
Higher-Order Cheeger Inequality for Partitioning with Buffers

Konstantin Makarychev∗

Northwestern
Yury Makarychev†

TTIC
Liren Shan‡

Northwestern

Aravindan Vijayaraghavan§

Northwestern

Abstract

We prove a new generalization of the higher-order Cheeger inequality for partitioning with
buffers. Consider a graph G = (V,E). The buffered expansion of a set S ⊆ V with a buffer
B ⊆ V \S is the edge expansion of S after removing all the edges from set S to its buffer B. An
ε-buffered k-partitioning is a partitioning of a graph into disjoint components Pi and buffers Bi,
in which the size of buffer Bi for Pi is small relative to the size of Pi: |Bi| ≤ ε|Pi|. The buffered
expansion of a buffered partition is the maximum of buffered expansions of the k sets Pi with
buffers Bi. Let h

k,ε
G be the buffered expansion of the optimal ε-buffered k-partitioning, then for

every δ > 0,

hk,εG ≤ Oδ(1) ·
(log k

ε

)
· λ⌊(1+δ)k⌋,

where λ⌊(1+δ)k⌋ is the ⌊(1 + δ)k⌋-th smallest eigenvalue of the normalized Laplacian of G.
Our inequality is constructive and avoids the “square-root loss” that is present in the standard

Cheeger inequalities (even for k = 2). We also provide a complementary lower bound, and a
novel generalization to the setting with arbitrary vertex weights and edge costs. Moreover our
result implies and generalizes the standard higher-order Cheeger inequalities and another recent
Cheeger-type inequality by Kwok, Lau, and Lee (2017) involving robust vertex expansion.

∗The author was supported by the NSF Awards CCF-1955351, CCF-1934931, and EECS-2216970.
†The author was supported by the NSF Awards CCF-1955173, CCF-1934843, and ECCS-2216899.
‡The author was supported by the NSF Awards CCF-1955351, CCF-1934931, and EECS-2216970.
§The author was supported by the NSF Awards CCF-1934931, CCF-2154100, and EECS-2216970.

ar
X

iv
:2

30
8.

10
16

0v
1

 [
cs

.D
S]

 2
0

A
ug

 2
02

3

1 Introduction

Cheeger’s inequality is a fundamental result in spectral graph theory that relates the connectivity of
a graph to the eigenvalues of the Laplacian matrix associated with the graph. Consider an undirected
d-regular graph G = (V,E) on n vertices. Let LG be the normalized Laplacian of the graph defined
by LG = I− 1

dA, where A is the adjacency matrix of the graph G. Let 0 = λ1 ≤ λ2 ≤ λ3 · · · ≤ λn ≤ 2
be the eigenvalues of LG. For every vector z ∈ RV with coordinates z(u) (where u ∈ V),

zTLGz =
1

d

∑
(u,v)∈E

(z(u)− z(v))2. (1)

For a set S ⊆ V , let δG(S, V \S) denote the number of edges in the graph crossing the cut (S, V \S).
The Cheeger constant or expansion of the graph G is

hG := min
S⊆V :|S|≤|V |/2

ϕG(S), where ϕG(S) :=
δG(S, V \ S)

d|S|
,

is called the expansion of the cut S, V \S. Cheeger’s inequality by Alon and Milman [AM85, Alo86,
Che69] states that

λ2
2

≤ hG ≤
√
2λ2. (2)

Similar inequalities also hold for graph partitioning into k parts [LRTV12, LGT14]. Here is a higher
order Cheeger inequality by Lee, Oveis-Gharan and Trevisan [LGT14] (see also the paper [LRTV12]
by Louis, Raghavendra, Tetali and Vempala): For every δ > 0, 1

λk
2

≤ hkG ≤ Oδ

(√
log k

)
·
√
λ⌊(1+δ)k⌋, (3)

where λi is the i-th smallest eigenvalue of the normalized Laplacian LG, and

hkG = min
partitions

P1,...,Pk of V

max
i∈[k]

ϕG(Pi).

The upper bounds in (2) and (3) are constructive, which means that there is a polynomial-time
algorithm that finds a partitioning P1, . . . , Pk using a spectral embedding of G, an embedding
of the graph vertices into Rk′ based on the first k′ = ⌊(1 + δ)⌋k eigenvectors of the Laplacian.
Similar spectral algorithms are commonly used in practice [NJW01, McS01]. We refer the reader to
examples of applications of Cheeger’s inequality to spectral clustering [KVV04, ST07, Spi07], image
segmentation [SM00], random sampling and approximate counting [SJ89]. Cheeger’s inequality
is widely used in combinatorics and graph theory. Higher-order Cheeger inequalities also have
connections to the small-set expansion conjecture [RS10, RST12], an important problem in the area
of approximation algorithms.

The objective of abovementioned k-way graph partitioning algorithms is to find the Sparsest
k-Partition of the graph i.e., a partition P1, . . . , Pk that minimizes the value of maxi∈[k] ϕG(Pi).
Together the lower and upper bounds (3) give a bound on the cost of the algorithmic solution in

terms of the optimal solution: maxi∈[k] ϕG(Pi) ≤ Oδ

(√
log k · h⌊(1+δ)k⌋

G

)
. This bound may be good

for large values of h
⌊(1+δ)k⌋
G but can also be really bad for small values of h

⌊(1+δ)k⌋
G . In fact, the

approximation factor of such k-way partitioning algorithm may be as large as Ω(n) even for k = 2.

1The upper bound on hk
G in [LRTV12] is O(

√
log k)

√
λck where c > 1 is an absolute constant.

1

It can be so large because the upper bound is non-linear – it has a “square-root loss”. To address
this problem, several improved Cheeger inequalities under additional structural assumptions on the
graph G have been presented in the literature [KLL+13, KLL17].

In this work, we introduce a new type of graph partitioning – partitioning with buffers – and
prove a higher-order Cheeger inequality for them. Our inequality avoids the “square-root loss” and
provides a constant bi-criteria approximation algorithm for the problems (see below for details).
While being a natural problem, in and of itself, our results for buffered partitioning also imply the
standard higher-order Cheeger inequality (3) and a Cheeger-type inequality by Kwok, Lau, and
Lee [KLL17] for robust vertex expansion (see Section 1.5). Finally, these Cheeger inequalities can
also be extended to a more general setting with arbitrary vertex weights and edge costs: in contrast,
we are not aware of such a generalization for the standard Cheeger inequalities i.e., without buffers.

1.1 Cheeger inequality for Buffered Partitions

To simplify the exposition, we first present and discuss the setting where G is a d-regular graph.
Then, in Section 1.2, we consider non-regular graphs G with arbitrary positive vertex weights and
edge costs.

Multi-way Partitioning with Buffers. For every ε ∈ [0, 1), an ε-buffered k-partitioning of an
undirected graph G = (V,E) is a collection of subsets P1, P2, . . . , Pk ⊂ V and B1, B2, . . . , Bk ⊂ V
that satisfy the following conditions:

1. All sets Pi and Bj are pairwise disjoint (i.e., Pi ∩ Pj = ∅, Bi ∩Bj = ∅, and Pi ∩Bj = ∅ for
all i, j ∈ {1, . . . , k});

2.
⋃k

i=1(Pi ∪Bi) = V ;

3. Sets Pi are nonempty;

4. |Bi| ≤ ε|Pi| for all i ∈ {1, . . . , k}.
We say that Bi is the buffer for Pi. We denote this buffered partition by (P1, . . . , Pk ∥ B1, . . . , Bk).
Now we define the buffered expansion of a set P with buffer B for d-regular graphs. Later, we
will extend this definition to graphs with arbitrary vertex weights and edge costs. The buffered
expansion of a set P with buffer B

ϕG(P ∥ B) =
δG
(
P, V \ (P ∪B)

)
d|P |

.

The definition is similar to that of the standard set expansion except we do not count edges from
set S to its buffer B. Define the cost ϕG(P1, . . . , Pk ∥ B1, . . . , Bk) of a buffered partition:

ϕG(P1, . . . , Pk ∥ B1, . . . , Bk) = max
i∈{1,...,k}

ϕG(Pi ∥ Bi). (4)

See Figure 5 on page 44 for an illustration of the edges that contribute towards the expansion
ϕG(Pi ∥ Bi). The ε-buffered expansion of the graph G = (V,E) is defined as the minimum value
among all ε-buffered partitions:

hk,εG = min
ε-buffered k−partition
(P1,...,Pk∥B1,...,Bk)

ϕG(P1, . . . , Pk ∥ B1, . . . , Bk). (5)

Our main result is a new Cheeger-type inequality that relates buffered expansion to the eigen-
values of the Laplacian. We first state it for regular graphs. Consider a d-regular graph G. Let LG

be its normalized Laplacian and 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be its eigenvalues.

2

Theorem 1.1. For every δ ∈ (0, 1),

hk,εG ≤ c(δ) log k

ε
· λ⌊(1+δ)k⌋, (6)

where c(δ) is a function that depends only on δ. Furthermore, there is a randomized polynomial-time
algorithm that given G finds an ε-buffered k-partitioning (P1, . . . , Pk ∥ B1, . . . , Bk) with ϕG(P1, . . . , Pk ∥
B1, . . . , Bk) ≤ c(δ) log k

ε λ⌊(1+δ)k⌋.

As in the standard Cheeger-type inequality (3), we upper bound expansion for k-way partitioning
in terms of λk′ , where k

′ = ⌊(1 + δ)k⌋ may be larger than k (depending on the value of δ > 0).
However, for every fixed k, we can let δ = 1/(k + 1) and get the following result.

Corollary 1.2. For every k, hk,εG ≤ ck
ε · λk, where ck depends only on k. Furthermore, there is a

randomized polynomial-time algorithm that given G finds an ε-buffered k-partitioning
(P1, . . . , Pk ∥ B1, . . . , Bk) with ϕG(P1, . . . , Pk ∥ B1, . . . , Bk) ≤ ck

ε λk.

Theorem 1.3 presented later is a novel generalization of Theorem 1.1 to graphs with vertex
weights and edge costs.

Approximation results The spectral graph partitioning algorithm provided by Theorem 1.1

can be seen as an Oδ

(1
ε
log k

)
-pseudo-approximation algorithm for the k-way sparsest partitioning

problem. It finds an ε-buffered k-partitioning (P1, . . . , Pk, B1, . . . , Bk) with the maximum expansion
bounded by Oε,δ(log k) times the cost of the true optimum solution of the non-buffered ⌊(1 + δ)k⌋-
way partitioning problem. That is, the solution produced by our algorithm has an approximation
factor of Oε,δ(log k) but (1) uses ε buffers around each set Pi, and (2) has fewer sets than the true
optimal solution. This pseudo-approximation algorithm also works for non-regular graphs with
vertex weights and edge costs. See Theorem C.2 for details. Applying this pseudo-approximation
algorithm recursively, we get an O(1/ε)-pseudo-approximation algorithm for the Buffered Balanced
Cut problem (see Theorem D.1) and an O(log2 k) pseudo-approximation algorithm for a buffered
variant of the balanced k-partitioning problem (see Corollary D.2).

Let us examine some applications of buffered partitioning and our techniques.

Applications Spectral algorithms are widely used across several application domains because
they are very fast and scalable in practice [PSL90, vL07]. For example, a standard off-the-shelf
package finds the first 100 eigenvectors of the Twitter graph [LM12] in less than half a minute.
This graph has 81 thousand nodes and 1.3 million edges. In contrast, linear programming and
semidefinite programming based methods do not scale well and cannot handle such large graphs
at the present time. This motivates the design of spectral algorithms for graph partitioning with
stronger guarantees. Our work demonstrates that one can achieve very good theoretical guarantees
for Buffered Sparsest k-Partitioning.

As mentioned earlier, the algorithms we present in this paper give an Oε,δ(log k)-pseudo-appro-
ximation for the Buffered Sparsest k-Partitioning problem, and a O(1/ε)-pseudo-approximation for
the Buffered Balanced Cut problem (see Section D). For constant ε, this corresponds to a constant
factor approximation with buffers. For comparison, the best known approximation guarantees for
Balanced Cut or Sparsest k-Cut without buffers incur logarithmic factors in the number of vertices
n.2 Similarly, the best known approximation for Sparsest k-Partitioning is Oδ(

√
log n log k) [LM14].

2For Balanced Cut without buffers, the best true approximation factor is O(logn) [AR04, Räc08], and the best
pseudo-approximation is O(

√
logn) [ARV09].

3

The caveat is, of course, that our algorithm produces an ε-buffered partitioning but we compare its
cost with the cost of the optimal non-buffered partitioning.

In applications of graph partitioning and clustering, relaxing the partitioning using buffers is
often benign and even natural. Let us consider the following application of graph partitioning.
Suppose we have a graph whose nodes represent user profiles in a social network (like the Twitter
graph we mentioned earlier) and edges represent connections between them (friends, followers, etc).
We would like to assign these profiles to two machines so that each machine is assigned about the
same number of profiles and the number of separated connections is minimized. These are common
requirement for graph processing systems. In other words, we need to solve the Balanced Cut
problem for the given graph. If we run our algorithm on this graph, we will get two parts S, T and
buffer B. We can store S and T on the first and second machines, respectively, and replicate nodes
in B on both machines. This way we will separate only nodes located in S and T . Partitioning
with buffers can be useful to obtain better solutions for several other applications such as resource
allocation and scheduling, where graph partitioning is used.

Moreover, in applications like community detection, it is common for the communities to have
small overlaps [YL14, YL12]. Vertices belonging to multiple communities may correspond to influ-
ential or well-connected nodes, that would disproportionately affect the cost in a disjoint partition.
While there has been much recent interest in detecting overlapping communities, it is challenging
to obtain algorithmic guarantees in the overlapping setting (see [KBL16, OATT22] for different
formulations and results on this problem); in particular, there are very few theoretical results for
spectral algorithms even in average-case models. An ε-buffered partitioning with sets S, T and
buffer B can be viewed as two overlapping communities S′ = S ∪ B and T ′ = T ∪ B with small
overlap |S ∩T | ≤ εmin{|S|, |T |}. Hence ε-buffered partitions capture overlapping communities and
allow us to reason about spectral methods even in the overlapping setting (see also footnote 5).

Finally, buffered partitioning is an interesting problem in its own right, it gives a common,
versatile generalization that captures important results in spectral graph theory including higher-
order Cheeger inequalities and robust vertex expansion as described in the next few sections.

1.2 Graphs with vertex weights and edge costs

In the standard Cheeger inequality, the weight of every vertex must be equal to the total weight
of edges incident on it. For instance, in d-regular graphs, the weights of all vertices are equal to d.
Surprisingly, we can generalize our variant of Cheeger’s inequality to vertex weighted graphs. We
show that the Cheeger inequality for buffered partitions also holds when graph G = (V,E,w, c) has
vertex weights wu > 0 and edge costs cuv > 0. In that case, we define the non-normalized Laplacian
L̃G for G as follows. L̃G(u, u) is the total cost of all edges incident on u and L̃G(u, v) = −cuv for
(u, v) ∈ E; all other entries are zero. Then, for any vector z ∈ Rn, we have

zT L̃Gz =
∑

(u,v)∈E

cuv(z(u)− z(v))2. (7)

Further, we define the weight matrix Dw as follows: Dw(u, u) = wu and Dw(u, v) = 0 if u ̸= v (Dw

is a diagonal matrix). Finally, we define the normalized Laplacian LG = D
−1/2
w L̃GD

−1/2
w . Note that

zTLGz =
∑

(u,v)∈E

cuv

(
z(u)

w
1/2
u

− z(v)

w
1/2
v

)2

.

Denote the weight of a set of vertices A by w(A) =
∑

u∈Awu. We extend the definitions of

δG(A,B), ϕG(P ∥ B), ϕG(P1, . . . , Pk ∥ B1, . . . , Bk), and h
k,ε
G to graphs with vertex weights and edge

4

costs:

δG(A,B) =
∑

u∈A,v∈B
(u,v)∈E

cuv and ϕG(P ∥ B) =
δ(P, V \ (P ∪B))

w(P)

Quantities ϕG(P1, . . . , Pk ∥ B1, . . . , Bk) and h
k,ε
G are given by formulas (4) and (5), respectively. We

say that partition (P1, . . . , Pk ∥ B1, . . . , Bk) is ε-buffered if w(Bi) ≤ εw(Pi) for every i ∈ [k].

Note that the definitions of LG, δG, ϕG, and hk,εG are consistent with those for regular graphs
with unit vertex weights and unit edge costs. As a side note, we observe that the definition of
LG coincides with the definition of the normalized Laplacian in the standard Cheeger inequality
for non-regular graphs with edge costs. Note that in that inequality, vertex weights are defined as
wu =

∑
v:(u,v)∈E cuv. In contrast to the standard Cheeger inequality, our variant holds for arbitrary

vertex weights and edge costs.

Theorem 1.3. Let G = (V,E,w, c) be a graph with positive weights wu > 0 and edge costs cuv > 0,
ε ∈ [0, 1), δ ∈ (0, 1), and k ≥ 2 be an integer. Assume that maxuwu ≤ εw(V)/(3k). Then

hk,εG ≤ κ(δ) log k

ε
· λ⌊(1+δ)k⌋(LG), (8)

where κ(δ) is a function that depends only on δ. Furthermore, there is a randomized polynomial-time
algorithm that given G finds an ε-buffered k-partitioning (P1, . . . , Pk ∥ B1, . . . , Bk) with ϕG(P1, . . . , Pk ∥
B1, . . . , Bk) ≤ κ(δ) log k

ε λ⌊(1+δ)k⌋(LG).

This new generalization with vertex weights and edge costs is crucial for the pseudoapproxi-
mation guarantees for the buffered versions of Balanced Cut (Theorem D.1) and Balanced k-way
partitioning (Theorem D.2) that were mentioned earlier.

1.3 Buffered Cheeger’s inequality for k = 2

For k = 2, we provide an alternative slightly simpler variant of buffered Cheeger’s inequality. We
give a polynomial-time algorithm that partitions V into three disjoint sets: parts S, T , and buffer
B, satisfying S ∪ T ∪B = V and |B| ≤ εmin(|S|, |T |). The buffered expansion of S and T , defined
as δ(S, T)/min(w(S), w(T)) is at most O(λ2/ε) (see Proposition 2.1 for details).

