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Abstract

We consider the following well studied problem of metric distortion in social choice. Suppose
we have an election with n voters and m candidates who lie in a shared metric space. We would
like to design a voting rule that chooses a candidate whose average distance to the voters is
small. However, instead of having direct access to the distances in the metric space, each voter
gives us a ranked list of the candidates in order of distance. Can we design a rule that regardless
of the election instance and underlying metric space, chooses a candidate whose cost differs from
the true optimum by only a small factor (known as the distortion)?

A long line of work culminated in finding deterministic voting rules with metric distortion
3, which is the best possible for deterministic rules and many other classes of voting rules.
However, without any restrictions, there is still a significant gap in our understanding: Even
though the best lower bound is substantially lower at 2.112, the best upper bound is still 3, which
is attained even by simple rules such as Random Dictatorship. Finding a rule that guarantees
distortion 3− ε for some constant ε has been a major challenge in computational social choice.

In this work, we give a rule that guarantees distortion less than 2.753. To do so we study
a handful of voting rules that are new to the problem. One is Maximal Lotteries, a rule based
on the Nash equilibrium of a natural zero-sum game which dates back to the 60’s. The others
are novel rules that can be thought of as hybrids of Random Dictatorship and the Copeland
rule. Though none of these rules can beat distortion 3 alone, a careful randomization between
Maximal Lotteries and any of the novel rules can.
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1 Introduction

Elections are a fundamental primitive in societal decision making. Through votes, people express
their preferences and make collective decisions for social good. A common example of voting is
single-winner elections, where voters select one winner from a pool of candidates. These candidates
can be persons that represent the voters, or broader social options such as potential locations to
build a public facility. Voting is also applicable to every-day situations, such as choosing one from
many lunch options for a group of colleagues, or picking a game to play among a group of friends.
A voting rule (or social choice rule) maps the voters’ preferences to a winning candidate.

A standard approach to evaluate the outcomes is to adopt the notion of utilitarian social effi-
ciency. We assume that each voter has a cardinal utility function that maps each possible outcome
to a real number quantitatively representing their preference for that outcome. From this utilitarian
point of view, the optimal voting rule selects the outcome that optimizes the sum of the utilities.

In what has been classically studied and what has been practically implemented, voting rules are
often based on ordinal rankings – these rules make decisions based only on each voter’s preference
ordering, not the cardinal utilities, on the candidates. There are several considerations behind
this. First, the restriction to ordinal rules simplifies the processes and the infrastructures needed
for voting. Moreover, even though voters are assumed to have cardinal utilities, they may not be
able to articulate them accurately, especially when these numbers represent differences in political
stances in an abstract way. Finally, in a sense, this restriction to a common ordinal format gives
each voter equal voting power.

Ordinal voting rules cannot always perfectly optimize social efficiency. Aiming to quantify
the drawback of this format restriction – or this information loss from the perspective of social
optimization – researchers have proposed the powerful notion of distortion [PR06, BCH+15, BR16,
ABE+18]: It represents the worst-case ratio between the optimal efficiency and the efficiency of a
particular ordinal voting rule (or in some contexts, the distortion-optimal ordinal voting rule). The
worst-case distortion is generally not bounded by any constant, even after imposing normalization
constraints on the cardinal utilities. This naturally calls for structural restrictions for the model.

In the seminal work of [ABP15, ABE+18], they proposed the influential framework of metric
distortion – in particular, they imposed the natural assumption that the voters and the candidates
lie in a shared (unknown) metric space, and a voter’s cardinal cost for a candidate is the distance
between them in the metric space. This metric assumption is convincing if we think voters and
candidates have positions in a political spectrum in the form of a metric space, or if the candidates
are public facilities and voters’ costs are their travel costs to the selected facility. More formally,
the metric distortion of a social choice rule is defined as the supremum of the ratio between the
social cost (i.e., sum of costs of voters) of this rule and the optimal social cost, over all possible
metric spaces and all induced ordinal preference profiles. The introduction of this metric constraint
reduces the distortion of many social choice rules to constants, and the search for distortion-optimal
social choice rules is very intriguing.

The journey to distortion 3 for deterministic rules. One fruitful line of work on metric
distortion, including the original one of [ABP15, ABE+18], focuses on deterministic social choice
rules. An immediate lower bound for deterministic rules is 3 (see Figure 1): There are two candi-
dates {a, b} and two voters where one voter prefers a to b and the other prefers b to a. Choosing
either candidate gives distortion of 3. [ABP15, ABE+18] also showed that any voting rule selecting
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Figure 1: In an election with two candidates and two disagreeing voters, both of the above metric
spaces are possible. No deterministic rule can have distortion less than 3, and no randomized rule
can have distortion less than 2.

from the uncovered set (which we will introduce later along with its generalizations), such as the
Copeland rule, guarantees an upper bound of 5. This gap between 3 and 5 was a tantalizing one
and resisted researchers’ efforts (e.g. [GKM17]) for a few years. [MW19] were the first to reduce
the gap: They proposed a novel weighted variant of the uncovered set to improve the upper bound
to 2 +

√
5 ≈ 4.236, and also showed that selecting from a novel matching uncovered set guaran-

tees a distortion upper bound of 3. However, they did not manage to show that the set is always
non-empty, and left it as a conjecture. This conjecture had been studied by many researchers (e.g.
[Kem20a] who identified alternative and additional formulations) since then, until [GHS20], in their
breakthrough result, proved it true. [GHS20] identified the crux of the conjecture and proved the
existence of a candidate that satisfies their new simplified conditions, hence showing a distortion
upper bound of 3 for both their novel rule of Plurality Matching and the one of [MW19]. This
closes the gap for deterministic social choice rules. In the impressive work of [KK22], they proposed
the novel, elegant, and practical voting rule Plurality Veto, which is also by itself a one-paragraph
constructive proof of the conjecture of [MW19]. [KK23] further identified other related practical
voting rules with distortion 3 that connects to the proportional veto core [Mou81], a classical notion
in social choice.

The need for randomization and the barrier of 3. The above canonical lower bound of 3
only involves two candidates and two disagreeing voters, and one factor that induces this “large”
distortion is the limit to deterministic social choice rules. This limit is traditionally motivated by
people’s aversion to randomization for important social issues. However, nowadays, randomization
is used in countless democratic (and non-democratic) processes, both those practically implemented
and those theoretically studied. In that canonical example, it might even be more natural to
randomize over the candidates, than to break the symmetry arbitrarily and pick one candidate
deterministically. Moreover, there are situations where fractional solutions are acceptable, such as
when allocating funding to the candidates.

In fact, soon after the first work on metric distortion, [FFG16] and [AP17] independently studied
metric distortion without the restriction to deterministic rules. They both showed an upper bound
of 3 for the simple rule of Random Dictatorship (which outputs the favorite candidate of a uniformly
random voter), and gave a lower bound of 2 using that same two-voter-two-candidate example,
leaving open the possibility that much better metric distortion could be achieved by randomized
voting rules. This gap between 2 and 3 was a very (if not the most) intriguing question in the field
of distortion.

The lack of progress on this question motivated researchers to look at fine-grained distortion

2



analysis within the instance classes of a fixed number of voters or candidates. For example, [AP17]
showed that Random Dictatorship has distortion 3 − 2/n within the instance class of n voters,
for any n. Several other works provided upper bounds for the instance class of m candidates, for
any m: [FGMP19] proposed a rule called Random Oligarchy that can achieve an upper bound
slightly worse than 3−2/m;1 [Kem20b] first showed an upper bound of 3−2/m by mixing Random
Dictatorship with a rule named Proportional to Squares; [GHS20] proposed Smart Dictatorship, a
variant of Random Dictatorship, which gives the same guarantee of 3− 2/m. These improvements
over 3 vanish when we consider the supremum over all instances.

The first constant improvement for this gap is on the lower bound. [CR22] improved the lower
bound to 2.1126, while [PS21] independently showed a lower bound of 2.0631. For the upper bound,
there have been many different rules with distortion 3, but also many classes of rules which are
known to be unable to beat 3: deterministic rules [ABE+18], truthful rules [FFG16], rules that only
look at the top choices of the voters [GAX17], and rules that only looks at pairwise comparisons
of candidates (i.e. a weighted tournament rule) [GKM17]. These results rule out a large swath of
voting rules that have been studied in the metric distortion literature, which raises the following
pressing question.

Question 1. Is there a voting rule with metric distortion better than 3? What might such a voting
rule look like?

In this work, we answer this question by showing that a randomization over simple rules can
achieve distortion less than 2.753.

1.1 Our Techniques and Voting Rules

The biased metric framework. Our work uses a new analysis framework that refines the linear
programming approach introduced by [CR22]. Each metric can be viewed as a linear constraint
on a potential voting rule, and their insight was to show that a relatively simple class of metrics,
called the biased metrics, characterizes the most strict constraints. However, they were only able to
analyze the biased metrics with some relaxations, and could only prove upper bounds for elections
with three candidates. Our approach, on the other hand, allows us to precisely characterize the
constraints imposed by the biased metrics. The resulting framework gives us more analysis power
while retaining most of the simplicity, and gives us the intuition that leads to the break of the
barrier of 3.

In the main body of the paper, we consider three randomized rules and analyze them and their
mixtures using this framework. In Appendix C, we also use this framework to revisit a variety of
results proved in the metric distortion literature [ABP15, FFG16, AP17, MW19, GHS20, KK22] and
show that they have short, simple proofs once the biased metric framework has been established.
This suggests that the framework may be a helpful primitive for future work in the area.

A note on weighted tournament rules. Weighted tournament rules (or C2 rules [Fis77]) are
a special class of voting rules that only consider pairwise comparisons (for each pair of candidates
i, j, the proportion of voters that prefer i over j). Weighted tournament rules are desirable in
many settings since they are often simple, interpretable, and efficiently implementable by sampling
voters.

1Their upper bound is 3− 2 ·minp∈[0,1]

(

p2(2− p) + (1− p)3/(m− 1)
)

, which is 3− 2/m +O(1/m2) as m → ∞.
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The Maximal Lotteries rule discussed in Section 4 is a weighted tournament rule, and is in fact
optimal among such rules. Our other rules, including Random Consensus Builder (Section 5.1),
Random Dictatorship on the (Weighted) Uncovered set (Section 5.2) and Random Dictatorship on
the Directed Maximal Independent Set (Appendix B), are “almost” weighted tournament rules:
They only consider pairwise comparisons of the candidates and the ordering of a uniformly random
voter. Note that this modification still allows the rules to be efficiently implemented with sampling.

