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Abstract

Exact computation of shortest paths in weighted graphs has been traditionally studied in
one of two settings. First, one can assume that the edge weights are real numbers and all
the performed operations on reals (typically comparisons and additions) take constant time.
Classical Dijkstra’s and Bellman-Ford algorithms have been described in this setting.
More efficient exact shortest paths algorithms have been obtained for integer-weighted graphs.

Integrality assumption not only enables faster algorithms but also allows implementing the
aforementioned algorithms in a much more realistic word RAM model where only arithmetic
operations on O(log n)-bit integers are performed in constant time.
On the word RAM one can as efficiently exactly encode even rational-weighted instances with

O(log n)-bit numerators and denominators. However, the known exact real-weighted shortest
paths algorithms, run on such a rational input, can easily encounter intermediate values of Θ(n)
bits if represented exactly. This leads to a factor-Ω(n) slowdown on the word RAM. At the
same time, the scaling algorithms suited for integer weights do not produce exact solutions for
rational inputs without dramatically increasing their accuracy.
In this paper, we design randomized exact single-source shortest paths algorithms for rational-

weighted graphs on the word RAM. Most importantly, in the non-negative case, we obtain a
near-linear time algorithm matching Dijkstra’s algorithm running time up to polylogarithmic
factors. In presence of negative weights, we give an Õ(n2.5)-time algorithm breaking through the
best known strongly polynomial bound attained by Bellman-Ford for sufficiently dense graphs.

∗This work is a part of project BOBR (WN, MS) that has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 948057).
Adam Karczmarz was partially supported by the ERC CoG grant TUgbOAT no 772346 and the National Science
Centre (NCN) grant no. 2022/47/D/ST6/02184.

†University of Warsaw and IDEAS NCBR, Poland. a.karczmarz@mimuw.edu.pl.
‡University of Warsaw, Poland. w.nadara@mimuw.edu.pl.
§University of Warsaw, Poland. marek.sokolowski@mimuw.edu.pl.

ar
X

iv
:2

31
1.

03
32

1v
1 

 [
cs

.D
S]

  6
 N

ov
 2

02
3

mailto:a.karczmarz@mimuw.edu.pl
mailto:w.nadara@mimuw.edu.pl
mailto:marek.sokolowski@mimuw.edu.pl


1 Introduction

Fundamental polynomial-time optimization problems on weighted graphs, such as computing short-
est paths and maximum flow, have been traditionally studied from the point of view of exact com-
putation in two ways. One way is to assume that the edge weights are given as real numbers, and
the computational model allows performing elementary operations on reals1 in constant time in a
black-box manner. This convenient extension of the popular word RAM model with an O(log n)-bit
word [FW93] is known as the real RAM [Sha78] and is a standard e.g. in computational geometry.
Exact algorithms in this model are typically strongly polynomial, that is, their time cost can be
bounded by a function of n and m (the number of vertices and edges, respectively) exclusively.2

Many of the classical graph algorithms have been described in this model: Dijkstra’s [Dij59] and
Bellman-Ford [Bel58] algorithms for single-source shortest paths, maximum flow algorithms such
as Edmonds-Karp [EK72] and push-relabel [GT88], the Hungarian method for the assignment
problem [Kuh55], etc.
While the real RAM model is simple and convenient to work with, unless further assumptions

are made, it is unrealistic to assume that arithmetic operations on the input and intermediate
values take constant time. To circumvent this problem, one possible approach is to use floating
point arithmetic. But then we cannot hope for producing exact solutions. An alternative way
is to restrict the domain. For the single-source shortest paths (SSSP) problem, assuming that
input edge weights are integers fitting in a machine word allows a realistic encoding of the input
and transferring the O(m + n log n) and O(mn) bounds of Dijkstra’s and Bellman-Ford (resp.)
algorithms to a much more realistic word RAM model.

Integrality and scaling. In fact, limiting attention to integer data has become a well-established
approach to studying exact optimization problems on graphs, especially given that integrality allows
for tighter bounds. The non-negative SSSP problem with integer weights bounded by W can be
solved in O(m+ n log log (min(n,W ))) time [Tho04]. It has been also known since the eighties that
the integer variant of the negative-weight SSSP problem can be solved polynomially faster then
Bellman-Ford if the maximum absolute weight W is polynomially bounded in n [Gab85]. Gabow’s
algorithm leverages the scaling framwork whose usefulness for graph algorithms has been shown
already by Edmonds and Karp [EK72]. After a long line of combinatorial scaling [GT89, Gol95] and
interior point method-based [CMSV17, AMV20, vdBLN+20, CKL+22] improvements, Bernstein,
Nanongkai, and Wulff-Nilsen discovered a combinatorial Õ(m logW ) time algorithm [BNW22] for
negatively-weighted SSSP (slightly improved even more recently [BCF23]) that falls into the original
scaling framework.
Let us now briefly explain how the integer data assumption is exploited in scaling algorithms.

Roughly speaking, the scaling framework (as described in [GT90]) proceeds by iteratively com-
puting more and more accurate solutions. With each iteration (which e.g. in [BNW22] takes
near-linear time), the absolute approximation error is reduced by a constant factor. As a result,
the final running time bound always involves a log(1/δ) factor, where δ is the desired relative ac-
curacy parameter, corresponding to the number of iterations made. For integer data, the accuracy
δ = 1/ poly(n,W ) is enough to enable efficient rounding of an approximate solution to an exact one.
In principle, one could run a scaling algorithms on real-valued (e.g., irrational) data in the stronger
real RAM model, but it could happen that an exact optimum is never reached. Moreover, since

1At least comparisons and additions, sometimes also other basic arithmetic operations.
2Formally, for an algorithm to be strongly polynomial, one also requires it runs in polynomial time on (binary-

encoded) rational inputs on a standard Turing machine. This is the case for every result we refer to in this paper.
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the running time depends on the desired relative accuracy (and thus on W ), it cannot be bounded
using n and m exclusively. This in turn deems the framework inherently weakly polynomial.

Rational data. Rational-weighted graphs, with both numerators and denominators fitting in a
machine word, can be represented on a word RAM machine as exactly and as concisely as integer-
weighted instances. Therefore, it is surprising to note that – to the best of our knowledge – the
most fundamental polynomial exact optimization problems on graphs have been thoroughly studied
only either in an idealized but unrealistic real RAM model, or under the integrality assumption
that is not as general as is naturally allowed by the word RAM model. It is thus interesting to ask:

1. Can optimization problems on rational-weighted graphs be solved on the word RAM
exactly and as efficiently as on integer-weighted graphs?

The answer to the question is trivially affirmative for some problems, such as the minimum spanning
tree, where the solution depends only on the linear order on the input weights. However, for
problems such as single-source shortest paths or maximum flow, the answer is far from obvious.

Case study: SSSP. Consider the exact SSSP problem, where the desired output is a shortest
paths tree from a given source. Let us call a rational number short if both its numerator and
denominator fit in a machine word. There are two natural ways to construct an SSSP algorithm for
rational-weighted graphs. First, one can simply adapt a strongly polynomial algorithm (Dijkstra’s
or Bellman-Ford) by replacing the abstract real arithmetic with an exact rational arithmetic in a
black-box way. It is easy to see that the intermediate values arising when these algorithms proceed
represent lengths of some paths consisting of at most n edges. Since a sum of n short rational
numbers is an Õ(n)-bit rational number and arithmetic operations on ≤ k-bit rational numbers
take Õ(k) time on the word RAM, the rational arithmetic overhead incurred is Õ(n). We conclude
that Dijkstra’s algorithm on rational data can be implemented in Õ(mn) time on the word RAM,
whereas Bellman-Ford in Õ(mn2) time. This is significantly slower than in the integral case.
Another natural approach is to apply the scaling framework.3 There, one quickly recognizes that

polynomial accuracy δ is not sufficient to get an exact answer for rational data. For example, distinct
weights of two length-n paths can differ by 2−Ω̃(n) (as shown in Appendix E). This is as opposed
to the integer case, where the minimum possible difference is 1. Thus, if the scaling framework
is applied out-of-the box, the accuracy parameter δ should be set to be at least exponential in n.
Even if one managed to use only Õ(1)-bit intermediate values in the computation, using an extreme-
precision version of a near-linear scaling SSSP algorithm naively costs at least Õ(mn) time as well.
For negatively-weighted SSSP there is currently a large Ω̃(n) gap between the best known

weakly polynomial bound [BNW22] (in the integer case) and the best strongly polynomial bound
of Bellman-Ford. It is tempting to ask whether this is related to the relatively low precision required
by the integer case compared to the rational case. This motivates another general question:

2. Can one solve optimization problems on rational-weighted graphs on the word RAM
exactly beyond the respective best-known strongly polynomial bounds on the real RAM?

Inevitable non-integrality. A further motivation for studying rational-weighted exact opti-
mization comes from the fact that for some important graph problems running into rational data
is inevitable even if the input data is as integral as one could imagine. In some of these cases, exact

3Whereas scaling has been most successfully applied to negatively-weighted SSSP, there also exists a scaling
algorithm for the non-negative SSSP [Gab85].
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optimization algorithms have never been analyzed in a fine-grained way in any realistic arithmetic
model. One example is the generalized flow problem, which extends the standard maximum flow
problem with linear arc gains γ(e): if f units of flow enter an edge e = uv at vertex u, γ(e) · f
units of flow arrive at v. The state-of-the-art exact combinatorial algorithm [Rad04] is weakly
polynomial4: the edge capacities are assumed to be integral, gains rational, and all the integers
used to encode the input are bounded by W . However, the arithmetic model assumed therein is in
fact the real RAM.
An even simpler textbook example (e.g., [CLRS09], also arising in the generalized flow literature,

e.g., [TW98, GJO97]) is arbitrage detection. For n currencies, pairwise exchange rates are given as
rational numbers.5 The objective is to check whether one can start with a unit of some currency a,
do some trading, and end up with more than one unit of a, i.e., make pure profit. A classic solution
to this problem (see, e.g., [Cor]) is to reduce to negative cycle detection on a complete graph of
currencies where the weight of an edge ab equals the logarithm of the exchange rate between a
and b. The log-transformation is already problematic in a realistic arithmetic model (and even
in the basic real RAM model) since a logarithm can be irrational. One can avoid logarithms by
directly adapting the Bellman-Ford algorithm to treat the product of exchange rates on a path as
the path weight. However, even a product of k integers (let alone rational numbers) may require
Õ(k) bits to be represented, which again introduces a non-trivial arithmetic overhead.

1.1 Our contribution

In this paper we initiate the study of the word RAM complexity of optimization on rational-weighted
graphs with the goal of providing answers to the posed questions 1 and 2. Of course, the sought
answers might be problem-specific. Therefore, in this paper we put the focus on the single-source
shortest paths problem, perhaps the most basic problem on weighted directed graphs where the
challenges specific to rational arithmetic do manifest themselves.
First of all, we show that the non-negative single-source shortest paths problem can be solved on

short rational data with only polylogarithmic slowdown wrt. the integer case and thus a factor-O(n)
faster than naively. We assume a standard word-RAM model with O(log n)-bit machine word.

Theorem 1.1. Let G be a directed graph with non-negative rational weights whose numerators and
denominators fit in a machine word. There exists a Monte Carlo randomized algorithm computing
a single-source shortest path tree in G from any chosen source vertex in Õ(n+m) time (w.h.p.6).

Theorem 1.1 provides an affirmative answer to our first motivating question up to polylogarith-
mic factors. Our algorithm also matches the best known near-linear strongly polynomial bound (in
the real RAM model) wrt. Õ(·) notation. A single-source shortest paths tree T ⊆ G from s can be
preprocessed in near-linear time to be able to report any s → t, t ∈ V distance in Õ(n) time (see
Lemma 3.1). Note that explicitly outputting all the n distances from s might require Ω(n2) time
since one can easily construct an instance where Θ(n) distances require Θ(n) bits each.
We also study the more general variant of the SSSP problem allowing negative weights. First, we

show (Lemma 6.1) that the scaling framework can be applied for rational-weighted SSSP in such a
way that every iteration boils down7 to solving an instance with polynomial integer weights which

4Strongly polynomial algorithms for generalized max-flow have been found only relatively recently [Vég17, OV20].
5Clearly, some of the exchange rates should be positive numbers less than 1.
6With high probability, that is, with probability at least 1− 1/nγ for any chosen constant γ > 0.
7This is non-obvious since the known scaling algorithms, tailored to handle the integral case only, do not have

to non-trivially control the bit-length of the intermediate values. The values encountered for polynomial accuracy
required in the integer case clearly use only O(polylogn) bits.
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costs Õ(m) time [BNW22, BCF23]. Consequently, and since exponential accuracy δ = O(n−n)
is sufficient, negatively-weighted SSSP can be solved in Õ(nm) time for rational weights with
numerators and denominators fitting in an O(log n)-bit machine word. This again matches the
problem’s best known strongly polynomial bound without ever breaking through it, though.
By combining the scaling framework (used for moderate accuracy of roughly n−

√
n) with data

structures developed for obtaining Theorem 1.1 and some further insights, we obtain the following.

Theorem 1.2. Let G be a digraph with rational weights whose numerators and denominators fit
in a machine word. There exists a Monte Carlo randomized algorithm computing a single-source
shortest paths tree in G from a chosen source (or detecting a negative cycle) in Õ(n2.5) time (w.h.p.).

Importantly, our algorithm breaks through the best-known strongly polynomial bound of O(nm)
by a polynomial factor for sufficiently dense graphs with m = Ω(n1.5+ϵ). This provides a partial
affirmative answer to the motivating question 2. in the case of negative-weight SSSP. Moreover,
from Theorem 1.2 one can conclude that the challenge in obtaining an O(n3−ϵ) strongly polynomial
time bound for negative SSSP in dense graphs lies beyond the exponential accuracy requirement.

1.2 Further related work

The cost of computing on rational numbers on the word RAM has been also a subject of study in
the symbolic computation community. For example, rational numbers arise when computing the
inverse of an integer matrix. Storjohann [Sto15] showed that one can exactly compute the inverse
of an integer matrix in Õ(n3) time which significantly improves upon the naive bound of Õ(nω+1)
obtained by multiplying the Õ(nω) arithmetic operations bound of computing the matrix inverse
and the potential Θ(n) cost of performing arithmetic operations on rationals.
More recently, the non-trivial cost of arithmetic operations on large integers on the word RAM

arising when counting shortest paths in graphs has been investigated in [CWX21, CWX22].
Thorup [Tho00] studied the non-negative SSSP problem on undirected graphs whose edge

weights are floating point numbers and gave a linear-time algorithm for that case. Floating point
arithmetic is useful in approximate computation, whereas in this paper we are interested in exact
computation exlclusively.

2 Preliminaries

We work with weighted directed graphs G = (V,E). We denote by wG(e) ∈ R the weight of an
edge uv = e ∈ E. If the graph whose edge we refer to is clear from the context, we may sometimes
skip the subscript and write w(e). For simplicity, we do not allow parallel directed edges between
the same endpoints of G, as those with non-minimum weights can be effectively ignored in shortest
paths problems. As a result, we sometimes write wG(uv) or w(uv).
For u, v ∈ V , an u → v path P in G is formally a sequence of vertices v1 . . . vk ∈ V , where

k ≥ 1, u = v1, v = vk, such that vivi+1 ∈ E for all i = 1, . . . , k − 1. The hop-length |P | of P
equals k − 1. The length or weight w(P ) of P is defined as

∑k−1
i=1 wG(vivi+1). P is a simple path

if |V (P )| = |E(P )| + 1. We sometimes view P as a subgraph of G with vertices {v1, . . . , vk} and
edges (hops) {v1v2, . . . , vk−1vk}.
For any k ≥ 0, δkG(s, t) is the minimum length of an s → t path in G with at most k hops.

A shortest k-hop-bounded s → t path in G is an s → t path with length δkG(s, t) and at most k
hops. We define the s, t-distance δG(s, t) as infk≥0 δ

k
G(s, t). If δG(s, t) is finite, there exists a simple

s→ t path of length δG(s, t). Then, we call any s→ t path of length δG(s, t) a shortest s, t-path.
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If G contains no negative cycles, then δG(s, t) = δn−1
G (s, t) for all s, t ∈ V . Moreover, in such a

case there exists a feasible price function p : V → R such that the reduced weight
wp(e) := w(e) + p(u)− p(v) is non-negative for all uv = e ∈ E. For any path s→ t = P ⊆ G, the
reduced length wp(P ) (i.e., length wrt. weights wp) is non-negative and differs from the original
length w(P ) by the value p(s)− p(t) which does not depend on the shape of P .
We sometimes talk about rooted out-trees or out-branchings T with all edges directed from a

parent to a child. In such a tree T , for two vertices a, b ∈ V (T ) such that a is an ancestor of b, a
descending path T [a→ b] is the unique path from a to b in T .