We provide a self-contained proof of this simpler result for k = 2 in Section 2. We remark
that this result coupled with Lemma 5.1 from this paper and Theorem 4.6 from the paper by Lee,
Oveis-Gharan, and Trevisan [LGT14] already yields weak versions of our main results (Theorems 1.1
and 1.3) where O(log k) is replaced with O(log2 k). This extra logarithmic factor is a large loss in
the context of graph partitioning problems, and this is analogous to the weaker higher order Cheeger
inequality obtained in [LGT14] by combining Theorem 4.6 of [LGT14] with the standard Cheeger

inequality for k = 2.3 To get a tight bound of O(
1

ε
log k), we design a new algorithm (see the next

section for why our result is tight in both k and ε). We give an overview of new techniques in
Section 1.7.

1.4 Our result generalizes higher-order Cheeger inequalities

Our main result (Theorem 1.1) can be seen as a generalization of Cheeger’s inequality (2) and
the higher-order Cheeger inequalitiy (3). To obtain these results, we apply Theorem 1.1 with

3The stronger bound of Theorem 4.1 in [LGT14] avoids Theorem 4.6.

5

ε =
√
λ⌊(1+δ)k⌋ log k. We find the largest set Pt among P1, . . . , Pk. We may assume that Pt contains

at least Ω(δn) vertices (see Section B for the details). Then we include all buffers in set Pt; that
is, we let P ′

t = Pt ∪
⋃

iBi. We obtain a non-buffered partition of G. Using that |Bi| ≤ ε|Pi| and
δ(Pi, Bi) ≤ d|Bi| (since the graph is d-regular), we get for i ̸= t (here k′ = ⌊(1 + δ)k⌋),

ϕG(Pi) = ϕG(Pi ∥ Bi) +
δ(Pi, Bi)

d|Pi|
≤ c(δ) log k√

λk′ log k
λk′ +

d ·
√
λk′ log k|Pi|
d|Pi|

= (c(δ) + 1)
√
λk′ log k.

We bound ϕG(P
′
t) (the expansion of the updated set P ′

t) as follows,

ϕ(P ′
t) =

∑
i ̸=t δ(Pi, P

′
t)

d|P ′
t |

≤
∑

i ̸=t ϕG(Pi) · |Pi| · d
δn · d

≤ (c(δ) + 1)
√
λk′ log k

Ω(δn)

∑
i ̸=t

|Pi| ≤
c(δ) + 1

Ω(δ)

√
λk′ log k.

Hence Theorem 1.1 provides an alternate proof of (3). Furthermore, this proof suggests that the

factor of O(
1

ε
log k) in the upper bound of Theorem 1.1 cannot be improved. It also shows that

our inverse dependence on ε is tight even for k = 2 (as otherwise we would be able to strengthen
Cheeger’s inequality, which is known to be tight).

1.5 Connection to Robust Expansion

Theorem 1.1 also generalizes the Cheeger-type inequality by Kwok, Lau, and Lee [KLL17] that gives
a bound for λ2 in terms of robust expansion [KLM06]. Let η ∈ (0, 1). For S ⊆ V , define

Nη(S) = min
{
|T | : T ⊆ V \ S, δG(S, T) ≥ (1− η)δG(S, V \ S)

}
(9)

ϕVη (S) =
Nη(S)

|S|
and ϕVη (G) = min

S:|S|≤|V |/2
ϕVη (S) (10)

In other words, ϕVη (S) is the vertex expansion of set S after we remove an η fraction of the edges
leaving S in the optimal way (which minimizes the vertex expansion of S in the remaining graph).
Quantity ϕVη (S) is less sensitive to additions of a small number of edges to graph G than the standard

vertex expansion. For that reason, ϕVη (S) is called the robust vertex expansion of G. Kwok, Lau,
and Lee [KLL17] proved the following result for η = 1/2.

Theorem 1.4 (see Theorem 1 in [KLL17]). λ2 = Ω
(
hG · ϕV1/2(G)

)
.

The following generalization of Theorem 1.4 is an immediate corollary of Theorem 1.1 (see Ap-
pendix A for a proof).

Corollary 1.5. For every η ∈ (0, 1) we have λ2 = Ω
(
η · hG · ϕVη (G)

)
.

We remark that Theorem 1.4 is related to the case k = 2 in Theorem 1.1.

1.6 Lower Bounds

We also prove a lower bound on hk,εG , which is linear in λk.

Theorem 1.6. For every d-regular graph G, integer k ≥ 2, and ε > 0, we have,

hk,εG ≥ λk − ε

2
.

6

We remark that the additive dependence on ε in the above lower bound (Theorem 1.6) is
unavoidable even when k = 2.4 This is useful to derive a lower bound on the optimal buffered
expansion hk,εG ; moreover in conjunction with the upper bound (applied with a larger ε′), one can
also get a bicriteria approximation for buffered k-way partitioning.5

1.7 Overview and Organization

We start with proving a weaker version of our main result (Theorem 1.1) for k = 2 in Section 2.
This proof is significantly simpler than the general proof but nevertheless illustrates why we get a
linear dependence on λk rather than a square-root dependence in our Cheeger-type inequality. In
the proof, we use the thresholding idea from the proof of the standard Cheeger inequality but add an
extra twist – use two thresholds instead of one. First, we compute the eigenvector u corresponding
to the second smallest eigenvalue λ2 of the normalized Laplacian LG of G. Let u(i) be the i-th
coordinate of u. Recall that in the proof of Cheeger’s inequality, we put each vertex i either in S
or in T , depending on whether u(i)2 ≥ τ or u(i)2 < τ for an appropriately chosen threshold τ . To
prove our inequality for k = 2, we use two thresholds τ and (1 + ε)τ and, loosely speaking (see
Section 2 for the precise description), put i in T , B, S depending on whether u(i)2 lies in (−∞, τ],
(τ, (1 + ε)τ), or [(1 + ε)τ,∞), respectively.

In the subsequent sections, we prove the main result i.e., Theorem 1.1 for arbitrary k. Recall
the definition of the spectral embedding of graph G, which we use in our proof. Let x1, . . . , xk′

be the eigenvectors of LG corresponding to the k′ = ⌊(1 + δ)k⌋ smallest eigenvalues. Note that
the coordinates of vectors xi are indexed by vertices u; denote the coordinate with index u by
xi(u). The spectral embedding maps vertex u to vector ū ∈ Rk′ with coordinates x1(u), . . . , xk′(u).
We compute the spectral embedding. And now our goal is to partition vectors ū (so that the
corresponding buffered partition satisfies the desired properties). To do so, we introduce a new
technical tool – orthogonal separators with buffers – for partitioning sets of vectors.

Given a set of unit vectors, the orthogonal separator procedure generates three (disjoint) random
sets – set X (called an orthogonal separator) and its two buffers Y and Z – such that

1. if u ∈ X and v is close to u then v is in X ∪ Y ∪ Z with high probability

2. if vectors u and v are far apart, then it is unlikely that both of them are in X

3. |Y |, |Z| are at most ε|X| in expectation

(See Theorems 3.2 and 3.4 for details.) Orthogonal separators with buffers provide a basic
building block for constructing buffered partitionings. We repeatedly apply the orthogonal separator
procedure to normalized vectors ψ(ū) = ū

∥ū∥ and obtain subsets Xt and their buffers Yt, Zt. Merging

the obtained sets and filtering/thresholding them based on the lengths of vectors ū, we obtain a
partial buffered partitioning. This partitioning has all the desired properties except that it does
not necessarily cover the entire vertex set V . While we do not provide any details on how this step
works in this overview, note that we use item 1 to argue that the buffered expansion of each set Pi

is small, item 2 to argue that the obtained sets are not too large and thus there are at least k sets
in the partitioning, and item 3 to argue that |Bi| ≤ ε|Pi|.

4For the tight example, consider two cliques on vertex sets A and B of size (1 + ε)n/2 each, with overlap of
|A∩B| = εn vertices and with no edges between A \B and B \A. Some of the edges incident on A∩B are resampled
to ensure (approximate) regularity. While h2,ε

G = 0, it is easy to show that λ2 = Ω(ε).
5 Specifically, for any ε ∈ [0, 1), δ ∈ (0, 1), and ε′ > ε, our algorithm given a graph G finds an ε′-buffered k-

partitioning (P1, . . . , Pk ∥ B1, . . . , Bk) with ϕG(P1, . . . , Pk ∥ B1, . . . , Bk) ≤ c(δ) log k ·
(
h
⌊k(1+δ)⌋,ε
G + ε

)
/ε′, where

c(δ) > 0 is a constant that only depends on δ.

7

Note that orthogonal separators with buffers generalize (non-buffered) orthogonal separators
introduced by Chlamtac, Makarychev, and Makarychev [CMM06] and used in a number of SDP-
based approximation algorithms for graph partitioning problems. An analog of Theorem 3.4 for
(non-buffered) orthogonal separators was first proved by Bansal, Feige, Krauthgamer, Makarychev,
Nagarajan, Naor, and Schwartz [BFK+14] (see also [LM14]). Our high level approach follows the
paper by Louis and Makarychev [LM14]. However, our algorithm and its analysis substantially
differ from theirs because we need to use orthogonal separators with buffers and keep track of the
buffers between clusters. Also, our algorithm uses a spectral embedding while the algorithm by
Louis and Makarychev [LM14] uses an embedding obtained from an SDP relaxation, which imposes
additional constraints on vectors.

We prove some useful claims about the spectral embedding in Section 6. We define orthogonal
separators with buffers and present the main theorem about them (Theorem 3.4) in Section 3. We
prove Theorem 3.4 in Section 7. We show how to obtain a partial buffered clustering in Section 4.
Finally, in Section 5, we show how to obtain a true buffered partitioning.

The proof of the Cheeger inequality for graphs with arbitrary vertex weights and edge costs
(Theorem 1.3) is almost identical to that of Theorem 1.1. In order to simplify the exposition, we
only present the proof of Theorem 1.1. The same proof with minimal changes works in the general
case. Instead of presenting essentially the same proof again, we give a black box reduction from
Theorem 1.1 to Theorem 1.3 in Appendix E. The reduction however may significantly increase the
running time of the algorithm. We stress that the algorithm from Theorem 1.1 also works with
weighted graphs.

The other sections and appendices are organized as follows. In Section A, we show that Theo-
rem 1.1 implies Corollary 1.5, which we discussed in Section 1.5. In Section B, we prove a technical
claim about ε-buffered partitions. In Section C, we prove a lower bound on hkG for unbuffered
partitions of graphs G with vertex weights and edge costs. Combining this lower bound with The-
orem 1.3, we get a pseudo-approximation algorithm for the Sparsest k-way Partitioning problem
(Theorem C.2). In Section D, we present our pseudo-approximation algorithm for the Buffered Bal-

anced Cut problem. In Section F, we prove Theorem 1.6 (a lower bound on hk,εG discussed above).
In Section G, we give a few useful estimates on the Gaussian distribution, which we use throughout
the paper.

Other related work. Clustering with vertex deletion and duplication has been studied in other
context as well. We refer the reader to the following recent results: Filtser and Le [FL21], Haeupler,
Hershkowitz, and Zuzic [HHZ21], Filtser [Fil22].

2 Warm up: Cheeger’s Inequality with a Buffer for k = 2

As a warmup, we provide a self-contained proof of a weaker version of Theorem 1.1 for k = 2.
Here, we will consider cuts (S, T) with a common buffer B (instead of disjoint buffers for S and
T). Such cuts consist of three disjoint sets S, T , and B that partition the set of vertices V into
three groups. We will refer to such a partition as (S, T ∥ B). While there are many new ideas
needed to obtain Theorem 1.1 in full generality, this simpler setting already demonstrates how one
can leverage buffers to obtain an improved upper bound.

Proposition 2.1. Let ε ∈ (0, 1/4). Consider any graph G = (V,E) with positive vertex weights

wu > 0 and edge costs cuv > 0. Let λG be the second smallest eigenvalue of LG = D
−1/2
w L̃GD

−1/2
w ,

the normalized Laplacian of G. Then, in polynomial time we can find three disjoint sets S,B, T

8

with S ∪B ∪ T = V , w(S) ≤ w(T) and w(B) ≤ εw(S) such that

ϕG(S, T ∥ B) =
|δ(S, T)|
w(S)

≤ 4
(
1 +

2

ε

)
λG.

Proof. The proof follows the same general strategy as the standard proof of the Cheeger inequal-
ity. We show how to find a distribution over (buffered) partitions (S,B, T) in the graph G, by
thresholding the second eigenvector of LG, such that:

(I) E |δ(S, T)| ≤ (1 + 1/ε)λG ·E[w(S)] and (II) E[w(B)] ≤ εE[w(S)].

The first condition gives an upper bound on the expected number of (non-buffered) edges crossing
the cut, while the second condition gives a bound on the expected size of the buffer. A simple
probabilistic argument (see Lemma 2.4) allows us to conclude that there exists a single buffered
threshold cut that simultaneously satisfies both the properties (with some slack).

Consider the spectrum of matrix LG = D
−1/2
w L̃GD

−1/2
w . The first eigenvector of the non-

normalized Laplacian L̃G is the vector of all ones denoted by 1. Its eigenvalue is 0. In other words,

L̃G1 = 0. Consequently, LG(D
1/2
w 1) = D

−1/2
w L̃G1 = 0. Hence, D

1/2
w 1 is the first eigenvector of

LG. Let y be an eigenvector of LG corresponding to the second eigenvalue λG = λ2 of LG. Then,

y ⊥ D
1/2
w 1 and

⟨y, LGy⟩ = ⟨y,D−1/2
w L̃GD

−1/2
w y⟩ = λG∥y∥2. (11)

Let v = D
−1/2
w y. Then, we have v ⊥ Dw1 (because ⟨v,Dw1⟩ = ⟨y,D1/2

w 1⟩ = 0) and

⟨v, L̃Gv⟩ = ⟨D−1/2
w y, L̃GD

−1/2
w y⟩ = λG∥y∥2 = λG∥D1/2

w v∥2. (12)

Step 1. Splitting the vector. For technical reasons, we need to split vector v into two vectors
v+ and v− such that the vertex weight of non-zero coordinates in each vector is at most w(V)/2,

w({i : v+(i) > 0}) ≤ w(V)/2; w({i : v−(i) > 0}) ≤ w(V)/2.

We do this by following a standard trick that is often used in the proof of Cheeger’s inequality. Let z
denote the smallest coordinate value in the vector v such that the total vertex weight of coordinates
with a value greater than z in vector v is at most w(V)/2, i.e.

w({i : v(i) > z}) ≤ w(V)/2; w({i : v(i) < z}) ≤ w(V)/2.

Then we shift the entire vector v by z and get v′ = v − z1. Since L̃G1 = 0 and v ⊥ Dw1, we
have

⟨v′, L̃Gv
′⟩ = ⟨v, L̃Gv⟩ − 2z⟨v, L̃G1⟩︸ ︷︷ ︸

=0

+ z2⟨1, L̃G1⟩︸ ︷︷ ︸
=0

by (12)
= λG∥D1/2

w v∥2 ≤ λG∥D1/2
w v′∥2.

The last inequality holds because

∥D1/2
w v′∥2 = ∥D1/2

w v∥2 + z2∥D1/2
w 1∥2 − 2z⟨D1/2

w v,D1/2
w 1⟩ = ∥D1/2

w v∥2 + z2 ∥D1/2
w 1∥2︸ ︷︷ ︸
≥0

−2z ⟨v,Dw1⟩︸ ︷︷ ︸
=0

.

We now split the vector v′ into two vectors v+, v− with disjoint supports as follows:

v+(i) =

{
v(i)− z, if v(i) ≥ z;

0, otherwise,
v−(i) =

{
0, if v(i) ≥ z;

v(i)− z, otherwise.

9

Claim 2.2. For u = v+ or u = v−, we have u ̸= 0 and ⟨u, L̃Gu⟩ ≤ λG∥D1/2
w u∥2.

Proof. Vectors D
1/2
w v+ and D

1/2
w v− are orthogonal because their supports are disjoint (note: D

1/2
w

is a diagonal matrix). All coordinates of D
1/2
w v+ are non-negative, and all coordinates of D

1/2
w v−

are non-positive. Thus, ∥D1/2
w v+∥2 + ∥D1/2

w v−∥2 = ∥D1/2
w (v+ + v−)∥2 = ∥D1/2

w v′∥2 and

⟨v′, L̃Gv
′⟩ = ⟨v+, L̃Gv+⟩+ ⟨v−, L̃Gv−⟩+ 2⟨v−, L̃Gv+⟩︸ ︷︷ ︸

≥0

≥ ⟨v+, L̃Gv+⟩+ ⟨v−, L̃Gv−⟩.

The last inequality holds because all off diagonal entries in L̃G are non-positive; v+(i)v−(j) ≤ 0 for
all i ̸= j; and v+(i)v−(i) = 0. We have

⟨v+, L̃Gv+⟩+ ⟨v−, L̃Gv−⟩ ≤ ⟨v′, L̃Gv
′⟩ ≤ λG∥D1/2

w v′∥2 = λG(∥D1/2
w v+∥2 + ∥D1/2

w v−∥2).

Thus, for u = v+ or u = v− the desired inequality holds.

Let u be as above. We assume without loss of generality that ∥u∥∞ = maxu |u(i)| = 1 (if
∥u∥∞ ̸= 1, we divide u by ∥u∥∞). Next, we show that there exists an ε-buffered partition with
small expansion by thresholding on this vector u.

Step 2. Random Thresholding with Buffers. Pick a random threshold t ∈ [0, 1] uniformly
distributed in [0, 1] and define sets S, T , and buffer B as follows:

S = {i : u(i)2 > t} (13)

T =
{
i : u(i)2 ≤ t/(1 + ε)

}
, (14)

B = V \ (S ∪ T) =
{
i : t/(1 + ε) < u(i)2 ≤ t

}
. (15)

Note that B ∪ S = {i : u(i)2 > t/(1 + ε)}. Since t is picked uniformly from [0, 1] and ∥u∥∞ = 1, we
have

E[w(S)] =
n∑

i=1

wi Pr{i ∈ S} =
n∑

i=1

wi · u(i)2 = ∥D1/2
w u∥2,

and

E[w(B ∪ S)] =
n∑

i=1

wi ·min((1 + ε)|u(i)|2, 1) ≤ (1 + ε)∥D1/2
w u∥2. (16)

Thus, E[w(B)] ≤ ε∥D1/2
w u∥2 = εE[w(S)], as stated in Equation (II).

By our choice of z, the weight of vertices with positive values in u is at most w(V)/2. Since S
contains a subset of vertices with positive values in u, we have w(S) ≤ w(V)/2.

