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Abstract

We consider the problem of comparison-sorting an n-permutation S that avoids some k-
permutation π. Chalermsook, Goswami, Kozma, Mehlhorn, and Saranurak [CGK`15b] prove
that when S is sorted by inserting the elements into the GreedyFuture [DHI`09] binary
search tree, the running time is linear in the extremal function ExpPπ b

´

‚
‚ ‚

¯

, nq. This is the

maximum number of 1s in an n ˆ n 0–1 matrix avoiding Pπ b
´

‚
‚ ‚

¯

, where Pπ is the k ˆ k

permutation matrix of π, and Pπ b
´

‚
‚ ‚

¯

is the 2k ˆ 3k Kronecker product of Pπ and the “hat”

pattern
´

‚
‚ ‚

¯

. The same time bound can be achieved by sorting S with Kozma and Saranurak’s

SmoothHeap [KS20].
Applying off-the-shelf results on the extremal functions of 0–1 matrices, it was known that

ExpPπ b
´

‚
‚ ‚

¯

, nq “

#

Ωpnαpnqq,

O
´

n ¨ 2pαpnqq3k{2´Op1q
¯

,

where αpnq is the inverse-Ackermann function. In this paper we give nearly tight upper and lower
bounds on the density of Pπ b

´

‚
‚ ‚

¯

-free matrices in terms of “n”, and improve the dependence
on “k” from doubly exponential to singly exponential.

ExpPπ b
´

‚
‚ ‚

¯

, nq “

#

Ω
`

n ¨ 2αpnq
˘

, for most π,

O
´

n ¨ 2Opk2q`p1`op1qqαpnq
¯

, for all π.

As a consequence, sorting π-free sequences can be performed in Opn2p1`op1qqαpnqq time. For
many corollaries of the dynamic optimality conjecture, the best analysis uses forbidden 0–1
matrix theory. Our analysis may be useful in analyzing other classes of access sequences on
binary search trees.

1 Introduction

The problem of sorting restricted classes of permutations has been studied for decades. Knuth [Knu73]
observed that the class of permutations sortable by a stack is precisely the set of p2, 3, 1q-avoiding
permutations; see [Tar72, BGH`10, MSS19, HI01, EG17a, EG17b, FP08, AB15, AMR02] and
Bóna’s survey [Bón02] for models of restricted sorting devices. In general, an n-permutation S

avoids a k-permutation π if there do not exist indices i1 ă ¨ ¨ ¨ ă ik for which

@p, q P rks. Spipq ă Spiqq ðñ πppq ă πpqq.

∗Supported by NSF grants CCF-1815316 and CCF-2221980 and by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under grant agreement No 759557.
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In this paper we consider the algorithmic problem of comparison-sorting a π-avoiding S.

Decision Tree Complexity. Fredman [Fre76] observed that if S is known to be selected from
a permutation set Γ, that S can be sorted with Opn ` log |Γ|q comparisons. The Stanley-Wilf
conjecture (see Bóna [Bón22]) states that if Γπ is the set of all π-avoiding permutations, that |Γπ| ď
pcpπqqn, for some constant cpπq. This conjecture was reduced to the Füredi-Hajnal conjecture [FH92]
by Klazar [Kla00] and both conjectures were proved by Marcus and Tardos [MT04]. Together with
Fredman [Fre76], this implies that the decision-tree complexity of sorting S isOpn log cpπqq “ Okpnq.
Subsequent work has attempted to pin down the leading constant [Kla00, MT04, Cib09, Fox13,
CK17]. Fox [Fox13] proved that1

n log cpπq “

$

&

%

Opknq For all k-permutations π,

Ωpk1{2nq For some k-permutation π,

Ωppk{ log kq1{2nq For almost all k-permutations π.

Algorithmic Complexity. There are two natural ways to approach the algorithmic complexity
of sorting a π-free S. The first is to use knowledge of π to structure the sorting process. This
approach is sufficient to sort optimally in Opnq time when k “ 3 [Knu73, Art07], and has had
limited success for some patterns with k “ 4. Arthur [Art07] gave Opnq-time sorting algorithms
when π P tp1, 2, 3, 4q, p1, 2, 4, 3q, p2, 1, 4, 3qu, and Opn log log log nq-time sorting algorithms when
π P tp1, 3, 2, 4q, p1, 3, 4, 2q, p1, 4, 2, 3q, p1, 4, 3, 2qu. The oblivious approach to sorting S is to simply
use a general-purpose sorting algorithm, but analyze its behavior when S happens to be π-free. This
is the approach taken by Chalermsook, Goswami, Kozma, Mehlhorn, and Saranurak [CGK`15b],
Kozma and Saranurak [KS20], and by our paper. Consider these two general-purpose sorting
algorithms:

BST Sort. Fix some dynamic binary search tree (BST) algorithm T . Beginning from an empty
BST, insert the elements Sp1q, . . . , Spnq in that order, reorganizing the tree between inserts
as T dictates. The number of comparisons is the sum of depths of pSpiqq1ďiďn at the time of
their insertion; the time is linear in the number of comparisons and that needed to reorganize
the tree via rotations.

Heap Sort. Fix some heap data structure H. Insert the elements Sp1q, . . . , Spnq into the heap in
that order, then perform n Delete-Min operations, thereby sorting the sequence.

Chalermsook et al. [CGK`15b] analyzed the performance of BST Sort when T is GreedyFu-

ture [DHI`09], an online BST that is Op1q-competitive with the natural offline Greedy algo-
rithm [Luc88, Mun00]. Define AS to be the nˆn 0–1 permutation matrix where ASpi, Spiqq “ 1. If
S avoids a k-permutation π, then AS is Pπ-free, where Pπpi, πpiqq “ 1. Define AGreedypSqpi, jq “ 1
iff the element with rank j is touched by the insertion of Spiq. Chalermsook et al. [CGK`15b]
proved that any occurrence of the “hat” pattern

`

‚
‚ ‚

˘

in AGreedypSq contains, within its bounding
box, an input point of AS , and as a consequence, AGreedypSq avoids Q “ Pπ b

`

‚
‚ ‚

˘

, where b is the
Kronecker product, i.e., each 1 of Pπ is replaced by

`

‚
‚ ‚

˘

. (Following convention, 0–1 matrices are

1The manuscript [Fox13] only gives an Ωpk1{4nq lower bound on the decision tree complexity of sorting a π-free
S. The Ωpk1{2nq lower bound is unpublished.
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depicted with blanks for 0s and bullets for 1s. See Section 2 for explicit definitions regarding 0–1
matrices.) For example, if π “ p1, 3, 2, 4q, ordering rows from bottom to top:

Pπ “

¨

˚

˚

˝

‚
‚

‚
‚

˛

‹

‹

‚

Q “ Pπ b
`

‚
‚ ‚

˘

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

‚
‚ ‚

‚
‚ ‚

‚
‚ ‚

‚
‚ ‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

If X is a fixed 0–1 pattern matrix, define ExpX,nq be the maximum number of 1s in an n ˆ n

matrix that avoids X. Thus, the running time of [CGK`15b] can be bounded in terms of ExpQ,nq
without knowing exactly what it is.

