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Abstract

Austrin showed that the approximation ratio β ≈ 0.94016567 obtained by the MAX 2-SAT
approximation algorithm of Lewin, Livnat and Zwick (LLZ) is optimal modulo the Unique
Games Conjecture (UGC) and modulo a Simplicity Conjecture that states that the worst per-
formance of the algorithm is obtained on so called simple configurations. We prove Austrin’s
conjecture, thereby showing the optimality of the LLZ approximation algorithm, relying only
on the Unique Games Conjecture. Our proof uses a combination of analytic and computational
tools.

We also present new approximation algorithms for two restrictions of the MAX 2-SAT prob-
lem. For MAX HORN-{1, 2}-SAT, i.e., MAX CSP({x∨ y, x̄∨ y, x, x̄}), in which clauses are not
allowed to contain two negated literals, we obtain an approximation ratio of 0.94615981. For
MAX CSP({x ∨ y, x, x̄}), i.e., when 2-clauses are not allowed to contain negated literals, we
obtain an approximation ratio of 0.95397990. By adapting Austrin’s and our arguments for the
MAX 2-SAT problem we show that these two approximation ratios are also tight, modulo only
the UGC conjecture. This completes a full characterization of the approximability of the MAX
2-SAT problem and its restrictions.

1 Introduction

For over half a century [22], computer scientists have been concerned with designing optimal ap-
proximation algorithms for a variety of optimization problems. One of the most popular classes
of optimization problems to study is Boolean Constraint Satisfaction Problems, where one is given
a collection of Boolean variables with constraints (or predicates) on subsets of variables dictating
what a valid assignment to the variables should satisfy. The optimization problem MAX CSP is
concerned with finding a solution that maximizes the number of satisfied constraints. In general,
this problem is NP-hard, but much research has gone into finding optimal approximation algorithms
with corresponding hardness results.
The leading technique for approximating MAX CSPs is via semidefinite programming (SDP). This
method was first used by Goemans and Williamson [17] for a variety of MAX CSPs including
MAX CUT, MAX 2-SAT, MAX DI-CUT and MAX SAT. In particular, the Goemans-Williamson algorithm
for MAX CUT achieves an approximation ratio of αGW ≈ 0.87856, which is still the best known to
date. The best evidence for the optimality of this algorithm is that, assuming Khot’s Unique Games
Conjecture (UGC) [24], it is NP-hard to approximate MAX CUT to a ratio of αGW + ε for any ε > 0.
This was proved by the combined efforts of Khot, Kindler, Mossel and O’Donnell [25] who outlined
the hardness reduction and Mossel, O’Donnell and Oleszkiewicz [29] (see also [14]) who proved the
Majority is Stablest conjecture to complete the analysis.
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However, the algorithms found by Goemans and Williamson for MAX 2-SAT, MAX DI-CUT and MAX
SAT have since been improved by Feige and Goemans [16], Matuura and Matsui [28] and Lewin,
Livnat and Zwick [26] and others. See the survey of Makarychev and Makarychev [27] and the recent
progress by Brakensiek, Huang, Potechin and Zwick [9] for MAX DI-CUT.
In this paper, we primarily focus on studying MAX 2-SAT. Since the work of Lewin, Livnat and
Zwick [26], the best known approximation ratio for MAX 2-SAT has been βLLZ ≈ 0.940. However, a
proof of optimality has remained elusive. Khot, Kindler, Mossel and O’Donnell [25] also showed that
it is UGC-hard, i.e., NP-hard under the UGC conjecture, to approximate BALANCED MAX 2-SAT, to
within βBAL + ε, for any ε > 0, where βBAL ≈ 0.943943 and BALANCED MAX 2-SAT is the version
of MAX 2-SAT in which the total weight of clauses in which a variable appears positively is equal
to the total weight of clauses in which it appears negatively. They also conjectured that balanced
instances are the hardest for MAX 2-SAT.
Austrin [2], refuting the conjecture of Khot, Kindler, Mossel and O’Donnell [25] that balanced
instances are hardest for MAX 2-SAT, showed that it is UGC-hard to approximate MAX 2-SAT to
within β−

LLZ+ε, for any ε > 0, where β−
LLZ ≈ 0.94016567 is the ratio obtained by the LLZ algorithm

with the optimal tuning of its parameters on simple, but not necessarily balanced, configurations.
Austrin [2] conjectured that β−

LLZ = βLLZ , where βLLZ is the ratio obtained by the optimally tuned
LLZ algorithm on all, not necessarily simple, configurations, and hence on all instances of MAX 2-SAT.
We prove this conjecture, which we refer to as the Simplicity Conjecture. (The conjecture is also
implicit in [26].) This shows that it is UGC-hard to approximate MAX 2-SAT to within βLLZ + ε, for
any ε > 0, that the LLZ algorithm is essentially an optimal approximation algorithm for MAX 2-SAT,
and that βLLZ ≈ 0.94016567 is the exact approximability threshold of MAX 2-SAT, under UGC. 1

1.1 Our results

Our main result is a proof of Austrin’s simplicity conjecture. This establishes that the optimally
tuned LLZ algorithm is indeed an optimal approximation algorithm for MAX 2-SAT, relying only
on UGC. More precisely, under UGC, for any ε > 0, it is NP-hard to approximate MAX 2-SAT to
within βLLZ + ε, where βLLZ ≈ 0.94016567 is the approximation ratio achieved by the optimally
tuned LLZ algorithm. Interestingly, the only parameter used by the optimally tuned LLZ algorithm
is actually βLLZ itself. (See below.) There does not seem to be a closed form solution for the
constant βLLZ but it can be efficiently computed to any desired accuracy.
Although the simplicity conjecture is technical in nature, and by no means as profound as the
Unique Games Conjecture, or the Majority is Stablest conjecture, turned theorem, we believe that
proving it is important, since it implies that we do indeed know the tight approximability threshold
of MAX 2-SAT, modulo UGC. We note that the seemingly plausible and somewhat related conjecture
of Khot, Kindler, Mossel and O’Donnell [25] that balanced instances of MAX 2-SAT are the hardest
turned out to be false. We also note that the family of rounding functions believed to be sufficient
for obtaining an optimal approximation algorithms for MAX 2-AND and MAX DI-CUT turned out not
to be sufficient, as shown in [9].
We also provide a full classification of all possible restrictions of the MAX {1, 2}-SAT, i.e., the MAX
SAT problem with clauses of sizes 1 and 2. It turns out that up to symmetries there are four
non-equivalent restrictions two of which are nontrivial. (See Table 1.)
Austrin’s hardness proof for MAX 2-SAT only uses clauses of the form x∨y and x̄∨ȳ, so any restriction
that contains these two types is automatically as hard as MAX 2-SAT itself.
The first non-trivial restriction of MAX {1, 2}-SAT is MAX {1, 2}-HORN-SAT in which clauses of the form
x̄ ∨ ȳ are not allowed. We show that a noticeably better approximation ratio of about 0.94615981

1Several previous papers, e.g., [11, 13, 30, 31], state this result without mentioning that it relies on the now proven
simplicity conjecture.
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Name x ∨ y x̄ ∨ y x̄ ∨ ȳ x x̄ Approximation Ratio

MAX {1, 2}-SAT ✓ ❍ ✓ ❍ ❍ ≈ 0.94016567
MAX {1, 2}-HORN-SAT ✓ ✓ ✗ ❍ ✓ ≈ 0.94615981
MAX CSP({x ∨ y, x, x̄}) ✓ ✗ ✗ ❍ ✓ ≈ 0.95397990

MAX CSP({x̄ ∨ y, x, x̄}) ✗ ❍ ✗ ❍ ❍ 1
MAX CSP({x ∨ y, x̄ ∨ y, x}) ❍ ❍ ✗ ❍ ✗ 1

Table 1: MAX {1, 2}-SAT and its non-equivalent subproblems. ✓ indicates that the use of clauses of
the corresponding type is allowed. ✗ indicates that the use of such clauses is not allowed. ❍ indicates
that using or not using such clauses does not change the approximation ratio of the problem.

can be obtained for this problem and that this is tight. A further noticeable improvement, to about
0.95397990, is obtained if clauses of the forms x̄ ∨ y and x̄ ∨ ȳ are not allowed. This is again tight.
The problem MAX CSP({x ∨ y, x̄}) may be seen as a variant of the VERTEX COVER problem. Given
an undirected graph G = (V,E), choose a subset A ⊆ V so as to maximize the number of edges
covered by A, plus the number of vertices not in A. It is possible to add nonnegative weights to the
vertices and edges. (A related problem, MAX k-VC, is mentioned in the concluding remarks.)
The remaining two restrictions of MAX {1, 2}-SAT can be solved exactly in polynomial time. The
problem MAX CSP({x̄ ∨ y, x, x̄}) can be solved exactly via a reduction to the s-t MIN CUT problem in
directed graphs. Instances of MAX CSP({x ∨ y, x̄ ∨ y, x}) are always satisfied by the all-1 assignment.

1.2 Significance of the results

As mentioned, we believe that proving Austrin’s simplicity conjecture is important as it gives a tight
approximability result for MAX 2-SAT, relying only on UGC. It also enhances our understanding of
the LLZ algorithm. An interesting consequence is that the rounding procedure needed to obtain
an optimal approximation algorithm for MAX 2-SAT is much simpler than the “universal” rounding
procedures used by Raghavendra’s [32, 33] result. (See Section 1.5.) In particular, only one Gaussian
random variable is needed.
Studying restrictions of the MAX 2-SAT problem is interesting as it provides more natural constraint
satisfaction problems for which tight approximation results are now known. What is also striking
is that the rounding functions used for MAX 2-SAT and its subproblems are especially simple and
clean. This stands in sharp contrast to the very complicated rounding functions needed to obtain
close to optimal approximation algorithms for MAX 2-AND and MAX DI-CUT.

1.3 Techniques

The LLZ algorithm itself is fairly simple and natural. It is parameterized by a threshold function
f : [−1, 1] → [−1, 1], or by a distribution F of threshold functions. The threshold function used
to obtain an optimal approximation algorithm for MAX 2-SAT is very simple: f(x) = βx, where
β = βLLZ is the optimal approximation ratio of MAX 2-SAT.
The analysis of the LLZ algorithm, however, requires minimizing or maximizing functions of several
real variables that involve the cumulative probability function of 2-dimensional Gaussian variables
for which no closed form exists. This greatly complicates the analysis. All previous analyses of
the LLZ algorithm had to resort to numerical techniques. Lewin, Livnat and Zwick [26] used non-
rigorous numerical techniques to obtain the estimate βLLZ ≈ 0.940. Austrin [2] used non-rigorous
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numerical techniques to corroborate his simplicity conjecture. Sjögren [36] used rigorous numerical
techniques to show that βLLZ ≥ 0.94016, but did not attempt to prove the simplicity conjecture.
To prove the simplicity conjecture we need to obtain a much finer analysis of the LLZ algorithm. We
are not interested in just lower bounding the approximation ratio obtained by the algorithm. We
need to show that the critical configurations, i.e., the configurations on which the worst performance
of the algorithm is obtained have a particularly simple form. We do that using a combination of
analytic techniques and rigorous numerical techniques, i.e., interval arithmetic.
Interval arithmetic was previously used by Zwick [39], Sjögren [36], Austrin, Benabbas and Geor-
giou [5], Bhangale et al. [8], Bhangale and Khot [7], and Brakensiek et al. [9] to analyze SDP-based
approximation algorithms. Our use of interval arithmetic is more involved since we are not just
trying to lower bound the approximation ratio achieved by an algorithm, but rather certify that the
worst behavior is obtained on configurations of a certain form, the so called simple configurations.
This requires a much more careful analysis.