Rational numbers and the word RAM model. For a positive integer W , let us denote by
Q[W ] the set of rational numbers p

q with |p| < W and 0 < q < W .
Let us denote by B = Θ(log n) the bit length of machine word and for our convenience assume

that the rational numbers constituting the input belong to Q[2B−1], so that both their denomi-
nator and numerator (with a sign) fit within one machine word each. We will call such rational
numbers short rationals. Let us note that Q[W1] · Q[W2],Q[W1]/(Q[W2] \ {0}) ⊆ Q[W1 ·W2] and
Q[W1] +Q[W2],Q[W1] − Q[W2] ⊆ Q[2 ·W1 ·W2] (where C +D is the set of numbers that can be
represented as c+ d, where c ∈ C and d ∈ D etc.).
For a positive integer k, let Q(k) denote the set of k-short rationals defined as Q[2kB−1]. Both

the denominator and the numerator (with a sign) of a k-short rational fit in k machine words each.
Based on the above relations, we conclude that if an arithmetic operation is performed on a a-short
rational and a b-short rational, then the result will be an (a+ b)-short rational.
As there exist near-linear-time implementations (in the bit-length) of basic operations on in-

tegers and of Euclid’s algorithm [Sch71] (the naive implementation runs in quadratic time in the
bit-length; see also [Möl08] for discussion), when dealing with arithmetic operations on Q, we can
always assume that they are stored in the irreducible form. Hence, we can also test the membership
to Q(k) efficiently. We sometimes use the term b-bit rational number when referring to a rational
number from Q[2b] whose numerator and denominator together use (at most) b bits.

3 Overview of the non-negative rational SSSP algorithm

3.1 An Õ(nm2/3)-time algorithm

At a high level, our near-optimal non-negative SSSP algorithm (Theorem 1.1, proved in detail in
Section 5) for short rational weights is an implementation of Dijkstra’s algorithm using a rather
complex dynamic data structure for performing comparisons requested by Dijkstra’s algorithm.
As a warm-up, and to illustrate some of the ideas used to obtain our main result, in this

section we present an implementation of Dijkstra’s algorithm for rational data using a much simpler
data structure that already allows polynomial speed-up over the naive Õ(mn) bound that trivially
estimates the cost of operations on intermediate rational values to be Õ(n). Recall that all the
values manipulated and compared in Dijkstra’s algorithm correspond to lengths of some simple
paths in G, i.e., require Õ(n) bits to be represented exactly.
Obtaining an O(n2−ϵ) time bound for rational data could be impossible even for sparse graphs

with m = O(n) if we were required to explicitly output all the distances (each of possibly Θ(n)
bits) from the source. Consequently, we will to stick to a more succinct output representation: a
single-source shortest paths tree T ⊆ G itself. An SSSP tree can be preprocessed in linear time so
that it is possible to report any distance δG(s, v) in Õ(n) time. This is captured by the following
more general lemma proved in Section A.
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Lemma 3.1. Let T be an initially empty tree with short rational edge weights. There is a data
structure supporting constant-time leaf insertions to T and queries computing the weight of a de-
scending path in T such that the query time for a k-hop path is Õ(k).

Dijkstra’s algorithm recap. Let us first recall how a variant of Dijkstra’s algorithm proceeds
for an input digraph G = (V,E) with source s ∈ V . We first make a simplifying assumption that
every vertex v ∈ V is reachable from s in G; this can be achieved by adding, for each v, an auxiliary
edge sv of a short rational weight n · (maxe∈E{wG(e)}) unless sv ∈ E. Clearly, this transformation
does not affect the shortest paths from s to the reachable vertices in the original graph.
Dijkstra’s algorithm maintains a growing set of visited vertices S ⊆ V for which the shortest

path from s has been correctly determined. Initially S = {s}. The set S is iteratively extended by
adding a vertex v∗ ∈ V \ S minimizing the value

d(v) := min
zv∈E:z∈S

{δG(s, z) + wG(zv)}. (1)

One can prove that at that point d(v∗) = δG(s, v
∗) holds. Consequently, if z∗ is the minimizer

vertex for d(v∗) in (1), then there exists a shortest path s → v∗ = Pv∗ ⊆ G whose last edge is
ev∗ := z∗v∗ and passing through intermediate vertices in S (before adding v∗) exclusively.
The vertices v ∈ V \ S are stored in a priority queue Q with the corresponding keys d(v).

Hence, to extend the set S, one extracts (and removes) the top element of Q. It is clear that unless
d(v) =∞, the value d(v) corresponds to the length of some s→ v path in G, in fact a concatenation
of a shortest path from s and a single edge.
When a new vertex x is moved to S (and the distance δG(s, x) is established), the minima in (1)

(and thus the keys in the priority queue) may need to be updated for vertices v with an incoming
edge from x. This is also called the relaxation of edges xv. Relaxations may lead to further cost
incurred in the priority queue Q.
If Q is realized as a simple binary heap, then the bottleneck of the algorithm lies in Õ(m) crucial

comparisons of values of the special form δG(s, z) + wG(z, v) performed while updating the keys
d(v) (edge relaxations) and the priority queue Q. If we ran the algorithm without any change on
rational data, its total time cost not including crucial comparisons would remain Õ(m). However,
if we performed crucial comparisons naively, Θ̃(m) of them could take Õ(n) time each.

A data structure for crucial comparisons. While the algorithm proceeds, the edges ev,
v ∈ S \ {s}, defined as before, constitute an (incremental) out-tree TS ⊆ G on vertices S (rooted
at s) such that w(TS [s→ v]) = δG(s, v) for v ∈ S. We store TS in the data structure of Lemma 3.1.
Each crucial comparison can be equivalently seen as comparing two values of the form

w(TS [s→ z]) + wG(zv). Let T ∗ denote TS when the algorithm concludes (i.e., when S = V ).
Let h ∈ [1, n] ∩ Z and γ > 0 be a parameters to be set later. We will make use of the hitting

set trick [UY91]. Let H be a random subset of V of size ⌈γ · (n/h) log n⌉ vertices of V and also
including s in H. We will also call H the hitting set. We have the following:

Fact 3.2. With high probability (controlled by the constant γ), for all v ∈ V , the nearest (strict)
ancestor αv ∈ H of v in T ∗ is at most h hops apart from v in T ∗.

Since TS ⊆ T ∗ at all times, the above lemma also holds if we replace T ∗ with TS . How is the
hitting set helpful when performing crucial comparisons? Suppose we want to test whether

δG(s, y) + wG(yu) = w(TS [s→ y]) + wG(yu)
?
< w(TS [s→ z]) + wG(zv) = δG(s, z) + wG(zv),
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for some y, z ∈ S. By expressing the path TS [s → y] as TS [s → αy] · TS [αy → y] (and similarly
for z), we could equivalently compare:

w(TS [s→ αy])− w(TS [s→ αz])︸ ︷︷ ︸
∆αy,αz

?
< w(TS [αz → z]) + wG(zv)− w(TS [αy → y])− wG(yu). (2)

Observe that by Fact 3.2, the right-hand side above is a sum of at most four (possibly negated)
lengths of ≤ h-hop paths in G. Consequently, the right-hand side is an h-short rational number. At
the same time, the left-hand side can still be an Ω(n)-bit rational number. However, note that the
number of distinct left-hand sides involved is proportional to the number of possible pairs (αy, αz),
i.e., O(|H|2) = Õ((n/h)2). Our strategy will be to apply preprocessing for each of the pairs u, v ∈ H
to enable near-optimal Õ(h)-time comparisons of the possible right-hand sides (given explicitly)
with values ∆u,v. For this, we need the following crucial notion.

Definition 3.3. Let α ∈ Q. Let b ≥ 0 be an integer. We define the best b-bit rational approxima-
tion ra(α, b) to be a pair of (possibly equal) rational numbers p1

q1
, p2q2 with 0 < q1, q2 < 2b such that

p1
q1
≤ α ≤ p2

q2
, and there is no rational number p′

q′ with 0 < q′ < 2b strictly between p1
q1
and p2

q2
.

Note that given ra(α, b) = (p1/q1, p2/q2), one can reduce comparing α to any fraction β = p/q
such that 0 < q < 2b to comparing β with p1/q1 and p2/q2 only. Crucially for our needs, we have:

Lemma 3.4. Let α be a k-bit rational number. For any positive integer b = O(poly n), one can
compute ra(α, b) in Õ(k) time.

The theory of continued fractions gives an elegant proof of Lemma 3.4, see Appendix B.
With Lemma 3.4 in hand, we compute ra

(
∆u,v, Õ(h)

)
for every pair u, v ∈ H once both vertices

u, v are present in the visited set S. This takes Õ(n) time since ∆u,v can be computed from TS

(see Lemma 3.1) in Õ(n) time. Through all pairs u, v ∈ H, the total time cost of computing best
rational approximations is Õ(n · (n/h)2) = Õ(n3/h2). Given that, a crucial comparison (2) can be
evaluated in Õ(h) time as the right-hand side can be computed in Õ(h) time by Lemma 3.1.
Since the total number of crucial comparisons made by Dijkstra’s algorithm is Õ(m), the running

time is Õ(mh+ n3/h2). This bound is optimized for h = n/m1/3 and yields an Õ(nm2/3) bound.

3.2 A hierarchical approach

One bottleneck of our approach so far lied in the Θ(n) cost of computing the best rational ap-
proximations of a values ∆u,v, u, v ∈ H (Lemma 3.4). The approximation itself has size Õ(h) so
a natural idea is to devise a faster algorithm computing it. However, with no further assumptions
on the input α to Lemma 3.4, it is not clear whether this is possible.
In our case, the required Θ̃((n/h)2) possible values ∆u,v, u, v ∈ H \ {s}, are not completely

unrelated and can be defined inductively. We have:

∆u,v = w(TS [s→ u])− w(TS [s→ v])

= (w(TS [s→ αu])− w(TS [s→ αv])) + (w(TS [αu → u])− w(TS [αv → v])) (3)

= ∆αu,αv + (w(TS [αu → u])− w(TS [αv → v])).

Consequently, ∆u,v differs from another value of this form by an h-short rational offset. One
could hope that it is possible to compute, for b = Õ(h), the approximation ra(∆u,v, b) based on
ra(∆αu,αv , b) and the offset in Õ(h) time. Unfortunately, it is not clear how to do that either.
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It turns out, however, that inductive computation is possible if one can accept losing some
accuracy. Formally, in Section C, we prove the following.

Lemma 3.5. Let ra(α, b) be given. Suppose α′ = p/q satisfies 0 < q < 2b
′
where b′ < b. Then,

ra(α+ α′, b− b′) can be computed in Õ(b+ log(1 + |α|+ |α′|)) time8.

Let us now sketch how Lemma 3.5 can be taken advantage of. Let h = 2k for some positive k.
The accuracy loss in Lemma 3.5 forces us to use a hierarchy of hitting sets H := Hk, . . . ,Hℓ, where
ℓ = ⌈log2 n⌉. For i < ℓ, let Hi be a random subset of Θ((n/2i) log n) vertices of V and we put
Hℓ = {s}. As before, w.h.p., Hi hits all the min(n, 2i)-hop descending paths in T ∗. Hence, for any
vertex v ∈ V , its nearest ancestor from Hi in T ∗, denoted αv,i, is at most 2i hops apart from v.
Let us set our goal at computing, for all u, v ∈ Hi, the approximation ra(∆u,v, B · 2i+2). We

can do that inductively for decreasing indices i < ℓ (once u, v appear in the set S). By arguing
analogously as in (3), we can conclude that ∆u,v differs from some ∆x,y, where x, y ∈ Hi+1 by
an offset β corresponding to a difference of two lengths of ≤ 2i+1-hop paths, that is, a 2i+2-short
rational number with denominator bounded by 22

i+2·B. By Lemma 3.5 applied to ra(∆x,y, B ·2i+3),
in Õ(B ·2i+2) = Õ(2i) time one can compute ra(∆u,v, B ·2i+2) = ra(∆x,y+β, (B ·2i+3)− (B ·2i+2)).
This way, the computation of all approximations ra(∆u,v, Õ(h)) for u, v ∈ H, i.e., the bottleneck
in Section 3.1, can be performed in

Õ

(
ℓ∑

i=k

|Hi|2 · 2i
)

= Õ

(
ℓ∑

i=k

n2

2i

)
= Õ(n2/h)

time. By arguing similarly as in Section 3.1, we obtain that Dijkstra’s algorithm for short rational
weights can be implemented in improved Õ(mh+ n2/h) time. For h = n/

√
m, the bound becomes

Õ(n
√
m) which is already near-optimal for dense graphs, but also far from linear for sparse graphs.

3.3 The algorithm for sparse graphs

The bottleneck of our approaches so far lied in constructing a certain representation of the difference
of distances δG(s, u)− δG(s, v) for all pairs u, v ∈ H, where H was a carefully picked subset of V .
This approach is inherently super-linear if |H| >

√
n. On the other hand, using a small subset H

led to a large Õ(h) unit cost of crucial comparisons. To obtain Theorem 1.1, we eliminate the need
for storing all-pairs differences by exploiting the following two general ideas:

• lazy computation of rational approximations of the differences, and

• inference of comparison results from the comparisons made so far.

Actually, we develop the following data structure maintaining an incremental tree that allows
performing all the crucial comparisons in Dijkstra’s algorithm in an entirely black-box way.

Lemma 3.6. Let c ∈ N≥1 be a constant. Let T be a rooted out-tree, initially containing only the
root s, with edge weights in Q(c). There exists a Monte Carlo randomized data structure supporting:

• leaf insertions to T (with a specified parent and edge weight); and

• answering queries of the form: given two vertices u, v ∈ V (T ) and a rational number p
q ∈ Q(c),

compare δT (s, u)− δT (s, v) to
p
q and return smaller, equal or larger.

8The log(1 + |α|+ |α′|) term comes from the fact that the numerator of α+ α′ may be |α+ α′| times larger than
the denominator.

8



The data structure processes n leaf insertions and q queries in Õ(n+q) time. The answers produced
are correct with high probability.

The data structure works against an adaptive adversary since the correct query results are
determined uniquely by the input updates and thus the queries do not reveal any random choices
of the data structure (unless a mistake is made, which happens with low probability anyway).
To obtain Lemma 3.6, the starting point is to reuse the hierarchical approach of Section 3.2.

We use a chain of O(log n/ log log n) hitting sets of T :

V = L0 ⊇ L1 ⊇ . . . ⊇ Lt = {s},

where this time each Li is Θ(log n) times smaller than the previous set Li−1. The data structure
actually consists of a hierarchy of t+1 data structures D0, . . . ,Dt. The purpose of Di is to efficiently
perform comparisons of a difference of values δT (s, u)− δT (s, v), u, v ∈ Li, with an Õ(n/|Li|)-short
rational number β given as a query parameter. Note that the implementation of Dt boils down to
checking the sign of β, whereas D0 is what we actually want to accomplish in Lemma 3.6.
The main claim that we prove (Lemma 5.12) is that the time required by Di for answering q

queries is Õ(q ·n/|Li|) plus the cost of performing only Õ(|Li|) queries (that is, a number indepen-
dent of q) to the data structure Di+1. Note that in Section 3.2, each comparison of δG(s, u)−δG(s, v)
for u, v ∈ Hi could be thought of being reduced to a comparison from the previous layer. The crux
of our main claim is that for most queries to Di, the answers can be inferred from the previous
answers! Moreover, the data structures Di use separate pools of random bits and provide unique
answers w.h.p., and this is why the input to Di+1, even though generated in a randomized way,
can be seen from the point of view of Di+1 as generated by an oblivious adversary. At the end,
Dijkstra’s algorithm performs m queries to D0, so the total time used by the data structure D0 is

Õ(m) + Õ

(
t∑

i=1

n · |Li−1|
|Li|

)
= Õ(n+m),

as desired.
We now sketch the main ideas behind this approach, focusing only on the implementation of D0.