Theorem 1.1 (Chalermsook, Goswami, Mehlhorn, Kozma, and Saranurak [CGK`15b]). If S is
π-free, BST Sort using GreedyFuture sorts S in OpExpQ,nqq time, where Q “ Pπ b

`

‚
‚ ‚

˘

.

Observe that Q is a 2k ˆ 3k light pattern: it contains exactly one 1 per column. There is a well
known connection between light patterns and generalized Davenport-Schinzel sequences [Kla92,
FH92, Kes09, Pet11b, Pet15b]. Applying a simplifying transformation that collapses the first two
rows [FH92, Thm. 2.2] and then [Pet15b, Thm. 1.3], we have the following general upper bound,
where αpnq is the inverse-Ackermann function.

ExpQ,nq ď

$

&

%

2nαpnq ` Opnq k “ 2

n ¨ 2p1`op1qqαtpnq{t! k odd, t “ p3k ´ 5q{2

n ¨ pαpnqqp1`op1qqαt pnq{t! k even, t “ p3k ´ 6q{2

(1)

Thus, by Theorem 1.1, GreedyFuture sorts S in Opn ¨ 2αpnq3k{2´Op1q
q time. On the lower bound

side, we know that ExpQ,nq “ Ωpnαpnqq as every Q contains one of the two patterns shown below,
which are associated with order-3 Davenport-Schinzel sequences [HS86, FH92].

¨

˝

‚
‚

‚ ‚

˛

‚

¨

˝

‚
‚

‚ ‚

˛

‚

The Greedy algorithm is theoretically attractive, but cumbersome to implement online as
GreedyFuture [DHI`09]. Kozma and Saranurak [KS20] introduced a new heap data structure
called a SmoothHeap, and proved Heap Sort with SmoothHeap is equivalent to BST Sort with
Greedy. Moreover, SmoothHeap is “naturally” an online algorithm, and is easier to implement
than GreedyFuture. One can define an nˆn 0–1 matrix ASmoothHeappSq in the same way, where
ASmoothHeappSqpi, jq “ 1 iff the ith Delete-Min touches the element with rank j. It is proved that
ASmoothHeap avoids a matrix equivalent to Q.2

Theorem 1.2 (Kozma and Saranurak [KS20]). If S is π-free, Heap Sort using GreedyFuture

sorts S in OpExpQ,nqq time, where Q “ Pπ b
`

‚
‚ ‚

˘

.

2Strictly speaking the equivalence between Greedy and SmoothHeap swaps the roles of time and space. Sorting
S with Greedy is isomorphic to sorting ST with SmoothHeap, where ST is the transpose permutation: Spiq “ j ô
ST pjq “ i. Note that ST avoids πT . Since the extremal functions for Q and QT are identical on square matrices, we
infer that the time to sort ST is also OpExpQ,nqq.

3



The main outstanding question is whether it is possible to sort in Okpnq time, and in particular,
whether the Greedy- or SmoothHeap-based algorithms of [CGK`15b, KS20] already sort in
time Okpnq. It would also be interesting to give a non-trivial upper bound on the complexity of
BST Sort with a Splay Tree [ST85], or Heap Sort with a Pairing Heap [FSST86].

1.1 New Results

1.1.1 Upper Bounds

Our main result is a new upper bound on the extremal function of Pπ b
`

‚
‚ ‚

˘

-type matrices that has
a much weaker dependence on k, which immediately gives better upper bounds on the complexity
of sorting π-free sequences via [CGK`15b, KS20].

Theorem 1.3. Let Pπ be the k ˆ k permutation matrix of π and Q “ Pπ b
`

‚
‚ ‚

˘

be a 2k ˆ 3k light
matrix. Then

ExpQ,nq ď n ¨
´

2Opk2q ` Opαpnqq3k´2
¯

2αpnq “ n ¨ 2Opk2q`p1`op1qqαpnq .

Corollary 1.4. If S is π-free, then BST Sort using GreedyFuture and Heap Sort using the
SmoothHeap will sort S in n ¨ 2Opk2q`p1`op1qqαpnq time.

One can view Corollary 1.4 as improving on the n2αpnq3k{2´Op1q
bound of (1) in two ways. It

is an asymptotic improvement in n as it brings the exponent of αpnq from 3k{2 ´ Op1q down to
1. However, even if one is tempted to consider αpnq to be a small constant, it also reduces the
dependency on k from doubly exponential to merely singly exponential.

It is possible to improve the factor 2αpnq for a specific product pattern. For example,

Theorem 1.5. If Ik is the k ˆ k identity matrix, then

ExpIk b
`

‚
‚ ‚

˘

, nq ď 2pk ´ 1qnαpnq ` Opknq.

1.1.2 Lower Bounds

When k ě 2, all Q “ Pπ b
`

‚
‚ ‚

˘

patterns contain
´

‚
‚

‚ ‚

¯

or its reflection, which is known to have

extremal function Exp
´

‚
‚

‚ ‚

¯

, nq “ 2nαpnq ˘ Opnq [HS86, FH92, Niv10, Pet15a].

We prove that ExpPπ b
`

‚
‚ ‚

˘

, nq “ Ωpn2αpnqq whenever π contains p3, 1, 2q or p2, 1, 3q, or equiv-
alently, when Pπ contains

´

‚
‚

‚

¯

or
´

‚
‚

‚

¯

. Thus, Theorem 1.6 implies that the general upper

bound of Theorem 1.3 can only be improved in the polypαpnqq factor.

Theorem 1.6. ExpW,nq “ Θpn2αpnqq, where

W “

¨

˚

˚

˝

‚
‚

‚
‚ ‚

˛

‹

‹

‚

.
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1.2 Pattern-avoidance and the Dynamic Optimality Conjecture

The original dyanamic optimality conjecture [ST85] states that the (online) Splay BST is Op1q-
competitive with the optimum offline BST, for any sequence with length Ωpnq. Today dynamic
optimality usually refers to the conjecture that there exists an Op1q-competitive BST, withGreedy

/ GreedyFuture [Luc88, Mun00, DHI`09] and Splay being the foremost candidates.
It is an open problem to prove oplog nq-competitiveness for Splay or Greedy, though some

corollaries of dynamic optimality have been proved [ST85, Tar85, Col00, CMSS00, IL16, CGJ`23,
LT19]. Many corollaries of dynamic optimality can be characterized by forbidden patterns. For
example, the optimum BST executes all of these sequences in linear time.3

Sequential. The sequential access sequence S “ p1, 2, . . . , nq avoids p2, 1q.