Note that for every edge (i, j) from S to T , we have u(i)2 > t > t/(1 + ε) ≥ u(j)2. Thus, for all
edges (i, j) ∈ δ(S, T), we have: (a) i ∈ S, j ∈ T if u(i)2 > u(j)2 and (b) i ∈ T, j ∈ S if u(i)2 < u(j)2.
Now consider an edge (i, j) ∈ E with u(i)2 > u(j)2. The probability that (i, j) ∈ δ(S, T) equals

Pr{(i, j) ∈ δ(S, T)} = Pr{i ∈ S; j ∈ T} = Pr{t ≤ u(i)2 & t ≥ (1 + ε)u(j)2}
= max{u(i)2 − (1 + ε)u(j)2, 0}.

To bound the right side, we use the following simple claim.

10

Claim 2.3. For all ε > 0 and all real numbers a and b, we have

a2 − (1 + ε)b2 ≤ (1 + 1/ε)(a− b)2.

Proof. If b = 0, then the inequality holds. Assume, that b ̸= 0. Divide both sides by b2 and denote
λ = a/b. We need to show that (1 + 1/ε)(λ− 1)2 −

(
λ2 − (1 + ε)

)
≥ 0. Write,

(1 + 1/ε)(λ− 1)2 −
(
λ2 − (1 + ε)

)
= 1/ελ2 − 2(1 + 1/ε)λ+ (

√
ε+ 1/

√
ε)2

= (λ/
√
ε − (

√
ε+ 1/

√
ε))2 ≥ 0.

Hence from the above Claim 2.3, we have

Pr{i ∈ S; j ∈ T} ≤ (1 + 1/ε)(u(i)− u(j))2.

By linearity of expectation,

E |δ(S, T)| ≤ (1 + 1/ε)
∑

(i,j)∈E
u(i)2>u(j)2

cij(u(i)− u(j))2
by (7)
= (1 + 1/ε)⟨u, L̃Gu⟩ ≤

≤ (1 + 1/ε)λG∥D1/2
w u∥2 ≤ (1 + 1/ε)λG ·E[w(S)].

We bounded ⟨u, L̃Gu⟩ using Claim 2.2 (cf. Equation (12)). Thus, this distribution over buffered
partitions (S, T ∥ B) satisfies Equation (I). Since (I) and (II) both hold, we can use Lemma 2.4 (see
below) to conclude that there exists a cut (Ŝ, T̂) with buffer B̂ for which

|δ(Ŝ, T̂)| ≤ 2(1 + 1/ε)λG · w(Ŝ), and w(B̂) ≤ 2ε · w(Ŝ).

For this cut (Ŝ, T̂) with buffer B̂, we have

|δ(Ŝ, T̂)|
w(Ŝ)

≤ 2(1 + 1/ε)λG · w(Ŝ)
w(Ŝ)

= 2(1 + 1/ε)λG.

By (13) and (14), we have Ŝ ⊆ {i : u(i)2 > 0} and T̂ ⊇ {i : u(i)2 = 0}. Thus w(T̂) ≤ w({i : u(i)2 >
0}) ≤ w(V)/2 and w(T̂) ≥ w({i : u(i)2 = 0}) = w(V) − w({i : u(i)2 > 0}) ≥ w(V)/2. Therefore,
w(T̂) ≤ w(Ŝ). We conclude that

|δ(Ŝ, T̂)|
w(T̂)

≤ |δ(Ŝ, T̂)|
w(Ŝ)

≤ 2(1 + 1/ε)λG.

We obtain the desired result for ε′ = 2ε. To finish the proof, it remains to show Lemma 2.4.

Lemma 2.4. For any m ≥ 2, consider m arbitrary jointly distributed non-negative random variables
X1, . . . , Xm−1 and Y . Suppose that for every i = 1, . . . ,m− 1, E[Xi] ≤ αiE[Z]. Then,

Pr{Xi ≤ 2αiY, ∀i ∈ [m− 1]} > 0. (17)

Proof. Consider a new random variable Z =
∑m−1

i=1
Xi

(m−1)αi
. By the linearity of expectation, we

have

E[Y] ≥ 1

m− 1

m−1∑
i=1

E[Xi]

αi
= E[Z].

This implies that Pr{Y ≥ Z} > 0; otherwise we would have E[Y] < E[Z]. If Y ≥ Z, then we have
for every i = 1, . . . ,m− 1, Xi ≤ (m− 1)αiY . Therefore, inequality (17) holds.

11

3 Orthogonal Separators with Buffers

In this section, we introduce orthogonal separators with buffers. We will prove Theorems 3.2, 3.4,
and 3.6 in Section 7. In these theorems, we provide randomized procedures to generate orthogonal
separators with buffers in a set of unit vectors U in Rd. In the next section, we will use the procedure
in Theorem 3.6 to create a partial partitioning. We first use spectral embedding to map each vertex
u ∈ V to a vector ū ∈ Rk. We will run this procedure on normalized vectors ψ(ū) = ū/∥ū∥ for all
vertices u ∈ V . We first give the definition of the orthogonal separator with one buffer.

Definition 3.1. Consider a finite set U of unit vectors in Rd. A distribution over two disjoint
subsets of U is an m-orthogonal separator with an ε-buffer, distortion D, separation radius R, and
probability scale α if the following conditions hold for two subsets X,Y ⊆ U chosen according to
this distribution:

1. For all ū ∈ U , Pr{ū ∈ X} = α.

2. For all ū ∈ U , Pr{ū ∈ Y } ≤ εα.

3. For all ū, v̄ ∈ U with ∥ū− v̄∥ ≥ R, Pr{v̄ ∈ X | ū ∈ X} ≤ 1
m .

4. For all ū, v̄ ∈ U , Pr{v̄ /∈ X ∪ Y | ū ∈ X} ≤ D ∥ū− v̄∥2.

We call X an orthogonal separator and Y its buffer.

In this definition, conditions 1 and 2 restrict the size of an orthogonal separator and its buffer
respectively. Condition 3 requires that for every pair of vectors ū, v̄ ∈ U , if ū, v̄ are almost or-
thogonal, then vectors ū, v̄ are separated by X with high probability. Condition 4 upper bounds
the probability that vectors ū, v̄ are separated by the orthogonal separator X with a buffer Y . In
the following theorem, we show there exists such an orthogonal separator with one buffer. The
construction of the orthogonal separator with one buffer and its proof is in Section 7.

Theorem 3.2. There exists a randomized polynomial-time procedure that given a finite set U of
unit vectors in Rd and positive parameters ε ∈ (0, 1),m ≥ 3, R ∈ (0, 2), returns an m-orthogonal
separator with an ε-buffer with distortion D = OR(1/ε logm), separation radius R, and probability
scale α ≥ OR(1/poly(m)).

In the above theorem, we show that if vectors ū and v̄ are far apart, then they are both contained
in X with a small probability. Suppose that every point ū has a certain weight or measure µ(ū). We
now show that by slightly altering the distribution of X and Y , we can guarantee that the measure
of every X is not much larger than the measure of the heaviest ball of radius R (see item 3 below
for details).

Definition 3.3. Consider a finite set U of unit vectors in Rd equipped with a measure µ. A
distribution over two disjoint subsets of U is an δ-orthogonal separator with an ε-buffer, distortion
D, separation radius R, and probability scale α if the following conditions hold for two subsets
X,Y ⊆ U chosen according to this distribution:

1. For all ū ∈ U , Pr{ū ∈ X} = α.

2. For all ū ∈ U , Pr{ū ∈ Y } ≤ εα.

3. minū∈X µ(X \ Ball(ū, R)) ≤ δµ(U) (always).

4. For all ū, v̄ ∈ U , Pr{v̄ /∈ X ∪ Y | ū ∈ X} ≤ D ∥ū− v̄∥2.

12

Theorem 3.4. There exists a randomized procedure that given a finite set U of unit vectors in
Rd equipped with a measure µ and positive parameters ε ∈ (0, 1), δ ≤ 2/3, R ∈ (0, 2), returns an
δ-orthogonal separator with an ε-buffer with distortion D = OR(1/ε log 1/δ), separation radius R,
and probability scale α ≥ OR(1/poly(m)).

By using the orthogonal separator with one buffer above, we can find a buffered partitioning
of the graph with buffered expansion in Theorem 1.1, but buffers Bi may overlap. To get disjoint
buffers as in Theorem 1.1, we use the orthogonal separator with two buffers defined as follows.

Definition 3.5. Consider a finite set U of unit vectors in Rd equipped with a measure µ. A dis-
tribution over three disjoint subsets of U is an δ-orthogonal separator with two ε-buffers, distortion
D, separation radius R, and probability scale α if the following conditions hold for three disjoint
subsets X,Y, Z ⊆ U chosen according to this distribution:

1. For all ū ∈ U , Pr{ū ∈ X} = α.

2. For all ū ∈ U , Pr{ū ∈ Y } ≤ εα and Pr{ū ∈ Z} ≤ εα.

3. minū∈X µ(X \ Ball(ū, R)) ≤ δµ(U) (always).

4. For all ū, v̄ ∈ U , Pr{v̄ /∈ X ∪ Y | ū ∈ X} ≤ D ∥ū− v̄∥2, and
Pr{v̄ /∈ X ∪ Y ∪ Z | ū ∈ X ∪ Y } ≤ D ∥ū− v̄∥2.

In the following theorem, we slightly modify the procedure above to get orthogonal separators
with two buffers.

Theorem 3.6. There exists a randomized procedure that given a finite set U of unit vectors in
Rd equipped with a measure µ and positive parameters ε ∈ (0, 1), δ ≤ 2/3, R ∈ (0, 2), returns an
δ-orthogonal separator with two ε-buffers with distortion D = OR(1/ε log 1/δ), separation radius R,
and probability scale α ≥ OR(1/poly(m)).

4 Partial Partitioning

In this section, we give an algorithm for finding a partial ε-buffered partitioning (P1, B1), . . . , (Pk′ , Bk′)
of G. This partitioning satisfies all the properties of the partitioning from Theorem 1.1 except the
union of sets Pi does not necessarily cover the entire vertex set of G. For notational convenience,
we will use k to denote the index of the eigenvalue that we compare the cost to. Eventually this
theorem will be applied with k = (1 +O(δ))k̂, where k̂ is the desired number of clusters (which we
denoted by k in Theorem 1.1). We obtain this partial partitioning using Algorithm 1 which consists
of Steps 1, 2, 3, and 4 provided in Figures 1, 2, 3, and 4.

Algorithm 1 generates this partial partitioning (P1, B1), . . . , (Pk′ , Bk′) with k
′ ≥ (1 − 2δ)k and

partitions the uncovered vertices V \
⋃

i∈[k′] Pi ∪ Bi into disjoint subsets A′
i, A

′′
i for i ∈ [k′] and

R′
B, R

′
P . We prove that these subsets Pi, Bi, A

′
i, A

′′
i for i ∈ [k′] and R′

B, R
′
P satisfy six properties

given in Theorem 4.1 (see below). The first three properties show subsets Pi, Bi forms a partial
ε-buffered partitioning. In Section 5, we show how to transform this partial partitioning with k′

clusters into a true buffered partitioning of G with k̂ clusters. We combine those additional sets
A′

i, A
′′
i , R

′
P , R

′
B to get a true buffered partitioning. The properties 4, 5, and 6 in Theorem 4.1 are

used in Section 5.

13

Find a spectral embedding for graph G:

• Let LG be the normalized Laplacian matrix for G.

• Find the top k eigenvalues of LG and corresponding orthogonal unit eigenvectors
x1, . . . , xk ∈ RV . Denote coordinate u ∈ V of xi by xi(u).

• Embed each vertex u ∈ V into k-dimensional vector ū defined as follows: the i-th
coodinate of ū is xi(u).

Figure 1: Step 1 of Partial Partitioning. At this step, the algorithm maps vertices of G into vectors
using the standard spectral embedding.

Let R =
√

δ/6, δ′ = δ/2k, and T = 2/α ln 1/δ.
Set Σ0 = ∅ and Γ0 = ∅.
For t = 1, . . . , T :

• Sample an orthogonal separator Xt with buffers Yt, Zt using Theorem 3.6 with param-
eters ε, R, and δ′. For convenience, we assume that Xt, Yt, and Zt contain not vectors
but the corresponding vertices of G.

• Let P̃t = Xt \ (
⋃

i<tXi ∪ Yi ∪ Zi) and Σt = Σt−1 ∪ P̃t.

• Let B̃t = (Xt ∪ Yt) \ (Σt ∪ Γt−1) and Γt = Γt−1 ∪ B̃t.

• Let RP = V \ (
⋃T

t=1Xt ∪ Yt ∪ Zt) and RB = V \ (ΣT ∪ ΓT ∪RP).

Figure 2: Step 2 of Partial Partitioning. At this step, the algorithm finds a crude partial partitioning
{(P̃t, B̃t)}t of V .

14

Let R′
P = RP and R′

B = RB.
For t = 1, · · · , T :

• Find rt that minimizes ϕG(Pt ∥ Bt) subject to the constraints |Bt| ≤ C ′
4.1(δ)ε|Pt|,

|A′′
t | ≤ 10ε|Pt|, δ(A′

t, Pt∪Bt) ≤ C′′
4.1(δ)/ε·λk log k ·d|Pt| , and δG(Pt∪Bt, (ΣT ∪RP)\P̃t) ≤

C′′
4.1(δ)/ε λk log k · d|Pt| where

Pt = {u ∈ P̃t : ∥ū∥2 ≥ rt}

Bt = {u ∈ B̃t : ∥ū∥2 ≥ rt/(1 + ε)} ∪ {u ∈ P̃t : ∥ū∥2 ∈ [rt/(1 + ε), rt]}

A′
t = {u ∈ P̃t : ∥ū∥2 ≤ rt/(1 + ε)2}

A′′
t = {u ∈ P̃t : ∥ū∥2 ∈ (rt/(1 + ε)2, rt/(1 + ε))}

Note that it suffices to consider r in {∥ū∥2 : u ∈ P̃t ∪ B̃t}. If no such rt exists, we let
Pt = ∅, Bt = ∅, A′

t = ∅, and A′′
t = ∅.

• If no such rt exists, then add P̃t to R
′
P and add B̃t to R

′
B. Otherwise, add B̃T \ Bt to

R′
B.

Figure 3: Step 3 of Partial Partitioning. At this step, the algorithm refines the crude partial
partitioning {(P̃t, B̃t)}t of V and obtains sets {(Pt, Bt, A

′
t, A

′′
t)}t.

For t = 1, · · · , T :

• Discard all sets Pt, Bt, A
′
t, A

′′
t if Pt = ∅, or

ϕG(Pt ∥ Bt) >
C ′′
4.1(δ)

ε
λk log k,

where C ′′
4.1(δ) is some function that depends only on δ (see Theorem 4.1).

• If sets Pt, Bt, A
′
t, A

′′
t are discarded, then add P̃t to R

′
P and add B̃t to R

′
B.

Figure 4: Step 4 of Partial Partitioning. At this step, the algorithm discards all sets (Pt, Bt) that
do not satisfy the conditions of Theorem 4.1.

15

Theorem 4.1. Algorithm 1 is a polynomial-time randomized algorithm that given a d-regular graph
G = (V,E), natural k > 1, and positive parameters ε, δ ∈ (0, 1/80), finds subsets R′

P , R
′
B and

Pi, Bi, A
′
i, A

′′
i of V for i ∈ [k′] with k′ ≥ (1− 2δ)k such that

1. All sets Pi, Bi, A
′
i, A

′′
i and R′

P , R
′
B are disjoint and all sets Pi are nonempty, and

R′
P ∪R′

B ∪
k′⋃
i=1

Pi ∪Bi ∪A′
i ∪A′′

i = V ;

2. |Bi| ≤ C ′
4.1(δ) ε|Pi| for all i ∈ {1, . . . , k′}; and

3. ϕG(Pi ∥ Bi) ≤
C ′′
4.1(δ)

ε
λk log k, for all i ∈ [k′],

4. |A′′
i | ≤ 10ε|Pi|, for all i ∈ [k′];

5. |R′
B| ≤ 16εn;

6.
∑k′

j=1 δG(A
′
j , Pi ∪Bi) + δG(R

′
P , Pi ∪Bi) ≤

2C ′′
4.1(δ)

ε
λk log k · d|Pi|, for all i ∈ [k′].

Remark: We will assume that ε ≤ δ. If that is not the case, we can replace ε with ε′ = δ and hide
the additional factor of ε/ε′ in the bound on ϕG(Pi ∥ Bi) and

∑k′

j=1 δG(A
′
j , Pi∪Bi)+δG(R

′
P , Pi∪Bi)

in the constant C ′′
4.1(δ). We will also assume that δ ≥ 1/(3k): indeed if δ < 1/(3k), we can increase

it to 1/(3k) and we will still have k′ ≥ ⌈(1− 2/(3k))k⌉ = k, as for the original value of δ.

Proof. Our algorithm consists of four steps. First, we embed the vertex set V into a k dimensional
space using the standard spectral embedding (see Section 6 for details). We denote the image of
vertex u by ū. We also let ψ(ū) = ū/∥ū∥ (that is, ψ(ū) is the normalized ū) and µ(u) = ∥ū∥2 (note:
ū ̸= 0 by Claim 6.1). At the second step, we obtain a crude partial partitioning P̃1, . . . , P̃k′′ with
buffers B̃1, . . . , B̃k′′ using a new technical tool, which we introduced in Section 3. We call this tool
orthogonal separators with buffers (see Theorem 3.6). Finally, we refine the crude partitioning at
the third step and discard some sets at the fourth step. We get subsets Pi, Bi, A

′
i, A

′′
i for i ∈ [k′]

and two extra subsets R′
P , R

′
B. We provide the pseudocode for Steps 1, 2, 3 and 4 in Figures 1, 2,

3, and 4. We now analyze our algorithm.
Before we proceed to the proof, we set some notation. Let Ball(u,R) be the ball of radius R

around u in the metric ρ(u, v) = ∥ψ(ū)− ψ(v̄)∥:

Ball(u,R) = {v ∈ V : ∥ψ(ū)− ψ(v̄)∥ ≤ R}.

We define measure µ on V as follows: for every S ⊆ V ,

µ(S) =
∑
u∈S

µ(u).

Step 1: Spectral Embedding. In Section 6, we remind the reader the standard definition of a
spectral embedding of G into Rk. We then prove two claims about this embedding. First, we note
that µ(V) = k. This is a known fact (see e.g., [LRTV12]). Then, in Lemma 6.3, we show that for
R < 1/

√
2, for any vertex u ∈ V ,

µ(Ball(u,R)) ≤ 1

1− 2R2
. (18)

16

We will use this bound with R =
√

δ/6.