Suppose we construct an incremental out-tree T rooted at s. For every vertex v ∈ V , we maintain
a Θ(log2 n)-bit approximation δ′T (s, v) of δT (s, v), that is, a value δ

′
T (s, v) ∈ Q

[
2Θ(log2 n)

]
such that

|δ′T (s, v)− δT (s, v)| < 2−Θ(log2 n). Then, for every u, v ∈ V , one of the following cases holds:

• All comparisons between δT (s, u) and δT (s, v) are easy. That is, for every
p
q ∈ Q(c), we

have
∣∣∣δT (s, u)− δT (s, v)− p

q

∣∣∣ > 2−Θ(log2 n). Then, for each comparison as above, we can
use the approximations of the distances in lieu of the original distances: in other words,
δT (s, u) − δT (s, v) >

p
q is equivalent to δ

′
T (s, u) − δ′T (s, v) >

p
q . The latter can obviously be

evaluated efficiently.

• There is a difficult comparison between δT (s, u) and δT (s, v): there exists p
q ∈ Q(c) such that

|δT (s, u)− δT (s, v)−
p

q
| ≤ 2−Θ(log2 n).

Then it turns out that there is a unique rational number p
q ∈ Q(c) with this property and

it can be determined efficiently given δ′T (s, u) and δ′T (s, v). For all other rational numbers
p′

q′ ∈ Q(c) \{pq}, δT (s, u)−δT (s, v)
?
> p′

q′ can be tested efficiently based on δ
′
T (s, u) and δ

′
T (s, v).

Let u ∼ v denote that there exists a difficult comparison between δT (s, u) and δT (s, v), and
u ⪯ v denote that δ′T (s, u)− δ′T (s, v) ≤

p
q . Note that u ⪯ v implies u ∼ v.
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In our algorithm, an explicit evaluation of u
?
⪯ v is expensive: it ultimately requires evaluating

a query in D1. Therefore, we wish to evaluate ⪯ explicitly as few times as possible, and infer the
results of the remaining difficult comparisons from the comparisons made so far.
The heart of the algorithm is the following transitivity property for difficult comparisons: sup-

pose that we have three vertices u, v, w ∈ V such that u ⪯ v, v ⪯ w, and u ∼ w. Then u ⪯ w. This
property is formalized through the notions of similarity and smallness, defined in Section 5.2.
Let H now be the graph on V (T ) given by the similarity relation ∼. If H is a clique on V (T )

(i.e., all vertices are pairwise similar), then ⪯ induces a total order on V (T ); this order can be
computed via any comparison-based sorting in O(n log n) time, plus only O(n log n) evaluations
of ⪯. Then, all other evaluations of ⪯ can be easily inferred from the precomputed order.
By loosening the definition of similarity and smallness slightly, we can generalize this idea to

the case where H can be covered using a small number of vertex-induced subgraphs, so that:

(i) every edge of H is covered by some subgraph,

(ii) each subgraph has weak diameter O(log n) (i.e., every pair of vertices in the subgraph is at
distance O(log n) in H), and

(iii) each vertex belongs to O(log n) subgraphs.

Such a cover can indeed be constructed efficiently for an arbitrary graph H, see e.g. [ABCP98].
Unfortunately, in our setting, the graph H is incremental: we do not know the edges of H

beforehand, and we can only find out that u ∼ v when a difficult comparison involving δT (s, u)
and δT (s, v) is requested. In other words, edges are introduced to H throughout the life of D0.
As a result, in this setting, we must maintain an incremental sparse edge cover : the covering
satisfying the properties (i)–(iii) dynamically, with an additional critical restriction that the total
number of changes to the covering (i.e., the number of insertions/deletions to the vertex sets of
individual subgraphs) throughout the life of D0 is bounded by Õ(n). In Lemma 5.2, we propose
a data structure solving this problem. The implementation adapts a clustering technique named
Exponential Start Time Clustering, proposed by Miller, Peng, Vladu and Xu [MPX13, MPVX15].
Given the incremental sparse edge cover data structure, we can ensure that ⪯ is only evaluated
Õ(n) times in total, implying that D1 is only queried Õ(n) times even though the number of queries
to D0 may be superlinear.
The above approach, applied (with appropriate parameters) to each data structure D0, . . . ,Dt

ensures the complexity bounds of the data structure of Lemma 3.6.

4 Overview of the negative rational SSSP algorithm

In this section we give an overview of our Õ(n2.5)-time algorithm (Theorem 1.2) for the negatively-
weighted SSSP problem in short rational-weighted graphs. The algorithm can also detect a negative
cycle if one exists, but for the sake of this overview let us assume there are no negative cycles in G.
Recall that we have developed a very powerful and efficient data structure for performing

comparisons requested by Dijkstra’s algorithm (Lemma 3.6). That data structure does not assume
anything about the weights it operates on; in particular these weights can be negative. Hence, we
would like to benefit from it as much as possible in the algorithm for negative weights.

A closer look at Dijkstra’s algorithm. To this end, we first identify the possibly minimal
tweak one has apply to Dijkstra’s algorithm to make it work for negative weights. The well-known
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so-called Johnson’s trick [Joh77] says that, if one is given a feasible price function p of G, then
Dijkstra’s algorithm run on the graph G′ obtained from G by reducing the weights by p (which
makes the weights in G′ non-negative) has the same shortest paths as G. The non-negativity of
weights is required in Dijkstra’s algorithm only for arguing that the visiting order of vertices is
correct. This means that as long as the visiting order when running Dijkstra’s algorithm on G is
the same as if the algorithm was run on G′, the produced result will be correct. The latter order
is obtained by choosing a vertex v ∈ V \ S minimizing

min
y∈S
{δG′(s, y) + wp(yv)} = (δG(s, y) + p(s)− p(y)) + w(yv) + p(y)− p(v),

or equivalently, a vertex v minimizing

min
y∈S
{δG(s, y) + w(yv)} − p(v) = d(v)− p(v).

We conclude that Dijkstra’s algorithm run on a negatively-weightedG will produce correct distances
if only we shift the standard key d(v) of v in the priority queue Q by −p(v).

Limited-hop paths. Unfortunately, computing a feasible price function is not known to be any
easier than solving the negatively-weighted SSSP problem itself. However, as we show in Section 6,
the known scaling negatively-weighted SSSP algorithms [BNW22, BCF23] can be applied (in a
black-box way) to compute a weaker price function, namely an ϵ-feasible price function, a notion
dating back to [GT89, GT90].

Definition 4.1. Let G = (V,E) be a digraph with edge weights given by w : E → Q. Let ϵ ∈ Q+.
A function p : V → Q is called ϵ-feasible if for all uv = e ∈ E, wp(e) := w(e) + p(u)− p(v) ≥ −ϵ.

More specifically, an ϵ-feasible price function with values inQ[Õ(1/ϵ)] for short rational-weighted
graph can be computed in Õ(m log(1/ϵ)) time on the word RAM. We set ϵ = 2−Θ̃(

√
n) in our case.

Hence, computing such an ϵ-feasible price function p with Õ(
√
n)-bit values takes Õ(m

√
n) time.

Our previous discussion on a modified processing order in Dijkstra’s algorithm for negative
weights is not quite sound in general if p is only 2−Θ̃(

√
n)-feasible. However, it turns out that the

approach remains correct for short rational-weighted graphs if the shortest paths from s use at
most

√
n hops. In fact, we require and prove an even stronger property: if we make Dijkstra’s

algorithm refrain from processing vertices of S whose distances are not
√
n-short rational numbers,

then the computed distances are nevertheless correct for all the vertices v for which some shortest
path from the source has at most

√
n hops. More formally, given an arbitrary source z ∈ V , such

a variant, that we call the cut Dijkstra, computes values d̃(v) such that if v belongs to the set Cz

of vertices satisfying δG(z, v) = δ
√
n

G (z, v), then d̃(v) = δG(z, v), and otherwise d̃(v) is the length of
some ≤

√
n-hop path z → v (i.e., a distance upper bound). Perhaps surprisingly, from the output

of the algorithm, we cannot even tell which vertices belong to Cz; we do not need that anyway.
To make use of the cut Dijkstra, we again apply the hitting set trick [UY91]. LetM be a random

subset of V of size Θ(
√
n log n). Then, with high probability, for all pairs u, v ∈ V , M hits some

shortest u→ v path in G, unless all such shortest u→ v paths have less than
√
n hops. In order to

compute distances from s in G, we first extend M with the vertex s. We then run the cut Dijkstra
from each vertex z ∈ M , obtaining distance estimates d̃z(·). Next, we build an auxiliary complete
graph H on M so that the weight of an edge xy in H corresponds to the estimate d̃x(y) produced
by the cut Dijkstra run from x. Hence, we have wH(xy) = δG(x, y) if δG(x, y) = δ

√
n

G (x, y) and
wH(xy) ≥ δG(x, y) otherwise. In a standard way, one shows that for all y ∈M , δH(s, y) = δG(s, y)
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with high probability. Note that the edge weights in H are
√
n-short rational numbers. Therefore,

single-source shortest paths from s in H can be computed naively by running the Bellman-Ford
algorithm with rational arithmetic cost Õ(n) in Õ(|V (H)|3·n) = Õ(n2.5) time. Finally, the distances
from s in G are computed based on the equality δG(s, v) = minz∈M{δG(s, z) + d̃z(v)} that holds
w.h.p. and can be evaluated for each v in Õ(n3/2) time. Through all v, this is again Õ(n2.5) time.

Dealing with costly heap operations in the cut Dijkstra. We have not yet analyzed the
running time of the cut Dijkstra given an ϵ-feasible price function p. Roughly speaking, the time
cost of the cut Dijkstra excluding the time needed for selecting the vertex minimizing d(v)− p(v)
is no more than the running time of the algorithm of Theorem 1.1 for non-negative data, i.e.,
Õ(m). Unfortunately, efficiently selecting the smallest key d(v)− p(v) over all v ∈ V \ S is highly
non-trivial. The challenge lies in the fact that the values p(v) are O(

√
n)-short rationals and thus

Lemma 3.6 cannot be applied. If the priority queue was implemented naively (e.g., using a heap),
then the Õ(m) comparisons in the queue could take Ω(m

√
n) time. But recall that we need to run

the cut Dijkstra |M | = Õ(
√
n) times, so this would lead to a potentially cubic Θ̃(mn) total time.

To circumvent this problem, we carefully analyze what happens when a processed vertex v ∈ S
relaxes its outgoing edges vu1, vu2, . . . , vul, where u1, . . . , ul ∈ V \ S. We argue that if we sort the
values w(vui) − p(ui) so that w(vu1) − p(u1) ≤ . . . ≤ w(vul) − p(ul), then the key of ui in the
priority queue does not need to be updated until i−1 more vertices of S are processed (unless d(ui)
is updated in the meantime). Our implementation of the cut Dijkstra delays key updates using
this observation. We subsequently prove that the maximum number of such delayed key updates
performed in a single run of the cut Dijkstra is bounded by O(n3/2). This is achieved by analyzing
an interesting game (Lemma 7.9). This way, we reduce the total cost of priority queue key updates
to Õ(n2). Note that this is significantly less than Õ(m

√
n) for dense graphs.

It remains to show how the values w(vui)− p(ui) can be efficiently sorted when processing the
vertex v ∈ S. A reasonable sorting algorithm will perform Õ(l) = Õ(n) comparisons of the form
w(vui) − w(vuj) < p(uj) − p(ui) in that case. Note that the left hand side in this comparison
is an O(1)-short rational, whereas the right-hand side is an Õ(

√
n)-short rational. So a naive

implementation would spent Õ(
√
n) time per comparison, which would again lead to prohibitive

Õ(m
√
n) cost of the cut Dijkstra. However, we can again apply one of our early ideas here! Namely,

given best Õ(1)-bit rational approximations of the n2 values p(y)− p(x) for all x, y ∈ V , the total
time spent in sorting per cut Dijkstra run would be only Õ(m). Since the values p(·) are Õ(

√
n)-bit,

such an additional preprocessing step takes Õ(n2.5) time by Lemma 3.4. The stored approximations
are shared among multiple cut Dijkstra runs, and enable running a single cut Dijkstra in Õ(n2)
time. Since the number of runs is |M | = Õ(

√
n), the total cost is once again bounded by Õ(n2.5).

5 The algorithm for the non-negative case

In this section, we will prove Theorem 1.1; that is, show a randomized algorithm solving the single-
source shortest paths problem in the regime of non-negative edge weights. For convenience, we
restate it here, using the notation introduced in the Preliminaries.

Theorem 5.1 (Restatement of Theorem 1.1). Fix a constant c ∈ N≥1. Suppose we are given
a directed weighted graph G with non-negative edge weights from Q(c), and a source s ∈ V (G).
Suppose every vertex of G is reachable from s.
Then, with high probability, in time Õ(n + m) we can compute a single-source shortest paths

tree from s, i.e., an out-tree T rooted at s such that V (T ) = V (G), E(T ) ⊆ E(G) and for every
v ∈ V (G), we have that δT (s, v) = δG(s, v).
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The main technical tool of this section is a data structure maintaining an incremental, edge-
weighted out-tree T rooted at s, supporting the comparisons between the distances from s to the
vertices of T :

Lemma 3.6. Let c ∈ N≥1 be a constant. Let T be a rooted out-tree, initially containing only the
root s, with edge weights in Q(c). There exists a Monte Carlo randomized data structure supporting:

• leaf insertions to T (with a specified parent and edge weight); and

• answering queries of the form: given two vertices u, v ∈ V (T ) and a rational number p
q ∈ Q(c),

compare δT (s, u)− δT (s, v) to
p
q and return smaller, equal or larger.

The data structure processes n leaf insertions and q queries in Õ(n+q) time. The answers produced
are correct with high probability.

We stress that both the edge weights and the rational numbers in the queries might be negative;
note that the distances δT (s, ·) are still defined correctly: s is the root of the out-tree T , so for
every vertex v ∈ V (T ), there exists a unique path in T from s to v.
At this point of time, we present an efficient algorithm for non-negative single-source shortest

paths, assuming Lemma 3.6.

Proof of Theorem 5.1. We adapt Dijkstra’s algorithm to the setting of rational numbers. Recall
that throughout the algorithm, we maintain a growing set of visited vertices S ⊆ V , where initially
S = {s}. Then, we iteratively select a vertex v⋆ ∈ V \ S with the minimum value of

d(v) := min
zv∈E:z∈S

{δG(s, z) + wG(zv)}

and add v⋆ to S. This is implemented by maintaining a priority queue Q supporting: (1) adding
the elements of the form δG(s, z) + wG(zv) for z ∈ S, zv ∈ E, and (2) extracting the smallest
element of Q.
At the start of the algorithm, we initialize the data structure of Lemma 3.6 with a rooted

out-tree, initially only containing the root s, and supporting the edge weights and queries in Q(2c);
the data structure maintains the shortest paths tree T on the vertices from S. Whenever a new
vertex v is introduced to S through an edge (u, v) of weight w, we add that edge to the tree T .
Thus, a vertex is added as a leaf to T at most n times.
Then, the priority queue Q is implemented as follows: whenever an element of the form

δG(s, z) + wG(zv) is to be added to the queue, we emplace a pair (z, wG(zv)). In order to compare
two pairs (z1, w1) and (z2, w2) in the queue (z1, z2 ∈ S, w1, w2 ∈ Q(c)), we query the data structure
of Lemma 3.6 to compare δT (s, z1)−δT (s, z2) with w2−w1 ∈ Q(2c). With high probability, the data
structure returns the correct answer, so we correctly decide whether δT (s, z1)−δT (s, z2) < w2−w1;
or equivalently, whether δT (s, z1) + w1 < δT (s, z2) + w2.
Assuming that Q is implemented using a binary heap, the priority queue performs Õ(m) crucial

comparisons; thus, the data structure of Lemma 3.6 is queried Õ(m) times. Therefore, the data
structure processes all operations correctly with high probability and in Õ(n + m) time. Hence,
our algorithm also outputs the correct result with high probability and in near-linear time.

The remaining part of this section is devoted to the proof of Lemma 3.6. The structure of
this section is as follows. In Section 5.1, we introduce a data structure for incremental sparse edge
covers, maintaining a well-structured covering of the set of vertices of an incremental graph H.
Following that, in Section 5.2, we define the notion of similarity of real numbers: intuitively, two
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real numbers x, y are similar if their difference x−y is very close to a short rational number. Then,
we prove the properties of similarity that will be exploited in the design of the data structure from
Lemma 3.6. Finally, in Section 5.3, we use the introduced toolchain to produce an efficient data
structure for distance comparisons, proving Lemma 3.6.

