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Abstract

Vertical decomposition is a widely used general technique for decomposing the cells of
arrangements of semi-algebraic sets in Rd into constant-complexity subcells. In this paper, we
settle in the affirmative a few long-standing open problems involving the vertical decomposition
of substructures of arrangements for d = 3, 4: (i) Let S be a collection of n semi-algebraic sets
of constant complexity in R3, and let U(m) be an upper bound on the complexity of the union
U (S ′) of any subset S ′ ⊆ S of size at most m. We prove that the complexity of the vertical
decomposition of the complement of U (S ) is O∗(n2 + U(n)) (where the O∗(·) notation hides
subpolynomial factors). We also show that the complexity of the vertical decomposition of the
entire arrangement A (S ) is O∗(n2 + X), where X is the number of vertices in A (S ). (ii) Let
F be a collection of n trivariate functions whose graphs are semi-algebraic sets of constant
complexity. We show that the complexity of the vertical decomposition of the portion of the
arrangement A (F ) in R4 lying below the lower envelope of F is O∗(n3).

These results lead to efficient algorithms for a variety of problems involving these decomposi-
tions, including algorithms for constructing the decompositions themselves, and for constructing
(1/r)-cuttings of substructures of arrangements of the kinds considered above. One additional
algorithm of interest is for output-sensitive point enclosure queries amid semi-algebraic sets in
three or four dimensions.

In addition, as a main domain of applications, we study various proximity problems in-
volving points and lines in R3: We first present a linear-size data structure for answering
nearest-neighbor queries, with points, amid n lines in R3 in O∗(n2/3) time per query. We also
study the converse problem, where we return the nearest neighbor of a query line amid n input
points, or lines, in R3. We obtain a data structure of O∗(n4) size that answers a nearest-neighbor
query in O(log n) time. Finally, We study batched, or offline, variants of these problems, and
obtain improved algorithms for such scenarios.
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1 Introduction

Let S be a family of n semi-algebraic sets1 of constant complexity in Rd. The arrangement of S ,
denoted by A (S ), is the decomposition of Rd into maximal connected relatively open cells of
all dimensions, so that all points within a cell lie in the relative interior or boundary of the same
subfamily of sets of S . Because of their wide range of applications, arrangements of semi-algebraic
sets have been extensively studied [13, 19]. The combinatorial complexity of a cell in A (S ) can
be quite large, and its topology can be quite complex [13], so a fundamental problem in the area
of arrangements, for both combinatorial and algorithmic applications, is to decompose a cell of
A (S ) into constant-complexity subcells, each homeomorphic to a ball. In some applications, we
wish to decompose all cells of A (S ) while in others only a subset of cells of A (S ).

Vertical decomposition is a popular general technique (and perhaps the only general-purpose
technique) for constructing such a decomposition. Roughly speaking, vertical decomposition
recurses on the dimension d. Let C be a cell of A (S ). For d = 2, the vertical decomposition of C is
obtained by erecting a y-vertical segment up and down from each vertex of C and from each point
of vertical tangency on the boundary of C, and extending these segments till they hit another edge
of C, or else all the way to infinity. This results in a decomposition of C into vertical pseudo-trapezoids
(trapezoids, for short). For d = 3, we first erect, upwards and downwards, z-vertical curtains from
each edge of C and from the silhouette (the locus of points with z-vertical tangency) of each 2-face
of C, and extend them until they hit ∂C (or else all the way to infinity). The resulting subcells
have a unique pair of faces as their “floor” and “ceiling,” but their complexity can still be large. In
the second decomposition phase, we project each subcell onto the xy-plane, apply planar vertical
decomposition to the projection, and lift each resulting subcell (trapezoid) vertically up to R3 to the
range between the floor and ceiling of the original subcell. This results in a decomposition of C into
vertical pseudo-prisms (prisms for short), each bounded by up to six facets. This recursive scheme
(on the dimension) can be generalized to higher dimensions, but it becomes more involved as the
dimension grows. In this work, though, we only use the three- and four-dimensional scenarios.
See [23, 35, 44].

Vertical decompositions, similar to some other geometric decomposition schemes, provide a
mechanism for constructing geometric cuttings of various substructures of arrangements of semi-
algebraic sets [13], which in turn leads to an efficient divide-and-conquer mechanism for solving
a variety of combinatorial and algorithmic problems, as well as for constructing data structures
for geometric searching problems [9]. The performance of these algorithms and data structures
depends on the complexity (number of prisms) of the vertical decomposition. For d = 2, the
size of the vertical decomposition of a cell C is proportional to the combinatorial complexity of
C, but already for d = 3, the size of the vertical decomposition of C can be Ω(n2) even when the
complexity of C is O(n). A challenging problem is thus to obtain sharp bounds on the complexity
of the vertical decomposition of (the cells of) various substructures of A (S ) for d ≥ 3. Despite
extensive work on this problem, see, e.g., [4, 5, 12, 21, 23, 35, 43] for a sample of results, several
basic problems remain open. In this paper we settle some of these problems in the affirmative,
obtaining sharp bounds on the complexity of the vertical decomposition of various substructures
of arrangements, and full arrangements, for d = 3, 4; see below for a list of our results. As a major
application of these results, we study proximity problems involving lines and points in R3; see

1Roughly speaking, a semi-algebraic set in Rd is the set of points in Rd that satisfy a Boolean formula over a set of
polynomial inequalities; the complexity of a semi-algebraic set is the number of polynomials defining the set and their
maximum degree. See [19] for formal definitions of a semi-algebraic set and its dimension.
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below.

Related work. Collins [28] (see also [19,42]) had proposed cylindrical algebraic decomposition (CAD)
as a general technique for decomposing the cells of A (S ) into pseudo-prisms, in any dimension
d. However, the number of cells produced is n2O(d)

. Vertical decomposition can be viewed as an
optimized version of CAD, with much smaller complexity. Although vertical decompositions for
d = 2, 3 have been used since the 1980’s [25, 27], Chazelle et al. [23] described the construction of
vertical decomposition in general, for arrangements of semi-algebraic sets in Rd, and proved a
bound of O∗(n2d−3) for d ≥ 3 (where the O∗(·) notation hides subpolynomial factors). They also
showed that the vertical decomposition of A (S ) can be computed in O∗(n2d−3) expected time.
The bound was improved to O∗(n2d−4), for d ≥ 4, by Koltun [35]. These bounds are nearly optimal
for d ≤ 4, and are strongly suspected to be far from optimal for d ≥ 5. Improving the bound, for
d ≥ 5, is a major 30-years-old open problem in this area (which we do not address in this work).

In many applications, one is interested in computing the vertical decomposition of (the cells
of) only a substructure of A (S ). In this case, the goal is to show that if the substructure under
consideration has asymptotic complexity o(nd), then so should be the complexity of its vertical
decomposition. This statement is true in the plane, as already mentioned, and has been shown to
hold for arrangements of triangles in 3D [21, 46]. Notwithstanding a few results on the vertical
decompositions of substructures of 3D and 4D arrangements, see, e.g., [4, 5, 12, 43], the aforemen-
tioned fundamental problem has remained largely open for d ≥ 3. For example, even though the
complexity of the union of a set of objects in R3 in many interesting cases—such as a set of cylinders
or a set of fat objects—is known to be O∗(n2) [14, 17, 29, 30], no subcubic bound was known on
the size of the vertical decomposition of the complement of their union. In R4, the complexity
of the lower envelope of n trivariate functions (whose graphs are semi-algebraic sets of constant
complexity) is O∗(n3) (see, e.g., [44]), however, no o(n4) bound was known on the complexity of
the corresponding vertical decomposition of the minimization diagram, which is the xyz-projection
of the lower envelope.

We conclude this discussion by noting that special-purpose decomposition schemes have
been proposed for decomposing cells in arrangements of hyperplanes, boxes, or simplices, using
triangulations, binary space partitions, or variants of vertical decomposition; see, e.g., [13,15,18,32]
and references therein. Some of these methods also work for arrangements of semi-algebraic sets
using the so called linearization technique [9], albeit yielding in general much weaker bounds.

Our contributions. The paper contains three sets of main results — (i) sharp bounds on the
complexity of vertical decompositions of substructures of arrangements in R3 and R4, (ii) efficient
algorithms for constructing these decompositions and related structures, and (iii) as a major
application domain, efficient data structures for line-point proximity problems in R3.

Vertical decomposition. We make significant progress on bounding the size of the vertical decompo-
sition of substructures of arrangements in R3 and R4, by establishing the following combinatorial
bounds.

Union of semi-algebraic sets. Let S be a family of n semi-algebraic sets of constant complexity
in R3, and let U(m) be an upper bound on the complexity of the union U (S ′) of any subset
S ′ ⊆ S of size at most m, for any m > 0. (Note that, by definition, U(m) is monotone increasing
in m.) We show that the complexity of the vertical decomposition of the complement of U (S ) is
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O∗(n2 + U(n)) (Section 2).

Lower envelopes. Let F be a collection of n trivariate functions whose graphs are semi-algebraic
sets of constant complexity, and let A (F ) denote the arrangement (in R4) of their graphs. The lower
envelope EF of F is defined as EF (x) = minF∈F F(x), for x ∈ R3. We show that the complexity of
the vertical decomposition of the cell of2 A (F ) lying below (the graph of) EF is O∗(n3), thereby
matching the general upper bound on the complexity of lower envelopes in R4 [44] (Section 3).

Sparse arrangements. Let S be a collection of n semi-algebraic sets of constant complexity in R3,
and let X denote the number of vertices in A (S ). We show that the complexity of the vertical
decomposition of the entire arrangement A (S ) is O∗(n2 + X) (Section 4).

Algorithms. There are a few immediate algorithmic consequences of our combinatorial results:

Computing vertical decompositions. All these vertical decompositions can be constructed, namely,
the set of pseudo-prisms in the vertical decomposition can be computed, in time comparable with
their respective complexity bounds. Section 5.2 describes the construction for the complement of
the union of semi-algebraic sets in R3, as well as for the lower envelopes (or rather minimization
diagrams) of trivariate functions (whose graphs are semi-algebraic sets of constant complexity);
the same approach extends to sparse arrangements. We note that Agarwal et al. [4] described
a randomized algorithm for constructing the vertices, edges, and 2-faces of the minimization
diagram of a set of trivariate (constant-complexity semi-algebraic) functions in O∗(n3) expected
time. In addition, with O∗(n3) preprocessing, their technique can also compute, in O(log n) time,
the function that appears on the lower envelope for a query point ξ ∈ R3. (Their algorithm can
also compute, in O∗(n2 + U(n)) expected time, the vertices, edges, and 2-faces of the union of
a collection S of semi-algebraic sets in R3, where U(m), as above, is the maximum complexity
of the union of a subset of S of size m.) However, their algorithm does not compute three-
dimensional cells of the minimization diagram, nor does it compute the vertical decomposition of
the minimization diagram. See also [12].

Geometric cuttings. Let S be a collection of n semi-algebraic sets of constant complexity in Rd.
Let Π be a substructure of A (S ), defined by a collection of cells of A (S ) that satisfy certain
properties (e.g., lying in the complement of the union or lying below the lower envelope). For
a parameter r > 1, a (1/r)-cutting of Π (with respect to S ) is a set Ξ of pseudo-prisms with
pairwise-disjoint relative interiors that cover Π such that the relative interior of each pseudo-prism
τ ∈ Ξ is crossed by (intersected by but not contained in) at most n/r sets of S . The subset of S
crossed by τ is called the conflict list of τ. Our combinatorial results lead to the construction of
small-size (1/r)-cuttings of Π. Their size is dictated by our new bounds for the complexity of the
vertical decomposition of Π. For the case of the complement of the union of sets in R3, the bound
is O∗(r2 + U(r)). For the case of the region below the lower envelope of trivariate functions in R4,
the bound is O∗(r3). For the case of an entire three-dimensional arrangement of complexity X, we
obtain a (1/r)-cutting of A (S ), for any parameter r ≤ n, of total complexity O∗(r2 + r3X/n3).
The cuttings along with the conflict lists of all of its cells can be constructed in O(n) expected time
if r is a constant (Section 5.1).