Deque. In a deletion-only deque sequence, Spiq is either the minimum or maximum of tSpiq, Spi`
1q, . . . , Spnqu. Deque sequences avoid tp213q, p312qu. (In a deque, the accessed elements are
also typically deleted from the tree [Sun92, Pet08].)

Preorder and Postorder. Let R be any BST over t1, . . . , nu and S be a preorder (or postorder)
traversal of R. Then S avoids p231q (or p312q). (The Traversal Conjecture of Sleator and
Tarjan [ST85] concerned preorder sequences. If the accessed elements in a preorder sequence
are moved to the root and deleted, yielding two trees, this corresponds with Lucas’s definition
of Split-sequences [Luc91].)

k-Increasing. S can be decomposed into pk´1q increasing subsequences, or equivalently, S avoids
pk, . . . , 2, 1q.

k-Recursively Decomposable. A permutation S is k-recursively decomposable if (i) the 1s of the
corresponding permutation matrix AS can be partitioned into k non-overlapping rectangles,
and (ii) those rectangles are themselves k-recursively decomposable, where in the base case,
any 1 ˆ 1 matrix is k-recursively decomposable. These sequences avoid all simple pk ` 1q-
permutations.4

Figure 1 shows the relationship between the classes of permutations, and Table 1 gives some
known upper bounds on the performance of Splay and Greedy. In particular, our new upper
bound on ExpPπ b

`

‚
‚ ‚

˘

, nq improves on the bounds for k-recursively decomposable sequences (when
preprocessing is not allowed), and k-permutation avoiding sequences.

1.3 Organization

In Section 2 we review forbidden 0–1 matrix terminology, and some key results. In Section 3
we prove Theorem 1.3, establishing the n2p1`op1qqαpnq upper bound on P b

`

‚
‚ ‚

˘

-type matrices. In
Section 4 we prove Theorem 4.5’s Ωpn2αpnqq lower bound on W -free matrices. Section 5 presents
some additional upper bounds, on Ik b

`

‚
‚ ‚

˘

-free matrices (Theorem 1.5) and matrices avoiding W

and its reflection. We conclude with some open problems in Section 6.

3Note that the problem we study in this paper is not on this list. There is no published proof yet to the effect
that “accessing a π-avoiding S in Oπpnq time” is a corollary of dynamic optimality. The Oπpnq-height decision-tree
implied by Fredman [Fre76] is not obviously implementable as a dynamic binary search tree.

4A pk ` 1q-permutation π is simple if there is no interval I Ă t1, . . . , k ` 1u with |I | P r2, ks such that πpIq
def
“

tπpjq | j P Iu “ I .

5



k-permutation

avoiding

k-recursively

decomposable
k-increasing

preorder

traversal
postorder

traversal

deque

sequential

[CGKMS 2015]

[Sleator, Tarjan 1985]

Figure 1: Relation between classes of search sequences. The upper class contains the lower ones.

Search Sequence Forbidden Pattern Splay Greedy Citation

Sequential p21q-free Opnq Opnq [Tar85]

Deque tp213q, p231qu-free Opnα˚pnqq Opnαpnqq [Pet08, CGJ`23]

Preorder p231q-free — Opn2αpnqq [CGJ`23]

Postorder p312q-free — Opnq [CGJ`23]

k-Increasing pk, . . . , 2, 1q-free — Opmintnk2, nkαpnquq [CGJ`23]

k-Recursively avoids all simple Opn log kq
decomposable pk ` 1q-permutations

—
(prepr. initial tree)

[GG19]

k-Permutation
avoiding

π-free — OpExpPπ b
`

‚
‚ ‚

˘

, nqq [CGK`15b]

Table 1: Upper Bounds on Structured Search Sequences
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2 Preliminaries

Let A P t0, 1unˆm and P P t0, 1ukˆl. The weight of A, denoted as }A}1, is the number of 1’s in
A. We say P is contained in A, written P ă A if there are row indices r1 ă ¨ ¨ ¨ ă rk and column
indices c1 ă ¨ ¨ ¨ ă cl such that P pi, jq “ 1 Ñ Apri, cjq “ 1. In other words, you can obtain P from
A by deleting rows and columns, and flipping some 1s to 0. The extremal functions are defined as
follows.

ExpP, n,mq “ maxt}A}1 | A P t0, 1unˆm, P ć Au,

ExpP, nq “ ExpP, n, nq.

If P is a kˆk permutation matrix, it is known that both ExpP, nq and ExpP b
`

‚
‚

˘

, nq are Okpnq,
but we will be interested in the leading constants as well.

Theorem 2.1 (Marcus and Tardos [MT04], Geneson [Gen09], Fox [Fox13], Cibulka and Kyncl [CK17],
Geneson [Gen15], Geneson and Tian [GT17]). Let P be any permutation matrix. Then there exists
constants Ck, C

1
k ď 2p4`op1qqk such that

ExpP, n,mq ď Ckpn ` mq,

ExpP b
`

‚
‚

˘

, n,mq ď C 1
kpn ` mq.

3 The Upper Bound

3.1 Establishing the General Recurrence

Let P be a k ˆ k permutation matrix and Q “ P b
`

‚
‚ ‚

˘

be the 2k ˆ 3k forbidden pattern. Define
Qa,b to be the 2kˆ p3k´ pa` bqq matrix derived from Q by removing the first a and last b columns.
For reasons that will become clear later, we must redefine the contains relation ă differently for
the Qa,b matrices.

Definition 3.1. We will say that Qa,b ă A if there are 2k rows r1 ă ¨ ¨ ¨ ă r2k and 3k ´ a ´ b

columns c1 ă ¨ ¨ ¨ ă c3k´a´b such that

• Qa,bpi, jq “ 1 implies Apri, cjq “ 1

• If @j. Qa,bpi, jq “ 0 then Dj1. Apri, j
1q ‰ 0. In other words, an all-0 row Qa,bpi, ¨q cannot match

an all-0 row of A. (Note that j1 need not be in tc1, . . . , c3k´a´bu.)

Let A be an n ˆ m Qa,b-free matrix with weight ExpQa,b, n,mq. We will classify all 1s in
A according to the following taxonomy, and bound the number of 1s in each class directly or
inductively.

7



All 1s

Local Global

First Middle Last

Light Heavy

Light-first Light-middle Light-last

Partition A into slabs of B consecutive columns. A row is called local if it has a non-zero
intersection with exactly one slab and global otherwise. The 1s in local/global rows are themselves
local/global. Let ni be the number of rows local to slab i and n˚ be the number of global rows, so
n “ n˚ `

ř

i ni.
Suppose Apr, cq “ 1 is a 1 appearing in a global row r and slab s “ rc{Bs. We classify this 1 as

first if the intersection of row r and slabs 1, . . . , s ´ 1 are zero, last if the intersection of row r and
slabs s ` 1, . . . , rm{Bs is zero, and middle otherwise.