5.1 Incremental sparse edge covers

The first component we introduce is a data structure maintaining, for an incremental undirected
graph, a dynamic family of subsets of vertices which we call a sparse edge cover :

Lemma 5.2. Let H be an initially empty n-vertex simple undirected graph, updated by edge addi-
tions, and let λ > 0. There is a non-adaptive9 randomized data structure maintaining a covering
V (H) = A1 ∪ A2 ∪ · · · ∪ Ak, updating the covering on each edge insertion by: adding or remov-
ing empty sets, and adding or removing vertices from the sets. On each edge insertion, the data
structure returns the sequence of performed updates.
With high probability (controlled by the constant λ), after each graph update, the covering sat-

isfies the following properties:

• (edge covering condition) for all uv ∈ E(H), there exists i ∈ {1, . . . , k} such that u, v ∈ Ai;

• (weak diameter condition) for all i ∈ {1, . . . , k} and u, v ∈ Ai, we have δH(u, v) ≤ λ log n;

• (sparsity condition) each v ∈ E(H) is in at most λ log n sets Ai.

With high probability (controlled by λ), the data structure processes m edge additions in Õ(n+m)
time and issues a total of Õ(n) single-element updates to the individual sets of the covering.

We stress that the covering is updated Õ(n) times, regardless of the value of m. In particular,
when m≫ n edges are inserted to the graph, the covering remains unchanged for most of the edge
insertions.
We prove Lemma 5.2 in the remaining part of the section.

Exponential Start Time Clustering. The implementation of the data structure crucially relies
on the method of Exponential Start Time Clustering by Miller et al. [MPX13, MPVX15]. Here,
we introduce the discrete variant of the method and state its various properties. The continuous
versions of these properties are proved in [MPX13, MPVX15], so we provide the proofs of the
statements in Appendix D.
For a real number p ∈ (0, 1), the geometric distribution Geo(p) is the integer-valued probability

distribution of the number of failures in independent Bernoulli trials with success probability p
before the first success; that is, for any random variable X ∼ Geo(p) and k ∈ N≥0, we have
Pr[X ≥ k] = (1 − p)k. For our convenience, for a real α > 0, we will consider the distribution
Geo(1− e−α). That is, for a random variable X ∼ Geo(1− e−α), we have Pr[X ≥ k] = e−αk.
Consider the following clustering algorithm partitioning a graph H into vertex-disjoint clusters

C1, . . . , Ct:

9Non-adaptive, that is, we assume that the sequence of queries to the data structure is predetermined, but unknown
to the implementation of the data structure.
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Algorithm 1 Discrete Exponential Start Time Clustering
Input: unweighted undirected graph H = (V,E), parameter α > 0.
Output: vertex partitioning V = C1 ∪ · · · ∪ Ct.

1: For each v ∈ V , draw bv ∼ Geo(1− e−α) independently at random.
2: For each v ∈ V , assign v to the cluster centered at u, where u = argminw∈V (δH(v, w)− bw). If
multiple values of w minimize the value δH(v, w)− bw, pick one arbitrarily.

3: Return the set of clusters created this way.

Note that we explicitly do not introduce any tie-breaking rules in Step 2 above (even though
due to this decision, some of the produced clusters could become disconnected); this choice will be
essential to the design of the incremental sparse edge cover data structure. Also remark that the
choice of the values bv is not dependent on the graph given as input.
We follow with the properties of the partitioning C1 ∪ · · · ∪Ck produced by the Discrete Expo-

nential Start Time Clustering. The proofs are deferred to Appendix D.

Lemma 5.3. Let k ∈ N≥1. Then, with probability at least 1 − 1
nk−1 , we have bv ≤ k logn

α for all
v ∈ V . Moreover, if bv ≤ k logn

α for all v ∈ V , then independently of the tie-breaking rule, for every
i ∈ {1, . . . , t} and every pair of elements u, v ∈ Ci, we have δH(u, v) ≤ k logn

α .

Lemma 5.4. Let uv ∈ E be an edge of H. The probability that both endpoints of the edge are in
the same cluster is at least e−2α, independently of the tie-breaking rule

Finally, let bmax = maxv∈V bv. Consider the shifted graph of H, denoted Hshift, constructed as
follows: introduce to H a new vertex s, called a source. Then, for each v ∈ V , connect s with v
with a path Pv of length bmax + 1 − bv. For convenience, let xv be the neighbor of s on Pv. It is
easy to verify that:

Observation 5.5. In the Discrete Exponential Start Time Clustering, v ∈ V can be assigned to
the cluster centered at u ∈ V if and only if there exists some shortest path from s to v with prefix
Pu; or equivalently, xu lies on some shortest path from s to v.

Incremental low-depth BFS trees. We will need to maintain a low-depth BFS tree of an
unweighted graph under edge insertions. More formally, we use the following variant of the classical
Even-Shiloach tree [ES81]10 suited to our needs.

Lemma 5.6. [ES81] Let G be an initially connected unweighted dynamic undirected graph, updated
by edge insertions only, and whose diameter never exceeds D. Let s ∈ V (G). It is possible to
maintain, for each vertex v ̸= s, a vertex βv ̸= s that is a neighbor of s on some shortest path
from s to v. The initialization and the following sequence of q insertions is processed in total time
O(n+ (q +m)D), and the values βv are updated at most O(nD) times in total.

Proof. On initialization, compute any BFS tree T rooted at s and store the resulting values βv.
When an edge uv is inserted to G, δG(s, v) can only change to δG(s, u) + 1 if that value is less

than the distance to v before the insertion. If this is not the case, the tree does not need to be
updated.
If the distance to v drops, then the distances to its adjacent vertices can also drop, and so

on. Hence, to perform the update, we can mimic breadth-first search. We initialize the queue Q
of vertices whose distances drop due to the insertion and repeatedly process the vertices y ∈ Q,
10The Even-Shiloach tree is usually stated in the decremental setting. Its incremental is conceptually even simpler.

15



possibly detecting new distance drops (causing queue pushes) by iterating through y’s incident
edges, until the queue Q empties. While establishing new distances, we can also easily maintain
the values βv based on the respective values of the parents in the tree T being rebuilt top-down.
Clearly, throughout the entire sequence of edge insertions, a vertex u is only put in the queue

(and its neighborhood is explored in O(deg(v)) time) if its distance drops which can happen at
most D times. At the same time, the value βu can only change if u is put on the queue, i.e.,
O(D) times. It follows that the total update time through a sequence of q insertions is bounded
by O(q +D ·

∑
v∈V deg(v)) = O((m+ q)D).

Incremental Exponential Start Time Clustering. We now show how the clustering produced
by Algorithm 1 works in the incremental setting, where we are given an n-vertex graph H updated
by edge insertions. More formally, we prove the following statement:

Lemma 5.7. Let H be an initially empty n-vertex undirected graph, updated by edge additions. Let
also k ≥ 1. We can maintain in a non-adaptive way a clustering V (H) = C1 ∪ · · · ∪ Ct, updating
the covering on each edge insertion by: adding or removing empty sets, and adding or removing
vertices from the sets. On each edge insertion, we return the sequence of performed updates. Then:

• independently for each snapshot of the dynamic graph and each edge uv present in the snap-
shot, the vertices u and v belong to the same cluster with probability at least e−2;

• with probability at least 1 − 1
nk−1 , in all snapshots of the dynamic graph, all clusters Ci and

all u, v ∈ Ci, we have δH(u, v) ≤ k log n.

With probability at least 1− 1
nk−1 , the data structure processes m edge additions in time Õ(n+m)

and updates the covering Õ(n) times.

For convenience, fix α := 1. On initialization, draw the integers bv ∼ Geo(1−e−α) for each v ∈ V
independently at random, and put each vertex v ∈ V (H) into a one-element cluster centered at
v. Let bmax be the maximum value of bv. By Lemma 5.3, we have bmax ≤ k log n with probability
at least 1 − 1

nk−1 . We construct the shifted graph Hshift of H in time Õ(n); note that initially

|V (Hshift)| = Õ(n) and |E(Hshift)| = Õ(n) with high probability. Then initialize a data structure
of Lemma 5.6 maintaining Hshift. The data structure maintains, for each vertex v ∈ V (Hshift)\{s},
a neighbor βv of s such that βv lies on some shortest path from s to v. Note that by the construction
of Hshift, for each v ∈ V (H) we have that βv = xu for some u ∈ V (H); and by Observation 5.5, v
can then be assigned to the cluster centered at u.
Now, each edge insertion to H implies an analogous edge insertion to Hshift; after the insertion,

some of the values βv for some vertices v ∈ V may change; on each modification of βv (say from
xu1 to xu2), we move v from the cluster centered at u1 to the cluster centered at u2.
It remains to prove the correctness and efficiency bounds of Lemma 5.7. By Lemma 5.3, we

have bmax ≤ k log n with probability at least 1 − 1
nk−1 , so Lemma 5.6 applies with D = O(log n)

with high probability and therefore any sequence of m edge insertions, starting from an empty
graph takes time Õ(n+m); and moreover, the values βv are updated at most Õ(n) times in total.
Therefore, the total number of elementary changes to the clustering is upper-bounded by Õ(n).
Note that the choice of the parameters bv in the Exponential Start Time Clustering does not

depend on the input graph. Since we assume the data structure is non-adaptive, we may assume
that the sequence of updates to the graph is predetermined; so after each update, the current
clustering of the graph is a clustering that could be produced by Algorithm 1 when run on each
snapshot of the graph from scratch with some tie-breaking strategy. Therefore:
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• For some fixed edge uv in some fixed snapshot ofH, we have by Lemma 5.4 that the probability
that both u and v are in the same cluster Ci is at least e−2;

• By Lemma 5.3, we have bmax ≤ k log n with probability at least 1− 1
nk−1 . Provided that this

inequality holds, then again by Lemma 5.3, in every snapshot of the graph and every cluster
Ci, we have that δH(u, v) ≤ k log n for each pair of vertices u, v ∈ Ci.

This concludes the proof of Lemma 5.7.

Multiple independent clusterings. We are now ready to prove Lemma 5.2.

Proof of Lemma 5.2. Suppose that λ > 50 and set k = λ. Let T := λ log n and create T indepen-
dent instances of Incremental Exponential Start Time Clustering (Lemma 5.7); the ith instance
maintains its own clustering Ci = {Ci

1, C
i
2, . . . , C

i
ti}. Our data structure maintains the covering

C :=
⋃T

i=1 Ci.
On each edge insertion, we relay the insertion to each instance of Incremental Exponential Start

Time Clustering and apply each update received from each instance to the covering C.
We verify that:

• The edge covering condition holds in C: fix a snapshot of the incremental graph and an edge
uv of the graph. Since the clusterings Ci are independent, the probability that u and v are in
different clusters in each clustering is at most

(1− e−2)T ≤ (e−1/10)T = e(−1/10)k logn = n−k/10.

Since the number of snapshots of the graph is bounded by n2 (note that the graph is simple,
so we may add at most one edge between any pair of vertices) and the number of edges is
bounded by n2 in each instance, we infer from the union bound that the probability that in
any snapshot, the endpoints of any edge are assigned to different clusters in each clustering
is at most

n4 · n−k/10 =
1

nk/10−4
.

Since k > 50 and k is chosen arbitrarily, we conclude that the edge covering condition is
satisfied with high probability.

• The weak diameter condition holds in C. By Lemma 5.7, this condition holds for all snapshots
of the dynamic graph in the ith instance of Incremental Exponential Start Time Clustering
with probability at least 1− 1

nk−1 . Since T = k log n, we get by union bound that the condition
holds for all clusterings with probability at least 1− k logn

nk−1 > 1− 1
nk−2 for n large enough.

• The sparsity condition holds trivially by construction.

• With high probability (at least 1− 1
nk−1 ), the ith instance of the data structure from Lemma 5.7

processesm edge additions in time Õ(n+m) and updates its clustering Ci at most Õ(n) times.
Again using union bound, we see that with high probability, all instances process m edge
additions in total time Õ(n+m) and issue at most Õ(n) updates in total to the covering C.

Since all required conditions are satisfied with high probability, this concludes the proof.
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5.2 Similarity of real numbers

We now introduce the notion of similarity of real numbers. Assume b, ℓ ≥ 0 are integer parameters.
We say that two real numbers x, y ∈ R are (b, ℓ)-similar (denoted x ∼ℓ

b y) if there exists a rational
number p

q ∈ Q[2b] such that ∣∣∣∣x− y − p

q

∣∣∣∣ ≤ 2−ℓ.

In other words, x and y are (b, ℓ)-similar if and only if their difference is sufficiently close to some
rational number in Q[2b]. Naturally, this definition is symmetric: whenever x and y are (b, ℓ)-
similar, then y and x are (b, ℓ)-similar. Also, if x and y are (b, ℓ)-similar, then also x and y are
(b′, ℓ′)-similar whenever b′ ≥ b and ℓ′ ≤ ℓ.
Observe that if ℓ is sufficiently large compared to b, then the rational number p

q above is defined
uniquely:

Lemma 5.8. Assume that ℓ ≥ 2b + 2 and let x, y ∈ R. If there exist two rational numbers
p1
q1
, p2q2 ∈ Q[2b] such that

∣∣∣x− y − p1
q1

∣∣∣ ≤ 2−ℓ and
∣∣∣x− y − p2

q2

∣∣∣ ≤ 2−ℓ, then p1
q1

= p2
q2
.

Proof. Observe that ∣∣∣∣p1q1 − p2
q2

∣∣∣∣ ≤ ∣∣∣∣x− y − p1
q1

∣∣∣∣+ ∣∣∣∣x− y − p2
q2

∣∣∣∣ ≤ 2−(ℓ−1).

Since q1, q2 > 0, we equivalently have that

|p1q2 − p2q1| ≤ 2−(ℓ−1) · q1q2.

The left-hand side of the inequality is nonnegative and integral, while the right-hand side is upper-
bounded by 1

2 from the facts that ℓ ≥ 2b + 2 and q1, q2 < 2b. Thus p1q2 = p2q1, or equivalently
p1
q1

= p2
q2
.

Therefore, for ℓ ≥ 2b+2, we introduce the following notation. Given two real numbers x, y ∈ R,
we say that x is (b, ℓ)-smaller than y (denoted x ⪯ℓ

b y) when x ∼ℓ
b y and for the unique rational

number p
q ∈ Q[2b] such that

∣∣∣x− y − p
q

∣∣∣ ≤ 2−ℓ, we have that x− y ≤ p
q . We remark that if x ⪯

ℓ
b y

and y ⪯ℓ
b x, then actually x− y = p

q for the unique
p
q ∈ Q[2b] with

∣∣∣x− y − p
q

∣∣∣ ≤ 2−ℓ. In this case,

we will say that x and y are (b, ℓ)-equal (denoted x ≈ℓ
b y).

The notion of similarity enjoys the following weak variant of equivalence:

Lemma 5.9. Let b1, b2 ≥ 0 and ℓ ≥ 1. Suppose for three real numbers x, y, z ∈ R that x ∼ℓ
b1

y and
y ∼ℓ

b2
z. Then x ∼ℓ−1

b1+b2+1 z.

Proof. Let p1
q1
∈ Q[2b1 ], p2

q2
∈ Q[2b2 ] be such that

∣∣∣x− y − p1
q1

∣∣∣ ≤ 2−ℓ and
∣∣∣y − z − p2

q2

∣∣∣ ≤ 2−ℓ. Then

the rational number p
q
:= p1

q1
+ p2

q2
belongs to Q[2b1+b2+1].

Intuitively, when x and y are similar, and y and z are similar, then also x and z are similar,
albeit possibly with worse parameters b and ℓ.
The most important result in this section is the following weak variant of transitivity for the

relation of (b, ℓ)-smallness: given that ℓ is sufficiently large in terms of b, from the facts that x
is (b, ℓ)-smaller than y, which in turn is (b, ℓ)-smaller than z, and additionally that x and z are
(b, ℓ)-similar, we can infer that x is (b, ℓ)-smaller than z. Note that in the conclusion of the lemma,
the parameters with which x is smaller than z do not worsen.
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Lemma 5.10. Let b, ℓ ≥ 0 be such that ℓ ≥ 4b+ 5. Suppose for three real numbers x, y, z ∈ R that
x ⪯ℓ

b y, y ⪯ℓ
b z and x ∼ℓ

b z. Then x ⪯ℓ
b z.