Step 2: Crude Partial Partitioning. We now analyze the second step of the algorithm described
in Figure 2. Let {(P̃t, B̃t)}Tt=1 be the crude partial partitioning obtained at this step. Define function

η(u, v) =

∥ū∥2, if u ∈ P̃t, v /∈ P̃t ∪ B̃t for some t;

1/ε ∥ū− v̄∥2, if u ∈ P̃t, v ∈ P̃t ∪ B̃t for some t;

0, otherwise.

(19)

Later, we will use the following sum as an estimate of the size of the edge boundary of set Pt:

η(P̃t) =
∑

u∈P̃t; v∈V ;
s.t.(u,v)∈E

η(u, v). (20)

Note that function η(u, v) is not symmetric. If u and v are in P̃t, then the sum above includes both
terms η(u, v) and η(v, u). Depending on the argument, we will use η to denote the cost of an edge
as in Equation (19) or the cost of all edges incident on vertices in P̃t as in Equation (20).

Note that sets P̃t, B̃t are contained in Xt∪Yt∪Zt\Σt−1, where Xt, Yt, Zt are orthogonal separator
and its two buffers and Σt−1 are vertices covered by previous P̃i for i < t. We define another cost
function as follows:

η̃(u, v) =

{
∥ū∥2, if u ∈ P̃t ∪ B̃t, v /∈ (Xt ∪ Yt ∪ Zt) \ Σt−1 for some i;

0, otherwise.
(21)

We will use this cost function to bound the total cost of edges from each part in the partial
partitioning Pi and Bi to the uncovered part R′

B and R′
P . The cost of all edges incident on vertices

in P̃t ∪ B̃t for function η̃ is denoted as

η̃(P̃t ∪ B̃t) =
∑

u∈P̃t∪B̃t; v∈V ;
s.t.(u,v)∈E

η̃(u, v). (22)

We prove the following lemma for all sets generated after Step 2.

Lemma 4.2. The crude partial partitioning {(P̃t, B̃t)}Tt=1 and subsets RB, RP obtained at Step 2
of the algorithm satisfies the following properties:

1. µ(P̃t) ≤ 1 + δ for all t;

2.
1

k

∑T
t=1E[µ(P̃t)] ≥ 1− 5δ;

3.
1

k

∑T
t=1E[µ(B̃t)] ≤ 4ε;

4.
1

k

∑T
t=1E[η(P̃t)] ≤

Cδ

ε
· λkd log k;

5.
∑T

t=1E |B̃t|+E |RB| ≤ 4εn;

6.
1

k

∑T
t=1E[η̃(P̃t ∪ B̃t)] ≤

Cδ

ε
· λkd log k.

17

Here, the expectation is taken over the random decisions made by the algorithm at Step 2 (all other
steps of the algorithm are deterministic).

Proof. We will use Theorem 3.6 to analyze Step 2 of the algorithm. We first show item (1). Observe
that P̃t ⊂ Xt and for every u ∈ Xt, Xt = Ball(u,R) ∪ (Xt \ Ball(u,R)). Thus,

µ(P̃t) ≤ µ(Ball(u,R)) + µ(Xt \ Ball(u,R)).

By Lemma 6.3 (see Equation (18)), µ(Ball(u,R)) ≤ 1/(1−δ/3) ≤ 1+δ/2 for all u. By Theorem 3.6,

min
u∈Xt

µ(Xt \ Ball(u,R)) ≤
δµ(V)

2k
=
δ

2
.

Thus, µ(P̃t) ≤ 1 + δ.
We now prove item (2). Consider a vertex u. Observe that if u gets assigned to set Σt at

iteration t, then it remains in the set Σt′ in the future iterations t′ > t. That is, Σt ⊂ Σt+1. Let
Ξt =

⋃
i<tXi ∪ Yi ∪ Zi. Then, similarly, we have Ξt ⊂ Ξt+1. If u is not in Ξt, then at step (t+ 1),

it is assigned to P̃t+1 with probability at least α/2 and to Ξt+1 \ P̃t+1 with probability at most 2εα
(see Theorem 3.6). Thus,

Pr{u ∈ Σt | u ∈ Ξt} ≥ α/2

α/2 + 2εα
=

1

1 + 4ε
.

Also,
1− (1− α(1 + 2ε))t ≥ Pr{u ∈ Ξt} ≥ 1− (1− α/2)t.

Therefore (since T = ⌈2/α ln 1/δ⌉ and ε < δ < 1/48),

Pr{u ∈ ΣT } ≥ 1− (1− α/2)T

1 + 4ε
≥ 1− δ

1 + 4δ
≥ 1− 5δ. (23)

Item (2) follows from the bound above because sets P̃t are disjoint and ΣT =
⋃T

t=1 P̃t.
We then prove items (3) and (5). Note that the remaining parts RP = V \ ΞT and RB =

V \ (RP ∪ ΣT ∪ ΓT) = ΞT \ (ΣT ∪ ΓT). Since all sets B̃t are disjoint and ΓT = ∪T
t=1B̃t, we upper

bound probabilities Pr{u ∈ ΓT } and Pr{u ∈ ΓT ∪ RB}. Since RB = ΞT \ (ΣT ∪ ΓT), we have
ΓT ∪RB = ΞT \ ΣT . Similar to bound (23), we have

Pr{u ∈ ΓT } ≤ Pr{u ∈ ΓT ∪RB} ≤ Pr{u ∈ ΞT \ ΣT } ≤ 4ε

1 + 4ε
·
(
1− (1− α(1 + 2ε))T

)
≤ 4ε, (24)

where the last inequality is due to Pr{u ∈ ΞT \ ΣT | u ∈ ΞT } ≤ 4ε/(1 + 4ε) and Pr{u ∈ ΞT } ≤
1 − (1 − α(1 + 2ε))T . Then, item (3) follows from Pr{u ∈ ΓT } ≤ 4ε and item (5) follows from
Pr{u ∈ ΓT ∪RB} ≤ 4ε.

We now prove the item (4). Consider an edge (u, v). We bound the probability of the event{
η(u, v) = ∥ū∥2

}
. If η(u, v) = ∥ū∥2, then u ∈ P̃t, and v /∈ P̃t ∪ B̃t for some t. We first assume

that v /∈ Σt′ ∪ Γt′ with t′ ≤ t − 1 or, in other words, v /∈ Σt−1 ∪ Γt−1. Then, u ∈ Xt \ Ξt−1 and
v /∈ Xt ∪ Yt for some t (otherwise, if v was in (Xt ∪ Yt) \ Σt−1 ∪ Γt−1, v would also be in P̃t or B̃t).
If v ∈ P̃t′ ∪ B̃t′ and u ∈ P̃t with t

′ < t, then v ∈ (Xt′ ∪ Yt′) \ (Σt′−1 ∪ Γt′−1) and u /∈ Xt′ ∪ Yt′ ∪ Zt′

18

for some t′. Write,

Pr
{
η(u, v) = ∥ū∥2

}
≤

T∑
t=1

Pr
{
u ∈ Xt \ Ξt−1 and v /∈ Xt ∪ Yt}︸ ︷︷ ︸

(∗)

(25)

+

T∑
t=1

Pr
{
v ∈ (Xt ∪ Yt) \ (Σt−1 ∪ Γt−1) and u /∈ Xt ∪ Yt ∪ Zt}︸ ︷︷ ︸

(∗∗)

. (26)

We upper bound the first term. Two events {u ∈ Xt; v /∈ Xt ∪Yt} and {u /∈ Ξt−1} are independent
for every t. Thus,

(∗) ≤
T∑
t=1

Pr
{
u ∈ Xt and v /∈ Xt ∪ Yt} · Pr{u /∈ Ξt−1}

=

T∑
t=1

Pr
{
v /∈ Xt ∪ Yt | u ∈ Xt} · Pr{u ∈ Xt} · Pr{u /∈ Ξt−1}

=

T∑
t=1

Pr
{
v /∈ Xt ∪ Yt | u ∈ Xt} · Pr{u ∈ Xt \ Ξt−1}.

By Theorem 3.6,
Pr{v /∈ Xt ∪ Yt | u ∈ Xt} ≤ D ∥ψ(ū)− ψ(v̄)∥2,

where D = O(1/ε log k/δ) = Oδ(1/ε log k). Observe that events {u ∈ Xt \Ξt−1} for t ∈ {1, . . . , T} are
mutually exclusive. Thus,

(∗) ≤ D ∥ψ(ū)− ψ(v̄)∥2 ·
T∑
t=1

Pr{u ∈ Xt \ Ξt−1}︸ ︷︷ ︸
≤1

≤ D ∥ψ(ū)− ψ(v̄)∥2.

The same bound holds for (∗∗) in Equation (26). We now bound E[η(u, v)]:

E
[
η(u, v)

]
= Pr

{
η(u, v) = ∥ū∥2

}
· ∥ū∥2 + Pr

{
η(u, v) = 1/ε∥ū− v̄∥2

}
· 1/ε∥ū− v̄∥2

≤ 2D ∥ψ(ū)− ψ̄(v̄)∥2 · ∥ū∥2 + 1/ε∥ū− v̄∥2.

By Claim 4.3 (see below), E
[
η(u, v)] ≤ 8D∥ū− v̄∥2 + 1/ε∥ū− v̄∥2 = Oδ(1/ε log k) ∥ū− v̄∥2.

Claim 4.3. Consider two vertices u, v ∈ V and the corresponding nonzero vectors ū, v̄. We have

∥ū∥2 · ∥ψ(ū)− ψ(v̄)∥2 ≤ 4∥ū− v̄∥2.

Remark: This is a known inequality. See e.g., [CMM06] and [LGT14].

Proof. Write,

∥ū∥2 · ∥ψ(ū)− ψ(v̄)∥2 = ∥ū∥2 ·
∥∥∥ ū

∥ū∥
− v̄

∥v̄∥

∥∥∥2 = ∥∥∥ū− ∥ū∥
∥v̄∥

v̄
∥∥∥2.

19

We now use the relaxed triangle inequality for squared Euclidean distance ∥x− z∥2 ≤ 2∥x− y∥2 +
2∥y − z∥2. We have

∥ū∥2 · ∥ψ(ū)− ψ(v̄)∥2 ≤ 2∥ū− v̄∥2 + 2
∥∥∥v̄ − ∥ū∥

∥v̄ ∥
v̄
∥∥∥2 ≤ 4∥ū− v̄∥2.

Here, we used that v̄ and ∥ū∥
∥v̄ ∥ v̄ are collinear vectors and, thus,∥∥∥ ∥ū∥∥v̄ ∥
v̄ − v̄

∥∥∥ =

∣∣∣∣∥∥∥ ∥ū∥∥v̄ ∥
v̄
∥∥∥− ∥v̄∥

∣∣∣∣ = ∣∣∥ū∥ − ∥v̄∥
∣∣ ≤ ∥ū− v̄∥.

We can now finish the proof of Lemma 4.2,

1

k

T∑
t=1

E[η(P̃t)] =
1

k

∑
(u,v)∈E

E[η(u, v)] +E[η(v, u)] = Oδ(1/ε log k)
1

k

∑
(u,v)∈E

∥ū− v̄∥2.

By Claim 6.2, the right hand side is upper bounded by Oδ(1/ε log k) dλk.
Finally, we prove item (6). Similar to the analysis of item (4), for any edge (u, v), we bound the

probability that η̃(u, v) = ∥ū∥2. If η̃(u, v) = ∥ū∥2, then we have u ∈ P̃t ∪ B̃t and v ̸∈ (Xt ∪Yt ∪Zt) \
Σt−1 for some t. We also first assume that when u is contained in P̃t ∪ B̃t, vertex v is not contained
in Σt−1. Then, we must have v /∈ Xt ∪ Yt ∪ Zt. If v is covered by P̃t for some t before u is covered,
then we must have u /∈ Xt ∪ Yt (otherwise u is contained in P̃t ∪ B̃t). Thus, we have

Pr{η̃(u, v) = ∥ū∥2} ≤
T∑
t=1

Pr{u ∈ (Xt ∪ Yt) \ Ξt−1 and v /∈ Xt ∪ Yt ∪ Zt}

+

T∑
t=1

Pr{v ∈ Xt \ Ξt−1 and u /∈ Xt ∪ Yt}.

By Theorem 3.6, we have Pr{η̃(u, v) = ∥ū∥2} ≤ 2D ∥ψ(ū)− ψ(v̄)∥2. By Claim 6.2, we get

1

k

T∑
t=1

E[η̃(P̃t ∪ B̃t)] =
1

k

∑
(u,v)∈E

E[η̃(u, v)] +E[η̃(v, u)] = Oδ(1/ε log k) dλk.

By item (5) in Lemma 4.2 and Markov’s inequality, we have |RB|+
∑T

t=1 |B̃t| ≤ 16εn holds with
probability at least 3/4. In the following analysis, we assume this always holds.

Steps 3 & 4. Our algorithm (Algorithm 1) refines the crude partial partitioning {P̃t, B̃t}Tt=1 at Step
3 and obtains set tuples {(Pt, Bt, A

′
t, A

′′
t)}Tt=1. Then, it removes some of the sets (Pt, Bt, A

′
t, A

′′
t) from

the partial partitioning at Step 4. In the analysis of the algorithm, it will be more convenient for us
to identify those sets (P̃t, B̃t) that remain in the solution first and only then find their refinements
(Pt, Bt, A

′
t, A

′′
t). Let

I =
{
i : P̃i ̸= ∅, µ(B̃i) ≤ C ′

δ εµ(P̃i), and max{η(P̃i), η̃(P̃i ∪ B̃i)} ≤ C ′′
δ /ε · λkd log k µ(P̃i)

}
, (27)

where C ′
δ = 192/δ and C ′′

δ = 48Cδ/δ. We will now prove that Pr{|I| ≥ (1−2δ)|k|} ≥ 1/2. In the next
section, we show that for each i ∈ I, the set tuple (Pi, Bi, A

′
i, A

′′
i) satisfies all constraints at Step 3

20

and 4. Thus, all sets (Pi, Bi, A
′
i, A

′′
i) with i ∈ I remain in the solution after Step 4 and, consequently,

the algorithm succeeds with probability at least 1/4 (We assume |RB|+
∑T

t=1 |B̃t| ≤ 16εn at Step
2, which holds with probability at least 3/4).

Lemma 4.2 gives us upper bounds on the expected values of k −
∑

t µ(P̃t),
∑

t µ(B̃t),
∑

t η(P̃t),

and
∑

t η̃(P̃t ∪ B̃t). These four random variables are non-negative. Thus, by Markov’s inequality,
with probability at least 1/2, the following four inequalities hold simultaneously:

1

k

T∑
t=1

µ(P̃t) ≥ 1− 40δ;

1

k

T∑
t=1

µ(B̃t) ≤ 32ε;

1

k

T∑
t=1

η(P̃t) ≤ 8Cδ/ε λkd log k.

1

k

T∑
t=1

η̃(P̃t ∪ B̃t) ≤ 8Cδ/ε λkd log k.

Denote the event that all above inequalities hold by E . We know that Pr(E) ≥ 1/2. Let us assume
that E occurs. Since δ < 1/80, we have

T∑
t=1

µ(B̃t) ≤ 64ε

T∑
t=1

µ(P̃t);

T∑
t=1

η(P̃t) ≤ 16Cδ/ελkd log k

T∑
t=1

µ(P̃t);

T∑
t=1

η̃(P̃t ∪ B̃t) ≤ 16Cδ/ε λkd log k

T∑
t=1

µ(P̃t).

Let wi = µ(P̃i)
/∑T

t=1 µ(P̃t) . We rewrite the inequalities above as follows:

T∑
i=1

wi
µ(B̃i)

µ(P̃i)
≤ 64ε;

T∑
i=1

wi
η(P̃i)

µ(P̃i)
≤ 16Cδ/ελkd log k;

T∑
i=1

wi
η̃(P̃i ∪ B̃i)

µ(P̃i)
≤ 16Cδ/ελkd log k.

In the expressions above, we ignore the terms with wi = 0. Note that
∑

iwi = 1. Suppose that we
pick i in {1, . . . , T} randomly with probability wi. Then, the above inequalities give bounds on the
expected values of µ(B̃i)/µ(P̃i) and η(P̃i)/µ(P̃i). By Markov’s inequality,

Pr
i∼w

{i ∈ I} = Pr
i∼w

{
µ(B̃i) ≤ C ′

δ εµ(P̃i) and max{η(P̃i), η̃(P̃i ∪ B̃i)} ≤ C ′′
δ /ε λkd log k µ(P̃i)

}
≥ 1− δ,

21

where C ′
δ = 192/δ and C ′′

δ = 48Cδ/δ. Therefore,
∑

i∈I wi ≥ 1− δ. We have

∑
i∈I

µ(P̃i) ≥ (1− δ)
T∑
i=1

µ(P̃i) ≥ (1− δ)k.

We now recall that µ(P̃i) ≤ 1 + δ. Consequently,

|I| ≥ 1− δ

1 + δ
k ≥ (1− 2δ)k.

We just showed that if event E occurs, then |I| ≥ (1 − 2δ)k and Pr(E) ≥ 1/2. Hence, Pr{|I| ≥
(1− 2δ)k} ≥ 1/2.

Step 3: Refined Partial Partitioning. At Step 3 of the algorithm, we refine the crude parti-
tioning obtained at Step 2. To this end, we pick a threshold ri ∈ (0, 1) for every pair (P̃i, B̃i) with
i ∈ I. We define the refined partitioning sets to be

• Pi = {u ∈ P̃i : µ(u) ≥ ri},

• Bi = {u ∈ B̃i : µ(u) ≥ ri/(1 + ε)} ∪ {u ∈ P̃i : µ(u) ∈ [ri/(1 + ε), ri)},

• A′
i = {u ∈ P̃i : µ(u) ≤ ri/(1 + ε)2},

• A′′
i = {u ∈ P̃i : µ(u) ∈ (ri/(1 + ε)2, ri/(1 + ε))}.

The threshold ri must satisfy five conditions: (1) |Bi| ≤ C ′
4.1(δ)ε|Pi|; (2) ϕG(Pi ∥ Bi) ≤ C′′

4.1(δ)/ε λk log k;

(3) |A′′
i | ≤ 10ε|Pi|, and (4) δG(A

′
i, Pi∪Bi) ≤ C′′

4.1(δ)/ε λk log k ·d|Pi|; (5) δG(Pi∪Bi, (ΣT ∪RP)\ P̃i) ≤
C′′

4.1(δ)/ε λk log k · d|Pi|. At Step 4, we drop sets (Pi, Bi, A
′
i, A

′′
i) for which we could not find such

threshold. We now show that for every i ∈ I such threshold ri exists (set I is defined in Equa-
tion (27)). We use the probabilistic method.