1.4 Comparison to the works of Raghavendra and Austrin

The seminal work of Raghavendra [32] showed, assuming the Unique Games Conjecture, that every
MAX CSP, including the ones studied in this paper, have a sharp approximation threshold α ∈
[−1, 1] such that for every ε > 0, there exists an efficient SDP rounding algorithm achieving an
α− ε approximation and that no α+ ε approximation algorithm exists assuming the unique games
conjecture. Further, the follow-up work of Raghavendra and Steurer [34] showed that an explicit
SDP integrality gap for α+ ε can be computed in O(exp(exp(1/ε))) time.
We observe that Raghavendra’s theorem does not shed much insight on Austrin’s simplicity conjec-
ture. The reason is that the rounding functions considered by Raghavendra (as well as in his revised
proof with Brown-Cohen [10]) are very complex. In particular, after SDP vectors vi are computed for
every variable in the CSP (and a reference vector v0), one samples N = N(ε) n-dimensional Gaus-
sian random variables r1, . . . , rN , and rounds variable xi based on the values vi ·v0,vi ·r1, . . . ,vi ·rN .
This is in contrast to the rounding algorithms considered by LLZ and Austrin which only require
one randomly sampled n-dimensional Gaussian random variable (this is known as T HRESH− or
T HRESH, see Section 2.4). Thus, for the variants of MAX 2-SAT problem, we go beyond Raghaven-
dra’s theorem by showing that simple families of rounding functions are exactly optimal (assuming
the Unique Games Conjecture). We hope the approximation community takes interest in improving
beyond Raghavendra’s theorem not just for 2-CSPs but for MAX CSPs in general.
In addition, the work of Austrin [4] on MAX 2-AND is closely related to our main results. In particular,
he shows that for any MAX 2-CSP, a probability distribution of SDP vectors which is difficult to round
with any T HRESH− rounding scheme can be converted into an UGC-hardness proof, see Section 2.5
for more details. However, Austrin imposes a positivity conditions on these vectors for the hardness
proof to go through. As such, it is currently an open question if every MAX 2-CSP can be tightly
captured by Austrin’s hardness framework. We show that for all the problems which we study
in this paper–MAX 2-SAT, MAX CSP(({x ∨ y, x, x̄})), and MAX {1, 2}-HORN-SAT–their hardness analyses
do follow from Austrin’s hardness framework (or more precisely a mild generalization of the result
from [9] which allows for MAX CSPs with non-negated literals). However in each case, we require
considerable effort to tightly analyze a matching algorithm,2 which is the primary novelty of our
paper.

2The hard distribution and matching algorithm for MAX CSP(({x ∨ y, x, x̄})), and MAX {1, 2}-HORN-SAT were found
by adapting the code/methods of [9].
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1.5 Other Related Work

The literature for the MAX CSP problem and its approximation algorithms is extremely broad. See
Makarychev and Makarychev [27] for a contemporary survey. We highlight a few other works closely
related to our investigation.
Discounting the unique games conjecture, all the best known NP-hardness results for approximating
MAX CSPs are based on the PCP theorem [1]. For MAX 2-SAT the best known hardness ratio is
21
22 + ε for all ε > 0 due to Håstad [18]. This paper also proved tight hardness results for the
MAX 3-SAT (7/8 + ε) and MAX 3-LIN (1/2 + ε) problems.
For Boolean MAX CSPs, Creignou [12] shows that every such problem can be solved exactly or there
exists a constant ε > 0 such that obtaining an approximation ratio of 1−ε is NP-hard. In particular,
the problems MAX CSP({x̄ ∨ y, x, x̄}) and MAX CSP({x ∨ y, x̄ ∨ y, x}) were already known to be exactly
solvable. See also the generalization due to Khanna, Sudan, Trevisan and Williamson [23].
The work of Thapper and Živnỳ [38] gives a classification of which MAX CSPs (or, more precisely, a
more general family known as Valued CSPs) can be solved exactly on any domain.

Organization

In Section 2, we formally describe MAX CSP, the SDP relaxation, rounding algorithms, and tech-
niques for showing UGC-hardness. In Section 3, we prove the Simplicity Conjecture. In Section 4,
we give a tight analysis of MAX CSP(({x ∨ y, x, x̄})). In Section 5, we tightly analyze MAX {1, 2}-HORN-
SAT. In Section 6, we leave concluding remarks and open problems. In Appendix A, we describe
the implementation details of the interval arithmetic verification. In Appendix B, we describe an
explicit formula for βLLZ , the optimal MAX 2-SAT approximation ratio.

2 Preliminaries

2.1 The MAX 2-SAT problem and its relatives

A Boolean predicate of arity k is a function P : {−1, 1}k → {0, 1}, where in the domain we asso-
ciate −1 with true and 1 with false. We say that P is satisfied by x ∈ {−1, 1}k if P (x) = 1.

Definition 2.1 (MAX CSP(P)). Let P be a set of Boolean predicates. An instance of MAX CSP(P)
is defined by the following:

• A set of Boolean variables V = {x1, . . . , xn}.

• A set of constraints C = {C1, . . . , Cm}, where each constraint Ci = Pi(xji,1 , xji,2 , . . . , xji,k) for
some Pi ∈ P with arity k and ji,1, . . . , ji,k ∈ [n].

• A weight function w : C → [0, 1] satisfying
∑m

i=1 w(Ci) = 1.

The goal is to find an assignment to the variables that maximizes
∑m

i=1 w(Ci)·Pi(xji,1 , xji,2 , . . . , xji,k),
the sum of the weights of satisfied constraints.

Definition 2.2. The MAX 2-SAT problem is the problem MAX CSP(P2SAT ), where P2SAT = {x ∨
y, x ∨ ȳ, x̄ ∨ y, x̄ ∨ ȳ, x, x̄}.

We remark that Definition 2.1 does not allow negated variables. This paper will focus on the case
where P is a subset of P2SAT , in other words, MAX CSP(P) is MAX 2-SAT or one of its subproblems.
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For the special case where every predicate in P is of arity at most 2, we can write down the canonical
SDP relaxation as follows (c.f., [9]).

maximize
∑

C=P (xi,xj)∈C

w(C) ·
(
P̂∅ + P̂iv0 · vi + P̂jv0 · vj + P̂i,jvi · vj

)
subject to ∀i ∈ {0, 1, 2, . . . , n} , vi · vi = 1 ,

∀C = P (xi, xj) ∈ C ,

(v0 − vi) · (v0 − vj) ≥ 0 ,
(v0 + vi) · (v0 − vj) ≥ 0 ,
(v0 − vi) · (v0 + vj) ≥ 0 ,
(v0 + vi) · (v0 + vj) ≥ 0 .

Here, for every variable xi in the CSP instance, we have a vector-valued variable vi, plus a special
vector v0 representing the truth value false. These vectors are all constrained to be unit vectors.
The last four constraints are called triangle inequalities, which clearly hold for integer solutions.
In the objective value we take the Fourier expansion P (xi, xj) = P̂∅ + P̂ixi + P̂jxj + P̂i,jxixj and
replace the Boolean monomials with vector inner products. This relaxation is called canonical since
any integrality gap instance of this relaxation can be turned into an NP-hardness result, assuming
the famous Unique Games Conjecture.

Definition 2.3 (Unique Games, as stated in [9]). An instance I = (G,L,Π) of unique games is
specified by a weighted graph G = (V (G), E(G), w), a finite set of labels [L] = {1, . . . , L} and a set of
permutations Π = {πu

e : [L] → [L] | e = {u, v} ∈ E(G)} such that for every edge e = {u, v} ∈ E(G),
the two permutations πu

e and πv
e are inverses of each other, i.e., πu

e = (πv
e )

−1. For any assignment
A : V (G) → [L], we say that A satisfies an edge e = {u, v} if πu

e (A(u)) = A(v), and we define
Val(I, A) =

∑
e∈E(G):A satisfies e w(e) to be the total weights of edges satisfied by A. We define the

value of the instance Val(I) to be the value of the best assignment, i.e, Val(I) = maxA Val(I, A).

Conjecture 1 (Unique Games Conjecture, as stated in [9]). For every η, γ > 0, there exists a
sufficiently large L such that, given a unique games instance I with L labels, it is NP-hard to
determine if Val(I) ≥ 1− η or Val(I) ≤ γ.

We say that a problem is UG-hard, if it is NP-hard assuming the Unique Games Conjecture.
Raghavendra [32] showed a generic reduction converting any integrality gap instance of the canonical
SDP relaxation into a UG-hardness result.

2.2 Configurations of biases and pairwise biases

To analyze SDP-based approximation algorithms for CSPs, the common approach is to show that
for every constraint, the probability that the algorithm satisfies the constraint is at least some ratio
times the relaxed value of the constraint. For such analysis, it is convenient to consider configurations
of biases and pairwise biases, which are tuples of inner products between SDP vectors that appear
in the same constraint. For constraints involving two variables, such configurations are triplets of
the form (bi, bj , bij), where bi = v0 · vi and bj = v0 · vj are the biases and bij = vi · vj is the
pairwise bias. For a single-variable constraint, the configuration is of the form (bi), a single bias.
Each configuration also has a predicate type, which is the predicate used to define the constraint. We
will often use θ to denote a configuration and use the term k-configuration to refer to configurations
with a predicate type of arity k. In this work, we will often implicitly assume that a 2-configuration
is of predicate type x ∨ y, unless otherwise specified. We say that a configuration is feasible if it
appears in a feasible SDP solution.
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Definition 2.4 (Relative pairwise bias). Given a 2-configuration θ = (bi, bj , bij), the relative pair-
wise bias is defined as ρ(θ) =

bij−bibj√
(1−b2i )(1−b2j )

, if (1− b2i )(1− b2j ) ̸= 0, and 0 otherwise.

Geometrically, ρ(θ) is the renormalized inner product between vi and vj after removing their com-
ponents parallel to v0.

Definition 2.5 (Positive configurations [4]). A 2-configuration θ = (bi, bj , bij) with predicate type P

is called positive if P̂i,j · ρ(θ) ≥ 0.

Austrin conjectured that positive configurations are the hardest configurations for 2-CSPs, and
showed how to obtain UG-hardness results from hard distributions of positive configurations [4].
Specifically for MAX 2-SAT, he also conjectured that the hardest configurations are of the following
even simpler form.

Definition 2.6 (Simple configurations [2]). A 2-configuration θ = (bi, bj , bij) is called simple if we
have bi = bj = b and bij = −1 + 2|b| for some b ∈ [−1, 1].

For the predicate type P = xi ∨ xj , any simple configuration θ is also positive, since we have
ρ(θ) = −1+2|b|−b2

1−b2 = − (1−|b|)2
1−b2 ≤ 0 and P̂ij = −1/4 < 0 as well.

Definition 2.7. Given a configuration θ, we define Value(θ) to be its relaxed value in the SDP.
Given a distribution of configurations Θ, we define its SDP value to be Value(Θ) = Eθ∼Θ Value(θ).

We remark that for a 2-configuration θ = (bi, bj , bij) with predicate type xi ∨ xj , we have

Value(θ) = Value(bi, bj , bij) =
3− bi − bj − bij

4
.

