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Dynamic Dictionary with Subconstant Wasted Bits per Key

Tianxiao Li∗ Jingxun Liang† Huacheng Yu‡ Renfei Zhou§

Abstract

Dictionaries have been one of the central questions in data structures. A dictionary data
structure maintains a set of key-value pairs under insertions and deletions such that given a query
key, the data structure efficiently returns its value. The state-of-the-art dictionaries [BFK+22]

store n key-value pairs with only O(n log(k) n) bits of redundancy, and support all operations in
O(k) time, for k ≤ log∗ n. It was recently shown to be optimal [LLYZ23b].

In this paper, we study the regime where the number of redundant bits is R = o(n), and show
that when R is at least n/poly logn, all operations can be supported in O(log∗ n + log(n/R))
time, matching the lower bound in this regime [LLYZ23b]. We present two data structures
based on which range R is in. The data structure for R < n/ log0.1 n utilizes a generalization
of adapters studied in [BKP+22, LLYZ23a]. The data structure for R ≥ n/ log0.1 n is based on
recursively hashing into buckets with logarithmic sizes.
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1 Introduction

Dictionaries are among the most basic data structures. A dictionary maintains a set of key-value
pairs, where the keys are distinct numbers from the key space [U ], and values are from the value
space [V ]. The data structure supports key-value pair insertions and deletions such that given a
key x ∈ [U ], it is able to quickly return the value associated to x, or report that x does not exist
in the current set.

Hash tables are textbook implementations of dictionaries. Universal hashing together with
chaining gives linear space and constant expected time per operation. Extensive research has been
conducted on dictionaries and hash tables [Knu73, ANS09, ANS10, BCF+23, DMPP06, DKM+94,
DM90, FPSS03, FKS84, Knu63, LYY20, Pag01, PR04, Pǎt08, RR03, Yu20, BFK+22]. Modern
hash tables occupy space close to the information theoretical limit,

B(U, V, n) = log

(
U

n

)
+ n log V,

to store n key-value pairs. A dictionary data structure that uses B(U, V, n)+rn bits of space is said
to incur r wasted bits per key, and R = rn is called the redundancy. The state-of-the-art hash tables
by Bender, Farach-Colton, Kuszmaul, Kuszmaul and Liu [BFK+22] achieve O(log(k) n) wasted bits
per key1 while supporting all operations in O(k) time, for any k ≤ log∗ n.2 Interestingly, this
was later shown to be optimal [LLYZ23b] in the cell-probe model. In particular, when a constant
number of wasted bits per key is allowed, the optimal operational time is Θ(log∗ n).

On the other hand, the design of [BFK+22] “wastes” a constant number of bits per key in
several components, making such a linear redundancy inherent to their hash tables. It was not
known how to construct a nontrivial dictionary with o(n) bits of redundancy and fast operational
time. In this paper, we study the space-time tradeoff when only a o(1) bits are wasted per key: can
we achieve a low operational time when r = o(1), ideally close to O(log∗ n), or do the dictionaries
intrinsically need to slow down significantly when r is sub-constant? The lower bound of [LLYZ23b]
shows that when the redundancy R is o(n), the operational time is at least Ω(log∗ n + log(n/R)),
which does not rule out O(log∗ n)-time when the redundancy is slightly sublinear.

The main result of this paper shows that this tradeoff is tight when R is not too small.

Theorem 1.1. For R > n/ logO(1) n, there is a dictionary data structure with redundancy R
that supports all operations in O(log∗ n + log(n/R)) expected time, in word RAM with word-size
w = Ω(logUV ). Moreover, queries take constant expected time.

In fact, we use two different constructions to cover the range of R between n/poly log n and n.
The first data structure has O(log log n) operational time when R > n/ logO(1) n. It is based on the
recently introduced adapters [LLYZ23a] and dynamic aB-trees (daB-trees). Adapters connect mul-
tiple variable-length data structures efficiently with zero extra redundancy, overcoming an essential
obstacle in designing succinct dynamic data structures. Li, Liang, Yu and Zhou [LLYZ23a] pre-
sented an adapter connecting two variable-length data structures (two-way adapters). In this paper,
we extend adapters to B-way for B = O(

√
log n), and apply it recursively to obtain daB-trees with

large branching factors for dictionary, showing another application of the adapters. The second
data structure matches the lower bound when R > n/ log0.1 n. It is based on recursively hashing

1log(k) n is the iterated logarithm.
2Moreover, the hash table of [BFK+22] has the claimed operational time in worst case with high probability (high-

probability), and occupies space in terms of the current n (dynamic-resizing). We will not focus on these stronger
properties in this paper.
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into buckets that are logarithmically smaller in size, hence, constructing a tree of depth O(log∗ n).
For leaves (the base cases), we introduce minimaps. They are “mini-dictionaries” maintaining a
small set of keys, which can be encoded in one word, together with their (potentially large) values,
and achieving almost no redundancy and all operations in logarithmic time. Interestingly, B-way
adapters and minimaps share similar constructions, while they play completely different roles in
the data structures for the two regimes respectively.

We remark that our dictionary for R > n/ logO(1) n with O(log log n) operational time is strongly
history-independent (a.k.a. uniquely representable) if carefully implemented, which means that
the memory state of the dictionary only depends on the set of stored key-value pairs as well
as some random bits that the algorithm might use. This matches a lower bound in [LLYZ23b]:
any strongly history-independent dictionary must have operational time Ω

(
log n logU

R

)
, for any

R ≤ O(n logU). Recently, Kuszmaul [Kus23] shows an optimal strongly history-independent dic-
tionary with Θ

(
log n logU

R

)
operational time for R ∈ [n log log n, n log n], which together with our

result concludes the following theorem.

Theorem 1.2. For U = n1+Θ(1) and n/ logO(1) n ≤ R ≤ n log n, there is a strongly history-
independent dynamic dictionary that stores n elements from universe [U ] with R bits of redundancy
and O

(
log n logU

R

)
expected time per operation, which is optimal in the cell-probe (or word RAM)

model with word-size w = Θ(logU). The dictionary also achieves expected constant-time queries.

1.1 Organization

In Section 2, we give an overview of the two data structures. In Section 3, we formalize the setup
and present the constructions of B-way adapters and minimaps. Then the data structure via B-
way adapter trees is presented in Section 4, and the data structure via multiple levels of hashing is
presented in Section 5.

2 Overview

In this section, we focus on the case where U, V, n are bounded by polynomials of each other, and
the word-size w = Θ(log n). We start by giving a short summary of the hash table by Bender et
al. [BFK+22]. The first step, similar to several prior works, is to hash into buckets that contain
expected K − K2/3 keys for some K = poly log n. Then by concentration, all buckets have at
most K keys hashed to it with high probability. By allocating space that fits K key-value pairs to
each bucket and handling them separately, this effectively reduces the number of keys to K, and
have incurred wasted bits of roughly 1/K1/3 per key (from allocating space conservatively to each
bucket).

Now within each bucket, we start to recursively hash the keys into smaller buckets, forming a
tree structure where the buckets are the nodes. For a bucket of size S (i.e., that can store a total
of S keys), its children in the tree will have size poly logS each, i.e., the degree of this node is
S/poly log S. The entire tree has k levels for some parameter k, hence, every leaf in the tree has
size roughly log(k) n.

All keys (and their values) are only directly stored in the leaves. The entire tree rooted at a
top-level bucket of size K has exactly K total slots to store the keys. If the hash function were able
to completely evenly split the key set, then a key and its value can simply be stored in the leaf it
hashes to, and can be located by looking up this leaf. However, a node u may hash more keys to
some child v than others, resulting in v having more keys than its capacity, i.e., v overflows. In this
case, some of the keys will be stored in the empty slots in v’s siblings. Provided that u does not
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overflow, we can always find slots for all keys hashed to u. An extra pointer will be stored to locate
a key that is stored in a different child, incurring a redundancy of log S bits when u has size S. A
simple calculation shows that by hashing S keys into S/poly log S buckets, the total number of keys
that are “overflown” to a different bucket is S/poly logS. Hence, the pointers incur 1/poly log S
wasted bits per key on average. Finally, the leaf nodes are sufficiently small, and data structures
with O(log(k+1) n) wasted bits per key are used, e.g., by storing a pointer for each key. It turns out
that the keys can be inserted or deleted by walking down the tree, taking O(k) time.

2.1 Dictionaries for R > n/ log0.1 n

For R > n/ log0.1 n, one contribution of this work is to handle the leaves efficiently while incurring
only o(1) wasted bits per key. The leaves contribute a majority of the redundancy in [BFK+22].
Moreover, their data structure always needs to store a “query router” in each leaf, which points
each key to a slot. The query router costs an average of Ω(1) wasted bits per key to distinguish
all keys in addition to the pointers, even when k is close to log∗ n. This is unaffordable when only
o(1) wasted bits per key is allowed.

In this work, we introduce minimaps, and use them to store the key-value pairs in the leaves.
Roughly speaking, a minimap maintains n key-value pairs with keys from [U ] and values from [V ],
such that the set of keys fits in one word, i.e., log

(
U
n

)
≤ w (the values of U, V, n here may be

different from those in the full dictionary data structure). Note that this task is nontrivial since U
and n may be close but both super constant, and V can still be very large, e.g., one could think
n =
√
w, U = wO(1) and V = 2w. Hence, the main challenge here is to map the keys to n slots to

store their values, while supporting efficient key insertions and deletions.3

To rephrase the task, the set of keys is cheap enough to encode in one word, we want to store
their values in n slots with (almost) no redundancy such that given a key, we know where its value
is stored by reading the entire key set, and when updating the key set by inserting or deleting
one key, not many values need to be relocated. A trivial solution is to store the values in the
increasing order of their keys. Since the entire key set can be achieved in constant time, given a
key, we can compute its rank within the set, and hence, recover the index of the slot containing
its value. However, this solution may take O(n) time to update the key set, since we may need to
shift all values by one slot when inserting or deleting a key with a small rank. Another solution
is to keep the values in an arbitrary order while storing a pointer for each key to its value. This
achieves constant-time update and query, but uses O(n log n) redundancy bits in total (this is what
the prior work uses). Our (randomized) minimap achieves O(log n) expected time for insertion and
deletion of a key-value pair, as well as constant lookup time. Moreover, it does not introduce any
redundancy.

The design of a minimap is inspired by the consistent hashing [KLL+97], and has a very similar
structure to a solution to memoryless worker-task assigning [BKP+22], a problem studied in dis-
tributed computing. Roughly speaking, we first map n keys and n slots to the unit circle randomly,
and if a key x is right after a slot a, we store the value of x in a. Then we repeat this process on the
remaining keys and slots using independent randomness. Each round matches a constant fraction of
the keys and slots, hence, all keys are matched to slots after O(log n) rounds with high probability.
One can show that after one update, at most one key in each round needs to be relocated to a
different slot. Therefore, the update time is O(log n). Besides the random functions, which can be
shared between all minimaps, this structure has no redundancy, since the locations of all values are
entirely determined by the key set (and the hash functions).

3The values can be stored using the spillover representation [Pǎt08] to avoid the problem of rounding V to the
next power of two.
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Using minimaps, we construct a dictionary with sublinear redundancy. The main structure
is similar to [BFK+22], which recursively hashes keys to logarithmically smaller buckets. Our
construction also forms the same tree where each node corresponds to a bucket. We note that
there are other technical changes in order to keep the redundancy o(n). One such challenge comes
from storing the keys: the fact that a key is hashed to a node carries information about the key,
i.e., naively encoding the key would implicitly waste space. Hence, when encoding a key, we must
exploit the fact that it has been hashed to this bucket (i.e., this fact shrinks the set of possible
keys). A common solution to this is the technical of quotienting [Knu73, Pag01]. Extra care needs
to be taken when there is multiple levels of hashing as in our structure.

To avoid issues that may arise with variable-size data structures, we always allocate a fixed
amount of space to each node. Now not all keys are stored in the leaves, each internal node is also
allocated a fixed number of slots. We calculate the minimum number of keys that will be hashed
to a leaf with high probability, allocate and store exactly this number of keys in this leaf, and send
the excessive keys to its parent node. For each internal node u in the tree, we also calculate the
minimum numberm(u) of keys that will be hashed to u, and allocate a total of exactly m(u) keys to
u and all its descendants, i.e., the number of keys stored directly in u is determined by subtracting
the total number of slots allocated to its children. When a child of u violates this minimum number,
we will rehash the subtree rooted at u, which only happens with low probability (in terms of the
size of u). Note that this strategy incurs another implicit redundancy by allowing a key to be
stored in one of the many levels, i.e., for a given key, whether it is in the leaf or is stored directly
in an ancestor is some information not determined by the input but implicitly determined by the
data structure. However, a careful calculation shows that this redundancy is also negligible. By
following this construction to the level such that each leaf roughly stores O(n/R) keys, we achieve
the claimed performance.

2.2 Dictionaries for R < n/ log0.1 n

The above strategy fails when the redundancy is O(n/ log10 n). The primary reason is that this
redundancy would require each leaf node to store (a large-)poly log n keys while incurring only a
constant bits of redundancy. However, the minimap requires that the key set fits in one word,
which does not hold when there are much more than w = log n keys.

After the first step of hashing into buckets of size K = poly log n, in this regime, we construct
directly a data structure for each bucket with O(1) bits of redundancy and supporting updates and
queries in O(log log n) time, based on the recently introduced adapters [LLYZ23a].

An adapter stores jointly B arrays D1, . . . ,DB using exactly
∑B

i=1|Di| entries (with no re-
dundancy), such that one can access one entry of an array Di, or efficiently resize an array by
incrementing or decrementing its size (and hence also the total number of entries in all arrays)
by one. The work of [LLYZ23a] designed a deterministic adapter for B = 2 (two-way adapters)
such that the entries can be accessed in constant time, and each resizing operation can be per-
formed in O(log(|D1|+ |D2|)) time. Adapters are useful to combine multiple components of a data
structure, especially when each component has a variable length under updates. Each array Di

corresponds to the memory words of a data structure, and without incurring any redundancy, an
adapter “connects” multiple data structures whose sizes may change.

In this paper, we generalize it to B-way adapters for larger B using the essentially same al-
gorithm as minimaps described in the previous subsection, supporting accesses in constant time
and resizing in O(log

∑|Di|) time in expectation (now the construction is randomized). Roughly
speaking, an adapter is to map the entries {(i, j) : i ∈ [B], j ∈ [|Di|]}] to the indices

[∑B
i=1|Di|

]

with no redundancy, i.e., the mapping only depends on the array sizes, such that when some |Di|
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changes by one, only very few entries are mapped to a different location in expectation.
The seminal work of Pǎtraşcu [Pǎt08] showed that augmented B-trees (aB-trees), a tree data

structure with branching factor B where each node stores some auxiliary information on its label
that only depends the labels of its children, can be succinctly encoded with only O(1) bits of
redundancy, and can be accessed with no overhead in time (for B not too large). In particular, it can
be used to build a static dictionary for each bucket of size K = poly log n with O(1) redundancy and
lookup time O(logB K) = O(logB log n). Two-way adapters were used to dynamize the augmented
B-trees of Pǎtraşcu [Pǎt08] for B = 2 in [LLYZ23a]. Roughly speaking, the succinct representation
of a static aB-tree is constructed bottom-up: Having constructed the data structures for the children
of a node u, the data structure for u is obtained by first concatenating the data structures for the
children of u, then encoding their labels succinctly together with the concatenation. The adapters
are used to store them succinctly with no space overhead, and allow for fast resizing. It turns out
that dynamizing aB-trees [LLYZ23a] results in another polynomial slowdown in the depth of the
tree (in addition to the cost of adapters). For each bucket of size poly log n, a tree with branching
factor B = 2 has depth log log n, and would be slowed down by a poly log log n factor.

Now we have efficient B-way adapters, and they give the potential to dynamize augmented
B-trees for larger B. In fact, we can set B to

√
w = O(

√
log n) (the largest B that even the static

aB-trees allow), and have a tree with constant depth. It turns out that B-way adapters alone are
not enough to dynamize general aB-trees for large B. Since adapters only allow for incrementing or
decrementing each data structure by one complete word (exactly w bits), and the last less-than-w
bits of every component (an incomplete word) need to be handled separately also with no extra
redundancy, it is not clear how to dynamically maintain B arrays that have incomplete words of
arbitrary number of bits in [0, w) that may resize.

One important fact that we crucially exploit in this work is that the aB-tree implementing
dictionary does not resize arbitrarily, as the insertion and deletion of a key will always resize the
data structure by log(U/n) ± O(1) bits. By setting the entries size in the B-way adapter to be
log(U/n), we always only need to resize by O(1) bits in addition to one complete word. This allows
us to maintain the incomplete words efficiently using the same strategy as the adapters.

The question of dynamizing general aB-trees for large B, where the incomplete words may
resize arbitrarily, remains open. Resolving this question may improve the running times of several
dynamic succinct data structures studied in [LLYZ23a].

3 Adapters

It is a fundamental problem to manage multiple variable-size data structures within a contiguous
piece of memory. The main purpose of this section is to introduce adapters to help resolve this
problem. The most important subroutine of adapters is to maintain an address mapping between
multiple small pieces of memory and a large one, which is further abstracted as the dynamic
matching problem which we will start with. Dynamic matching has various applications, including
but not limited to the adapters. We note that the solution here uses the same idea as a memoryless
worker-task assigning algorithm [BKP+22].

3.1 Dynamic Matching

Problem 3.1 (Dynamic matching). The dynamic matching problem asks us to dynamically main-
tain an injection (a matching) σ from a set of balls A ⊆ U to a set of bins B ⊆ V , under the
insertions and deletions of balls and bins (the operations). It is promised that |A| ≤ |B| at any
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time. Furthermore, the matching σ is required to only depend on A,B (and possibly the random
bits fixed in advance), written as σ = σA,B.

