
m

∑
j=1

cj = 1, and 0 ≤ p ≤ q, the weighted power mean

inequality states that for any z ∈ R
m
≥0,

(
m

∑
j=1

cjz
p
j

)1/p

≤

(
m

∑
j=1

cjz
q
j

)1/q

. (36)

This inequality follows from Jensen’s inequality.

For each i ∈ A, define qi =
1
wi

and c
(i)
j =

vij

∑
j∈Si

vij
for every j ∈ Si. Since qi =

1
wi
≥ 1, using equation

36, we get

wi log

∑j∈Si
vij y1/wi

j

∑
j∈Si

vij

 ≥ log

∑j∈Si
vij yj

∑
j∈Si

vij

 ≥ 0

for each agent i. Summing this inequality over all agents and substituting in (35) gives

∑
i∈A

wi log

(

∑
j∈G

xij vij y1/wi
j

)
≥ ∑

i∈A

wi log

(

∑
j∈G

xijvij

)
.

34

Observe that equality holds when yj = 1 for all j ∈ G.

Lemma 24. The optimal value of (LogConcave-Weighted) is the same as

inf
δ

max
x∈P

∑
i∈A

wi log

(

∑
j∈G

xijvije
−δj/wi

)
+ ∑

j∈G

max(0, δj). (Weighted-Primal)

The following fact is crucial to the proof of this lemma.

Fact B.1. Let p(y) = w log
(

∑
m
j=1 cj y1/w

j

)
with w > 0 and cj ≥ 0 for each j. Then log p(y) is a convex

function in log(y).

Proof. For a fixed x ∈ P , the function

px(y) = ∏
i∈A

(

∑
j∈G

xij vij y1/wi
j

)wi

satisfies all the prerequisites of Lemma 17. The first property is easy to verify and the second
property follows from Fact B.1. Therefore, by Lemma 17, we get

inf
y>0:yS≥0,∀S∈(Gn)

log px(y) = inf
y>0:yS≥0,∀S∈(Gn)

∑
i∈A

wi log

(

∑
j∈G

xij vij y1/wi
j

)

= sup
α∈[0,1]|G|,∑j αj=n

inf
y>0

∑
i∈A

wi log

(

∑
j∈G

xij vij y1/wi
j

)
−∑

j∈G

αj log(yj).

Substituting δj = − log(yj), and taking the supremum over x, we get

max
x∈P

inf
y>0:yS≥0,∀S∈(Gn)

log px(y) = sup
x∈P ,α∈[0,1]|G|,∑j αj=n

inf
δ

∑
i∈A

wi log

(

∑
j∈G

xij vij e−δj/wi

)
+ ∑

j∈G

αjδj.

As the domains of both x and α are compact, using Theorem 16, we get

max
x∈P

inf
y>0:yS≥0,∀S∈(Gn)

∑
i∈A

wi log

(

∑
j∈G

xij vij y1/wi
j

)

= inf
δ

max
x∈P

max
α∈[0,1]|G|,∑j αj=n

∑
i∈A

wi log

(

∑
j∈G

xij vij e−δj/wi

)
+ ∑

j∈G

αjδj.

Finally, we claim that

inf
δ

max
x∈P

max
α∈[0,1]|G|,∑j αj=n

∑
i∈A

wi log

(

∑
j∈G

xij vij e−δj/wi

)
+ ∑

j∈G

αjδj

= inf
δ

max
x∈P

∑
i∈A

wi log

(

∑
j∈G

xij vij e−δj/wi

)
+ ∑

j∈G

max(0, δj).

35

The proof of this claim is identical to the proof of the unweighted case in equation (27).

Lemma 25. The optimal value of (Weighted-Primal) is the same as that of the following program.

inf
δ,r,γ

∑
j∈G

er j + ∑
i∈A

wiγi + ∑
j∈G

δj + ∑
i∈A

(wi log wi − wi) (Weighted-Dual)

rj + γi +
δj

wi
≥ log vij ∀(i, j) ∈ A× G.

Proof. For a fixed δ, let us first re-write the internal maximum of (Weighted-Primal) as

max
x,u

∑
i∈A

wi log ui + f (δ) (37)

ui ≤ ∑
j∈G

xij vij e−δj/wi ∀i ∈ A

∑
i∈A

xij ≤ 1 ∀j ∈ G

x ≥ 0 ,

where f (δ) = ∑j∈G max(0, δj).

Let βi, pj, and θij be the Lagrange dual variables associated with the constraints corresponding
to agent i, item j, and agent-item pair(i, j), respectively. The Lagrangian of the above convex
program is defined as follows

L(x,u,β,θ, p)

= f (δ) + ∑
i∈A

wi log ui + ∑
i∈A

βi

(

∑
j∈G

xij vij e−δj/wi − ui

)
+ ∑

j∈G

pj

(
1− ∑

i∈A

xij

)
+ ∑

i,j

θijxij

= f (δ) +

[

∑
i∈A

(wi log ui − βiui) + ∑
i,j

xij

(
βi vij e−δj/wi + θij − pj

)
+ ∑

j∈G

pj

]
.