Point-enclosure queries. Let S be a family of n semi-algebraic sets in R3, and let U(·) denote a
bound on its union complexity, as above. We obtain a data structure of size and preprocessing
cost O∗(n2 + U(n)) that, for a query point q ∈ R3, returns all k sets of S containing q in O∗(1 + k)

2Even though this vertical decomposition is in R4, it is effectively obtained from the vertical decomposition of the
minimization diagram of EF in R3; see below for details.
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time. Similarly, for a given family F of n semi-algebraic trivariate functions, we can construct a
data structure of size O∗(n3) that, for a query point q ∈ R4, can report, in O∗(1 + k) time, all the k
functions of F whose graphs lie below q.

Proximity problems for points and lines in R3. In the third part, building on our vertical-
decomposition and geometric-cutting results, we present efficient data structures and algorithms
for various proximity problems involving points and lines in R3.

Nearest line-neighbor to a query point. A set L of n lines in R3 can be preprocessed, in O(n log n)
expected time, into a data structure of size O(n), so that for a query point q ∈ R3, the nearest
neighbor of q in L can be returned in O∗(n2/3) time (Section 7). We note that a linear-size data
structure with O∗(n3/4) query time can be obtained by mapping each line of L to a point in R4 and
using four-dimensional semi-algebraic range searching techniques [11]. We also note that a data
structure of O∗(n3) size and O(log n) query time can be obtained by constructing and preprocessing
the Voronoi diagram of the lines in L for point-location queries, following an approach similar to
that in [41].

Our data structure constructs a partition tree, as in [9, 45], using geometric cuttings. The main
challenge in adapting these preceding approaches to our setting is the construction of a so-called test
set, namely, a small set of representative queries (typically more involved than the usual queries) so
that if the data structure can answer those queries efficiently then it can answer efficiently the query
for any point in R3. Our new results on vertical decomposition of the lower envelope of trivariate
functions and on geometric cuttings provide the missing ingredients needed for constructing such
test sets. See Section 7 for details.

Nearest point-neighbor to a query line. We can preprocess a set P of n points in R3, in expected
O∗(n4) time, into a data structure of O∗(n4) size, so that, for a query line ℓ in R3, its nearest neighbor
in P can be returned in O(log n) time (Section 8.1). The standard tools would yield a data structure
of size O∗(n5) for answering fast queries.

Roughly speaking, after applying some geometric transformations, we reduce the nearest-
neighbor query to a point-location query in a sandwich region enclosed between two envelopes of
trivariate functions. As we do not know how to perform this task efficiently in a direct manner,
due to the lack of a good bound on the complexity of the vertical decomposition of such a region
(see [37], where this is stated as a major open problem), we use a more involved scheme that
achieves the desired efficiency.

We note that a linear-size data structure with O∗(n2/3) query time can be obtained by using
known results on 3D semi-algebraic range searching [11]. Our new results on vertical decomposition
of the complement of the union of objects in R3 leads to a faster solution to a restricted version of
this problem. That is, we can preprocess a set of n points in R3 into a linear-size data structure
that returns, in O∗(n1/2) time, a point within distance at most 1 from a query line, if there exists
one. This problem was recently studied in Agarwal and Ezra [7], and they had obtained a more
involved data structure with a similar bound. By combining our vertical-decomposition result with
some of their ideas, we obtain a significantly simpler data structure.

Nearest line-neighbor to a query line. We can preprocess a set L of n lines in R3, in O∗(n4) expected
time, into a data structure of size O∗(n4), so that the nearest neighbor in L of a query line can
be computed in O(log n) time (Section 8.2). Again, we note that a linear-size data structure with
O∗(n3/4) query time can be obtained by using standard four-dimensional semi-algebraic range
searching techniques [11], and that a structure of size O∗(n5) for the fast query regime can also be
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obtained by standard methods.

Off-line nearest-neighbor queries. Let us now consider the case when all queries are given in
advance. That is, we have a set L of n lines and a set P of m points in R3, and the goal is to
compute the nearest neighbor in P of each line of L. We present a randomized algorithm with
O∗(m4/7n6/7 + m + n) expected running time (Section 9). We note that by plugging our on-line
algorithm with the standard space/query-time trade-off techniques would lead to an algorithm
with O∗(m8/11n9/11 + m + n) expected running time.

2 Vertical Decomposition of the Complement of the Union

Let S be a collection of n semi-algebraic sets of constant complexity in R3. For any subset S ′ of
S , let U (S ′) denote the union of S ′, and let C (S ′) denote the complement of U (S ′). Let U(m)
denote the maximum complexity of U (S′)—namely, the number of vertices, edges and 2-faces
of the union boundary—over all subsets S ′ of size at most m. Clearly U(m) = O(m3), but as
mentioned in the introduction, U(m) = O∗(m2) in many interesting cases. Let VD(S ) denote
the vertical decomposition of C = C (S ), and let C(n) denote the maximum complexity of VD(S ),
where the maximum is taken over all collections of n semi-algebraic sets of constant complexity.
Our goal is to obtain a sharp bound on C(n).

A pair (e, e′) of edges of A (S ) is called vertically visible if there exists a vertical line λ that meets
both e and e′, so that the relative interior of the segment of λ connecting e and e′ does not meet the
boundary of any set of S , and we refer to the pair of points (λ ∩ e, λ ∩ e′) as a vertical visibility. A
pair (e, e′) of edges can give rise to more than one but at most O(1) vertical visibilities. It is well
known (see, e.g., [44]) that C(n) is proportional to U(n) plus the number of vertical visibilities
between pairs of edges of ∂U that occur within C , so it suffices to bound the latter quantity.

To bound the number of vertical visibilities, we fix an edge e of ∂U , regarding e as the lower
edge in the vertical visibilities that we seek,3 and erect a vertical curtain V(e) over e, which is
the (two-dimensional) union of all z-vertical rays emanating upwards from the points of e. The
boundary of each set S ∈ S (ignoring the two that form e) intersects V(e) in a one-dimensional
curve γS, which can be empty or disconnected, but is of constant complexity. Note that none of
the curves γS cross e, for such an intersection would be a vertex of the arrangement of S and, by
definition, e cannot contain such a vertex.

We form the lower envelope Ee of the curves γS, and note that each breakpoint a of Ee, at which
two curves meet, lies on some edge e′ of ∂U which forms a vertically visible pair with e, with the
vertical visibility taking place between a and e. The other breakpoints, formed at endpoints of
connected portions of the curves, occur when a vertical line (supporting a ray of the curtain V(e))
is tangent to some S ∈ S ; that is, the breakpoint occurs on the vertical silhouette of S. It is easy to
show that the overall number of vertical visibilities involving silhouettes is only O∗(n2). Indeed,
there are O(n) silhouettes, each of constant complexity, and the vertical visibilities that they are
involved in correspond to breakpoints of lower or upper envelopes within the vertical curtains that
they span. As each envelope can be regarded as the lower envelope of univariate functions, it has
O∗(n) complexity [44], and the claim follows.

To facilitate the forthcoming analysis, we turn the problem into a bipartite problem, where

3We assume that the two sets whose boundaries intersect at e lie locally below e, for otherwise e cannot play the role
of the bottom edge of a vertically visible pair in the complement of the union.
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each set of S is assigned at random a color red or blue, yielding a partition S = R ∪B, where
R (resp., B) is the set of all red (resp., blue) sets, and our goal is to bound the number of vertical
visibilities between red-red edges (edges formed by the intersection of the boundaries of two red
sets) and blue-blue edges (those formed by the intersection of the boundaries of two blue sets).
Note that a red-red edge e on the boundary of the union of R is not necessarily an original edge of
the boundary of U (S ), as e may contain red-red-blue vertices (or even be fully contained in a blue
set). Still, if there exists a vertical visibility in C (S ) whose lower endpoint b lies on e, then b lies on
a portion of e that forms an edge of ∂U (S ). Of course, not all vertically visible pairs are captured
in this coloring scheme. Nevertheless, it is easily checked that the expected number of visible pairs
with this coloring is 1/8 of the overall number of visible pairs, so, up to this factor, there is no loss
of generality in using this coloring scheme.

So the setup that we face is: We are given a set R of m red sets and a set B of n blue sets (in the
above scheme, both m and n are half the size of S in expectation), and our goal is to bound the
number C(m, n) of vertical visibilities between pairs (e, e′) of edges, where e is a red-red edge and
e′ is a blue-blue edge, and the vertical visibility takes place in the complement of U (R ∪B).

We estimate C(m, n) using an extension of the recursive analysis in [37, Section 2].4 We fix some
sufficiently large constant parameter k, and partition B arbitrarily into k subsets B1, . . . , Bk, each
of size n/k (ignoring rounding issues). We solve the problem recursively for R and each Bi. Each
subproblem yields at most C(m, n/k) vertical visibilities. Note that these vertical visibilities are not
necessarily vertical visibilities in the full red-blue setup, because sets in other subsets Bj may show
up between the edges in such a pair and destroy the vertical visibility between them. Nevertheless,
each original vertical visibility is either one of these recursively obtained visibilities, or arises at a
pair (e, e′) where e is a red-red edge and e′ is a blue-blue edge formed by the intersection of two
boundaries of sets in different subsets Bi, Bj. We now proceed to bound the number of pairs of the
latter kind.

To do so, fix a red-red edge e, and assume that e plays the role of the bottom edge in a
vertically visible pair. Consider the upward vertical curtain V(e) of e, and form within V(e) the
k blue envelopes E(1)

e , . . . , E(k)
e , where E(i)

e is the lower envelope of the curves γS, for S ∈ Bi, for
i = 1, . . . , k. The breakpoints of the envelopes (ignoring silhouette breakpoints) correspond to
recursively obtained pairs (e, e′) (as noted, not all breakpoints yield visibilities in the full setup),
but we are also interested in the additional breakpoints of the overall lower envelope Ee of these k
envelopes.

Let M(i)
e denote the number of breakpoints of E(i)

e , for i = 1, . . . , k, and put Me = ∑i M(i)
e . Notice

that ∑e M(i)
e is the number of vertical visibilities between R and Bi, so it is at most C(m, n/k). Thus

∑e Me ≤ kC(m, n/k).

Inspired by the analysis in [37], we follow a technique similar to one used by Har-Peled [33]
in a different context. Specifically, we partition V(e) into vertical sub-curtains V1(e), . . . , Vt(e) by
upward vertical rays, so that the overall number of breakpoints of the individual envelopes within
each sub-curtain is k, except possibly for the last sub-curtain, where the number is at most k, so
t ≤ 1+ Me/k. Within each sub-curtain Vj(e) there are only at most 2k blue curves γS that participate

in the envelopes E(i)
e , of which k show up on the envelopes at an extreme ray of Vj(e), and at most

k others replace them along the various envelopes, within the sub-curtain. Hence, within any

4We credit this work for providing us the initial inspiration that their technique can be adapted to apply in our
settings too.
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fixed Vj(e), Ee is the lower envelope of at most 2k connected subarcs of boundary curves γS, so
its combinatorial complexity is at most λs(2k), where λs(m) is the near-linear maximum length of
Davenport-Schinzel sequences of order s on m symbols, for some constant parameter s that depends
on the complexity of the sets of S [44]. We write this bound as kβ(k), for an appropriate near-
constant extremely slowly growing function β(k), and conclude that the number of breakpoints of
Ee within each sub-curtain is at most kβ(k), for a total of at most ktβ(k) = (k + Me)β(k) breakpoints.
Summing over all red-red edges e, we obtain

C(m, n) ≤
(

∑
e
(k + Me)

)
β(k) ≤ kβ(k)C(m, n/k) + kβ(k)U(m).

We next switch the roles of red and blue, and apply the same analysis to each pair R, Bi of sets,
keeping Bi fixed and partitioning R into k subsets of size m/k each. (We now reverse the direction
of the z-axis, considering downward-directed vertical curtains erected from the edges formed by
the sets of Bi.) The analysis proceeds more or less verbatim, and yields the following bound on the
number of vertical visibilities:

C(m, n) ≤ k2β2(k)C(m/k, n/k) + k2β2(k)U(n/k) + kβ(k)U(m)

If U(m) = O∗(m2), we obtain the recurrence

C(m, n) ≤ k2β2(k)C(m/k, n/k) + kβ(k)O∗(m2) + β2(k)O∗(n2).