Lemma 4.4. Consider i ∈ I. Suppose, we select elements in sets Pi and Bi using a random
threshold ri, which is uniformly distributed in (0, 1). Then

1. Eri |Bi| ≤ 2C ′
δ εEri |Pi|;

2. Eri

[
δG(Pi, V \ (Pi ∪Bi))

]
≤ C′′

δ
ε λk log k · dEri |Pi|;

3. Eri |A′′
i | ≤ 2εEri |Pi|;

4. Eri

[
δG(A

′
i, Pi ∪Bi)

]
≤ C′′

δ
ε λk log k · dEri |Pi|.

5. Eri

[
δG(Pi ∪Bi, (ΣT ∪RP) \ P̃i)

]
≤ C′′

δ
ε λk log k · dEri |Pi|.

Proof. Denote

B′
i = {u ∈ B̃i : µ(u) ≥ ri/(1 + ε)} and B′′

i = {u ∈ P̃i : µ(u) ∈ [ri/(1 + ε), ri)}.

Then, Bi = B′
i ∪B′′

i . Write,

Eri |Pi| =
∑
u∈P̃i

Pr
ri
{u ∈ Pi} =

∑
u∈P̃i

Pr
ri
{ri ≤ µ(u)} = µ(P̃i).

22

Here, we used that µ(u) ≤ 1 for all u (see Claim 6.1). Similarly, E |B′
i| ≤ (1 + ε)µ(B̃i). Then,

E |B′′
i | =

∑
u∈P̃i

Pr
ri

{
µ(i) ∈ [ri/(1 + ε), ri]

}
=
∑
u∈P̃i

Pr
ri

{
ri ∈ [µ(i), (1 + ε)µ(i)]

}
≤ εµ(P̃i).

Thus, using the definition of set I, we get

E |Bi| ≤ E |B′
i|+E |B′′

i | = (1 + ε)µ(B̃i) + εµ(P̃i) ≤ ((1 + ε)C ′
δ + 1)εµ(P̃i) = 2C ′

δ εE |Pi|.

This proves the first claim of Lemma 4.4.
We assign all vertices u ∈ P̃i with µ(u) ∈ (ri/(1 + ε)2, ri/(1 + ε)) to set A′′

i . Then, we have

E |A′′
i | =

∑
u∈P̃i

Pr
ri

{
µ(i) ∈ (ri/(1 + ε)2, ri/(1 + ε))

}
=

=
∑
u∈P̃i

Pr
ri

{
ri ∈ [(1 + ε)µ(i), (1 + ε)2µ(i)]

}
=
∑
u∈P̃i

(ε+ ε2)µ(i) < 2εµ(P̃i).

Since µ(P̃i) = Eri |Pi|, we get the third claim.
To show claims 2 and 4 of Lemma 4.4, we bound the expected number of edges from set Pi to

set V \ (Pi ∪Bi), and the expected number of edges from set A′
i to set Pi ∪Bi.

Claim 4.5. Consider an edge (u, v) ∈ E with u ∈ P̃i. We have

Pr{u ∈ Pi; v /∈ Pi ∪Bi} ≤ 2η(u, v),

and
Pr{u ∈ A′

i; v ∈ Pi ∪Bi} ≤ 2η(u, v).

Proof. Consider two cases. If v ∈ P̃i ∪ B̃i, then

Pr{u ∈ Pi, v /∈ Pi ∪Bi} = Pr{µ(u) ≥ ri and µ(v) < ri/(1 + ε)}
≤ Pr

{
ri ∈

[
(1 + ε)µ(v), µ(u)

]}
≤ µ(u)− (1 + ε)µ(v).

By Claim 2.3,

µ(u)− (1 + ε)µ(v) = ∥ū∥2 − (1 + ε)∥v̄∥2 ≤ (1 + 1/ε)(∥ū∥ − ∥v̄∥)2 ≤ 2(∥ū∥ − ∥v̄∥)2/ε.

Using the triangle inequality ∥ū∥ − ∥v̄∥ ≤ ∥ū− v̄∥, we conclude that

Pr{u ∈ Pi, v /∈ Pi ∪Bi} ≤ 2η(u, v).

Similarly, we have

Pr{u ∈ A′
i and v ∈ Pi ∪Bi} = Pr{µ(u) ≤ ri/(1 + ε)2 and µ(v) ≥ ri/(1 + ε)}

≤ Pr
{
ri ∈

[
(1 + ε)2µ(u), (1 + ε)µ(v)

]}
≤ (1 + ε)(µ(v)− (1 + ε)µ(u)) ≤ 2(∥ū∥ − ∥v̄∥)2/ε.

Therefore, we have
Pr{u ∈ A′

i, v ∈ Pi ∪Bi} ≤ 2η(u, v).

If v /∈ P̃i ∪ B̃i, then Pr{u ∈ A′
i, v ∈ P̃i ∪ B̃i} = 0, and

Pr{u ∈ Pi, v ∈ Pi ∪Bi} = Pr{u ∈ Pi} = ∥ū∥2 = η(u, v).

23

By Claim 4.5, the expected number of edges from set Pi to set V \ (Pi ∪Bi) is at most 2η(P̃i).
Also, the expected number of edges from set A′

i to set Pi ∪ Bi is at most 2η(P̃i). In other words,

E
[
δG(Pi, V \ (Pi ∪ Bi))

]
≤ 2η(P̃i) and E

[
δG(A

′
i, Pi ∪ Bi

]
≤ 2η(P̃i). Using the definition of set I

(see (27)), we get the claims 2 and 4 of Lemma 4.4.
Finally, we prove claim 5 of Lemma 4.4. We have for any edge (u, v) with u ∈ P̃i ∪ B̃i,

Pr{u ∈ Pi ∪Bi, v ∈ (ΣT ∪RP) \ P̃i} ≤ Pr{u ∈ Pi ∪Bi} = (1 + ε)∥ū∥2 ≤ 2η̃(u, v).

Thus, the expected number of edges from Pi ∪Bi to (ΣT ∪RP) \ P̃i is at most 2η̃(P̃i ∪ B̃i). By the
definition of set I (see (27)), we get the conclusion.

Using Lemma 2.4 with six random variables, we conclude that there exists ri ∈ (0, 1) such that
inequalities (1) |Bi| ≤ 10C ′

δ ε|Pi|, (2) δG(Pi, V \ (Pi ∪Bi)) ≤ 5C′′
δ/ε λk log k · d|Pi|, (3) |A′′

i | ≤ 10ε|Pi|,
(4) δG(A

′
i, Pi∪Bi) ≤ 5C′′

δ/ε λk log k·d|Pi|, and (5) δG(Pi∪Bi, (ΣT∪RP)\P̃i) ≤ 5C′′
δ/ε λk log k·d|Pi| hold

simultaneously. The second inequality is equivalent to ϕ(Pi ∥ Bi) ≤ 5C′′
δ/ε λk log k. In this theorem,

we use the following functions C ′
4.1 and C ′′

4.1: C
′
4.1(δ) = 10C ′

δ and C ′′
4.1(δ) = 5C ′′

δ . Combining the
inequalities (4) and (5), we get the property (6) in Theorem 4.1. In Algorithm 1, all sets Pi, Bi, A

′
i, A

′′
i

for i ∈ [k′] and R′
B, R

′
P are disjoint and cover the entire graph. Since all set tuples (Pi, Bi, A

′
i, A

′′
i)

with Pi = ∅ are discarded at Step 4, all sets Pi returned by Algorithm 1 are nonempty. Note that
R′

B ⊆ RB ∪
⋃T

i=1 B̃i. Since we assume |RB| +
∑T

i=1 |B̃i| ≤ 16εn at Step 2 (This condition holds
with probability at least 3/4), we have |R′

B| ≤ 16εn. This finishes the proof of Theorem 4.1.

5 From Disjoint Sets to Partitioning

We now show how to use the partial partitioning given by Algorithm 1 in Section 4 to obtain a true
ε-buffered partitioning. We prove the following lemma.

Lemma 5.1. Consider a d-regular graph G. Let {(Pi, Bi, A
′
i, A

′′
i)}i∈[k′] and R′

P , R
′
B be a partial

ε-buffered partitioning of G given by Algorithm 1. Then, for every k ∈ {1, · · · , k′} and δ′ = (k′ −
k+ 1)/k′, we can convert this partial partitioning into a true 54ε/δ′-buffered partitioning P ′

1, . . . , P
′
k,

B′
1, . . . , B

′
k of G such that

ϕG(P
′
1, . . . , P

′
k ∥ B′

1, . . . , B
′
k) ≤

4C ′′
4.1(δ)

δ′
· log k

ε
λk.

Proof. Let us sort all pairs (Pi, Bi, A
′
i, A

′′
i) by size and assume |P1| ≤ · · · ≤ |Pk′ |. Now, we generate

the true buffered partitioning of the graph. The true buffered partitioning (P ′
i , B

′
i) contains the

pairs (Pi, Bi) for i ∈ [k − 1] in the partial partitioning and a pair of new sets (P ′
k, B

′
k). Specifically,

we let P ′
i = Pi and B

′
i = Bi for i ∈ [k − 1] and

P ′
k = R′

P ∪
k′⋃
j=1

A′
j ∪

k′⋃
j=k

Pj ; B′
k = R′

B ∪
k′⋃
j=1

A′′
j ∪

k′⋃
j=k

Bj .

We can think of each set A′′
i is the buffer for the set A′

i for i ∈ [k′], and the set R′
B is the buffer

for the set R′
P . We also combine these sets and buffers with the largest k′ − k+ 1 pairs (Pi, Bi) for

i = k, k + 1, · · · , k′ in the partial partitioning, respectively.
By Theorem 4.1, all sets Pi, Bi, A

′
i, A

′′
i and R′

P , R
′
B are disjoint and cover the entire graph. Also,

all sets Pi and R
′
P are nonempty. Thus, all sets P ′

i are disjoint and nonempty, and
⋃k

i=1 P
′
i ∪B′

i = V .
Also, for all i ∈ [k − 1], we have |Bi| ≤ ε|Pi| and

ϕG(P
′
i , B

′
i) = ϕG(Pi, Bi) ≤

C ′′
4.1(δ)

ε
λk log k. (28)

24

It remains to verify that the last pair of sets P ′
k and B′

k satisfy the required conditions. By items
4 and 5 of Theorem 4.1, we have

|B′
k| ≤ |R′

B|+
k′∑
j=1

|A′′
j |+

k′∑
j=1

|Bj | ≤ 16εn+ 11ε

k′∑
j=1

|Pi| ≤ 27εn.

Since |P1| ≤ · · · ≤ |Pk′ |, we have
∑k−1

i=1 |Pi| ≤ k−1/k′
∑k′

i=1 |Pi|. Thus, we have

|P ′
k| = |V | − |R′

B| −
k′∑
i=1

|A′′
i |+ |Bi| −

k−1∑
i=1

|Pi| ≥

≥
(
1− k − 1

k′

)
·

(
|V | − |R′

B| −
k′∑
i=1

|A′′
i |+ |Bi|

)
≥ δ′(n− 27εn) ≥ δ′n/2.

Hence, we have |B′
k| ≤ 54ε/δ′|P ′

k|.
We now bound the buffered expansion of this last part. By items (3) and (6) of Theorem 4.1,

we have

ϕG(P
′
k ∥ B′

k) ≤
∑k−1

i=1 δG(P
′
k, Pi ∪Bi)

d|P ′
k|

≤
∑k−1

i=1

∑k′

j=1 δG(A
′
j , Pi ∪Bi) + δG(R

′
P , Pi ∪Bi) +

∑k′

j=k δG(Pj , Pi ∪Bi)

d · δ′n/2

≤
2C ′′

4.1(δ)/ε · λk log k · d
∑k−1

i=1 |Pi|+
∑k′

j=k δG(Pj , V \ (Pj ∪Bj))

d · δ′n/2

≤ 4C ′′
4.1(δ)/δ

′

ε
· λk log k.

This concludes the proof of Lemma 5.1.

We now prove the main result of the paper, Theorem 1.1.

Proof of Theorem 1.1. Let k̂ = ⌊(1+δ)k⌋ and δ̂ = min{(1−1/
√
1+δ)/2, 1/80}. Let k′ = ⌈(1−2δ̂)k̂⌉ and

δ′ = (k′ − k + 1)/k′. We first use Algorithm 1 from Section 4 with parameters k̂, ε̂ = εδ′/54, and δ̂
to obtain a partial ε̂-buffered partitioning (P1, B1, A

′
1, A

′′
1), . . . , (Pk′ , Bk′ , A

′
k′ , A

′′
k′). By Theorem 4.1,

the buffered expansion of each set Pi with buffer set Bi is at most C′′
4.1(δ)/ε̂ λk̂ log k̂. Then, we apply

Lemma 5.1 to transform this partial partitioning into a true k partitioning. Since k′ = ⌈(1− 2δ̂)k̂⌉,
we have k′ ≥

√
1 + δk − 1. Then, we have δ′ ≥ 1 − 1/

√
1 + δ. By Lemma 5.1, the expansion of

this ε-buffered k partitioning is at most c(δ)/ε λk̂ log k̂, where c(δ) =
4C′′

4.1(δ)/δ′ is a function that only
depends on δ.

6 Spectral Embedding

Consider a d-regular graphG. Let LG be its normalized Laplacian. Let x1, . . . , xn be an orthonormal
eigenbasis for LG and λi be the eigenvalue of xi. Without loss of generality, we assume that
λ1 ≤ · · · ≤ λn. Note that λ1 = 0, so we may assume that x1 = 1/

√
n. Define an k × n matrix

U = (x1, . . . , xk)
T ; that is, the (i, u) entry of U equals U(i, u) = xi(u) where i ∈ [k] and u ∈ V .

Rows of U are indexed by integers from 1 to k and columns by vertices u ∈ V of the graph (to

25

simplify notation, we may assume that V = [n]). Note that UUT = Ik, since vectors x1, . . . , xk are
orthonormal. Let {eu}u∈V be the standard orthonormal basis in RV .

We are ready to define the spectral embedding of G. Let ū be the column of U indexed by
vertex u. The spectral embedding maps vertex u to vector ū.

Define ψ(u) = ui/∥ui∥. For a subset of vertices S ⊆ V , let µ(S) =
∑

u∈S ∥ū∥2 be the measure
of set S. Now we will state and prove basic properties of the spectral embedding.

Claim 6.1. For all u ∈ V , we have 0 < ∥ū∥ ≤ 1.

Proof. Since x1 = 1/
√
n, for all u ∈ V , we have ū(1) = 1/

√
n and ∥ū∥ ≥ 1/

√
n > 0. Further,

∥ū∥2 =
k∑

i=1

ū(i)2 =

k∑
i=1

xi(u)
2 =

k∑
i=1

⟨xi, eu⟩2 ≤
n∑

i=1

⟨xi, eu⟩2 = ∥eu∥2 = 1.

Claim 6.2. We have

1.
∑

u∈V ∥ū∥2 = k

2.
∑

(u,v)∈E ∥ū− v̄∥2 ≤ kdλk

Proof. Note that the (u, v) entry of matrix UTU equals ⟨ū, v̄⟩, since U has columns ū for u ∈ V .

1. We have,
∑

u∈V ∥ū∥2 = tr(UTU) = tr(UUT) = tr Ik = k, as required.

2. We have,

∑
(u,v)∈E

∥ū− v̄∥2 =
∑

(u,v)∈E

k∑
i=1

∥ū(i)− v̄(i)∥2 =
k∑

i=1

∑
(u,v)∈E

∥xi(u)− xi(v)∥2

by (1)
= d

k∑
i=1

xTi LGxi = d
k∑

i=1

λi ≤ dkλk,

where we used that λ1 ≤ · · · ≤ λk in the last inequality.

We show that the spectral embedding vectors {ψ(v̄)} satisfy the following spreading property.
It is a variant of Lemma 3.2 from the paper by Lee, Oveis-Gharan and Trevisan [LGT14].

Lemma 6.3. Assume that we are given a parameter R ∈ [0, 1/
√
2]. For every vertex u, consider the

ball of radius R around u, Ball(u,R) = {v : ∥ψ(ū)−ψ(v̄)∥ ≤ R}. Then µ(Ball(u,R)) ≤ 1/(1−2R2)
for every u.

Proof. Consider a vertex u ∈ V and C = Ball(u,R). Let av = ∥v̄∥ for v ∈ C. Then, v̄ = avψ(v̄) for
v ∈ C. We have, µ(C) =

∑
v∈C a

2
v. By the definition of C, ∥ψ(ū)− ψ(v̄)∥ ≤ R for v ∈ C and hence

∥ψ(v̄)− ψ(w̄)∥ ≤ 2R for all pairs v, w ∈ C. Therefore,

⟨ψ(v̄), ψ(w̄)⟩ = 1− ∥ψ(v̄)− ψ(w̄)∥2

2
≥ 1− 2R2 for all v, w ∈ C. (29)

Write,

µ(C) =
∑
v∈C

a2v =
1∑

v∈C a
2
v

∑
v,w∈C

a2va
2
w.

26

By inequality (29),

avaw ≤ avaw⟨ψ(v̄), ψ(w̄)⟩
1− 2R2

=
⟨v̄, w̄⟩
1− 2R2

.

Thus,

µ(C) ≤ 1∑
v∈C a

2
v

∑
v,w∈C

avaw ⟨v̄, w̄⟩
1− 2R2

.

For any vertex v ∈ V , let ev ∈ RV be the standard basis vector where ev(v) = 1 and ev(u) = 0 for
all u ̸= v. Let

z =

∑
v∈C avev√∑

v∈C a
2
v

.

For any standard basis vector ev, we have Uev = v̄. Therefore,

Uz =
1√∑
v∈C a

2
v

∑
v∈C

avv̄,

and

µ(C) ≤ zT (UTU)z

(1− 2R2)
.

We prove that ∥Uz∥2 = zT (UTU)z ≤ 1. To this end, note that z is a unit vector and ∥Uz∥2 ≤
σmax(U)2 = σmax(U

T)2, where σmax(U) and σmax(U
T) are the largest singular values of U and UT ,

respectively (here, we used the definition of singular values and the fact that matrices U and UT

have the same non-zero singular values). Since UUT = Id, all singular values of U
T are equal to 1.

We conclude that ∥Uz∥2 ≤ 1.

7 Orthogonal Separators with Buffers – Proofs

In this section, we show the algorithm that generates orthogonal separators with buffers. We prove
Theorem 3.2, Theorem 3.4, and Theorem 3.6.