Proof. Let p1
q1
∈ Q[2b], p2q2 ∈ Q[2b] be such that

∣∣∣x− y − p1
q1

∣∣∣ ≤ 2−ℓ and
∣∣∣y − z − p2

q2

∣∣∣ ≤ 2−ℓ; moreover,

x − y < p1
q1
and y − z < p2

q2
. Let also p3

q3
∈ Q[2b] be such that

∣∣∣x− z − p3
q3

∣∣∣ ≤ 2−ℓ. Then, letting
p
q
:= p1

q1
+ p2

q2
∈ Q[22b+1], we have that

∣∣∣x− z − p
q

∣∣∣ ≤ 2−(ℓ−1) and x− z < p
q .

Applying the fact that (ℓ−1) ≥ 2(2b+1)+2, we get from Lemma 5.8 that pq is the unique fraction

in Q[22b+1] with the property that
∣∣∣x− z − p

q

∣∣∣ ≤ 2−(ℓ−1). Since p3
q3
∈ Q[22b+1] and

∣∣∣x− z − p3
q3

∣∣∣ ≤
2−ℓ < 2−(ℓ−1), we deduce that p3

q3
= p

q . The statement of the lemma follows from observing that
x− z < p

q = p3
q3
.

5.3 Data structure for distance comparisons

This section is dedicated to the proof of Lemma 3.6. Henceforth, fix k > 0; our aim is to describe
the data structure that processes any sequence of n leaf insertions and q queries correctly in time
Õ(n + q) with probability at least 1 − n−k. Let λ > 1 be the constant ensuring the correctness
of the data structure from Lemma 5.2 with probability at least n−(k+1). Similarly, let γ > 1 be
the constant from Fact 3.2 ensuring the following: assume that, given an n-vertex out-tree T and
a real h ≥ 1, we sample a random subset H of ⌈n/h⌉ nodes of T containing the source. Then, with
probability at least n−(k+1), for all v ∈ V (T ), the nearest ancestor of v in H is at most γ · h log n
hops away from v. Finally, recall from the statement of the lemma the constant c > 1 with the
property that all short rational numbers supplied to the data structure are in Q(c) = Q[2cB−1].
Assume that the upper bound n≫ 1 (with n large enough) on the number of leaf insertions is

known at the time of the initialization of the data structure11 and fix it throughout this section.
For convenience, let V be the set of vertices of size n + 1containing s and all the vertices to be
inserted to the dynamic tree.
On initialization, compute the constant C := ⌈2(γ + λ)⌉ ≥ 1 and define the values K :=

⌈C log n⌉ and p := K−1; assume that p ∈ (0, 12). Let t be the smallest positive integer for which
(n + 1)pt ≤ 1 (note that t ≤ log2(n + 1)), and create a finite sequence of integers (n0, . . . , nt) by
setting n0 = n+ 1 and ni =

⌈
n0p

i
⌉
. We the define a descending chain of hitting sets in T :

V = L0 ⊇ L1 ⊇ . . . ⊇ Lt = {s},

by setting L0 = V and, for each i ∈ {1, . . . , t}, choosing Li as a random subset of Li−1 of size
ni containing s. Note that nt = 1, so Lt = {s}. For each vertex v ∈ V , define its level, denoted
level(v), as the largest integer j ∈ {0, . . . , t} such that v ∈ Lj .
Observe that the interface presented in Lemma 3.6 is deterministic: every query has exactly

one correct answer (smaller, equal or larger). Therefore, at no point of time can a user of the
data structure determine any information about the internal state of the data structure, including
any information about the hitting sets Li (assuming all the answers up to this point of time were
correct). Thus we can assume that the sequence of requests to the data structure (leaf insertions

11A standard data structure design technique allows us to make this assumption: initialize the data structure with
n = 2. Whenever the data structure undergoes the (n + 1)th insertion, reinitialize the entire data structure with n
twice larger and reapply all the leaf insertions that occurred so far. This way, with n leaf insertion queries in total,
the data structure reinitializes at most logn times, and the number of actual leaf additions over all instantiations of
the data structure is bounded by 2n.
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and queries) is predetermined, though unknown to the implementation of the data structure. In
particular, we assume that the requests eventually produce a predetermined rooted out-tree T ⋆.
For any v ∈ V and i ∈ {0, . . . , t}, let αi

v, or the nearest level-i ancestor of v, be the nearest
ancestor w ∈ Li of v in T ⋆. Note that αi

v is always correctly defined as level(s) = t and s is
an ancestor of every vertex of T ⋆ (including itself). Also note that a data structure maintaining T
can maintain the values of αi

v for all vertices v already added to the tree. Then we have that

Lemma 5.11. Fix i ∈ {0, . . . , t}. Then with probability at least 1 − n−(k+1), for all v ∈ V , the
nearest level-i ancestor of v is at most γ ·Ki log n hops apart from v in T ⋆.

Proof. Observe that by the construction, Li is a uniformly random subset of V of size ni containing
s; also note that ni =

⌈
n/Ki

⌉
. Applying Fact 3.2, we find that with probability at least 1−n−(k+1),

for every v ∈ V , the nearest ancestor of v in Li is at most γ ·Ki log n.

In the following description we assume that the conclusion of Lemma 5.11 holds.
To continue, define the following sequences (b0, . . . , bt), (ℓ0, . . . , ℓt) of integers:

bi = cB ·Ki+1, ℓi = 10bi ·K.

We now sketch the implementation of the data structure. We maintain the data structure from
Lemma 3.1 supporting queries computing the weight of a descending path in T . Recall that the
amortized update time for the data structure is O(polylog n) and the query time for a k-hop path is
Õ(k). Now we aim to construct, for each i = t, t−1, . . . , 0, an auxiliary data structure Di answering
queries of the form: given two vertices u, v ∈ V (T ) and a rational number p

q ∈ Q[2bi ], compare
δT (s, u)− δT (s, v) to

p
q . Note that the implementation of Dt is straightforward: since Lt = {s}, all

queries reduce to the comparison of any given rational number in Q[2bt ] with 0; this can be done
easily in time O(bt). On the opposite end of the spectrum, an efficient implementation of D0 will
directly resolve Lemma 3.6.
The following lemma proves that the auxiliary data structures Dt−1, . . . ,D0 can be constructed

inductively:

Lemma 5.12. Let i ∈ {0, . . . , t−1}. Suppose we have access to the data structure Di+1 as an oracle.
Then there exists an implementation of the data structure Di so that, assuming that Di+1 answers
all the queries correctly, with probability at least 1− 1

nk+1 , Di processes all vertex insertions and qi
queries correctly:

• performing at most Õ(ni) queries to Di+1,

• in time Õ(n+ qibi), not counting the time of the operations on Di+1.

Proof. Note that the answers to the queries that Di is supposed to produce are uniquely deter-
mined. Consequently, as long as Di does not err (which will be the case with high probability by
construction), the answers of Di will be uniquely determined. Hence, we can assume that, w.h.p.,
the sequence of queries to Di does not depend on the answers produced by Di, or, in other words,
is predetermined (but unknown to Di).
The auxiliary data structure maintains:

• An instance of the data structure for incremental sparse edge covers from Lemma 5.2, initial-
ized with an edgeless graph H on the vertex set Li.

From now on, we assume that the data structure maintains dynamically a collection of sets
A1, . . . , Ak satisfying, with high probability, the edge covering condition, the weak diameter
condition, and the sparsity condition.
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• For every vertex v ∈ Li already added to the tree:

– for v ̸= s, zv,i: the nearest strict ancestor of v in Li; and dv,i: the exact rational distance
in T from zv,i to v.

– dv,i+1 ∈ Q: the exact rational distance in T from αv,i+1 to v.

– av ∈ Q[2O(ℓi)]: an approximation of δT (s, v), satisfying |av − δT (s, v)| ≤ k
2ℓi+2·n , where

k = |Li ∩ T [s → v]| (k ≤ n) is the number of vertices of Li on the unique path from s
to v. Moreover, the denominator of av is equal to 2ℓi+2 · n.
Note that the approximation av satisfies in particular |av − δT (s, v)| ≤ 2−(ℓi+2). The
stronger approximation will only prove useful during the computation of the values av.

On initialization of the data structure, we set ds,i+1 = 0 and as = 0. Moreover, the data
structure will maintain the following invariant about H: if uv ∈ E(H), then δT (s, u) ∼ℓi

bi
δT (s, v).

Since ℓi ≫ bi, we actually infer from the weak diameter condition that for every pair of vertices
u, v in a single cluster, the distances δT (s, u) and δT (s, v) are similar:

Claim 5.13. Assume u, v ∈ Li belong to the same cluster Aj in the sparse edge covering from
Lemma 5.2. Then

δT (s, u) ∼ℓi−λ logn
(1+bi)·λ logn δT (s, v).

Proof. By the satisfaction of the weak diameter condition in Aj , there exists a path v0, v1, . . . , vz
in H of length at most λ log n with endpoints u and v. By the invariant in H, we have

vj−1 ∼ℓi
bi
vj for every j ∈ {1, . . . , z}.

Applying Lemma 5.9 multiple times, we get the conclusion of the lemma.

For brevity, we set

b′i = (1 + bi) · λ log n,

ℓ′i = ℓi − λ log n.

Since ℓ′i is still sufficiently large compared to b
′
i, we conclude that the distances from s to the vertices

of a single cluster Aj can be ordered with respect to ⪯
ℓ′i
b′i
:

Claim 5.14. Assume u, v, w ∈ Li belong to the same cluster Aj. Then:

• it is always the case that δT (s, u) ⪯
ℓ′i
b′i
δT (s, w) or δT (s, w) ⪯

ℓ′i
b′i
δT (s, u),

• if δT (s, u) ⪯
ℓ′i
b′i
δT (s, v) and δT (s, v) ⪯

ℓ′i
b′i
δT (s, w), then δT (s, u) ⪯

ℓ′i
b′i
δT (s, w).

Proof. First, observe that:

ℓ′i ≥ 10bi · C log n− λ log n ≥ 20bi · λ log n− λ log n ≥ 19bi · λ log n,

b′i = (1 + bi) · λ log n ≤ 2bi · log n.

Hence, ℓ′i ≥ 4b′i+5. We infer from Claim 5.13 and the definition of ⪯ℓ′i
b′i
that for every pair of vertices

u,w ∈ Aj , the values δT (s, u) and δT (s, w) are ordered by the relation of (b′i, ℓ
′
i)-smallness.

12 In
turn, the transitivity follows immediately from Claim 5.13 and Lemma 5.10.

12Note that it can both happen that δT (s, u) ⪯ℓ′i
b′i

δT (s, w) and δT (s, w) ⪯ℓ′i
b′i

δT (s, u), in which case we say that

these two values are (b′i, ℓ
′
i)-equal, denoted δT (s, u) ≈ℓ′i

b′i
δT (s, w).
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Note that the relation defined by ⪯ℓ′i
b′i
on a distances from s to the vertices of a cluster is actually

a total preorder : it is transitive and total, but some distances may be equivalent wrt. ⪯ℓ′i
b′i
.

We can now exploit the transitivity property provided by Claim 5.14 by showing that the linear
order of values δT (s, v) for v ∈ Aj can be maintained dynamically:

Claim 5.15. There exists a data structure maintaining the set of elements of a single cluster Aj,
supporting the following types of operations:

• Add (remove) an element v ∈ Li to (from) Aj. It is guaranteed that after the update, the
cluster satisfies the weak diameter property. The update is processed in time Õ(bi), plus
O(log n) accesses to the oracle Di+1.

• Query: given two elements u, v ∈ Aj, returns whether δT (s, u) ⪯
ℓ′i
b′i

δT (s, v). The query is
processed in time O(log n).

Proof. We maintain the elements of Aj in a balanced binary search tree (BBST; e.g., an AVL tree)

ordered by ⪯ℓ′i
b′i
, with the groups of pairwise (b′i, ℓ

′
i)-equal elements collapsed to a single element of

the BBST. In order to test the ordering of two vertices u, v ∈ Li while updating the BBST (e.g.,

during the insertion of v ∈ Li \Aj to Aj), we implement the comparison δT (s, u) ⪯
ℓ′i
b′i
δT (s, v) using

the oracle Di+1.

First, we find the unique rational number p
q ∈ Q[2b

′
i ] satisfying

∣∣∣δT (s, u)− δT (s, v)− p
q

∣∣∣ ≤ 2−ℓ′i ,

as follows. For any p
q for which the bound holds, by the triangle inequality and ℓ

′ < ℓ, we have:∣∣∣∣au − av −
p

q

∣∣∣∣ ≤ ∣∣∣∣δT (s, u)− δT (s, v)−
p

q

∣∣∣∣+ |au − δT (s, u)|+ |av − δT (s, v)|

≤ 2−ℓ′i + 2 · 2−(ℓi+2)

≤ 2−(ℓ′i−1).

Hence, p
q differs from the difference of the approximations au − av by at most 2−(ℓ′i−1). Since

(ℓ′i − 1) ≥ 2b′ + 1, it follows from Lemma 5.8 that p
q is indeed a unique fraction with this property.

The fraction can be computed in time Õ(b′i) = Õ(bi) by finding the best b′i-bit rational approximation

(Lemma 3.4), i.e., the pair ra(au − av, b
′
i) =

(
p1
q1
, p2q2

)
with pi

qi
∈ Q[2b

′
i ], and observing that p

q is the

fraction from {p1q1 ,
p2
q2
} that is closer to au − av.

With the fraction p
q in hand, recall that δT (s, u) ⪯

ℓ′i
b′i
δT (s, v) if and only if δT (s, u)−δT (s, v) ≤ p

q .
Now notice that

δT (s, u)− δT (s, v)−
p

q
= δT (s, αu,i+1) + du,i+1 − δT (s, αv,i+1)− dv,i+1 −

p

q
.

Therefore, δT (s, u)− δT (s, v) ≤ p
q if and only if

δT (s, αu,i+1)− δT (s, αv,i+1) ≤
p

q
+ dv,i+1 − du,i+1. (4)

Recall that αu,i+1, αv,i+1 ∈ Li+1. Moreover, by Lemma 5.11 and the fact that the edge weights
in T are in Q(c), we have that du,i+1, dv,i+1 ∈ Q(c·γKi+1 logn), so dv,i+1 − du,i+1 ∈ Q(2c·γKi+1 logn) =
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Q[22cB·γKi+1 logn−1]. Thus, the right-hand side of Eq. (4) is in Q[2z], where

z = 2cB(γ ·Ki+1 log n) + b′i

= 2cB · γKi+1 log n+ (1 + bi) · λ log n (b′i = (1 + bi) · λ log n)

≤ 2cB · γKi+1 log n+ 2bi · λ log n (bi ≥ 1)

≤ 2bi · γ log n+ 2bi · λ log n (bi = cB ·Ki+1)

= bi · 2 log n · (γ + λ) ≤ bi ·K = bi+1.

Hence, pq +dv,i+1−du,i+1 ∈ Q[2bi+1 ], so Di+1 can be queried to compare δT (s, αu,i+1)−δT (s, αv,i+1)

to p
q +dv,i+1−du,i+1. The result of this comparison is exactly the result of the comparison between

δT (s, u)− δT (s, v) with
p
q . All in all, this comparison can be implemented in time Õ(bi) and issues

exactly one query to Di+1.
Summing up, an update to Aj requires adding or removing an element in the BBST. This can

be done in time O(log n), plus O(log n) comparisons between the elements of the BBST. By the
discussion above, we conclude that a single modification of the BBST can be performed in time
Õ(bi) with additional O(log n) queries to Di+1.
With the BBST in place, the query is straightforward: given two elements u, v ∈ Aj , we have

δT (s, u) ⪯
ℓ′i
b′i
δT (s, v) if either u and v are in the same group of (b′i, ℓ

′
i)-equal elements, or u is earlier

in the BBST ordering than v. Both conditions can be verified in time O(log n).

We are now ready to implement the data structure. For each cluster Aj of the sparse edge
cover from Lemma 5.2, we have an instance of the data structure from Claim 5.15 maintaining the
total preorder on {δT (s, v) : v ∈ Aj}. We move to the implementation of the leaf insertion and the
query.
Suppose a vertex v ∈ Li is added to T as a child of an already existing vertex u ∈ V (T ).