Note that the right-hand side of this recurrence also subsumes the number of O∗(m2 + n2) vertical
visibilities that involve the silhouettes of the red and blue sets.

We solve this recurrence for the original setup, where m and n are both roughly half the total
number of sets, which we continue to denote by n, with some abuse of notation. By choosing
k to be a sufficiently large constant, the solution of the resulting recurrence is O∗(n2). We thus
conclude that the number of vertical visibilities between pairs of edges of U (S ) is O∗(n2). A
similar analysis applies when U(n) is superquadratic. In this case the bound on the complexity
of the vertical decomposition is O∗(U(n)), as is easily checked. Putting everything together, we
obtain the following main result of this section.

Theorem 2.1 Let S be a collection of n constant-complexity semi-algebraic sets in R3, with an upper
bound U(m) on the combinatorial complexity of the union of any subset of S of size m. Then the size of the
vertical decomposition of the complement of the union of S is O∗(n2 + U(n)).

3 Vertical Decomposition of Lower Envelopes in R4

Let F be a collection of n trivariate semi-algebraic functions of constant complexity, let E =
EF denote the lower envelope of F , let E− = E−

F denote the portion of R4 below E, and let
M = MF denote the minimization diagram of E, namely the projection of E onto the xyz-space.
Our goal is to estimate the combinatorial complexity of the vertical decomposition of M. This
three-dimensional decomposition can then be lifted up in the w-direction to induce a suitable
decomposition of E−, which we refer to as the vertical decomposition of E. We note that the
complexity of (the undecomposed) E and of M is O∗(n3) [44]. The main result of this section yields
the same asymptotic bound for their vertical decomposition:
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Theorem 3.1 The complexity of the vertical decomposition of the lower envelope (that is, of the minimization
diagram) of a collection of n trivariate semi-algebraic functions of constant complexity is O∗(n3).

Proof. We assume that the functions of F are in general position, continuous and totally defined.
None of these assumptions are essential, but they simplify the analysis. We identify each function of
F with its three-dimensional graph. We recall the way in which the vertical decomposition VD of M
is constructed. We fix a function a in F . For each function b ∈ F \ {a}, we use σab = σba to denote
the xyz-projection of the two-dimensional intersection surface a ∩ b. The surface σab partitions the
xyz-space into the regions σ+

ab and σ−
ab, where σ+

ab (resp., σ−
ab) consists or those points (x, y, z) for

which a(x, y, z) ≥ b(x, y, z) (resp., a(x, y, z) ≤ b(x, y, z)). We observe that the complement Ca of the
union Ua :=

⋃ {
σ+

ab | b ∈ F \ {a}
}

is precisely the portion of the xyz-space over which a attains
the envelope E.

We now construct the three-dimensional vertical decomposition, denoted as VDa, of Ca, and
repeat this construction to each complement Ca, over a ∈ F , observing that the regions Ca are
pairwise openly disjoint. The union of all these decompositions yields the vertical decomposition
of MF , and, as mentioned above, the vertical decomposition of EF is obtained by lifting this
decomposition to EF (or to E−

F , see below), in a straightforward manner.

We comment that, as already noted, we can also obtain by this approach the vertical decomposi-
tion of E−. Each cell τ in the decomposition of M is lifted to the semi-unbounded region

{(x, y, z, w) | (x, y, z) ∈ τ and w ≤ E(x, y, z)}.

We have thus (almost) reduced the problem to that studied in Section 2. The difference is that
there we assumed that the complexity of the union of any subcollection of at most m of the given
objects is O∗(m2), or at least that we have some (subcubic) bound U(m) on that complexity. Here,
though, this no longer holds. That is, considering the entire collection F , and denoting by Ma the
complexity of Ua, all we know is that ∑a Ma = O∗(n3), so we have the bound O∗(n2) only for the
average value of Ma. To overcome this technicality, we modify the previous analysis as follows.

Recall that in Section 2 we have reduced the problem to a bichromatic problem by assigning to
each object the color red or blue at random. Here we extend this technique to obtain a trichromatic
reduction, by assigning to each function the color red, blue or green at random. We now consider
only unions Ua for green functions a, and within the complement Ca of any of these unions, we
only consider vertical visibilities between red-red edges and blue-blue edges (technically, they are
green-red-red and green-blue-blue edges), exactly as in Section 2. Again, any vertical visibility
that arises in the original decomposition has a constant probability to show up as a green-red-red
vs. green-blue-blue visibility in the trichromatic version.

For each green function a, the overhead terms that appear in the analysis can be written
as M({a}, R, B) and M({a}, R, Bi), where, for arbitrary sets G , R, B of green, red, and blue
objects, respectively, M(G , R, B) denotes the number of the green-red-red and green-blue-blue
edges of the undecomposed envelope of G ∪R ∪B. Here R, B, and the Bi’s may be recursively
obtained subsets of the original sets. Summing these quantities over a, we obtain M(G , R, B) and
M(G , R, Bi), respectively. We also use the notation M(u, v, w) to denote the maximum value of
M(G , R, B) for |G | ≤ u, |R| ≤ v and |B| ≤ w.

Consider, say, a green-red-red edge e that appears on the boundary of (the complement Ca of)
the union Ua for some green function a (the same argument holds for green-blue-blue edges). If we
replace G by a subset G ′ that contains a, Ca can only grow, since fewer regions σ+

ab form the union
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Ua. Hence e does not disappear, and can only extend, possibly even merge with other edges formed
by the same triple of functions. In particular, the number of vertical visibilities in Ca between
green-red-red edges and green-blue-blue edges can only increase.

We use this observation as follows. In the first two-step recursive round, as described in
Section 2, we first partition G into k subsets G1, G2, . . . , Gk, each of size n/k, apply the analysis to
each Gi and R and B, and then sum up the resulting bounds for i = 1, . . . , k. Denote by C(u, v, w)
the maximum number of vertical visibilities for sets of at most u green, v red, and w blue functions.
The overhead term will be at most O(M(u, v, w)) = O∗((u + v + w)3), and the recursive term will
be at most C(u/k, v/k, w/k) at each recursive subproblem. Therefore, by applying the recursive
relation from Section 2 on the number of red-blue vertical visibilities, we obtain the recurrence:

C(u, v, w) ≤
k

∑
i=1

k2β2(k)C(u/k, v/k, w/k) + kβ(k)M(u/k, v, w),

which leads to the recursive relation:

C(u, v, w) ≤ k3β2(k)C(u/k, v/k, w/k) + k2β(k)O∗((u + v + w)3).

The recurrence terminates when one of u, v, w ≤ k. It can be verified that C(u, v, w) = O∗((u +
v + w)3). It then follows that C(u, v, w) = O∗((u + v + w)3) for any values of u, v, w, and this
completes the proof of Theorem 3.1. 2

4 Vertical Decomposition of Arrangements in R3

Let S be a set of n surfaces or surface patches in R3 in general position, each of which is semi-
algebraic of constant complexity, and let X denote the number of vertices of A (S ). For simplicity,
and with no loss of generality, we assume that the surfaces are graphs of possibly partially defined
continuous functions. This can be ensured by cutting surfaces into surface patches at their silhou-
ettes and at their curves of singularity. We show that the complexity of the vertical decomposition
of A (S ) is O∗(n2 + X).

As in Section 2, it suffices to bound the number of vertical visibilities between pairs of edges of
A (S ). Again, we randomly color each surface as either red or blue, and only consider visibilities
between red-red edges and blue-blue edges, in which the red-red edge lies below the blue-blue
edge. An original vertical visibility has 1/8 probability to appear as a visibility of the desired kind
under the coloring scheme. That is, up to a constant factor, the bound that we seek is also an upper
bound for the original uncolored case. Here too, each monochromatic edge e may in general be the
union of several original edges of A (S ). Therefore the number of these monochromatic edges
is at most O(X). As before, we denote the subsets of red surfaces and blue surfaces as R and B,
respectively, and put m := |R|, n := |B|, slightly abusing the notation, as above.

The high-level analysis proceeds more or less as in Section 2. That is, we apply a two-step
partitioning scheme, in which we first partition the blue surfaces into k subsets B1, . . . , Bk, each of
n/k surfaces (in fact, the number of these surfaces in each subcell is at most 2n/k—see below for
the details of the analysis). Then, for each red-red edge e, we form k separate lower envelopes of
the blue surfaces, one for each Bi, within the (upward) vertical curtain erected from e, and analyze
the complexity of the lower envelope of all these envelopes.
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Denote by C(m, n, X1, X2) the maximum number of vertical visibilities between red-red edges
and blue-blue edges in an arrangement of a set R of at most m red surfaces and a set B of at most n
blue surfaces, so that the complexity (number of vertices) of A (R) is at most X1 and the complexity
of A (B) is at most X2. Observe that X1 + X2 ≤ X.

A major new aspect of the analysis is in handling the parameter X, now replaced by X1 and
X2. The issue is that we have no control on how X1 and X2 are distributed over the subproblems
that arise when we partition B into k arbitrary subsets, and then do the same for R, as we did in
Section 2.

We overcome this issue by partitioning each of R, B into k random subsets, say by choosing the
subset to which a surface belongs independently and uniformly at random. Specifically, consider
the first partitioning step, where B is split. We form a random partition of B into k subsets
B1, . . . , Bk, where a surface σ ∈ B is assigned to a subset Bi, 1 ≤ i ≤ k, which is chosen with
probability 1/k, independent of the assignment of the remaining surfaces in B. This probabilistic
model obeys the multinomial distribution with k “categories”. In particular, this implies that the
size of each Bi is a binomial random variable with parameters n and 1/k. Similarly, when we
apply such a random partition to R at the second partitioning step, we obtain a partition into k
subsets R1, . . . , Rk, where the size of each Rj is a binomially distributed random variable with
parameters m and 1/k. We clearly have E[|Bi|] = n/k, for each 1 ≤ i ≤ k, and E[|Rj|] = m/k, for
each 1 ≤ j ≤ k.

Using standard probabilistic arguments, exploiting the multiplicative Chernoff bound [16], we
conclude that, with high probability,

|Bi| ≤ n/k

(
1 + O

(√
k
n

log n

))
, for each 1 ≤ i ≤ k, and

|Rj| ≤ m/k

(
1 + O

(√
k
m

log m

))
, for each 1 ≤ j ≤ k.

By choosing k appropriately, we can assume that, with high probability, these upper bounds do not
exceed 2n/k, and 2m/k, respectively.

Moreover, at the first partitioning step, a blue-blue edge e′ is assigned to a specific subset Bi
with probability at most 1/k2 (here too, a blue-blue edge of A (Bi) may be the union of several
original edges of A (B)). Specifically, e′ is defined by at most four surfaces. That is, if e′ contains
two endpoints (each of which is a vertex of the arrangement obtained by the intersection of a triple
of surfaces) then this number is four, if it has only one endpoint then e′ is defined by three surfaces,
otherwise, it is defined by a pair of surfaces (recall that we exclude silhouette and singularity edges,
in which case there is only a single surface defining an edge).

In the first two scenarios Bi has to contain the triple of surfaces defining an endpoint of e′ (or
the quadruple defining both endpoints), which occurs with probability at most 1/k3. In the latter
scenario the pair of surfaces defining e′ has to be assigned to Bi, which happens with probability
1/k2. Therefore the expected complexity of the arrangement A (Bi) is O(n2/k2 + X2/k3). We
comment that the events that edges show up in a specific subset are not independent. However,
we claim below that, with high probability, the complexity of A (Bi) is O(n2/k2 + X2/k2), for each
1 ≤ i ≤ k. This bound is slightly worse than the expected complexity, but it suffices for the analysis
to proceed.