Maximal Lotteries. The first rule we study is Maximal Lotteries. According to [Bra17], it
(along with its variants) was first considered by [Kre65], independently rediscovered and studied in
detail by [Fis84], and later also independently rediscovered by [LLLB93, FR95, FM92, RS10]. This
rule has not been studied in the context of distortion.

Maximal Lotteries formulates the following zero-sum game: Two players 1 and 2 each proposes
a distribution over the candidates, and then we independently draw a candidate c1 from Player 1’s
distribution, a candidate c2 from Player 2’s distribution, and a uniformly random voter v. Player
1 wins if v prefers c1 to c2 and vice versa, breaking ties uniformly in case c1 = c2. Each player
aims to maximize their winning probability. Maximal Lotteries outputs a Nash equilibrium of this
zero-sum game, which can be computed in polynomial time.

We show that Maximal Lotteries has distortion 3. This on its own resolves an interesting
question on the optimal distortion of weighted tournament rules. [GKM17] showed that no such
rule can have distortion better than 3, and the best previously known upper bound was 2 +

√
5

[MW19]. Additionally, our framework admits a finer characterization on the worst-case instances:
Intuitively, if Maximal Lotteries has distortion close to 3 in an instance, then for any candidate
c1 and c2 where c1 beats c2 with a large margin in their pairwise comparison, c1 cannot be much
farther away to the true optimal candidate than c2. This motivates us to design complementary
rules that can deal with these cases where Maximal Lotteries is “bad”.

Random Consensus Builder. Motivated by the discussion above, we conceptually build a
directed graph where the vertices are the candidates. We draw an edge from c1 to c2 if c1 beats c2
with a large margin in their pairwise comparison. We are inspired by the following graph theory
fact: In any directed graph, there exists an independent set, so that any vertex in the graph
can be reached from a vertex in the independent set in at most two steps (see e.g. [BM76]).
When Maximal Lotteries is “bad”, a candidate in this independent set must be close to the true
optimal candidate. Additionally, candidates in this independent set must be relatively even in
their pairwise comparisons due to our construction of the graph. These additional structures make
Random Dictatorship on the independent set perform much better than distortion-3 in these cases.

Our Random Consensus Builder rule utilizes this intuition but only implicitly picks this inde-
pendent set.2 Random Consensus Builder picks a uniformly random voter and looks at remaining
candidates from her least preferred one to her most preferred one. When we encounter a candidate
c, we remove all candidates that c can pairwise beat with a large margin. In the end, we output
the last candidate that we encounter. Conceptually, Random Consensus Builder naturally balances
the opinion of a random voter with the general consensus.

Using our framework, we show that a randomization between Maximal Lotteries and Random
Consensus Builder with proper parameters has distortion at most 2

√
2 ≈ 2.82843.

2For the interested reader, another voting rule, Random Dictatorship on the Directed Maximal Independent Set,
which more directly uses this idea, is discussed in Appendix B.

4



RaDiUS: Random Dictatorship on the (Weighted) Uncovered Set. Our analysis of Ran-
dom Consensus Builder uses properties that are reminiscent of the weighted uncovered set, proposed
by [MW19] who showed that an arbitrary selection from this set (with a proper parameter) gives
distortion 2 +

√
5 ≈ 4.23607. This motivates us to propose RaDiUS (Random Dictatorship on the

(Weighted) Uncovered Set) that outputs a uniformly random voter’s favorite candidate within the
weighted uncovered set.

It turns out RaDiUS can give better guarantees than Random Consensus Builder. Using our
framework, we show that a randomization between Maximal Lotteries and RaDiUS with proper
parameters has distortion at most 2.75271.

1.2 Further Related Work

There has been a large body of work on distortion in social choice. We refer the reader to the survey
of [AFSV21] for a more detailed overview of the field; below we briefly discuss some of them.

The first works on distortion did not impose the metric-space condition, assumed the utilities
are non-negative, and defined distortion of a rule as the worst-case ratio between the optimal
sum of utilities and the sum of utilities attained by the rule [PR06]. Many works made the unit-
sum utility assumption, where for every voter, her sum of utilities on each candidate equals 1, to
avoid uninteresting worst cases. Under this assumption, [CP11] showed that the Plurality rule has
distortion O(m2) (for the class of instances with m candidates, same below). A matching Ω(m2)
lower bound for deterministic rules was later given by [CNPS17]. Under the same assumption,
[BCH+15] proposed a randomized rule with distortion O(

√
m log∗ m) and gave a lower bound of

Ω(
√
m) for any rule. This gap was closed by [EKPS22] who proposed a Stable Lottery (and Stable

Committee) rule, which was inspired by fair committee selection literature, with distortion O(
√
m).

[GLS23] aimed to provide best-of-both-worlds guarantees for both the metric setting and the
non-metric setting. They proposed novel deterministic and randomized social choice rules which
guarantee constant metric distortion and almost optimal (for deterministic and randomized rules
correspondingly) non-metric distortion.

Researchers have also looked beyond single-winner elections where we select one winner from the
candidates. [CSV22] considered a model of multi-winner elections in the metric distortion setting,
where they give complete characterizations for the optimal metric distortion. Graph problems such
as selecting a perfect bipartite matching (e.g. [CFF+16, AS16, AZ21, ABFV22, ACR23]) in both
metric and non-metric distortion settings have also received great attention.

Most works in this field aim to optimize the utilitarian aggregation of preferences, i.e., the sum
or average of the utilities. Other works consider “fair” ways to aggregate preferences: [GKM17]
proposed the fairness ratio in the metric setting, which is inspired by the mathematical idea of
majorization and replaces the utilitarian aggregation by (loosely speaking) the worst-case symmetric
and convex aggregation function, and showed a lower bound of 3 and an upper bound of 5. [GHS20]
closed this gap by showing their Plurality Matching rule has a fairness ratio of 3. [EKPS22] studied
proportional fairness, Nash welfare, and the core in the non-metric setting, and gave distortion
bounds of O(logm) for all these objectives.

The distortion framework serves as a valuable tool to quantify the efficiency of voting rules, and
therefore has been adopted in the study of various aspects of voting, such as the tradeoff between
the amount of communication and the efficiency performance of voting rules [GAX17, FGMP19,
MPSW19, Kem20b, MSW20]. The framework is also used to quantify the effect of certain social
structures: [CDK17, CDK18] studied the representativeness of candidates on the population of
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voters. In particular, they showed that when the candidates are drawn independently from the
voter population, the metric distortion of social choice rules becomes much better. [FPW23] studied
the effect of public spirit in the non-metric distortion framework. They showed that if every voter
altruistically ranks the candidate according to a mixture of her own preference and the average
preference of the voters, then the distortion of many social choice rules will drastically improve.

2 Preliminaries and Notation

Elections. An election instance is defined by a tuple E = (V,C,≻V ), where V is a set of n voters,
C is a set of m candidates, and ≻V is a set of linear orders, one for each voter, where i ≻v j if voter
v prefers candidate i over candidate j. Throughout the paper, we will use i, j, k, a, b, c to refer to
candidates and u, v to refer to voters. We will have i∗ denote the true best candidate when the
metric space is fixed.

For a condition P, we let SP denote the subset of voters whose preferences satisfy P. We also
let sP = |SP |/n be the proportion of these voters overall, or equivalently, the probability that a
uniformly random voter’s preference list satisfies property P. For example, Si≻j is the set of voters
that prefer i over j, Si,j≻k is the set of voters that prefer i and j over k, and SI≻j is the set of
voters that prefer all the candidates in I over j. Note that if j ∈ I then SI≻j = ∅ and sI≻j = 0.
We also let plu(i) = si≻C\{i} be the proportion of voters whose first choice is i.

In Section 4, we will also allow the property P to be randomized, in which case sP still makes
sense but SP does not. For example, if D is a distribution over candidates, then sD≻j denotes the
probability that a uniformly random voter prefers a candidate i ∼ D over j. That is,

sD≻j = Pr
i∼D,v∼V

[i ≻v j] = E
i∼D,v∼V

[1[i ≻v j]].

Note that in the case that i = j, it will be natural to treat 1[i ≻v j] as 1
2 . To this end, in Section 4

we will let si≻i be
1
2 instead of 0 – this makes it so that the Condorcet Game is well defined, and

it makes the proof of Theorem 1 read much more smoothly.
We use this notation extensively and flexibly in the paper, and we may reiterate what certain

instances mean in natural language to be clear.

Metric spaces. A metric space is a pair (M, d) of a set M and a distance metric d : M×M →
R≥0 with the following three properties:

(1) Positive definiteness: d(x, y) ≥ 0 with equality if and only if x = y,

(2) Symmetry: d(x, y) = d(y, x),

(3) Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

We will extend the notation of d to operate directly on the voters and candidates rather than
the points they occupy in the metric space. Note that for simplicity we allow voters and candidates
to be co-located in the space, so their distance may be zero. (That is to say, technically, we consider
pseudometric spaces. This simplification does not change the distortion of any voting rule.)

When defining the biased metrics in Section 3 and proving lower bounds in Appendix A, we will
specify metric spaces where we only explicitly define the distances between candidates and voters,
and leave the other distances implicit. We make no use of the implicit distances, but to fully specify
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the metric space one can use the graph distance closure of the explicitly defined distances. i.e., if
the distance between two points is not explicitly defined, it should be taken to be the shortest path
between those two points using the explicitly defined distances.

Given an election instance E = (V,C,≻V ), we say that a distance metric d is consistent with E
(denoted d✄ E) if for all v ∈ V , we have that i ≻v j implies d(i, v) ≤ d(j, v).

Voting rules, social cost, and distortion. For an election with underlying distance metric d,
we denote the social cost of a candidate i to be their average distance to the voters. i.e.,

SC(i, d) :=
1

n

∑

v∈V
d(i, v).

(In the literature, the social cost of a candidate is usually the sum, rather than the average, of
distances. Since we are concerned about the ratio between costs, we can equivalently use the
average-distance version, which we find easier to work with.) We will often just write SC(i) when
the relevant distance metric has been fixed, or is clear from context.