2.3 1-dimensional and 2-dimensional normal random variables

We collect a few facts about normal random variables and basic calculus, which will be important
in our analysis of the algorithms. Let φ(x) = 1√

2π
e−x2/2 and Φ(x) =

∫ x

−∞ φ(t)dt be the probability
density function and cumulative probability function of the standard normal random variable X ∼
N(0, 1), i.e., Φ(x) = P[X ≤ x]. Note that Φ′(x) = φ(x) and φ′(x) = −xφ(x). Let

φρ(x, y) =
1

2π
√

1− ρ2
e
− x2−2ρxy+y2

2(1−ρ2)

be the probability density function of a pair (X,Y ) for standard normal variables with correlation
E[XY ] = ρ, where −1 < ρ < 1. (Note that φ0(x, y) = φ(x)φ(y).) The cumulative distribution
function of (X,Y ) is then:

Φρ(x, y) = Φ(x, y, ρ) = P[X ≤ x ∧ Y ≤ y] =

∫ x

−∞

∫ y

−∞
φρ(t1, t2)dt1dt2 .

Lemma 2.8. The partial derivatives of Φ(x, y, ρ) = Φρ(x, y) are:

∂Φ(x, y, ρ)

∂x
= φ(x)Φ

(
y − ρx√
1− ρ2

)
,

∂Φ(x, y, ρ)

∂y
= φ(y)Φ

(
x− ρy√
1− ρ2

)
,

∂Φ(x, y, ρ)

∂ρ
=

1

2π
√
1− ρ2

exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)
.
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The last equation above is Equation 4 from [15].
We recall the following trivial facts.

Proposition 2.9. For any a < b, we have

Φ(b)− Φ(a) ≥ (b− a) ·min(φ(a), φ(b)) .

Proof. We have

Φ(b)− Φ(a) =

∫ b

a

φ(t)dt ≥ (b− a) · min
t∈[a,b]

φ(t) .

The proposition then follows from the fact that φ(t) = 1√
2π

exp(−t2/2) achieves its minimum on
any interval [a, b] on the endpoints.

The following proposition is taken from Austrin [2] where a simple proof can also be found.

Proposition 2.10. For all x, y ∈ R, ρ ∈ [−1, 1], we have

Φρ(x, y)− Φρ(−x,−y) = Φ(x) + Φ(y)− 1 .

2.4 The T HRESH− rounding family and the LLZ algorithm for MAX 2-SAT

The T HRESH− rounding family [26] is the following rounding procedure for the canonical SDP
relaxation. Let v0,v1, . . . ,vn be a vector solution obtained by solving the canonical SDP, and let
bi = v0 · vi and bij = vi · vj be the biases and pairwise biases. We define

v⊥
i =

vi − bi · v0√
1− b2i

to be the component of vi that’s orthogonal to v0, renormalized to a unit vector (if |bi| = 1, we can
take v⊥

i to be a unit vector that’s orthogonal to every other SDP vector). A rounding algorithm
from the T HRESH− family is specified by a threshold function f : [−1, 1] → [−1, 1]. The algorithm
chooses a standard normal random vector r and for every i, sets the variable xi to true if and only
if v⊥

i · r ≥ Φ−1( 1+f(bi)
2 ). Since r is a standard normal random vector, we have v⊥

i · r ∼ N(0, 1) for
every variable xi, and furthermore the correlation between v⊥

i ·r and v⊥
j ·r is equal to v⊥

i ·v⊥
j . Note

that for a 2-configuration θ given by the SDP vectors vi,vj , we have exactly ρ(θ) = v⊥
i · v⊥

j .

The LLZ algorithm for MAX 2-SAT is an algorithm from the T HRESH− family. In particular, it
chooses f : b 7→ βb for some parameter β ≤ 1.

Definition 2.11. Given a configuration θ, we define Probβ(θ) to be the probability that it’s satisfied
by the LLZ algorithm with parameter β. Given a distribution of configurations Θ, we define Probβ(Θ)
to be Eθ∼Θ Probβ(θ).

For a 2-SAT configuration θ = (bi, bj , bij), the probability that it’s satisfied by the LLZ algorithm is
equal to

Probβ(θ) = Probβ(bi, bj , bij) = 1− Φρ(θ)

(
Φ−1

(
1 + βbi

2

)
,Φ−1

(
1 + βbj

2

))
,

since the probability that both variables are set to false is exactly Φρ(θ)

(
Φ−1

(
1+βbi

2

)
,Φ−1

(
1+βbj

2

))
.

The ratio achieved by the algorithm on this configuration is then equal to

Ratioβ(bi, bj , bij) =
Probβ(bi, bj , bij)

Value(bi, bj , bij)
,

8



and the approximation ratio achieved by the algorithm overall can be obtained by taking the mini-
mum over all feasible configurations (bi, bj , bij). We then choose β to maximize this ratio.
Lewin, Livnat and Zwick [26] and Austrin [2] made the following conjecture:

Conjecture 2 (Simplicity Conjecture). The worst performance ratio of the optimized LLZ algorithm
is obtained on simple configurations, i,e., configurations of the form (b, b,−1 + 2|b|).

Modulo this conjecture, Austrin proved that the optimized LLZ algorithm achieves an approximation
ratio of ≈ 0.94016567 for MAX 2-SAT, where, somewhat surprisingly, the optimizing β is also equal
to this ratio.
The LLZ algorithm uses an odd threshold function, i.e., f(b) = −f(−b). However, for MAX CSP in
general we are allowed to use any f in T HRESH−. We can also use a distribution over T HRESH−

schemes, and such algorithms are called T HRESH by [26].

2.5 UG-hardness via PCP

For 2-CSPs, Austrin showed the following general result that turns hardness against T HRESH−

family into UG-hardness.

Theorem 2.12 ([4]). Let MAX CSP(P) be a CSP problem where every predicate in P has arity at
most 2. Let Θ be a distribution of configurations for MAX CSP(P) in which every 2-configuration is
positive. Let c be the SDP value of Θ. If no T HRESH− rounding scheme can satisfy more than an
s fraction of configurations in Θ, then it is UG-hard to approximate MAX CSP(P) within a ratio of
s/c+ ϵ for any ε > 0.

We remark that in the original statement in [4], the CSPs allow arbitrary variable negations, but the
proof can be easily extended to the case where negations are not allowed as in our Definition 2.1, see
the appendix of [9] for more details on this. Another small difference is that the original statement
does not include 1-configurations, but this can also be handled easily.
The hard distributions that we construct in subsequent sections will have the property that every
2-configuration is positive.

2.6 Interval Arithmetic

To rigorously analyze these complex rounding probabilities, researchers in approximation algorithms
have often used interval arithmetic [39, 36, 5, 8, 7, 9]. As the name suggests, interval arithmetic
keeps track of intervals [a, b] ⊆ R. When applying a function f : R → R to an interval [a, b], the
guarantee is that the output [c, d] has that f(x) ∈ [c, d] for all x ∈ [a, b]. A similar property applies
for multivariate functions. Thus, if one seeks to show that a function g : [0, 1]n → R is always
nonnegative, it suffices to partition [0, 1]n into finitely many boxes such that the interval arithmetic
evaluation of each box is nonnegative.
However, there are many cases in which such a “divide and conquer” approach is either impractically
slow or literally infeasible. For instance if the function g mentioned actually equals 0 at some
point in the domain, interval arithmetic may never succeed due to rounding errors which introduce
small negative numbers. For us to get around that, we also often implement an interval arithmetic
implementation of the gradient ∇g or sometimes even the Hessian of g, which lets us prove that the
local minima of g are in restricted regions.
We build our interval arithmetic implementations off of the library Arb [19] due to it having an
efficient implementation of hypergeometric functions (such as the error function) [21] as well as
support for integration (to compute 2-dimensional Gaussian cumulative density functions) [20]. In
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this paper, any lemma proved using interval arithmetic will be clearly marked “(interval arithmetic)”
in the theorem statement. A detailed discussion of how these theorems are verified in interval
arithmetic is contained in Appendix A.

3 The worst configurations for MAX 2-SAT are simple

Define fβ(b1, b2, b12) = Probβ(b1, b2, b12)−β ·Value(b1, b2, b12). The following result is due to Austrin.

Theorem 3.1 ([3], Proposition 6.6.1). There exists β∗ = β−
LLZ ≈ 0.94016567 such that

min
b∈[−1,1]

fβ∗(b, b,−1 + 2|b|) = 0.

In this section we prove the following theorem which extends the domain of the above minimum to
all feasible configurations.

Theorem 3.2. Let β∗ be as in Theorem 3.1. We have min(bi,bj ,bij) fβ∗(bi, bj , bij) = 0, where
(bi, bj , bij) ranges over all feasible configurations.

Note that Theorem 3.2 immediately implies Conjecture 2 and βLLZ = β−
LLZ .

Numerical experiments indeed suggest that for the optimal choice β∗ ≈ 0.94016567 of β, the global
minimum is attained simultaneously at the two points (−b∗,−b∗,−1 + 2b∗) and (b∗, b∗,−1 + 2b∗),
where b∗ ≈ 0.162478. We will show this rigorously. Part of the difficulty, of course, is that we have
no closed form expressions for β∗ and b∗. Our proof is composed of the following steps.

1. We first show that any minimizer of fβ∗(b1, b2, b12) is of the form (b1, b2,−1+ |b1 + b2|), which
means that one of the triangle inequalities in the SDP is tight. This confirms the intuition that
for MAX 2-SAT the triangle inequalities are really cutting away space of very bad configurations.

2. We then show that, any point that is far away from (−b0,−b0,−1+2b0) or (b0, b0,−1+2b0) in
ℓ∞ distance cannot be a minimizer of fβ∗(b1, b2, b12). Here, b0 = 0.16247834 is an approximate
proxy to b∗, as the value of b∗ is not exactly known.

3. Finally, we show that for any bias b near b0 or −b0, the function gb,β∗(t) = Probβ∗(b + t, b −
t,−1+2|b|) achieves its minimum at t = 0 in a large enough neighborhood of 0. Since Value(b+
t, b−t,−1+2|b|) = Value(b, b,−1+2|b|), this implies that near b0 or −b0, fβ∗(b1, b2,−1+|b1+b2|)
is minimized at a point where b1 = b2.

The first two steps will be proven using the technique of interval arithmetic, while the third step
will be proven analytically.

3.1 Step 1

We prove the following statement using interval arithmetic. The implementation details of each
lemma are given in Appendix A.

Lemma 3.3 (Interval Arithmetic). For every b1, b2, b12 ∈ [−1, 1] and β ∈ [0.9401653, 9401658], at
least one of the following is true:

• fβ(b1, b2, b12) > 0.001, (cannot be global minimum)

• ρ(b1, b2, b12) /∈ [−1, 1], (triangle inequality violation)
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• b12 < −1 + |b1 + b2|, (triangle inequality violation)

• b12 < 1− |b1 − b2| and ∇f ̸= (0, 0, 0). (global minimum cannot be in interior)

We remark that the above lemma implies that any minimizer of fβ∗ must satisfy b12 = −1+ |b1+b2|,
since for every critical point (b1, b2, b12) within the feasible region we will have fβ∗(b1, b2, b12) > 0.001.

3.2 Step 2

Observe that fβ has the following property.

Proposition 3.4. For every β ∈ [−1, 1] and every feasible configuration (b1, b2, b12), we have
fβ(b1, b2, b12) = fβ(−b1,−b2, b12).