Indeed, since we have, with high probability, |Bi| ≤ 2n/k, for each 1 ≤ i ≤ k, we immediately
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conclude that the number of edges of A (Bi) that are formed by pairs of surfaces is O(n2/k2) (with
high probability). Regarding the number of edges that are formed by a triple (or a quadruple) of
surfaces, their expected number Y is O(X2/k3), as observed above. Using Markov’s inequality
we conclude that the probability that the actual number of such edges exceeds 2kY is at most
1/(2k). That is, with probability at least 1 − 1/(2k), the number of such edges in A (Bi) is at most
O(X2/k2). Using the probability union bound, we obtain that this bound holds for all sets Bi,
1 ≤ i ≤ k, with probability at least 1/2. We comment that this event is conditioned on the event
that |Bi| ≤ 2n/k, for each 1 ≤ i ≤ k (which occurs with very high probability), so using the rule of
conditional probability, we can assume that with probability at least 1/4 the overall complexity
of A (Bi) is at most O(n2/k2 + X2/k2), for each 1 ≤ i ≤ k. By the probabilistic method [16] this
implies that there exists such a partition B1, . . . , Bk.

Hence, a suitable adaptation of the analysis in Section 2 yields the first-level recurrence (where
c > 0 below is an absolute constant):

C(m, n, X1, X2) ≤ kβ(k)C(m, 2n/k, X1, c(n2/k2 + X2/k2)) + kβ(k)X1 + O∗(mn),

for a suitable near-constant extremely slowly growing function β(k). The overhead term O∗(mn)
comes from vertical visibilities that involve silhouettes and singularities, and follows by an argu-
ment similar to that in Section 2.

We next switch the roles of red and blue, and apply the same analysis to each pair R, Bi of
surfaces, keeping Bi fixed and partitioning R into k random subsets, as above, each of which is of
size at most 2m/k (with high probability). The analysis proceeds in a similar manner, and yields
the bound

k2β2(k)C(2m/k, 2n/k, c(m2/k2 + X1/k2), c(n2/k2 + X2/k2)) + Ok(X1 + X2) + O∗
k (mn)

on the number of vertical visibilities, where the Ok(·) notation indicates that the constant of
proportionality depends on k. That is, we obtain the recurrence

C(m, n, X1, X2) ≤ k2β2(k)C(2m/k, 2n/k, c(m2/k2 +X1/k2), c(n2/k2 +X2/k2))+Ok(X1 +X2)+O∗
k (mn)

By choosing k to be a sufficiently large constant, the solution of the recurrence is easily seen to be

C(m, n, X1, X2) = O∗(m2 + n2 + X1 + X2).

That is, replacing m and n by the original value of n, and X1, X2 by the original quantity X, we
obtain the following:

Theorem 4.1 Let S be a collection of n constant-complexity semi-algebraic surfaces or surface patches in
R3, and let X be the number of vertices in A (S ). Then the complexity of the vertical decomposition of
A (S ) is O∗(n2 + X).

5 Constructing Cuttings and Decompositions

5.1 Constructing cuttings

Let S be a collection of n semi-algebraic sets of constant complexity in Rd. Let Π be a substructure
of A (S ), say, defined by a collection of cells of A (S ) that satisfy certain properties (e.g., lying
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in the complement of the union or lying below the lower envelope). For a parameter r > 1, a
(1/r)-cutting of Π is a set Ξ of pseudo-prisms with pairwise-disjoint relative interiors that cover
Π, such that the relative interior of each pseudo-prism τ ∈ Ξ is crossed by (intersected by but not
contained in) at most n/r sets of S . The subset of S crossed by τ is called the conflict list of τ.

It is well known that the random-sampling paradigm can be used to construct a (1/r)-cutting [1,
22, 34, 38]. Namely, set s = cr log r, where c is a sufficiently large constant. Let R ⊆ S be a
random subset of S of size s, and let VD(R) be the vertical decomposition of A (R). For each
cell τ ∈ VD(R), let Sτ ⊂ S be the subset of S that crosses τ. By construction, Sτ ∩ R = ∅
and τ is a semi-algebraic set of constant complexity, therefore using a standard random-sampling
argument [26, 34], it can be shown that |Sτ| ≤ n/r for all τ ∈ VD(R) with probability at least 1/2
assuming the constant c is chosen sufficiently large. Therefore, to construct a (1/r)-cutting Ξ of Π,
we only have to decide which of the cells of VD(R) should be included in Ξ to ensure that they
cover Π.

If S is a set of semi-algebraic sets in R3 and we wish to compute a (1/r)-cutting of C (S ),
the complement of the union of S , we set Ξ = {τ ∈ VD(R) | τ ⊆ C (R)}. Since R ⊆ S ,
C (S ) ⊆ C (R), and thus Ξ is guaranteed to cover C (S ). By Theorem 2.1, |Ξ| = O∗(r2 + U(r)).
In contrast, if we want to construct a (1/r)-cutting of the entire A (S ), we set Ξ = VD(R). If
A (S ) has X vertices, then the expected number of vertices in A (R) is O(r2 + Xr3/n3), and thus,
by Theorem 4.1, the expected size of Ξ is O∗(r2 + Xr3/n3). (If the size of Ξ is more than twice its
expected size, we discard Ξ and repeat the construction.) Finally, if S represents graphs of a set of
trivariate functions in R4 and we wish to construct a (1/r)-cutting of the portion of A (S ) lying
below the lower envelope of S , we set Ξ to be the set of cells of VD(R) that lie below the lower
envelope of R. By Theorem 3.1, |Ξ| = O∗(r3). Hence, we conclude the following:5

Theorem 5.1 (i) Let S be a collection of n semi-algebraic sets of constant complexity in R3, and let
U(m) be an upper bound on the complexity of the union of at most m objects of S . There exists a
(1/r)-cutting of C (S ), the complement of the union of S , of size O∗(r2 + U(r)).

(ii) Let F be a collection of n trivariate semi-algebraic functions of constant complexity. There exists a
(1/r)-cutting of the region below the lower envelope of F of size O∗(r3).

(iii) Let S be a collection of n constant-complexity semi-algebraic surfaces or surface patches in R3,
so that the number of vertices in A (S ) is X. Then there exists a (1/r)-cutting for S of size
O∗(r2 + r3X/n3).

For contestant values of r, these cuttings, along with the conflict lists of their cells, can be computed in
O(n) expected time (where the constant of proportionality depends on r).

5.2 Constructing vertical decompositions

We now describe algorithms for constructing vertical decompositions for the cases studied in
Sections 2–4.

5It is possible to reduce the size of the cuttings by a polylogarithmic factor using a two-level sampling scheme as
described in [10, 22, 24, 38]. Since we are using O∗() notation and are ignoring subpolynomial factors, we described a
simpler, albeit slightly weaker, construction.
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Complements of unions in R3. Let S be a collection of n semi-algebraic sets (each of constant
complexity) in R3 such that the maximum complexity of the union of any subset S ′ of S of at
most m ≤ n sets is U(m). Let C (S ′) denote the complement of U (S ′).

We present below an algorithm that constructs, in O∗(n2 + U(n)) expected time, the vertical
decomposition of C (S ). More precisely, it constructs the set of pseudo-prisms in the vertical
decomposition of C (S ). As a main step of the algorithm, we perform the subtask of reporting
all the vertical visibilities, within C (S ), between pairs of edges (e, e′) that lie on ∂U (S ). By
Theorem 2.1, the number of these vertical visibilities is O∗(n2 + U(n)). We also compute the
vertices, edges, and 2-faces of U (S ) in O∗(n2 + U(n)) expected time, e.g., using the randomized
incremental algorithm described in [4]. Then the pseudo-prisms in VD(S ) can be computed in a
fairly standard (though somewhat tedious) manner by traversing all the faces and edges of ∂U (S )
and tracking their vertical visibilities. We omit the details from here in the interest of brevity, and
refer the reader to [21], where a similar method was used for computing the vertical decomposition
of an arrangement of triangles in R3.

We follow a randomized divide-and-conquer scheme to compute vertical visibilities. Let
1 ≤ r ≤ n be a sufficiently large constant parameter. If |S | ≤ n0, where n0 is a constant that
depends on r, we report all pairs of vertical visibilities between the edges on ∂C (S ) in a brute-force
manner. Otherwise, we recursively construct a (1/(2r))-cutting Ξ of C (S ) of size O∗(r2 + U(r)),
using Theorem 5.1 (i). (We comment that the actual reporting is done only at the bottom of the
recurrence.) For each cell τ ∈ Ξ, let Sτ ⊂ S be its conflict list, the family of input sets that
cross the relative interior of τ, plus the O(1) input sets that define the cell τ. By construction,
|Sτ| ≤ n/(2r) + O(1) ≤ n/r. As is easily verified, any edge pair (e, e′) (that lie on ∂C (S )) of
vertical visibility within C (S ) must be reported during this process, since the vertical segment
ρ connecting e and e′ must be contained in some prism cell of Ξ. Otherwise, this would imply
that one of the input sets crosses ρ, but this violates the definition of vertical visibility. The overall
expected running time T(n) to report all pairs of vertical visibility obeys the recurrence:

T(n) = O∗(r2 + U(r))T(n/r) + O∗(n),

where the overhead term accounts for computing Ξ and the conflict lists of all the cells of Ξ. Using
induction, it can be verified that the solution is T(n) = O∗(n2 + U(n)). We have thus shown:

Theorem 5.2 Let S be a collection of n constant-complexity semi-algebraic sets in R3, such that the
complexity of the union of any subset of S of size m is U(m). Then the vertical decomposition of C (S ) can
be constructed in O∗(n2 + U(n)) randomized expected time.

Arrangements in R3. Let S be a collection of n semi-algebraic sets (each of constant complexity)
in R3 such that A (S ) has X vertices. The above approach for computing the vertical decomposition
of C (S ) can be extended to compute the vertical decomposition of A (S ). The only difference is
that we now compute a (1/(2r))-cutting of A (S ) of size O∗(r2 + r3X/n3) using Theorem 5.1 (iii).
Omitting the straightforward details, we conclude the following result.

Theorem 5.3 Let S be a collection of n constant-complexity semi-algebraic sets in R3 such that the
arrangement A (S ) has X vertices. Then the vertical decomposition of A (S ) can be constructed in
O∗(n2 + X) randomized expected time.
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Lower envelopes in four dimensions. Let F be a collection of n trivariate semi-algebraic func-
tions of constant complexity. Our goal is to construct the vertical decomposition of E−, the portion
of A (F ) lying below the lower envelope E of F .

We briefly recall how the vertical decomposition is defined. We iterate over the functions of
F . For each function a ∈ F , we form the 2D intersection surfaces a ∩ b, for b ∈ F \ {a}, which
we denote for short as ab. We project these surfaces onto the xyz-space, and construct the vertical
decomposition of the complement Ca of the union Ua as defined in Section 3. As in the basic
construction in Section 2, the key step is to find all the vertical visibilities within Ca. Each such
visibility is between two edges, each of which is the intersection of two of the surfaces ab (for a
fixed). We denote for short the intersection curve of ab and ac as abc. That is, we need to find all the
5-tuples (a, b, c, d, e) of distinct functions of F , such that abc and ade form a vertical visibility (in
the z-direction) within Ca. Once we have found all these 5-tuples, completing the representation
of the vertical decomposition can be carried out in a routine manner, similar to that used in the
three-dimensional case reviewed earlier, which, for this setting, takes overall O∗(n3) time.

To construct the above visibilities, we proceed as above. Namely, we construct a (1/(2r))-
cutting Ξ of E− of size O∗(r3) using Theorem 5.1 (ii). For each prism τ ∈ Ξ, let Fτ be its conflict
list plus the O(1) functions that define τ. We process recursively each prism cell τ, where at the
bottom of the recursion we report all pairs of vertical visibilities between the edges of Fτ in a brute
force manner.

We claim that, for each vertical visibility (in the full collection F ) defined by a 5-tuple
(a, b, c, d, e), all five functions appear in the conflict list of the same prism τ ∈ Ξ, so the visi-
bility will be found in the corresponding recursive step (in fact, as just described, it will be found at
some leaf of the recursion). Indeed, let ζ be the z-vertical segment in the xyz-space that defines the
visibility, with endpoints on abc and on ade. Let ζ+ be the lifting of ζ to the graph of a. Then ζ+ is
fully contained in Ea, and in fact no function graph crosses the downward vertical curtain erected
(in the w-direction) from ζ+.