Theorem 3.2. There exists a randomized polynomial-time procedure that given a finite set U of
unit vectors in Rd and positive parameters ε ∈ (0, 1),m ≥ 3, R ∈ (0, 2), returns an m-orthogonal
separator with an ε-buffer with distortion D = OR(1/ε logm), separation radius R, and probability
scale α ≥ OR(1/poly(m)).

For two disjoint random sets X,Y ⊂ U chosen from this orthogonal separator distribution, we
have the following properties:

1. For all ū ∈ U , Pr{ū ∈ X} = α; (for some α that depends on m and R).

2. For all ū ∈ U , Pr{ū ∈ Y } ≤ εα.

3. For all ū, v̄ ∈ U with ∥ū− v̄∥ ≥ R, Pr{v̄ ∈ X | ū ∈ X} ≤ 1
m .

4. For all ū, v̄ ∈ U , Pr{v̄ /∈ X ∪ Y | ū ∈ X} ≤ D ∥ū− v̄∥2, where D = OR(1/ε logm).

Proof of Theorem 3.2. We use the following procedure to generate orthogonal separators with buffers.
We sample a d-dimensional Gaussian vector g ∼ N (0, Id). For every vector ū in U , we let
gu = ⟨ū, g⟩ be the projection of vector ū on the direction g. For a standard gaussian random
variable Z ∼ N (0, 1), we use Φ̄(t) = Pr{Z ≥ t} to denote the probability that Z ≥ t. We pick a

27

threshold t such that Φ̄(t) = α for some α that we will specify later; our choice of α will guarantee
that t ≤ 1. Let ε′ = ε/(e(t+ 1/t)). Then, we construct the orthogonal separator X and the buffer
Y as follows:

X = {ū : gu ≥ t}; Y = {ū : t− ε′ < gu < t}.
Now we show that this procedure satisfies the required properties.

1. For every vector ū ∈ U , we have

Pr{ū ∈ X} = Pr{gu ≥ t} = Φ̄(t) = α.

2. For every vector ū ∈ U , we have

Pr{ū ∈ Y } = Pr{t− ε′ < gu < t} ≤ 1√
2π
e−

(t−ε′)2
2 · ε′ ≤

≤ ε′eε
′t

√
2π

e−
t2

2 =
εeε

e
√
2π(t+ 1/t)

e−
t2

2 ≤ eε

e
· εΦ̄(t) ≤ εα,

where the third inequality is due to Lemma G.1.
3. For every ū, v̄ ∈ U , we have

Pr{ū ∈ X, v̄ ∈ X} = Pr{gu ≥ t, gv ≥ t} ≤ Pr{(gu + gv)/2 ≥ t}.

We know that gu, gv are both random Gaussian variables from N (0, 1). Thus, we have (gu + gv)/2
is also a Gaussian variable with variance

Var

[
gu + gv

2

]
=

1

4
E[(gu + gv)

2] =
1

4
(2 + 2⟨ū, v̄⟩) = 1− ∥ū− v̄∥2

4
,

where the second equality is due to E[gugv] = ⟨ū, v̄⟩ and the third equality used ū, v̄ are unit vectors.
Thus for every ū, v̄ ∈ U with ∥ū − v̄∥ ≥ R, we have Var [(gu + gv)/2] ≤ 1 − R2/4. From Lemma G.2
we get that there exists a constant C such that

Pr

{
gu + gv

2
≥ t

}
≤ Φ̄

(
t√

1−R2/4

)
≤ 1

t
(CtΦ̄(t))

1√
1−R2/4 .

Since Φ̄(t) = α, we have

Pr{ū ∈ X, v̄ ∈ X} ≤ Pr

{
gu + gv

2
≥ t

}
≤ α · C(Ctα)

1√
1−R2/4

−1
.

By Lemma G.1, we have t = Θ(
√
log 1/α). Then we can find some α ≥ 1/poly(m) (for a fixed R)

that depends on m and R such that Pr{ū ∈ X, v̄ ∈ X} ≤ α/m. Since Pr{ū ∈ X} = α, we have

Pr{v̄ ∈ X | ū ∈ X} ≤ 1

m
.

4. For every ū, v̄ ∈ U , we have

Pr{ū ∈ X, v̄ /∈ X ∪ Y } = Pr{gu ≥ t, gv ≤ t− ε′}.

Since g is a standard Gaussian random vector, we have gu and gv are jointly Gaussian random
variables with distribution N (0, 1). Since ε ≤ 1 and t = Θ(

√
logm), we have ε′ = ε/(e(t+1/t)) < t.

Using Lemma G.3 on gu, gv with parameters m̂ = 1/α and ε̂ = ε′, we get

Pr{gu ≥ t, gv ≤ t− ε′} ≤ O

(√
log m̂

ε′m̂

)
· ∥ū− v̄∥2 ≤ αD∥ū− v̄∥2,

where D = OR(1/ε logm).

28

Theorem 3.4. There exists a randomized procedure that given a finite set U of unit vectors in
Rd equipped with a measure µ and positive parameters ε ∈ (0, 1), δ ≤ 2/3, R ∈ (0, 2), returns an
δ-orthogonal separator with an ε-buffer with distortion D = OR(1/ε log 1/δ), separation radius R,
and probability scale α ≥ OR(1/poly(m)).

For two disjoint random sets X,Y ⊂ U chosen from this orthogonal separator distribution, we
have the following properties:

1. For all ū ∈ U , Pr{ū ∈ X} ∈ [α/2, α].

2. For all ū ∈ U , Pr{ū ∈ Y } ≤ εα.

3. minū∈X µ(X \ Ball(ū, R)) ≤ δµ(U) (always).

4. For all ū, v̄ ∈ U , Pr{v̄ /∈ X ∪ Y | ū ∈ X} ≤ D ∥ū− v̄∥2, where D = OR(1/ε log 1/δ).

Proof. We first run the algorithm from Theorem 3.2 with m = 2/δ and obtain sets X ′ and Y ′. If
set X ′ satisfies the third condition: minū∈X′ µ(X ′ \ Ball(ū, R)) ≤ δµ(U), we return sets (X,Y) =
(X ′, Y ′). Otherwise, we return empty sets, (X,Y) = (∅,∅). By Theorem 3.2, Pr{ū ∈ X} ≤ α and
Pr{ū ∈ Y } ≤ εα for all ū ∈ X. Also, condition (3) always holds (because if X ′ does not satisfy it,
we return ∅). We now lower bound Pr{ū ∈ X}:

Pr{ū ∈ X} = Pr{ū ∈ X ′} − Pr{ū ∈ X ′ and X = ∅}
= Pr{ū ∈ X ′} · (1− Pr{X = ∅ | ū ∈ X ′}
= α(1− Pr{X = ∅ | ū ∈ X ′}).

If X = ∅, then
µ(X ′ \ Ball(ū, R)) ≥ min

v̄∈X′
µ(X ′ \ Ball(v̄, R)) > δµ(U).

Thus,

Pr{X = ∅ | ū ∈ X ′} ≤ Pr
{
µ(X ′ \ Ball(ū, R)) > δµ(U) | ū ∈ X ′

}
.

However, by item (3) of Theorem 3.2,

E
[
µ(X ′ \ Ball(ū, R)) | ū ∈ X ′

]
≤ µ(U)

m
=
δµ(U)

2
.

By Markov’s inequality,

Pr{X = ∅ | ū ∈ X ′} ≤ 1

2
.

Therefore, Pr{ū ∈ X} ≥ α(1− 1/2) = α/2. Finally,

Pr{v̄ /∈ X ∪ Y | ū ∈ X} =
Pr{v̄ /∈ X ∪ Y and ū ∈ X}

Pr{ū ∈ X}

=
Pr{v̄ /∈ X ′ ∪ Y ′ and ū ∈ X ′}

Pr{ū ∈ X ′}
· Pr{ū ∈ X ′}
Pr{ū ∈ X}

≤ 2Pr{v̄ /∈ X ′ ∪ Y ′ | ū ∈ X ′} ≤ 2D ∥ū− v̄∥2.

Theorem 3.6. There exists a randomized procedure that given a finite set U of unit vectors in
Rd equipped with a measure µ and positive parameters ε ∈ (0, 1), δ ≤ 2/3, R ∈ (0, 2), returns an
δ-orthogonal separator with two ε-buffers with distortion D = OR(1/ε log 1/δ), separation radius R,
and probability scale α ≥ OR(1/poly(m)).

For three disjoint random sets X,Y, Z ⊂ U chosen from this orthogonal separator distribution,
we have the following properties:

29

1. For all ū ∈ U , Pr{ū ∈ X} ∈ [α/2, α].

2. For all ū ∈ U , Pr{ū ∈ Y } ≤ εα, and Pr{ū ∈ Z} ≤ εα.

3. minū∈X µ(X \ Ball(ū, R)) ≤ δµ(U) (always).

4. For all ū, v̄ ∈ U , Pr{v̄ /∈ X ∪ Y | ū ∈ X} ≤ D ∥ū− v̄∥2, and
Pr{v̄ /∈ X ∪ Y ∪ Z | ū ∈ X ∪ Y } ≤ D ∥ū− v̄∥2, where D = OR(1/ε log 1/δ).

Proof. We modify the algorithm in Theorem 3.2 to generate three disjoint sets X ′, Y ′, Z ′ as follows.
We sample a d-dimensional Gaussian vector g ∼ N (0, Id). For every vector ū in U , we let gu = ⟨ū, g⟩
be the projection of vector ū on the direction g. We use Φ̄(t) to denote the probability that a
standard gaussian random variable is at least t. We pick a threshold t such that Φ̄(t) = α for some
α that we will specify later; our choice of α will guarantee that t ≤ 1. Let ε′ = ε/(e(t+1/t)). Then,
we construct the orthogonal separator X ′ and two buffers Y ′, Z ′ as follows:

X = {ū : gu ≥ t}; Y = {ū : t− ε′ < gu < t}; Z = {ū : t− 2ε′ < gu < t− ε′}.

If setX ′ satisfies the third condition: minū∈X′ µ(X ′\Ball(ū, R)) ≤ δµ(U), we return sets (X,Y, Z) =
(X ′, Y ′, Z ′). Otherwise, we return empty sets, (X,Y, Z) = (∅,∅,∅).

By the similar analysis in Theorem 3.2, we have for all ū ∈ U , it holds that Pr{ū ∈ X} ≤ α,
Pr{ū ∈ Y } ≤ εα, and Pr{ū ∈ Z} ≤ εα. By Theorem 3.4, we have for all ū ∈ U , Pr{ū ∈ X} ≥ α/2
and condition (3) always holds. Then, we show that condition (4) holds. The first part of condition
(4) is the same as Theorem 3.4. Note that α ≤ Φ̄(t − ε′) ≤ (1 + ε)α. Using Lemma G.3 on gu, gv
with parameters m̂ = 1/Φ̄(t− ε′) and ε̂ = ε′, we have

Pr{gu ≥ t, gv ≤ t− ε′} ≤ O

(√
log m̂

ε′m̂

)
· ∥ū− v̄∥2 ≤ αD∥ū− v̄∥2,

where D = OR(1/ε logm).

References

[Alo86] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

[AM85] Noga Alon and Vitali D Milman. λ1, Isoperimetric inequalities for graphs, and super-
concentrators. Journal of Combinatorial Theory, Series B, 38(1):73–88, 1985.

[AR04] Konstantin Andreev and Harald Räcke. Balanced graph partitioning. In Proceedings of
the Symposium on Parallelism in Algorithms and Architectures, pages 120–124, 2004.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings
and graph partitioning. Journal of the ACM (JACM), 56(2):1–37, 2009.

[BFK+14] Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev, Viswanath
Nagarajan, Joseph Seffi Naor, and Roy Schwartz. Min-max graph partitioning and
small set expansion. SIAM Journal on Computing, 43(2):872–904, 2014.

[Che69] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian. In Proceedings
of the Princeton conference in honor of Professor S. Bochner, pages 195–199, 1969.

30

[CMM06] Eden Chlamtac, Konstantin Makarychev, and Yury Makarychev. How to play unique
games using embeddings. In Proceedings of the Symposium on Foundations of Computer
Science, pages 687–696, 2006.

[Fil22] Arnold Filtser. Hop-constrained metric embeddings and their applications. In Proceed-
ings of the Symposium on Foundations of Computer Science, pages 492–503, 2022.

[FL21] Arnold Filtser and Hung Le. Clan embeddings into trees, and low treewidth graphs. In
Proceedings of the Symposium on Theory of Computing, pages 342–355, 2021.

[HHZ21] Bernhard Haeupler, D Ellis Hershkowitz, and Goran Zuzic. Tree embeddings for hop-
constrained network design. In Proceedings of the Symposium on Theory of Computing,
pages 356–369, 2021.

[KBL16] Emilie Kaufmann, Thomas Bonald, and Marc Lelarge. A spectral algorithm with ad-
ditive clustering for the recovery of overlapping communities in networks. In Ronald
Ortner, Hans Ulrich Simon, and Sandra Zilles, editors, Algorithmic Learning Theory,
pages 355–370, Cham, 2016. Springer International Publishing.

[KLL+13] Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, Shayan Oveis Gharan, and Luca Trevisan.
Improved cheeger’s inequality: Analysis of spectral partitioning algorithms through
higher order spectral gap. In Proceedings of the Symposium on Theory of Computing,
pages 11–20, 2013.

[KLL17] Tsz Chiu Kwok, Lap Chi Lau, and Yin Tat Lee. Improved cheeger’s inequality and
analysis of local graph partitioning using vertex expansion and expansion profile. SIAM
Journal on Computing, 46(3):890–910, 2017.

[KLM06] Ravi Kannan, László Lovász, and Ravi Montenegro. Blocking conductance and mixing
in random walks. Combinatorics, Probability and Computing, 15(4):541–570, 2006.

[KVV04] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and
spectral. Journal of the ACM (JACM), 51(3):497–515, 2004.

[LGT14] James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning
and higher-order Cheeger inequalities. Journal of the ACM (JACM), 61(6):1–30, 2014.

[LM12] Jure Leskovec and Julian Mcauley. Learning to discover social circles in ego networks.
Advances in neural information processing systems, 25, 2012.

[LM14] Anand Louis and Konstantin Makarychev. Approximation algorithm for sparsest k-
partitioning. In Proceedings of the Symposium on Discrete Algorithms, pages 1244–1255,
2014.

[LR99] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. Journal of the ACM (JACM), 46(6):787–832,
1999.

[LRTV12] Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala. Many sparse
cuts via higher eigenvalues. In Proceedings of the Symposium on Theory of Computing,
pages 1131–1140, 2012.

31

[McS01] Frank McSherry. Spectral partitioning of random graphs. In Proceedings of the Sympo-
sium on Foundations of Computer Science, pages 529–537. IEEE, 2001.

[NJW01] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. In Proceedings of NeurIPS, pages 8490–856, 2001.

[OATT22] Lorenzo Orecchia, Konstantinos Ameranis, Charalampos Tsourakakis, and Kunal Tal-
war. Practical almost-linear-time approximation algorithms for hybrid and overlapping
graph clustering. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages
17071–17093. PMLR, 17–23 Jul 2022.

[PSL90] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications, 11(3):430–
452, 1990.

[Räc08] Harald Räcke. Optimal hierarchical decompositions for congestion minimization in net-
works. In Proceedings of the Symposium on Theory of computing, pages 255–264, 2008.

[RS10] Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjec-
ture. In Proceedings of the Symposium on Theory of Computing, pages 755–764, 2010.

[RST12] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between expan-
sion problems. In Proceedings of the Conference on Computational Complexity, pages
64–73, 2012.

[SJ89] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and
rapidly mixing markov chains. Information and Computation, 82(1):93–133, 1989.

[SM00] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans-
actions on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[Spi07] Daniel A Spielman. Spectral graph theory and its applications. In Proceedings of the
Symposium on Foundations of Computer Science, pages 29–38, 2007.

[ST97] Horst D Simon and Shang-Hua Teng. How good is recursive bisection? SIAM Journal
on Scientific Computing, 18(5):1436–1445, 1997.

[ST07] Daniel A Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs
and finite element meshes. Linear Algebra and its Applications, 421(2-3):284–305, 2007.

[vL07] Ulrike von Luxburg. A tutorial on spectral clustering. CoRR, abs/0711.0189, 2007.

[YL12] Jaewon Yang and Jure Leskovec. Community-affiliation graph model for overlapping
network community detection. In 2012 IEEE 12th International Conference on Data
Mining, pages 1170–1175, 2012.

[YL14] Jaewon Yang and Jure Leskovec. Structure and overlaps of ground-truth communities
in networks. ACM Trans. Intell. Syst. Technol., 5(2), apr 2014.

32

A Connection to Robust Expansion

In this section, we prove Corollary 1.5.

Proof of Corollary 1.5. Let ε∗ = ϕVη (G) be the robust vertex expansion of G. If ε∗ = 0, then the
claim is trivial, because λ2 ≥ 0. So we assume below that ε∗ > 0. Then for every disjoint subsets
S, T ⊂ V with 0 < |S| ≤ |V |/2 and |T | < ε∗|S|, we have

δ(S, T) < (1− η)δ(S, V \ S), (30)

as otherwise, we would have a contradiction

ε∗ = ϕVη (G) ≤ ϕVη (S) =
Nη(S)

|S|
≤ |T |

|S|
< ε∗.

Now we apply Corollary 1.2 of Theorem 1.1 with k = 2 and ε′ = ε∗/2. We get an ε′-buffered
partition (P1, P2||B1, B2) with ϕG(P1, P2||B1, B2) ≤ O(λ2/ε

′). Assume without loss of generality
that |P1| ≤ n/2. Note that |B1| ≤ ε′|P1| < ε∗|P1| and thus by (30),

δ(P1, B1) < (1− η)δ(P1, V \ P1).

Therefore,
δ(P1, V \ (P1 ∪B1)) = δ(P1, V \ P1)− δ(P1, B1) > η δ(P1, V \ P1).

On the other hand,

δ(P1, V \ (P1 ∪B1)) ≤ d · ϕG(P1, P2||B1, B2) · |P1| ≤ O

(
dλ2|P1|
ε∗

)
.

We conclude that

λ2 ≥ Ω(η) · ε∗ · δ(P1, V \ P1)

d|P1|
= Ω(η · ϕVη (G) · ϕG(P1)) ≥ Ω(η · ϕVη (G) · hG).

B Heavy Set Pt in a Buffered Partition

In this section, we argue why we may assume that one of the sets Pt in the buffered partitioning
(P1, . . . , Pk||B1, . . . , Bk) contains at least Ω(δn) vertices (where n = |V |).