The cost of an operation is defined as the number of ball relocations. Suppose that after a single
operation, the new ball set and bin set become A′ and B′ respectively, the cost is

∆(σA,B, σA′,B′) :=
∑

a∈A∪A′

1[σA,B(a) 6= σA′,B′(a)].

A (deterministic) solution to this problem is described by a collection of matchings {σA,B}A⊆U,B⊆V, |A|≤|B|,
i.e., by assigning a matching to every possible pairs of ball set A and bin set B. We call it a matching
scheme. A randomized matching scheme is a distribution over the deterministic ones.

The main goal of this subsection is to introduce a randomized matching scheme with expected
cost O(log |A|), requiring only a small number of balls to be moved during each operation. We will
sample the whole matching scheme {σA,B}A,B from a fixed distribution D; after it is sampled and
fixed, the maintained matching is determined solely by A and B, i.e., the behavior of ball-relocations
during each operation is deterministic.

Lemma 3.2. There is a randomized matching scheme {σA,B}A,B ∼ D such that the expected cost
of any single operation on (A,B) is O(log |A|).

Matching Scheme. To prove Lemma 3.2, we first introduce a matching algorithm that takes
(A,B) as input and computes the matching σA,B. Following that, we will analyze its expected cost
on a single operation.

Our algorithm is inspired by the consistent hashing [KLL+97], but with multiple rounds. In
each round, we use a hash function hi to map all remaining balls and bins to random points on the
unit circle (i.e., the interval [0, 1] with its two endpoints connected to form a loop). Suppose a ∈ A
is a ball whose next point in the clockwise direction on the circle is a bin b ∈ B, then we create
a matched pair (a, b), i.e., we put ball a into bin b. Intuitively, we expect half of the balls to be
matched in such a round, so the whole algorithm ends after O(log |A|) rounds with high probability.
The formal description of this algorithm is shown in Algorithm 1.

Algorithm 1: Dynamic Matching Algorithm

1 Hash functions h1, . . . , h|U | are predetermined, where hi maps U ∪ V to the unit circle

2 Let Ai, Bi denote the sets of unmatched balls and bins before the i-th round, respectively
3 A1 ← A, B1 ← B, i← 1
4 while Ai 6= ∅ do
5 Ai+1 ← Ai, Bi+1 ← Bi

6 Hash all elements in Ai and Bi onto the circle according to hi
7 for a ∈ Ai do
8 if the element next to a in the clockwise direction on the circle is a bin b ∈ Bi then
9 Set σA,B(a) = b

10 Remove a, b from Ai+1, Bi+1

11 i← i+ 1

The hash functions {hi}i≥1 are predetermined and stored in the memory in advance, and remain
fixed throughout all operations. Therefore, when we insert or delete an element in A or B, the
images of other elements under hi remain unchanged. For any fixed pair (A,B), over the randomness
of hi, the order of hi(A ∪B) on the circle is uniformly at random.
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The algorithm consists of multiple rounds, and denote by T the number of rounds. A worst-case
upper bound is T ≤ |A|, because in each round, at least one ball a ∈ A will be matched. This also
shows why using |U | independent hash functions is always enough. Furthermore, we can prove that
the expected number of rounds is O(log |A|).

Claim 3.3. For any A ⊆ U , B ⊆ V with |A| ≤ |B|, if {hi} are uniformly random permutations,
we have E[T ] = O(log |A|).

Proof. Consider the number of pairs that are matched in the i-th round. We first list all |Ai|+ |Bi|
points on the unit circle in clockwise order, starting from some globally fixed point. Denote by
x1, . . . , x|Ai|+|Bi| the elements on the list. Due to the randomness of the hash function hi, the
list follows uniform distribution over all (|Ai| + |Bi|)! permutations of Ai ∪ Bi. If for some j ∈
[1, |Ai +Bi|], xj is a ball while xj+1 is a bin, then we found a matched pair (x|Ai|+|Bi|+1 := x1 for
simplicity). For each of these events, the probability of it occurring is

Pr
[
xj is a ball ∧ xj+1 is a bin

]
=

|Ai|
|Ai|+ |Bi|

· |Bi|
|Ai|+ |Bi| − 1

>
|Ai| · |Bi|

(|Ai|+ |Bi|)2
.

Multiplying by the number of events, the expected number of matched pairs we find in the i-th
round is at least |Ai|·|Bi|

(|Ai|+|Bi|)2 · (|Ai|+ |Bi|) ≥ |Ai|
2 . This implies E[|Ai+1|] ≤ |Ai|

2 . Applying Markov’s

inequality on |Ai+1|, we know that Pr
[
|Ai+1| ≤ 3

4 |Ai|
]
≥ 1

3 . As the number of balls decreases by
a constant factor 3/4 with constant probability 1/3 in each round, the entire process ends within
O(log |A|) rounds in expectation.

Algorithm 1 has induced a matching scheme {σA,B}A,B . We also know that the expected rounds
of Algorithm 1 is E[T ] = O(log |A|). To prove Lemma 3.2, it remains to show that the cost of each
operation on (A,B) is bounded by O(T ).

We use the matching scheme induced by Algorithm 1. Assume (A,B) is a pair of ball set and
bin set, and (A′, B′) differs from (A,B) by a single element, i.e., (A′, B′) is obtained by inserting
or deleting a single element in A or B. Let T and T ′ be the number of rounds when running
Algorithm 1 on (A,B) and (A′, B′), respectively. From Claim 3.3, we know that E[T ] = O(log |A|).

We still use Ai, Bi to denote the sets of remaining balls and bins just before the i-th round when
running Algorithm 1 on (A,B). Similarly, let A′

i, B
′
i denote the corresponding sets when running

on (A′, B′). We will compare (Ai, Bi) with (A′
i, B

′
i), and show the following claim:

Claim 3.4. For all 1 ≤ i ≤ max(T, T ′), (A′
i, B

′
i) differs from (Ai, Bi) by a single element. Moreover,

only O(T ) elements have different matched counterparts when the matching algorithm is executed
on (A′, B′) compared to (A,B).

Proof. When i = 1, it is true because (A′
1, B

′
1) = (A′, B′) is obtained by a single operation from

(A,B) = (A1, B1). Below, we assume the claim holds for a certain i, and prove it for i+ 1.
(A′

i, B
′
i) is obtained from (Ai, Bi) by inserting or removing a ball or bin. Due to the symmetry

between insertions and deletions, as well as between balls and bins, let us only consider inserting a
bin to obtain B′

i = Bi∪{b∗} for now. Consider how the matched pairs in the i-th round will change
when we add a new bin b∗. There are three cases depending on the previous element of b∗ on the
circle, denoted by x. Specifically, x is the element adjacent to b∗ in the counterclockwise direction.

1. x is a bin x ∈ Bi, so b∗ stays unmatched and (A′
i+1, B

′
i+1) = (Ai+1, Bi+1 ∪ {b∗}).

2. x is a ball x ∈ Ai that is unmatched in round i before adding b∗. Now the algorithm will
match x with b∗, which implies (A′

i+1, B
′
i+1) = (Ai+1 \ {x}, Bi+1).

7



3. x is a ball x ∈ Ai that is matched to some other b 6= b∗ in this round before inserting
b∗. Now x will be matched to b∗ while b becomes unmatched. In this case, (A′

i+1, B
′
i+1) =

(Ai+1, Bi+1 ∪ {b}).

In all three cases, only O(1) elements changed their matching in the i-th round, so the total number
of such elements throughout all rounds is O(max(T, T ′)). Finally, observe that T ′ ≤ T +1, because
(A′

T+1, B
′
T+1) differs from (AT+1, BT+1) by a single element and AT+1 = ∅, thus

∣∣A′
T+1

∣∣ ≤ 1; since
each round matches at least one ball, we know the algorithm must end within T + 1 rounds when
running on (A′, B′).

Finally, combining Claims 3.3 and 3.4 proves Lemma 3.2.

Remark 3.5. In our application of dynamic matching in the later sections, we always have |A| =
|B|, and will only insert or delete a ball and a bin simultaneously.

3.2 Virtual Memory Model

Same as [LLYZ23a], we use a storage model called the virtual memory model to capture the essential
memory-accessing behavior of variable-size data structures. Similar to the word RAM model, the
memory consists of an infinite sequence of w-bit words, which are labeled with positive integers
{1, 2, . . .} as their addresses. One should view the memory as a tape that starts from word 1 and
extends to infinity.

At any given time, the variable-size data structure is allowed to use a prefix of the memory
string. Formally, there is a positive integer M indicating the number of available memory bits, and
let L := ⌊M/w⌋. Like in a word RAM with M bits, the data structure can read or write one of the
first L words on the tape given its address i ∈ [L], as well as the first M − Lw = (M mod w) bits
within the (L + 1)-th word. The latter part is viewed as an incomplete word, which we also refer
to as the tail ; in contrast, the former part is called the complete words. We may use “accessing a
word” to refer to reading or writing it. Accessing an arbitrary word (including the tail) counts as
one word-access.

We also allow the data structure to change the memory size M via allocations and releases.
Due to technical reasons, we only allow two types of allocations (releases): increasing (decreasing)
M by 1 or w bits, but not between. The memory size M is stored by some outside entity and is
always given to the algorithm when performing any operation.

The available part on the tape (i.e., the first L words plus (M mod w) bits) is called a virtual
memory (VM for short), which is responsible of storing variable-size data structures. Usually, we
think allocations and releases are more expensive than word-accesses; similarly, word-accesses to
VM are more expensive than arithmetic instructions, because there might be multi-level address
translations between the VM and the physical memory. So we observe the following quantities to
measure the time performance of a variable-size data structure stored in a VM:

1. the number of arithmetic instructions and lookup table queries it performs;

2. the number of word-accesses to the VM;

3. the number of allocations and releases (including both 1-bit and w-bit types).

Variable-size data structures in spillover representation. The spillover representation, first
introduced in [Pǎt08], aims to avoid the 1-bit redundancy from rounding up the data structure to
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an integer number of bits. It represents the data structure with a pair (k,m) ∈ [K] × {0, 1}M ,
where k is called the spillover and K is called the the spill universe.

This representation can be naturally combined with the VM model when the represented data
structure is dynamic and has variable size: We directly store the M memory bits into a virtual
memory, supporting word-accesses, allocations and releases. Then, any update to the data structure
(including changing its size) is mainly expressed as a sequence of VM operations. The spillover k,
as well as K,M , is stored by some external entity, so we do not count the time taken to it when
we analyze the stored data structure itself.

3.3 Adapters

Recall that we want to store B variable-size data structures D1, . . . ,DB in a contiguous piece of
memory. For now, let us focus on the simplest case: each Di is encoded into Mi = ℓiw memory bits,
which are stored in a VM, without tail or spillover. In simpler terms, we need to “concatenate”
B smaller VMs (sub-VMs) with ℓi complete words and no tail, then store them into a larger VM
(super-VM) with L := ℓ1 + · · · + ℓB words. In this subsection, we introduce B-way adapters to
solve this simple case. Concatenating tails and spillovers involve more technical details and will be
introduced later in Section 4.

A B-way adapter maintains an address mapping between B sub-VMs and the super-VM.
Formally, we use (i, j) to indicate the j-th word in the i-th sub-VM, while the words in the
super-VM are labeled with {1, 2, . . . , L}. Our adapter maintains a dynamic matching σ between
{(i, j) : 1 ≤ i ≤ B, 1 ≤ j ≤ ℓi} and [L], which only depends on ℓ := (ℓ1, . . . , ℓB), written as σ = σℓ.
Suppose σ(i, j) = t, then we store the content of word (i, j) into the t-th word in the super-VM.
The metadata ℓ is stored outside and we assume free access to it. Using this design, storing the
complete-word parts of B data structures incurs no redundancy.

The matching scheme we use is given in Section 3.1: By viewing the words in sub-VMs (i, j)
as balls and the words in the super-VM as bins, it is clear that it is an instance of the dynamic
matching Problem 3.1. We maintain the matching via lookup tables, which requires that |supp ℓ|
is small enough. When we want to access the j-th word in the i-th sub-VM, we first query the
lookup table to get σℓ(i, j) = t in constant time, then access the t-th word in the super-VM.

When any of the sub-VM requests an allocation (or release), the super-VM should also perform
the same request. Afterward, some of the words should be moved as the matching changes from σℓ

to σℓ
′ . The number of moved words equals

∆(σℓ, σℓ
′) =

∑

i,j

1[σℓ(i, j) 6= σℓ
′(i, j)].

By Lemma 3.2, its expectation is bounded by O(logL). That is, an allocation (or release) of
a sub-VM is transformed to an allocation (or release) of the super-VM with O(logL) additional
word-accesses in the super-VM in expectation.

We summarize the above discussion with the following lemma:

Lemma 3.6. Assuming ℓ := (ℓ1, . . . , ℓB) is stored outside and allows free access, B sub-VMs
with ℓ1, . . . , ℓB words respectively and no tails can be maintained within a single super-VM with
L :=

∑B
i=1 ℓi words, while

• a word-access on any sub-VM is simulated by a word-access on the super-VM;

• an allocation [resp. release] on a sub-VM is simulated by an allocation [resp. release] and
O(logL) word-accesses in expectation on the super-VM.

9



Moreover, if L ≤ Lmax always holds, we can precompute lookup tables occupying O(BLB+1
max ) words

in total, and complete the simulation within O(1) computation cost for each access, and O(logL)
expected computation cost for each allocation or release. The time of computing these lookup tables
is O((B + Lmax)L

B+1
max ).

Proof. Based on the discussion above, it remains to calculate the size of lookup tables. We pre-
compute the following two lookup tables:

• Given ℓ and an address (i, j) in sub-VM, output the corresponding address σℓ(i, j) in the
super-VM.

• Given an allocation/release changing ℓ to ℓ
′, find out the list of all word-moves in the super-

VM during this operation, where each word-move is represented by a pair (t, t′), meaning
that the content of word t should be moved to word t′.

The number of vectors ℓ is bounded by LB
max; for every ℓ, there are O(B) possible ℓ

′ that can be
reached by a single operation. Each entry of the second table is a list of at most Lmax pairs, so the
total size is bounded by BLB+1

max . It is also clear that the first table occupies only O(LB+1
max ) words

of memory.
These two tables can also be computed efficiently. To compute the first one, we only need to

run Algorithm 1 on every possible ℓ, which takes O(LB+2
max ) time. To compute the second one, we

only need to compare σℓ(·, ·) with σℓ
′(·, ·) for every adjacent pair (ℓ, ℓ′), which takes O(BLB+1

max )
time.

3.4 Minimap for Dictionary Problem

Another application of dynamic matching is maintaining key-value pairs with almost zero redun-
dancy. Suppose we need to maintain n key-value pairs, supporting insertions and deletions of
key-value pairs, and querying the associated value of a given key. Differently from the general
dictionary problem, here we additionally require that log

(U
n

)
= O(w), i.e., the whole key set can be

encoded into O(1) words. Note that the problem is non-trivial, as the value-universe V can still be
large. We introduce variable-size data structures called minimaps for this regime, stated as follows.

Lemma 3.7 (Minimap). Suppose r > 0 is an integer and the word-length is w = Ω(n log(Ur) +
log V ). There is a data structure that stores n key-value pairs from key-universe [U ] and value-
universe [V ], which is encoded using M memory bits (stored in a VM) and a spillover with uni-
verse K ≤ 2r, has at most 4/r bits of redundancy, O(1) query time, and O(log n) expected inser-
tion/deletion time. The data structure is allowed to access a lookup table of O

(
Un
(U
n

)
·(2rn)n

)
words

that can be shared between multiple instances of minimaps with the same parameters U, V, n, r.

Besides the dynamic matching technique, we will also use the following lemma from [Pǎt08],
which formalizes the fundamental functionality of the spillover representation.

Lemma 3.8 ([Pǎt08, Lemma 3]). Given an arbitrary set X . Fixing a parameter r > 0, we can
represent any element in X by a pair (k,m) ∈ [K] × {0, 1}M with K ≤ 2r, incurring at most 2/r
bits of redundancy. If w = Ω(log |X |), encoding and decoding only take O(1) arithmetic operations.4

The main idea of our data structure is to establish n “slots” in the memory, each storing a
value in [V ]. The order we store these values is maintained as a dynamic matching, i.e., once key
x is matched with slot i, we store the value associated with x into slot i. During an insertion or
deletion, Lemma 3.2 guarantees that only few values need to be relocated.

4The original lemma in [Pǎt08] required r ≤ |X |; however, when r > |X |, it is easy to encode an element in X
with a spillover k ∈ [|X |] and no memory bits, which incurs no redundancy, so the lemma holds as well.
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Proof of Lemma 3.7. First, we apply Lemma 3.8 on the value-universe [V ] with parameter r′ = rn,
obtaining a spillover representation [V ] → [K∗] × {0, 1}M∗

with K∗ ≤ 2rn. Then, every value in
[V ] is represented by a pair (k∗i ,m

∗
i ) ∈ [K∗]× {0, 1}M∗

. This step induces ≤ 2n/(rn) = 2/r bits of
redundancy.

In the second step, we combine the key set and all n spillovers k∗1, . . . , k
∗
n. Formally, let x =

(x1, . . . , xn, k
∗
1 , . . . , k

∗
n), where x1 < x2 < · · · < xn are the n distinct keys to be stored, and k∗i ∈ [K∗]

is the spillover of xi’s value. Let X be the set of all possible x’s, then |X | ≤
(U
n

)
· (2rn)n. We apply

Lemma 3.8 again on X with parameter r, obtaining a spillover representation with spill universe
K ≤ 2r, incurring at most 2/r bits of redundancy. Also note that log|X | ≤ O(w), the memory bits
from this step only occupy O(1) words.