A voting rule (or social choice rule) f is a function that maps every election instance E to a
distribution over its candidates. Given this, the distortion of f is given by

distortion(f) = sup
E

sup
d:d✄E

E
j∼f(E)

[SC(j, d)]

min
i∈C

SC(i, d)
.

We will also often refer to the distortion of f on a particular metric d, which is just the operand of
the suprema above. When the election instance and voting rule are fixed, we will use pj to denote
the probability that the rule chooses candidate j on the instance.

The aforementioned weighted tournament rules are the class of voting rules that map 〈si≻j〉i,j∈C
to a distribution of candidates.

3 The Biased Metrics

The key tool that we use to understand the metric distortion of the social choice rules in Section 5
is a refinement of the linear programming framework introduced by [CR22].

Suppose that we have an election instance. If we can design a rule such that for any metric
consistent with the instance we have

∑

j∈C
(SC(j) − SC(i∗))pj ≤ λ · 2 SC(i∗), (1)

then the rule has distortion at most 1 + 2λ on this instance (the reason for the unnecessary factor
of 2 will be clear later). In this view, for a rule to have low distortion it has to satisfy a set of linear
constraints, with one constraint imposed by each metric. As one might expect, some constraints
may be redundant, so it is helpful to try and find a small set of metrics whose constraints imply
those for all of the metrics. Then, one can show that a rule has low distortion just by showing that
it has low distortion on the small set of metrics.

[CR22] defined the set of biased metrics, and showed that they satisfied this property.
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Definition 1. Let (x1, . . . , xm) be a vector of nonnegative real numbers such that xi∗ = 0 for some
i∗. Given an election instance, the biased metric for the vector (x1, . . . , xm) is defined as follows.
For a voter v and candidate i, let

d(i∗, v) =
1

2
max

i,j:i�vj
(xi − xj),

d(j, v) − d(i∗, v) = min
k:j�vk

xk.

The rough idea of the biased metrics is the following. Suppose we were given some fixed metric
such that the distance from candidate j to the optimal candidate is xj (so xi∗ = 0). Then we could
imagine throwing out all of the other distances, and remaking them so that the distances from i∗ to
the voters is as small as possible, and the distances from the other candidates is as large as possible
(compared to the distances from i∗). The former is to make the right side of Eq. (1) smaller and
the latter is to make the left side larger, which will tighten the constraint. It turns out that to
do this while respecting the triangle inequality and the preferences, one ends up with the above
definition.

[CR22] gave proofs that the biased metrics are indeed valid distance metrics, and that they
tighten the constraints in Eq. (1). For completeness, these proofs are included in Appendix D.

Now that it has been established that we only need to consider the constraints imposed by
the biased metrics, let us see how to express these constraints. Suppose that we have a fixed
biased metric given by a vector (x1, . . . , xm). Let It = {k ∈ C : xk ≤ t}. Notice then that
d(j, v) − d(i∗, v) > t if and only if v ∈ SIt≻j . To be clear, note that if j ∈ It then SIt≻j = ∅ and
sIt≻j = 0. It follows that

SC(j)− SC(i∗) = E
v∼V

[d(j, v) − d(i∗, v)] =
∫ ∞

0
Pr
v∼V

[d(j, v) − d(i∗, v) > t] dt =

∫ ∞

0
sIt≻j dt

and so ∑

j∈C
(SC(j) − SC(i∗))pj =

∫ ∞

0

∑

j /∈It
sIt≻jpj dt.

We can use a similar approach to express 2 SC(i∗). We have that 2d(i∗, v) ≤ t if and only if
v ∈ S∀i≻j,xi−xj≤t. This is the set of voters v such that whenever i ≻v j, we have xi − xj ≤ t. It
follows that

2 SC(i∗) = E
v∼V

[2d(i∗, v)] =
∫ ∞

0
(1− Pr

v∼V
[2d(i∗, v) ≤ t]) dt =

∫ ∞

0
(1− s∀i≻j,xi−xj≤t) dt.

Therefore, the constraint imposed by the biased metric is
∫ ∞

0

∑

j /∈It
sIt≻jpj dt ≤ λ

∫ ∞

0
(1− s∀i≻j,xi−xj≤t) dt. (2)

To get a sense of how the right side of this expression behaves, note that si∗≻Ict
≥ s∀i≻j,xi−xj≤t.

If a voter v satisfies the condition that i ≻v j, we have that xi − xj ≤ t, then for all k such that
xk > t (the candidates in Ict ), we must have i∗ ≻v k. In a lot of situations, using si∗≻Ict

in place
of the more complicated expression is sufficient. To this end, note that the following constraint
implies Eq. (2).
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∫ ∞

0

∑

j /∈It
sIt≻jpj dt ≤ λ

∫ ∞

0
(1− si∗≻Ict ) dt. (3)

[CR22] derived Eq. (3) (though written in a more discrete form), and then noted that one could
consider an even stricter collection of constraints, which we will use to analyze Maximal Lotteries
in Section 4. ∑

j /∈I
sI≻jpj ≤ λ(1− si∗≻Ic). (4)

In particular, to show Eq. (2) for all possible metrics, it suffices to show the above inequality for
all sets I 6= ∅, C, and all i∗ ∈ I. The convenience of this is that there are finitely many possible
constraints rather than the infinitely many constraints we would have if we used Eq. (2) or Eq. (3)
(since each choice of the vector (x1, . . . , xm) may give a different constraint). Moreover, the metric
space has been completely abstracted away – these constraints only involve terms that come from
the election instance alone. However, it should be noted that Eq. (2) loses no generality (a rule has
distortion 1 + 2λ if and only if it satisfies Eq. (2) for all biased metrics), but Eq. (3) and Eq. (4)
may lose generality (the implication only goes one way).

To conclude this section, we introduce some notation that makes Eq. (2) easier to discuss.

Figure 2: An example of the functions r(t), ℓ(D, t), and the areas R and L(D).

Once an election instance is fixed, we let

r(t) = 1− s∀i≻j,xi−xj≤t and R =

∫ ∞

0
r(t) dt.

Given a distribution D over the candidates which chooses candidate j with probability pj , we let

ℓ(D, t) =
∑

j /∈It
sIt≻jpj and L(D) =

∫ ∞

0
ℓ(D, t) dt.

With this notation, we would like to design a rule which outputs a distribution D such that for
all biased metrics, L(D)/R ≤ λ for a small fixed λ (to get distortion less than 3 we need λ < 1).
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Though the expression for r(t) may seem complicated and difficult to work with, ultimately we only
use it in two simple ways. As mentioned, in Section 4 we only use r(t) ≥ 1 − si∗≻Ict

. In Section 5
it is only needed for Proposition 3, which roughly says that if r(t) is small, then the metric admits
a nice structure that can be leveraged to get better distortion bounds.

4 Maximal Lotteries

In this section, we will study the distortion of Maximal Lotteries [Kre65]. The voting rule is based
on a zero-sum game (in our formulation, a constant-sum game) between two players Alice and Bob.
The details of the game and the voting rule are below.

The Condorcet Game

• Simultaneously, Alice picks a distribution DA and Bob picks a distribution DB over the
candidates.

• We sample a ∼ DA and b ∼ DB.

• Alice and Bob’s payoffs are sa≻b and sb≻a respectively. If a = b then each player gets 1
2 .

Maximal Lotteries (ML)

• Choose a candidate from any Nash equilibrium distribution of the Condorcet game.

For the Condorcet game, note that under the notation we introduced in Section 2, once DA

and DB are picked the payoffs for Alice and Bob are sDA≻DB
and sDB≻DA

respectively. We remind
the reader that in this section we treat si≻i as

1
2 so that if both players choose the same candidate,

their payoffs are equal.

Suppose that we fix an election instance. Let D be the distribution output by ML, which
chooses candidate i with probability pi. Let P (I) =

∑
i∈I pi be the probability that a candidate

in I is chosen. Let D(I) be the distribution conditioned on the chosen candidate coming from I.
i.e., a candidate i ∈ I is chosen with probability pi/P (I). Note that D(I) is not well-defined if
P (I) = 0, so we will deal with cases where this comes up separately.

We will prove the following theorem.

Theorem 1. For any fixed biased metric and any t ≥ 0, we have

ℓ(D, t) ≤ P (Ict )

2
≤ r(t).

In particular, this implies that ML has distortion at most 3.

By a theorem due to [GKM17], no randomized or deterministic weighted tournament rule can
have distortion better than 3, so ML is optimal among weighted tournament rules.

Proof of Theorem 1. For ease of notation, let us fix t and set I = It. Let us first prove the theorem
in the cases where P (I) or P (Ic) are zero, so that afterwards we can assume that D(I) and D(Ic)
are well-defined.

10



If P (Ic) = 0, then we simply have that ℓ(D, t) = P (Ic)
2 = 0, and the theorem easily follows. If

P (I) = 0, we need to show that ℓ(D, t) ≤ 1
2 ≤ r(t). Then note that

ℓ(D, t) =
∑

j /∈I
sI≻jpj ≤

∑

j /∈I
si∗≻jpj = si∗≻D.

On the other hand, we have

r(t) ≥ 1− si∗≻Ic ≥ 1−min
j /∈I

si∗≻j ≥ 1−
∑

j∈Ic
si∗≻jpj = 1− si∗≻D.

We have that si∗≻D ≤ 1
2 since D weakly beats the strategy of deterministically picking i∗, so

ℓ(D, t) ≤ 1
2 ≤ r(t). As desired.

Henceforth, let’s assume that D(I) and D(Ic) are well-defined. First, using the fact that
sI≻j ≤ min

i∈I
si≻j ≤ sD(I)≻j, we have,

ℓ(D, t) =
∑

j /∈I
sI≻jpj ≤

∑

j /∈I
sD(I)≻jpj = sD(I)≻D(Ic) · P (Ic).

Similarly, using si∗≻Ic ≤ min
j /∈I

si∗≻j ≤ si∗≻D(Ic), we have

r(t) ≥ 1− si∗≻Ic ≥ 1− si∗≻D(Ic).