We compute the vertices αv,i and αv,i+1, and using the data structure from Lemma 3.1, we com-
pute the exact distances dv,i and dv,i+1. Recall from Lemma 5.11 that the paths from zv,i to v,
and from αv,i+1 to v have at most O(Ki log n) and O(Ki+1 log n) hops, respectively; therefore,
dv,i ∈ Q[2O(Ki log2 n)], dv,i+1 ∈ Q[2O(Ki+1 log2 n)]. Both values can be computed exactly in time Õ(bi)
since bi = O(log n) ·Ki.
Then, av is computed by rounding dv,i down to the nearest fraction of the form

p
2ℓi+2·n (so p

is equal to
⌊
2ℓi+2 · n · dv,i

⌋
) and letting av = azv,i +

p
2ℓi+2·n . To see that this satisfies the re-

quired properties of av, let k = |Li ∩ T [s → v]|. Then |Li ∩ T [s → zv,i]| = k − 1 holds, so
|azv,i − δT (s, zv,i)| ≤ k−1

2ℓi+2·n . Since |δT (zv,i, v) −
p

2ℓi+2·n | = |dv,i − p
2ℓi+2·n | ≤

1
2ℓi+2·n and

δT (s, v) = δT (s, zv,i) + δT (zv,i, v), it follows that |av − δT (s, v)| ≤ k
2ℓi+2·n . Observe that av can

also be computed in time Õ(bi).

Now consider handling a query. In the query, Di receives two vertices u, v ∈ Li already added to
a tree, and a rational number p

q ∈ Q[2bi ], and Di is to return the result of the comparison between
δT (s, u)−δT (s, v) and p

q . Our aim is to first try to perform the comparison using the approximations
of δT (s, u) and δT (s, v), and – if the result of the comparison is inconclusive – use the machinery
of sparse edge covers and Claim 5.15 to infer the result of the comparison, potentially asking some
additional queries to Di+1.
Compute a := au − av. We consider three cases, depending on the value of a:

23



• Suppose that a > p
q +

1
2ℓi+1 . Then from |au−δT (s, u)| ≤ 2−(ℓi+2) and |av−δT (s, v)| ≤ 2−(ℓi+2)

we conclude that δT (s, u)− δT (s, v) >
p
q , so we can return greater. Note that this comparison

can be performed in time Õ(bi).

• Analogously, if a < p
q −

1
2ℓi+1 , then we can return smaller.

• If neither of the equalities above holds, then |a− p
q | ≤ 2−(ℓi+1). Since |au−δT (s, u)| ≤ 2−(ℓi+2)

and |av − δT (s, v)| ≤ 2−(ℓi+2), we find that |δT (s, u) − δT (s, v) − p
q | ≤ 2−ℓi . As p

q ∈ Q[2bi ],

we infer that δT (s, u) ∼ℓi
bi

δT (s, v). Therefore, still preserving the invariant on H, we can
add an edge uv to H. The edge addition causes a sequence of updates to the covering
Li = A1 ∪ · · · ∪Ak; each update (adding or removing a vertex from a set) is processed by the
data structure of Claim 5.15.

Afterwards, we have uv ∈ E(H), so by the edge covering condition of Lemma 5.2 there exists
a set Aj such that u, v ∈ Aj . In order to locate this set, we exploit the sparsity condition:
since at most O(log n) sets contain a vertex u, we enumerate all the sets containing u and
test each of the for the containment of v. Having located the set Aj , we perform a query
on the corresponding instance of the data structure from Claim 5.15 and, depending on the
result of the query, return smaller, equal, or larger.

Observe that the sequence of queries to the sparse edge covering data structure of Lemma 5.2 is
uniquely determined from the sequence of queries to Di, and the number of updates to Lemma 5.2
does not exceed the number of queries to Di. Since the queries to Di are predetermined, then so are
the queries to the sparse edge covering data structure. Hence, with probability at least 1 − 1

nk+1 ,

the sparse edge covering data structure processes all qi queries correctly in time Õ(ni + qi), and
updates the covering at most Õ(ni) times. Each update of the covering is in turn processed by the
data structure of Claim 5.15 in time Õ(bi), plus O(log n) queries to Di+1. Therefore, the total time
required to process all the updates of the covering is Õ(nibi) = Õ(n), plus Õ(ni) queries to Di+1.
Finally, observe that each leaf insertion and each query is processed in time Õ(bi), not counting

the time of updates to the sparse edge covering data structure or queries to Di+1. Within this
regime, all operations (insertions and queries) are processed in time Õ((ni + qi)bi) = Õ(n+ qibi).
Thus, in total, any sequence of ni leaf insertions and qi queries can be processed in time

Õ(n+ qibi), plus Õ(ni) queries to Di+1. This concludes the proof.

We finish the construction of the data structure by constructing, for each i = t − 1, . . . , 0, the
auxiliary data structure Di that uses Di+1 as an oracle. We claim that D0 is exactly the sought
data structure for distance comparisons.
First, we estimate the success probability guarantees. Recall that the conclusion Lemma 5.11

holds with probability at least 1 − 1
nk+1 ; and given that Lemma 5.11 holds, each auxiliary data

structure D0, . . . ,Dt−1 processes all operations correctly also with probability at least 1 − 1
nk+1

each. All the remaining elements of the data structure are deterministic. Since t ≤ O(log n), we
conclude from the union bound that the probability that the entire data structure processes all
operations correctly is at least 1− O(logn)

nk+1 ≥ 1− 1
nk , given that n is large enough.

Now we show the runtime guarantees, assuming the correctness of the data structure. The
preprocessing step can be easily implemented in time Õ(n). It remains to estimate, for each
i ∈ {0, . . . , t}, the time required by Di to process all queries, excluding the time of the operations
by the remaining auxiliary data structures. Let q0, . . . , qt be the sequence of integers denoting,
for each qi, the number of queries to Di. We have q0 = q and, by Lemma 5.12, qi = Õ(ni−1)
for i ∈ {1, . . . , t}. Again by Lemma 5.12, Di processes all qi queries in time Õ(n + qibi) for
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i ∈ {0, . . . , t − 1}. On the other hand, the implementation of Dt is trivial and each query in
worst-case time Õ(bt); hence, Dt processes qt queries in time Õ(qtbt).
Therefore, the total time required in the worst case by D0 (excluding the time spent in other

data structures) is Õ(n + q); and for each i ∈ {1, . . . , t}, the worst-case total time requirement
(again excluding the time complexity of other auxiliary data structures) is bounded by

Õ(n+ qtbt) = Õ(n+ (cB ·Ki+1) · (n/Ki−1)) = Õ(n+ n · cBK2) = Õ(n),

since c is a constant and B,K ∈ O(log n). Hence, with high probability, the presented data
structure processes all queries correctly in time Õ(n+ q). This finishes the proof of Lemma 3.6 and
implies Theorem 1.1.

6 Arbitrary precision scaling

In this section we show how to obtain an ϵ-feasible price function (see Definition 4.1) of G using a
negative-weight SSSP algorithm for handling only integer-weighted graphs. Formally, we prove:

Lemma 6.1. Suppose there is an algorithm running in time T (N,M,C) = Ω(N+M) that takes as
input a digraph H with N vertices, M edges, and integer edge weights of absolute value O(C) and
either detects a negative cycle in H or outputs single-source distances in H from a chosen vertex.
Let G = (V,E) be a digraph with short rational weights with absolute values of numerator

and denominator bounded by W . Then, for any integer k ≥ 0, one can either detect a negative
cycle in G or compute a 2−k-feasible price function p∗ of G such that p∗(v) ∈ Q[O(nW · 2k)] in
O(T (n,m,W ) + T (n,m, n) · k) time.

In a standard way, without loss of generality assume that G is augmented by adding a source s∗

with 0-weight edges to all v ∈ V . Such augmentation does not influence the shortest paths nor the
existence of a negative cycle in G.
First of all, note that for a given short rational q, |q| ≤ W , one can generate the subsequent

digits of the binary expansion
±bℓbℓ−1 . . . b0.b−1b−2 . . .

of q (where ℓ = O(logW )) in O(1) time per digit using the well-known long division algorithm. For
j ≥ 0, denote by q(j) the rational number

q(j) = ±bℓbℓ−1 . . . b0.b−1 . . . b−j ,

that is, q with the trailing bits b−(j+1), . . . of the expansion truncated (or, equivalently, replaced by
zeros). Observe that if q ≥ 0 then q − 2−j ≤ q(j) ≤ q and otherwise q ≤ q(j) ≤ q + 2−j .
Denote by w(j) an integral weight function on E such that w(j)(e) := 2j · (w(e))(j) + 1. Note

that we have:
2j · w(e) ≤ w(j)(e) ≤ 2j · w(e) + 2, (5)

w(j+1)(e) ≤ 2j+1 · ((w(e))(j) + 2−(j+1)) + 1 = 2(w(j)(e)− 1) + 2 = 2 · w(j)(e), (6)

w(j+1)(e) ≥ 2j+1 · ((w(e))(j) − 2−(j+1)) + 1 = 2(w(j)(e)− 1) = 2 · w(j)(e)− 2. (7)

More generally, via repeated application of (7) and (6), for any 0 ≤ j < l we have:

2l−j · w(j)(e)− 2l−j+1 ≤ w(l)(e) ≤ 2l−j · w(j)(e). (8)
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For j ≥ 0, let G(j) be the graph G with edge weights given by w(j). More generally, for a price
function q, denote by G(j)

q the graph G(j) with edge weights reduced by q. By (5) we obtain that
for any price function q, if G(j)

q has a negative cycle, then so does G.
Set p−1 ≡ 0. We will iteratively construct feasible price functions p0, . . . , pk+1 for the graphs

G
(0)
2·p∗0

, . . . , G
(k+1)
2·p∗k+1

,

where p∗j (for j ≥ 1; we set p∗0 ≡ 0) is given by

p∗j (v) :=

j−1∑
i=0

2j−i−1 · pi(v) = 2p∗j−1(v) + pj−1(v),

or possibly terminate with a negative cycle if we detect one in these graphs on the way. The
construction will guarantee that each pi will have integer values of absolute value O(nW ).
Eventually, we will use

p∗ :=
1

2k+1
· p∗k+2 =

1

2k+1

k+1∑
i=0

pi · 2(k+1)−i =

k+1∑
i=0

pi
2i
.

as our desired price function. Observe that then, by pi(v) ∈ Z and |pi(v)| = O(nW ), we indeed
have p∗ ∈ V → Q[O(nW · 2k)]. Moreover, p∗k+2 = 2p∗k+1 + pk+1 – being a feasible price function of
G(k+1), satisfies for each e ∈ E:

2k+1 · w(e) + 2 + p∗k+2(u)− p∗k+2(v) ≥ w(k+1)(e) + p∗k+2(u)− p∗k+2(v) ≥ 0,

so

w(e) +
p∗k+2(u)

2k+1
−

p∗k+2(v)

2k+1
≥ −2

2k+1
= −2−k,

and thus p∗ = p∗k+2/2
k+1 is 2−k-feasible price function of G.

Let us now describe how the subsequent price functions p0, . . . , pk+1 are constructed. Since the
graph G(0) has integer weights in [−W,W +2], in T (n,m,W ) time one can obtain either a negative
cycle or the price function p0 equal to the single-source distances from s∗ in G(0).
For j ≥ 1, the price function pj will be obtained by computing single-source distances from s∗

in a certain subgraph
H(j) ⊆ G(j)

with the price function 2 · p∗j = 2 · (2p∗j−1 + pj) applied, such that:

1. For j ≥ 1, H(j)
2·p∗j
has (integer) weights in [−2, 4n] (even though G(j) may have integer weights

of magnitude 2j), whereas for j = 0, the integer edge weights lie in [−W,W + 2].

2. No edge of G(j) \H(j) lies on either a negative cycle or a shortest path from s∗ in any of the
graphs G(j), . . . , G(k+1).

More specifically, let us put H(0) = G(0). Then, H(0) satisfies both items above.
For j ≥ 1, assuming the computation of pj−1 succeeded and no negative cycle has been detected

so far, H(j) is obtained fromH(j−1) ⊆ G(j−1) as follows. First, by (6) and (7) and p∗j = 2·p∗j−1+pj−1,

note that the edge weights of G(j)
2·p∗j
are obtained from the respective edge weights of the non-

negatively weighted G
(j−1)
p∗j

= G
(j−1)
2p∗j−1+pj−1

by multiplying by 2 and adding an integer in range
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[−2, 0]. Moreover, by the construction of pj−1, all distances from s∗ in G
(j−1)
p∗j

(and thus also

in H
(j−1)
p∗j

are precisely 0; recall that G(j−1) does not contain a negative cycle by assumption).

Therefore, unless G(j) contains a negative cycle, the distances from s∗ in G
(j)
2·p∗j
are within range

[−2n, 0].
Moreover, by the inductive assumption (item 2), H(j−1) contains all edges lying on negative

cycles or shortest paths from s∗ in G(j), . . . , G(k+1), and applying a price function does not change
the structure of shortest paths or negative cycles, the edge weights in the graph

H ′ =
(
G(j) ∩H(j−1)

)
2·p∗j

(containing an edge e of weight w(j)(e) for all e ∈ E(H(j−1))) are integers ≥ −2 and (unless G(j)

contains a negative cycle) the distances from s∗ are within range [−2n, 0]. Additionally, by the
inductive assumption (item 1) and the choice of pj−1, the positive edge weights in H ′ are of order
O(nW ) and thus fit in O(1) machine words. Finally, we define H(j) to be H ′ pruned of edges with
weight higher than 4n.
Item 1 is satisfied for H(j) trivially. In order to prove the inductive construction correct, we

only need to argue that the pruned edges do not lie on either a simple negative cycle of a simple
shortest path from s∗ in G(j), . . . , G(k+1). From that it will follow that one can find a negative cycle
in G

(j)
2p∗j
or compute the distances from s∗ in that graph (that is, the integer price function pj) in

O(T (n,m, n)) time, as desired, by running the assumed algorithm on H(j).
By (8), a (simple) shortest s∗ → t path P in G(i) (j ≤ i ≤ k+1), preserved in H ′ by assumption

on H(j−1), has cost at most 2i−(j−1) ·0 = 0 wrt. price function q := 2i−j ·2 ·p∗j . Similarly a negative
cycle in G(i) (preserved in H ′ by assumption) has negative weight wrt. q.
Again by (8), the reduced weight wq(e) wrt. q of any edge e ∈ E(H ′) in G(i) satisfies

wq(e) ≥ 2i−j · (−2)− 2i−j+1 = 2i−j · (−4).

On the other hand, an edge e′ ∈ E(H ′) with w2·p∗j (e
′) > 4n satisfies

wq(e
′) > 2i−j · 4n− 2i−j+1 = 2i−j · (4n− 2)

by (8). If e′ lied on either a simple negative cycle P or a simple shortest path P from s∗ in G(i),
then we would have

wq(P ) ≥ 2i−j · [(4n− 2) + (n− 1) · (−4)] = 2i−j · 2 ≥ 2,

which contradicts wq(P ) ≤ 0. This concludes the proof.

Note that the graphsH(j)
2·p∗j
that constitute the subsequent input of the assumed negative-weights

SSSP algorithm are obtained from the respective predecessors via O(m) arithmetic operations on
integers of magnitude O(nW ).
Finally, computing the value p∗(v) for some v ∈ V out of p0(v), . . . , pk+1(v) naively would

require Θ̃(k2) time, but adding up the numbers pi(v)
2i
can be sped up using the identity

p∗i (v) =

⌈k/2⌉∑
i=0

pi(v)

2i

+
1

2⌈k/2⌉+1

k−⌈k/2⌉∑
i=0

pi+(⌈k/2⌉+1)

2i

 .

Computing p∗i (v) recursively according to the above formula takes Õ(k) time.
By plugging the best-known integer negatively-weighted SSSP algorithms [BNW22, BCF23]

into Lemma 6.1, we obtain:
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Corollary 6.2. Let G = (V,E) be a digraph with short rational weights. Then, for any integer
c ≥ 0, one can either detect a negative cycle in G or compute a 2−c-feasible price function p∗ of G
such that p∗(v) ∈ Q[O(n · 2c)] in Õ((n +m) · c) time. The algorithm is Monte Carlo randomized
and the answer produced is correct w.h.p.