The third step is to partition M∗ · n consecutive memory bits into n slots of M∗ bits each,
labeled from 1 to n. We maintain a dynamic matching between the key set {x1, . . . , xn} ⊂ [U ] and
slots {1, . . . , n}. Once some key xi is mapped to slot j, we store the memory bits m∗

i of xi’s value
in the j-th slot.

Finally, we append the memory bits from the second step (O(1) words) to the M∗ · n memory
bits from the third step. The result is stored into a VM and forms the final memory bits of our
data structure (minimap). The spillover of the minimap k ∈ [K] is the spillover from the second
step. Hence, the total redundancy does not exceed 4/r bits.

During an insertion or deletion, according to Lemma 3.2, only O(log n) slots need to relocate
their contents, which takes O(log n) word-accesses. The outcome of the second step can be fully
re-encoded as it takes only O(1) word-accesses.

It remains to calculate the sizes of the lookup tables we need in this process:

• Given x and a key xi, decode the spillover k∗i of its value, and find the address of the slot
where xi’s associated value is stored. It occupies O

((U
n

)
· (2rn)n · U

)
words.

• Given x and a key x to be inserted or deleted, find out the updated x and a sequence of
slot-moves (which slot’s content should be moved to which location) during this operation. It
requires O(n) words for every possible operation, thus occupies O

((U
n

)
· (2rn)n ·U · n

)
words.

Summing up, the lookup table occupies O
(
Un
(U
n

)
· (2rn)n

)
words, which concludes the proof.

4 Dictionary via Adapter Tree

Recall that a dictionary data structure maintains a set of N distinct keys from [U ] under key
insertions and deletions, such that given a query x ∈ [U ], it returns if x is in this set. In some
scenarios, the dictionaries may also need to store a O(w)-bit string called the value for each key.
For most algorithms including ours, storing values is not the main challenge, so we will focus on
storing keys. Now fix an integer 100 ≤ h ≤ log0.3 N and let R = N/ loghN . In this section, we will
design a dictionary with redundancy O(R), which supports queries in O(h2) time, and updates in
O(h3 log logN) time. When h = Θ(1), this result covers the parameter regime R ≤ N/ log0.1N of
Theorem 1.1.

Additionally, we assume U = N1+α for some constant α > 0; also assume w = Ω(logN).
Without loss of generality, we assume the dictionary always contains N or N − 1 keys, but not
fewer.5

5This assumption is without loss of generality because we may insert N special elements e1, . . . , eN to the universe
U , each indicating that the i-th key in the dictionary does not exist. If the number of keys is smaller than N − 1, we
include a suffix of special elements in the dictionary to make the number of keys equal N − 1 or N at any time. The
entropy increased by enlarging the universe is negligible: 1/poly(N).
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Algorithm Framework. Let B = O(
√
logN) be a parameter, n1 = O(B8h), and n8h =

n1/B
8h−1 = O(B). Consider the following two-stage hashing: We first hash keys into N/n1 buck-

ets, which we call the level-1 nodes or root nodes, with the expected number of keys in each bucket
being n1. For all keys that mapped to a level-1 node u, we further hash them into n1/n8h buckets,
which we call level-8h nodes or leaf nodes, with the expected number of keys in each bucket being
n8h.

Next, we build a full B-ary tree between every root and its leaves. Formally, for 1 ≤ ℓ < 8h,
every level-ℓ node has exactly B children at level ℓ + 1. We now get a forest where each key is
finally hashed into a leaf node (through two-stage hashing). For a level-ℓ node u, we say a key x is
hashed into u if x is hashed into a descendant leaf of u; the expected number of keys hashed into
u is denoted by nℓ := B8h−ℓn1.

The design of our data structure is recursive: For a level-ℓ node u, we construct a variable-size
data structure maintaining all keys hashed into u, which is stored in a virtual memory (VM). This
is mainly done by “concatenating” the sub-VMs from its B children on the next level. The leaf
nodes are directly maintained by mini-maps as the number of keys hashed into every leaf node is
very small (O(

√
logN)). We call this recursive data structure adapter trees.

Tree Parameters. We specify some parameters here. For technical reason, we choose B to be the
unique power of two in [

√
logN, 2

√
logN), and n1 ∈ [B8h, 2B8h) be the unique number such that

N/n1 is a power of two (note that n1 is not necessarily an integer). Correspondingly, nℓ = n1/B
ℓ−1

is also not necessarily an integer.

Let n1 =
⌈
n1 + n

2/3
1

⌉
and n1 =

⌊
n1 − n

2/3
1

⌋
. By carefully choosing the hash functions (as we

will describe in Appendix C), we can ensure that the number of keys n(u) in each level-1 node u is
between [n1, n1] with high probability. When designing our data structure, we always assume this
to be true. Once some root u violates this condition, we say u overflows (n(u) > n1) or underflows
(n(u) < n1), and reconstruct the whole dictionary immediately (using different hash functions).
Since the probability is sufficiently small, the expected cost of reconstruction is negligible (this

will be analyzed in Appendix C and Section 5.5). Similarly, we define n8h =
⌈
n8h + n

2/3
8h

⌉
and

n8h =
⌊
n8h − n

2/3
8h

⌋
, and always assume that the number of keys in each level-8h node is between

[n8h, n8h].
When N is sufficiently large, we know n8h ≥ n8h/2 and n8h ≤ 2 · n8h. Thus, for any given

level-ℓ node u, we know n(u) ∈ [nℓ/2, 2nℓ], because the keys hashed to u is a union of those of u’s
descendent leaves.

4.1 Hashing and ID-Quotient Separation

Imagine that we have n keys that are independent random bit strings. With probability ≥ 1−1/n2,
the first ⌈4 log n⌉ bits are all distinct, thus sufficient to distinguish the keys from each other. We
call the first ⌈4 log n⌉ bits the identifier (“ID” for short) of each key, and call the remaining bits
the quotient. An original key can now be regarded as a key-value pair : the ID is enough to identify
a key while the quotient is considered as the value associated with the ID.

A merit of separating IDs and quotients is that the IDs can be much shorter than the original
keys, which enables us to use efficient data structures for them. Typically, storing associated values
in a dictionary is much easier than storing the keys. By putting most of the bits in the quotient,
we actually reduce the key universe a lot. For n8h = O(log0.5N) keys, it is possible to encode the
whole ID set into a single word while supporting constant time operations based on lookup tables,
so we can maintain the ID-quotient pairs using a minimap.
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In our algorithm, the keys are represented in ID-quotient pairs since they were hashed into level-
1 nodes. Formally, a level-1 node u is responsible for storing a subset of its universe [2I1 ] × [Q],
where I1 := ⌈4 log n1⌉ is the length of the ID part, and Q is the range of the quotient part.6 The
hash function for this hashing step is a bijection h(1) : [U ] → [N/n1] × [2I1 ] × [Q], which maps a
key x ∈ [U ] into a triple (u, xid, xquot), with u being the index of a level-1 node, xid and xquot being
the ID and quotient of key x in the root node u, respectively. (We round up U to a multiple of
(N/n1) · 2I1 so that h(1) can be a bijection, which only increases the entropy log

(U
N

)
by a negligible

value.)
The second hashing step further hashes each key from a level-1 node to level-8h nodes. Benefiting

from the fact that the keys are already represented as ID-quotient pairs, the second hashing only
takes the ID xid as input. Specifically, this hash function maps xid (the ID of x in the root node u)
into a pair (v, yid), where v ∈ [B8h−1] indicates a descendant leaf of the root u, and yid is the ID
of x in the leaf v. Formally, this hash function is a bijection h(2) : [2I1 ] → [B8h−1] × [2I8h ], where
I8h = I1 − (8h − 1) logB. The quotient remains the same, i.e., the ID-quotient pairs for x in the
leaf node is (yid, xquot).

The hash function h(1) should satisfy two properties: (1) it should evenly distribute all keys to
the target buckets, preventing overflow or underflow at any bucket; (2) for all keys that are hashed
to the same bucket, they must be assigned different IDs in it. h(2) also needs to satisfy the first
property. We defer the formal design of hash function families to Appendix C.

After two hashing steps, each leaf is responsible for storing a set of ID-quotient pairs from
[2I8h ] × [Q]. We use U8h := 2I8h · Q = U · n8h/N to denote the universe size of leaf nodes.
Accordingly, we define Uℓ := U8h · B8h−ℓ, representing that any level-ℓ node u is responsible for
storing n(u) keys from a universe of Uℓ elements. We assume Uℓ ≥ 4nℓ for all 1 ≤ ℓ ≤ 8h as N is
sufficiently large, which also implies Uℓ ≥ 2n(u) for any level-ℓ node u.

4.2 Weak Virtual Memory

Recall that on each non-leaf node u of the tree, we plan to inductively maintain a variable-size data
structure that stores the set of keys hashed to u, mainly by concatenating the sub-VMs from u’s
children. The adapters, introduced in Section 3.3, can work efficiently when the sub-VMs have no
tails (i.e., their lengths are integer numbers of words), allowing us to allocate or release w bits at
a time. Unfortunately, we do not know any general method that can concatenate the tails under
the same performance.

Toy method of concatenating tails. To develop intuition for weak virtual memories (intro-
duced later), we start with a simple idea of concatenating the tails: treat them as bits and use
adapters. Assume there are B sub-VMs, namely m[1], . . . ,m[B], which we want to concatenate.
Every m[i] can be regarded as a sequence of complete words plus a tail. We further treat the tail as
a sequence of less than w bits. The simple method is to concatenate the complete words using one
adapter while concatenating the tail bits using another adapter. The “outputs” of the two adapters
are further organized into a super-VM.

This toy method has two issues. First, it only allows allocating one bit or w bits at a time, but
not between. For instance, if we want to allocate w/2 bits, we need to repeatedly allocate 1 bit for
w/2 times, which is unaffordably slow. Second, the tail of any given sub-VM m[i] is not mapped
to consecutive bits in the super-VM, so accessing the tail of a sub-VM could require accessing up
to Θ(w) different locations in the super-VM.

6We allow the quotient range not to be a power of two.
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Before we resolve these two issues, we first introduce the weak virtual memory model, which
appears naturally in the toy method.

Weak virtual memory. A weak virtual memory (WVM for short) consists of two tapes: the
word tape contains a sequence of complete words of w bits each, whereas the bit tape contains a
sequence of memory bits. Similar to VM, each word (resp. bit) in the word tape (resp. bit tape)
is labeled by a positive integer in [1, Lword] (resp. [1, Lbit]), which we call the address of the word
(resp. bit), where Lword (resp. Lbit) is the number of words (resp. bits) in the word tape (resp. bit
tape). The bits in the bit tape are called extra bits, and we stipulate that the number of extra bits
Lbit < 2w.

In an access operation in WVM, one is allowed to either access a word in the word tape, or
access an extra bit in the bit tape, given their addresses as inputs. In an allocation operation, one
is allowed to either allocate a word in the word tape, or allocate an extra bit in the bit tape. The
release operation is defined in the similar way.

Note that WVM is a weaker model than VM: each WVM can be simulated by a VM by storing
the bit tape using the tail and possibly the last complete word. Any access of the WVM can be
transformed into one access of the VM, whereas any allocation of the WVM can be transformed
into one allocation plus O(1) accesses of the VM.

Based on this model, the above toy method of concatenating tails can be described in the
following way: Assume we want to concatenate B VMs m[1], . . . ,m[B]. We treat each of them as a
WVM m̃[i] by storingm[i]’s tail into the bit tape of m̃[i] (the word tape of m̃[i] still stores all complete
words in the VM). Then, we concatenate all word tapes using one adapter, and concatenate all bit
tapes using another adapter. The outcome is stored into a super-VM.

The two issues of the toy method are closely related to WVMs: The first issue is because WVM
only supports allocating or releasing a single bit or a single word at a time, but not between. The
second issue arises as we treat VMs as WVMs: An access of the tail in a VM becomes O(w) accesses
in the WVM, which is way more expensive than accessing a complete word in the VM (the latter
is transformed to still one access in the WVM).

Feature on the VM size. Under the specific framework of our algorithm, we actually do not
need allocations and releases of arbitrary length: supporting w-bit and 1-bit allocations is enough
for us, which bypasses the first issue. Recall that a level-ℓ node u stores n(u) keys from a universe
Uℓ, so the data structure at node u should use roughly log

( Uℓ

n(u)

)
bits of space. When adding a

new key to the subtree of u, the number of bits to allocate is around log
( Uℓ

n(u)+1

)
− log

( Uℓ

n(u)

)
. By

choosing a proper word-length w, this number of bits to allocate is always w +O(1), which allows
us to allocate efficiently. This feature is formalized by the following claim:

Claim 4.1. For each ℓ and nℓ/2 ≤ n(u) ≤ 2nℓ, we have

log
U8h

n8h
− 3 ≤ log

(
Uℓ

n(u) + 1

)
− log

(
Uℓ

n(u)

)
≤ log

U8h

n8h
+ 1; (1)

(
log

U8h

n8h
− 1

)
n(u) ≤ log

(
Uℓ

n(u)

)
≤
(
log

U8h

n8h
+ 3

)
n(u). (2)

Proof. One can compute

log

(
Uℓ

n(u) + 1

)
− log

(
Uℓ

n(u)

)
= log

Uℓ − n(u)

n(u) + 1
. (3)
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Note that n(u) ≥ nℓ/2, Uℓ − n(u) ≥ Uℓ/2, and n(u) + 1 ≤ 2nℓ + 1 ≤ 4nℓ, we have

log
Uℓ

8nℓ
≤ log

Uℓ − n(u)

n(u) + 1
≤ log

2Uℓ

nℓ
.

Combining with (3) and Uℓ/nℓ = U8h/n8h gives (1).
To show (2), we observe that

n(u) log
Uℓ

n(u)
≤ log

(
Uℓ

n(u)

)
≤ n(u) log

Uℓ

n(u)
+ (log e)n(u),

and

n(u) log
Uℓ

n(u)
= n(u) log

Uℓ

nℓ
+ n(u) log

nℓ

n(u)
,

where Uℓ/nℓ = U8h/n8h and log nℓ

n(u) ∈ [−1, 1] because 1
2nℓ ≤ n(u) ≤ 2nℓ. Combining these two

formulas together, we get

log

(
Uℓ

n(u)

)
− n(u) log

U8h

n8h
∈
[
−n(u), (1 + log e)n(u)

]
⊂
[
−n(u), 3n(u)

]
,

which proves (2).

We choose w :=
⌊
log U8h

n8h

⌋
− 5 as the word-length7, then:

(1) inserting (deleting) a key to u will cause an allocation (release) of one word plus O(1) bits;

(2) the space usage of u’s data structure roughly equals n(u) words plus O(n(u)) bits.

Here, Condition (1) addresses the first issue of the toy method; Condition (2) will lead to the
following property and benefit resolving the second issue.

Definition 4.2 (Word-dominant). A VM is word-dominant if at any given time, there is a positive
integer n, such that the current number of bits in the VM lies in [nw+3n, nw+10n]. For a word-
dominant VM, we forbid allocations and releases that will result in a violation of this word-dominant
condition.

Random swap. As mentioned in the second issue, when we treat a VM as a WVM by storing
the tail in the bit tape, accessing the tail of VM becomes very slow, as it would require O(w)
bit-accesses to the WVM. However, accessing any given complete word of VM is still efficient
(transformed into only one word-access to the WVM). To resolve the second issue, we amortize
the cost of tail-access by swapping the tail with a random complete word. Specifically, we choose
a word i ∈ [Lword] almost uniformly at random, and swap the tail with the prefix of word i of the
same length Lbit before we store the “new tail” into the bit tape of WVM. As result, accessing the
original tail of VM becomes efficient, since we only need to access one word in the WVM; accessing
the original word i requires us to access the new tail, which costs O(w) accesses to the WVM. Since
i is randomly chosen, the expected cost of any given access operation is low. This idea is formalized
as the following lemma.

7w mainly determines how we partition memory bits into words in a VM. If the “physical” word-length is different,
one can simulate the algorithm with word-length w at no additional cost since w ≤ logU8h = O(logN).
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Lemma 4.3 (Random swap). We can store a word-dominant VM containing M bits (2w < M <
Nw) into a WVM with the same total number of bits wLword + Lbit = M , while any given oper-
ation to the VM can be transformed into several operations to the WVM within constant expected
additional computation time. Moreover:

(a) An access to the VM (either a complete word or the tail) is transformed into 1+O(min(1, w2/M))
accesses to the WVM in expectation.

(b) Allocating/releasing a word or a bit in the VM can be transformed into O(1) allocation/release
operations followed by O(1) accesses to the WVM (both in expectation).

(c) The transformation from VM to WVM does not introduce additional space usage, except
that we need to access an O(log2 N)-bit random seed which can be shared between multiple
instances. Lword and Lbit are fully determined by M and the seed.

This lemma shows that word-dominant VMs can be “simulated” by WVMs without much loss
of efficiency. Its proof is deferred to Appendix A.

4.3 Inductive Construction of Adapter Tree

In this subsection, we will construct the core part of our dictionary – an adapter tree storing the
set of keys in a level-1 bucket – by inductively aggregating the sub-VMs of children. Formally, we
will prove the following statement inductively:

Statement 1. Fix a level-ℓ node u and denote the number of keys hashed to u by n(u). Fix
parameter r = n1. Assuming free access to n(u), there is a data structure maintain the set of keys
hashed to u with spill universe [K(Uℓ, n(u))] and M(Uℓ, n(u)) memory bits, such that

• r < K(Uℓ, n(u)) ≤ 2r.