Therefore, it suffices to show that

sD(I)≻D(Ic) · P (Ic) ≤ P (Ic)

2
≤ 1− si∗≻D(Ic). (5)

To prove this, we will rely on two somewhat general properties of any equilibrium. The first
claim, below, is equivalent to the first inequality in Eq. (5).

Claim 1. sD(I)≻D(Ic) ≤ 1
2 .

Proof. Intuitively, this is true because if it were the case that sD(I)≻D(Ic) > 1
2 then D(I) could

strictly beat D, contradicting the fact that it is an equilibrium.
The proof of the claim relies on two facts. For any distribution X over the candidates, we have

1. sX≻D ≤ 1
2 , and

2. sX≻X = 1
2 .

The first follows by definition of D being an equilibrium, and the second follows by symmetry.
Then we have that by the law of conditional expectation,

1

2
≥ sD(I)≻D = P (Ic)sD(I)≻D(Ic) + P (I)sD(I)≻D(I)

= P (Ic)sD(I)≻D(Ic) + (1− P (Ic)) · 1
2

which means that sD(I)≻D(Ic) ≤ 1
2 as claimed.
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Note that, applying the claim with I replaced with Ic we can in fact conclude that sD(I)≻D(Ic) =

sD(Ic)≻D(I) =
1
2 .

Now it remains to show that
P (Ic)

2
≤ 1− si∗≻D(Ic).

For brevity, let p = P (Ic) and q = si∗≻D(Ic). We want to show that p
2 ≤ 1 − q. We will also

introduce r = sD(I)≻i∗ . Consider three different strategies for the game: D(I), D(Ic), and just

Figure 3: Three strategies D(I),D(Ic), i∗. The edge (A,B) is labeled with sA≻B.

deterministically choosing i∗. Then by conditional expectation and the assumption that D is an
equilibrium, we have that

1

2
≤ sD≻i∗ = P (Ic)sD(Ic)≻i∗ + P (I)sD(I)≻i∗ = p(1− q) + (1− p)r.

On the other hand, the payoffs for these strategies satisfy a kind of triangle inequality, by the
following claim.

Claim 2. For three strategies A,B,C, we have sA≻B ≤ sA≻C + sC≻B.

Proof. We have that sA≻B = E
i∼A,j∼B,v∼V

[1[i ≻v j]], so

−sA≻B + sA≻C + sC≻B = E
i∼A,j∼B,k∼C,v∼V

[−1[i ≻v j] + 1[i ≻v k] + 1[k ≻v j]].

We claim that the term in the expectation is always nonnegative. If i, j, k are all different then this
is clear because it is not possible that i ≻v j but then k ≻v i and j ≻v k. If j = k or i = k then
the first term cancels with the second or third terms. If i = j then this term is

−1[i ≻v i] + 1[i ≻v k] + 1[k ≻v i]] = 1
2 .

This means that the term in the expectation is always nonnegative, which proves the claim.

Now, applying the claim to our three strategies, we have that

sD(I)≻i∗ ≤ sD(I)≻D(Ic) + sD(Ic)≻i∗

=⇒ r ≤ 1
2 + (1− q).
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Combining this with our previous inequality relating p, q, r we have

1

2
≤ p(1− q) + (1− p)r ≤ p(1− q) + (1− p)(32 − q) = (1− q) +

1− p

2

which implies that p
2 ≤ 1− q as desired. This completes the proof of Theorem 1.

5 Two Rules that Complement Maximal Lotteries

In this section, we introduce two novel social choice rules, each of which can be mixed with Maximal
Lotteries to get distortion better than 3: Random Consensus Builder (RCB) and Random Dicta-
torship on the Uncovered Set (RaDiUS). The two rules are very much cousins of one another, and
their analyses have many commonalities. RCB has a slightly worse distortion guarantee, but we
include it for several reasons: First, its analysis mirrors that of RaDiUS but is simpler, making it
a natural warm-up for the tighter bound given by RaDiUS. Moreover, the final specification of the
mixed rule using RCB is easier to state, and the distortion bound ends up being a clean algebraic
number, 2

√
2. These nice properties, along with the fact that RCB itself has a clean interpretation,

make us believe that RCB, as a voting rule, can be of independent interest.

We will analyze the rules using our biased metric framework. Intuitively, the constraints will be
harder to satisfy when r(t) is often small, which makes R small. However, when r(t) is small, we can
show that the election instance and the metric admit a certain structure which can be leveraged in
the analysis. This structure is characterized by the following definition, and it interplays with the
function r(t) via the subsequent proposition. This is actually all we need from r(t) in this section.

Definition 2. Given an election instance, a biased metric is (α, β)-consistent if whenever sk≻i∗ ≥ β,
we have xk ≤ αR.

Proposition 3. If r(αR) < β then the metric is (α, β)-consistent.

Proof. r(αR) < β means s∀i≻j,xi−xj≤αR > 1 − β. Then, whenever sk≻i∗ ≥ β, we have sk≻i∗ +
s∀i≻j,xi−xj≤αR > 1, which means that there exists a voter v such that k ≻v i∗ and whenever i ≻v j,
we have xi − xj ≤ αR. This exactly implies that xk ≤ αR.

Once the election instance and metric space are fixed, we will analyze both rules under the
assumption that the metric is (α, β)-consistent. This assumption will crucially come into play in
Section 6 where we want these rules to perform particularly well when α is close to 0 and β is close
to 1

2 . The results in this section will still extend to the general case by the following proposition.

Proposition 4. All biased metrics are ( 1β , β)-consistent for all β ∈ (0, 1).

Proof. If sk≻i∗ ≥ β we have

R = 2SC(i∗) ≥ (xk − xi∗)sk≻i∗ ≥ xk · β.
This means that xk ≤ 1

βR, and the proposition follows.

Both of our rules, RCB and RaDiUS, are parameterized by a tunable value β ∈ (12 , 1). Very
roughly speaking, they both construct the graph on candidates where (i, j) is an edge whenever
si≻j ≥ β, with the goal of choosing candidates that can always reach the low-distortion candidates
in few hops. Note that the rules have natural interpretations when β = 1

2 and β = 1 which we will
briefly discuss, but to avoid dealing with these (ultimately irrelevant) edge cases in the proofs, we
will restrict β to the open interval.
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5.1 Random Consensus Builder

Below is the description of our first rule.

β-Random Consensus Builder (RCB)

• Choose a uniformly random voter v. Initially the candidate under consideration, i, is v’s
least favorite candidate.

• Until a candidate is chosen:

– Eliminate all of the candidates j such that j ≻v i and si≻j ≥ β.

– If there are no uneliminated candidates that v prefers over i then we choose i.
Otherwise, update i to be v’s least favorite uneliminated candidate that v prefers
over i.

We will say that i eliminates j if j is eliminated in the iteration where i is the candidate under
consideration.

One interpretation of this rule is that it chooses a random voter v (the consensus builder) whose
preferences are the main guide of the rule, but if the voters as a whole have consensus disagreements
with v’s preferences, then their view overrules. In particular, in each stage of the rule v considers
a candidate that is undesirable according to v’s preferences, but if a large fraction of voters views
this candidate as preferable over some other candidates, then those candidates are removed from
contention. The threshold for how strong the consensus needs to be is tuned by this parameter β.

We can find another interesting interpretation of this rule by considering how it would operate
at the extremes where β = 1

2 and β = 1. If β = 1, the chosen candidate is always v’s top choice,
and so the rule is exactly Random Dictatorship. On the other hand, if β = 1

2 , then it is not
hard to see that if the chosen candidate is a, for every other candidate b, either a defeats b (i.e.
sa≻b ≥ 1

2) or a defeats a candidate who defeats b. The candidates that satisfy this property are
called the uncovered set. Some well known voting rules always output a candidate in the uncovered
set, including the well known Copeland rule. In this sense, β also is a measure of interpolation
between these kinds of rules and Random Dictatorship.

We will show the following theorem.

Theorem 2. Suppose that we have an election instance with an (α, β)-consistent underlying metric.
Then if D is the distribution output by β-RCB, we have

L(D) ≤ (α+ β)R.

Corollary 5. β-RCB guarantees distortion at most 1 + 2(β + 1
β ).

Proof of Theorem 2. Suppose v is the consensus builder. Let jv be the candidate that β-RCB picks.
Note that each candidate is either at some point the candidate under consideration (candidate i),
or it is eliminated by some other candidate.

If i∗ is not eliminated during the rule then let kv = i∗, and otherwise let kv be the candidate
that eliminates i∗. In order to prove the theorem, we will use the following three critical properties
of kv:

14



(I) xkv ≤ αR,

(II) jv �v kv,

(III) skv≻jv < β.

(I) follows because either kv = i∗ in which case xkv = 0, or kv eliminates i which means that
skv≻i∗ ≥ β and so by the fact that the metric is (α, β)-consistent, we have xkv ≤ αR. (II) follows
because both kv and jv are at some point under consideration, and we consider candidates from
lowest to highest on v’s preference list. (III) follows because at some point kv is under consideration,
and so either kv = jv in which case skv≻jv = 0 < β, or kv did not eliminate jv which means
skv≻jv < β.

We will use (I) and (III) to get a good upper bound on L(D), and (I) and (II) to get a good
lower bound on R.

We have that

SC(jv)− SC(i∗) ≤ sjv�kv min(xkv , xjv ) + skv≻jvxjv

≤ (1− β)min(xkv , xjv) + βxjv

≤ (1− β)αR + βxjv .

The second line follows from the first because xjv ≥ min(xkv , xjv) and so the expression is maximized
when skv≻jv (which is bounded above by β) is as large as possible. It follows that

L(D) =
1

n

∑

v∈V
(SC(jv)− SC(i∗)) ≤ α(1 − β)R+ β · 1

n

∑

v∈V
xjv .

On the other hand, since jv �v kv, we have 2d(v, i∗) ≥ xjv − xkv ≥ xjv − αR. It follows that

R = 2SC(i∗) ≥ −αR +
1

n

∑

v∈V
xjv =⇒ 1

n

∑

v∈V
xjv ≤ (1 + α)R.

Plugging this into our upper bound on L(D), we get

L(D) ≤ α(1− β)R + β(1 + α)R = (α+ β)R

as desired.

5.2 Random Dictatorship on the (Weighted) Uncovered Set

Next, we consider a rule similar in spirit to RCB, but with better distortion guarantees.