The Lagrange dual of (37) is given by

g(β,θ,p) = max
x∈P ,u≥0

L(x, u,β,θ, p).

Observe that solution xij = 1/n is in the relative interior of P . Since all the constraints are affine,
Slater’s condition is satisfied. Thus the optimum value of the infimum of Lagrange dual over
β,θ,p ≥ 0 is exactly equal to the optimum of (37).

The KKT conditions for the Lagrangian imply

wi

ui
− βi = 0 ∀i ∈ A

βi vij e−δj/wi −∑
j∈G

pj + θij = 0 ∀(i, j) ∈ A× G.

The KKT conditions imply that ui = wi/βi for each i ∈ A maximizes the Lagrangian. For the
supremum over x, u in (34) to stay finite, the second KKT condition is necessary and sufficient.

36

Substituting these conditions in the Langrangian gives the following convex program.

inf
p,β,θ

f (δ) + ∑
j∈G

pj + ∑
i∈A

(wi log wi − wi)− ∑
i∈A

wi log βi

pj = βi vij e−δj/wi + θij ∀(i, j) ∈ A× G

p,β,θ ≥ 0

Observe that we can remove θ from the above program while making the first constraint an in-
equality. By substituting rj = log pj, γi = − log βi, the above program is equivalently to

inf
r,γ

f (δ) + ∑
j∈G

er j + ∑
i∈A

wi γi + ∑
i∈A

(wi log wi −wi)

rj + γi +
δj

wi
≥ log vij ∀(i, j) ∈ A× G.

As (Weighted-Primal) involves an infimum over δ, whenever δj < 0, we can increase it to δj = 0
without increasing the value of f (δ) and maintaining feasibility in the above program. Using this
observation and taking an infimum over δ gives (Weighted-Dual).

Lemma 26. The optimal value of (Weighted-Dual) is the same as that of (CVX-Weighted).

Proof. Let b̂ij be the Lagrange dual variable associated with constraint rj + γi + δj ≥ log vij of
(Unweighted-Dual) and let yij be the Lagrange dual variable associated with constraint δij ≥ 0.
The Lagrangian of (Weighted-Dual) is defined as follows

L(r,γ, δ, b̂, τ) = ∑
j∈G

er j + ∑
i∈A

wi γi + ∑
j∈G

δj + ∑
i,j

b̂ij(log vij − rj − γi −
δj

wi
)

−∑
j∈G

δjτj + ∑
i∈A

(wi log wi − wi)

= ∑
j∈G

(er j − (∑
i∈A

b̂ij)rj) + ∑
i∈A

γi(wi −∑
j∈G

b̂ij) + ∑
j∈G

δj(1− τj − ∑
i∈A

b̂ij

wi
)

+ ∑
i,j

b̂ij log vij + ∑
i∈A

(wi log wi − wi).

The Lagrange dual of (Weighted-Dual) is given by

g(b̂, τ) = inf
δ≥0,r,γ

L(r,γ, δ, b̂, τ). (38)

One can verify that Slater’s condition is satisfied by (Weighted-Dual). So, the supremum of (38)
with b, τ ≥ 0 is equal to the optimum of (Weighted-Dual).

The KKT conditions for the Langrangian imply

er j − ∑
i∈A

b̂ij = 0

wi −∑
j∈G

b̂ij = 0

37

1− τj − ∑
j∈A

b̂ij

wi
= 0.

The KKT conditions imply that the minimizer for rj is given by rj = log

(
∑

i∈A
b̂ij

)
. For the infimum

over γ, δ to stay finite, the conditions wi = ∑
j∈G

b̂ij for each i ∈ A and 1− τj = ∑
i∈A

b̂ij for each j ∈ G

are necessary and sufficient. Substituting these conditions in the Lagrange dual, we get

sup
b̂,τ

∑
i,j

b̂ij log vij − ∑
j∈G

∑
i∈A

b̂ij log

(

∑
i∈A

b̂ij

)
+ ∑

j∈G
∑
i∈A

b̂ij + ∑
i∈A

(wi log wi − wi)

∑
j∈G

b̂ij = wi

∑
i∈A

b̂ij

wi
= 1− τj

b̂, τ ≥ 0.

Observe that the supremum in the above program can be switched to maximum because the fea-
sible region is compact and the objective is bounded. Also, ∑i,j b̂ij = ∑i∈A wi for any feasible b̂.

Finally, substituting bij =
b̂ij

wi
and qj = ∑i∈A bij, we obtain (CVX-Weighted).

38

	Introduction
	Our Results and Contributions
	Preliminaries
	Technical Overview
	Related Work

	Approximation Algorithm
	Rounding an Acyclic Solution

	Rounding via the Non-Convex Relaxation
	Pruning Small Items
	Fractional Matching and Analysis

	Conclusion and Open Questions
	Omitted Proofs and Lemmas
	Relationships Between the Mathematical Programs
	Proof of Theorem 2
	Generalization to Weighted Nash Social Welfare