• log
( Uℓ

n(u)

)
− 1 < M(Uℓ, n(u)) + logK(Uℓ, n(u)) ≤ log

( Uℓ

n(u)

)
+ nℓ−1

r .

Moreover, the M(Uℓ, n(u)) memory bits are stored in a VM.

We assume without loss of generality that the lower bounds M(Uℓ, n(u)) + logK(Uℓ, n(u)) >
log
( Uℓ

n(u)

)
− 1 and K(Uℓ, n(u)) > r hold, because otherwise we can pad zeros to the end of the

memory until M(Uℓ, n(u))+ logK(Uℓ, n(u)) > log
( Uℓ

n(u)

)
−1, or repeatedly include the last memory

bit into the spillover8 until r < K(Uℓ, n(u)) ≤ 2r. Hence, we will not prove these two inequalities
in the following inductive proof.

Proof of Statement 1. We prove this by induction. The proof is similar to [LLYZ23a] and [Pǎt08],
except that the WVMs and the random swap lemma will involve when we aggregate sub-VMs.

Base case. When ℓ = 8h, for each level-8h node u, there are n(u) keys hashed to it, each is
represented as an ID-quotient pair (yid, xquot). By regarding the ID as “key” and quotient as
“value”, we use a minimap to maintain it: The set of IDs can be encoded into

n(u) · I8h ≤ n8h · I1 = Θ(B · log n1) = Θ(
√

logN · h · log logN) ≪ O(w)

bits. (Recall that I1 = ⌈4 log n1⌉ and n1 ≤ 2B8h; the last inequality holds because h ≤ log0.3N .)
Applying Lemma 3.7 with key-universe [2I8h ], value-universe [Q] and the same r as here, we get

8We would never run out of memory bits as log 2r ≪ log
(

Uℓ

n(u)

)

≈ M(Uℓ, n(u)) + logK(Uℓ, n(u)).
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a minimap which maintains the set of keys hashed to u, with query time O(1), insertion/deletion
time O(log n(u)) = O(log logN) (here n(u) ≤ n8h ≤ 2B), spill universe K ≤ 2r, and redundancy
at most 4

r ≤
nℓ−1
r bits.

Induction step. Assume the induction hypothesis holds for level ℓ+1 and we are going to prove
it for level ℓ. For any level-ℓ node u, denote its B children by v1, v2, . . . , vB ; denote by n(vi) the
number of keys hashed to vi. By the induction hypothesis, these n(vi) keys can be represented
by M(Uℓ+1, n(vi)) memory bits and a spillover ki ∈ [K(Uℓ+1, n(vi))], with these M(Uℓ+1, n(vi))
memory bits stored in a sub-VM from vi. Below, we will introduce our encoding procedure step by
step.

Step 1: Random swap. Guided by the intuition introduced in Section 4.2, the first step is to
transform the sub-VM from each vi into a WVM. To apply Lemma 4.3, we only need to check that
these sub-VMs are word-dominant. Recalling that w+5 ≤ log U8h

n8h
< w+6, by Claim 4.1, we have

n(vi)w + 4n(vi) ≤ log

(
Uℓ+1

n(vi)

)
≤ n(vi)w + 9n(vi).

Hence by the induction hypothesis, we have

M(Uℓ+1, n(vi)) ≤M(Uℓ+1, n(vi)) + logK(Uℓ+1, n(vi))

≤ log

(
Uℓ+1

n(vi)

)
+

nℓ+1 − 1

r
≤ n(vi)w + 10n(vi)

(the last inequality holds because nℓ+1 − 1 < n1 = r < n(vi)r). On the other hand, by induction
hypothesis, we have M(Uℓ+1, n(vi)) + logK(Uℓ+1, n(vi)) ≥ log

(Uℓ+1

n(vi)

)
− 1. Hence,

M(Uℓ+1, n(vi)) ≥ log

(
Uℓ+1

n(vi)

)
− logK(Uℓ+1, n(vi))− 1

≥ n(vi)w + 4n(vi)− log(2r)− 1 ≥ n(vi)w + 3n(vi)

(the last inequality holds because log 2r + 1 = Θ(h log logN) ≪ B/2 ≤ n8h ≤ n(vi), as h ≤
log0.3 N and B ∈ [

√
logN, 2

√
logN)). Therefore, the sub-VM for each vi is word-dominant (see

Definition 4.2), and by Lemma 4.3, it can be stored into a WVM with little performance loss.

Step 2: Adapters. The WVM from each vi, according to its definition, is composed of a tape

of L
[i]
word words (denoted by m

[i]
word), and a tape of L

[i]
bit extra bits (denoted by m

[i]
bit). We use two

adapters to aggregate all of them together.

The first adapter aggregates all the extra bits
{
m

[i]
bit : 1 ≤ i ≤ B

}
. Although in Section 3.3 we

only considered how to aggregate sequences of complete words, by treating every bit as “a word
with word-length 1”, we can easily construct a bit-wise adapter that aggregates sequences of bits.

The output of this adapter is a sequence of
∑B

i=1 L
[i]
bit bits, which we store into a VM called the bit

VM. We denote the bit VM’s complete-word part and tail part as m
[0]
word and m

[0]
bit, respectively.

The second adapter aggregates all the complete words
{
m

[i]
word : 0 ≤ i ≤ B

}
, including the com-

plete words produced by the first adapter. This results in a VM with
∑B

i=1 L
[i]
word+

⌊(∑B
i=1 Lbit

)/
w
⌋

words, which we call the word VM.
Finally, we directly concatenate the word VM with the tail part of the bit VM, getting a VM with

totally Mcat :=
∑B

i=1

(
wL

[i]
word + L

[i]
bit

)
=
∑B

i=1 M(Uℓ+1, n(vi)) bits, which we call the concatenated
memory, namely, mcat.
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Step 3: Cut the memory. We cut the concatenated memory mcat into two parts mfix and
mrem, such that the first part has Mfix bits which only depends on n(u) but not n(vi) for each i;
the second part has at most O(w) bits. Formally, we define

Mmax := max
n(v1)+n(v2)+···+n(vB)=n(u)

B∑

i=1

M(Uℓ+1, n(vi)), Mfix := Mmax − w.

(There is always Mfix ≥ 0 because Mmax > M(Uℓ+1, n(vi)) = Θ
(
log
(Uℓ+1
nℓ+1

))
−Θ(log r) ≥ Θ(Bw)≫

w.) We divide mcat into the leftmost Mfix bits and the remaining Mrem := Mcat −Mfix bits. It is
possible that Mcat < Mfix for the current number of keys n(vi), in which case mfix is formed by
padding zeros to the end of mcat until it has Mfix bits; mrem is left empty. In all cases, the second
part contains at most w bits.

After cutting the memory into two parts, mfix directly appears as the leftmost bits in our final
encoding, while mrem is further compressed with other information in the next step.

Step 4: Compress the labels and spillovers. Next, we compress the children’s numbers of
keys n := (n(v1), n(v2), . . . , n(vB)), their spillovers (k1, k2, . . . , kB), and the remaining part mrem

from the last step together, using the following lemma from [Pǎt08].

Lemma 4.4 ([Pǎt08]). Assume we have to represent a variable x ∈ X , and a pair (yM , yK) ∈
{0, 1}M(x)×[K(x)]. Let p(x) be a probability density function on X , and K(·), M(·) be non-negative
functions on X satisfying:

∀x ∈ X : log
1

p(x)
+M(x) + logK(x) ≤ H. (4)

We further assume the word size w = Ω(log |X | + log r + logmaxK(x)), then we can design a
spillover representation for x, yM , and yK, denoted by (m∗, k∗) ∈ {0, 1}M∗×[K∗], with the following
parameters:

• The spill universe is K∗ with K∗ ≤ 2r; the memory size is M∗ bits.

• The redundancy is at most 4/r bits, i.e., M∗ + logK∗ ≤ H + 4/r.

• Given a precomputed table of O(|X | · r · maxK(x)) words that only depends on the input
functions K,M , and p, and assuming H ≤ O(w), both decoding (x, yM , yK) from (m∗, k∗)
and encoding (x, yM , yK) to (m∗, k∗) takes O(1) time on a word RAM. The table can be
precomputed in linear time.

Let kcat ∈
[∏B

i=1K(Uℓ+1, n(vi))
]
be the combination of the children’s spillovers (k1, k2, . . . , kB).

We are going to apply the above lemma on X = {n :
∑B

i=1 n(vi) = n(u)} and (yM , yK) =
(mrem, kcat).

To construct the probability distribution, we first define

p(n) :=

∏B
i=1

(Uℓ+1

n(vi)

)
( Uℓ

n(u)

) ,

that is, the induced marginal distribution on n when the set of keys hashed to u follows the uniform
distribution over all n(u)-element subsets of the universe. Same as [Pǎt08], we slightly perturb the
distribution for stronger properties.
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Claim 4.5 ([Pǎt08]). For any probability distribution p(·) over set X and any parameter r > 0, we
can perturb p(·) to another probability distribution p′(·), such that for any x ∈ X ,

• p′(x) ≥ 1
2r|X | .

• log 1
p′(x) ≤ log 1

p(x) +
2
r .

We then apply Lemma 4.4 with the perturbed distribution p′ and

H := log

(
Uℓ

n(u)

)
−Mfix +

nℓ − 5

r
.

We check the condition (4) by discussing two cases:

• Suppose Mcat ≥Mfix, i.e., we did not pad zeros to Mcat. In this case, |mrem| = Mcat −Mfix.
The induction hypothesis implies that

M(Uℓ+1, n(vi)) + logK(Uℓ+1, n(vi)) ≤ log

(
Uℓ+1

n(vi)

)
+

nℓ+1 − 1

r
.

Therefore, for any n ∈ X , the LHS of (4) is

log
1

p′(n)
+ (Mcat(n)−Mfix) + log

(
B∏

i=1

K(Uℓ+1, n(vi))

)

≤
(
log

1

p(n)
+

2

r

)
+

B∑

i=1

M(Uℓ+1, n(vi))−Mfix +

B∑

i=1

logK(Uℓ+1, n(vi))

≤ log

( Uℓ

n(u)

)

∏B
i=1

(Uℓ+1

n(vi)

) +
B∑

i=1

(M(Uℓ+1, n(vi)) + logK(Uℓ+1, n(vi))) +
2

r
−Mfix

≤ log

(
Uℓ

n(u)

)
+B · nℓ+1 − 1

r
+

2

r
−Mfix

= log

(
Uℓ

n(u)

)
+

nℓ −B + 2

r
−Mfix

< H.

• Suppose Mcat < Mfix. In this case, mrem is empty, so the LHS of (4) equals

log
1

p′(n)
+ log

(
B∏

i=1

K(Uℓ+1, n(vi))

)

≤ log(2r|X |) + log(2r)B = Θ(B log r)≪ w,

where the first inequality is due to Claim 4.5 and the induction hypothesis K(Uℓ+1, n(vi)) ≤
2r; the second inequality holds as |X | ≤ n(u)B ≤ (2n1)

B = (2r)B ; the last inequality holds
as B log r = Θ(

√
logN ·h log logN)≪ w, since B ≤ 2

√
logN and h ≤ log0.3N . On the other

side, the RHS of (4) is

H ≥ max
n∈X

log

(
B∏

i=1

(
Uℓ+1

n(vi)

))
−Mfix +

nℓ − 5

r

≥ max
n∈X

(
Mcat(n)−B · nℓ+1 − 1

r

)
−Mfix +

nℓ − 5

r

= Mmax −Mfix +
B − 5

r
> w ≥ LHS.
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Here, the second inequality holds due to the redundancy constraint in the induction hypoth-
esis; the third inequality is because Mfix = Mmax − w. Therefore (4) also holds in this case.

Applying Lemma 4.4 gives us a spillover representation (m∗, k∗) ∈ {0, 1}M∗× [K∗] of (n, kcat,mrem)
conditioning on n(u), where K∗ ≤ 2r and

M∗ + logK∗ ≤ H +
4

r
= log

(
Uℓ

n(u)

)
+

nℓ − 1

r
−Mfix.

With the help of proper lookup tables, both the encoding and decoding procedures can be completed
within constant time.

Step 5: Concatenate. The last step involves concatenating mfix with m∗, the outcome memory
bits obtained from the previous compression step, to form a bit string of length Mfix + M∗ =:

M(Uℓ, n(u)). This memory string, combined with the spillover k∗ ∈ [K∗] = [K(Uℓ, n(u))], form the
encoding for the set of keys hashed to level-ℓ node u. The induction hypothesis holds for ℓ, since
K∗ ≤ 2r and

M(Uℓ, n(u)) + logK(Uℓ, n(u)) = Mfix +M∗ + logK∗ ≤ log

(
Uℓ

n(u)

)
+

nℓ − 1

r
.

Finally, the M(Uℓ, n(u)) memory bits are again divided into ⌊M(Uℓ, n(u))/w⌋ words and a tail,
stored within a VM.

Remark 4.6. Observe that the primary part, mfix, which comes from the adapter, is “aligned”
with the resulting VM. This means that a complete word in a child’s sub-VM is still stored as a
complete word in the new VM. This alignment benefits our query and update algorithms because
each word-access from a child will translate into only one word-access of u’s virtual memory.

Now, consider Statement 1 for level-1 node u. We directly encode the final spillover k ∈
[K(U1, n(u))] into memory, incurring a 1-bit redundancy due to rounding. Then, we can store the
set of keys hashed to a level-1 bucket within a space of

M(U1, n(u)) + logK(U1, n(u)) + 1 ≤ log

(
U1

n(u)

)
+

n1 − 1

r
+ 1 < log

(
U1

n(u)

)
+ 2.

4.4 Construction of the whole Dictionary

The whole dictionary consists of the following parts:

• A fixed space of log
(
U1
n1

)
+2 bits for each level-1 node. As we have seen, the set of keys hashed

to a level-1 bucket u can be stored in log
( U1

n(u)

)
+ 2 ≤ log

(U1

n1

)
+ 2 bits, assuming free access

to the number of keys n(u).

• A space of log n1 bits for each level-1 node to store the number of keys hashed to it.

• Several lookup tables used in the induction processes, which will be analyzed later.

• Random seed used in the random swap lemma (Lemma 4.3), which is shared between nodes
on the same level, while the seeds for different levels are chosen independently. They only
occupy a very limited space of O(h · log2N) bits.
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• The space for storing hash functions, which is o(R) bits. The analysis is deferred to Ap-
pendix C.

As mentioned in Section 1, every part of the memory only depends on the current set of keys and
some random bits, which means that our dictionary is strongly history-independent. Below, we
calculate the space usage of each part.

The first part occupies the most of the space. Recalling that R := N/ loghN = Ω
(
N
/
n
1/4
1

)
≫

(N logN)
/
n
1/3
1 , we have

N

n1
log

(
U1

n1

)
≤ log

(
U

N · n1/n1

)
≤ log

(
U

N ·
(
1 + 2 · n−1/3

1

)
)
≤
(
1 + 2 · n−1/3

1

)
log

(
U

N

)

= log

(
U

N

)
+Θ

(
(N logU)

/
n
1/3
1

)
≤ log

(
U

N

)
+O(R),

where the third inequality comes from the log concavity of
(n
k

)
as a function of k. Therefore, the

total space usage of the first part does not exceed N
n1

log
(U1

n1

)
+ 2N

n1
≤ log

(U
N

)
+O(R) bits.

The space usage of the second and the fourth parts do not exceed N
n1
· logN = o(R) bits and

O(log3N) ≪ o(R) bits, respectively. The hash functions (the last part) only occupy o(R) bits as
well.

It remains to check the sizes of the lookup tables, which are listed below. All the lookup tables
occupy at most O

(√
N
)
words which is far less than O(R) bits.

• lookup table for minimaps. We used minimaps to maintain at most n′ := n8h = Θ
(√

logN
)

key-value pairs from a key-universe U ′ := 2I8h = poly logN . According to Lemma 3.7, the
lookup table size is U ′n′(U ′

n′

)
· (2rn′)n

′

= (poly logN)Θ(
√
logN) ≪ O(

√
N) words.

• lookup table for adapters. According to Lemma 3.6, the lookup table for adapters occupies
O
(
BLB+1

max

)
words, where Lmax is the maximum number of words in the aggregated super-VM.

Plugging in Lmax = O(n1) = (logN)O(log0.3 N) and B = Θ(
√
logN), we know the lookup table

size is less than O(
√
N) words.

• lookup table for encoding/decoding n and kcat. At the beginning of the step 4, we need to
encode the number of keys in each child n = (n(v1), n(v2), . . . , n(vB)) using its index in the
set

{
n :

∑B
i=1 n(vi) = n(u)

}
. For a fixed ℓ and n(u), it needs a lookup table of O

(
n(u)B

)

words. Hence, the total size is at most O(hnB+1
1 ) words.

Moreover, we need to compute vectors
(
L
[i]
word

)
i∈[B]

and
(
L
[i]
bit

)
i∈[B]

, the sizes of the tapes of

WVMs from all children, which are required for adapter operations and are fully determined
by n. This is done with a lookup table of the same size.

We also need to encode all the spillovers k1, k2, . . . , kB into kcat ∈
[∏B

i=1K(Uℓ+1, n(vi))
]
.

For a fixed ℓ and n, it needs a lookup table of O
(
(2r)B

)
words, so the total size is at most

O
(
hnB

1 (2r)
B
)
= (logN)O(log0.3 N)·Θ(

√
logN) ≪ O(

√
N) words.