β-Random Dictatorship on the (Weighted) Uncovered Set (RaDiUS)

• Say that a covers b if sa≻b ≥ β and for any c, if sc≻a ≥ β then sc≻b ≥ β.

• Let U be the set of candidates that are not covered by any other candidate.

• Choose a uniformly random voter and output their favorite candidate in U .
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The set U was previously considered by [MW19] in the context of deterministic rules. They
showed that there exists a β such that any candidate from the set U (which they called the weighted
uncovered set) has distortion at most 2 +

√
5.

To see how this rule is similar to β-RCB, consider the following proposition. It also conveniently
gives a proof that the set U is always non-empty (which was proved in a different way in [MW19]).

Proposition 6. Suppose that U is the weighted uncovered set constructed by β-RaDiUS. Then
β-RCB always outputs a member from U .

Proof. Let’s suppose towards a contradiction that for some voter v, the candidate jv chosen by
RCB is covered by some other candidate a.

For jv to be chosen, it must have been the case that a was eliminated by some candidate c such
that jv ≻v c. Otherwise, if jv ≻v a then a would have eliminated jv and if a ≻v jv then a would
not have been eliminated when jv is the candidate under consideration (or before by c) and so the
rule would not have terminated in that iteration.

But then sc≻a ≥ β, and so by the definition of a covering jv, we must have sc≻jv ≥ β. But then
c would have eliminated jv, which is a contradiction.

Before we get into the distortion guarantee for β-RaDiUS, we prove two more facts that will be
helpful to us.

Proposition 7. The covering relation is transitive.

Proof. Suppose a covers b and b covers c. We claim that a covers c. Since b covers c and sa≻b ≥ β
we have sa≻c ≥ β. Now suppose that for some d, sd≻a ≥ β. Then since a covers b we have sd≻b ≥ β
but then since b covers c we have sd≻c ≥ β. So indeed, a covers c.

Proposition 8. If a candidate is not in U then it is covered by a candidate in U .

Proof. Suppose that we build a graph on the candidates where (a, b) is an edge if a covers b. We
cannot have a cycle in this graph, because by transitivity this would imply that some candidate i
covers itself, which would imply the impossible si≻i ≥ β > 1

2 > 0.
If a candidate i is not in U , it must have positive in-degree. Since the graph is acyclic, by

arbitrarily following edges backwards from i, we must eventually reach a candidate j with in-
degree zero. This means that j ∈ U and there is a path from j to i, which by transitivity means
that j covers i.

Now we prove the following distortion guarantee.

Theorem 3. Suppose that we have an election instance with an (α, β)-consistent underlying metric.
Then if D is the distribution output by β-RaDiUS, we have

L(D) ≤ (α(1− β2) + β)R.

Corollary 9. β-RaDiUS guarantees distortion at most 1 + 2/β.

The proof is similar in structure to the proof of Theorem 2. The key difference is that rather than
using the same candidate kv which satisfies the properties (I), (II), (III), we will have one candidate
kv which satisfies properties (I) and (III) and another candidate k∗ that satisfies properties (I) and
(II). The advantage is that in the later case, we have the same candidate k∗ for all voters v, which
will allow us to get a stronger lower bound on R. However, having different candidates for the two
cases makes the argument a little more complicated.
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Proof of Theorem 3. Once again, let jv be the candidate that is output when v is the randomly
chosen voter. Let’s assume that jv 6= i∗, otherwise the rule picks the best candidate and all of the
bounds will only be improved. Then since jv ∈ U it must be the case that i∗ does not cover jv .
Unpacking the definition, this means that either

(a) si∗≻jv < β, or

(b) there exists some k such that sk≻i∗ ≥ β but sk≻jv < β.

Define kv so that kv = i∗ if (a) occurs and kv = k if (b) occurs. In either case we have once
again that xkv ≤ αR and skv≻jv < β. These are the properties (I) and (III) used in the proof of
Theorem 2, and so by an identical argument we can show that

L(D) =
1

n

∑

v∈V
(SC(jv)− SC(i∗)) ≤ α(1 − β)R+ β · 1

n

∑

v∈V
xjv .

Now define k∗ so that k∗ = i∗ if i∗ ∈ U and otherwise, k∗ is some member of U which covers
i∗ (which exists by Proposition 8). Once again, we have that either k∗ = i∗ and so xk∗ = 0, or
sk∗≻i∗ ≥ β and since the metric is (α, β)-consistent we have xk∗ ≤ αR. In addition, we have that
jv �v k∗, since k∗ ∈ U and jv is v’s favorite candidate in U . Thus, k∗ satisfies properties (I) and
(II) used in the proof of Theorem 2.

It follows that for every voter v,

2d(v, i∗) ≥ xjv − xk∗ .

Moreover, if v satisfies k∗ �v i∗, the inequality can be stronger. In this case, jv �v k∗ �v i∗ and so

2d(v, i∗) ≥ xjv = xk∗ + (xjv − xk∗).

Since k∗ �v i∗ for at least a β fraction of voters v, we have

R = 2SC(i∗) ≥ βxk∗ +
1

n

∑

v∈V
(xjv − xk∗) = −(1− β)xk∗ +

1

n

∑

v∈V
xjv ,

where we crucially use the fact that all voters share the same k∗. It follows that

1

n

∑

v∈V
xjv ≤ R+ (1− β)xk∗ ≤ (1 + (1− β)α)R.

Plugging this into our upper bound on L(D), we have

L(D) ≤ α(1− β)R + β(1 + (1− β)α)R

= (α(1 − β2) + β)R

as claimed.
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6 Mixing Rules

Even though none of the three social choice rules we introduced can beat distortion 3 (see Appendix A),
it turns out that mixing them in a careful way can.

Let us introduce the general technique for analyzing the mixture of these rules. Suppose that
we have a given election instance and a biased metric. We would like to show that a particular
rule achieves low distortion on this instance and metric. Consider the graph of r(t) that is fixed
by the metric. For each β ∈ (12 , 1), let α(·) be the function such that α(β) ·R = min{t : r(t) < β}.
Informally, if we draw the horizontal line y = β, then this line intersects the graph of r(t) at the
point (α(β)R, β). (If the intersection is a line segment, we take the rightmost point on the segment.)

Unsurprisingly, the function α(·) is directly related to the α we were considering in Section 5:
Proposition 3 tells us that if we have α(·) corresponding to a biased metric, then the metric is
(α(β), β)-consistent for all β ∈ (12 , 1).

Moreover, we can use this function α(β) to get a tighter bound on the distortion of ML. Let
DML be the distribution output by ML. Then Theorem 1 tells us that

ℓ(DML, t) ≤
P (Ict )

2
≤ r(t)

and since P (Ict ) ≤ 1, we have ℓ(DML, t) ≤ min(12 , r(t)). On the other hand, the area that is below

r(t) but above the horizontal line 1
2 is exactly R

∫ 1
1
2
α(β) dβ, and so it follows that

L(DML) +R

∫ 1

1
2

α(β) dβ ≤ R =⇒ L(DML) ≤
(
1−

∫ 1

1
2

α(β) dβ

)
R. (6)

Figure 4: Left: For each β, the horizontal line at β intersects r(t) at (α(β)R, β). Right: If the area
above 1

2 and below r(t) is large, we can get a better bound on L(DML)/R.

This mixture of rules does well because there is a sense in which ML and β-RCB/β-RaDiUS
are complementary. For the analysis of ML not to have much wiggle room, the curve r(t) should
be above the line 1

2 very little. But then it means that α(β) is small for values of β that are
slightly larger than 1

2 , and with smaller α and β, we get much better guarantees in Theorem 2 and
Theorem 3.
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The rules will have three parameters: p, B, and ρ(·). Both rules run ML with probability p, and
otherwise run β-RCB or β-RaDiUS where β ∈ (12 , B) is drawn from a distribution with probability
density function ρ. It will turn out that in the analysis, we will fix p and ρ as a function of B, and
then to get the best distortion we just need to optimize a single variable function. In the warm-up,
the right ρ is just uniform, so to simplify we will omit that parameter.

6.1 Warm-up: ML and RCB Get Distortion 2
√
2

We note that the rule and proof might read more smoothly with the right values for p and B baked
in, but we will keep these as variables to illustrate the mechanics of the proof technique.

ML mixed with RCB

• With probability p, run Maximal Lotteries.

• With probability 1 − p, choose a uniformly random β ∈ (12 , B) and run β-Random
Consensus Builder.

Theorem 4. With p = 1√
2
and B =

√
2− 1

2 , the rule ML mixed with RCB has distortion at most

2
√
2 ≈ 2.828.

Proof. Suppose that we have a fixed election instance and metric space. LetDML be the distribution
output by ML, let Dβ be the distribution output by β-RCB, and let D be the overall distribution
of the rule. Note that β is chosen according to the probability density function 1

B− 1
2

, so

L(D) = pL(DML) + (1− p)

∫ B

1
2

1

B − 1
2

· L(Dβ) dβ

= pL(DML) +
1− p

B − 1
2

∫ B

1
2

L(Dβ) dβ.

So then applying Eq. (6) and Theorem 2, we get

L(D)

R
≤ p

(
1−

∫ B

1
2

α(β) dβ

)
+

1− p

B − 1
2

∫ B

1
2

(α(β) + β) dβ

= p+
1− p

B − 1
2

∫ B

1
2

β dβ +

(
−p+

1− p

B − 1
2

)∫ B

1
2

α(β) dβ

= p+ 1
2(1− p)(B + 1

2) +

(
1− p(B + 1

2)

B − 1
2

)∫ B

1
2

α(β) dβ.

Now, α(β) is a function which depends on the metric, which could be chosen adversarially. However,
we can completely eliminate this “dangerous” term by choosing p and B such that its coefficient
is 0. This is perhaps where the magic of the proof happens – by carefully balancing the two rules,
we can get a kind of destructive interference that eliminates any dangerous terms.

Choosing p = 1
B+ 1

2

, we get

L(D)

R
≤ 1

B + 1
2

+ 1
2(B − 1

2).
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It is not hard to check that choosing B =
√
2 − 1

2 minimizes the above expression, at which point

it is also
√
2− 1

2 . This gives us distortion 1 + 2(
√
2− 1

2 ) = 2
√
2.