Proof. We have

Value(b1, b2, b12)− Value(−b1,−b2, b12)

=
3− b1 − b2 − b12

4
− 3 + b1 + b2 − b12

4

= −b1 + b2
2

.

We also have ρ(b1, b2, b12) = ρ(−b1,−b2, b12) and

Probβ(b1, b2, b12)− Probβ(−b1,−b2, b12)

=

(
1− Φρ

(
Φ−1

(
1 + βb1

2

)
,Φ−1

(
1 + βb2

2

)))
−
(
1− Φρ

(
Φ−1

(
1− βb1

2

)
,Φ−1

(
1− βb2

2

)))
= Φρ

(
Φ−1

(
1− βb1

2

)
,Φ−1

(
1− βb2

2

))
− Φρ

(
Φ−1

(
1 + βb1

2

)
,Φ−1

(
1 + βb2

2

))
= −β · b1 + b2

2
.

Here in the last step we have used Proposition 2.10. It follows that fβ(b1, b2, b12)−fβ(−b1,−b2, b12) =
(Probβ(b1, b2, b12)− Probβ(−b1,−b2, b12))− β(Value(b1, b2, b12)− Value(−b1,−b2, b12)) = 0.

The above proposition allows us to assume without loss of generality that b1+b2 ≥ 0 in the following
lemma.

Lemma 3.5 (Interval Arithmetic). For every b1, b2 ∈ [−1, 1] with b1+b2 ≥ 0 and β ∈ [0.9401653, 0.9401658],
at least one of the following is true:

• fβ(b1, b2,−1 + b1 + b2) > 0.001,

• b1 + b2 > 0 and
(

∂
∂b1

fβ(b1, b2,−1 + b1 + b2),
∂

∂b2
fβ(b1, b2,−1 + b1 + b2)

)
̸= (0, 0).

• b1, b2 ∈ [b0 − ε, b0 + ε] where b0 = 0.16247834 and ε = 10−6.

Further, we have that

• f0.9401658(b0, b0,−1 + 2b0) < 0

• For all b1, b2 ∈ [b0 − ε, b0 + ε], we have that f0.9401653(b1, b2,−1 + b1 + b2) > 0

We remark that any minimizer of fβ∗ must satisfy the third condition, since any configuration
satisfying the first condition has fβ∗ ≥ 0.001 and for any configuration satisfying the second condition
we can move along a non-zero gradient direction to obtain an even smaller fβ∗ .
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3.3 Step 3

Recall that we defined

gb,β(t) = Probβ(b+ t, b− t,−1 + 2|b|) = 1− Φρ (t1, t2) ,

where

ρ = ρb(t) =
−1 + 2|b| − (b+ t)(b− t)√
(1− (b+ t)2)(1− (b− t)2)

,

t1 = t1,b,β(t) = Φ−1

(
1 + β(b+ t)

2

)
,

t2 = t2,b,β(t) = Φ−1

(
1 + β(b− t)

2

)
.

We show the following proposition:

Proposition 3.6. For β ≥ 0.94, t ∈ [−0.1, 0.1], b ∈ [−0.18,−0.14]∪ [0.14, 0.18], we have g′b,β(t) ≥ 0
when t > 0 and g′b,β(t) ≤ 0 when t < 0.

Proof. Fix some β ≥ 0.94. Since gb,β(t) is an odd function in t, it suffices to show that for t ∈ [0, 0.1],
g′b,β(t) ≥ 0. Proposition 2.10 implies that

Φρ(t1, t2) = Φρ(−t1,−t2) + Φ(t1) + Φ(t2)− 1

= Φρ(−t1,−t2) +
1 + β(b+ t)

2
+

1 + β(b− t)

2
− 1

= Φρ(−t1,−t2) + βb .

Since we also have the symmetries ρb(t) = ρ−b(t) and

−t1,b,β(t) = −Φ−1

(
1 + β(b+ t)

2

)
= Φ−1

(
1 + β(−b− t)

2

)
= t2,−b,β(t) ,

we can deduce that

gb,β(t)− g−b,β(t) = Probβ(b+ t, b− t,−1 + 2|b|)− Probβ(−b+ t,−b− t,−1 + 2|b|)
= (1− Φρb

(t1,b,β , t2,b,β))−
(
1− Φρ−b

(t1,−b,β , t2,−b,β)
)

= (1− Φρb
(t1,b,β , t2,b,β))− (1− Φρb

(−t1,b,β ,−t2,b,β))

= −βb .

This shows that by flipping b to −b we incur a constant change in gb,β(t), so to the derivative it is
sufficient to fix some b ∈ [0.14, 0.18], the positive part of the interval that we are interested in. We
will also drop b, β in gb,β and refer to it simply as g.
To compute g′(t), we first compute the first derivatives of t1, t2 with respect to t. By the inverse
function rule and the chain rule, we have

∂t1
∂t

=
β

2
· 1

φ(t1)
,

∂t2
∂t

= −β

2
· 1

φ(t2)
.

Now, for g′(t), we have

g′(t) = −
(
∂Φρ

∂ρ
(t1, t2) ·

∂ρ

∂t
+

∂Φρ

∂x
(t1, t2) ·

∂t1
∂t

+
∂Φρ

∂y
(t1, t2) ·

∂t2
∂t

)
.
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Using Lemma 2.8, we have

∂Φρ

∂x
(t1, t2) = φ(t1)Φ

(
t2 − ρt1√
1− ρ2

)
,

∂Φρ

∂y
(t1, t2) = φ(t2)Φ

(
t1 − ρt2√
1− ρ2

)
.

Since φ(x) = φ(−x), this implies that

g′(t) = −

(
∂Φρ

∂ρ
(t1, t2) ·

∂ρ

∂t
+

β

2
·

(
Φ

(
t2 − ρt1√
1− ρ2

)
− Φ

(
t1 − ρt2√
1− ρ2

)))
.

In order to prove g′(t) ≥ 0, it is sufficient to show that

β

2
·

(
Φ

(
t1 − ρt2√
1− ρ2

)
− Φ

(
t2 − ρt1√
1− ρ2

))
≥ ∂Φρ

∂ρ
(t1, t2) ·

∂ρ

∂t
,

which, by Proposition 2.9, follows from

β

2
· (t1 − ρt2)− (t2 − ρt1)√

1− ρ2
·min

(
φ

(
t1 − ρt2√
1− ρ2

)
, φ

(
t2 − ρt1√
1− ρ2

))
≥ ∂Φρ

∂ρ
(t1, t2) ·

∂ρ

∂t
. (∗)

We have
(t1 − ρt2)− (t2 − ρt1)√

1− ρ2
=

(t1 − t2)(1 + ρ)√
1− ρ2

≥ 0 ,

since t1 ≥ t2. To prove (∗), we can prove separately that

β

2
· (t1 − t2)(1 + ρ)√

1− ρ2
· φ

(
t1 − ρt2√
1− ρ2

)
≥ ∂Φρ

∂ρ
(t1, t2) ·

∂ρ

∂t
,

and
β

2
· (t1 − t2)(1 + ρ)√

1− ρ2
· φ

(
t2 − ρt1√
1− ρ2

)
≥ ∂Φρ

∂ρ
(t1, t2) ·

∂ρ

∂t
.

For the former, we can rewrite it by plugging in expressions for φ and ∂Φρ

∂ρ (Lemma 2.8) and get

β

2
· (t1 − t2)(1 + ρ)√

1− ρ2
· 1√

2π
exp

(
− (t1 − ρt2)

2

2(1− ρ2)

)
≥ 1

2π
√
1− ρ2

exp

(
− t21 − 2ρt1t2 + t22

2(1− ρ2)

)
· ∂ρ
∂t

,

which can then be further simplified to

β

2
· (t1 − t2)(1 + ρ) ≥ φ(t2) ·

∂ρ

∂t
.

Similarly for the latter we can simplify it to

β

2
· (t1 − t2)(1 + ρ) ≥ φ(t1) ·

∂ρ

∂t
.

Therefore, if we show that

β

2
· (t1 − t2)(1 + ρ) ≥ max(φ(t1), φ(t2)) ·

∂ρ

∂t
, (1)

then it will follow that g′(t) ≥ 0.
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We have

t1 − t2 = Φ−1

(
1 + β(b+ t)

2

)
− Φ−1

(
1 + β(b− t)

2

)
≥
(
1 + β(b+ t)

2
− 1 + β(b− t)

2

)
·min
t∈R

(Φ−1)′(t)

=

(
1 + β(b+ t)

2
− 1 + β(b− t)

2

)
·min
t∈R

1

φ(t)

= βt ·
√
2π .

We also have
max(φ(t1), φ(t2)) ≤ 1√

2π
.

Plugging all these into (1), as a very loose estimate, if we can show that

β2π(1 + ρ) · t ≥ ∂ρ

∂t
.

then the proof is complete. This inequality follows from the estimates in Propositions 3.8 and 3.9.

Remark 3.7. We remark that the above estimation would still work if we replace t1 and t2 with
t1 = Φ−1

(
β+β(b+t)

2

)
and t2 = Φ−1

(
β+β(b−t)

2

)
, since we would still have ∂t1

∂t = β
2 · 1

φ(t1)
, ∂t2

∂t =

−β
2 · 1

φ(t2)
, which is the only role played by the expression of t1 and t2.

Proposition 3.8. For t ∈ [0, 0.1], b ∈ [0.14, 0.19], we have 0 ≤ ∂ρ
∂t < 2t

3 .

Proof. We can write ρ as

ρ =
−1 + 2|b| − (b+ t)(b− t)√
(1− (b+ t)2)(1− (b− t)2)

=
−(1− |b|)2 + t2√

(1− (b2 + t2))2 − 4b2t2
.

We have

∂ρ

∂t
= 2t · ((1− (b2 + t2))2 − 4b2t2) + (1 + (b2 − t2)) · (−(1− b)2 + t2))

((1− (b2 + t2))2 − 4b2t2)3/2

= t · 4b((1− b)2 − t2)

((1− (b2 + t2))2 − 4b2t2)3/2
.

It suffices to show that for parameters in these range we have

0 ≤ 4b((1− b)2 − t2)

((1− (b2 + t2))2 − 4b2t2)3/2
≤ 2

3
.

For the denominator we have

((1− (b2 + t2))2 − 4b2t2)3/2 ≥ ((1− (0.192 + 0.12))2 − 4 · 0.192 · 0.12)3/2 ≥ 0.8659 .

For the numerator we have

0 ≤ 4b((1− b)2 − t2) ≤ 4b(1− b)2 ≤ 4× 0.19(1− 0.19)2 < 0.499 .

Therefore the value of the fraction is bounded between 0 and 0.499/0.8659 < 2/3.
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Proposition 3.9. For β ≥ 0.94, t ∈ [0, 0.1], b ∈ [0.14, 0.19], we have β2π(1 + ρ(t)) ≥ 0.681.

Proof. We have

1 + ρ(t) ≥ 1 + ρ(0) = 1 +
−1 + 2b− b2

1− b2
= 1 +

−(1− b)

(1 + b)
= = 2− 2

1 + b
.

It follows that
β2π(1 + ρ(t)) ≥ 0.942 · π ·

(
2− 2

1 + 0.14

)
> 0.681 .