7 Negative-SSSP and negative cycle detection in O(n2.5)

In this section we show the following theorem:

Theorem 7.1 (Restatement of Theorem 1.2). Let G be a directed graph with edge weights from Q(1).
Let s ∈ V (G). There is an algorithm that either detects a negative cycle in G or declares there
is none and computes the single-source distances and a shortest paths tree from s. The algorithm
runs in Õ(n

5
2 ) time. The algorithm is Monte Carlo randomized and produces correct output w.h.p.

7.1 Cut Dijkstra

The centrepiece of this theorem is the following algorithm, which we call the cut Dijkstra.

Lemma 7.2. Let k be a positive integer, G be a directed graph with edge weights given by
w : E(G)→ Q(1) and no negative cycles.There exists a data structure that can be constructed in
Õ(n2k) time and supporting the following queries.
Given a vertex s ∈ V (G), compute a function d̃ : V (G)→ Q(k+1)∪{∞} such that for all v ∈ V ,

d̃(v) ≥ δG(s, v) and if δkG(s, v) = δG(s, v) then d̃(v) is equal to δG(s, v). Apart from d̃(v), for each v
such that d̃(v) ̸=∞, a path from s to v of weight d̃(v) is returned. The query time is Õ(n2 +n

3
2k).

The algorithm is randomized and produces a correct output w.h.p.

Note that in Lemma 7.2 we do not guarantee that d̃(v) is the length of a shortest path from s
to v consisting of at most k edges.
Before proceeding, we introduce more notation. For a vertex v, by E+(v) we denote the set of

outgoing edges of v. By N+(v) we denote the sets out-neighbors of v. For W ⊆ V (G), we denote⋃
w∈W E+(w) by E+(W ).
A source of a digraph is any vertex with out-degree zero (a digraph could have multiple sources).

A shortest paths digraph from s in G (if G has no negative cycles) is a digraph containing all edges
e ∈ E(G) such that e lies on some shortest walk from s to another vertex of G. If G does not have
zero cycles then this digraph is in fact a DAG.
Let us now present the overview of cut Dijkstra. Answering a query will be done through a

variant of Dijkstra’s algorithm. In order for Dijkstra’s algorithm to work on a graph with negative
edges, in the preprocessing stage we will compute an ϵ-feasible price function given by Corollary 6.2
for some sufficiently small ϵ. As we will be using an ϵ-feasible function, as opposed to a 0-feasible
function (as in Johnson’s algorithm [Joh77]), we will need to justify why it is sufficient for our
needs. What is more, we will not be interested in shortest paths that consist of more than k edges
and, as a consequence, all distances that we will be compute will belong to Q(k+1).
The bottleneck in the naive implementation of this approach would be that we would make

a priori Θ(n2) relaxations and heap updates on elements of Q(O(k)) that could take up to O(k)
time each, resulting in a Õ(n2k) time complexity. To avoid that, for relaxations we will rely on
Lemma 3.6 and process them in Õ(1) time. For heap updates, we will be able to perform them in
a lazy manner. Using the game described in Lemma 7.9, we will bound the total number of heap
updates by O(n

3
2 ), resulting in a total Õ(n2 + n

3
2k) time complexity per query.
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Preprocessing. Let us start with the description of the preprocessing stage. As its first step,
we apply Corollary 6.2 with c = (2k+ 1)B + ⌈log2 n⌉ and hence obtain an ϵ-feasible price function
p : V (G)→ Q[O(n2 · 2(2k+1)B)], where ϵ < 2−(2k+1)B

n . This computation takes Õ(n2k) time.
As the second preprocessing step, for each pair u, v ∈ V (G), we compute the best rational

approximation ra(p(u)−p(v), 2B) using Lemma 3.4. Since p(u), p(v) ∈ Q[O(n2 ·2(2k+1)B)], we have
p(u)− p(v) ∈ Q[O(n4 · 2(4k+2)B)]. Computing such a rational approximation takes Õ(k) time. As
we compute one for each pair of u, v ∈ V (G), this takes Õ(n2k) time as well.

A generic variant of Dijkstra’s algorithm. As we will need to introduce a few changes to the
classical version of Dijkstra’s algorithm, let us take a higher-level look at it and show a series of
simple but general properties before we go into more specific details. Let us consider a generalized
shortest paths estimation algorithm (Algorithm 2) whose special case is the classical version of
Dijkstra’s algorithm.

Algorithm 2 Generic variant of Dijkstra’s algorithm
for v ∈ V (G) do

d̃(v)←∞
d̃(s)← 0
U ← V (G)
while U ̸= ∅ do
choose v ∈ U
if should process(v) then
for u ∈ N+(v) ∩ U do

d̃(u)← min(d̃(u), d̃(v) + w(vu))

U ← U \ {v}
return d̃

In the ideal scenario, after running Algorithm 2 on G, d̃(v) = δG(s, v) should hold. The two
aspects of Algorithm 2 that need to be specified is the way of choosing a next vertex v from U and
the precise should process(v) condition. In a classical Dijkstra’s algorithm, we never skip relaxations
of edges, that is, the should process(v) condition always evaluates to true. In our scenario, we will
skip performing relaxations for some vertices, no a more intricate condition will be needed.
When a vertex v is chosen from U , we say that it is extracted. When we execute the following

relaxations, we say that v is processed. The key idea behind Dijkstra’s algorithm is that there is
a way of choosing vertices from U that leads to the correct result at the end if the edges’ reduced
costs are non-negative.
Let us call the permutation of V (G) resulting from the order that we extracted vertices in will

the extraction order. By an enhanced order we denote a pair (K,L), where K is an extraction
order and L ⊆ V (G) is the subset of vertices that we have decided to process. We say that an
enhanced order (K,L) is good if using it in Algorithm 2 for G and s produces values d̃(v) such that
d̃(v) = δG\E+(V (G)\L)(s, v). In other words, (K,L) is good if Algorithm 2 if it computes correct
distances in a graph G with edges coming out of vertices that we have decided to not process
removed. An extraction order K is good if the enhanced order (K,V (G)) is good.
Let us mention that assuming that an enhanced order (K,L) is good, from the algorithm’s run

we can easily recover a tree of shortest paths for G\E+(V (G)\L), as follows. For every vertex u we
record the last vertex v whose processing caused d̃(u) to drop and denote it by parent(u) = v. We
create a graph with edges from parent(u) to u for each u ̸= s, and this way get an out-branching
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from s that constitutes a shortest paths tree from s for G \ E+(V (G) \ L).
In the classical version of Dijkstra’s algorithm, the next vertex to extract is chosen to be the

vertex v with the smallest value of d̃(v) out of these that were not extracted yet. However, if
we somehow knew a good extraction order through other means, then such algorithm would work
correctly even for negative weights.
Below we study the properties one needs to assume about the used enhanced order to ensure Al-

gorithm 2 computes correct exact distances for a subgraph of G.

Definition 7.3. Let H be a digraph, D ⊆ H be a subgraph of G, and let (K,L) be an enhanced
order. We say that (K,L) is compliant with D if V (D) ⊆ L and for every v ∈ V (D) that is not
the first vertex of V (D) in K, there exists u ∈ V (D) such that uv ∈ E(D) and u precedes v in K.

Note that for any enhanced order compliant with D, it has to have a unique source.

Claim 7.4. Let H be a digraph, s be a vertex of H, and S be a subset of V (H) containing s. Let
D be the digraph of shortest paths from s in H and let (K,L) be an enhanced order.
If (K,L) is compliant with D[S], then Algorithm 2 run on H from s with (K,L) as an enhanced

order correctly computes all distances from s to all vertices of S. That is, d̃(v) = δH(s, v) will hold
for all v ∈ S at the time of extracting v and at the end of algorithm’s execution as well.

Proof. We note that at any point of runtime of Algorithm 2, d̃(v) ≥ δH(s, v) always holds for all
v ∈ V . Also, the values d̃ never grow. Hence, if at any point we have d̃(v) ≤ δH(s, v), then actually
d̃(v) = δH(s, v) and d̃(v) will not change till the end of the execution.
The claim will be proven inductively. Let (u1, . . . , u|S|) be the order in which vertices of S

appear in K, that is, K restricted to S. Note that as (K,L) is compliant with D[S], all vertices
of S are processed eventually. Let us inductively prove that Algorithm 2 run on H with (K,L) as
enhanced order correctly computes all distances from s to u1, . . . , ui before extracting ui.

(K,L) being compliant with D implies that u1 = s, so setting d̃(s) = 0 before the while loop
makes this claim true for i = 1. Let us assume that the induction hypothesis is true for i − 1
and we will prove it for i. As (K,L) is compliant with D[S], there exists j < i such that D[S]
contains an edge from uj to ui. The induction hypothesis for j states that when uj is extracted,
we have d̃(uj) = δH(s, uj). As uj ∈ S, uj is indeed processed. Hence, while relaxing the edge
ujui, d̃(ui) ← min(d̃(ui), d̃(uj) + w(ujui)) is executed. However, at that point we already had
d̃(uj) = δH(s, uj) and as ujui ∈ E(D) we in fact have δH(s, ui) = δH(s, uj) + w(ujui). Hence, this
ensures d̃(ui) = min(d̃(ui), δH(s, ui)) ≤ δH(s, ui). The induction hypothesis for i follows.

We will also use the following immediate fact:

Fact 7.5. Let H be a digraph, let s, v ∈ V (H), and let D ⊆ H be the shortest paths digraph from s.
Suppose Algorithm 2 is run on H with s as a source. Assume that v is processed and d̃(v) = δH(s, v)
holds at the time of processing v. Then, there exists a path P from s to v in D such that all the
vertices of P have been extracted and processed in the order of their appearance on P .

Unoptimized Cut Dijkstra. We are now ready to specify our algorithm. Let D be the shortest
paths digraph from s in G. Let A be the set of vertices v of V (G) such that δG(s, v) ∈ Q(k). Denote
by S be the set of vertices reachable from s in D[A]. Finally, let C be the set of vertices v such
that there exists a shortest path from s to v using at most k edges, i.e., δkG(s, v) = δG(s, v). As the
length of any path that has at most k edges belongs to Q(k), it is easy to see that C ⊆ S.
Consider a specific variant of Algorithm 2 that is expressed using pseudocode in Algorithm 3.
In words, Algorithm 3 is a modification of Algorithm 2 such that:
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Algorithm 3 Unoptimized cut Dijkstra
for v ∈ V (G) do

d̃(v)←∞
d̃(s)← 0
U ← V (G)
while U ̸= ∅ do
choose v ∈ U minimizing d̃(v)− p(v)
if d̃(v) ∈ Q(k) then
for u ∈ N+(v) ∩ U do

d̃(u)← min(d̃(u), d̃(v) + w(vu))

U ← U \ {v}
return d̃

• the next vertex to be extracted is the one minimizing d̃(v)−p(v) (ties are broken arbitrarily),

• after extracting v from U , Algorithm 3 skips doing the relaxations if d̃(v) ̸∈ Q(k),

• when processing a vertex v, it iterates over the out-neighbors of v that have not been extracted
yet, guaranteeing that d̃(v) does not change till the end of execution after v gets extracted.

Claim 7.6. Let v ∈ V (G) and assume that, during a run of Algorithm 3, v got processed and
d̃(v) = δG(s, v) holds at the time of processing it. Then, v ∈ S.

Proof. For contradiction, assume that v ̸∈ S. By Fact 7.5, there exists a path u0u1 . . . uc in D such
that u0 = s, uc = v, for each i = 0, . . . , c − 1, ui was extracted before ui+1 and processed. This
implies that d̃(ui) = δG(s, ui) at the time of processing ui for each i = 0, . . . , c. As v ̸∈ S, there
exists the smallest i such that ui ̸∈ S. We know that i ≥ 1 as s ∈ S. However, as d̃(ui) = δG(s, ui)
at the time of extracting ui and ui was processed, we have δG(s, ui) ∈ Q(k). But ui−1 ∈ S and
δG(s, ui) ∈ Q(k) would imply that ui ∈ S based on the definition of S, which is a contradiction.

Lemma 7.7. Algorithm 3 produces an enhanced order that is compliant with D[S].

Proof. First, let us note that skipping relaxations if d̃(v) ̸∈ Q(k) guarantees that whenever we
execute d̃(u) ← min(d̃(u), d̃(v) + w(vu)), we have d̃(v) + w(vu) ∈ Q(k+1). Hence, at any point of
runtime, for all u ∈ V (G) we have d̃(u) ∈ Q(k+1) ∪ {∞}.
Observe that s is the first extracted vertex, as it is the only vertex with finite d̃ value at the

beginning. Moreover, s is clearly processed.
Let us call a vertex v ∈ S a violator if v ̸= s and v is either not processed at all or at the moment

of extracting it, there does not exist any vertex u ∈ S such that u has already been processed and
uv ∈ E(D[S]). The existence of any violator is equivalent to the fact that the enhanced order
produced by this algorithm is not compliant with D[S]. Hence, let us proceed by contradiction and
assume that the set of violators is non-empty. Let v be the violator that is extracted first.
Let us denote by R the set of vertices from S that had been extracted before v. Let us apply

Claim 7.4 with the set R as S from its statement. One can note that as v was the first violator,
(K,L) has to be compliant with D[R], so in particular for any u ∈ R we have that d̃(u) = δG(s, u)
at the time of extracting u, so since u ∈ S ⇒ δG(s, u) ∈ Q(k) ⇒ d̃(u) ∈ Q(k), we get that u was
processed as a consequence.

Case 1: There exists u ∈ S such that u had already been processed before v was extracted and
uv ∈ E(D[S]).
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We have that u ∈ R. As d̃(u) = δG(s, u) at the time of processing u and uv ∈ E(D), it means
that d̃(v) = δG(s, v) at the time of extracting v. As v ∈ S, we have that δG(s, v) ∈ Q(k), so
d̃(v) ∈ Q(k), but that in turn implies that v was processed. That connected with the fact of u’s
existence, we conclude that v was not a violator, so we get a contradiction in this case.

Case 2: There does not exist any u ∈ S such that u had already been processed before v was
extracted and uv ∈ E(D[S]).

Let us consider any path in D[S] from s to v (it has to exist based on the definition of S) and let
u be the last vertex on that path such that u ∈ R (s ∈ R, so u is well defined). Let u0u1 . . . uc−1uc
be the suffix of that path such that u0 = u and uc = v. As u was processed, we have that c ≥ 2
based on the assumption of this case.
Note that as u ∈ R, when processing u it already held that d̃(u) = δG(s, u), so when relaxing

through an edge u0u1, the value d̃(u1) was set to δG(s, u1), hence at the time of processing v it
already holds that d̃(u1) = δG(s, u1).
As v was extracted before u1, we have that at the time of v’s extraction we had

d̃(v) − p(v) ≤ d̃(u1) − p(u1). However, as u1u2 . . . uc−1uc is a path in the shortest paths digraph,
we have that δG(s, v) = δG(s, u1) + w(u1u2) + . . .+ w(uc−1uc).
Because of these, we can get the following chain of inequalities holding at the time of process-

ing v:

δG(s, u1)− p(u1) = d̃(u1)− p(u1)

≥ d̃(uc)− p(uc)

≥ δG(s, uc)− p(uc)

= δG(s, u1)− p(uc) +
c−1∑
i=1

w(uiui+1)

= δG(s, u1)− p(u1) +
c−1∑
i=1

(w(uiui+1 + p(ui)− p(ui+1))

≥ δG(s, u1)− p(u1)− (c− 1)ϵ.

As the left hand side and the right hand side differ by (c−1)ϵ, we conclude that in the inequality
d̃(uc)− p(uc) ≥ δG(s, uc)− p(uc), the left hand side and right hand side cannot differ by more than
(c− 1)ϵ either. Consequently, we get that 0 ≤ d̃(uc)− δG(s, uc) ≤ (c− 1)ϵ < n · ϵ < 2−((2k+1)B−1).
However, we have d̃(uc) ∈ Q(k+1) due to the introduced condition skipping the processing of some
vertices and δG(s, uc) ∈ Q(k) since uc ∈ S. Therefore, d̃(uc)− δG(s, uc) ∈ Q(2k+1) = Q[2(2k+1)B−1].
But 0 is the only number in the interval [0, 2−((2k+1)B−1)) belonging to Q[2(2k+1)B−1], so in fact
d̃(uc) = δG(s, uc) at the time of processing uc. That in turn, along with Fact 7.5, shows that there
is a t ∈ V (G) such that t was processed before v, d̃(t) = δG(s, t) at the time of processing t and
tv ∈ E(D). However, based on Claim 7.6, this implies that t ∈ S. That in turn is a contradiction
with our assumption for the current case.