6.2 ML and RaDiUS Get Distortion 2.753

ML mixed with RaDiUS

• With probability p, run Maximal Lotteries.

• With probability 1 − p, sample β ∈ (12 , B) according to the probability density function
ρ(β) and run β-RaDiUS.

Theorem 5. With appropriate choices for p,B, and ρ(·) the rule ML mixed with RaDiUS has
distortion at most 2.753.

Proof. Let DML and Dβ be defined as in the proof of Theorem 4, but with β-RaDiUS in place of
β-RCB. Then we get

L(D)

R
≤ p

(
1−

∫ B

1
2

α(β) dβ

)
+ (1− p)

∫ B

1
2

ρ(β)
(
α(β)(1 − β2) + β

)
dβ

= p+ (1− p)

∫ B

1
2

ρ(β)β dβ +

∫ B

1
2

α(β)
(
−p+ ρ(β)(1 − p)(1 − β2)

)
dβ

= 1− (1− p)

∫ B

1
2

ρ(β)(1 − β) dβ +

∫ B

1
2

α(β)
(
−p+ ρ(β)(1 − p)(1 − β2)

)
dβ.

The last line uses the fact that

∫ B

1
2

ρ(β) dβ = 1. In order to make the coefficient of α(β) equal to

0, we set

ρ(β) =
p

(1− p)(1− β2)

which means that

1 =

∫ B

1
2

ρ(β) dβ =
p

1− p

∫ B

1
2

dβ

1− β2
=⇒ p =

1

1 +

∫ B

1
2

dβ

1− β2

.

With these choices, we have

L(D)

R
≤ 1− p

∫ B

1
2

dβ

1 + β

= 1−

∫ B

1
2

dβ

1 + β

1 +

∫ B

1
2

dβ

1− β2

= 1− ln 2
3 + ln(1 +B)

1− 1
2 ln 3 +

1
2(ln(1 +B)− ln(1−B))

.
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Using numerical optimization methods, we find that the best choice is B ≈ 0.876353, which gives
distortion 2.75271.

7 Discussion

In this work, we studied Maximal Lotteries in the distortion setting and proposed novel simple
rules of Random Consensus Builder and RaDiUS. Using our biased metric framework, we show
that a mix between ML and RCB has metric distortion at most 2

√
2, and a mix between ML and

RaDiUS has distortion at most 2.753.
An immediate future direction is to further close the gap (2.112, 2.753) of optimal metric dis-

tortion. Towards this, we propose the following ideas:

• Our RaDiUS rule is a hybrid of Random Dictatorship and a deterministic weighted tourna-
ment rule of [MW19]. Is there a deterministic weighted tournament rule with better distortion
than 2 +

√
5 ≈ 4.236? Such a result is very interesting on its own, and can potentially serve

as an ingredient for a rule with better distortion than 2.753. (Note that our analysis for
ML pinned down the optimal metric distortion for weighted tournament rules at 3. For
deterministic weighted tournament rules, the gap is [3, 2 +

√
5].)

• Our RaDiUS rule uses the notion of weighted uncovered set, which was designed to show a
deterministic rule with good metric distortion. Would ideas that lead to distortion-optimal
deterministic rules be useful, such as the matching uncovered set [MW19] and related ideas
[Kem20a], Plurality Matching [GHS20], Plurality Veto [KK22] and its variants [KK22, KK23]?

• The biased metric framework potentially has more power than we have utilized in our proofs.
Theorems 2 and 3 show that for some function f(·, ·), their respective rules have distortion
1+2f(α, β) under this assumption. If one can show a similar theorem for a new rule, but with
a smaller function f(·, ·), then this would improve the distortion upper bound. One could
also attempt to go beyond our proof structure. For example, Eq. (3) is a set of simpler and
stricter constraints (derived by [CR22]) than what we use, but we do not know what distortion
bounds we can achieve after this simplification. Further understanding the structures of biased
metrics can be helpful in improving the metric distortion bounds.

Another intriguing direction is to find “simpler” rules that have good metric distortion:

• We managed to break the barrier of 3 by mixing simple rules. Can we do this using an
even simpler rule, e.g., one which does not look like a randomization between simple rules?
A similar question can be asked for some non-metric distortion settings, where the Stable
Lottery (or Stable Committee) rule, which looks like a randomization between two simple
rules, gives optimal Θ(

√
m) distortion [EKPS22].

• Can we break the barrier of 3 by using a minimal amount of randomness – for example,
randomizing between at most two candidates, or only using randomness to sample a single
voter (as RCB, RaDiUS, and Random Dictatorship do)?
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A Lower Bounds for RCB and RaDiUS

In this section, we will show that β-RCB and β-RaDiUS always have worst-case distortion at least
3. In particular, we will show that Corollary 9 is tight and Corollary 5 is almost tight. The reason
for the gap between the upper and lower bounds for β-RCB is that Theorem 2 can be improved in
some parameter regimes (though not in a way that improves the final distortion). Details on this
are included in Appendix C.1.

Theorem 6. β-RaDiUS has distortion at least 1 + 2/β.

Proof. Consider an instance where the candidates are i∗, k∗, and a large set U . A 1 − β fraction
of voters ranks i∗ ≻ U ≻ k∗. When we write the set U in this fashion, it means that these voters
order the candidates of U every way in equal proportion. The remaining β fraction of voters has
rankings of the form j ≻ k∗ ≻ i∗ ≻ U \ j for some j ∈ U . Each j ∈ U is equally likely to be j.

Now we have that sk∗≻i∗ = β, and for each j ∈ U , si∗≻j = 1−β/|U | and sk∗≻j = β(1− 1
|U |). So

in the graph where (a, b) is an edge if sa≻b ≥ β, the only edges are (k∗, i∗) and (i∗, j) for each j ∈ U
(eventually we will take |U | → ∞, so we should treat |U | as large enough that 1 − β/|U | > β).
Then k∗ covers i∗, since there is an edge from k∗ to i∗ and k∗ has no in-edges. On the other hand,
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Figure 5: The lower bound instance for β-RCB.

i∗ does not cover any j ∈ U , because there is no edge from k∗ to j. Thus, the weighted uncovered
set is U ∪ {k∗}.

But then β-RaDiUS will always choose a candidate in U . Considering the biased metric where
xi = 2 for all i 6= i∗ we have

SC(i∗) = β,

SC(j)− SC(i∗) = 2

(
1− β

|U |

)
.

Taking |U | → ∞, we get that
SC(j) − SC(i∗)

2 SC(i∗)
=

1

β

which exactly corresponds to distortion 1 + 2/β.

Theorem 7. β-RCB has distortion at least 1 + 2/β.

Proof. Suppose that the candidates are i∗ and several large sets C1, C2, . . . , CT+1, where T is also
large. We will eventually let T and the size of these sets go to infinity, so for ease, we make the
sizes equal to T as well.

We will treat {i∗} as C0. The idea is to have: Firstly, sci+1≻ci ≥ β for each ci ∈ Ci and
ci+1 ∈ Ci+1; and secondly, as i increases, sci≻i∗ decreases until scT+1≻i∗ ≈ 0. We will want that
when any given voter is the chosen voter, some candidate in C1 will eliminate i∗, and then some
candidate in C2 will eliminate everyone in C1 above i∗ and so on, so that all the candidates above
and including i∗ will get eliminated. In the end, we will get stuck with a candidate in CT+1 with
the highest cost.

Consider the following voter preferences. A 1− β − 1/T fraction of voters has a ranking of the
form

i∗ ≻ CT+1 ≻ CT ≻ · · · ≻ C1.

(These sets should always be thought of as representing candidates ordered in every way equally
often.) Another 1/T fraction of voters will have rankings of the form

CT+1 ≻ CT ≻ · · · ≻ C1 ≻ i∗.

Then for each 1 ≤ t ≤ T , a β/T fraction of voters has a ranking of the form

(Ct \ ct) ≻ · · · ≻ (C1 \ c1) ≻ i∗ ≻ CT+1 ≻ · · · ≻ Ct+1 ≻ ct ≻ · · · ≻ c1.

26



For each i ≤ t, each member of Ci is the candidate ci in equal proportion. For brevity, we call the
set of voters with rankings of the above form St.

First, we will show that for ci ∈ Ci and ci+1 ∈ Ci+1, we have sci+1≻ci ≥ β. First let us see this
for i = 0. We have that c1 ≻ i∗ for the 1/T fraction of voters in sC1≻i∗ , and for all but 1/T fraction
of voters in S1 ∪ · · · ∪ ST . This means that

sc1≻i∗ =
1

T
+ β

(
1− 1

T

)
= β +

1− β

T
> β.

Now for i > 0, we have that ci+1 ≻ ci for the 1− β fraction of voters outside of S1 ∪ · · · ∪ ST . For
the remaining voters, if ci ≻v ci+1, then one of two things must be true of v: Either v ∈ Si, or
v ∈ Si′ for some i′ > i and the candidate ci+1 is the candidate from Ci+1 which is below i∗. Each
of these two events is true for at most 1/T of the voters in S1 ∪ · · · ∪ ST , so it follows that

sci+1≻ci ≥ 1− β + β(1− 2
T ) = 1− 2

T β

and taking T sufficiently large, this is at least β.
For 1 ≤ i < j we have sci≻cj < β since cj ≻ ci for the 1 − β fraction of voters outside of

S1 ∪ · · · ∪ ST , at at least one voter in S1. These conclusions imply that when a voter outside of
sC1≻i∗ is chosen by the rule, the candidates in CT+1 cannot be eliminated, and the candidates
above and including i∗ will all get eliminated. This means that with probability at least 1− 1

T , the
rule chooses a candidate in CT+1.

The biased metric we consider is the same as before, where xi = 2 for i 6= i∗. With this we
have:

SC(i∗) = β,

SC(j)− SC(i∗) = 2

(
1− 1

T

)
,

for j ∈ CT+1. Since the rule chooses a candidate in CT+1 with probability at least 1− 1
T , we get

E[SC(j) − SC(i∗)]
2 SC(i∗)

≥ (1− 1
T )

2

β

and taking T → ∞, this corresponds to distortion 1 + 2/β.