Since each slab is itself Qa,b-free, the total number of local 1s is at most

rm{Bs
ÿ

i“1

ExpQa,b, ni,miq, (2)

where mi is the number of columns in slab i, which is exactly B except perhaps the last slab.
Similarly, if Afirst and Alast are the matrices of first 1s and last 1s, then each slab of Afirst is Qa,b`1

free, and each slab of Alast is Qa`1,b-free; see Figure 2. Letting n
f
i (nl

i) be the number of rows with
first (last) 1s in slab i, we can upper bound first and last 1s as follows.

}Afirst}1 ` }Alast}1 ď

rm{Bs
ÿ

i“1

´

ExpQa,b`1, n
f
i ,miq ` ExpQa`1,b, n

l
i,miq

¯

ď ExpQa,b`1, n
˚,m ´ mrm{Bsq ` ExpQa`1,b, n

˚,m ´ m1q. (3)

In Eqn. (3) we use the superadditivity of Ex to simplify the expression. For anyR, ExpR,n1,m1q`

ExpR,n2,m2q ď ExpR,n1 ` n2,m1 ` m2q. Note that
ř

i n
f
i “

ř

i n
l
i “ n˚ and that the first and

last slabs contain no last 1s and first 1s, respectively.
Let A˚ be the n˚ ˆm matrix formed by the global rows and containing only the middle 1s. We

partition the rows of A˚ into horizontal slabs of G rows each, so the intersections of the horizontal
and vertical slabs induce GˆB blocks. Call a GˆB block in A˚ heavy if it contains a

`

‚
‚ ‚

˘

, and light
otherwise. The middle 1s inside heavy/light blocks are themselves called heavy/light. Let Aheavy

and Alight be the n˚ ˆ m matrices containing heavy and light 1s, respectively. In a light block, the
first 1 and last 1 of each row are called light-first and light-last, and all other 1s in the row are
light-middle.

8



¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

‚
‚ ÝÝÝÝÑ ‚

‚
‚ ‚

‚
‚ ‚

‚
‚ ‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Figure 2: Vertical lines mark the boundary of some slab. If Q0,1 appears in one slab of Afirst, then
there must be an occurrence of Q “ Q0,0 in A.

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ÝÝÝÝÝÝÝÝÝÑ‚
‚

‚
‚ ‚

‚
‚ ‚

‚ ÐÝÝÝÝÝÝÝÝÝ
‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Figure 3: If an instance of Q2,2 is contained in a single slab of middle 1s (e.g., Aheavy or Alight),
then Q1,1 must also appear in A. This inference relies on how contains is defined for Qa,b matrices
in Definition 3.1. In particular, it is critical that all-zero rows of Q2,2 must not be all-zero in the
instance of middle 1s.

Define Ac
heavy to be the n˚{G ˆ m{B matrix obtained by contracting each block in Aheavy to

a single entry, i.e., non-zero blocks become 1 and all-zero blocks become 0. Because each heavy
block contains a

`

‚
‚ ‚

˘

, Ac
heavy is P -free, implying }Ac

heavy}1 (the number of heavy blocks) is at most
ExpP, n˚{G,m{Bq. Since each heavy block consists solely of middle 1s, each is Qa`1,b`1-free; see
Figure 3. Thus,

}Aheavy}1 ď ExpP, n˚{G,m{Bq ¨ ExpQa`1,b`1, G,Bq. (4)

Let Ac
light be obtained by contracting the B columns in each slab of Alight to a single column.

Ac
light inherits the Qa,b-freeness of Alight and A, so the contribution of light 1s in the light-first and

light-last categories is at most

2}Ac
light}1 ď 2ExpQa,b, n

˚,m{Bq. (5)

What remains is to bound the light 1s in the light-middle category. Construct an n˚{G ˆ m{B
matrix Alightmid by the following procedure, which is similar to that of [Gen09]. Assume the rows
of Alightmid are numbered from bottom to top. For each i independently, scan the blocks in slab i

that contain light-middle 1s from bottom to top, setting Alightmidpℓ0, iq “ Alightmidpℓ1, iq “ ¨ ¨ ¨ “ 1
according to the following rules. See Figure 4.

1. pℓ0, iq is the first block in slab i containing a light-middle 1.
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¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ℓj : ‚ ‚ ‚

‚ ‚ ‚

‚ ‚

§

§

§

§

§

§

§

§

§

đ

‚

ℓj´1 : ‚ ‚ ‚

i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Figure 4: Vertical and horizontal lines mark block boundaries. Underlined 1s are light-middle 1s.

2. ℓj ą ℓj´1 is the first index such that some column in blocks pℓj´1, iq, . . . , pℓj , iq contains two
light-middle 1s.

Call the interval of blocks pℓj´1, iq, . . . , pℓj ´ 1, iq in Alight (i.e., excluding pℓj , iq) a chunk. By
construction, the intersection of a column and a chunk can contain at most one light-middle 1.
(Note that no light block contains two light-middle 1s in the same column, for otherwise it would
contain a

`

‚
‚ ‚

˘

pattern and be classified as heavy.) We claim Alightmid is P b
`

‚
‚

˘

-free, and therefore
the number of light-middle 1s in Alight is, by superadditivity, at most

B ¨ }Alightmid}1 ď B ¨ ExpP b
`

‚
‚

˘

, n˚{G,m{Bq ď ExpP b
`

‚
‚

˘

, Bn˚{G,mq. (6)

Consider an occurrence of
`

‚
‚

˘

in Alightmid, say Alightmidpℓj , iq “ Alightmidpℓj1 , iq “ 1. By construction
they lie in different chunks, thus there must be a column in slab i of Alight that contains two light-
middle 1s in blocks pℓj , iq, . . . , pℓj1 , iq inclusive. Together with a light-first and light-last 1, this forms
a

`

‚
‚ ‚

˘

pattern. Thus, any occurrence of P b
`

‚
‚

˘

in Alightmid implies an occurrence of Q “ P b
`

‚
‚ ‚

˘

in Alight, contradicting the fact that Alight is Qa,b-free.
Combining Eqns. (2,3,4,5,6), we arrive at a recursive upper bound on ExpQa,b, n,mq.