3.4 Wrapping-Up

Proof of Theorem 3.2. Let (b1, b2, b12) be a feasible configuration such that fβ∗(b1, b2, b12) is mini-
mized. By Lemma 3.3, we have that b12 = −1 + |b1 + b2|. By Proposition 3.4 and Lemma 3.5, we
have that furthermore b1, b2 ∈ [b0 − ε, b0 + ε] or b1, b2 ∈ [−b0 − ε,−b0 + ε] where b0 = 0.16247834
and ε = 10−6. Finally, by Proposition 3.6, for b1, b2 in this range, we have

fβ∗(b1, b2,−1 + |b1 + b2|) ≥ fβ∗

(
b1 + b2

2
,
b1 + b2

2
,−1 + |b1 + b2|

)
.

In other words, we have found a simple configuration (b, b,−1 + 2|b|) such that

fβ∗(b1, b2, b12) ≥ fβ∗(b, b,−1 + 2|b|) .

This completes our proof.

4 MAX CSP({x ∨ y, x, x̄})

In this section we consider MAX CSP({x ∨ y, x, x̄}), i.e., the version of the MAX 2-SAT problem in
which all literals appearing in clauses of size 2 are positive. By the classification of Khanna, Sudan,
Trevisan and Williamson [23], this problem is still APX-hard. As mentioned, it can be viewed as a
variant of the VERTEX COVER problem.

4.1 The Rounding Scheme

We consider the T HRESH− rounding scheme b 7→ −1+ γ(1+ b) for some parameter γ ∈ [0, 1]. For
any x̄ constraint with bias b, we have that its SDP value is equal to 1+x

2 , while b 7→ −1 + γ(1 + b)

satisfies it with probability Φ
(
Φ−1

(
1−1+γ(1+b)

2

))
= γ(1+b)

2 . For any x constraint with bias b, its

SDP value is 1−x
2 and b 7→ −1 + γ(1 + b) satisfies it with probability

1− Φ

(
Φ−1

(
1− 1 + γ(1 + b)

2

))
= 1− γ(1 + b)

2
≥ γ(1− b)

2
.

This shows that the parameter γ is also the approximation ratio that the rounding scheme achieves
on unary constraints. Note that the function −1 + γ(1 + b) is increasing in γ for every b, which
means we are less likely to satisfy any x ∨ y constraints if we increase γ. To optimize γ, it is then
sufficient to find γ = γ∗ such that b 7→ −1+ γ∗(1 + b) achieves an approximation ratio of also γ∗ on
2-configurations.
We will use a similar approach from the previous section. Similar to fβ , we define hγ(b1, b2, b12) =(
1− Φρ

(
Φ−1

(
γ(1+b1)

2

)
,Φ−1

(
γ(1+b2)

2

)))
− γValue(b1, b2, b12) where ρ = ρ(b1, b2, b12).
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Proposition 4.1. For every feasible configuration (b1, b2, b12), hγ(b1, b2, b12) monotonically de-
creases with γ. In particular min(b1,b2,b12) hγ(b1, b2, b12) decreases with γ, where the minimum is
taken over all feasible configurations. Furthermore min(b1,b2,b12) hγ∗(b1, b2, b12) = 0.

Proof. The proposition holds since Φρ

(
Φ−1

(
γ(1+b1)

2

)
,Φ−1

(
γ(1+b2)

2

))
and γValue(b1, b2, b12) are

both increasing in γ. Note that minhγ(b1, b2, b12) ≥ 0 implies that −1 + γ(1 + b) achieves an
approximation ratio of at least γ, and therefore for the optimal γ = γ∗ the equality must be
achieved.

We use interval arithmetic to certify the following lemmas.

Lemma 4.2 (Interval arithmetic). For every b1, b2, b12 ∈ [−1, 1] and γ ∈ [0.95, 0.96], at least one of
the following is true:

• hγ(b1, b2, b12) > 0.001, (cannot be global minimum)

• ρ(b1, b2, b12) /∈ [−1, 1], (triangle inequality violation)

• b12 < −1 + |b1 + b2|, (triangle inequality violation)

• b12 < 1− |b1 − b2| and ∇hγ ̸= (0, 0, 0) (global minimum cannot be in interior)

Lemma 4.3 (Interval arithmetic). For every b1, b2 ∈ [−1, 1] and γ ∈ [0.9539798, 0.95398] at least
one of the following is true:

• hγ(b1, b2,−1 + |b1 + b2|) > 0.001,

• b1 + b2 < 0 and ( ∂
∂b1

hγ(b1, b2,−1− b1 − b2),
∂

∂b2
hγ(b1, b2,−1− b1 − b2)) ̸= (0, 0),

• b1, b2 ∈ [b0 − ε, b0 + ε] where b0 = −0.1824167935 and ε = 10−6.

Further, we have

• h0.95398(b0, b0,−1− 2b0) < 0

• For all b1, b2 ∈ [b0 − ε, b0 + ε], h0.9539798(b1, b2,−1− b1 − b2) > 0.

Theorem 4.4. We have γ∗ ∈ [0.9539798, 0.95398]. Furthermore, the minimum in the expression
minθ=(b1,b2,b12) hγ∗(b1, b2, b12) is achieved at some point (b, b,−1− 2b) for some b =∈ [b0 − ε, b0 + ε]
where b0 = −0.1824167935 and ε = 10−6.

Proof. By Lemma 4.2 and Lemma 4.3, any local minimum of hγ in the feasible region has either
value > 0.001 or has biases b1, b2 ∈ [b0 − ε, b0 + ε] and b12 = −1− b1 − b2 where b0 = −0.1824167935
and ε = 10−6. Since for all b1, b2 ∈ [b0 − ε, b0 + ε], h0.9539798(b1, b2,−1− b1 − b2) > 0, we can deduce
that minh0.9539798 ≥ 0, while on the other hand minh0.95398 ≤ h0.95398(b0, b0,−1 − 2b0) < 0. By
Proposition 4.1, this implies that γ∗ ∈ [0.9539798, 0.95398].
For the second claim, note that since minhγ∗ = 0, using the previous logic, the minimum in the
feasible region must be achieved with biases b1, b2 ∈ [b0 − ε, b0 + ε] and b12 = −1 − b1 − b2. By
Proposition 3.6 and Remark 3.7, we have

hγ∗(b1, b2,−1− b1 − b2) ≥ hγ∗

(
b1 + b2

2
,
b1 + b2

2
,−1− b1 − b2

)
.

This completes our proof.
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4.2 Matching Hardness

Let b∗ = b(γ∗) ≈ −0.1824 be the hardest bias for γ∗ from Theorem 4.4 and p1, p2 ∈ [0, 1] be some
parameters to be chosen later. Consider the following distribution Θ1 of configurations.

Configuration Probability Predicate type
θ1 = (b∗, b∗,−1− 2b∗) p1 x ∨ y
θ2 = (b∗) p2 x̄

We will prove hardness against all T HRESH− rounding schemes b 7→ f(b). Since there is only one
bias involved, it is sufficient to consider the threshold for that bias. Let ρ = ρ(b∗) = − 1−b∗

1+b∗ . Let
Value(Θ1) be the SDP value of this distribution and Prob(Θ1, t) be the probability of satisfying a
configuration sampled from Θ1 if f(b∗) = 2Φ(t)− 1 (We choose this parametrization so that f sets
any variable with bias b to true with probability (1− Φ(t)), for convenience of the analysis).

Proposition 4.5. We have Value(Θ1) = p1+p2 · 1−b∗

2 and Prob(Θ1, t) = p1 · (1−Φρ(t, t))+p2 ·Φ(t).

It is straightforward to find the best threshold t using calculus. We have

Proposition 4.6. Let t∗ =
√

1+ρ
1−ρ · Φ−1

(
p2

p1

)
. For every t ∈ R ∪ {±∞} we have

Prob(Θ1, t) ≤ Prob(Θ1, t
∗) .

Proof. Using Lemma 2.8, we have

∂

∂t
Prob(Θ1, t) = −p1 · φ(t) · Φ

(√
1− ρ

1 + ρ
· t
)
+ p2 · φ(t)

= φ(t) ·
(
−p1 · Φ

(√
1− ρ

1 + ρ
· t
)
+ p2

)
.

The proposition follows since ∂
∂tProb(Θ1, t) > 0 when t ≤ t∗ and ∂

∂tProb(Θ1, t) < 0 when t ≥ t∗.

We now take p2

p1
= Φ

(√
1−ρ
1+ρ · Φ−1

(
γ∗(1+b∗)

2

))
, so that the value of t∗ in Proposition 4.6 will

coincide with the value given b → −1 + γ∗(1 + b) at b = b∗. This shows that for such p1 and p2,
b → −1 + γ∗(1 + b) is the optimal T HRESH− scheme on Θ1. Since we already know that b →
−1+γ∗(1+ b) has approximation ratio γ∗ on both configurations in this distribution, Theorem 2.12
immediately implies the following:

Theorem 4.7. For every ϵ > 0, it is UG-hard to approximate MAX CSP({x∨y, x, x̄} within a ratio
of γ∗ + ϵ.

5 MAX {1, 2}-HORN SAT

In this section we consider MAX {1, 2}-HORN SAT, where the clauses are of types x ∨ y , x̄ ∨ y, x
and x̄. We will first present and analyze a rounding scheme from the T HRESH family. Then we
use the hardest configuration for this rounding scheme to design a distribution of configurations for
which this rounding scheme is the optimal rounding scheme, thereby obtaining a matching hardness
result.
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5.1 The Rounding Scheme

We first remark that the threshold function for this problem need not be odd. We consider the
following T HRESH rounding scheme Fα.

b 7→ b with probability α
b 7→ −1 with probability 1− α

In other words, with some probability α we round with the odd threshold function b 7→ b, and with
the remaining probability 1−α we set every variable to true. We need to find α that maximizes the
approximation ratio of Fα. We have the following property for the optimal α.

Proposition 5.1. Assume that the approximation ratio of Fα is maximized when α = α∗. Then
the approximation ratio of Fα∗ is also equal to α∗.

Proof. Observe that any 1-configuration with bias b and predicate type x̄ has SDP value 1+b
2 , while

the function b 7→ b satisfies it with probability 1+b
2 as well. This implies that b 7→ b achieves

an approximation ratio of 1 on all x̄ constraints. On the other hand, if we set every variable to
true, then we never satisfy any x̄ constraint. Therefore, on the 1-configurations, Fα has an overall
approximation ratio α for every α.
Now, note that by setting every variable to true we satisfy all constraints of the form x∨y, x̄∨y but
satisfy no constraints of the form x̄, so by decreasing α we increase the approximation ratio on the 2-
configurations. This means that for the optimal α, Fα must achieve the same approximation ratio on
both 1-configurations and 2-configurations, otherwise we can adjust α to increase the approximation
ratio.

Recall that we defined Probβ(b1, b2, bij) = 1−Φρ(θ)

(
Φ−1

(
1+βb1

2

)
,Φ−1

(
1+βb2

2

))
and fβ(b1, b2, b12) =

Probβ(b1, b2, b12)−β ·Value(b1, b2, b12). Since in this section we will always have β = 1, we will omit
the subscript in fβ and simply refer to it as f . The following lemma gives an expression for α∗.

Lemma 5.2. α∗ satisfies the following equality:

1− 1

α∗ = min
θ=(b1,b2,b12)

f(b1, b2, b12) = min
θ=(b1,b2,b12)

Prob1(b1, b2, b12)− Value(b1, b2, b12) ,

where θ ranges over all feasible 2-configurations.