• lookup table for Lemma 4.4. For each level ℓ and each possible number of keys n(u) in a node u,
we need a table of O(|X |·r·maxK(x)) words, where X is the set formed by the array of number
of keys in children of u, i.e., X := {(n(v1), n(v2), . . . , n(vB)) :

∑B
i=1 n(vi) = n(u)}, whose size

is at most O
(
nB
1

)
; we also have maxK(x) ≤ (2r)B . Taking summation over all possible

n(u)’s and all h levels, the total size is O
(
h ·n1 ·nB

1 · r · (2r)B
)
= (logN)O(log0.3 N)·Θ(

√
logN) ≪

O(
√
N)≪ O(

√
N) words.

21



• Tables for quickly computing each M(Uℓ, n(u)), K(Uℓ, n(vi)), and Mfix = Mfix(Uℓ, n(u)).
They occupy O(hn1)≪ O(

√
N) words.

All lookup tables mentioned above can be pre-computed efficiently and will not become the time
bottleneck. Now, summing up the space usage of all parts, the data structure occupies a space of
log
(
U
N

)
+O(R) bits.

4.5 Query, Insertion, and Deletion

All operations on the data structure begin by simulating the hashing process on the input key x.
Specifically, we first apply the first hash function h on x, obtaining a triple (u, xid, xquot), which
means x is hashed to a root node u with the ID-quotient pair (xid, xquot). Then, by applying
the second hash function, x is further hashed to a (level-8h) leaf node v, with ID-quotient pair
(yid, xquot) in v. These nodes indicate a path from the root to the leaf, which we will walk along
in all types of operations.

Query algorithm and nested adapters. Recall that every node u maintains a sub-data struc-
ture storing keys hashed into u’s subtree, which is stored in a VM and a spillover k = k∗. The
VM consists of two parts: mfix and m∗, where mfix comes from adapters that concatenate sub-VMs
from the children, and m∗ includes the information (spillovers and numbers of keys) of the children.
The latter part m∗ has at most O(w) bits and is contained in the rightmost O(1) words in u’s VM.
Throughout this section, we call m∗ the metadata region of u’s VM.

Before we visit the node u, we need the knowledge of its spillover k and number of keys n(u).
Then, we immediately read the metadatam∗ on u’s VM, which takes O(1) word-accesses. According
to Lemma 4.4, we can decode (k∗,m∗) in constant time to recover the number of keys in each child,
n(v1), n(v2), . . . , n(vB), their spillovers k1, k2, . . . , kB , and the rightmost bits of the concatenated

memory, mrem. Consequently, we get vectors
(
L
[i]
word

)
i∈[B]

and
(
L
[i]
bit

)
i∈[B]

, the sizes of both tapes

of WVMs from children, which are fully determined by n. Next, the query algorithm recurses into
a child of u along the path, and repeat the above process until it reaches the leaf. Finally, it makes
a query to the minimap on the leaf to get the answer.

The above description has assumed direct access to the VM of any given node. However, only
the VM of the root node is directly stored into the “physical memory”, while the VM of other nodes
are connected to it via several nested adapters (and random-swap structures (Lemma 4.3) which
stores VMs into WVMs). To access a word in node u’s VM, we first translate it into access requests
to the parent’s VM, then to the grandparent, and continue until the root is reached. Formally, we
use the following subroutine (Algorithm 2) to access a word in the VM of an arbitrary node. We
denote by (v, i) the i-th word in the VM of node v. As reading the tail of the VM has the same
interface as reading a word, we do not distinguish them and regard the tail as the last word.

When we read a word (v, i), Line 12 does not produce extra word-accesses, because we have
already gained the knowledge of mrem when we visit u (we always need to visit the parent u before
we can visit v). On the other hand, when we write to some word (v, i) (which is not required for
queries, but we will need it for updates), it might seem that Line 12 would need to write to mrem

of u; what we actually do here is to delay the writing request to mrem until the end of the entire
update operation, at which point we will update all mrem bottom-up along the path we visited.

Due to the random swap lemma (Lemma 4.3), accessing (v, i) may cause more than 1 word-
accesses to the VM on the parent of u. Specifically, assuming v is in level ℓ, the expected number
of word-accesses to its parent u is at most

1 +O
(
min

(
1, w2/M(Uℓ, n(v))

))
= 1 +O(min(1, w/n(v))) ≤ 1 + cmin

(
1, B1−8h+ℓ

)
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Algorithm 2: Accessing Virtual Memory Words

1 Function Access(v, i): ⊲ Access the i-th word in v’s VM
2 if v is the root then
3 Directly access the i-th word
4 return

5 u← v’s parent
6 Translate the access request (v, i) into access requests to v’s WVM according to the

random swap lemma (Lemma 4.3)
7 Translate each WVM access request into an access request to u’s concatenated memory

mcat = mfix ‖mrem via the adapter
8 foreach access request to the j-th word in u’s concatenated memory do
9 if any part of word j belongs to mfix then

10 Access(u, j)

11 if any part of word j belongs to mrem then
12 Access the corresponding bits in mrem which has been decoded via Lemma 4.4

for a fixed constant c > 0 (note that n(v) = Θ(nℓ) = Ω(B8h−ℓ+1) and w = Θ(B2)). As the random
seeds for random swapping are independent for different levels, and

8h∏

ℓ=1

(
1 + cmin

(
1, B1−8h+ℓ

))
≤ (1 + c)2 ·

∞∏

i=1

(
1 +

c

Bi

)
= O(1),

we can see that every word-access in node v will cause at most O(1) word-accesses to the root in
expectation, and it takes O(ℓ) = O(h) time to translate the word-access requests from v to the root.
That means we need O(h) expected time to access a word in the VM of any given node. Moreover,
the query algorithm initiates O(1) word-accesses at every node it visits (mainly for reading m∗), so
the total running time for the query algorithm is O(h2).

Insertion and deletion algorithms. For insertions and deletions, we first follow the same
procedure as the query algorithm, walking from the root down to the leaf that the key was hashed
to, recovering the numbers of keys n(u) and spillovers for all the nodes along the path. Next,
we insert/delete the key in the minimap on the leaf, which takes O(log n8h) = O(log logN) word-
accesses to the VM of the leaf.

However, when we insert/delete a key in the leaf, every node u on the path changes its number
of keys n(u), and therefore changes the space usage of u’s VM, i.e., M(Uℓ, n(u)). Additional time
is spent to adjust the VM sizes. Due to the symmetry, we only analyze the insertions below. We
will show later that the difference of M(Uℓ, n(u)) before and after the insertion is w±O(1), which
can be expressed as O(1) allocation/release requests to u’s VM, each allocating/releasing exactly
w bits or a single bit. According to Lemma 4.3, we can further translate these requests to O(1)
allocation/release requests (followed by O(1) word or bit accesses) to the WVM, which are further
translated to O(1) allocation/release requests to the two adapters connecting u’s WVM with its
parent. They take O(logmax(nℓ, 2w)) = O((8h − ℓ) · log logN) word-accesses to the VM on the
parent of u, each can be completed within O(h) time as shown above. Taking summation over all
h nodes on the path, the time complexity for an insertion is O(h3 log logN).
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After adjusting the VM sizes, for all nodes u on the path from bottom to top, we redo all
encoding steps introduced in Section 4.3, and update all changed words. They may include:

• Step 4 involves compressing O(1) words of information into a spillover representation. Its
resulting memory bits are directly stored in the rightmost words of u’s VM, namely m∗. We
initiate O(1) word-accesses to rewrite all of them.

• Changing the number of keys n(u) of node u may cause Mfix to change since it depends on
n(u). Mfix will change by at most O(w) (bits) since it only differs from M(Uℓ, n(u)) by O(w),
while the latter only changes by O(w) during an update. The change of Mfix requires us to
update the rightmost O(1) words in mfix, incurring no more than O(1) word-accesses at each
level.

The time spent on these word-updates is less than the time spent for allocations, which isO(h3 log logN)
as shown above. Therefore, the (expected) time complexity for an insertion or a deletion is
O(h3 log logN).

It remains to show that the difference of VM size before and after the insertion is equal to
w ±O(1) bits, i.e.,

w −O(1) ≤M(Uℓ, n(u) + 1)−M(Uℓ, n(u)) ≤ w +O(1). (5)

Actually, by the induction hypothesis, we have

log

(
Uℓ

n(u)

)
− 1 < M(Uℓ, n(u)) + logK(Uℓ, n(u)) ≤ log

(
Uℓ

n(u)

)
+ 1,

log

(
Uℓ

n(u) + 1

)
− 1 < M(Uℓ, n(u) + 1) + logK(Uℓ, n(u) + 1) ≤ log

(
Uℓ

n(u) + 1

)
+ 1.

As K(Uℓ, n(u)),K(Uℓ, n(u) + 1) ∈ (r, 2r], we can see that |logK(Uℓ, n(u)) − logK(Uℓ, n(u) + 1)| <
1. Moreover, by Claim 4.1 and w + 5 ≤ log U8h

n8h
< w + 6, we have

w + 2 ≤ log

(
Uℓ

n(u) + 1

)
− log

(
Uℓ

n(u)

)
≤ w + 7.

Combining these inequalities, we get

M(Uℓ, n(u) + 1)−M(Uℓ, n(u))

≥
(
log

(
Uℓ

n(u) + 1

)
− 1

)
−
(
log

(
Uℓ

n(u)

)
+ 1

)
− |logK(Uℓ, n(u))− logK(Uℓ, n(u) + 1)|

≥ log

(
Uℓ

n(u) + 1

)
− log

(
Uℓ

n(u)

)
− 3 ≥ w − 1,

and similarly, M(Uℓ, n(u) + 1)−M(Uℓ, n(u)) ≤ w + 10. Thus, (5) holds.

5 Dictionary via Multi-Level Hashing

In this section, our focus shifts to dynamic dictionaries that exhibit larger redundancy and smaller
update time compared to those discussed in the previous section. Up to Section 5.5, we will design
dynamic dictionaries that can store N distinct keys in the universe [U ] with O(R) bits redundancy,

24



O(log∗N) query time, and O
(
log∗N + log N

R

)
update time, for any N

log0.1 N
≤ R ≤ N

2log∗ N ; the

query time is improved to O(1) in the worst case in Section 5.6. The upper limit of R already
corresponds to the optimal update time O(log∗N) within this range, so considering larger values
of R is unnecessary. It is important to note that when N is sufficiently large, the value of r = N/R
exceeds any constant value.

As before, we make the assumption that U = N1+α for some constant α > 0, and w = Ω(logN).
We also assume that the dictionary always contains either N keys or N − 1 keys, without loss of
generality.

Algorithm Overview. Let n1 = Θ(log9N) be a parameter. We hash keys to B0 = N/n1 buckets
which we call the level-1 buckets. The expected number of keys hashed into a specific level-1 bucket
u equals n1.

For all keys that are mapped to bucket u, we further hash them to smaller level-2 buckets;
the keys in the same level-2 bucket are further hashed to smaller level-3 buckets, and so on. Such
procedure is described by a forest: the roots are level-1 buckets and every internal node u at level
ℓ has Bℓ children at level ℓ + 1. All keys that were hashed into u will further be hashed into a
random child of u. We use nℓ to denote the expected number of keys hashed into a level-ℓ node: it
is clear that nℓ = nℓ−1/Bℓ−1. We set nℓ = Θ

(
(log(ℓ)N)9

)
for internal levels. (Note that the step of

hashing all N keys into level-1 buckets is not a part of the tree; we have different technical details
for this stage.)

During the hashing process, we carefully guarantee that the tree is not “too unbalanced”. We

define ∆ℓ = n
2/3
ℓ and hope the number of keys n in a level-ℓ node is always in [nℓ −∆ℓ, nℓ +∆ℓ].

If after we hash all keys in u to its children, some child violates such rule, then we immediately
pick another hash function for u and rebuild the subtree rooted at u. If some root node already
violates this rule, we simply rebuild the whole dictionary. The cost of rehashing is low on average.
Let r = N/R and log(k)N ≤ r < log(k−1)N . The tree terminates at a level k, consisting of leaf
nodes, each with expected number of keys nk = Θ(r9). The number of keys is small enough so
that a minimap is capable of storing keys in a leaf. The minimap has O(1) query time, O(log r)
insertion/deletion time, and almost no redundancy. Minimaps are the time bottleneck of our
algorithm.

However, the number of keys hashed into a leaf is not fixed; it changes with time. This is the
main challenge of the algorithm: if we use variable-size data structures for leaf nodes, then it is
hard to concatenate them efficiently and succinctly.9 Our solution here is to carefully make each
node fixed-size, and assign a fixed piece of memory for each node, as follows:

• For each leaf node, it contains at least nk := ⌈nk −∆k⌉ keys. We arbitrarily pick nk keys
that were hashed into this leaf and use a fixed-size minimap to store them. For the remaining
keys that were not stored in the leaf, we send them back to the parent node.

• Before we process for an inner node u at level ℓ, each child v of u already stored nℓ+1 keys in
its subtree, and all unstored keys are sent to u. Recall that the number of keys hashed into
the subtree of u is at least nℓ, hence the number of keys sent back to u is at least nℓ−Bℓ ·nℓ+1.
We arbitrarily pick this number of keys, store them at node u with a fixed-size hash table,
then send other keys to the parent of u.

• Such procedure ends when all unstored keys are sent back to the level-1 bucket, i.e., the root.
All keys here are stored in a hash table with enough capacity n1 := ⌊n1 +∆1⌋. Some of its

9Using adapters here is also too slow.
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capacity is wasted since the number of keys is always below the capacity.

Below, we add implementation details to complete the construction. We will first introduce the
design when everything is ideal, then construct the hash functions that we use, and lastly handle
rare bad events via rehashing.

Tree Parameters. Before we start, we briefly specify the tree parameters. For technical conve-
nience, we let Bℓ (ℓ ∈ [0, k − 1]) be always a power of two. We further require nℓ := nℓ−1/Bℓ−1 ∈[
(log(ℓ) U)9, 2(log(ℓ) U)9

)
for ℓ ∈ [1, k − 1]; require nk ∈ [r9, 2r9). These requirements uniquely

determine the branching factor Bℓ for all levels. Also note that r ≤ log0.1N is guaranteed, meaning
that n2 ≤ 2 log0.9 N .

nℓ is the expected number of keys hashed into a level-ℓ node u. We only consider the ideal case
where the number of keys n is between [nℓ, nℓ] = [⌈nℓ −∆ℓ⌉, ⌊nℓ +∆ℓ⌋]. If not, we say node u
overflows (n > nℓ) or underflows (n < nℓ). Once overflow or underflow happens, we immediately
rebuild some subtree so that it no longer occurs.

5.1 Hashing with ID-Quotient Separation

Similar to the previous section, during the hashing steps, we regard keys as ID-quotient pairs.
Besides the merit mentioned before that the short ID enables us to use minimap for each leaf node,
it also allows short pointers to the stored keys. To access a stored key, only the ID of that key
needs to be remembered, which saves space.

Specifically, the keys are represented as ID-quotient pairs since they were hashed into tree roots.
In a level-ℓ node u, each key is represented by an element in [2Iℓ ] × [Qℓ], where Iℓ := ⌈4 log nℓ⌉
represents the length of ID and Qℓ represents the range of the quotient.

As the keys received at node u will be hashed into the child nodes, the ID length will become
shorter, i.e., of length Iℓ+1; the rest bits will be moved to the quotient. Formally, we label the
children of u with integers v ∈ [Bℓ]. Assume some key x = (xid, xquot) arrives at u. The procedure
of hashing x into a child v can be described by a bijective hash function from xid to (v, yid, xrem),
where v ∈ [Bℓ] is the child index that x will enter, yid ∈ [2Iℓ+1 ] is the ID part of the next-level
representation of x, and xrem is the remaining bits that will be merged into the quotient. Then, we
concatenate xrem with xquot, obtaining yquot := (xrem ‖xquot) ∈ [Qℓ+1] as the next-level quotient.
Finally, the pair (yid, yquot) will be passed to the child v.

Similar to the previous section, the hash function h : [2Iℓ ] → [Bℓ] × [2Iℓ+1 ] × [Qℓ+1/Qℓ] used
above needs two properties. First, it should evenly distribute all keys to the children, preventing
overflowing or underflowing of any child. Second, for each child v ∈ [Bℓ], all keys assigned to that
child should get different yid. The formal construction of the hash function families are defered to
Section 5.4.

Above we introduced the hashing process at a tree node that distributes the keys to its child
nodes. The process of hashing N initial keys to B0 level-1 buckets (tree roots) is similar. We first
round up U to a multiple of B0 · 2I1 , then use a hash function h : [U ]→ [B0]× [2I1 ]× [Q1] to map
each key x ∈ U to (u, yid, yquot). Then (yid, yquot) is passed to the u-th level-1 bucket.

5.2 Storage Structure

Leaf Nodes. Recall that a leaf node u is responsible for storing exactly nk keys among all
received keys. The selection of keys to store is arbitrary. Let the set of selected keys be S. The
main structure inside a leaf node is a minimap storing S.
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Each key x ∈ S to store is already represented as (xid, xquot) ∈ [2Ik ] × [Qk]. To store S, we
regard xid as “keys” and xquot as “values”, then use the minimap to store these key-value pairs.
The set of ID Sid = {xid : x ∈ S} can be encoded within

log

(
2Ik

nk

)
≤ log

(
28 · r36
2r9

)
≤ 2r9 log

(
28 · r36

)
= O(log0.9 N · log logN) ≤ O(w)

bits, where the last inequality holds because w = Ω(logN). Thus the ID set Sid fits in constant
words and satisfies the prerequisite of minimap. Applying Lemma 3.7 with key universe [2Ik ], value
universe [Qk], and redundancy parameter r = 1, we get a minimap storing the set S.