ExpQa,b, n,mq ď

rm{Bs
ÿ

i“1

ExpQa,b, ni,miq local 1s

` ExpQa,b`1, n
˚,m ´ mrm{Bsq ` ExpQa`1,b, n

˚,m ´ m1q first and last 1s

` ExpP, n˚{G,m{Bq ¨ ExpQa`1,b`1, G,Bq heavy middle 1s

` 2ExpQa,b, n
˚,m{Bq light-first/-last 1s

` ExpP b
`

‚
‚

˘

, Bn˚{G,mq. light-middle 1s (7)

3.2 Analysis of The Recurrence

Lemma 3.2. Let t “ 3k ´ pa ` bq be the number of 1s in Qa,b. If t “ 3 then ExpQa,b, n,mq ď
2n ` p2k ´ 1qpm ´ 2q and if t “ 2 then ExpQa,b, n,mq ď n ` p2k ´ 1qpm ´ 1q.
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Proof. First consider t “ 3. Qa,b contains only three 1s and either 2k ´ 2 or 2k ´ 3 all-zero rows.
Those three 1s are equivalent to

`

‚
‚ ‚

˘

,
´

‚
‚

‚

¯

, or
´

‚
‚

‚

¯

. Suppose A is Qa,b-free. Remove the first and
last 1 in each row of A, then remove the first 2k ´ 1 1s in each of m ´ 2 columns, excluding the
first and last, which are now all zero. If any 1 remains, then there must have been an occurrence
of Qa,b in A. The t “ 2 case is proved similarly.

Lemma 3.3. If m ď 2j , ExpQa,b, n,mq ď 2t´2n`p2k´1qjmaxt0,t´3upm´2q, where t “ 3k´pa`bq.

Proof. The cases t P t2, 3u follow from Lemma 3.2, so we may assume t ą 3. We consider a
simplified version of (7) in which B “ rm{2s, i.e., m1 “ rm{2s and m2 “ tm{2u. There are only
two slabs, all 1s are classified as local, first, or last, and we have

ExpQa,b, n,mq ď
ÿ

iPt1,2u

ExpQa,b, ni,miq ` ExpQa,b`1, n
˚,m1q ` ExpQa`1,b, n

˚,m2q.

Applying the inductive hypothesis to each term, this is at most

ď 2t´2pn1 ` n2q ` p2k ´ 1qpj ´ 1qt´3 prm{2s ´ 2 ` tm{2u ´ 2q

` 2 ¨ 2t´3n˚ ` p2k ´ 1qpj ´ 1qt´4 prm{2s ´ 2 ` tm{2u ´ 2q

“ 2t´2n ` p2k ´ 1q
`

pj ´ 1qt´3 ` pj ´ 1qt´4
˘

pm ´ 4q

ď 2t´2n ` p2k ´ 1qjt´3pm ´ 2q.

We use the following version of Ackermann’s function and its inverses.

a1,j “ 2j for j ě 1,

ai,1 “ 2 for i ě 2,

ai,j “ w ¨ ai´1,w, where w “ ai,j´1. for i, j ě 2,

αpn,mq “ minti : ai,j ě m,where j “ maxt3, rn{msuu

αpnq “ αpn, nq

Observe that in the table of Ackermann values, the 1st column is constant (ai,1 “ 2) and the
second merely exponential (ai,2 “ 2i`1) so we have to look to the third column to see Ackermann-
type growth, which is why we set j as j “ maxt3, rn{msu.

Lemma 3.4. Fix a constant c “ 3k. Suppose m ď pai,jqc. Then

ExpQa,b, n,mq ď µi,tpn ` pcjqmaxt0,t´3up2k ´ 1qpm ´ 2qq,

where t “ 3k ´ pa ` bq and µi,t “ p2Opktq ` Opiqt´2q2i.

Proof. The proof is by induction on i, j, and t. The cases t P t2, 3u were already handled, so assume
t ě 4. Let A be a Qa,b-free n ˆ m matrix, where m ď pai,jqc. We apply Eqn. (7) with B,G set as
follows:

B “ aci,j´1,

G “ pcpj ´ 1qqmaxt0,t´5up2k ´ 1qpB ´ 2q.

11



Observe that

m{B ď pai,j{ai,j´1qc “ pai´1,ai,j´1
qc.

We apply the induction hypothesis at pi, j ´ 1, tq to local 1s at pi, j, t ´ 1q to first/last 1s, at
pi, j ´ 1, t´ 2q to heavy middle 1s, and at pi´ 1, ai,j´1, tq to light-first/light-last 1s. Plugging these
bounds into Eqn. (7) and applying Theorem 2.1 yields the following upper bound.

ExpQa,b, n,mq

ď µi,tpn ´ n˚q ` µi,tpcpj ´ 1qqt´3p2k ´ 1qpm ´ 2m{Bq local

` 2µi,t´1n
˚ ` 2µi,t´1pcjqt´4p2k ´ 1qpm ´ 2q first/last

` Ckpn˚{G ` m{Bq
´

µi,t´2G ` µi,t´2pcpj ´ 1qqmaxt0,t´5up2k ´ 1qpB ´ 2q
¯

heavy

` 2µi´1,tn
˚ ` 2µi´1,tpcpai,j´1qqt´3p2k ´ 1qpm{B ´ 2q light-first/last

` C 1
kpBn˚{G ` mq light-middle

Note that by choice of G, the line for heavy 1s is exactly 2Ckµi,t´2pn˚ ` Gm{Bq. Continuing,

ď µi,tpn ` pcjqt´3p2k ´ 1qpm ´ 2qq (8)

`
“

´µi,t ` 2µi,t´1 ` 2Ckµi,t´2 ` 2µi´1,t ` C 1
k

‰

n˚ (9)

`
”

´ µi,tcpcjqt´4 ` 2µi,t´1pcjqt´4 ` 2Ckµi,t´2pcpj ´ 1qqmaxt0,t´5u (10)

` 2µi´1,tc
t´3a

pt´3q´c
i,j´1 ` C 1

k

ı

p2k ´ 1qpm ´ 2q

ď µi,tpn ` pcjqt´3p2k ´ 1qpm ´ 2qq. (11)

Lines (8–10) follow from the fact that pcpj´1qqt´3 ď pcjqt´3 ´cpcjqt´4. Line (11) completes the
induction so long as the bracketed terms in Lines (9,10) are non-positive. These will hold whenever
Eqns. (12,13) hold.

µi,t ě 2µi,t´1 ` 2Ckµi,t´2 ` 2µi´1,t ` C 1
k, (12)

µi,t ě
2µi,t´1

c
`

2Ckµi,t´2

c
`

2µi´1,t

23k´1
`

C 1
k

2t´4ct´3
. (13)

Eqn. (13) was obtained by dividing through by cpcjqt´4 and noting that j ě 2 and ai,j´1 ě 2.
Clearly any values pµi,tqiě1,tě0 that satisfy Eqn. (12) also satisfy (13) so we may focus solely on
the former. We argue that the lemma is satisfied for µi,t defined as follows. Let C “ C 1

k ě Ck.

µi,t “ p2C ` 3iqt´2p2i ´ 1q. (14)

When t P t2, 3u the claim follows from Lemma 3.2 since µi,3 ě 2 and µi,2 ě 1. When i “ 1 and
t ě 4, m ď pa1,jqc “ a1,cj “ 2cj and the claim follows from Lemma 3.3 since µi,t ě 2t´2. Now

12



suppose i ě 2, t ě 4.