B A Third Complementary Rule

In this section, we will give a brief discussion on another rule which is similar in flavor to β-RCB
and β-RaDiUS. We chose not to include it in the main body of the paper because the guarantees
are worse and the analysis is more complicated, but the rule itself is interesting and could be of
independent interest. It may also give some insight into what led to β-RCB and β-RaDiUS.

The rule is based on the following well known combinatorial fact (see for instance, [BM76,
Theorem 10.2]).

Lemma 10. For any directed graph G = (V,E), there exists an independent set U such that for
all v ∈ V there exists u ∈ U such that there is a path of length at most 2 from u to v.
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The set U is a directed analogue of a maximal independent set (MIS). In an undirected graph,
an MIS will satisfy the property that every vertex is either in the set, or is distance 1 from a vertex
in the set.

Proof. [BM76] give a proof by induction, which can be reworked into a nice algorithm to construct
the set U :

• Arbitrarily order the vertices v1, v2, . . . , vn.

• For i = 1, . . . , n:

– If vi is not eliminated, eliminate all vj such that j > i and (vi, vj) ∈ E.

• For i = n, . . . , 1:

– If vi is not eliminated, eliminate all vj such that j < i and (vi, vj) ∈ E.

• The vertices that are not eliminated form the set U .

First, let us see why U is an independent set. Suppose that there existed vi, vj ∈ U such that
there is an edge from vi to vj. Since both are never eliminated, vi would have eliminated vj in the
first loop if i < j and in the second loop if i > j. This is a contradiction.

Next, suppose we have some v /∈ U . Then either v was eliminated by some u ∈ U , or by some
v′ /∈ U who was eliminated by some u ∈ U (v′ eliminated v in the first loop, then u eliminated v′

in the second loop). In the first case, there is a path of length 1 from u to v , and in the second
case there is a path of length 2. Thus, U indeed satisfies the requirements.

The key idea of the rule is to apply this lemma to the graph on candidates where there is an
edge from a to b if sa≻b ≥ β, for some fixed β ∈ (12 , 1). Then, even though we do not know i∗,
we know there is some j∗ ∈ U such that there exists some k such that sj∗�k ≥ β and sk�i∗ ≥ β.
On the other hand, for any j ∈ U , we have that sj�j∗ ≥ 1 − β. This is somewhat similar to the
condition we used in the proof of Theorem 3 (there it is the same condition as if j∗ = k) and so we
can reason about it in a similar way. However, the extra distance between j and i∗ (having j∗ and
k rather than just k) makes the analysis weaker.

Ultimately the rule is as follows.

β-Random Dictatorship on the Directed MIS (β-RDDMIS)

• Fix an arbitrary ordering of the candidates c1, c2, . . . , cm.

• For i = 1, . . . ,m:

– If ci is not eliminated, eliminate all cj such that j > i and sci≻cj ≥ β.

• For i = m, . . . , 1:

– If ci is not eliminated, eliminate all cj such that j < i and sci≻cj ≥ β.
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• Let U be the set of candidates that were never eliminated. Pick a uniformly random
voter and choose their favorite candidate in U .

For the distortion guarantees, we need to make a slight modification to the definition of (α, β)-
consistent. Instead of the definition being whenever sk≻i∗ ≥ β we have xk ≤ αR, it will be whenever
sk≻i ≥ β we have xk − xi ≤ αR.

The point of this change is so that for j∗ we have that xj∗ ≤ 2αR. Using the same approach as
in the proofs of Theorem 2 and Theorem 3, we can establish the following theorem.

Theorem 8. Suppose that we have an election instance with an (α, β)-consistent underlying metric.
Then if D is the distribution output by β-RDDMIS, we have

L(D) ≤ (α(1 − β)(2 + 3β) + β)R.

Note that this is always worse than Theorem 3, but when β is close to 1, it is actually better
than Theorem 2. We will omit the proof of the theorem, since the mechanics are the same as the
proofs we have seen before.

Now, the fact that β-RDDMIS uses an arbitrary ordering of the candidates leaves open the
possibility that by cleverly choosing the order of the candidates, one can get a better bound on
the distortion. Indeed, all of the following modifications improve the guarantee, at least for some
values of β:

(1) Choose a random voter, and use their preference list as the candidate order.

(2) Do the above, but then use the same random voter in the last step to select a candidate.

(3) Either of the above, but use the preference list in reverse for the candidate order.

In fact, (3) with the same voter in the last step is exactly β-RCB (since we consider candidates
in reverse, the voter’s favorite candidate in the set U will be decided after the first loop). As one
might expect, figuring out the optimal way to randomize between all of these different options
makes the rule and its analysis quite complicated. One can at least improve the upper bound on
L(D)/R to α(1 − β)(12 + 9

2β) + β by randomizing between (1) and (2), and randomizing between

this, β-RCB, and ML one can get distortion a little less than 2
√
2. It turns out that β-RaDiUS

gets a better guarantee than all of these for all values of α and β so these do not lead to any
improvement.

C Re-deriving Known Bounds via Biased Metrics

In this section, we revisit some of the various rules that have been studied in the metric voting
distortion literature, and show how upper bounds on their distortions can be proved using the
biased metric framework introduced by [CR22] and refined by our work. The fact that this can be
done is unsurprising – since the biased metrics the hardest metrics, any distortion upper bound for a
rule must somehow be arguing about them under-the-hood. However, many of these upper bounds
also essentially re-do the work of defining the biased metrics (at least in some partial sense), and
so having the biased metrics as a primitive can simplify some of the proofs. We will demonstrate
this for a handful of results, suggesting that the biased metric may be a useful primitive for future
work.
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C.1 Distortion for (Weighted) Uncovered Set Rules

In Section 5.2, we showed an upper bound on the distortion of running Random Dictatorship
restricted to the candidates in the weighted uncovered set U . In this section, we will show the
following distortion bound on choosing any candidate in U .

Theorem 9. Let U be the β-weighted uncovered set for some β ∈ [12 , 1). For any (α, β)-consistent
metric, any candidate j ∈ U will satisfy

SC(j) − SC(i∗)
2 SC(i∗)

≤ αmin

(
0, 1− β2

1− β

)
+

β

1− β
.

Note that the coefficient of α is nonzero as long as β ≤ ϕ−1 where ϕ = 1+
√
5

2 is the golden ratio.
Using α = 1

β , we get the following corollary.

Corollary 11. For all metrics, a candidate in U has distortion at most 1 + 2/β for β ∈ [12 , ϕ
−1],

and at most 1 + 2 β
1−β for β ∈ [ϕ−1, 1).

Taking β = 1
2 , this recovers the result of [ABP15, ABE+18] that any rule that outputs a

candidate in the (unweighted) uncovered set has distortion at most 5. This includes the well known
Copeland rule. Taking β = ϕ−1 this also recovers the distortion 2 +

√
5 rule due to [MW19].

We also note that by Proposition 6, these bounds will also apply to β-RCB. In particular,
Corollary 11 improves Corollary 5 for β ∈ [12 , 0.682], which explains why there is a gap between
Corollary 5 and Theorem 7. In fact, Theorem 7 is tight for β ∈ [12 , ϕ

−1].
These bounds of course also apply to β-RaDiUS, but it turns out that it does not improve on

Theorem 3. In particular, for α ≤ 1
β , α(1 − β2) + β is smaller than the expression in Theorem 9.

Proof of Theorem 9. Let j be any candidate in the β-weighted uncovered set. The fact that j is
not covered by i∗ implies that either sj≻i∗ ≥ 1 − β, or there exists k such that sk≻i∗ ≥ β and
sj≻k ≥ 1 − β. If the former occurs, we just let k = i∗ so that we have the single condition that
sk�i∗ ≥ β and sj≻k ≥ 1− β.

By a similar argument as in the proofs of Theorem 2 and Theorem 3, we can show that

SC(j)− SC(i∗) ≤ xk + βmax(xj − xk, 0)

and

2SC(i∗) ≥ βxk + (1− β)max(xj − xk, 0) =⇒ max(xj − xk, 0) ≤
1

1− β
(2 SC(i∗)− βxk).

It follows that

SC(j)− SC(i∗) ≤ xk

(
1− β2

1− β

)
+

β

1− β
· 2 SC(i∗).

If 1 − β2

1−β ≥ 0, then we can use xk ≤ α · 2 SC(i∗). Otherwise, we just use xk ≥ 0. Putting these
two cases together gives us the desired result.
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C.2 Matchings in Domination Graphs

In the pursuit of a deterministic distortion 3 rule, [MW19] gave the following definition, and proved
the subsequent theorem.

Definition 3. Given an election instance and a pair of candidates a, b, the bipartite graph G(a, b)
is defined as follows. Each side of the graph is a copy of the set of voters V . There is an edge from
v to v′ if there exists a candidate c such that a �v c and c �v′ b.

The matching uncovered set is the set of candidates a such that for all b 6= a, G(a, b) has a
perfect matching.

Theorem 10 ([MW19]). Every candidate in the matching uncovered set has distortion at most 3.

Given this theorem, all that remains is to show that the matching uncovered set is always
nonempty. [GHS20] proved this by considering a more manageable definition, below.

Definition 4. Given an election instance and a candidate a, the domination graph G(a) is a
bipartite graph which has a vertex on each side for each voter, and the edge (v, v′) exists if a �v

top(v′) where top(v′) is the favorite candidate of v′.

It is not hard to see that G(a) is a subgraph of G(a, b) for all b 6= a, Theorem 10 implies that
if G(a) has a perfect matching, then a has distortion at most 3. Since there is only one graph
per candidate, this version can be easier to work with. [GHS20] proved the upper bound of 3 by
showing that there exists a such that G(a) always has a perfect matching, which also implies that
the matching uncovered set is always nonempty.

Here, we will give an alternate proof of Theorem 10 via the biased metric framework.

Proof of Theorem 10. Consider the constraints given by Eq. (4) with λ = 1 and setting pc = 1 and
pi = 0 for i 6= c. This tells us that a candidate a achieves distortion 3 if for all subsets of voters I
with a /∈ I, and all i∗ ∈ I, we have sI≻a + si∗≻Ic ≤ 1.

Suppose that a is in the matching uncovered set. We will use the fact that G(a, i∗) has a perfect
matching to prove that sI≻a + si∗≻Ic ≤ 1.