We claim that ζ+ is fully contained in a prism τ ∈ Ξ, from which the previous claim follows
readily. Suppose to the contrary that this is not the case, so ζ+ crosses the boundary of such a prism.
Since ζ+, or rather ζ, is in the z-direction, it follows that ζ must hit the floor or the ceiling, in the
z-direction, of a prism of the three-dimensional decomposition of the minimization diagram, which,
by construction, lies on some (xyz-projection of an) intersection surface, say uv. This however is
impossible, since no such surface can cross the interior of ζ, which is fully contained in Ca, which
is disjoint from all such surface projections. This establishes the correctness of the procedure and
yields the following:

Theorem 5.4 Let F be a collection of n trivariate semi-algebraic functions of constant complexity. Then
the vertical decomposition of portion of A (F ) lying below the lower envelope of F can be constructed in
randomized expected time O∗(n3).

6 Output-Sensitive Point-Enclosure Reporting in R3

In the problem considered in this section we have a set S of n semi-algebraic regions of constant
complexity in R3, with a bound U(m) on the complexity of the union of any subset of at most m
regions of S . As in the earlier sections we assume here that U(m) = O∗(m2).
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The goal is to preprocess S into a data structure that can support output-sensitive point enclosure
reporting queries, where a query specifies a point p and seeks to report all the regions of S that
contain p. We present an algorithm that uses O∗(n2) preprocessing and storage, and answers a
query is O∗(1 + k) time, where k is the output size.

The technique that we present bears some resemblance to the original technique of Ma-
toušek [39], which has been developed for the case where S consists of halfspaces, but is different
in several key aspects.

Let k be a parameter. We take a random sample R of αn
k regions from S (in expectation), by

choosing each region independently with probability q = α
k , for some small constant 0 < α < 1,

and construct the vertical decomposition VD(R) of the complement K = K (R) of the union of
R. As shown in Section 5.2, this takes time O∗((n/k)2). In addition, we associate with each cell
τ of VD(R) its conflict list Sτ, which is the set of those regions of S whose boundary crosses τ,
and the set S 0

τ of those regions of S that fully contain τ. By random sampling theory, with high
probability,

|Sτ| = O(k log(n/k)) = O(k log n)

for every cell τ.

To obtain an efficient construction of the conflict lists, as well as an efficient procedure for
locating the points of P in VD(R) (see below), we modify the construction of VD(R) and make
it hierarchical, as follows. We construct a hierarchical tree structure of decompositions. At each
recursive step we take a random sample R0 of r0 regions from the current set S ′, for a sufficiently
large constant parameter r0, and construct the vertical decomposition VD(R0) of the complement
of the union of R0. For each cell τ of VD(R0) we construct its conflict list S ′

τ, and the set S
′0

τ

of regions that fully contain τ. Since r0 is constant, this takes O(|S ′|) time over all cells τ. We
recursively repeat the construction for each conflict list S ′

τ. The construction terminates when we
reach subproblems with O(k log n) regions.

A single recursive step in this hierarchy with n input regions generates O∗(r2
0) subproblems,

each with O∗(n/r0) regions. The overhead nonrecursive cost of the step is O(n), where the constant
of proportionality depends on r0. Hence, at level j of the recursion, we have O∗(r2j

0 ) subproblems,
each of size O∗(n/rj

0), and the total cost of constructing the whole structure, taking also into account
the overhead costs, is therefore

O∗
(

∑
j

r2j
0 · n

rj
0

)
= O∗

(
n ∑

j
rj

0

)
= O∗

(
nrjmax

0

)
,

where the constant of proportionality is the product of two factors, one depending on r0 but not
on j, and one of the form cj for some absolute constant, independent of r, and where jmax is the
maximum level of recursion, which satisfies n/rjmax

0 ≈ k log n, or rjmax
0 = O∗(n/k). That is, the

overall cost of the construction is O∗(n2/k).

Note that the output of the hierarchical construction is not necessarily VD(R), but it suffices
for our need. Specifically, we now locate the query point p in the structure. At each node τ that
the search reaches, we find, in brute force, the cell τ′ of the local vertical decomposition at τ that
contains p, and continue the search recursively at τ′. At each step of the search, at any node τ, we
can report all the regions of S 0

τ , as they certainly contain p. If at some step we detect that p does
not lie in any cell of the local vertical decomposition, we conclude that p does not belong to K , and
terminate the search (see below for the rationale of this termination). Otherwise the search reaches
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a leaf τ. We then report all the regions in S 0
τ′ , over all nodes τ′ along the search path. The only

unreported regions that might contain p are those in Sτ. As will follow from the overall structure
of the algorithm, we can afford to inspect all the regions of Sτ, and output those among them that
contain p. The cost of the query is O(log n) plus a cost that, as we will show, is larger than the
number of regions that have been reported, by at most a logarithmic factor.

The full reporting procedure. Let us first consider the offline problem, where we are given m
query points. Define the depth of a point p to be the number of regions of S that contain p. Let p be
a point of depth j ≤ k. Then the probability that p belongs to K (R) is

(1 − q)j ≥ (1 − q)k ≈ e−qk = e−α.

We can make this probability very close to 1 by independently drawing c ln m random samples R.
The probability that p avoids the complement of the union for all these samples is at most

(
1 − e−α

)c ln m ≈ e−ce−α ln m =
1

mce−α .

By choosing c sufficiently large, we can ensure that, with high probability, all query points, taken
from some set of m possible queries, are captured in this manner (i.e., belong to K (R) for at least
one sample R).

We now construct a geometric sequence of these structures, for k = 2j with j = 1, 2, . . .. For a
point p ∈ P, let j be the first index for which p lies in a cell τ of one of the vertical decompositions
constructed for k = 2j. (Informally, as j increases, the size of the sample R decreases, so K (R)
increases, making it ‘easier’ for p to belong to K (R). In the worst case, p may stay inside the
union for every k, but the analysis will handle this case too.) The preceding analysis implies that,
with high probability, the depth of p is larger than k/2 (otherwise p would have been captured
earlier, with high probability). But then we can afford to inspect all the O(k log n) regions in the
conflict list of τ and report those that contain p, in the sense that the size of the list is larger than
the output size by at most a logarithmic factor.

The cost of constructing all these structures is ∑j O∗(n2/2j) = O∗(n2), and the cost of locating
the query point in the respective vertical decompositions, ignoring the reporting part of the cost, is
O∗(1). For the reporting part, we do not report anything when we find out that the query point p
is not in the current vertical decomposition. At the first time when p lies in VD(R), for each cell
τ′ that it visits, all the regions of S 0

τ′ are reported. Then at the leaf τ that the search reaches, we
iterate over its conflict list and report those regions that contain p. The overall reporting cost is
proportional to the output size, up to a logarithmic factor, which may arise when we iterate over the
conflict list of the leaf, which may be larger than the output size by a logarithmic factor. That is, we
have a data structure of size O∗(n2), where each point-enclosure query costs O∗(1 + k). Hence, if
we want to perform m point-enclosure reporting queries, the overall cost, including preprocessing,
is O∗(n2 + m + K), where K is the overall output size.

Returning to the online problem (where queries are given online), we observe that there are at
most O(n3) combinatorially different queries, each of which corresponds to a cell in the arrangement
A (S ). Therefore, we follow verbatim the above analysis with m = O(n3). This results in a data
structure of overall storage and preprocessing O∗(n2), for the case where U(n) = O∗(n2), or
O∗(U(n)) otherwise, which answers point-enclosure reporting queries in O∗(1 + k) time.
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Point enclosure reporting in 4D. The same machinery can be used for performing output-
sensitive point-enclosure reporting queries in R4. In this setup we have a collection F of n
semi-algebraic trivariate functions of constant complexity, and we want to preprocess F into a
data structure, so that, for a query point q ∈ R4, it reports all the functions of F whose graphs pass
below q. A more or less identical analysis shows that this can be done with O∗(n3) storage and
preprocessing time, so that a query of the above kind can be answered in O∗(1 + k) time, where
k is the output size, namely the number of functions below the query point. Hence, in an offline
version, m queries can be answered in O∗(n3 + m + K) time, including preprocessing, where K is
the overall output size.

In conclusion, we have shown:

Theorem 6.1 (a) Let S be a set of n semi-algebraic regions of constant complexity in R3, so that the
complexity of the union of any subset of at most m regions of S is O∗(m2). Then S can be preprocessed
into a data structure of size O∗(n2), in O∗(n2) randomized expected time, which supports point-enclosure
reporting queries in time O∗(1 + k), where each query is with a point q ∈ R3, and seeks to report all regions
of S that contain q, and k is the output size.

(b) Let F be a set of n semi-algebraic trivariate functions of constant complexity. Then F can be preprocessed
into a data structure of size O∗(n3), in O∗(n3) randomized expected time, which supports point-enclosure
queries in time O∗(1 + k), where each query is with a point q ∈ R4, and seeks to report all functions of F
whose graphs pass below q, and k is the output size.

7 Nearest Neighbor Searching amid Lines in R3

We now turn our attention to nearest-neighbor-searching problems involving points and lines in
R3. In this section, we present a linear-size data structure for preprocessing a set L of n lines in R3

into a data structure so that for a query point p ∈ R3, the line of L nearest to p can be reported
quickly (more quickly than what can be obtained by the standard machinery). Using standard
techniques (e.g., parametric search) [1, 8], a nearest-neighbor query, referred to as an NN query on
L, can be reduced to answering O∗(1) sphere-intersection-detection queries on L. That is, we want to
preprocess L into a data structure that can efficiently determine whether a query sphere σ intersects
any of the lines in L.

Overall data structure. Our overall data structure is based on the following technical property,
originally proved by Mohaban and Sharir [41]. Let ℓ be a line in R3, and let σp be a sphere, centered
at a point p. Let Vℓ be the vertical plane that contains ℓ, and let Hℓ be the plane that contains ℓ and
is orthogonal to Vℓ. We say that ℓ is lower (resp., higher) than σp if p lies above (resp., below) Hℓ; see
Figure 1.

Lemma 7.1 ( [41]) Assuming that ℓ is lower than σp (using the above notation), ℓ intersects σp if and only
if the following two conditions hold:

(i) The xy-projections of ℓ and of σp intersect, and

(ii-) ℓ lies above the parallel line ℓ− that lies in Vℓ and is tangent to σp from below.
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Figure 1: Illustration of condition (ii-) of Lemma 7.1. Here ℓ is lower than σp.

Symmetrically, assuming that ℓ is higher than σp, ℓ intersects σp if and only if (i) holds and

(ii+) ℓ lies below the parallel line ℓ+ that lies in Vℓ and is tangent to σp from above.

We describe a linear-size data structure that, for a query sphere σ, determines whether any line
of L that is lower than σ intersects σ. (A similar data structure can be constructed for detecting
whether any line of L that is higher than σ intersects σ.) We thus need a data structure that, for a
query sphere σ, returns YES if a line in ℓ satisfies the following three conditions, as in Lemma 7.1:

(C1) the xy-projections of ℓ and σ intersect,

(C2) ℓ is lower than σ, and

(C3) ℓ lies above the parallel line ℓ− that lies in Vℓ and is tangent to σp from below.