2µi,t´1 ` 2Ckµi,t´2 ` 2µi´1,t ` C 1
k

ď 2p2C ` 3iqt´3p2i ´ 1q ` 2Cp2C ` 3iqt´4p2i ´ 1q ` 2p2C ` 3pi ´ 1qqt´2p2i´1 ´ 1q ` C

ď p2C ` 3iqt´2p2i ´ 1q

ˆ

2

2C ` 3i
`

2C

p2C ` 3iq2
` 1 ´

3

2C ` 3i

˙

ď p2C ` 3iqt´2p2i ´ 1q

ˆ

2

2C ` 3i
`

1

2C ` 3i
` 1 ´

3

2C ` 3i

˙

ď p2C ` 3iqt´2p2i ´ 1q “ µi,t.

The first inequality is from the inductive hypothesis and Ck ď C 1
k ď C. The second inequality

follows from p2C ` 3pi ´ 1qqt´2 ď p2C ` 3iqt´2 ´ 3p2C ` 3iqt´3. This completes the induction.

Proof of Theorem 1.3. Let A be a Q-free n ˆ m matrix and t “ c “ 3k. Take i to be minimal
such that for j “ maxt3, rn{ms1{tu, m ď pai,jqc. It is tedious, but straightforward, to show that
i “ αpn,mq ˘ Op1q. Lemma 3.4 bounds the number of 1s in A by

µi,tpn ` pcjqt´3p2k ´ 1qmq “ µi,t

´

n ` 2Opk log kqn
¯

pcjqt´3 ă 2Opk log kqpn{mq

“ n ¨ 2Opk log kq ¨ p2C ` 3iqt´22i

“ n ¨
´

2Opk2q ` Opiq3k´2
¯

2i C “ 2Opkq; see Theorem 2.1

“ n ¨ 2Opk2q`p1`op1qqαpn,mq.

4 Lower Bounds on 0–1 Matrices via Sequences

Blocked Sequences and 0–1 Matrices. If S is a sequence, let |S| be its length and }S} the
size of its alphabet |ΣpSq|. A block is a contiguous sequence of distinct symbols. If S is understood
to be partitioned into blocks, JSK is the number of blocks. Regardless of ΣpSq, we can always
write S in canonical form over the alphabet t1, . . . , }S}u, where the symbols are sorted according
to their first appearance in S. If S is in canonical form, its canonical matrix AS is the }S} ˆ JSK
symbol-block incidence matrix, i.e., ASpi, jq “ 1 if symbol i appears in block j, and 0 otherwise.
One cannot quite recover S from AS since AS does not encode the order of symbols within a block.
Nonetheless, the transformation is useful inasmuch as subsequences avoided by S often become 0–1
patterns avoided by AS .

Composition and Shuffling. We consider sequences S partitioned into live and dead blocks
satisfying extra constraints:

• All live blocks have the same length. Dead blocks have variable lengths, and the number of
dead blocks between consecutive live blocks is also variable.

• The first occurrence of every symbol appears in a dead block, and dead blocks contain only
first occurrences. Let LS M be the number of live blocks in S.
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Composition. Suppose Utop is a sequence in which all live blocks have length j and Umid is
a sequence with }Umid} “ j. The composition Usub “ Utop ˝Umid is obtained by replacing each
live block L of Utop with a copy UmidpLq over the alphabet of L, whereas dead blocks of Utop are
inherited by Usub verbatim. In general UmidpLq can contain both live and dead blocks [Pet15b],
but in our particular construction UmidpLq contains only live blocks.

Shuffling. Now suppose Usub is a sequence whose live blocks have length j and Ubot is a sequence
with LUbot M “ j. The left-shuffle Usub4Ubot is obtained as follows. Let Usub “ D0L1D1L2D2 ¨ ¨ ¨LkDk,
where Li is the ith live block, Di is zero or more dead blocks, and k “ LUsub M. Let U˚

bot “

U
p1q
bot ¨ ¨ ¨U

pkq
bot be the concatenation of k copies of Ubot over disjoint alphabets. The left-shuffle is

obtained by taking, for all i, the block Li “ pa1a2 ¨ ¨ ¨ ajq and inserting aℓ, for ℓ P r1, js, at the left

end of the ℓth live block of U
piq
bot, then inserting dead blocks Di between U

piq
bot and U

pi`1q
bot .5

Sequence Construction. Upjq and Upi, jq are blocked sequences, where square brackets indicate
dead blocks and parentheses indicate live blocks. Upi, jq is a variation on order-4 Davenport-
Schinzel sequences [ASS89], adapted specifically to exclude a small pattern that arises from P b

`

‚
‚ ‚

˘

-
type patterns.

Upjq “ pj pj ´ 1q ¨ ¨ ¨ 1qp1 2 ¨ ¨ ¨ jq 2 live blocks

Up1, jq “ r1 2 ¨ ¨ ¨ jsp1 2 ¨ ¨ ¨ jq first block dead, second live

Upi, 0q “ p q2 2 empty live blocks

Upi, jq “ pUtop ˝Umidq 4 Ubot

where Utop “ Upi ´ 1, LUpi, j ´ 1q Mq,

Umid “ UpLUpi, j ´ 1q Mq,

and Ubot “ Upi, j ´ 1q

Let Npi, jq “ }Upi, jq} be the alphabet size and Lpi, jq “ LUpi, jq M be the number of live blocks.
N,L obey the following recurrence:

Lp1, jq “ 1

Lpi, 0q “ 2

Lpi, jq “ Lpi, j ´ 1q ¨ 2 ¨ Lpi ´ 1, Lpi, j ´ 1qq

Np1, jq “ j

Npi, jq “ Npi, j ´ 1q ¨ 2 ¨ Lpi ´ 1, Lpi, j ´ 1qq ` Npi ´ 1, Lpi, j ´ 1qq

Lemma 4.1. Fix any U “ Upi, jq.

1. All live blocks in U have length j. Each symbol appears 2i´1`1 times in U , its first occurrence
appearing in a dead block, and the remaining 2i´1 times in live blocks.

2. As a consequence of part 1, Npi, jq “ pj{2i´1q ¨ Lpi, jq.

5The right shuffle Usub 5Ubot is defined in the same way, except that aℓ is inserted at the right end of the ℓth live
block of U

piq
bot

. We only use left-shuffles but there are cases where it is desirable to use both [Pet11b, Pet15b].
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3. The number of dead blocks is at most Lpi, jq ´ 1.

4. If n “ Npi, jq is the number of symbols in U and m ă 2Lpi, jq the number of blocks, i “
αpn,mq ˘ Op1q, and |U | “ Θpn2αpn,mqq.