Proof. The probability that Fα∗ satisfies any 2-configuration (b1, b2, b12) is given by

1− α∗ + α∗ · Prob1(b1, b2, b12) ,

where 1 − α∗ is contributed by the function b 7→ −1 and α∗ · Prob1(b1, b2, b12) is contributed by
b 7→ b. Since Fα∗ achieves an approximation ratio of α∗, we have

1− α∗ + α∗ · Prob1(b1, b2, b12) ≥ α∗ · Value(b1, b2, b12) .

Rearranging, we obtain that

1− 1

α∗ ≤ Prob1(b1, b2, b12)− Value(b1, b2, b12) .

Since this is true for every feasible configuration and equality is achieved on some configuration, we
obtain that

1− 1

α∗ = min
θ=(b1,b2,b12)

Prob1(b1, b2, b12)− Value(b1, b2, b12).
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To find minθ=(b1,b2,b12) f(b1, b2, b12), we will again use interval arithmetic, following a similar ap-
proach from Section 3. We first show that the minimum point must be on the boundary of the
triangle inequality b12 = −1 + |b1 + b2|.

Lemma 5.3 (Interval arithmetic). For b1, b2, b12 ∈ [−1, 1], at least one of the following is true.

• f ≥ 1− 1
0.95 , (cannot be hardest point)

• ρ(b1, b2, b12) /∈ [−1, 1], (triangle inequality violation)

• b12 < −1 + |b1 + b2|, (triangle inequality violation)

• b12 < 1− |b1 − b2| and ∇f ̸= 0. (global minimum cannot be interior)

We then show that the minimum point has to be close to (b, b,−1+2|b|) or (−b,−b,−1+2|b|), where
b = 0.1489442 is a numerical approximation to the bias in the hardest configuration.

Lemma 5.4 (Interval arithmetic). For b1, b2 ∈ [−1, 1] with b1 + b2 ≥ 0 at least one of the following
is true:

• f(b1, b2,−1 + b1 + b2) > 1− 1
0.95 ,

• b1 + b2 > 0 and
(

∂
∂b1

f(b1, b2,−1 + b1 + b2),
∂

∂b2
f(b1, b2,−1 + b1 + b2)

)
̸= (0, 0).

• b1, b2 ∈ [b0 − ε, b0 + ε] where b0 = 0.1489442419 and ε = 10−6.

Further, f(b0, b0,−1 + 2b0) < 1− 1
0.9462 .

Theorem 5.5. The minimum in the expression minθ=(b1,b2,b12) f(b1, b2, b12) is achieved at some
point (b∗, b∗,−1 + 2|b∗|) for some b∗ with |b∗| ∈ [b0 − ε, b0 + ε] where b0 = 0.1489442 and ε = 10−6.

Proof. Let (b1, b2, b12) be a feasible configuration on which the minimum is achieved. Lemma 5.3
and Lemma 5.4 shows that we must have b12 = −1 + |b1 + b2|, and either b1, b2 ∈ [b0 − ε, b0 + ε]
or b1, b2 ∈ [−b0 − ε,−b0 + ε]. For biases in this range, by Proposition 3.6 (which is applicable since
β = 1 > 0.94), we have

f(b1, b2,−1 + |b1 + b2|) ≥ f

(
b1 + b2

2
,
b1 + b2

2
,−1 + |b1 + b2|

)
.

This means that the minimum is achieved on
(
b1+b2

2 , b1+b2
2 ,−1 + |b1 + b2|

)
as well, and this completes

the proof.

5.2 Hard Configurations

Let b∗ > 0 be a hardest bias on which f achieves its minimum as in Theorem 5.5. Using b∗, we
construct the following distribution Θ2.

Configuration Probability Predicate type
θ1 = (−b∗,−b∗,−1 + 2b∗) p1 x ∨ y
θ2 = (b∗, b∗,−1 + 2b∗) p2 x ∨ y
θ3 = (−b∗, b∗, 1− 2b∗) p3 x̄ ∨ y
θ4 = (b∗,−b∗, 1− 2b∗) p4 x̄ ∨ y
θ5 = (−b∗) p5 x̄
θ6 = (b∗) p6 x̄
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Let ρ = ρ(b∗) = − 1−b∗

1+b∗ be the relative pairwise bias of the configuration (−b∗,−b∗,−1 + 2b∗).
Let Value(Θ2) be the SDP value of this distribution and Prob(Θ2, t1, t2) be the probability of a
T HRESH− scheme f satisfying a configuration sampled from Θ2 if f(−b∗) = 2Φ(t1) − 1 and
f(b∗) = 2Φ(t2)− 1, similarly as defined in Section 4.2.

Proposition 5.6. We have

Value(Θ2) = (p1 + p4) + (p2 + p3) · (1− b∗) + p5 ·
1− b∗

2
+ p6 ·

1 + b∗

2

and

Prob(Θ2, t1, t2) = p1 · (1− Φρ(t1, t1)) + p2 · (1− Φρ(t2, t2)) + p3 · (1− Φρ(−t1, t2))

+ p4 · (1− Φρ(−t2, t1)) + p5 · Φ(t2) + p6 · Φ(t1).

We also have the following partial derivatives for Prob(Θ2, t1, t2).

Proposition 5.7. We have

∂

∂t1
Prob(Θ2, t1, t2)

= −2p1φ(t1)Φ

(√
1− ρ

1 + ρ
t1

)
+ p3φ(t1)Φ

(
t2 + ρt1√
1− ρ2

)
− p4φ(t1)Φ

(
−t2 − ρt1√

1− ρ2

)
+ p6φ(t1)

= φ(t1) ·

(
−2p1Φ

(√
1− ρ

1 + ρ
t1

)
+ p3Φ

(
t2 + ρt1√
1− ρ2

)
− p4Φ

(
−t2 − ρt1√

1− ρ2

)
+ p6

)

and

∂

∂t2
Prob(Θ2, t1, t2)

= −2p2φ(t2)Φ

(√
1− ρ

1 + ρ
t2

)
− p3φ(t2)Φ

(
−t1 − ρt2√

1− ρ2

)
+ p4φ(t2)Φ

(
t1 + ρt2√
1− ρ2

)
+ p5φ(t2)

= φ(t2) ·

(
−2p2Φ

(√
1− ρ

1 + ρ
t2

)
− p3Φ

(
−t1 − ρt2√

1− ρ2

)
+ p4Φ

(
t1 + ρt2√
1− ρ2

)
+ p5

)

We have the following second derivatives for Prob(Θ2, t1, t2).

Proposition 5.8. We have

∂2

∂t21
Prob(Θ2, t1, t2)

= −t1φ(t1) ·

(
−2p1Φ

(√
1− ρ

1 + ρ
t1

)
+ p3Φ

(
t2 + ρt1√
1− ρ2

)
− p4Φ

(
−t2 − ρt1√

1− ρ2

)
+ p6

)

+ φ(t1) ·

(
−2p1

√
1− ρ

1 + ρ
· φ
(√

1− ρ

1 + ρ
t1

)
+ (p3 + p4) ·

ρ√
1− ρ2

· φ

(
t2 + ρt1√
1− ρ2

))
,
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and

∂2

∂t22
Prob(Θ2, t1, t2)

= −t2φ(t2) ·

(
−2p2Φ

(√
1− ρ

1 + ρ
t2

)
− p3Φ

(
−t1 − ρt2√

1− ρ2

)
+ p4Φ

(
t1 + ρt2√
1− ρ2

)
+ p5

)

+ φ(t2) ·

(
−2p2

√
1− ρ

1 + ρ
· φ
(√

1− ρ

1 + ρ
t2

)
+ (p3 + p4) ·

ρ√
1− ρ2

· φ

(
t1 + ρt2√
1− ρ2

))
,

and

∂2

∂t1∂t2
Prob(Θ2, t1, t2) = (p3 + p4) · φρ(t1,−t2) = (p3 + p4) ·

1√
1− ρ2

· φ(t1)φ

(
t2 + ρt1√
1− ρ2

)
.

We would like to find the probabilities p1, . . . , p6 that minimizes the maximum ratio achieved by any
T HRESH− scheme maxt1,t2 Prob(Θ2, t1, t2)/Value(Θ2). To do this, we will first heuristically derive
a set of probabilities assuming t1 = −t2, and then verify that for these probabilities Prob(Θ2, t1, t2)
is indeed maximized at a point where t1 = −t2.

5.2.1 Deriving the probabilities

For Prob(Θ2, t,−t), we have

Prob(Θ2, t,−t) = (p1 + p4) · (1− Φρ(t, t)) + (p2 + p3) · (1− Φρ(−t,−t)) + p5Φ(−t) + p6Φ(t).

We will choose p5 = p6 = p, which intuitively makes sense as Fα∗ achieves the same ratio α∗ on all
1-configurations. Under this assumption we have

Prob(Θ2, t,−t) = (p1 + p4) · (1− Φρ(t, t)) + (p2 + p3) · (1− Φρ(−t,−t)) + p,

and

∂

∂t
Prob(Θ2, t,−t) = (p1 + p4) ·

(
−2φ(t) · Φ

(√
1− ρ

1 + ρ
t

))
+ (p2 + p3) ·

(
2φ(t) · Φ

(
−
√

1− ρ

1 + ρ
t

))
Following the same strategy in Section 4.2, we want the above to attain 0 at t = t∗ = Φ−1((1−b∗)/2).
This implies that

p2 + p3
p1 + p2 + p3 + p4

= Φ

(√
1− ρ

1 + ρ
· t∗
)

:= r.

This gives us the ratio between the probabilities of 2-configurations, we can then choose p so that
the two T HRESH− schemes b 7→ b and b 7→ 0 in Fα∗ achieves the same satisfying probability on
Θ2, i.e.,

Prob(Θ2, t
∗,−t∗) = (p1 + p4) · (1−Φρ(t

∗, t∗))+ (p2 + p3) · (1−Φρ(−t∗,−t∗))+ p = p1 + p2 + p3 + p4.

This implies that

p

p1 + p2 + p3 + p4
= 1− (1− r) · (1− Φρ(t

∗, t∗))− r · (1− Φρ(−t∗,−t∗)) := r′.
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Since we also have p1 + p2 + p3 + p4 + 2p = 1, the above gives

p =
2r′

1 + 2r′
, p1 + p4 = (1− r) · (1− 2p), p2 + p3 = r · (1− 2p) .

Finally, by setting the partial derivatives ∂
∂t1

Prob(Θ2, t
∗,−t∗) = ∂

∂t2
Prob(Θ2, t

∗,−t∗) = 0, we obtain
that p1 = p2 = p as well. In summary, we obtain the following probabilities:

p1 = p2 = p5 = p6 = p =
2r′

1 + 2r′
, p3 = r · (1− 2p)− p, p4 = (1− r) · (1− 2p)− p.

The numeric values for these probabilities is listed as follows:

p1 = p2 = p5 = p6 ≈ 0.0858, p3 ≈ 0.1737, p4 ≈ 0.4831.

We remark that since we have chosen the hardest bias b∗, the approximation ratio achieved by
Fα∗ on this distribution is exactly α∗. In fact, by design, both functions in Fα∗ achieve exactly
α∗ = Prob(Θ2,−∞,−∞)

Value(Θ2)
= Prob(Θ2,t

∗,−t∗)
Value(Θ2)

.

5.2.2 Verifying that t1 = −t2 at a global maximum

Now we prove that with the probabilities computed in the previous section, (t∗,−t∗) ∈ R2 is indeed
a global maximum for Prob(Θ2, t1, t2). To give a better sense of the function that we are working
with, we give the following plot.