We use a multi-level partition tree [1, 2] for answering queries of this kind. In particular, we
construct a 3-level partition tree, each of whose nodes v stores a “canonical” subset Lv ⊆ L. The
first-level tree identifies the subset of lines that satisfy condition (C1) for the given query. Since a
line in R2 requires two parameters, (C1) can be formulated as a two-dimensional semi-algebraic
range query of a very simple nature—the inequality that we need to test just involves the absolute
value of a linear expression. Thus the first level is a 2-dimensional partition tree for semi-algebraic
range queries of this simple kind [11, 40]. As shown in [41], and easy to see, (C2) just amounts to
testing whether the center of the sphere lies above the respective planes Hℓ, so it can be formulated
as a 3-dimensional halfspace range query. For each node u of the first-level tree, we construct a
3-dimensional partition tree for halfspace range searching, on the subset of lines Lu associated
with u, as a second-level tree. Finally, for each node v of every second-level tree, we construct
a third-level partition tree on Lv, the subset of lines associated with v, which tests for (C3). We
present below a linear-size data structure that can test condition (C3) in O∗(n2/3) time (actually, in
O∗(|Lv|2/3) time). For a query sphere σ, the first two levels of the partition tree return the subset of
lines that satisfy conditions (C1) and (C2) as the union of a few canonical subsets (see below for a
precise statement). For each of these canonical subsets Lv, the third-level tree constructed on Lv
is used to test whether any line in Lv satisfies (C3). If the answer is YES, then we conclude that σ
intersects a line of Lv and return YES. Since the query time at each level is O∗(n2/3) (it is actually
smaller for the first level), the properties of multi-level partition trees (see, e.g., Theorem A.1 in the
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appendix of [2]), imply that the overall query time is also O∗(n2/3). The overall size of the data
structure is O(n).6

Sphere-intersection query for lines lower than the sphere. Let L be a set of n lines in R3. We
wish to preprocess L into a linear-size data structure that, for a query sphere σ satisfying conditions
(C1) and (C2) for all lines in L, can determine in O∗(n2/3) time whether σ intersects any line of L.
We work in the 4-dimensional parametric space of lines, denoted by L, where a line ℓ is represented
by the point ℓ∗ = (a, b, c, d) and the equations defining ℓ are y = ax + c, z = bx + d; L is thus
identified7 with R4. Put L∗ = {ℓ∗ | ℓ ∈ L}. A sphere σ is associated with a surface (patch)
γσ ⊂ L, which is the locus of points ℓ∗ such that the corresponding line ℓ is tangent to σ from
below. Let γ+

σ be the set of points lying on or above γσ in the d-direction; γ+
σ is a semi-algebraic set

of constant complexity. It is easily seen that a line ℓ satisfying conditions (C1) and (C2) intersects
σ if and only if ℓ∗ lies in γ+

σ . Let Γ be the collection of all sets γ+
σ such that σ satisfies (C1) and

(C2) for all lines in L. Thus the sphere-intersection query for a sphere σ in our setting reduces to
semi-algebraic range-emptiness query in L∗ with γ+

σ ∈ Γ. Using the known and standard partition
tree mechanism [11,40], this query can be answered in O∗(n3/4) time, but we show how to improve
the query time to O∗(n2/3).

We follow the approach of Matoušek [39] and of Sharir and Shaul [45] for answering the range-
emptiness query. We need a couple of definitions. Let P ⊂ L be a set of n points. For a parameter
k ≥ 0, we call a semi-algebraic set γ ⊂ L, which semi-unbounded in the negative d-direction,
k-shallow if |P ∩ γ| ≤ k. For a parameter r ≥ 1, we call a family Π = {(P1, ∆1), . . . , (Pu, ∆u)} a
(1/r)-partition for P if (i) {P1, . . . , Pu} is a partition of P, (ii) n/2r ≤ |Pi| ≤ n/r, and (iii) Pi ⊂ ∆i
where ∆i ⊆ L is a semi-algebraic set of constant complexity, referred to as a cell of Π. The crossing
number of Π for a semi-algebraic set τ, denoted by χ(Π, τ), is the number of cells of Π intersected
by the boundary of τ. The crossing number of Π for a family Ξ of semi-algebraic sets, denoted by
χ(Π, Ξ), is defined as maxτ∈Ξ χ(Π, τ).

A major ingredient of the approach in [39, 45] is to construct a so-called test set Φ of a small
number of semi-algebraic sets, which represent well all query semi-algebraic sets that are shallow.
The following lemma of Sharir and Shaul [45, Theorem 3.2] summarizes the key property:

Lemma 7.2 ( [45]) Let P be a set of n points in Rd, for some d ≥ 1, and let Γ be a (possibly infinite) family
of semi-algebraic sets of constant complexity. Let r ≥ 1 be a parameter, and let Φ be another finite collection
(not necessarily a subset of Γ) of semi-algebraic sets of constant complexity with the following properties:

(i) Every set in Φ is (n/r)-shallow with respect to P.

(ii) The complement of the union of any m sets of Φ can be decomposed into at most ζ(m) “elementary
cells” (semi-algebraic sets of constant complexity) for any m ≥ 1, where ζ(m) is a suitable monotone
increasing superlinear function of m.

(iii) Any (n/r)-shallow set γ ∈ Γ can be covered by the union of at most δ ranges of Φ, where δ is a
constant (independent of r).

6A straightforward application of the multi-level data-structure framework leads to a data structure of size O∗(n). But,
using well known machinery, the size can be improved to O(n) while keeping the query time O∗(n2/3) by constructing
secondary structures only at some of the nodes.

7For convenience (and with no loss of generality if one assumes general position), we ignore the fact that this space is
actually projective.
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Then there exists a (1/r)-partition Π of P such that for any (n/r)-shallow range γ ∈ Γ, χ(Π, γ) =
O(r/ζ−1(r) + log r log |Φ|) if ζ(r)/r1+ε is monotonically increasing for some (arbitrarily small) constant
ε > 0, and χ(Π, γ) = O(r log r/ζ−1(r) + log r log |Φ|) otherwise. Furthermore, Π can be constructed in
(|Φ|+ n)rO(d) expected time assuming Φ is given.

As shown in [39, 45], using Lemma 7.2 and assuming that |Φ| = rO(d), one can construct a
partition tree of linear-size that can determine in O∗(n/ζ−1(n)) time whether γ ∩ P ̸= ∅, for any
query range γ ∈ Γ. We present an algorithm below for constructing a test set Φ of size rO(1) for our
setup so that ζ(m) = O∗(m3) and δ = 1, which in turn yields a linear-size data structure for sphere
intersection queries with O∗(n2/3) query time, as desired.

Constructing a test set. To construct the test set, we also use the 4-dimensional parametric space
S of spheres in R3, where a sphere σ of radius r centered at a point p is mapped to the point
σ∗ = (p, r) ∈ S; S can thus be identified with R4. A line ℓ in R3 is mapped to a surface ωℓ,
consisting of all points σ∗ ∈ S that represent spheres that touch ℓ from above. As is easily verified,
these surfaces are monotone over the xyz-subspace, so that a point σ∗ lies above the surface ωℓ if
and only if ℓ intersects σ, assuming σ and ℓ satisfy (C1) and (C2).8

Let Ω = {ωℓ | ℓ ∈ L} denote the collection of these surfaces. We take a random subset R ⊆ Ω of
s = cr log r surfaces, for some sufficiently large constant r, and construct the vertical decomposition
VD(R) of the arrangement A (R); VD(R) has O∗(r4) cells [35]. By a standard random-sampling
argument [34], each cell of VD(R) is crossed by at most n/r surfaces of Ω with probability at least
1/2. If this is not the case, we discard R and choose another random subset, until we find one with
the desired property. We choose a subset Ξ of VD(R), namely, those cells that have at most n/r
surfaces of Ω passing fully below them. By construction, these cells cover the lowest n/r levels of
A (Ω), and are contained in the at most 2n/r lower levels of A (Ω).

Let τ be a cell of Ξ. We now switch to the parametric line-space L, where each point σ∗ ∈ τ
becomes the surface γσ. We construct the lower envelope of the (infinitely many) surfaces γσ over
all σ∗ ∈ τ. Let Φτ ⊂ L be the set of points lying above the lower envelope. Since τ has constant
complexity, Φτ is a semi-algebraic surface of constant complexity. A point ℓ∗ ∈ L∗ lies in Φτ if and
only if there is a surface γσ, with σ∗ ∈ τ, that passes below ℓ∗. This happens when, back in S, the
surface ωℓ (corresponding to the line ℓ) crosses τ or lies below τ. By construction, there are at most
n/r + n/r = 2n/r such surfaces. Consequently, Φτ is (2n/r)-shallow with respect to the points of
L∗.

Set Φ = {Φτ | τ ∈ Ξ}. Φ is a family of O∗(r4) constant-complexity semi-algebraic surfaces9 in
L, each of which is (2n/r)-shallow with respect to L∗. This is our desired test set, as stated in the
following lemma. The proof of the lemma is an immediate consequence of our construction.

Lemma 7.3 Let σ be a sphere that satisfies (C1) and (C2) with respect to the lines of L and that is (n/r)-
shallow with respect to L. Then there exists a semi-algebraic set of Φ that contains σ∗.

Plugging Lemma 7.3 into Lemma 7.2, Φ is a test set for L∗ with respect to the semi-algebraic ranges
in Γ, with δ = 1 and ζ(m) = O∗(m3). The bound on ζ(m) follows from Theorem 3.1. Putting
everything together, we thus obtain:

8Informally, this is why we have to distinguish between lines that pass below the sphere and lines that pass above.
9By construction, as in [45], these semi-algebraic sets do not correspond to spheres any more, but they are nevertheless

semi-algebraic sets of constant complexity.
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Theorem 7.4 A set L of n lines in R3 can be preprocessed, in O∗(n) expected time, into a data structure of
size O(n) so that for any query point p ∈ R3, the line of L nearest to p can be computed in O∗(n2/3) time.

8 Nearest-Neighbor Queries with Lines in R3

In this section we consider the converse situation, where queries are lines in R3. We first consider
in Section 8.1 a simpler, yet challenging, case where the input is a set of points in R3, and then, in
Section 8.2, consider the case where the input is a set of lines in R3. We are interested in a data
structure that answers NN queries in O∗(1) time using as little storage as possible.

8.1 Nearest-point queries with lines in R3

Let P be a set of n points in R3. Since we are aiming for an O∗(1) query time, we work in the
4-dimensional parametric space L of (query) lines (the same parametric space used in the previous
section), where a line ℓ in R3, given by the equations y = ax + c and z = bx + d, is represented as
the point ℓ∗ = (a, b, c, d) ∈ L. We begin by describing the distance function between a point and a
line in R3 and the Voronoi diagram that the points of P induce in L.

Distance function, lower envelope, Voronoi diagram. Let ℓ∗ = (a, b, c, d) ∈ L. For a fixed pair
a, b ∈ R, the (unnormalized) direction of ℓ, (1, a, b), is fixed. Let H be the plane that is orthogonal
to ℓ (i.e., with normal direction (1, a, b)) and passes through the origin. Redefine the representation
of ℓ so that (c, d) is actually the intersection of ℓ with H, in a suitable canonical coordinate frame
within H (we omit here the easy details of specifying this frame, noting that it does depend on
(a, b)). Write u = (1, a, b).

For a point p ∈ P, let p↓ denote its projection onto H. Concretely, write p↓ = p + tu. The
condition for p↓ to lie in H is that p + tu be orthogonal to u (recall that H passes through the origin).
That is, we require that

(p + tu) · u = p · u + t|u|2 = 0, or t = − p · u
|u|2 .

That is, we have
p↓ = p − p · u

|u|2 u.

Write p↓ = (xp(a, b), yp(a, b)); clearly, these coordinates depend on (a, b). The distance between p
and ℓ, denoted by dist(p, ℓ), is then the distance between p↓ and (c, d). That is,

dist2(p, ℓ) = (xp(a, b)− c)2 + (yp(a, b)− d)2

= (x2
p(a, b) + y2

p(a, b))− 2cxp(a, b)− 2dyp(a, b) + (c2 + d2). (1)

For a query line ℓ, our goal is to compute arg minp∈P dist2(p, ℓ), the point p ∈ P that is closest to ℓ,
i.e., minimizes (1). Since c2 + d2 is common to all points p, we can drop it, and seek the point p that
minimizes

fp(a, b, c, d) = gp(a, b)− 2cxp(a, b)− 2dyp(a, b), (2)
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where gp(a, b) = x2
p(a, b) + y2

p(a, b). Let F = { fp | p ∈ P} be the resulting set of n 4-variate
functions. Consider the lower envelope E : L → R of F defined as

E(a, b, c, d) = min
p∈P

fp(a, b, c, d).