With minimap, one can query a key in O(1) time, and insert/delete a key in O(log r) time. The
redundancy for the minimap is O(1) bits which comes from the following two parts: (1) Lemma 3.7
itself introduces O(1) bits of redundancy; (2) as we want to store the minimap in a fixed-length
consecutive space in the memory without using spillover representation, the rounding of spillover
introduce 1 bit of redundancy. Other unstored keys will be returned to the parent node and finally
stored at some ancestor.

Inner Nodes. Let u be a level-ℓ inner node. The number of received keys is guaranteed to be in
[nℓ, nℓ]. After further hashing these keys into child nodes, each child node stores nℓ+1 keys in its
subtree, and the remaining keys are sent back to u. Clearly, there are at least m := nℓ − Bℓnℓ+1

returned keys. The main task of node u is to store m arbitrarily selected keys that were returned
to u, so that the subtree of u stores exactly nℓ keys in total.

To finish the task, we maintain a hash table of fixed capacity m, called storage table. Recall
that each key is represented as (xid, xquot) at this level. The storage table takes xid as its key and
xquot as its value. We choose the hash table implementation from [BFK+22] with O(m log log 2Iℓ) =
O(m log Iℓ) redundancy and O(1) query/update time. Note that the storage table is always full
and takes a fixed space, so we put it at a static location in the memory.

There will always be unstored keys; we again return them to the parent. The only exception is
the root nodes. At root nodes, we slightly change the configuration, letting m = n1−B1n2. Then,
as long as the root node does not overflow, all keys can be successfully stored in the storage table.
In this case, a portion of capacity is wasted, but the produced redundancy is still acceptable.

Waiting Lists. The above construction is already enough to encode the set of keys. However,
to support quick deletion, we need one more auxiliary structure. Let u be a level-ℓ node where
ℓ ≥ 2. After storing a fixed number of keys in the storage table, other unstored keys are returned
to the parent of u. Imagine that we need to remove some key from u’s storage table. To make the
storage table full again, we need to pull down some key x from u’s ancestors and then insert x to
u’s storage table. Waiting list is designed for quickly finding such x.

For every key x = (xid, xquot) that is not stored in the subtree of u, i.e., has been sent back to

u’s parent, we store its current-level ID xid and last-level ID x
[ℓ−1]
id in the waiting list. Its tail part

is not stored here. The waiting list has a fixed capacity nℓ − nℓ = Θ(∆ℓ). As long as node u does
not overflow, this capacity is enough. (The whole waiting list is auxiliary redundant information,
so underutilizing its capacity is not a problem.) When we need to find a key x stored at ancestors

of u, we just pick an arbitrary x
[ℓ−1]
id from the waiting list of u, then query x at u’s parent. This is

doable because x
[ℓ−1]
id serves as the unique identifier of x at u’s parent.

To implement the waiting list, we straightforwardly list all (xid, x
[ℓ−1]
id ) as bit strings in the

memory, with a 1-bit separation between adjacent two terms which marks the end point of the list.
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The waiting list can hold at most nℓ − nℓ ≤ 2∆ℓ keys, so the space usage is at most

2∆ℓ(1 + Iℓ + Iℓ−1) ≤ 6∆2 · I1 = 6n
2/3
2 · ⌈4 log n1⌉ < O(logN) = O(w),

where the second inequality holds because n2 ≤ log0.9N . Hence, the whole waiting list can fit
in O(1) words, meaning that all operations on the waiting list can be done in O(1) time via bit
operations.

All leaf nodes and inner nodes except the roots maintain their own waiting lists. Root nodes
do not need waiting lists because their storage tables are large enough to contain all keys.

Redundancy Analysis. As introduced above, the dictionary is composed of a range of fixed-size
structures:

• a minimap for each leaf node;

• a storage table for each non-leaf node;

• a waiting list for each non-root node.

(The space usage of hash functions are not counted here.) Next, we carefully list the redundant
information in the dictionary:

• Each minimap produces O(1) redundancy. Multiplied by the number of leaf nodes N/nk,
there is a redundancy of O(N/nk) = O(N/r9).

• A waiting list in level ℓ occupies O(∆ℓ · Iℓ−1) = O(n
2/3
ℓ log nℓ−1) ≤ O(n

2/3
ℓ · n1/9

ℓ ) = O(n
7/9
ℓ )

bits of memory. These bits are all redundant. Multiplied by the number of level-ℓ nodes

N/nℓ, it is a redundancy of O(N/n
2/9
ℓ ) bits. It reaches maximum when ℓ = k, i.e., at the leaf

nodes, where the total redundancy is O(N/r2).

• According to the hash table implementation, a storage table in level ℓ producesO(m log log 2Iℓ) =
O(m log log nℓ) redundancy, where m = nℓ −Bℓnℓ+1 for non-root level ℓ and m = n1 −B1n2

for the root level. As each child can only contribute 2∆ℓ+1 unstored keys, m = O(Bℓ∆ℓ+1).
The total redundancy over all level-ℓ nodes is

N

nℓ
· O(Bℓ∆ℓ+1 log log nℓ) ≤ O

(
N

n
1/3
ℓ+1

log nℓ+1

)
.

This reaches maximum when ℓ + 1 = k, i.e., at the level above leaves. The corresponding
redundancy is O(N/r3 · log r).

• Each root’s storage table wastes O(∆1) capacity; wasting one capacity results in O(logU)
redundancy. The total redundancy of this part is O(N/n1) ·O(∆1 logU) = O(N/ log2 N).

• Key selection. When we select nℓ keys to store at u, “which keys are selected” is an implicit
piece of redundant information that was stored in the dictionary. Its entropy is at most
log
(nℓ

nℓ

)
= O(∆ℓ log nℓ). It is dominated by the redundancy of the waiting list on the same

node.

• Lookup table used by minimap. Recall that we use minimap to maintain n′ := nk = O(r9) =
O(log0.9N) key-value pairs from a key universe U ′ := 2Ik = poly logN , allowing O(1) bits

redundancy. By Lemma 3.7, the lookup table size for this minimap is O(U ′n′(U ′

n′

)
· (2n′)n

′

) =

(poly logN)O(log0.9 N) ≪ O(
√
N) words.
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The largest redundancy appears at the second item: the waiting lists of leaf nodes. Summing up
the redundancy from all categories, the overall redundancy of the dictionary is O(N/r2) ≤ O(R)
which meets the requirement.

5.3 Query, Insertion, and Deletion

Provided the storage structure of the dictionary, it is straightforward to perform operations effi-
ciently, including queries, insertions, and deletions.

In the beginning of each opeartion, we need to simulate the hashing process on the input key
x, trace all the nodes which x was hashed to, and obtain a path from a root node to a leaf node.

During this process, we also record the ID-quotient pairs (x
[ℓ]
id , x

[ℓ]
quot) in each node along the path.

The next step varies depending on the operation:

• Query. For the level-ℓ node on the path, we query x
[ℓ]
id in its storage table (if it is an inner

node) or minimap (if it is a leaf). If at any node the query result is “exist”, and the tail part

in the query result equals x
[ℓ]
quot, then we return “exist”.10 Otherwise, as x is not stored in

any node along the path, we report that x is not in the dictionary.

• Insertion. Since all storage tables and minimaps are full except for the root, we insert the
key directly into the root’s storage table. We also add x to the waiting lists of all non-root

nodes along the path (strictly speaking, add (x
[ℓ]
id , x

[ℓ−1]
id ) to the waiting list of level ℓ).

The deletion procedure is shown in Algorithm 3. Assume x was stored at node u before the
deletion. The motivation is to try to delete x from the storage table or minimap of u. To make
it full again, we access the waiting list to find another key y that was stored at an ancestor of u.
Then we recursively delete y from the ancestor while inserting y into u’s storage table or minimap.
We also carefully maintain the waiting lists along this procedure. See Algorithm 3 for details.

Note that when we read an entry y from the waiting list, we do not know the quotient of y,
which is required to insert y to the current node u. The solution is that we first recursively remove
y from the ancestors and simultaneously learn its quotient (Line 8).

All above operations have expected running time O(log∗N + log r) = O(log∗ N + log(N/R)).
First, the tree has O(log∗ N) levels, while updating a storage table or a waiting list takes O(1)
expected time. Also, every node on the path will only be visited constant times, so the time on
operating inner nodes is O(log∗ N). Second, the minimap on leaf nodes takes O(log r) update time;
O(1) minimap updates are required in every single dictionary operation. Combining them together
leads to the desired time complexity. Furthermore, query operations only take O(log∗N) time
because they do not need minimap updates (minimap queries are done in constant time). The
query time will be improved to O(1) in Section 5.6.

5.4 Construct the Hash Function

So far, we have introduced the basic construction of our algorithm except for one detail – the hash
function h that assigns child indices and next-level IDs for the keys. For each level ℓ, we will specify
a function family Hℓ, and sample a function h from Hℓ uniformly at random for each level-ℓ node
u. Recall that we have the following two requirements for h:

(1) h distributes all keys received by u evenly among its children so that the number of keys
assigned to any child v is between [nℓ+1, nℓ+1].

10If x
[ℓ]
id is found but the tail part is not x

[ℓ]
quot, we immediately know x is not in the dictionary, by the uniqueness

of the ID.
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Algorithm 3: Deletion

1 Function DeleteAndGetQuotient(u, x
[ℓ]
id): ⊲ u is the level-ℓ node along the path.

2 if u is the root then

3 Delete x
[ℓ]
id from the storage table while getting its quotient x

[ℓ]
quot.

4 return x
[ℓ]
quot

5 else if x is stored in the storage table or minimap of u then

6 Delete x from the storage table or minimap while getting its quotient x
[ℓ]
quot.

7 Delete an arbitrary key y from the waiting list of u while obtaining y
[ℓ−1]
id .

8 y
[ℓ−1]
quot ← DeleteAndGetQuotient(parent(u), y

[ℓ−1]
id )

9 Insert y to the storage table or minimap of u.

10 return x
[ℓ]
quot.

11 else ⊲ x is in the waiting list of u.

12 Delete x from the waiting list while getting x
[ℓ−1]
id .

13 x
[ℓ−1]
quot ← DeleteAndGetQuotient(parent(u), x

[ℓ−1]
id )

14 return x
[ℓ]
quot obtained from x

[ℓ−1]
quot and x

[ℓ−1]
id

15 Let u be the leaf node along the path.

16 DeleteAndGetQuotient(u, x
[k]
id )

(2) For a fixed child v of u, all keys assigned to v have different level-(ℓ + 1) IDs.

We require these two properties to hold with high probability. If any of them is violated, we
immediately resample11 a new h. Besides, we also need h to have small space and evaluation time
so that it will not be the bottleneck of our dictionary.

Challenges. Before we give the concrete construction of our hash function, let us first see why
picking a uniform random permutation as h does not work. Formally, we first pick a uniform
random permutation h : [2Iℓ ]→ [Bℓ]× [2Iℓ+1 ]× [Qℓ+1/Qℓ]; as long as any of the two requirements
does not meet, we repeatedly pick another one at random. The problem is that Property (2) above
has too low probability to be satisfied. For every child v of u, there are about nℓ+1 keys assigned to
it. When every key is assigned a random ID in a universe 2Iℓ+1 ≈ n4

ℓ+1, the probability of existing
an ID collision at v is about Θ(1/n2

ℓ+1). However, we have Bℓ = nℓ/nℓ+1 ≫ n2
ℓ+1 children, so there

is a child violating Property (2) with high probability.
In this example, when some child v of u violates the uniqueness of IDs, we resample the whole

function h while ignoring the success of other children. This is indeed unnecessary – by carefully
construct the function family Hℓ, we are able to only reassign level-(ℓ + 1) IDs in v while keeping
the function values in other children, which is the motivation of our two-stage construction below.

Construction. We let the hash function h be a composition of two subfunctions hch and hidv .
hch, sampled from family Hch

ℓ at random, extracts several bits from the input key’s xid to be the
child index v ∈ [Bℓ]; then, for each child v, an individual bijection hidv (sampled from family Hid

ℓ )

11The new function may depend on the previous one; it is not necessarily uniformly random from Hℓ.
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extracts several bits again to be the ID inside that child. Formally,

hch : [2Iℓ ]→ [Bℓ]× [2Iℓ/Bℓ] maps xid 7→ (v, yprim),
∀v ∈ [Bℓ], hidv : [2Iℓ/Bℓ]→ [2Iℓ+1 ]× [2Iℓ−Iℓ+1/Bℓ] maps yprim 7→ (yid, xrem).

Here, the intermediate variable yprim is called the primitive ID. Similar to yid, yprim is unique among
all keys mapped to the child v, but it is much longer. (Its uniqueness comes from the fact that hch

is a bijection.) Note that different children v have different hidv , which allows us to resample for a
single child when an ID collision occur. After decomposing h into two subfunctions, Property (1)
becomes a requirement of hch ∈ Hch

ℓ ; Property (2) becomes a requirement of hidv ∈ Hid
ℓ .

The existence of function families Hch
ℓ , Hid

ℓ is summarized as the following lemmas.

Lemma 5.1. Let s, L be integers where 1 ≤ s ≤ (1 − Ω(1))L. There is a hash function family H
in which every member h ∈ H is a bijection h : {0, 1}L → {0, 1}L, satisfying:

(a) For any h ∈ H and any input x ∈ {0, 1}L, h(x) and h−1(x) can be evaluated in O(1) time.

(b) It takes O(2εL) bits to store an h ∈ H, where ε is a constant given in advance which does not
depend on s and L.

(c) For n ≥ 2s ·s4 different inputs x1, . . . , xn, if we divide h(x1), . . . , h(xn) into equivalent classes
according to the first s bits of h(xi), then with probability ≥ 1− 1

4n2 , the number of elements

in any equivalent class is between
[
n
2s − 1

5

(
n
2s

)2/3
, n
2s + 1

5

(
n
2s

)2/3]
.

We defer the proof of Lemma 5.1 to Appendix B and first see how we use it to construct
Hch

ℓ . In fact, taking the parameters ε = 1/100, L = Iℓ = ⌈4 log nℓ⌉, and s = logBℓ (the premise
s ≤ (1−Ω(1))L holds as 2s ≤ 2 log nℓ < 4 log nℓ ≤ L), we get a function family that supports O(1)

time evaluation, and takes space O
(
2

1
100

Iℓ
)
≤ O

(
2

1
100

⌈4 lognℓ⌉
)
≪ O

(
n
2/3
ℓ

)
. Recall that a level-ℓ node

maintains a waiting list of space Θ
(
n
7/9
ℓ

)
, the space cost of storing the hash function hch ∈ Hch

ℓ is
not the bottleneck.12

Substituting n ∈ [nℓ, nℓ] in Property (c) (the premise n ≥ 2s · s4 holds as n/2s = Θ(nℓ+1) ≥
Ω(log9 nℓ)≫ s4), the interval given in (c) becomes

[
n

Bℓ
− 1

5

(
n

Bℓ

)2/3

,
n

Bℓ
+

1

5

(
n

Bℓ

)2/3
]
.

It is easy to verify that this interval is contained13 in [nℓ+1, nℓ+1]. For example, the upper limit

n

Bℓ
+

1

5

(
n

Bℓ

)2/3

≤ nℓ ·
nℓ+1

nℓ
+

1

5

(
nℓ ·

nℓ+1

nℓ

)2/3

≤
(
1 +

∆ℓ

nℓ

)
nℓ+1 +

1

5

((
1 +

∆ℓ

nℓ

)
nℓ+1

)2/3

≤ nℓ+1 +
nℓ+1

n
1/3
ℓ

+
1

4
n
2/3
ℓ+1

≤ nℓ+1 + n
2/3
ℓ+1,

12Although the root nodes do not maintain waiting lists, one can still verify that the space cost of storing hch is
dominated by the redundancy of the node’s storage table.

13More strictly, the integers in this interval are contained in [nℓ+1, nℓ+1]. It is enough because we are bounding
the number of elements in an equivalent class, which is always an integer.
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whose integral part equals nℓ+1. Here, the third inequality holds because (1 + ∆ℓ/nℓ)
2/3 ≤ 5/4

as long as nℓ is not too small; the last inequality holds because n
1/3
ℓ ≥ (3nℓ+1)

1/3 > 4
3n

1/3
ℓ+1. It is

similar for the lower limit.
From (c), the probability of any child overflowing or underflowing is at most 1/4n2 ≤ 1/n2

ℓ (we
have n ≥ nℓ/2 as nℓ is larger than a constant).

In summary, by applying Lemma 5.1 with proper parameters, we get the function family Hch
ℓ

such that with probability at least 1 − 1/n2
ℓ , no child of u overflows or underflows. Moreover, any

function hch ∈ Hch
ℓ and its inverse can be evaluated in constant time; its storage space is also not

the bottleneck of our algorithm.
Compared to Hch

ℓ , Hid
ℓ has a stricter space constraint, because each child v of u needs to store

a copy of hidv independently. Correspondingly, its independence constraint is less strict.14 Similar
to Lemma 5.1, we will prove the following lemma in Appendix B, which gives the construction of
Hid

ℓ :

Lemma 5.2. Let s, L be integers where 0 < s < L. There is a hash function family H in which
every member h ∈ H is a bijection h : {0, 1}L → {0, 1}L, satisfying:

(a) For any h ∈ H and any input x ∈ {0, 1}L, h(x) and h−1(x) can be evaluated in constant time.

(b) It takes O(L) bits to store an h ∈ H.

(c) For any integer n and n fixed distinct inputs x1, . . . , xn, with probability at least 1 − n2/2s,
the first s bits of h(x1), . . . , h(xn) are pairwise distinct.