We claim that in G(a, i∗), there is no edge (v, v′) such that v ∈ SI≻a and v′ ∈ Si∗≻Ic . If there
were, then we have that there exists a candidate c such that a �v c and c �v′ i

∗. But then we have
that I ≻v a �v c which means that c /∈ I, but also c �v′ i

∗ ≻v′ I
c which means c ∈ I. This is a

contradiction, so the claim is true.
It follows that in G(a, i∗), the neighbors of the set SI≻a (on the left) are disjoint from the set

Si∗≻Ic (on the right), which means that |N(SI≻a)| + |Si∗≻Ic | ≤ n. Since G(a, i∗) has a perfect
matching, by Hall’s theorem, |N(SI≻a)| ≥ |SI≻a|. It follows that sI≻a + si∗≻Ic ≤ 1 as desired.

C.3 Plurality Veto

[KK22] later introduced a novel voting rule, Plurality Veto, and showed that it has distortion at
most 3 via Theorem 10 (the domination graph version). Their rule, and the proof of its distortion
are very clean and simple. Here, we take their proof and translate it into one that goes through
the biased metrics instead of Theorem 10. This shows that if one takes the biased metrics as a
primitive, one can prove that there exists a deterministic rule with distortion 3 within a couple of
paragraphs.
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Plurality Veto ([KK22])

• Initially the score of candidate i is n · plu(i).

• One by one, each voter decrements the score of their least favorite candidate with positive
score.

• The last candidate with positive score wins.

Theorem 11 ([KK22]). Plurality Veto guarantees distortion 3.

Proof. Suppose we have an election instance, and let c be the candidate the Plurality Veto chooses.
Like before it suffices to show that for all sets I such that c /∈ I, and all i∗ ∈ I, we have sI≻c ≤
1− si∗≻Ic .

The key observation is that the voters in SI≻c do not decrement the score of any candidate in
I. This is because c always has positive score, and so for any voter in this set, no candidate in
I can be their least favorite candidate with positive score. On the other hand, since none of the
candidates in I are eventually chosen, at least n

∑
i∈I plu(i) voters must decrement the score of

some candidate in I. It follows that

sI≻c ≤ 1−
∑

i∈I
plu(i) ≤ 1− si∗≻Ic

where the last inequality follows because the top candidate of a voter in Si∗≻Ic must be in I.

[KK22] also considered a class of randomized rules that are variants of Plurality Veto, called
k-Round Plurality Veto. Instead of every voter having the opportunity to decrement some candi-
date’s score, only k voters do so. Then, the rule randomly chooses a candidate with probability
proportional to their score. Notice that if k = 0, this rule is exactly Random Dictatorship, so the
choice of k can be thought of as a measure of interpolation between Random Dictatorship and
Plurality Veto.

Using a generalization of the flow technique used in [Kem20b], [KK22] showed that for any k,
k-Round Plurality Veto has distortion at most 3. Below, we show that this can also be done via
the biased metrics, which is arguably simpler.

Theorem 12 ([KK22]). k-Round Plurality Veto has distortion 3 for all 0 ≤ k ≤ n.

Proof. Let pj be the probability that an k-Round Plurality Veto chooses candidate j (for some
fixed ordering of the voters). As we have seen before, it suffices to show that for all sets I and all
i∗ ∈ I, we have that ∑

j /∈I
sI≻jpj ≤ 1−

∑

i∈I
plu(i) =

∑

j /∈I
plu(j).

Among the k voters that decremented a candidate’s score, let Vj denote the set that decremented
candidate j’s score, and let VI =

⋃
i∈I Vi denote the set that decremented the score of some candi-

date in set I. We will use the lower case v to denote the proportion of voters in the corresponding
set. For instance, note that k

n = vC = vI + vIc . With this notation, we can observe that

pj =
plu(j) − vj
1− vC

=
plu(j)− vj
1− vI − vIc

.
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On the other hand, if pj > 0 then no voter in the set SI≻j decrements the score of a candidate in
I. i.e., sI≻j ≤ 1− vI . This tells us that

∑

j /∈I
sI≻jpj ≤

1− vI
1− vI − vIc

∑

j /∈I
(plu(j)− vj) =

1− vI
1− vI − vIc


−vIc +

∑

j /∈I
plu(j)


 .

Therefore, it suffices to show that

(1− vI)


−vIc +

∑

j /∈I
plu(j)


 ≤ (1− vI − vIc)

∑

j /∈I
plu(j).

Rearranging, we see that this is equivalent to
∑

j /∈I
plu(j) ≤ 1− vI ⇐⇒ vI ≤

∑

i∈I
plu(i).

This is of course true because n
∑

i∈I plu(i) is the total initial score of the candidates in I, and
nvI = |VI | is the amount that these scores are decremented in the rule.

C.4 Random Dictatorship and its Variants

[AP17, FFG16] first showed that Random Dictatorship, which chooses candidate i with probability
plu(i), gets distortion 3. This can be proved quite easily using Eq. (4):

∑

j /∈I
sI≻j plu(j) ≤

∑

j /∈I
plu(j) ≤ 1− si∗≻Ic .

The last inequality follows because the set of voters where i∗ is preferred over Ic is disjoint from
the set of candidates that ranks j /∈ I first, for all j.

[GHS20] showed that Smart Dictatorship, which chooses candidate i with probability propor-

tional to plu(i)
1−plu(i) , has distortion at most 3 − 2/m within the class of instances with m candidates.

[CR22] showed that this can also be proved using Eq. (4). Since 1 − plu(j) ≥ sI≻j, we have very
similarly that

∑

j /∈I
sI≻j

plu(j)

1− plu(j)
≤
∑

j /∈I
plu(j) ≤ 1− si∗≻Ic .

This means that in Eq. (4), we can take 1
λ =

∑
i

plu(i)
1−plu(i) , which is at least 1

1−‖plu‖22
by Jensen’s

inequality with the function f(x) = 1
1−x . This gives us distortion 3− 2‖plu‖22 ≤ 3− 2/m.

Finally, we note that this approach can also give us stronger distortion guarantees in special
cases of election instances. For instance, we can prove the following.

Theorem 13. Within the class of instances where si≻j ∈ [12 − ε, 12 + ε] for all i, j, Random Dicta-
torship guarantees distortion at most 2 + 2ε.

Proof. We have sI≻j ≤ 1
2 + ε, and so

∑

j /∈I
sI≻j plu(j) ≤ (12 + ε)

∑

j /∈I
plu(j) ≤ (12 + ε)(1 − si∗≻Ic).

This means that in Eq. (4), we can take λ = 1
2 + ε, which corresponds to distortion 1 + 2(12 + ε) =

2 + 2ε.

33



D Proofs for the Biased Metrics

In this section, we will prove two key properties of the biased metrics: (1) that Definition 1 actually
defines a valid metric space, and (2) that these metrics are the hardest for the problem. These
proofs are adapted from [CR22] with minor adjustments.

Proposition 12. For any vector (x1, . . . , xm) of nonnegative real numbers where xi∗ = 0, and any
election instance, the biased metric corresponding to (x1, . . . , xm) is indeed a valid distance metric.

Proof. Clearly, the distances we have defined are nonnegative, since the expression for d(i∗, v) allows
for i = j, which means that it is the maximum over a set that includes 0, and for any j 6= i∗ we
have d(j, v) ≥ d(i∗, v). Thus, it suffices to show that the metric satisfies the triangle inequality.

We can view the metric as a weighted graph, and in order to show that it satisfies the triangle
inequality, we need to show that the weight of any edge is at most the sum of the weights of any
path between the endpoints of the edge.

Suppose we have some path between a candidate j and voter v. We will show that d(j, v) is at
most the total weight of the path. Recall that d(j, v) = d(i∗, v) + min

k:j�vk
xk ≤ d(i∗, v) + xj . Now,

suppose that the first two edges on the path are (j, u) and (u, k), and the last edge is (i, v). Then
the total length of the path is at least

d(j, u) + d(u, k) + d(i, v) ≥ d(j, u) + d(i∗, u) + d(i∗, v).

Now, d(j, u) = d(i∗, u) + xℓ for some ℓ for which j �u ℓ. By the definition of d(i∗, u), we also have
2d(i∗, u) ≥ xj − xℓ. Putting all of these together, we have

d(j, u) + d(i∗, u) + d(i∗, v) ≥ 2d(i∗, u) + xℓ + d(i∗, v) ≥ xj + d(i∗, v) ≥ d(j, v)

as desired.

Proposition 13. Suppose we have an election instance and a distance metric d that is consistent
with the instance. Let i∗ = argmini SC(i, d). Then there is a biased metric d̂ such that SC(i∗, d̂) ≤
SC(i∗, d) and SC(j, d̂)− SC(i∗, d̂) ≥ SC(j, d) − SC(i∗, d) for each j 6= i∗.

In particular, this shows that for any election rule, the distortion of the rule is greater with d̂
than with d. Thus, showing that a rule has low distortion on all biased metrics is sufficient to show
that it has low distortion for all metrics.

Proof. Let xi = d(i, i∗), and let d̂ be the biased metric for (x1, x2, . . . , xm). We will show that
for any voter v, d̂(i∗, v) ≤ d(i∗, v) and d̂(j, v) − d̂(i∗, v) ≥ d(j, v) − d(i∗, v), which will immediately
imply the proposition.

Fix v, and let i and j be such that i �v j. Then we have

d(i, i∗) ≤ d(i, v) + d(i∗, v) ≤ d(j, v) + d(i∗, v) ≤ d(j, i∗) + 2d(i∗, v).

This implies that d(i∗, v) ≥ d(i,i∗)−d(j,i∗)
2 =

xi−xj

2 . Taking the maximum over all choices of i and j
such that i �v j, we get

d(i∗, v) ≥ 1

2
max

i,j:i�vj
(xi − xj) = d̂(i∗, v)
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as claimed. Next, fix a candidate j 6= i∗ and a voter v. Let k = arg min
k:j�vk

xk, so that d̂(j, v) −

d̂(i∗, v) = xk. Then we have

d(j, v) ≤ d(k, v) ≤ d(k, i∗) + d(i∗, v) = xk + d(i∗, v)

which means that
d(i, v) − d(i∗, v) ≤ xj = d̂(i, v) − d̂(i∗, v)

as claimed. This establishes the proposition.
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