The projection of the graph of E onto L, denoted by M := M(P), is called the minimization diagram
of F . M induces a partition of L, to which we refer as the Voronoi diagram of P in L. Each cell τ of
M is associated with a point p ∈ P that is the nearest neighbor of all lines whose dual points lie in
the cell τ. For a query line ℓ, we wish to locate the cell of M containing ℓ∗ = (a, b, c, d). However,
currently we do not know how to preprocess four-dimensional minimization diagrams, like M, into
a data structure of size O∗(n4) for answering point-location queries in O∗(1) time. We manage to
address this problem by exploiting the additional structure of the Voronoi cells of M.

Structure of Voronoi cells. For each point p ∈ P, let Mp denote the region of L where fp attains E,
i.e., the set of cells of M that are associated with p. Let Ep denote the graph of E restricted to Mp,
which is a suitable subset of the graph of fp.

For each q ∈ P, q ̸= p, let σp,q denote the intersection surface of fp and fq, which is a three-
dimensional surface that is disjoint from the relative interior of Ep, and does not pass below any
point on Ep. It is defined by the equation

gp(a, b)− 2cxp(a, b)− 2dyp(a, b) = gq(a, b)− 2cxq(a, b)− 2dyq(a, b).

Assuming yq(a, b) ̸= yp(a, b), we define a trivariate function ψp,q : L(d) → R, where L(d) ⊂ L is the
3-dimensional hyperplane d = 0, as follows:

d = ψp,q(a, b, c) :=
gq(a, b)− gp(a, b)

2(yq(a, b)− yp(a, b))
−

xq(a, b)− xp(a, b)
yq(a, b)− yp(a, b)

c. (3)

The surface σp,q partitions L into the two regions

K(d+)
p,q = {ℓ∗ ∈ L | fp(ℓ

∗) ≤ fq(ℓ
∗)} and K(d−)

p,q = {ℓ∗ ∈ L | fp(ℓ
∗) ≥ fq(ℓ

∗)}.

Then Mp =
⋂

q∈P\{p} K+
p,q. By (3), we can write K(d+)

p,q as

K(d+)
p,q = {(a, b, c, d) ∈ L | yq(a, b)− yp(a, b) ≥ 0, d ≤ ψp,q(a, b, c)}

⋃
{(a, b, c, d) ∈ L | yq(a, b)− yp(a, b) ≤ 0, d ≥ ψp,q(a, b, c)}.

To simplify this representation, we define two functions ψ+
p,q, ψ−

p,q : L(d) → R by:

ψ
(d+)
p,q (a, b, c) =

{
ψp,q(a, b, c) yq(a, b)− yp(a, b) ≥ 0
+∞ otherwise

ψ
(d−)
p,q (a, b, c) =

{
ψp,q(a, b, c) yq(a, b)− yp(a, b) ≤ 0
−∞ otherwise.

(4)

Then we can write

K(d+)
p,q = {(a, b, c, d) ∈ L | ψ

(d−)
p,q (a, b, c) ≤ d ≤ ψ

(d+)
p,q (a, b, c)}. (5)
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Figure 2: The structure of the decomposition of the lower envelope and the minimization diagram
of the sample. To simplify the figure, the superscripts (d+) and (d−) have been suppressed.

In other words, Mp is the sandwich region between the lower envelope (with respect to the d-

direction) E(d−)
p of the functions ψ

(d+)
p,q and the upper envelope E(d+)

p of the functions ψ
(d−)
p,q , for

q ∈ P \ {p}. See Figure 2 for an illustration.

We can thus write Mp as M(d−)
p ∩M

(d+)
p , where M

(d−)
p (resp., M(d+)

p ) is the region below the lower

envelope E(d−)
p (resp., above the upper envelope E(d+)

p ) in the d-direction.

Note that the above construction is symmetric in c and d, as each function fp is linear in both c
and d. We can therefore repeat the whole construction, switching between c and d. The analysis is
fully symmetric, with obvious modifications, such as having xq(a, b)− xp(a, b) in the denominators

in (2), and similar straightforward changes. Mp can now be written as M(c−)
p ∩M

(c+)
p , where M

(c−)
p

(resp., M(c+)
p ) is the region below (resp., above), in the c-direction, the lower envelope E(c−)

p (resp.,

upper envelope E(c+)
p ) of the corresponding set of trivariate functions ψ

(c−)
p,q (resp., ψ

(c+)
p,q ) defined

analogously to ψ
(d−)
p,q (resp., ψ

(d+)
p,q ).

We conclude this discussion with the following observation, which will be the key to the
performance of our data structure and the query procedure.

Lemma 8.1 Let ℓ∗ = (ℓa, ℓb, ℓc, ℓd) ∈ L, and let p be a point of P. Let ρ(d) (resp., ρ(c)) denote the line
in the d-direction (resp., c-direction) in L passing through ℓ∗, and let γ(d) (resp., γ(c)) denote the curve
on (the graph of) fp traced over the line ρ(d) (resp., ρ(c)). Let q be a point of P that is nearer to ℓ than p,
assuming that such a point exists, i.e., fq(ℓ∗) < fp(ℓ∗). Then fq intersects either γ(d) or γ(c). Furthermore
if fq intersects γ(d) at a point w = (wa, wb, wc, wd) such that wd > ℓd (resp., wd < ℓd) then we have
wd = ψ

(d−)
p,q (wa, wb, wc) (resp., wd = ψ

(d+)
p,q (wa, wb, wc)). A similar property holds if fq intersects γ(c).

Proof. Suppose fq does not intersect γ(d). Then we would have, using (2),

gq(a, b)− 2cxq(a, b)− 2dyq(a, b) < gp(a, b)− 2cxp(a, b)− 2dyp(a, b)

for every d. Since a, b, c are fixed along γ(d), this can happen only when yq(a, b) = yp(a, b).
Repeating the same argument for γ(c), if fq does not intersect γ(c), then xq(a, b) = xp(a, b). Therefore,
if fq does not intersect either of these curves then we also have, by definition, gq(a, b) = gp(a, b),
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which implies that fq(ℓ∗) = fp(ℓ∗), i.e., p and q are equidistant from ℓ. This contradicts the
assumption that q is (strictly) nearer to ℓ than p.

Thus fq intersects one of the curves, say, for specificity, that it intersects γ(d). Again, by (2), fq

intersects γ(d) at a unique point w = (wa, wb, wc, wd), with wd = ψp,q(wa, wb, wc). If wd > ℓd (resp.,

wd < ℓd), then by (4), we must have wd = ψ
(d−)
p,q (wa, wb, wc) (resp., wd = ψ(d+)(wa, wb, wc)). This

completes the proof of the lemma. 2

We are now ready to describe the data structure based on the above lemma.

Overall data structure. Fix some sufficiently large constant parameter r > 0. We choose a random
subset R ⊆ P of cr log r points, for a suitable absolute constant c > 0. We construct the Voronoi
diagram M(R) of R. For every point p ∈ R, we construct M(d−)

p ,M(d+)
p ,M(c−)

p ,M(c+)
p , as defined

above (with respect to M(R)). Let Ξ(d−)
p = VD(M

(d−)
p ) be the vertical decomposition of M(d−)

p .

Similarly define, Ξ(d+)
p , Ξ(c−)

p , Ξ(c+)
p . Let Ξ be the set of cells in all these 4|R| vertical decompositions.

By Theorem 3.1, |Ξ| = O∗(r · r3) = O∗(r4), and by Theorem 5.4, Ξ can be constructed in a total of
O∗(r4) expected time.

We define a conflict list Lτ for every τ ∈ Ξ, as follows. For each point p ∈ R and each cell τ

of Ξ(d−)
p (resp., Ξ(d+)

p ), we define Pτ ⊂ P to be the subset of points q ∈ P for which the surface

d = ψ
(d+)
p,q (resp., d = ψ

(d−)
p,q ) crosses τ. With a suitable choice of c, the size of each conflict list is at

most n/r, with high probability, because, by construction, for a cell τ of M(d−)
p (resp., M(d+)

p ), none
of the surfaces d = ψ+

p,u (resp., d = ψ−
p,u), for u ∈ R \ {p}, intersect τ [34]. Similarly we define the

conflict lists of cells in Ξ(c−)
p , Ξ(c+)

p ; their sizes are also all at most n/r, with high probability.

For each cell τ ∈ Ξ, we recursively build the data structure on Pτ. The recursion stops when the
size of a subproblem becomes smaller than some fixed absolute constant n0. Since there are O∗(r4)
subproblems of size at most n/r each, a straightforward analysis shows that the size of the overall
structure is O∗(n4), and that it can be constructed in O∗(n4) expected time.

Query procedure. A query with a line ℓ is processed as follows. We compute the nearest
neighbor of ℓ in R, which we call p. Next, we compute the cells τ(d−), τ(d+), τ(c−), τ(c+) of
M

(d−)
p ,M(d+)

p ,M(c−)
p ,Mc+)

p , respectively, that contain ℓ∗. All this is done in brute force and takes
O∗(1) time. If P contains a point q that is nearer to ℓ than p, then by Lemma 8.1, fq intersects
either the curve γ(d) or γ(c). Suppose fq intersects γ(d) at a point w = (wa, wb, wc, wd). Again, by
Lemma 8.1, if wd ≥ ℓd, then wd = ψ−

p,q(wa, wb, wc), implying that w ∈ τd+ and thus q belongs to the
conflict list Pτd+ . Similarly, if wd < ℓd, then q belongs to the conflict list Pτd− . A symmetric analysis
applies when fq intersects γ(c). In summary, if q is closer to ℓ than p then q lies in the conflict lists
of one of τ(d−), τ(d+), τ(c−), τ(c+). Hence, we need to search recursively in these four subproblems,
and return the nearest point among p and the points returned by these four recursive subproblems.

Since we recurse in four subproblems, each of size at most n/r (and r can be chosen to be a
sufficiently large constant), the total query time is O∗(1) (it is not polylogarithmic, though). We
thus obtain the following result:

Theorem 8.2 A given set P of n points in R3 can be preprocessed, in O∗(n4) expected time, into a data
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structure of size O∗(n4), so that, for any query line ℓ ∈ R3, the point of P nearest to ℓ can be computed in
O∗(1) time.

8.2 Nearest-line queries with lines in R3

Next, we show that the machinery in the preceding subsection can be extended (with a couple
of twists—see below) to obtain a line NN-searching data structure, with the same asymptotics
performance, when the input is a set L of n lines in R3, and we want to find the line nearest to a
query line. We first describe the two new challenges we face in dealing with lines as input, and
explain how to address them, and then describe the overall data structure.

We use the same representation (a, b, c, d) for the query line ℓ, using the orthogonal plane H as
before. Thus ℓ is represented as the same point ℓ∗ ∈ L. For a line λ ∈ L, let λ↓ denote the projection
of λ onto H. A crucial observation, which is easy to verify, is that

fλ(ℓ
∗) := dist(ℓ, λ) = dist(ℓ, λ↓) = dist((c, d), λ↓).

The equation of λ↓, in the canonical coordinate frame within H, is of the form

ξλ(a, b)x + ηλ(a, b)y + ζλ(a, b) = 0,

where we normalize the coefficients so that ξ2
λ(a, b) + η2

λ(a, b) = 1. Hence,

fλ(a, b, c, d) = |ξλ(a, b)c + ηλ(a, b)d + ζλ(a, b)| . (6)

Except for the absolute value, (6) is linear in c and d, as in the preceding analysis, a property that
has been crucial for the analysis there, and will be crucial for the analysis here too.

We handle the absolute value as follows. Orient each line λ ∈ L in an arbitrary (but fixed)
manner, say in the positive x-direction, and similarly orient each query line ℓ. If we know the
relative orientation of ℓ and λ, then we also know the sign in the expression for fλ(ℓ

∗). In fact, we
can reduce the setup in such a way that allows us to assume that the sign is positive if and only if
the relative orientation is positive. For a line λ ∈ L, we define the surface σλ ⊂ L, which is the locus
of all points ℓ∗ ∈ L such that ℓ touches λ. It partitions L space into two portions, one consisting of
points representing lines that are positively oriented with respect to λ, and the other consists of
points with negative orientations. We construct a data structure on these surfaces that, for a query
(oriented) line ℓ, partitions the set of all lines of L into O(log n) “canonical” subsets such that, for
every canonical subset, either all its lines are positively oriented with respect to ℓ or all of them are
negatively oriented.