Corollary B.1. There exists a buffered partitioning as in Theorem 1.1 (possibly with a different
function c(δ) such that |Pt| = Ω(δn) for some t.

Proof. Let δ′ =
√
1 + δ − 1 = Θ(δ) and k′ = ⌊(1 + δ′)k⌋. Apply Theorem 1.1 with parameters k′

and δ′. We get an ε-buffered partitioning (P1, . . . , Pk′ ∥ B1, . . . , Bk′) with

ϕ0 = ϕG(P1, . . . , Pk′ ∥ B1, . . . , Bk′) ≤
c(δ′) log k′

ε
λ⌊(1+δ)k⌋.

Assume without loss of generality that |P1| ≤ |P2| ≤ · · · ≤ |Pk′ |. Merge sets Pk, . . . , Pk′ and sets

Bk, . . . , Bk′ . That is, let P ′
k =

⋃k′

i=k Pi and B′
k =

⋃k′

i=k Bi. We obtain a buffered partitioning
(P1, . . . , Pk−1, P

′
k ∥ B1, . . . , Bk−1, B

′
k). We show that it is ε-buffered and that its buffered expansion

33

is at most ϕ0. Clearly, merging does not change the value of ϕG(Pi ∥ Bi) for i ∈ [k − 1], as it does
not change sets Pi and Bi. So it is sufficient to verify that |B′

k| ≤ ε|P ′
k| and ϕG(P

′
k ∥ B′

k) ≤ ϕ0.
Indeed,

|B′
k| ≤

k′∑
i=k

|Bi| ≤
k′∑
i=k

ε|Pi| = ε|P ′
k|.

ϕG(P
′
k ∥ B′

k) =
δG(P

′
k, V \ (P ′

k ∪B′
k))

|P ′
k|

≤
∑k′

i=k δG(Pi, V \ (Pi ∪Bi))

|P ′
k|

≤
∑k′

i=k ϕ0|Pi|
|P ′

k|
= ϕ0.

We used that sets Pk, . . . , Pk′ are disjoint and thus |P ′
k| = |Pk|+ · · ·+ |Pk′ |. Finally, we observe that

P ′
k is the union of k′ − k+1 = Ω(δk) largest sets out of k′ sets that together cover at least (1− ε)n

vertices. Thus, |P ′
k| ≥

k′−k+1
k′ (1− ε)n = Ω(δn).

C Lower Bound for k-way Expansion and Pseudo-approximation
Algorithm for Sparsest k-way Partitioning

In this section, we present the lower bound for non-buffered k-way expansion hkG of graphs with
vertex weights and edge costs. The proof is similar to that for graphs without vertex weights shown
in [LRTV12, LGT14]. Combined with Theorem 1.3, it gives a pseudo-approximation alghorithm
for the Sparsest k-way Partitioning problem.

Proposition C.1. Given any graph G = (V,E,w, c) with vertex weights wu > 0 and edge costs
cuv > 0, for any integer k > 1, the k-way expansion is at least

hkG ≥ λk
2
.

Proof. Let P1, P2, . . . , Pk be the optimal solution for k-way expansion. Then, we have for any i ∈ [k]

ϕG(Pi) =
|δ(Pi, V \ Pi)|

w(Pi)
≤ hkG.

Let 1Pi be the indicator vector of set Pi for all i ∈ [k], i.e. 1Pi(u) = 1 if u ∈ Pi, otherwise 1Pi(u) = 0.

Then, we use xPi = D
1/2
w 1Pi to denote the weighted indicator vector. Let X = {xPi : i ∈ [k]}. Since

all vectors inX are orthogonal to each other, the span ofX has dimension k. By the Courant-Fischer
Theorem, we have

λk = min
S⊂Rn:dim(S)=k

max
x∈S

xTD
−1/2
w LGD

−1/2
w x

xTx
≤ max

x∈span(X)

xTD
−1/2
w LGD

−1/2
w x

xTx
. (31)

Suppose x ∈ span(X) is the maximizer of the right-hand side of Equation (31). We can write
x =

∑k
i=1 αixSi for αi ∈ R. Then, we have

xTD−1/2
w LGD

−1/2
w x =

(
k∑

i=1

αi1Si

)T

LG

(
k∑

i=1

αi1Si

)
=

=
∑

(u,v)∈E

cuv

(
k∑

i=1

αi1Si(u)−
k∑

i=1

αi1Si(v)

)2

≤ 2

k∑
i=1

α2
i

∑
(u,v)∈E

cuv(1Si(u)− 1Si(v))
2,

34

where the last inequality is due to the relaxed triangle inequality, for any edge (u, v) ∈ E with
u ∈ Si and v ∈ Sj , (αi1Si(u)−αj1Sj (v))

2 ≤ 2α2
i 1Si(u)

2+2α2
j1Sj (v)

2. Taking it into Equation (31),
we have

λk ≤
2
∑k

i=1 α
2
i

∑
(u,v)∈E cuv(1Si(u)− 1Si(v))

2∑k
i=1 α

2
i

∑
u∈V wu1Si(u)

=
2
∑k

i=1 α
2
i |δ(Pi, V \ Pi)|∑k

i=1 α
2
iw(Pi)

≤ 2hkG.

Plugging the bound on λ⌊(1+δ)k⌋(LG) from Proposition C.1 into Theorem 1.3, we get the following
Oε,δ(log k) pseudo-approximation algorithm for the Sparsest K-Partitioning problem from

Theorem C.2. There exists a polynomial-time algorithm that given a graph G = (V,E,w, c) with
vertex weights wu > 0 and edge costs cuv > 0, ε > 0, δ > 0, and k > 1 such that maxu∈V wu ≤
εw(V)/(3k), finds a ε-buffered partition (P1, . . . , Pk ∥ B1, . . . , Bk) with

ϕG(P1, . . . , Pk ∥ B1, . . . , Bk) ≤
κ(δ) log k

ε
h
⌊(1+δ)k⌋
G .

Note that in this theorem, we compare the cost of our ε-buffered k-partition to that of the
optimal non-buffered ⌊(1 + δ)k⌋-partition.

D Buffered Balanced Cut

In this section, we present our results for the buffered balanced cut. Consider any graphG(V,E,w, c)
with vertex weight wu > 0 and edge cost cuv > 0. For any 0 < γ ≤ 1/2, the γ-balanced cut of
graph G is a partition of graph (L,R) such that w(L), w(R) ∈ [γw(V), (1 − γ)w(V)]. The γ-
balanced cut problem asks to find a γ-balanced cut of a graph to minimize the cut size δ(L,R).
We consider the ε-buffered γ-balanced cut. Given a weighted graph G(V,E,w, c), the ε-buffered
γ-balanced cut is a partition of graph G, (L,R ∥ B) such that w(L), w(R) ∈ [γw(V), (1− γ)w(V)]
and w(B) ≤ εmin(w(L), w(R)). We show a bi-criteria approximation for the balanced cut problem
with an ε-buffered balanced cut.

Theorem D.1. Let ε ∈ (0, 1/4). Consider any weighted graph G = (V,E,w, c) with vertex weight
wu > 0 and cuv > 0. There is a polynomial-time algorithm that finds three disjoint sets L,B,R with
L ∪B ∪R = V , w(L), w(R) ∈ [1/4 · w(V), 3/4 · w(V)], and w(B) ≤ 3εmin(w(L), w(R)) such that

δ(L,R) ≤ O(1/ε) · δ(L∗, R∗),

where (L∗, R∗) is the optimal 1/3-balanced cut. (L,R ∥ B) is a (3ε)-buffered 1/4-balanced cut with
cut size at most O(1/ε) times the size of the optimal 1/3-balanced cut.

Proof. We first describe our algorithm for buffered balanced cut, which is inspired by the approx-
imation algorithm for balanced cut in [LR99]. The algorithm recursively partitions the graph by
using the buffered spectral partitioning algorithm in Section 2. At the beginning, we set the graph
G1 = G. Then, we run the ε-buffered spectral partitioning to find a partition (L1, R1 ∥ B1) of the
graph G1. Suppose w(L1) ≤ w(R1). If w(L1) < w(V)/4, then we recursively run the ε-buffered
spectral partitioning on the subgraph G2 of G on the set of vertices R1. For each call of buffered
spectral partitioning, we label the partition (Lt, Rt ∥ Bt) such that w(Lt) ≤ w(Rt). We recursively
call the ε-buffered spectral partitioning until

∑T
t=1w(Lt) ≥ w(V)/4. Then, the algorithm returns

the partition (L,R,B) of G, where L =
⋃T

t=1 Lt, B =
⋃T

t=1Bt, and R = V \ (L ∪B).

35

Then, we show that the partition (L,R ∥ B) returned by this algorithm is a 3ε-buffered 1/4-
balanced cut. Let (Lt, Rt ∥ Bt) be the buffered partition of graph Gt returned by the t-th call of the
buffered spectral partitioning. Then, we have w(Lt) ≤ w(Vt)/2 and w(Bt) ≤ εw(Lt). Suppose the
algorithm calls the buffered spectral partitioning for T times. Then, we have w(L) =

∑T
t=1w(Lt) ≥

w(V)/4 and
∑T−1

t=1 w(Lt) < w(V)/4. Since w(VT) ≤ w(V), we have

w(L) =
T∑
t=1

w(Lt) ≤
T−1∑
t=1

w(Lt) + w(LT) ≤ w(V)/4 + w(VT)/2 ≤ 3/4 · w(V).

Since w(L) ≥ w(V)/4, we have w(R) ≤ 3/4 ·w(V). Since w(LT) ≤ w(VT)/2 and w(BT) ≤ εw(LT),
we have

w(R) = w(VT)− w(LT)− w(BT) ≥
(
1− 1 + ε

2

)
w(VT).

Note that w(VT) = w(V)−
∑T−1

t=1 w(Lt) + w(Bt) ≥
(
1− 1+ε

4

)
w(V). Since ε ≤ 1/4, we have

w(R) ≥
(
1− 1 + ε

2

)(
1− 1 + ε

4

)
w(V) ≥ w(V)

4
.

Thus, we have both w(L) and w(R) are in [w(V)/4, 3w(V)/4]. Since w(Bt) ≤ εw(Lt) for all t, we
have w(B) ≤ εw(L) and

w(B) ≤ εw(L) ≤ ε · 3
4
w(V) ≤ 3ε · w(R).

Hence, we have w(B) ≤ 3ε ·min{w(L), w(R)}.
Next, we bound the size of buffered cut (L,B,R). For each call of the buffered spectral par-

titioning, we bound the cut size δ(Lt, Rt) for the buffered partition (Lt, Bt, Rt) of graph Gt. Let
(L∗, R∗) be the optimal non-buffered 1/3-balanced partition of graph G. Let L∗

t = L∗ ∩ Vt and
R∗

t = R∗ ∩ Vt. Then, we have δ(L∗
t , R

∗
t) ≤ δ(L∗, R∗). Note that the weight of vertices in V \ Vt is at

most

w(V \ Vt) =
t−1∑
i=1

w(Li) + w(Bi) ≤ (1 + ε) · w(V)

4
.

Suppose w(L∗
t) ≥ w(R∗

t). Since w(L
∗) ≥ w(V)/3 and ε ≤ 1/4, we have

w(L∗
t) ≥ w(L∗)− w(V \ Vt) ≥

(
1

3
− 1 + ε

4

)
w(V) ≥ 1

48
w(V).

By Proposition C.1, we have

λ2(LGt)

2
≤ min

S⊂Vt:w(S)≤w(Vt)/2

δ(S, Vt \ S)
w(S)

≤ δ(L∗
t , R

∗
t)

w(L∗
t)

.

By Proposition 2.1, we have

δ(Lt, Rt) ≤ 4

(
1 +

8

ε

)
λ2(LGt) · w(Lt) ≤

≤ 8

(
1 +

8

ε

)
· w(Lt)

w(L∗
t)

· δ(L∗
t , R

∗
t) ≤ O

(
1

ε

)
· w(Lt)

w(V)
· δ(L∗

t , R
∗
t).

Combining all cuts edges in δ(Lt, Rt) for T calls of buffered spectral partitioning, we have

δ(L,R) ≤
T∑
t=1

δ(Lt, Rt) ≤ O

(
1

ε

)
·

T∑
t=1

w(Lt)

w(V)
· δ(L∗

t , R
∗
t) ≤ O

(
1

ε

)
δ(L∗

t , R
∗
t),

where the last inequality is due to w(L) ≤ 3/4 · w(V).

36

We also consider the k-way balanced partition problem. Given a graph G(V,E,w, c), for any
γ ≥ 1, we say that P1, P2, . . . , Pk is a (γ, k)-balanced partition of G if w(Pi) ≤ γw(V)/k for all
i ∈ [k]. The (γ, k)-balanced partition problem aims to find a (γ, k) balanced partition to minimize
the total cost of edges with two endpoints in different parts. By using the buffered balanced cut
algorithm in Theorem D.1 and the recursive bi-section algorithm in [ST97], we show a bi-criteria
approximation for the k-way balanced partition.

Corollary D.2. Let ε ∈ (0, 1/4). Consider any weighted graph G = (V,E,w, c) with vertex weight
wu > 0 and cuv > 0. There is a polynomial-time algorithm that finds a ε-buffered (6, k)-balanced
partition P1, P2, . . . , Pk, B such that P1, P2, . . . , Pk and B are disjoint, w(B) ≤ O(ε)w(V), and∑

i<j

δ(Pi, Pj) ≤ O(1/ε · log2 k) ·OPT,

where OPT is the optimal cost for (1, k)-balanced partition.

E Graphs with Vertex Weights and Edge Costs

In this section, we prove our main results for graphs G = (V,E,w, c) with vertex weights wu > 0
and edge costs cuv > 0.

Theorem 1.1 holds for regular graphs with parallel edges but without edge costs and vertex
weights. Assume that we have a graph G with edge costs cuv and with vertex weights wu = 1
such that the total cost of all edges incident on a vertex does not depend on the vertex; that is,
C0 =

∑
v:(u,v)∈E cuv does not depend on u. If all edge costs are integers, we can simulate edge costs

by adding parallel edges – we replace each edge (u, v) with cuv parallel edges. We obtain a C0-regular

graph G′. Let LG′ = I − 1
C0
AG′ be the normalized Laplacian of G′. Let LG = D

−1/2
w L̃GD

−1/2
w be

the normalized Laplacian of G. It is immediate that LG = C0LG′ and δG(A,B) = δG′(A,B) for
every A,B ⊆ V . Let k′ = ⌊(1 + δ)k⌋. Then, λk′(LG′) = λk′(LG)/C0.

By Theorem 1.1, there exists an ε-buffered partition (P1, . . . , Pk ∥ B1, . . . , Bk) such that

ϕG′(Pi ∥ Bi) =
δG′(Pi, V \ (Pi ∪Bi))

C0|Pi|
≤ c(δ) log k

ε
· λk′(LG′)

for every i ∈ [k]. Since λk′(LG′) = λk′(LG)/C0 and w(Pi) = |Pi|, we have for all i,

ϕG(Pi ∥ Bi) =
δG(Pi, V \ (Pi ∪Bi))

w(Pi)
≤ c(δ) log k

ε
· λk′(LG). (32)

Now if we multiply all edge costs by the same positive number ρ, both the left and right hand side
will get multiplied by ρ. Therefore, the inequality holds not only for integer edge costs but also for
arbitrary positive rational costs. By continuity, it holds for arbitrary positive edge costs. We get
the following corollary.

Corollary E.1. Let G be a graph with positive edge costs cuv and unit vertex weights such that C0 =∑
v:(u,v)∈E cuv is the same for all vertices u. Then there exists an ε-balanced partition (P1, . . . , Pk ∥

B1, . . . , Bk) such that inequality (32) holds for all i.

Now we present a black-box reduction that proves Theorem 1.3. We note that the reduction can
significantly increase the running time of the algorithm. However, in fact, we can use the algorithm
from Theorem 1.1 to find (P1, . . . , Pk ∥ B1, . . . , Bk) (the proof of this fact essentially repeats that
of Theorem 1.1, and we do not present it here).

37

Theorem E.2. Let G = (V,E,w, c) be a graph with positive weights wu > 0 and edge costs cuv > 0,
ε ∈ [0, 1), δ ∈ (0, 1), and k ≥ 2 be an integer. Assume that maxuwu ≤ εw(V)/(3k). Let LG =

D
−1/2
w L̃GD

−1/2
w be the normalized Laplacian of G. Then

hk,εG ≤ κ(δ) log k

ε
· λ⌊(1+δ)k⌋(LG), (33)

where κ(δ) is a function that depends only on δ.

Proof. Assume first that all vertex weights are integers greater than or equal to 2. Let W =∑
u∈V wu be the total weight of all vertices. Let C =

∑
(u,v)∈E cuv be the total cost of all edges and

B = C ·W 2.
We construct an auxiliary graph G′ with unit vertex weights as follows. For each vertex u of

G, we create its own “cloud of vertices” Qu of size wu; all vertices q ∈ Qu have unit weights. For
(u, v) ∈ E, we connect every q ∈ Qu with every q′ ∈ Qv by an edge (q, q′) with cost c′qq′ =

cuv
|Qu||Qv | .

Note that the total cost of all edges between Qu and Qv equals cuv. Let bu =
∑

v:(u,v)∈E
cuv
|Qu| be the

total cost of edges incident on vertex q ∈ Qu (so far). Now we connect every two vertices q, q′ ∈ Qu

by an edge of cost c′qq′ =
B−bu
|Qu|−1 . After this step, the total cost of all edges incident on q ∈ Qu is

exactly B, since q has |Qu| − 1 neighbors in Qu. We denote the obtained graph by G′.

Properties of G′ = (V ′, E′) that we established.

• |Qu| = wu; all vertices have unit weights in G′.

• The total cost of all the edges between Qu and Qv is cuv.

• The total cost of all edges incident on every vertex equals B (and does not depend on u).

• G′[Qu] is a clique, in which all edges have cost c′qq′ =
B−bu
|Qu|−1 ≥ B−C

W−1 > CW .

Now we upper bound λk′(LG′) in terms of λk′(LG).