Proof. Part 1. The claim holds in the base cases Up1, jq and Upi, 0q. All live blocks in Ubot “
Upi, j ´ 1q have length j ´ 1 by induction, and each receive one symbol in the shuffling operation
pUtop ˝Umidq 4 Ubot. All symbols in Ubot “ Upi, j ´ 1q appear in 2i´1 live blocks. Those in
Utop “ Upi´ 1, LUpi, j ´ 1q Mq appear in 2i´2 live blocks, and therefore in 2i´1 live blocks in Usub “
Utop ˝Umid since Umid doubles the number of live occurrences. The property that first occurrences
appear in dead blocks is preserved by composition and shuffling. Part 2. Note that both j ¨ Lpi, jq
and 2i´1 ¨ Npi, jq both count the total length of all live blocks. Part 3. The claim holds in all base
cases. By induction, the number of dead blocks in Utop is at most Lpi´1, Lpi, j´1qq´1. U˚

bot consists
of 2Lpi´ 1, Lpi, j ´ 1qq copies of Ubot “ Upi, j ´ 1q, so U˚

bot has 2Lpi´ 1, Lpi, j ´ 1qqpLpi, j ´ 1q ´ 1q
dead blocks. In total there are Lpi ´ 1, Lpi, j ´ 1qqp2Lpi, j ´ 1q ´ 1q ´ 1 ď Lpi, jq ´ 1 dead blocks.
Part 4. Proving Ackermann-like functions are equivalent inasmuch as their inverses differ by ˘Op1q
is tedious, but straightforward. See [Pet06, Lemma 3.10] for an example of such a proof.

Lemma 4.2. Let U “ Upi, jq be obtained from Utop, Umid, Ubot. Suppose a ă b are two symbols in
ΣpUq appearing in a common live block.

1. The restriction of U to letters ta, bu is of the form a˚b˚pabqb˚a˚.

2. If a P ΣpUtopq, b P ΣpU˚
botq, then a ă c for every symbol c appearing in b’s copy of Ubot.

Proof. The claim is true in the base cases Up1, jq and Upi, 0q. Consider the moment that a is
shuffled into b’s live block, where a P ΣpUtopq and b P ΣpU˚

botq. All occurrences of b appear in one
copy of Ubot in U˚

bot, and exactly one occurrence of a is shuffled into this copy. It follows that the
restriction of U to letters ta, bu is of the form a˚|b˚pabqb˚|a˚, where the bars mark the boundary of
b’s copy of Ubot. Furthermore, since the first occurrence of a is in a dead block, which is inserted
between two copies of Ubot in U˚

bot, a ă c for every c in b’s copy of Ubot.

Lemma 4.3. U “ Upi, jq does not contain any subsequences order-isomorphic to 41213.

Proof. Since U is in canonical form, the existence of 41213 implies the existence of a subsequence
order-isomorphic to

σ “ 31213

Suppose that σ first appears in Upi, jq “ Usub 4 Ubot “ pUtop ˝Umidq 4 Ubot. If σ already appears
in Usub but did not appear in Utop, then Utop must have contained σ1.

σ1 “ 31p12q3

Note that t2, 3u cannot share a live block in Utop without also including 1, and if t1, 2, 3u shared a
live block in Utop, the restriction of Utop to t1, 2, 3u would, by Lemma 4.2(1), be:

1˚2˚3˚p123q3˚2˚1˚

and the restriction of Usub to t1, 2, 3u would be:

1˚2˚3˚p321qp123q3˚2˚1˚,
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which does not contain σ. We therefore need to argue that neither σ nor σ1 can arise in Upi, jq in
the shuffling operation.

If σ or σ1 arose during shuffling, then Lemma 4.2 implies that for any a, b P t1, 2, 3u with
a P ΣpUtopq and b P ΣpU˚

botq, that a ă b. It cannot be that t1u or t1, 2u Ă ΣpUtopq while t2, 3u
or t3u Ă ΣpU˚

botq since 3’s copy of Sbot only receives one copy of any symbol during shuffling, but
both σ, σ1 have two 1s between the first and last 3.

Remark 4.4. The distinction between live and dead blocks is critical for constructing order-
3 (ababa-free) Davenport-Schinzel sequences [HS86, Niv10, Pet15a], and generalized DS sequences
with length Opn polypαpnqqq [Pet11b, Pet15b]. However, all constructions of DS sequences at order-
4 and above [ASS89, Niv10, Pet15a] (having length Ωpn2αpnqq) only use live blocks. In Lemma 4.3,
it is very important that first occurrences lie exclusively in dead blocks, and are never shuffled
into the middle of a copy of Ubot. If the first block in Up1, jq were redefined to be live, then we
would see instances of 41213 in Upi, jq. It could be that 1 2 1 2 1 appears in a copy of Ubot, and
the first occurrences of t3, 4u lie in a common live block in Utop. The restriction of Utop to t3, 4u
contains p34q3. After shuffling the block p34q into the Ubot containing 1, 2 we can see 1 2 3 4 1 2 1 3.
Lemma 4.2(2) rules out this possibility when first occurrences appear in dead blocks.

Theorem 4.5. ExpW,n,mq “ Θpm ` n2αpn,mqq, where

W “

¨

˚

˚

˝

‚
‚

‚
‚ ‚

˛

‹

‹

‚

Proof. By Lemma 4.1, the sequence U “ Upi, jq has n “ Npi, jq symbols, m ă 2Lpi, jq blocks, and
length |U | “ Θpn2iq “ Θpn2αpn,mqq. We convert U to an n ˆ m 0–1 matrix AU . Number the rows
of AU from bottom-to-top, and the columns from left-to-right, and let AU pi, jq “ 1 iff symbol i
appears in block j. U does not contain subsequences order-isomorphic to 41213, which implies that
AU is W -free, and hence ExpW,n,mq “ Ωpn2αpn,mqq. The matching upper bound is obtained as in
[Pet11b, Thm. 3.4].

5 Additional Upper Bounds

5.1 Proof of Theorem 1.5

Recall that Ik is the k ˆ k identity matrix. For example, when k “ 3, we have the following.

Ik “

¨

˝

‚
‚

‚

˛

‚ Ik b
`

‚
‚ ‚

˘

“

¨

˚

˚

˚

˚

˚

˚

˝

‚
‚ ‚

‚
‚ ‚

‚
‚ ‚

˛

‹

‹

‹

‹

‹

‹

‚

Theorem 1.5 follows from Keszegh’s [Kes09] joining operation and and Pettie’s upper bound
on order-3 Davenport-Schinzel sequences [Pet15a]; cf. [HS86, Niv10]. Keszegh [Kes09] proved that
if R has a 1 in its southeast corner and S has a 1 in its northwest corner, that ExpR ‘ S, n,mq ď
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ExpR,n,mq ` ExpS, n,mq, where R ‘ S is formed by joining R,S at their corners.