Applying Lemma 5.2 with L = Iℓ − logBℓ and s = Iℓ+1, we get a function family Hid
ℓ which

supports constant time evaluation and O(Iℓ) storage space. We first check that the space usage of
hidv does not become the bottleneck of our dictionary: For a level-ℓ node u and its child v, we use
O(Iℓ) bits of space to store hidv at node v, while v already has a larger redundant waiting list of
space Ω(Iℓ ·∆ℓ+1).

In Property (c), let n be any integer in [nℓ+1, nℓ+1], then the probability of having a collision is
at most

n2

2Iℓ+1
≤

n2
ℓ+1

n4
ℓ+1

≤ 2

n2
ℓ+1

,

where the last inequality holds as long as nℓ+1 is larger than a constant. Hence, for level-ℓ node u
and its child v, such hash function hidv is able to guarantee the uniqueness of the level-(ℓ+1) IDs in
v with probability 1 − 2/n2

ℓ+1, which meets our requirement. So far, by combining hch ∈ Hch
ℓ and

hidv ∈ Hid
ℓ , we conclude the construction of the hash function h.

Hash functions in the top level. Although the above discussion is all about hash functions
on the tree nodes, the bijective hash function that we use to hash initial keys into level-1 buckets
(i.e., tree roots) are essentially the same. If U is a power of two, then we just regard the whole key
x ∈ [U ] as an ID (while the quotient is empty), and apply Lemmas 5.1 and 5.2 as above to construct
corresponding hash functions. If U is not a power of two, we only need to slightly generalize the
construction in Lemmas 5.1 and 5.2. The details are deferred to Appendix B.

14We only need 2-wise independence for hid
v . See the appendix for details.
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5.5 Rehashing

When the hash function at some node does not meet the requirements, we need to resample a hash
function and then reconstruct part of the data structure. This procedure is called rehashing. In
this subsection, we show that the rehashing frequency is low enough so that the expected time cost
of rehashing will not become the bottleneck of our algorithm.

We start by introducing the behavior of rehashing. Denote by hchu the hash function hch ∈ Hch
ℓ

for node u, and recall that hidv ∈ Hid
ℓ is stored at the child v. They distribute the keys received

by u to the children and assign IDs of level ℓ + 1 to these keys. When hchu lets a child overflow
or underflow, we resample hchu uniformly at random from Hch

ℓ , and reconstruct the whole subtree
rooted at u. For any child v, when hidv leads to an ID collision in v, we resample hidv randomly from
Hid

ℓ , and then reconstruct the subtree rooted at v.
Notice the similarity between hchu and hidu – any failure among them leads to the reconstruction

of the same subtree rooted at u; also, they have similar failure probabilities (1/n2
ℓ vs 2/n2

ℓ ). For
simplicity, we consider these two subfunctions as a whole: let gu = (hchu , hidu ) ∈ Gℓ = Hch

ℓ ×Hid
ℓ−1 be

the function stored at u. Note that this grouping is different from previous subsections (where hchu
is grouped with the children’s hidv ). When one of hchu , hidu fails to satisfy the requirement, we say
gu fails, in which case we resample the whole gu instead of only the failed part. From the previous
subsection, we know that a random gu from Gℓ fails with probability at most 3/n2

ℓ for a fixed set
of input keys.

The recursive process of reconstructing a subtree is described below in Algorithm 4.

Algorithm 4: Rehashing

1 Function Rehash(u):
2 Sample gu ∈ Gℓ uniformly at random.
3 if gu fails then
4 Rehash(u)
5 return

6 Distribute the keys to children according to gu.
7 foreach child v of u do
8 Rehash(v)

9 Fill the storage table or minimap at u.
10 Fill the waiting list of u if u is not the root.

Rehashing the subtree rooted at a level-ℓ node u takes O(nℓ(k − ℓ+ 1)) ≤ O(nℓ log
∗ nℓ) time:

the function Rehash takes O(nℓ′) expected time processing every level-ℓ′ node; summing over all
descendants of u leads to this time complexity. It is possible that the resampled gu still fails, in
which case we immediately rehash u once more.

When the hash function g fails at an ancestor p of u, the Rehash(u) is also called in the
recursion. In this case, we say p causes the rehashing. However, we still count the time cost of
this rehashing on every descendant of p. Once Rehash(u) is called, we count O(nℓ) time cost on
node u, regardless whether u causes the rehashing or not. Then, the total time usage of rehashing
equals the sum of time costs over all nodes. Based on this idea, we prove the following lemma:

Lemma 5.3. Assume there are M operations (insertion/deletion) after the initialization of the
dictionary with capacity N . The expected time of rehashing in this procedure is at most O((N +
M) log∗ N).
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Proof. Let u be a level-ℓ node. We consider every maximal consecutive subsequence A of operations
such that no ancestor of u is rehashed. We also ignore the operations in A where the key to insert
or delete is not hashed into u. Throughout A, u may be rehashed multiple times (which are all
caused by u), but the input of gu (i.e., the primitive ID xprim of each key x) is unchanged except
for the keys being deleted or inserted. Below, we first derive an upper bound for such a maximal
subsequence, then sum over all nodes u and maximal subsequences. When doing such analysis, we
fix the hash functions g and the rehashing history of u’s ancestors, and only consider the randomness
of sampling gu when rehashing.

Claim 5.4. Assume u is a level-ℓ node and A is a maximal consecutive subsequence of operations
where u’s ancestors are not rehashed, where at the t-th operation in A there is a rehashing caused
by u. Then, with probability at least 1/2 under the randomness of resampled gu, there will not be
rehashing caused by u in the next ⌈n2

ℓ/10⌉ operations in A.

Proof. We define Si as the set of primitive IDs of the keys hashed into u after the (t+i)-th operation
in A, for 0 ≤ i ≤

⌈
n2
ℓ/10

⌉
. For a random gu ∈ Gℓ, the probability that gu fails on Si is at most 3/n2

ℓ ,
provided |Si| ∈ [nℓ, nℓ], which is guaranteed since there is no rehashing at u’s ancestors. Applying
the union bound over i = 0, 1, . . . , ⌈n2

ℓ/10⌉, we know that S0, . . . , S⌈n2
ℓ
/10⌉ do not let gu fail with

probability at least 1 −
(
n2
ℓ

10 + 1
)(

3
n2
ℓ

)
≥ 1

2 . In the latter case, u will not be rehashed in the next

⌈n2
ℓ/10⌉ operations.

As a direct implication of Claim 5.4, if the subsequence A consists of T operations, then the
expected number of rehashings of u is O(T/n2

ℓ+1). The term O(1) refers to the inevitable rehashing
of u at the beginning of A, which is caused by an ancestor of u.

Next, we take the summation of the time costs over all nodes. Denote by aℓ the total number
of rehashings of level-ℓ nodes. We write the recurrence

aℓ ≤ aℓ−1 ·Bℓ−1 +
M

n2
ℓ

, (ℓ > 1)

where the first term refers to the number of rehashings that are recursively called from the parents;
the second term is the summation of O(T/n2

ℓ ) terms, as the sum of T of all level-ℓ nodes equals M
since they form a partition of the operation sequence. (The notation O is omitted for cleanliness.)
Similarly, the initial value is a1 ≤ N

n1
+ M

n2
1
. Solving this recurrence, we have

aℓ ≤
N

nℓ
+

M

nℓ

ℓ∑

i=1

1

ni
≤ N

nℓ
+

M

nℓ
.

Each rehashing of level ℓ takes O(nℓ) time, so the total time usage of all rehashings is

k∑

ℓ=1

aℓ · nℓ ≤ k(N +M) ≤ (N +M) log∗ N.

5.6 Achieving Constant-Time Queries

The dictionary we described so far has Θ(log∗N) query time, which is due to simulating the hashing
process on the input key x along the path of length O(log∗N) from a root to a leaf. We can improve
it as follows: After only O(1) hashing steps at the beginning, the IDs of the keys become very short
(≪ log logN), and the memory usage to store the set of IDs is far less than a word. If we rearrange
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the order of information in the memory such that the information of ID set occurs consecutively,
it is possible to use lookup tables to complete the remaining steps of the query. This will improve
the query time to O(1) in the worst case.

Specifically, each level-ℓ node u (ℓ ≥ 3) is responsible for storing a set of poly log(ℓ)N ≪ log logN
IDs from a universe 2Iℓ ≪ log logN , and an associated quotient of O(w) bits for each ID. Our first
observation is that we can store the ID and quotient parts separately. On leaf nodes, we used
minimaps to store the information, which consists of the ID set and a fixed number of quotient
slots. Even if we store these two parts in different regions of the memory, the minimap still works.15

For internal nodes, we used succinct hash tables from [BFK+22] to store a set of ID-quotient pairs.
Their hash tables also store quotients in fixed slots, and thus work even if we store the metadata
(including the ID set) separately from the quotient slots. We also store the hash functions at a
node as part of the metadata.

Then, we store the metadata at all nodes in the depth-first pre-order in the memory, so that
the metadata within a subtree are arranged consecutively. For the level-ℓ node u (ℓ ≥ 3), the total
space usage of the metadata for all its descendants does not exceed poly log logN ≪ log0.1 N , which
fits in a machine word so that we can access in O(1) word-accesses. Furthermore, these metadata
are enough for us to perform the remaining steps of the query, locating the quotient slot we need
to access (if there is one). A lookup table of 2O(log0.1 N) = No(1) words is sufficient to support it in
worst-case constant time.

In sum, by rearranging the order of storing information in the memory, and with the help of a
lookup table, we can improve the query time of the dictionary to constant in the worst case. This
covers the regime of R ≥ N/ log0.1N in Theorem 1.1.
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A Proof of Random Swap Lemma

In this section, we provide the proof of the following random swap lemma introduced in Section 4:

Lemma 4.3 (Restated). We can store a word-dominant VM containing M bits (2w < M < Nw)
into a WVM with the same total number of bits wLword + Lbit = M , while any given operation to
the VM can be transformed into several operations to the WVM within constant expected additional
computation time. Moreover:

(a) An access to the VM (either a complete word or the tail) is transformed into 1+O(min(1, w2/M))
accesses to the WVM in expectation.

(b) Allocating/releasing a word or a bit in the VM can be transformed into O(1) allocation/release
operations followed by O(1) accesses to the WVM (both in expectation).

(c) The transformation from VM to WVM does not introduce additional space usage, except
that we need to access an O(log2 N)-bit random seed which can be shared between multiple
instances. Lword and Lbit are fully determined by M and the seed.

Proof. For the given VM of M bits, we use L := ⌊M/w⌋ to denote the number of words in it,
T := M − wL to denote the number of bits in its tail, and m to denote its whole memory string.
Below we illustrate how to store this VM with memory string m into a WVM.

As mentioned in Section 4.2, we swap the tail with a random word to amortize the slow access
to the tail. The first step is to cut the tail into T individual bits and store them into the bit tape
of the WVM. When the tail is “too short” and the number of words is not “very few” (explained
later), we additionally cut the last word into w bits as well. Next, we swap the contents cut into
bits with one or two preceding words at a random location. Finally, the bit tape contains the new
individual bits (after swap), and we store the rest of the words into the word tape. See Algorithm 5.

Note that the algorithm exhibits different behaviors depending on the length of m. There are
three cases:

• The Few-Word Case: the number of words L ≤ Lr.

• The Short-Tail Case: the length of the tail T ≤ a while L > Lr, which is the only case we
additionally cut the last word into individual bits.
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Algorithm 5: Storing VM into WVM

1 Function Store(m): ⊲ Store a VM with memory string m into a WVM
2 Sample Lr from

[
w
20 ,

w
11

)
unformly at random

3 foreach i ∈ [logN ] do
4 Sample Li from [2i, 2i+1) uniformly at random
5 Sample si from [1, Li] uniformly at random

6 Sample a from [0, w − 2] uniformly at random
7 k ← the unique index such that Lk < L ≤ Lk+1

8 if L ≤ Lr or T > a then
9 Swap the tail of m with the first T bits of the sk-th word of m

10 mtemp ← the resulting memory string after swap
11 return a WVM with its word tape storing all L words of mtemp and its bit tape

storing the tail of mtemp

12 else
13 Swap the last word of m with the sk-th word of m
14 Swap the tail of m with the first T bits of the ((sk + 1) mod Lk)-th word of m
15 mtemp ← the resulting memory string after swapp
16 return a WVM with it word tape storing the first L− 1 words of mtemp and the bit

tape storing the last word plus the tail of mtemp

• The Long-Tail Case: T > a while L > Lr.

The random numbers sampled on Lines 2 to 6 serve as the random seed of the whole lemma,
which does not change with variations in m. One can check that the random seed has at most
O(log2N) bits, and Lword, Lbit are fully determined by M and the seed, i.e., Condition (c) in
Lemma 4.3 holds.

Based on this algorithm, we can transform the access and allocation/release operations in VM
to those in WVM. As we know which words to swap (from M and the seed), it is easy to transform
an access to m into several accesses to the WVM without additional time consumption (i.e., the
time taken is linear in the number of transformed operations). Similarly, an allocation or release
in the VM can be transformed to a series of necessary operations in the WVM without additional
time.

First, note that for any given operation in the VM, the number of transformed operations to
the word tape is at most O(1), and specially, is exactly 1 for a VM access. Therefore, it suffices to
bound the expected number of operations to the bit tape, which does not exceed the length of the
bit tape Lbit times the probability of accessing the bit tape. We have Lbit = O(min(L,w)), because

• In the Few-Word Case, the number of bits equals Lbit = T ≤ 10L < w because the VM is
word-dominant, and thus T = O(min(L,w)).

• Otherwise, min(L,w) = Θ(w), and the number of bits Lbit ≤ T + w ≤ 2w = O(min(L,w)).

Once the bit tape is accessed (except for the O(1) inevitable operations when we allocate or re-
lease 1 bit on the VM), we pretend there are Θ(min(L,w)) bit-accesses (plus Θ(min(L,w)) alloca-
tions/releases if it was a VM allocation/release), as a clear upper bound of the real cost. Next, it
only remains to bound the probability of accessing the bit tape.
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Access operations. The access to the bit tape happens only when we access the sk-th original
word, or the ((sk + 1) mod Lk)-th word in the Short-Tail Case. As sk is uniformly sampled from
[1, Lk], the probability to access the bit tape is at most 2/Lk ≤ 8/Lk+1 ≤ 8/L. Hence, the expected
number of induced accesses to the bit tape is at most O(min(L,w)) · (8/L) = O(min(1, w/L)) =
O(min(1, w2/M)) in expectation. Adding the 1 transformed access to the word tape implies
Lemma 4.3 (a).

Allocating/releasing a word. By symmetry, we only consider the case of allocation. According
to Algorithm 5, the bit tape stores the substring of m that starts from the first bit of the sk-th
word and has length Lbit. Hence, the content of the bit tape changes only in the following two
situations:

• The number of words L crosses over the threshold Lr and switches from the Few-Word Case
to the Short-Tail Case. In this situation, Lbit will increase by w. As Lr is uniformly sampled
from [w/20, w/11), the probability of this case is at most O(1/w).

• The number of words L crosses over the threshold Lk+1 and changes the index k, thus sk
is replaced by sk+1. As Lk+1 is uniformly sampled from [2k+1, 2k+2), the probability of this
case is at most 1/2k+1 = O(1/L).

Combining them together, the probability of changing the bit tape is at most O(max(1/w, 1/L)),
hence the expected number of operations in the bit tape is at most O(max(1/w, 1/L) ·min(L,w)) =
O(1).

Allocating/releasing a bit. In most of the cases during the allocation, Lbit = T or T +w only
increases by 1, so we only need to (1) allocate 1 bit on the bit tape, and (2) write into the newly
allocated bit the swapped content (the (T + 1)-th bit of some preceding word), which takes O(1)
bit-tape operations. (The contents in the original Lbit bits remain unchanged, so we do not need
to access them.) Other additional bit-tape operations will only happen in the following situations:

• The number of words L crosses over the threshold Lr and switches from the Few-Word Case
to the Short-Tail Case. As argued above, its probability is at most O(1/w).

• The number of words L crosses over the threshold Lk+1 and changes the index k. As argued
above, the probability is at most O(1/L).

• The number of bits in the tail T crosses over the threshold a and switches from the Short-Tail
Case to the Long-Tail Case, thus decreases Lbit by w − 1. As a is uniformly sampled from
[0, w − 2], the probability of this case is at most O(1/w).

Notice that when we allocate 1 bit upon T = w−1, changing T to 0, no additional action is required:
The initial state cannot be the Few-Word Case, as there are at most T ≤ 10L ≤ 10Lr < w− 1 bits
in the tail; since a ∈ [0, w − 2], this allocation turns the Long-Tail Case to the Short-Tail Case,
thus Lbit only increases by one, which falls back to the “common case” mentioned above.

Combining them together, the probability of additional bit-tape operations is at mostO(max(1/w, 1/L)).
Hence, the expected number of transformed operations is still at mostO(max(1/w, 1/L) ·min(L,w)) =
O(1).
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B Hash Permutation Families

In this section, we prove Lemmas 5.1 and 5.2. They assert existence of hash permutation families
with low time and space usage as well as good concentration guarantees. The main technique used
here is “Feistel permutation”:

Definition B.1 (Feistel permutation). For any x ∈ {0, 1}L and 1 ≤ s < L, we denote by xL, xR

the first s bits and the last L − s bits of x, respectively, written x = xL ‖xR. Fixing a function
f : {0, 1}L−s → {0, 1}s, its Feistel permutation πf : {0, 1}L → {0, 1}L is defined as

πf : x 7→ (xL ⊕ f(xR)) ‖xR.