Figure 1: A contour plot of Prob(Θ2, t1, t2), where the x-axis is Φ(t1) and the y-axis is Φ(t2)

It can be seen that aside from (t∗,−t∗), there are two other critical points which are saddle points.
This creates complications for an analytic proof. We will circumvent this difficulty by employing
interval arithmetic. We first prove the following statement with interval arithmetic.

Lemma 5.9 (Interval arithmetic). For every t1, t2 ∈ R, at least one of the following is true:
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• Prob(Θ2, t1, t2) < Prob(Θ2, t
∗,−t∗).

• t1, t2 ≤ Φ−1(0.0001) or t1, t2 ≥ Φ−1(0.9999).

• |t1 − t∗|, |t2 + t∗| < 0.01 and the Hessian matrix for Prob(Θ2, t1, t2) is negative definite.

• ∂
∂t1

Prob(Θ2, t1, t2) ̸= 0 or ∂
∂t2

Prob(Θ2, t1, t2) ̸= 0

Since the gradient of Prob(Θ2, t1, t2) vanishes at (t∗,−t∗), the third item shows that Prob(Θ2, t1, t2) ≤
Prob(Θ2, t

∗,−t∗) for every t1 ∈ [t∗ − 0.01, t∗ + 0.01], t2 ∈ [−t∗ − 0.01,−t∗ + 0.01].
The following proposition deals with the boundary situation that our interval arithmetic does not
certify directly.

Proposition 5.10. Let t1, t2 ∈ R2 be such that t1, t2 ≤ Φ−1(0.0001) or t1, t2 ≥ Φ−1(0.9999), then
we have ∂

∂t1
Prob(Θ2, t1, t2) ̸= 0 or ∂

∂t2
Prob(Θ2, t1, t2) ̸= 0.

Proof. Assume that t1, t2 ≤ Φ−1(0.0001).
Since φ(t1), φ(t2) > 0, the partial derivatives being 0 is equivalent to

−2pΦ

(√
1− ρ

1 + ρ
t1

)
+ p3Φ

(
t2 + ρt1√
1− ρ2

)
− p4Φ

(
−t2 − ρt1√

1− ρ2

)
+ p = 0,

−2pΦ

(√
1− ρ

1 + ρ
t2

)
− p3Φ

(
−t1 − ρt2√

1− ρ2

)
+ p4Φ

(
t1 + ρt2√
1− ρ2

)
+ p = 0.

Using the fact that Φ(x) = 1− Φ(−x), we can rewrite the above as

−2pΦ

(√
1− ρ

1 + ρ
t1

)
+ (p3 + p4)Φ

(
t2 + ρt1√
1− ρ2

)
− p4 + p = 0,

−2pΦ

(√
1− ρ

1 + ρ
t2

)
+ (p3 + p4)Φ

(
t1 + ρt2√
1− ρ2

)
− p3 + p = 0.

Since t2+ρt1√
1−ρ2

+ t1+ρt2√
1−ρ2

= (t1+t2)
√
1+ρ√

1−ρ
, we have either t2+ρt1√

1−ρ2
≤ (t1+t2)

√
1+ρ

2
√
1−ρ

or t1+ρt2√
1−ρ2

≤ (t1+t2)
√
1+ρ

2
√
1−ρ

.

A simple estimation shows that we would then have either Φ

(
t2+ρt1√

1−ρ2

)
≤ Φ( (t1+t2)

√
1+ρ

2
√
1−ρ

) < 0.12

or Φ

(
t1+ρt2√

1−ρ2

)
≤ Φ( (t1+t2)

√
1+ρ

2
√
1−ρ

) < 0.12. But in either case we would violate at least one of the

equations, since we’d have either

−2pΦ

(√
1− ρ

1 + ρ
t1

)
+ (p3 + p4)Φ

(
t2 + ρt1√
1− ρ2

)
− p4 + p < (p3 + p4) · 0.12− p4 + p < 0

or

−2pΦ

(√
1− ρ

1 + ρ
t2

)
+ (p3 + p4)Φ

(
t1 + ρt2√
1− ρ2

)
− p3 + p < (p3 + p4) · 0.12− p3 + p < 0.

This shows that at least one of the partial derivatives is non-zero. The case where t1, t2 ≥ Φ−1(0.9999)
can be dealt with similarly.

Proposition 5.11. For every t1, t2 ∈ R ∪ {±∞}, we have Prob(Θ2, t1, t2) ≤ Prob(Θ2, t
∗,−t∗).
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Proof. We first consider the infinity cases. If t1 = −∞, then we have

Prob(Θ2, t1, t2) = p1 · (1− Φρ(t1, t1)) + p2 · (1− Φρ(t2, t2)) + p3 · (1− Φρ(−t1, t2))

+ p4 · (1− Φρ(−t2, t1)) + p5 · Φ(t2) + p6 · Φ(t1)
= p1 + p2 · (1− Φρ(t2, t2)) + p3 · (1− Φ(t2)) + p4 + p5 · Φ(t2).

Since p3 > p5, the Prob(Θ2,−∞, t2) is monotonically decreasing in t2, so we should choose t2 = −∞
as well. A similar analysis shows that if t1 = +∞, then we should also set t2 = +∞, and furthermore
Prob(Θ2,−∞,−∞) = Prob(Θ2,∞,∞).
Now assume that there is a global maximum (t1, t2) with Prob(Θ2, t1, t2) > Prob(Θ2, t

∗,−t∗) =
Prob(Θ2,−∞,−∞). Since Prob(Θ2, t1, t2) is a smooth function, the gradient vanishes at the global
maximum, so by Lemma 5.9 and Proposition 5.10 we must have |t1 − t∗|, |t2 + t∗| < 0.001. How-
ever, the negative definiteness of the Hessian matrix in that neighborhood would then imply that
Prob(Θ2, t1, t2) ≤ Prob(Θ2, t

∗,−t∗). This contradiction shows that there is no global maximum
strictly larger than Prob(Θ2, t

∗,−t∗), and therefore (t∗,−t∗) itself must be a global maximum.

The above analysis combined with Theorem 2.12 immediately implies the following theorem.

Theorem 5.12. For every ϵ > 0, it is UG-hard to approximate MAX {1, 2}-HORN SAT within a
factor of α∗ + ϵ.

6 Concluding remarks and open problems

We have proved Austrin’s [2] simplicity conjecture, thereby determining the optimal approximation
ratio of MAX 2-SAT, modulo only UGC. We have also obtained a complete classification, in terms of
their optimal approximation ratios, for all subproblems of MAX 2-SAT. We introduced two interesting
non-trivial subproblems of MAX 2-SAT, namely MAX {1, 2}-HORN-SAT and MAX CSP({x ∨ y, x, x̄}), for
which larger approximation ratios can be obtained.
Our proof of the simplicity conjecture used a combination of analytic and rigorous computational
tools, namely interval arithmetic. Although interval arithmetic was used before to analyze SDP-
based approximation algorithms, our use is much more involved than previous uses, since we were
not just trying to lower bound the approximation ratio achieved by the algorithm, but rather certify
that the exact worst-case behavior of the algorithm is obtained on configurations of a certain form,
the so-called simple configurations. This requires a much more careful analysis.
It would be interesting to see whether some of the computational parts of our proof of the sim-
plicity conjecture can be replaced by purely analytical arguments. This may help obtaining tight
approximability results for other, more complicated, MAX CSP problems.
Raghavendra and Tan [35] obtained approximation algorithms for the MAX CUT and MAX 2-SAT
problems with a global cardinality constraint. An interesting special case of MAX 2-SAT with a
cardinality condition is MAX k-VC, the problem of choosing k vertices of an undirected graph so as
to maximize the number of covered edges. Austrin and Stanković [6] (see also [37]) showed that the
algorithms of Raghavendra and Tan are optimal, modulo UGC and modulo an appropriate version
of the simplicity conjecture. We believe that the techniques we used here can also be used to prove
this conjecture. We hope to include a proof in the next version of this paper.
Another subject worth exploring is the striking difference between MAX 2-SAT and its subproblems,
and MAX 2-AND and its subproblem MAX DI-CUT. MAX 2-SAT and its subproblems have optimal
approximation functions that use very simple and natural threshold functions. On the other hand, no
optimal algorithms for MAX 2-AND and MAX DI-CUT are known, or conjectured, and very complicated
and non-intuitive threshold functions are needed to obtain close to optimal approximation algorithms
for them [9]. It would be interesting to understand the reason for this difference.
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A Interval Arithmetic

As mentioned earlier, we use the C library Arb [19] for our interval arithmetic. As the assembly-like
syntax of Arb is a bit tedious for writing long programs, we wrote3 a C++ wrapper4 for the Arb
library functions we needed for our verifications. Implementing the various mathematical expressions
which appear in the paper are rather straightforward, with the exception of the function Φρ(t1, t2).
In that case, we adapt the integration formula used by [9] and inspired from [15]. We also adapt
other portions of the code used by [9] within our wrapper. We also take care to properly handle
boundary conditions such as ρ = ±1 or t1, t2 = ±∞.

A.1 General divide-and-conquer technique

We now outline the general divide-and-conquer procedure we use to verify propositions in interval
arithmetic. Similar techniques are used in earlier works.
Given a parameter such as ρ ∈ R, we let ρ̄ denote an interval of possible values of ρ. Given intervals
x̄1, . . . , x̄n and criteria5 C1, . . . , Ck, we in general run the following divide-and-conquer procedure,
which we call check(x̄1, . . . , x̄n;C1, . . . , Ck).

• If for some i ∈ [k], x̄1 × · · · × x̄n satisfies Ci, halt.

• Otherwise, pick i ∈ [n] for which x̄i is of shortest (but nonzero) length, and call

check(x̄1, . . . , x̄i−1, x̄
′
i, x̄i+1, . . . , x̄n;C1, . . . , Ck)

and
check(x̄1, . . . , x̄i−1, x̄

′′
i , x̄i+1, . . . , x̄n;C1, . . . , Ck),

where x̄′
i ∪ x̄′′

i divide x̄i into halves.

Note that if check terminates then, we know for every (x1, . . . , xn) ∈ x̄1 × · · · × x̄n, at least one of
C1, . . . , Ck holds.
Each of the lemmas proved with interval arithmetic in this paper are done by selecting suitable
criteria C1, . . . , Ck, and then running the correspond interval arithmetic program until successful
termination. We note that every theorem in this paper (in total) can be verified in less than 15
minutes on a mid-range desktop computer.

A.2 Implementation specifics for each theorem

In this section, we discuss the specific call(s) to check which are implemented to verify the interval
arithmetic lemmas in the main body of the paper.

A.2.1 Lemma 3.3

Let gβ(b1, b2, ρ) = fβ(b1, b2, b12(b1, b2, ρ)), where b12(b1, b2, ρ) = b1b2 + ρ
√
(1− b21)(1− b2)2.

Here we run check on variables b̄1 = b̄2 = ρ̄ = [−1, 1] and β̄ = [0.94, 0.9405] (which is a bit larger
than the claimed interval). We then have three criteria C1, C2, C3 which check the following:

3Code is publicly available at: https://github.com/jbrakensiek/max2sat
4This wrapper does not expose the full functionality of Arb as it does not allow for setting the individual precision

of each computation. Instead, we use a fixed global precision of 64 bits.
5These can be thought of as subsets of Rn where the criteria holds.
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• C1: b12(b1, b2, ρ) < −1 + |b1 + b2|.