R ‘ S “

¨

˚

˚

˚

˚

˝

R

‚
S

˛

‹

‹

‹

‹

‚

.

Observe that Ik b
`

‚
‚ ‚

˘

“ pIk´1 b
`

‚
‚ ‚

˘

q ‘
´

‚
‚

‚ ‚

¯

, so we can apply Keszegh’s operation k ´ 2 times to

reduce to the base case I2 b
`

‚
‚ ‚

˘

. We claim ExpI2 b
`

‚
‚ ‚

˘

, n,mq ă Exp
´

‚
‚

‚ ‚

¯

, n,mq ` 2n ` m. Suppose

A is I2 b
`

‚
‚ ‚

˘

-free, and let A1 be obtained by removing the top 1 in each column, and then the first
two 1s in each row. Then A1 is clearly

´

‚
‚

‚ ‚

¯

-free. Putting it all together, we have,

ExpIk b
`

‚
‚ ‚

˘

, n,mq ď ExpI2 b
`

‚
‚ ‚

˘

, n,mq ` pk ´ 2qExp
´

‚
‚

‚ ‚

¯

, n,mq

ď pk ´ 1qExp
´

‚
‚

‚ ‚

¯

, n,mq ` 2n ` m

ď pk ´ 1q2nαpn,mq ` Opkpn ` mqq,

where the last inequality follows from the bound Exp
´

‚
‚

‚ ‚

¯

, n,mq “ 2nαpn,mq`Opn`mq on order-3

Davenport-Schinzel sequences [Pet15a].

5.2 Avoding W and Its Reflection

By symmetry, Theorem 4.5 also applies to ExpW 1, n,mq, where W 1 is the reflection of W along the
y-axis. However, the density of tW,W 1u-free matrices is asymptotically smaller.

Theorem 5.1. ExptW,W 1u, n,mq ď 4nαpn,mq `Opn`mq, where W 1 is the reflection of W along
the y-axis.

W 1 “

¨

˚

˚

˝

‚
‚

‚
‚ ‚

˛

‹

‹

‚

Proof. Let A be a tW,W 1u-free matrix. Remove the top 1 in each column, yielding A1. It follows
that A1 is tW,W 1,W 2u-free, where

W 2 “

¨

˝

‚ ‚
‚

‚ ‚

˛

‚

We prove that ExptW,W 1,W 2u, n,mq ď 2Exp
´

‚
‚

‚ ‚

¯

, n,mq. Call a 1 in A1 bottom-right if it appears

as the bottom-right 1 in a copy of
´

‚
‚

‚ ‚

¯

, and bottom-left if it appears as the bottom-left 1 in a copy

of
´

‚
‚

‚ ‚

¯

. If }A1}1 ě 2Exp
´

‚
‚

‚ ‚

¯

, n,mq `1 then some A1pi, jq “ 1 must be classified as both bottom-left

and bottom-right. Let piL, jLq and piR, jRq be the positions of the top-left 1 in a copy of
´

‚
‚

‚ ‚

¯

containing A1pi, jq and top-right 1 in a copy of
´

‚
‚

‚ ‚

¯

containing A1pi, jq, respectively. Numbering

the rows from bottom to top, we have a copy of W 2 if iL “ iR, a copy of W 1 if iL ă iR, and a copy
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of W if iL ą iR. For example, when iL ă iR,

W 2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

‚
piR, jRq

‚
‚

piL, jLq

‚
‚ ‚ ‚

pi, jq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

It is known [Pet15a, Niv10] that Exp
´

‚
‚

‚ ‚

¯

, n,mq “ 2nαpn,mq ˘ Opn ` mq.

6 Concluding Remarks

Demaine et al.[DHI`09] and Pettie [Pet10] introduced the idea of representing the behavior of a
data structure by a 0–1 matrix in which the axes correspond to time and data structure elements.
Applying results on forbidden 0–1 matrices in this context is very natural, and has led to sharp
or nearly sharp bounds on certain path compression schemes [Pet10], structured inputs to binary
search trees [CGK`15b, CGK`15a, CGJ`23, Pet10], and heaps [KS20].

Although the forbidden 0–1 matrix framework is perfectly suited to proving that sorting π-free
sequences takes near-linear time, it might be inadequate to establishing an optimal Okpnq time
bound. As we have shown, any opn2αpnqq-time analysis must use some property beyond Pπ b

`

‚
‚ ‚

˘

-
freeness. Here it may be useful to consider different ways to decompose a 0–1 matrix; see Guillemot
and Marx [GM14] and Chalermsook, Gupta, Jiamjitrak, Acosta, Pareek, and Yinghcareonthaworn-
chai [CGJ`23].

The literature on forbidden 0–1 matrices is rich [FH92, Tar05, PT06, Pet11b, Pet11c, Pet11a,
Pet15b, Kes09, Gen09, Ful09, KTTW19, CK12, CK17, Fox13, MT04, Kla92, PT23] but there are
many outstanding open problems. In the context of data structure analysis, the most interesting
open problems are to characterize the set of linear forbidden patterns—those P with ExpP, nq “
Opnq—and in particular, to characterize linear light patterns. It is known that there are infinitely
many minimal (with respect to ă) non-linear patterns [Kes09, Gen09, Pet11a], but there may be
other ways to characterize this set in a finite representation. On the other hand, we know of only

two minimally non-linear light patterns (with respect to ă and reflections), namely
¨

˝

‚
‚

‚ ‚

˛

‚ and
ˆ

‚ ‚
‚ ‚

˙

. It is quite possible that these are the only sources of non-linearity in light patterns.
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[Bón22] Miklós Bóna. Combinatorics of Permutations, 3rd Ed. CRC Press, New York, 2022.

[CGJ`23] Parinya Chalermsook, Manoj Gupta, Wanchote Jiamjitrak, Nidia Obscura Acosta,
Akash Pareek, and Sorrachai Yingchareonthawornchai. Improved pattern-avoidance
bounds for greedy BSTs via matrix decomposition. In Proceedings of the 34th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 509–534, 2023.

[CGK`15a] Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and
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[PT23] Seth Pettie and Gábor Tardos. On the extremal functions of acyclic forbidden 0–1
matrices. CoRR, abs/2306.16365, 2023.

[ST85] Daniel D. Sleator and Robert E. Tarjan. Self-adjusting binary search trees. J. ACM,
32(3):652–686, 1985.

[Sun92] Rajamani Sundar. On the deque conjecture for the splay algorithm. Combinatorica,
12(1):95–124, 1992.

[Tar72] Robert E. Tarjan. Sorting using networks of queues and stacks. J. ACM, 19(2):341–
346, 1972.

[Tar85] Robert E. Tarjan. Sequential access in splay trees takes linear time. Combinatorica,
5(4):367–378, 1985.
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