In view of the above discussion, let us assume that the query line has positive orientation with
respect to all lines in L, and that this corresponds to a positive sign of the expression in (6). We
construct a data structure on L using, more or less, the same machinery as in Section 8.1, exploiting
the double linearity (in c and d) of the distance functions. Here we face the second challenge. Recall
that we basically showed in Lemma 8.1 that if fp and fq do not cross along the lines ρd, ρc, then
we have xp(a, b) = xq(a, b) and yp(a, b) = yq(a, b), and thus the free terms gp(a, b) and gq(a, b) are
also equal, implying that p and q are equidistant from the query line ℓ. Here, in contrast, if fλ, fλ′ ,
for two distinct lines λ, λ′ ∈ L, do not cross along ρc, ρd, we can show, using the same reasoning
as before, but based on (6), that ξλ(a, b) = ξλ′(a, b) and ηλ(a, b) = ηλ′(a, b) (actually, one equality
suffices, because of our normalization). However, now it no longer follows that ζλ(a, b) = ζλ′(a, b).
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That is, the projected lines (on H(a, b)) could be parallel, and λ′ could still be (strictly) nearer to ℓ
than λ.

To address this issue we proceed as follows. For each pair of lines λ, λ′ in L, let βλ,λ′ denote
the one-dimensional locus of all (a, b) for which the projections of λ and λ′ onto H are parallel;
this is the curve ξλ(a, b) = ξλ′(a, b). For each λ in the sample R, we construct the two-dimensional
arrangement Aλ of the curves in {βλ,λ′ | λ′ ∈ L \ {λ}}, in the (a, b)-plane. For a query dual point
ℓ∗ = (ℓa, ℓb, ℓc, ℓd), we locate the point (ℓa, ℓb) in Aλ and find the set Lpar of the curves βλ,λ′ that
contain the point (ℓa, ℓb) to determine the lines of L whose projections onto H(a, b) are parallel to λ.
(See below how the algorithm handles sets Lpar of large size.)

We now describe the overall data structure and the query procedure by incorporating these
observations in the data structure described in Section 8.1.

Overall data structure. We build a three-level data structure. Let Σ = {σλ | λ ∈ L}. At the
top-level, we construct a tree data structure T (1) for answering point-enclosure queries on Σ, using
the algorithm in [3]. Each node u of T (1) is associated with a canonical subset Lu ⊆ L of lines. For a
query line ℓ, querying with ℓ∗ in T (1) partitions the lines of L into O(log n) canonical subsets, each
associated with one of its nodes, such that all lines in one subset are either positively oriented with
respect to ℓ or all of them are negatively oriented.

For each node v of T (1), we construct two second-level data structures T
(2+)

v , T (2−)
v on the

canonical subset Lv—one assuming that the sign in (6) is positive and the other assuming that it is
negative. These structures are constructed by following and adapting the construction in Section 8.1,
using the expressions in (6) (without the absolute value) instead of those in (2), following both the
c- and d-directions, and using partial lower envelopes within the minimization diagram. Each of
T

(2+)
v , T (2−)

v essentially consists of several tree data structures. Each node w of T (2+) or T (2−) is
also associated with a subset Lw ⊆ Lv of lines. We choose a random subset Rw ⊂ Lw of size cr log r,
for some constant c ≥ 1, and construct, as in Section 8.1, a total of O∗(r4) subproblems, each of size at
most |Lw|/r. In addition, we now store the following third-level structure at w: For each line λ ∈ R,
we construct the two-dimensional arrangement Aλ of the curves Bλ = {βλ,λ′ | λ′ ∈ Lw \ Rw} and
preprocess it for point-location queries. If the input lines are in general position, then at most two
curves of Bλ pass through any point (a, b), and we simply store them. Otherwise, many curves of
Bλ may pass through a vertex χ = (χa, χb) of Aλ. Let Lχ ⊆ Lw \ Rw be the subset of lines whose
curves are incident on χ. We store Lχ in a sorted order (by the ordering of their projections on the
plane H(χa, χb)) so that for a query line ℓ of the form ℓ∗ = (χa, χb, ℓc, ℓd), we can find the line in Lχ

nearest to ℓ in O(log n) time. The total size of this third-level data structure over all lines of R is
|R| · O(|Lw|2) = O(|Lw|2). Using the properties of multi-level data structures, one can show that
the overall size of the data structure is O∗(n4) and that it can be constructed in O∗(n4) expected
time.

Query procedure. For a query line ℓ, we first search in T (1) with ℓ∗ and compute a partition of
L into O(log n) canonical subsets, each associated with a node of T (1), such that each subset is
positively oriented or negatively oriented with respect to ℓ. For each such node v, if the lines in
Lv have positive (resp., negative) orientation with respect to ℓ, we search in T

(2+)
v (resp. T

(2−)
v )

with ℓ∗, as in Section 8.1. At each second-level node w visited by the query procedure, if λ is the
nearest neighbor of ℓ in Rw, we recursively search in the four corresponding children of v as in the
previous section. In addition, we locate the point (ℓ∗a , ℓ∗b) in the arrangement Aλ to find, in O(log n)
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time, the nearest neighbor of ℓ among the line of Lw \ R whose projections on H(ℓa, ℓb) are parallel
to that of λ, if any such lines exist. Following the same analysis as above, the overall query time
remains O∗(1). Putting everything together, we obtain the following result:

Theorem 8.3 A given set L of n lines in R3 can be preprocessed, in O∗(n4) expected time, into a data
structure of size O∗(n4), so that, for any query line ℓ ∈ R3, the line of L nearest to ℓ can be computed in
O∗(1) time.

9 All Line-Point Nearest Neighbors in R3

Here we consider an offline version of the problem studied in the previous sections.

9.1 A simple offline algorithm

Let L be a set of n lines and P a set of m points in R3. Our goal is to compute, for each line
ℓ ∈ L, the point of P that is nearest to ℓ. This is the batched, or offline, version of the line-point
nearest-neighbor problem studied in Section 8.

We first present a rather simple algorithm, which we will improve in the next subsection, using
a more involved analysis.

Our approach consists of the following steps. We first take a random sample R of t points of
P, for a parameter t that we will set later. For each line ℓ ∈ L we compute the point p ∈ R that is
nearest to ℓ, and associate with ℓ the cylinder Cℓ that has ℓ as its symmetry axis, and has radius
dist(p, ℓ). The overall cost of this step is O(nt), using a brute-force approach.

By standard random sampling arguments, Cℓ contains at most O
(m

t log t
)
= O∗(m/t) points of

P, which holds, with high probability, for all lines ℓ ∈ L. Let C denote the set of these n cylinders,
and denote by K = O∗(mn/t) the total number of point-cylinder containments.

We next perform an offline point-enclosure reporting step, where the cylinders of C are our
input, each query is with a point p ∈ P, and the goal of the query is to report all the cylinders
that contain p. We do this using the algorithm presented in Section 6. We apply this step to
each point of P. Each line ℓ ∈ L collects the points p ∈ P for which Cℓ contains p, and outputs
the nearest point to ℓ. By the analysis in Section 6, the point enclosure queries take a total of
O∗(n2 + m + K) = O∗(n2 + m + mn/t) time. Including the cost of the sampling as described above,
the overall cost is O∗(n2 + m + mn/t + nt), which we optimize by choosing t = m1/2. The resulting
bound, O∗(n2 + m + m1/2n), can be trivially improved by breaking the set of lines into subsets,
each of size at most m1/2, and by repeating the above procedure to each subset and all the points.
The resulting running time is O∗(m1/2n + m). That is, we have:

Proposition 9.1 Given m points and n lines in R3, we can compute, for each line ℓ, the point nearest to ℓ
in O∗(m1/2n + m) overall randomized expected time.

9.2 An improved algorithm

We next present an improved and faster algorithm. The improvement is in the implementation of
the point enclosure procedure amid the cylinders of C . It is obtained by combining the machinery
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of the algorithm in Section 8 with the point enclosure mechanism of Section 6, and proceeds as
follows.

We run a modified version of the procedure of Section 6. At each recursive step, we obtain a
decomposition of the problem into O∗(r4) subproblems, for the constant parameter r used there,
each involving at most m/r points of P (where m is the size of the current point set). The lines of L
are represented as n points in the four-dimensional line space L (where n is the size of the current
line set). By the analysis in Section 8, adapted to the offline setup, each line participates in at most
four of the subproblems. From this it easily follows that we can split each subproblem into further
subproblems, so that the number of subproblems remains O∗(r4), and each subproblem involves at
most m/r points of P and at most n/r4 lines of L. Moreover, by construction, if ℓ ∈ L and p is the
point of P nearest to ℓ then at least one of the subproblems involves both ℓ and p.

We carry the recursion for j levels, for some parameter j that we will fix shortly. At the bottom
of this prematurely terminated recursion, we have O∗(r4j) subproblems, each involving at most
m/rj points of P and at most n/r4j lines of L.

We now apply to each subproblem the simpler algorithm in Section 9.1. By Proposition 9.1, this
costs a total of

O∗(r4j) · O∗
((m

rj

)1/2 n
r4j +

m
rj

)
= O∗

(
m1/2n

rj/2 + mr3j
)

.

We now set j so as to roughly balance these terms, i.e., choose j to satisfy r7j/2 = n/m1/2, or
rj = n2/7/m1/7. Substituting this in the above bound, we obtain the overall cost O∗(m4/7n6/7).
For this to make sense, we require that m/rj ≥ 1 and n/r4j ≥ 1, and that rj ≥ 1. As is easily
checked, this means that this choice of j makes sense when n1/4 ≤ m ≤ n2. When m < n1/4, we
only apply the procedure of Section 8.1, which takes a total of O∗(m4 + n) = O∗(n) time. When
m > n2, we only apply the procedure of Section 9.1, which takes a total of O∗(m1/2n + m) = O∗(m)
time. Altogether we obtain

Theorem 9.2 Given sets P of m points and L of n lines in R3, we can compute, for each line ℓ ∈ L, the
point of P nearest to ℓ, in overall O∗(m4/7n6/7 + m + n) randomized expected time.

10 Conclusion

In this paper, we settled in the affirmative a few long-standing open problems involving the vertical
decomposition of various substructures of arrangements in d = 3, 4 dimensions. In particular,
we obtained sharp bounds on the vertical decomposition of the complement of the union of a
family of semi-algebraic sets in R3 of constant complexity, and of the lower envelope of a family of
semi-algebraic trivariate functions of constant complexity. We also obtained an output-sensitive
bound on the size of the vertical decomposition of the full arrangement of a family of semi-algebraic
sets in R3 of constant complexity. These results lead to efficient algorithms for constructing the
vertical decompositions themselves, for constructing (1/r)-cuttings of the above substructures
of arrangements, and for answering point-enclosure queries. Finally, we applied these results to
obtain faster data structures for various basic proximity problems involving lines and points in R3.

We conclude by mentioning a few open problems:

• The major open question is, of course, to improve the complexity of the vertical decomposition
of the arrangement of a family of semi-algebraic sets in Rd for d ≥ 5. But an immediate
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open question is whether the techniques developed in this paper can be extended to obtain
improved bounds on the vertical decomposition of various substructures of arrangements
(besides lower or upper envelopes) in R4.

• No non-trivial lower bounds are known for nearest-neighbor data structures involving lines
in R3. This raises the question whether the data structures presented in Sections 7 and 8
are (almost) best possible, or whether one can obtain significantly faster data structures. For
example, can the nearest neighbor of a line amid a set of points in R3 be returned in O(log n)
time using an O∗(n3) size data structure?

References

[1] P. K. Agarwal, Simplex range searching and its variants: A review, in Journey through Discrete
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