It is easy to verify that πf is indeed a permutation over {0, 1}L, and πf (πf (x)) = x.
In order to construct hash permutation family H, we only need to construct a family F of hash

functions, which induces a family of Feistel permutations H = {πf : f ∈ F}. For Lemma 5.1, we
use the following hash function family.

Claim B.2 ([Tho13]). For any fixed constant c, there is a hash function family F , in which every
function

f : {0, 1}L−s → {0, 1}s

can be evaluated in O(c) time and can be stored in O(2(L−s)/c ·L) bits. Moreover, F is Ω(2(L−s)/c2)-
wise independent.

Based on this hash function family, we prove Lemma 5.1.

Lemma 5.1 (Restated). Let s, L be integers where 1 ≤ s ≤ (1−Ω(1))L. There is a hash function
family H in which every member h ∈ H is a bijection h : {0, 1}L → {0, 1}L, satisfying:

(a) For any h ∈ H and any input x ∈ {0, 1}L, h(x) and h−1(x) can be evaluated in O(1) time.

(b) It takes O(2εL) bits to store an h ∈ H, where ε is a constant given in advance which does not
depend on s and L.

(c) For n ≥ 2s ·s4 different inputs x1, . . . , xn, if we divide h(x1), . . . , h(xn) into equivalent classes
according to the first s bits of h(xi), then with probability ≥ 1− 1

4n2 , the number of elements

in any equivalent class is between
[
n
2s − 1

5

(
n
2s

)2/3
, n
2s + 1

5

(
n
2s

)2/3]
.

Proof of Lemma 5.1. Applying Claim B.2 with c = 2/ε gives a hash function family F ; let H =
{πf : f ∈ F} be the induced family of Feistel permutations. It is clear that any h ∈ H can be
evaluated in constant time (as well as its inverse h−1 = h), and can be stored within O(2(L−s)ε/2 ·
L) = O(2εL) bits.

It remains to check (c). For convenience, we use ĥ(x) to represent the first s bits of h(x). By
the definition of Feistel permutations, we know ĥ(x) = xL ⊕ f(xR) (assuming x = xL ‖xR). We
make the following claim:

Claim B.3. Assume n = Ω(2s · s4). We arbitrarily fix distinct strings x1, . . . , xn ∈ {0, 1}L,
y ∈ {0, 1}s, and sample h ∈ H uniformly at random. Let random variable X :=

∣∣ĥ−1(y)
∣∣ denote

the number of i ∈ [n] with ĥ(xi) = y, then

Pr
h∈H

[∣∣∣X − n

2s

∣∣∣ ≥ 1

5

( n

2s

)2/3]
≤ 1

4n3
.
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We first assume the claim holds. By the union bound, the probability that there is an equivalent

class whose number of elements lies outside
[
n
2s − 1

5

(
n
2s

)2/3
, n
2s + 1

5

(
n
2s

)2/3]
is at most

Pr
h∈H

[
∃y ∈ {0, 1}s :

∣∣ĥ−1(y)
∣∣ /∈
[
n

2s
− 1

5

( n

2s

)2/3
,
n

2s
+

1

5

( n

2s

)2/3]]
≤ 1

4n3
· 2s ≤ 1

4n2
,

which implies Property (c). Now it only remains to prove this claim.

Assume xi = xL,i ‖xR,i where xL,i is the first s bits of xi. We divide x1, . . . , xn into groups
according to the right part xR,i. Formally, we let {z1, . . . , zm} = {xR,1, . . . , xR,n} be the set of
occurred xR’s, and let Ij := {i ∈ [n] : xR,i = zj}.

For i1 6= i2 ∈ Ij, we know ĥ(xi1) 6= ĥ(xi2). It is because xR,i1
= xR,i2

= zj , thus ĥ(xi1) =

xL,i1
⊕ f(zj) 6= xL,i2

⊕ f(zj) = ĥ(xi2). Therefore, for every j ∈ [m], there is at most one i ∈ Ij with

ĥ(xi) = y. Let Xj := 1

[
∃i ∈ Ij : ĥ(xi) = y

]
. Then we have

• Xj = 1[∃i ∈ Ij : xL,i ⊕ f(zj) = y] = 1[f(zj) ∈ {xL,i ⊕ y : i ∈ Ij}] is solely determined by f(zj).

For a random f ∈ F , its expectation is E[Xj ] =
|Ij |
2s .

• X :=
∣∣ĥ−1(y)

∣∣ =
∣∣{i ∈ [n] : ĥ(xi) = y

}∣∣ = X1 + · · · + Xm. Its expectation equals E[X] =
∑m

j=1
|Ij |
2s = n

2s .

• Let k := 10 ln n, then any k-subset of {X1, . . . ,Xm} is independent. This is because F is
Ω
(
2(L−s)ε2/4

)
-wise independent, and

k := 10 ln n ≤ (10 ln 2)L = 2o(L) ≤ o
(
2(L−s)ε2/4

)
.

We then apply the Chernoff bound with limited independence on X = X1+ · · ·+Xm, stated below:

Theorem B.4 ([SSS95, Theorem 5]). If X is the sum of k-wise independent r.v.’s, each of which is
confined to the interval [0, 1], with µ = E[X]. For δ ≤ 1, if k ≤

⌊
δ2µe−1/3

⌋
, then Pr[|X − µ| ≥ δµ] ≤

e−⌊k/2⌋.

Now let δ = 1
5

(
n
2s

)−1/3
and apply Theorem B.4. It is easy to check that

δ2µe−1/3 =
1

25e1/3

( n

2s

)1/3
≥ 1

25(2e)1/3
log4/3 n≫ k = 10 ln n,

where the first inequality holds since n
log4 n

≥ 2s·s4
(s+4 log s)4

≥ 1
2 · 2s (for sufficiently large s), which is

equivalent to n
2s ≥ 1

2 · log4 n. Theorem B.4 gives

Pr

[∣∣∣X − n

2s

∣∣∣ ≥ 1

5

( n

2s

)2/3]
≤ e−⌊k/2⌋ ≤ e−5 lnn+1 ≪ 1

4n3
.

This proves Claim B.3 and further implies Lemma 5.1.

Lemma 5.2 can be proved similarly using Feistel permutations.

Lemma 5.2 (Restated). Let s, L be integers where 0 < s < L. There is a hash function family H
in which every member h ∈ H is a bijection h : {0, 1}L → {0, 1}L, satisfying:

(a) For any h ∈ H and any input x ∈ {0, 1}L, h(x) and h−1(x) can be evaluated in constant time.
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(b) It takes O(L) bits to store an h ∈ H.

(c) For any integer n and n fixed distinct inputs x1, . . . , xn, with probability at least 1 − n2/2s,
the first s bits of h(x1), . . . , h(xn) are pairwise distinct.

Proof of Lemma 5.2. It is well-known that there exists a 2-independent hash function family F ,
in which every function f : {0, 1}L−s → {0, 1}s can be stored within O(L) bits and evaluated in
constant time (e.g., polynomial hashing over a finite field F2L). For distinct inputs x1 6= x2 ∈
{0, 1}L−s and outputs y1, y2 ∈ {0, 1}s, Pr[f(x1) = y1 ∧ f(x2) = y2] = 2−2s.

We then verify that F ’s Feistel permutation family H := {πf : f ∈ F} satisfies the requirements.
First, h ∈ H (which equals its inverse) can be evaluated in O(1) time, and can be stored using
O(L) bits of space. Next, let h ∈ H be chosen uniformly at random, and denote by ĥ(x) the first
s bits of h(x). For any two distinct inputs x1 6= x2 ∈ {0, 1}L−s, the probability of ĥ(x1) = ĥ(x2) is
at most 2−s, because:

• Assume x1 = xL,1 ‖xR,1 and x2 = xL,2 ‖xR,2. If xR,1 = xR,2, we always have ĥ(x1) = xL,1 ⊕
f(xR,1) 6= xL,2 ⊕ f(xR,2) = ĥ(x2).

• Otherwise, f(xR,1) and f(xR,2) are independent r.v.’s following the uniform distribution over
{0, 1}s. Therefore, Pr[ĥ(x1) = ĥ(x2)] = Pr[f(xR,1)⊕ f(xR,2) = xL,1 ⊕ xL,2] = 2−s.

Combining these two cases tells that Pr[ĥ(x1) = ĥ(x2)] ≤ 2−s for all x1 6= x2. Taking the union
bound over all pairs among x1, . . . , xn gives Property (c).

Generalizations for the top level. In Sections 4 and 5, when hashing all N keys into N/n1

buckets, the input domain of the hash function might not be a power of two, in which case we use
the following generalization of Lemma 5.1. It just replaces the rightmost L− s bits of the domain
({0, 1}L−s) with a more general set [Q].

Corollary B.5. Let s, T be integers where 1 ≤ s ≤ (1−Ω(1))(s+ log T ). There is a hash function
family H in which every member h ∈ H is a permutation over {0, 1}s × [T ], satisfying:

(a) For any h ∈ H and any input x ∈ {0, 1}s × [T ], h(x) and h−1(x) can be evaluated in O(1)
time.

(b) It takes O
(
(2s · T )ε

)
bits to store an h ∈ H, where ε is a pre-given constant which does not

depend on s and T .

(c) For n ≥ 2s ·s4 different inputs x1, . . . , xn, if we divide h(x1), . . . , h(xn) into equivalent classes
according to the first s bits (i.e., the {0, 1}s part) of h(xi), then with probability ≥ 1 − 1

4n2 ,

the number of elements in any equivalent class is between
[
n
2s − 1

5

(
n
2s

)2/3
, n
2s + 1

5

(
n
2s

)2/3]
.

The proof is almost the same as Lemma 5.1. For every x = (xL, xR) ∈ {0, 1}s × [T ], we
treat xL ∈ {0, 1}s as the left part and xR ∈ [T ] as the right part, and define Feistel permutations
similarly to Definition B.1: For any function f : [T ] → {0, 1}s, its Feistel permuation is πf : x 7→
(xL ⊕ f(xR), xR). Then, we take a function family F from [T ] to {0, 1}s according to Claim B.2,
and apply the same argument as in the proof of Lemma 5.1 to prove the corollary.

A similar corollary of Lemma 5.2 holds as well:

Corollary B.6. Let s, T be positive integers. There is a hash function family H in which every
member h ∈ H is a permutation over {0, 1}s × [T ], satisfying:
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(a) For any h ∈ H and any input x ∈ {0, 1}s× [T ], h(x) and h−1(x) can be evaluated in constant
time.

(b) It takes O(s+ log T ) bits to store an h ∈ H.

(c) For any integer n and n fixed distinct inputs x1, . . . , xn, with probability at least 1 − n2/2s,
the first s bits (i.e., the {0, 1}s part) of h(x1), . . . , h(xn) are pairwise distinct.

C Hashing for Section 4

The construction for hash functions and the strategy of rehashing for Section 4 is similar to that
in Sections 5.4 and 5.5. We introduce them in this appendix. All notations here are the same as in
Section 4 unless otherwise specified.

Recall that, at the top level of the data structure, we used two hash functions h(1) : [U ] →
[N/n1] × [2I1 ] × [Q] and h

(2)
u : [2I1 ] → [B8h−1] × [2I8h ] to map every key x into a leaf node. Here,

h
(2)
u can be different for different root nodes, and we store N/n1 independent instances of it, while

for h(1) we only have one instance. Both hash functions need to prevent overflows and underflows
with high probability, while h(1) also needs to prevent ID collisions, which means the same ID is
assigned to two keys x1, x2 that are hashed to the same level-1 bucket. If either of these conditions
fail, we resample the failed hash functions and reconstruct part of the data structure.

Similar to Section 5.4, h(1) is composed of two (bijective) subfunctions: hch : [U ] → [N/n1] ×
[2I1Q] and hidu : [2I1Q] → [2I1 ] × [Q], where the former extracts the bucket index that the key is
hashed to, and the latter extracts the key’s ID within that bucket. The second subfunction hidu can
be different for different level-1 buckets. hch and hidu are sampled uniformly at random from the
permutation families given by Corollary B.5 and Corollary B.6 respectively, restated below, with
(s, T, ε) =

(
log(N/n1), 2

I1Q, 1
100(1+α)

)
and (s, T ) = (I1, Q) respectively.

Corollary B.5 (Restated). Let s, T be integers where 1 ≤ s ≤ (1 − Ω(1))(s + log T ). There is a
hash function family H in which every member h ∈ H is a permutation over {0, 1}s×[T ], satisfying:

(a) For any h ∈ H and any input x ∈ {0, 1}s × [T ], h(x) and h−1(x) can be evaluated in O(1)
time.

(b) It takes O
(
(2s · T )ε

)
bits to store an h ∈ H, where ε is a pre-given constant which does not

depend on s and T .

(c) For n ≥ 2s ·s4 different inputs x1, . . . , xn, if we divide h(x1), . . . , h(xn) into equivalent classes
according to the first s bits (i.e., the {0, 1}s part) of h(xi), then with probability ≥ 1 − 1

4n2 ,

the number of elements in any equivalent class is between
[
n
2s − 1

5

(
n
2s

)2/3
, n
2s + 1

5

(
n
2s

)2/3]
.

Corollary B.6 (Restated). Let s, T be positive integers. There is a hash function family H in
which every member h ∈ H is a permutation over {0, 1}s × [T ], satisfying:

(a) For any h ∈ H and any input x ∈ {0, 1}s× [T ], h(x) and h−1(x) can be evaluated in constant
time.

(b) It takes O(s+ log T ) bits to store an h ∈ H.

(c) For any integer n and n fixed distinct inputs x1, . . . , xn, with probability at least 1 − n2/2s,
the first s bits (i.e., the {0, 1}s part) of h(x1), . . . , h(xn) are pairwise distinct.
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Property (c) in Corollary B.5 tells that the probability of existing an overflowing or underflowing
level-1 bucket does not exceed 1

4N2 . Once overflows or underflows occur, we immediately pick
different hash functions and reconstruct the whole dictionary, using at most O(Nh) time.

Property (c) in Corollary B.6 tells that the probability of ID collisions within any given level-1
bucket does not exceed n2

1/2
I1 ≤ n−2

1 . Once ID collisions occur at level-1 bucket u, we resample
hidu (but not hch) and rebuild the adapter tree below u, which takes O(n1h) time.

The construction of h
(2)
u is simpler – we directly sample h

(2)
u according to Corollary B.5 with

s = (8h − 1) logB, T = 2I8h , and ε = 1/100. The probability of overflows or underflows occurring
is at most 1

4n2
1
, and when they occur, we reconstruct the adapter tree below u using O(n1h) time.

The additional space spent to store these hash functions is limited: we need to store one hch,

using O
(
U1/100(1+α)

)
= O

(
N1/100

)
bits, and N/n1 instances of hidu and h

(2)
u , using O

(
N
n1
· (I1 +

logQ+2I1/100)
)
= O

(
N
n1
·n1/25

1

)
= o(R) bits. Moreover, through a similar argument to Section 5.5,

we can see that the expected amortized time complexity for rehashing is O(1) per operation.

Achieving strong history-independence using fail modes. The above approach completes
our dictionary with R = n/ logO(1) n redundancy and O(log log n) operational time. It is almost
strongly history-independent except that we resample the hash functions when they fail – the
current hash functions carry information about the history. Removing the rehashing step will lead
to a strongly history-independent dictionary with the same performance.

Our method is to fix the hash functions a priori, and when a hash function fails, we design a
“fail mode” for the corresponding bucket, handling all operations slowly but still correctly. Since
the probability of enabling the fail mode is extremely low, the expected time consumption of the
fail mode is still o(1). When the failure disappears after several subsequent updates, we reconstruct
the memory state for the bucket and return to the “normal mode”. Whether we enable the fail
mode only depends on the current key set and the fixed (random) hash function, thus the entire
data structure with fail modes is strongly history-independent.

Formally, let u be a level-1 bucket, which is responsible for storing a set of n(u) = poly logN
elements from a universe U1 = 2I1 ·Q. If hidu incurs an ID collision when it tries to assign an ID to

each key in bucket u, or h
(2)
u incurs an overflow or underflow at a level-8h (leaf) bucket, we say u

is in the fail mode; otherwise, u is in the normal mode. Section 4 already shows how to store the
set efficiently for the normal mode; in the fail mode, we present the following lemma.

Lemma C.1 (Fail Mode). Let U ′ and n be integers where logU ′ ≤ n. There is a data struc-

ture storing n elements from the universe [U ′] using log
(U ′

n

)
+ O(logN) bits, while supporting all

operations in O(n100) time.

Proof Sketch. We list all n-element sets S = {a1, a2, . . . , an} ⊆ [U ′] (a1 < a2 < · · · < an) in
increasing lexicographic order of the sequences (a1, . . . , an). For any given set S, assuming it
occurs as the k-th set in the list, we define its encoding to be the binary representation of k.
Taking into account the O(logN)-bit overhead for storing n itself, the total encoding length is

log
(
U ′

n

)
+ O(logN) bits as desired. It is not difficult to prove that both encoding S into k and

decoding S from k takes O(n100) time, hence all types of operations can be completed in O(n100)
time as well.

We can assume the fail probability of any level-1 bucket is O(n−200
1 ) instead of O(n−2

1 ) as
described above by adjusting the parameters in the analysis accordingly. For any given operation
that accesses the level-1 bucket u, with probability at most O(n−200

1 ), u will be in the fail mode,

44



which costs O(n100
1 ) time to perform the operation due to Lemma C.1. The expected time overhead

is thus o(1).
We react similarly when the top-level hash function hch fails (i.e., when any level-1 bucket

overflows or underflows): We use the fail-mode structure to store the whole dictionary, which takes
no more than O(N100) time per operation. Because this failure only happens with probability
O(N−200), the expected overhead is negligible.
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