Lemma E.3. λk′(LG′) ≤ λk′(LG)

Proof. Let x1, . . . , xk′ be the first k
′ orthogonal unit eigenvectors of LG. Define vectors z1, . . . , zk′ ∈

R|V ′| as follows: for q ∈ Qu, we let zi(q) = xi(u)√
wu

. First, observe that z1, . . . , zk′ are pairwise

orthogonal unit vectors:

⟨zi, zj⟩ =
∑
q∈V ′

zi(q)zj(q) =
∑
u∈V

∑
q∈Qu

zi(q)zj(q) =
∑
u∈V

|Qu|
xi(u)xj(u)

wu
= ⟨xi, xj⟩ =

{
0, if i ̸= j

1, if i = j

38

Further,

zTi LG′zj =
∑

(q,q′)∈E′

c′qq′(zi(q)− zi(q
′)) · (zj(q)− zj(q

′))

=
∑

(u,v)∈E

∑
q∈Qu

q′∈Qv

(q,q′)∈E′

cuv
|Qu||Qv|

(zi(q)− zi(q
′)) · (zj(q)− zj(q

′))

+
∑
u∈V

B − bu
|Qu| − 1

∑
q,q′∈Qu

(q,q′)∈E′

(zi(q)− zi(q
′)) · (zj(q)− zj(q

′))

=
∑

(u,v)∈E

cuv

(
xi(u)

w
1/2
u

− xi(v)

w
1/2
v

)
·

(
xj(u)

w
1/2
u

− xj(v)

w
1/2
v

)
= xTi LGxj .

We conclude that zTi LG′zj = λi(LG) if i = j, and zTi LG′zj = 0, otherwise.
Finally, we use the Courant–Fischer theorem to upper bound λk′(LG). Let H be the linear span

of vectors z1, . . . , zk′ . By the Courant–Fischer theorem,

λk′(LG′) ≤ max
z∈H\{0}

zTLG′z

∥z∥2
= max

z=
∑

i αizi

α∈Rk′\{0}

zTLG′z

∥z∥2
= max

α∈Rk′\{0}

∑
i,j(αiαj)z

T
i LG′zj

∥α∥2

= max
α∈Rk′\{0}

∑
i α

2
iλi(LG)

∥α∥2
= λk′(LG).

Let ε′ = ε/10. We apply Theorem 1.1 to G′ and obtain an ε′-buffered partition (P ′
1, . . . , P

′
k ∥

B′
1, . . . , B

′
k) of G

′ with ϕG′(P ′
1, . . . , P

′
k ∥ B′

1, . . . , B
′
k) ≤

c(δ) log k
ε′ λk′(LG′) ≤ c(δ) log k

ε′ λk′(LG). Observe
that if some set Qu contains a vertex q ∈ P ′

i and a vertex q′ ∈ P ′
j ∪B′

j with j ̸= i then ϕG′(P ′
i ∥ B′

i)
is very large

ϕG′(P ′
i ∥ B′

i) ≥
δG′(P ′

i , P
′
j ∪B′

j)

w(P ′
i)

≥
cqq′

W
> C.

Then, any partition (P1, . . . , Pk ∥ ∅, . . . ,∅) of G satisfies the condition of the theorem:

ϕG(Pi ∥ ∅) ≤ C/2 < ϕG′(P ′
i ∥ B′

i) ≤
c(δ) log k

ε′
λk′(LG),

as required. So we assume below that if P ′
i ∩Qu ̸= ∅ then (P ′

j ∪ B′
j) ∩Qu = ∅ for every u, i, and

j ̸= i. Then for every u, there are two possibilities: either

1. Qu ⊆ P ′
i ∪B′

i for some i, or

2. Qu ⊆
⋃

iB
′
i.

Depending on which of the possibilities takes place, we say that u is a vertex of the first or second
type, respectively6. Now we define an ε-buffered partition (P1, . . . , Pk ∥ B1, . . . , Bk) of G. First, we
assign every vertex u to one of the sets P1, . . . , Pk, B1, . . . , Bk and U , where U is a special set that
will be partitioned among B1, . . . Bk later. We do that as follows:

6If Qu ⊆ B′
i, let us assume that u is of the first type.

39

1. if |Qu ∩ P ′
i | ≥ |Qu|/2, we assign u to Pi;

2. otherwise, if |Qu ∩B′
i| ≥ |Qu|/2, we assign u to Bi;

3. otherwise, we assign u to U .

Note that each vertex of the first type is necessarily assigned to some Pi or Bi. Each vertex of the
second type is assigned to some Bi or U .

Since U consists of the vertices of the second type, we have
⋃

u∈U Qu ⊂
⋃

iB
′
i and thus

w(U) =
∣∣∣ ⋃
u∈U

Qu

∣∣∣ ≤ ∣∣∣⋃
i

B′
i

∣∣∣ ≤ ε′
∣∣∣⋃

i

P ′
i

∣∣∣.
Here we used that that partition (P ′

1, . . . , P
′
k ∥ B′

1, . . . , B
′
k) is ε

′-buffered. We create sets B′′
1 , . . . , B

′′
k ,

which are initially empty, and set the capacity of B′′
i to

ε|P ′
i |

2 . We distribute vertices from U one-by-
one among B′′

1 , . . . , B
′′
k so that the total weight assigned to B′

i does not exceed its capacity. We stop
when we either assign all the vertices from U or no unassigned vertex in U can be assigned to any
B′′

i , without violating the capacity requirement for B′′
i . We now show that this procedure assigns

all the vertices from U . Indeed, assume that some vertex u is not assigned. Then, wu is greater

than the the remaining capacity of every B′′
i ; that is, wu >

ε|P ′
i |

2 − w(B′′
i) for every i. Adding up

these inequalities over all i, we get

kwu >

k∑
i=1

(
ε|P ′

i |
2

− w(B′′
i)

)
≥ ε

2

∣∣∣⋃
i

P ′
i

∣∣∣− w(U) ≥ ε

2

∣∣∣⋃
i

P ′
i

∣∣∣− ∣∣∣⋃
i

B′
i

∣∣∣
≥ ε

2

∣∣∣⋃
i

P ′
i

∣∣∣− ε′
∣∣∣⋃

i

P ′
i

∣∣∣ ≥ 2ε

5

∣∣∣⋃
i

P ′
i

∣∣∣ ⋆
≥ 2ε(1− ε′)

5
w(V) ≥ εw(V)

3

Inequality ⋆
≥ above follows from two inequalities: |

⋃
i P

′
i |+ |

⋃
iB

′
i| = w(V) and |

⋃
iB

′
i| ≤ ε′|

⋃
i P

′
i |.

We get that wu >
εw(V)
3k , which contradicts to the assumption of the theorem. We conclude that⋃

iB
′′
i = U . Finally, we add vertices from B′′

i to Bi for every i. We obtain the desired partition
(P1, . . . , Pk ∥ B1, . . . , Bk).

Now we prove that (P1, . . . , Pk ∥ B1, . . . , Bk) satisfies the desired requirements. Fix i. We upper
bound δG(Pi, V \ (Pi ∪Bi)). Note that if edge (u, v) goes from Pi to V \ (Pi ∪Bi) then u is a vertex
of the first type and |Qu ∩ P ′

i | ≥ |Qu|/2 and either

• v is a vertex of the first type and Qv ⊆ Pj ∪Bj for some j ̸= i, or

• v is a vertex of the second type and at least one half of the vertices in Qv are not in Bi (and
none of them are in Pi).

To summarize, in either case at least a half of the vertices in Qu lie in P ′
i and at least half of vertices

in Qv do not lie in P ′
i ∪ B′

i. Thus, at least one quarter of all edges from Qu to Qv contribute to
δG′(P ′

i , V
′ \ (P ′

i , B
′
i)), and their total contribution is at least cuv/4. We conclude that

δG(Pi, V \ (Pi ∪Bi)) ≤ 4δG′(P ′
i , V \ (P ′

i ∪B′
i)).

Now we lower bound w(Pi). Let A be the set of vertices u of the first type such that Qu ⊆ P ′
i ∪B′

i.
Note that Pi ⊆ A and P ′

i ⊆
⋃

u∈AQu. Consider u ∈ A. If u ∈ Pi, then w(Pi ∩ {u}) = |Qu| ≥

40

|Qu ∩ P ′
i | − |Qu ∩ B′

i|. If u /∈ Pi, then w(Pi ∩ {u}) = 0 ≥ |Qu ∩ P ′
i | − |Qu ∩ B′

i|, since |Qu ∩ P ′
i | <

|Qu|/2 ≤ |Qu ∩B′
i|. We have,

w(Pi) =
∑
u∈A

w(Pi ∩ {u}) ≥
∑
u∈A

|Qu ∩ P ′
i | − |Qu ∩B′

i| ≥ |P ′
i | − |B′

i| ≥ (1− ε′)|P ′
i |.

We have,

ϕG(Pi ∥ Bi) =
δG(Pi, V \ (Pi ∪Bi)

w(Pi)
≤ 4

1− ε′
δG′(P ′

i , V \ (P ′
i ∪B′

i)

|P ′
i |

=
O(c(δ)) log k

ε
λk′(LG).

It remains to show that partition (P1, . . . , Pk ∥ B1, . . . , Bk) is ε-buffered. We already showed that
w(Pi) ≥ (1−ε′)w(P ′

i). Now we upper bound w(Bi). First, w(B
′′
i) ≤ ε|P ′

i |/2 ≤ εw(Pi)/2(1−ε′) ≤ 5εw(Pi)/9.
Then, u ∈ Bi \B′′

i if and only if |Qu ∩B′
i| ≥ |Qu|/2 = wu/2. Therefore,

w(Bi \B′′
i) ≤ 2

∑
u∈Bi\B′′

i

|Qu ∩B′
i| ≤ 2|B′

i| ≤ 2ε′|P ′
i | ≤

2ε′

1− ε′
w(Pi) ≤

2ε

9
w(Pi).

We conclude that w(Bi) = w(Bi \ B′′
i) + w(B′′

i) =
7ε
9 w(Pi), as required. This completes the proof

for the case when all the vertex weights are integers. By linearity, inequality (33) also holds when
all the weights are rational numbers, and by continuity, it follows that inequality (33) holds when
weights are arbitrary positive real numbers.

F Lower Bound on hk,εG

In this section, we prove Theorem 1.6, which we now restate as follows.

Theorem F.1. Consider a d-regular graph G = (V,E) and its ε-buffered partition (P1, . . . , Pk||B1, . . . , Bk).
Then for every i ∈ [k],

λk ≤ 2ϕG(P1, . . . , Pk||B1, . . . , Bk) + ε.

Thus,
λk ≤ 2hk,εG + ε.

Proof. By the Courant-Fischer min-max theorem,

λk = min
H

max
z∈H:z ̸=0

zTLGz

∥z∥2
,

where the minimum is over k-dimensional subspaces H of Rn. Let bi be the indicator vector of
Pi: bi(u) = 1 if u ∈ Pi and bi(u) = 0, otherwise. Let H be the linear span of b1, . . . , bk and
z =

∑k
i=1 αibi. Then,

λk ≤ max
(α1,...,αk) ̸=0

zTLGz

∥z∥2

First note that vectors bi have disjoint supports and thus are mutually orthogonal. Therefore,
∥z∥2 =

∑k
i=1 α

2
i ∥hi∥2 =

∑k
i=1 α

2
i |Pi|. Now we upper bound zTLGz. We will use that |δ(Pi, Bi)| ≤

41

d|Bi| ≤ εd|Pi|.

dzTLGz
by (1)
=

∑
i,j∈[k]
i<j

(αi − αj)
2 · |δ(Pi, Pj)|+

∑
i∈[k]

(αi − 0)2 ·
∣∣δ(Pi,

⋃
j

Bj

)∣∣

≤
∑

i,j∈[k]
i<j

(2α2
i + 2α2

j) · |δ(Pi, Pj)|+
∑
i∈[k]

α2
i ·
∣∣δ(Pi,

⋃
j:j ̸=i

Bj \Bi

)∣∣+ α2
i · |δ(Pi, Bi)|

= 2
∑

i,j∈[k]
i ̸=j

α2
i · |δ(Pi, Pj)|+

∑
i∈[k]

α2
i ·

∣∣δ(Pi,
⋃
j:j ̸=i

Bj \Bi

)∣∣+ |δ(Pi, Bi)|

≤
∑
i∈[k]

α2
i ·

2

∣∣∣∣∣∣δ
(
Pi,

⋃
j:j ̸=i

Pj ∪
(⋃
j:j ̸=i

Bj \Bi

))∣∣∣∣∣∣+ |δ(Pi, Bi)|

≤
∑
i∈[k]

α2
i ·
(
2
∣∣δ(Pi, V \ (Pi ∪Bi))

∣∣+ εd|Pi|
)
.

Therefore,

zTLGz

∥z∥2
≤ 1

d
max
i∈[k]

2
∣∣δ(Pi, V \ (Pi ∪Bi))

∣∣+ εd|Pi|
|Pi|

= max
i∈[k]

2
∣∣δ(Pi, V \ (Pi ∪Bi))

∣∣
d|Pi|

+ ε.

G Gaussian Distribution

In this section, we present several useful estimates on the Gaussian distribution. Let X ∼ N (0, 1)
be a one-dimensional Gaussian random variable. Denote the probability that X ≥ t by Φ̄(t):

Φ̄(t) = Pr{X ≥ t}.

The first lemma gives an accurate estimate on Φ̄(t) for large t.

Lemma G.1. (see [CMM06, Lemma A.1]) For every t > 0,

t√
2π (t2 + 1)

e−
t2

2 < Φ̄(t) <
1√
2π t

e−
t2

2 and Φ̄(t) = Θ
(e− t2

2

t+ 1

)
.

Lemma G.2. (see [CMM06, Lemma A.1, part 2]) For any ρ ≥ 1 and t ≥ 0, there exists a constant
C such that

Φ̄(ρt) ≤ 1

t
(CtΦ̄(t))ρ

2
.

Lemma G.3. Let X and Y be jointly N (0, 1)-Gaussian random variables. Denote δ2 = 1/2Var[X−
Y]. Choose m > 3, threshold t > 1 such that Φ̄(t) = 1/m, and a parameter ε ∈ [0, t]. Then

Pr{X ≥ t and Y ≤ t− ε} ≤ O(δ2ε−1
√
logm/m).

42

Proof. Note that (1) the covariance of X and Y is E[XY] = 1−Var[X −Y]/2 = 1− δ2, and (2) by
Lemma G.1, t = Θ(

√
logm). Denote p = Pr{X ≥ t and Y ≤ t − ε}. Note that if δ2ε−1t ≥ 1/32,

then the lemma trivially holds,

p = Pr{X ≥ t and Y ≤ t− ε} ≤ Pr{X ≥ t} =
1

m
≤ O

(δ2ε−1
√
logm

m

)
,

as required. So we assume below that ε > 32δ2t. Let α = E[XY] = 1 − δ2. Consider Gaussian
random variable Z = αX−Y . Note that Z has mean 0 and variance E[Z2] = α2+1−2α2 = 2δ2−δ4.
Further, the covariance of X and Z is 0: E[XZ] = αE[X2] − E[XY] = 0. In particular, for every
τ ≥ 0,

Pr{Z ≥ τ} = Φ̄(τ/
√

2δ2 − δ4) ≤ Φ̄

(
τ√
2δ

)
by Lemma G.1

≤ O
(
e
−(τ√

2δ
)2/2
)
. (34)

Therefore, X and Z are independent. We have,

p = Pr{X ≥ t and Y ≤ t− ε} = Pr{X ≥ t and αX − Z ≤ t− ε} =
1

m
Pr{Z ≥ ε+ αX − t | X ≥ t}

Define random variable ∆ = X − t. Then

ε+ αX − t = ε+ (1− δ2)(t+∆)− t ≥ ε/2 + (1− δ2)∆ ≥ ε+∆

2
,

where we used that ε/2− δ2t ≥ 0 and δ2 ≤ ε/(2t) ≤ t/(2t) = 1/2. We have,

p ≤ 1

m
Pr{Z ≥ (ε+∆)/2 | ∆ ≥ 0}

by (34)

≤ E[e−(ε+∆
2

)2/(4δ2) | ∆ ≥ 0]

m
.

Let us upper bound the probability density function f∆(x) of ∆ conditioned on the event ∆ ≥ 0.

f∆(x) =
e−(x+t)2/2

√
2π

/
Pr{∆ ≥ 0} = (t+ 1) · e−t2/2

√
2π(t+ 1)

· e−x2/2−tx ·m

≤ O
(
t · Φ̄(t) · e−x2/2−tx ·m

)
= O

(
te−x2/2−tx

)
= O

(
te−tx

)
.

We conclude that

pm ≤ O(1)

∫ ∞

0
e

−(ε+x)2

16δ2 (te−tx)dx = O
(
te4t

2δ2+εt
)∫ ∞

0
e

−(x+8tδ2+ε)2

16δ2 dx

let x̃=x+8tδ2+ε
2
√
2δ

= O
(
δte4t

2δ2+εt
)∫ ∞

8tδ2+ε/(2
√
2δ)
e

−x̃2

2 dx̃ ≤ O
(
δte2εtΦ̄

(ε

2
√
2δ

))
by Lemma G.1

≤ O

(
δ2

ε
te2εt−ε2/(16δ2)

)
= O

(
δ2t

ε

)
here we three times used that ε > 32δ2t. We conclude that p = O(δ2ε−1t/m) = O(δ2ε−1

√
logm/m),

as required.

43

H Supplementary Figures

(a) Buffered partition S,B, T = V \ (S ∪B). (b) Buffered partitioning (P1, . . . , P4∥B1, . . . , B4)

Figure 5: Left: The figure on the left shows a partition of the vertex set V into three pieces S,B
and T = V \ (S ∪B). Here B denotes the buffer, and cost of the this cut is δ(S, T), as denoted by
the edges marked in red. The edges marked in grey denote the edges between S and the buffer B.
Right: The illustrative figure shows a k = 4 partition P1, P2, P3, P4 with buffers B1, B2, B3, B4. The
red edges indicate the edges δ(P1, V \ (P1∪B1)) that contribute to the cut corresponding to P1. All
parts P1, . . . , P4 and B1, . . . , B4 are disjoint.

44

	Introduction
	Cheeger inequality for Buffered Partitions
	Graphs with vertex weights and edge costs
	Buffered Cheeger's inequality for k=2
	Our result generalizes higher-order Cheeger inequalities
	Connection to Robust Expansion
	Lower Bounds
	Overview and Organization

	Warm up: Cheeger's Inequality with a Buffer for k=2
	Orthogonal Separators with Buffers
	Partial Partitioning
	From Disjoint Sets to Partitioning
	Spectral Embedding
	Orthogonal Separators with Buffers – Proofs
	Connection to Robust Expansion
	Heavy Set P in a Buffered Partition
	Lower Bound for k-way Expansion and Pseudo-approximation Algorithm for Sparsest k-way Partitioning
	Buffered Balanced Cut
	Graphs with Vertex Weights and Edge Costs
	Lower Bound on h(k,epsilon)
	Gaussian Distribution
	Supplementary Figures