• C2: gβ(b1, b2, ρ) > 0.001

• C3: b12(b1, b2, ρ) < 1− |b1 − b2| and ∇gβ ̸= (0, 0, 0)

Each of these criteria is straightforward to implement in interval arithmetic, and we verified that
check(b̄1, b̄2, ρ̄, β̄;C1, C2, C3) halts in less than 2 minutes on a desktop computer.
Consider any (b1, b2, b12) ∈ [−1, 1]3 for which there is at least one ρ ∈ [−1, 1] with b12 = b12(b1, b2, ρ).
Thus, as certified by check, we either have that b12 < −1 + |b1 + b2|, b12 < 1 − |b1 − b2| and
gβ(b1, b2, ρ) = fβ(b1, b2, b12) > 0.001, or ∇gβ(b1, b2, ρ) ̸= (0, 0, 0). The first two directly correspond
to cases of Lemma 3.3. In the last case, observe that

∂gβ
∂b1

=
∂fβ
∂b1

+
∂b12
∂b1

∂fβ
∂b12

∂gβ
∂b2

=
∂fβ
∂b2

+
∂b12
∂b2

∂fβ
∂b12

∂gβ
∂ρ

=
∂b12
∂ρ

∂fβ
∂b12

Thus, ∇fβ(b1, b2, b12) must be also nonzero, as desired. Thus, Lemma 3.3 holds.

A.2.2 Lemma 3.5

Let hβ(b1, b2) = fβ(b1, b2,−1 + b1 + b2).
Here we run check on variables b̄1 = b̄2 = [−1, 1] and β̄ = [0.9401653, 9401658]. We then have four
criteria which check:

• C1: hβ(b1, b2) > 0.001

• C2: b1 + b2 < 0

• C3: b1 + b2 > 0 and ∇hβ(b1, b2) ̸= (0, 0)

• C4: b1, b2 ∈ [b0 − ε, b0 + ε].

We verified that check(b̄1, b̄2, β̄;C1, C2, C3, C4) halts in less than 2 minutes on a desktop computer.
Note that criteria C2 has implies that at least one of C1, C3, C4 hold for all b1, b2 ∈ [−1, 1] with
b1 + b2 ≥ 0. Thus, the primary claim of Lemma 3.5 holds.
For the secondary claims, the f0.9401658(b0, b0,−1+2b0) < 0 is a direct computation. The claim that
for all b1, b2 ∈ [b0 − ε, b0 + ε], we have that f0.9401653(b1, b2,−1 + b1 + b2) > 0 is checked by running
check(b̄1, b̄2;C5), where b̄1 = b̄2 = [b0 − ε, b0 + ε] and C5 is the criteria that f0.9401653(b1, b2,−1 +
b1 + b2) > 0. This check also terminates in under a minute.

A.2.3 Lemma 4.2

Let ℓγ(b1, b2, ρ) = hγ(b1, b2, b12(b1, b2, ρ)), where b12(b1, b2, ρ) = b1b2 + ρ
√

(1− b21)(1− b2)2.
Here we run check on variables b̄1 = b̄2 = ρ̄ = [−1, 1] and γ̄ = [0.95, 0.96]. We then have three
criteria C1, C2, C3 which check the following:

• C1: b12(b1, b2, ρ) < −1 + |b1 + b2|.

• C2: ℓγ(b1, b2, ρ) > 0.001
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• C3: b12(b1, b2, ρ) < 1− |b1 − b2| and ∇ℓγ ̸= (0, 0, 0)

Each of these criteria is straightforward to implement in interval arithmetic, and we verified that
check(b̄1, b̄2, ρ̄, γ̄;C1, C2, C3) halts in less than 2 minutes on a desktop computer.
Consider any (b1, b2, b12) ∈ [−1, 1]3 for which there is at least one ρ ∈ [−1, 1] with b12 = b12(b1, b2, ρ).
Thus, as certified by check, we either have that b12 < −1 + |b1 + b2|, b12 < 1 − |b1 − b2| and
ℓγ(b1, b2, ρ) = hγ(b1, b2, b12) > 0.001, or ∇ℓγ(b1, b2, ρ) ̸= (0, 0, 0). The first two directly correspond
to cases of Lemma 4.2. In the last case, observe by the same logic as Lemma 3.3, we have that
∇ℓγ(b1, b2, ρ) ̸= 0 implies that ∇fβ(b1, b2, b12) is nonzero, as desired. Thus, Lemma 4.2 holds.
For every b1, b2, b12 ∈ [−1, 1] and γ ∈ [0.95, 0.96], at least one of the following is true:

• b12 < −1 + |b1 + b2|,

• hγ(b1, b2, b12) > 0.001,

• b12 < 1− |b1 − b2| and ∇hγ ̸= (0, 0, 0),

• ρ(b1, b2, b12) /∈ [−1, 1].

A.2.4 Lemma 4.3

Let h∆
γ (b1, b2) = hγ(b1, b2,−1 + b1 + b2).

Here we run check on variables b̄1 = b̄2 = [−1, 1] and γ̄ = [0.9539798, 0.95398]. We then have three
criteria to check:

• C1: h∆
γ (b1, b2) > 0.001

• C2: b1 + b2 < 0 and ∇hδ
γ(b1, b2) ̸= (0, 0)

• C3: b1, b2 ∈ [b0 − ε, b0 + ε].

We verified that check(b̄1, b̄2, γ̄;C1, C2, C3) halts in less than 2 minutes on a desktop computer. Thus,
Lemma 3.5 holds.
For the secondary claims, the assertion that h0.95398(b0, b0,−1 − 2b0) < 0 is checked by direct
computation. For all b1, b2 ∈ [b0 − ε, b0 + ε], the claim that h0.9539798(b1, b2,−1 − b1 − b2) > 0 is
checked precisely as in Lemma 3.5, which terminated in under a minute.

A.2.5 Lemma 5.3

Let g(b1, b2, ρ) = f(b1, b2, b12(b1, b2, ρ)), where b12(b1, b2, ρ) = b1b2 + ρ
√
(1− b21)(1− b2)2.

Here we run check on variables b̄1 = b̄2 = ρ̄ = [−1, 1]. We then have three criteria C1, C2, C3 which
check the following:

• C1: b12(b1, b2, ρ) < −1 + |b1 + b2|.

• C2: b12 < −1 + |b1 + b2| and g(b1, b2, ρ) > 1− 1
0.95

• C3: ∇g ̸= (0, 0, 0)
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Each of these criteria is straightforward to implement in interval arithmetic, and we verified that
check(b̄1, b̄2, ρ̄;C1, C2, C3) halts in less than 1 minute on a desktop computer.
Consider any (b1, b2, b12) ∈ [−1, 1]3 for which there is at least one ρ ∈ [−1, 1] with b12 = b12(b1, b2, ρ).
Thus, as certified by check, we either have that b12 < −1 + |b1 + b2|, b12 < −1 + |b1 + b2| and
g(b1, b2, ρ) = f(b1, b2, b12) > 1 − 1

0.95 , or ∇g(b1, b2, ρ) ̸= (0, 0, 0). The first two directly correspond
to cases of Lemma 5.3. In the last case, In the last case, observe by the same logic as Lemma 3.3,
∇g(b1, b2, ρ) ̸= 0 implies that ∇f(b1, b2, b12) must be also nonzero, as desired. Thus, Lemma 5.3
holds.

A.2.6 Lemma 5.4

Let h(b1, b2) = f(b1, b2,−1 + b1 + b2).
Here we run check on variables b̄1 = b̄2 = [−1, 1]. We then have four criteria which check:

• C1: h(b1, b2) > 0.001

• C2: b1 + b2 < 0

• C3: b1 + b2 > 0 and ∇h(b1, b2) ̸= (0, 0)

• C4: b1, b2 ∈ [b0 − ε, b0 + ε].

We verified that check(b̄1, b̄2, β̄;C1, C2, C3, C4) halts in less than 2 minutes on a desktop computer.
Note that criteria C2 has implies that at least one of C1, C3, C4 hold for all b1, b2 ∈ [−1, 1] with
b1 + b2 ≥ 0. Thus, Lemma 3.5 holds. Note that the additional claim that f(b0, b0,−1 + 2b0) <
1− 1

0.9462 is checked with a direct computation.

A.2.7 Lemma 5.9

Let sb(t1, t2) = Prob(Θ2, t1, t2).
We set τ1, τ2 represent normalized thresholds with respect to [0, 1]. That is, t1 = Φ−1(τ1), etc.
Here we run check on variables τ̄1 = τ̄2 = [0, 1] and b̄ = [b0 − ε, b0 + ε]. We then have four criteria
which check:

• C1: sb(Φ
−1(τ1),Φ

−1(τ2)) < sb(Φ
−1((1− b)/2),Φ−1((1 + b)/2)).

• C2: τ1, τ2 < 10−4 or τ1, τ2 > 1− 10−4.

• C3: τ1, τ2 within 10−2 of ((1 − b)/2, (1 + b)/2) in each coordinate and the hessian matrix for
Prob(Θ2, t1, t2) evaluated at (Φ−1(τ1),Φ

−1(τ2)) is negative definite.

• C4: ∇sb|(Φ−1(τ1),Φ−1(τ2)) ̸= (0, 0).

We verified that check(τ̄1, τ̄2, b̄;C1, C2, C3, C4) halts in less than 15 minutes on a desktop computer.
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B Explicit equations for βLLZ

The optimal approximation ratio β = βLLZ ≈ 0.940165 of MAX 2-SAT, under UGC, does not seem
to have a simple explicit form. This is probably not so surprising as α = αGW ≈ 0.878567, the
optimal approximation ratio for MAX CUT, is also not given explicitly, though it can be expressed
as αGW = 2

π sin θ , where θ ≈ 2.33 is the solution of the equation θ = tan(θ/2). (See, e.g., [25].)
In this section we try to give a simple set of equations that express βLLZ . The obtained equations
are somewhat more complicated but are still conceptually simple, two (nonlinear) equations in two
real variables.
Let Pβ(−b) = Probβ(−b,−b,−1 + 2b), where 0 < b < 1. It is not difficult to see that the optimal b
and β should satisfy the two equations Pβ(−b) = β and P ′

β(−b) = 0, where the derivative is with
respect to b. This gives us two equations in the two unknowns b and β.
More explicitly, We have the following expressions for Pβ(−b) and P ′

β(−b):

Pβ(−b) = 1− Φρ(t, t) , where ρ =
b− 1

b+ 1
, t = Φ−1

(
1− βb

2

)
,

P ′
β(−b) = − e−

1+b
2b t2

2π
√
b(1 + b)

+ βΦ

(
t√
b

)
.

The formula for P ′
β(−b) is obtained by applying the chain rule, using the known partial derivatives

of Φρ(x, y). All together, we have the following two equations expressing b and β, with the help of
the two auxiliary variables ρ and t:

1− Φρ(t, t) = β =
e−

1+b
2b t2

2π
√
b(1 + b)Φ( t√

b
)
, where ρ =

b− 1

b+ 1
, t = Φ−1

(
1− βb

2

)
.

Solving these two equations numerically we get:

β ≈ 0.9401656724814047324615850917696020973303754687978028584668520377 ,

b ≈ 0.1624783228980762946610658853055298253055592890270700849334606721 .

An equivalent formulation, obtained by treating b and t as the two independent variables, and β as
an auxiliary variable, is the following:

β = 1− Φ b−1
b+1

(t, t) =
1− 2Φ(t)

b
=

e−
1+b
2b t2

2π
√
b(1 + b)Φ( t√

b
)
.
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