By combining Lemma 7.7 with Claim 7.4 and the fact that C ⊆ S, we get the following corollary.

Corollary 7.8. When run on G with source s, Algorithm 3 produces values d̃(·) satisfying the
requirements of Lemma 7.2. That is, for each v ∈ C we have d̃(v) = δG(s, v) at the end of its
execution.
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When implemented in the most direct way, Algorithm 3 takes Õ(n2k) time for two different
reasons. First, the line d̃(u)← min(d̃(u), d̃(v)+w(vu)) may be executed Ω(n2) times and since the
numbers involved belong to Q(k+1), each execution takes Õ(k) time. Second, the line “choose v ∈ U
minimizing d̃(v)−p(v)” will be executed n times. If we iterate naively through the O(n) candidates
from U , then the fact that each candidate is processed in Õ(k) time results in Õ(n2k) time bound
again. There is an alternative way of implementing this step used by classical version of Dijkstra
on sparse graphs, i.e., maintaining the vertices to be extracted in a priority queue, e.g., a binary
heap. Then, one could find the vertex minimizing d̃(v) − p(v) in Õ(1) time. However, the heap
would need to be updated after every relaxation. Since there is up to O(n2) edge relaxations and
each heap update (implemented naively) would require Õ(k) time, this would lead to an O(n2k)
time bound again.

Implementing relaxations efficiently. In order to optimize relaxations time, we refer to the
data structure of Lemma 3.6. For each extracted (but not necessarily processed) vertex v, we store
d̃(v) explicitly (and this value will not change, as explained earlier). For each v yet to be extracted,
we maintain d̃(v) implicitly as d̃(u)+w(uv) for some processed u. To this end, it is enough to store
the corresponding vertex u. Let us denote by par(v) ∈ V (G)∪ {⊥} a vertex u that caused the last
drop of d̃(v) (or ⊥ if d̃(v) = ∞). In other words, par(v) is the parent of v in the shortest paths
tree of the part of the graph that we have seen so far. Equipped with this, when relaxing an edge
vu, we will compare d̃(v) + w(vu) with d̃(par(u)) + w(par(u)u) (or ∞ if par(u) =⊥). Recall that
par(u) has already been processed and v is getting processed right now, which means that their
d̃(·) values will never change. We also have w(vu), w(par(u)u) ∈ Q(1).
Let us initialize a data structure D from Lemma 3.6 for c = 2. Upon extraction of a vertex v, it

is added to D with parent par(v) and the parent edge weight w(par(v)v). As such, D will represent
the tree of found shortest paths for vertices extracted so far (note that it might be different than
the shortest paths tree on the graph induced on the extracted vertices, as we are skipping some
relaxations). This way, for any processed vertex v, δT (s, v) = d̃(v) holds. Now, whenever we need
to perform a comparison of d̃(v)+w(vu) with d̃(par(u))+w(par(u)u), the result of this comparison
is the same as the result of comparing d̃(v) − d̃(par(u)) with w(par(u)u) − w(vu). Note that fhe
former umber equals δT (s, v)− δT (s,par(u)), while the latter belongs to Q(2). Thus, D can perform
such a comparison correctly with high probability and in Õ(1) amortized time. We conclude that
the time needed for performing relaxations gets optimized to Õ(n2).

Implementing the priority queue. We now turn to optimizing the time needed for choosing
the vertex minimizing d̃(v)− p(v) out of the unprocessed. To this end, we will show how to reduce
the number of required priority queue’s (also called the heap) key updates resulting from relaxations
from O(n2) to O(n

3
2 ).

We additionally maintain auxiliary values t(v) ∈ Z≥0 ∪ {∞} satisfying the following. If v has
already been extracted or is on the heap, then t(v) = ∞. On the other hand, t(v) ̸= ∞ means
that v has not been extracted yet, it is currently not on the heap, and we can guarantee that it
will not be among the next t(v) − 1 extracted vertices (according to the chosen order) unless the
value d̃(v) further decreases before the next t(v)−1 vertices are extracted. In particular, the above
implies that at any point of time possibly only a subset of unprocessed vertices will be present on
the heap.
The values t(·) maintained and exploited as follows. Initially we put t(v) = ∞ for all v ∈ V .

Moreover, we put all the vertices v ∈ V with the respective key 0 (for s) or ∞ on the heap.
Before extracting a vertex, we decrease all elements of t by one. For all vertices u such that
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t(u) becomes zero, we directly calculate the current value d̃(u)− p(u) and put u on the heap with
that value as the key. Afterwards, we set t(u) to ∞.
Then, we extract a vertex with the smallest key — let it be v. If we decide to process v, we

should perform all the resulting edge relaxations.
Let R be the set of vertices u such that d̃(u) has dropped when processing v. We first sort

all u ∈ R wrt. w(vu) − p(u) (breaking ties arbitrarily), thus getting an order (u1, . . . , ur), where
r = |R|. Let us observe that

w(vu′)− p(u′) < w(vu′′)− p(u′′)⇔ w(vu′)− w(vu′′) < p(u′)− p(u′′)

and w(vu′) − w(vu′′) ∈ Q(2) ⊆ Q[22B]. Recall that during the preprocessing phase we have al-
ready computed approximations ra(p(u′) − p(u′′), 2B). As a result, any comparison of the form
w(vu′)−p(u′) < w(vu′′)−p(u′′), where u′, u′′ ∈ R, can be performed in Õ(1) time. Since sorting a se-
quence of length r requires Õ(r) comparisons, we can compute the order (u1, . . . , ur) in Õ(r) = Õ(n)
time. Observe that for each u ∈ R we have d̃(u) = d̃(v)+w(vu), so d̃(u)−p(u) = d̃(v)+w(vu)−p(u).
Therefore, w(vu′)−p(u′) < w(vu′′)−p(u′′) implies d̃(u′)−p(u′) < d̃(u′′)−p(u′′). We conclude that
the obtained order of R is (at that point of time) consistent with our target extraction order given
by the values d̃(v)− p(v).13

Next, define values h(v) ∈ Z≥1 ∪ {∞} for all v ∈ V by putting h(ui) = i for i = 1, . . . , r,
and h(u) = ∞ for u ̸∈ R. We then remove from the heap all the vertices x ∈ R. Then, we
set t(u) := min(t(u), h(u)) for all u ∈ V (G). Observe that at this point, the following guarantee
holds for any i = 1, . . . , r: unless d̃(ui) gets decreased further, the vertices u1, u2, . . . , ui−1 will be
extracted earlier than ui. Hence, we conclude that the invariant posed on t is satisfied after the
update of the values t(·) and the heap.
Manipulating the values t(·) and h(·) clearly costs O(n) time per extracted vertex. Hence, to

bound the running time of the algorithm, it remains to bound the total cost of the heap operations:
min-extractions, insertions, and deletions of elements. If we use a standard binary heap, then each
operation costs O(log n) times the comparison cost, which in our case is Õ(k), as the elements’
keys are of the form d̃(u)− p(u) ∈ Q[O(n2 · 2(3k+2)B)]. Since there are n min-extractions in total,
their cost can be bounded by Õ(nk). Since each deletion of a heap element can be charged to the
corresponding insertion of that element, it is enough bound the total number of heap insertions
in the process. To this end, note that each non-initial insertion of a vertex v on the heap can
be charged to a single occurrence of the event “the value t(v) is decreased to 0”. We analyze the
number of such events using the following abstract game.

Lemma 7.9. Alice and Bob are playing the following game. Let n be a positive integer and let
a1, . . . , an be a changing sequence of numbers from {0, 1, . . . , n,∞}. Initially, ai = ∞ for all
1 ≤ i ≤ n. Alice and Bob perform their actions alternately, in n turns as follows. First, Alice
decreases each ai by one; afterwards, for each i such that ai = 0 she pays a dollar and sets ai :=∞.
Then, Bob chooses a sequence b1, b2, . . . , bn that equals (1, 2, . . . , c,∞, . . . ,∞) for some 1 ≤ c ≤ n
if sorted and for each i, he sets ai := min(ai, bi).
Regardless of Bob’s choices, Alice will pay at most 2n

√
n dollars throughout the game.

Proof. Note that due to how the moves are defined, after each Alice’s action, all numbers will be
contained in {1, . . . , n,∞} and the same stays true after Bob’s action. Hence, all values of ai are
always contained in {0, 1, . . . , n,∞} as required by the definition.
13For safety reasons, we may prefer to break the ties in a consistent way across the whole algorithm, for example
in case of equal values, preferring the one referring to the vertex with the smaller index.
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For each dollar that Alice paid, let us associate it with a pair (i, ta) denoting that she paid for
ai in the turn ta. For each such pair, let tb be the last turn before ta when Bob changed the value
of ai (as ai =∞ initially, tb is well defined). If ta− tb ≤

√
n, then we call this dollar short (that is,

the time between the moment when Bob updated ai for the last time and the moment when Alice
paid for it was short). Otherwise, we will call the dollar paid long.
We will prove that Alice paid at most n

√
n short dollars and that she paid at most n

√
n long

dollars, which will clearly imply the thesis.
Let us group short dollars by their value of tb. Observe that for each tb there could be at

most
√
n short dollars associated with it, as the value of bi used by Bob in turn tb had to be at

most
√
n. This implies that there is indeed at most n

√
n short dollars.

For long dollars, we group them by i. Note that for a fixed i, all intervals [tb, ta) are disjoint.
However, all of them are of length at least

√
n, whereas their sum is contained within [0, n). Hence,

there could be at most
√
n long dollars per each i, implying that there are at most n

√
n long dollars.

This concludes the proof.

If we apply Lemma 7.9 with a := t and b := h, we obtain that the total number of heap
insertions is at most n + 2n

√
n = O(n3/2). Hence we conclude that the total cost of the heap

operations is Õ(n3/2k).
Summing up, we obtain that the query time of the data structure is Õ(n2 + n3/2k), as desired.

As we have already mentioned, maintaining the tree of paths witnessing the computed values d̃(v)
can be easily done in Õ(n2) total additional time. This finishes the proof of Lemma 7.2.

7.2 Application of cut Dijkstra

Let us fix G and s from the statement of Theorem 7.1 from that point on. Let k ∈ Z≥1 be a
parameter. Let us assume for now that there is no negative cycle in G. We will get rid of this
assumption at the end.
First, we set up the data structure given by Lemma 7.2 (with the chosen parameter k). We draw

a random subset M of V (G) \ {s} of size min
(
n,
⌈
γn lnn

k

⌉)
for some constant γ > 2 and add the

vertex s into it. We will call the setM as hitting set. For each v ∈M we make a single query to the
structure of Lemma 7.2 that we have just set up, thus getting a family of functions d̃v, where v ∈M .
The total time of preprocessing and answering queries is Õ(n2k+ n

k ·(n
2+n

3
2k)) = Õ(n2k+n

5
2 + n3

k ).
Let us now set up an auxiliary directed graph H such that V (H) = M and E(G) forms a full

bidirectional clique, where the weight of the edge uv equals d̃u(v). Next, we compute single source
shortest paths on H from s using the standard Bellman-Ford algorithm. As the edge weights of H
belong to Q(k+1)∪{∞} and H has size Õ(nk ), all the intermediate values in Bellman-Ford belong to

Q(Õ(n))∪{∞}; hence the unit cost of arithmetic operations therein does not exceed Õ(n). Applying
Bellman-Ford algorithm takes O(|V (H)|3) arithmetic operations. Consequently, this computation
takes Õ((nk )

3 · n) = Õ(n
4

k3
) time. Observe that since d̃u(v) ≥ δG(u, v) for all u, v ∈ M , we have

δH(u, v) ≥ δG(u, v). As we will show, with high probability, this inequality is in fact an equality.
As the next step, for each vertex v ∈ V (G) we compute the minimum value of the expression

δH(s, t) + d̃t(v) and the value of t that minimizes it, where t ∈ M . Let us denote that minimum
value as d̂(v). There are n choices for v, Õ(nk ) choices for t and the arithmetic operations take Õ(n)

time, hence doing so will take Õ(n
3

k ) time.
The following lemma motivates the process so far:

Lemma 7.10. With high probability, for each v ∈ V (G) it holds that d̂(v) = δG(s, v)

35



Proof. Firstly, let us note that δH(s, t)+d̃t(v) ≥ δG(s, t)+δG(t, v) ≥ δG(s, v), hence d̂(v) ≥ δG(s, v).
For each v ∈ V (G), fix Pv to be a shortest path in G from s to v.In a standard way (see

Fact 3.2 [UY91]), one can prove that with high probability (controlled by the constant γ) each
k-edge subpath of any Pv contains a vertex from M .
Fix some v ∈ V and let P = Pv = v0v1 . . . vp, where s = v0 and v = vp. Let I = {i0, . . . , il} be

the positions of the vertices from M ∪ {v} on the path P , that is V (P ) ∩ (M ∪ {v}) = l + 1 and
vij ∈M ∪{v}. Moreover, we can assume i0 < i1 < . . . < il = p, i0 = 0 by s ∈M and vp = v. As we
have argued, for each 0 ≤ j < l we have ij+1 − ij ≤ k. Note that as P was the shortest path, then
each of its subpaths is a shortest path between its ends as well, hence the subpath vijvij+1 . . . vij+1

is a shortest path from vij to vij+1 whose hop-length is at most k. As a result, d̃vij (vij+1) is equal
to δG(vij , vij+1) by Lemma 7.2. Hence, for each j < l − 1 the edge from vij to vij+1 in H will have
its cost set to δG(vij , vij+1). Because of this, the distance from s to vil−1

in H will certainly not be
bigger than δG(s, v1) + δG(v1, v2) + . . . + δG(vil−2

, vil−1
) = δG(s, vil−1

). However, as each value of
d̃u(w) is either equal to ∞ or to a value of some path in G from u to w, then any path of finite
cost in H from s to vil−1

can be associated to some path from s to vil−1
in G, so its cost cannot be

smaller than δG(s, vil−1
). Therefore, δH(s, vil−1

) = δG(s, vil−1
). Also, since the shortest path from

vil−1
to v has at most k edges, then d̃vil−1

(v) = δG(vil−1
, v). Observe that for t = vil−1

we have that

δH(s, t) + d̃t(v) = δG(s, t) + δG(t, v) = δG(s, v), hence d̂(v) ≤ δG(s, v). However, we have already
shown that d̂(v) ≥ δG(s, v), which implies d̂(v) = δG(s, v).

From that point on, we assume that all events that happen with high probability actually occur
and thus the values d̂(v) that we have computed are true distances δG(s, v).
We now show how to find a shortest path Pv from s to v for all v ∈ V (G). Let us recall that the

query procedure from Lemma 7.2 provides us with paths witnessing the values of d̃(v) it returns.
Let us fix v ∈ V (G) and let t be the vertex minimizing δH(s, t)+ d̃t(v). The classical Bellman-Ford
implementation can easily return all shortest paths from the source in O(|V (H)|3) time, so let
h0h1 . . . hp, where h0 = s and hp = t be any such returned shortest path from s to t in H. Then,

δG(s, v) = δH(s, t) + d̃t(v) = d̃h0(h1) + d̃h1(h2) + . . .+ d̃hp−1(hp) + d̃t(v).

For each of these summands, we can obtain a path of the corresponding length. The concatenation
of these paths will be a shortest walk from s to v. In case it is not a simple path, i.e., it has
vertex repetitions, the weight of the subpath between any two repetitions has to be zero and can
be removed. After all such removals we get a simple path; let us call it Pv. That computation costs
O(n

2

k ) time per vertex v, so computing Pv for all v ∈ V (G) takes O(n
3

k ) time.
To convert the collection of shortest s → v paths Pv into a shortest paths tree, it is enough

to find any out-branching from s in the graph D =
(
V (G),

⋃
v∈V (G) Pv

)
(we treat paths as sets

of edges here). Indeed, each edge in this graph lies on some shortest path from s, and any s → v
path consisting of such edges is a shortest path in G. Moreover, every v reachable from s in G is
reachable from s in D as well by Pv ⊆ D. We conclude that a shortest paths tree from s in G can
be constructed in O(n2) additional time.
Gathering all the pieces, the total time complexity of this algorithm is Õ(n2k + n

5
2 + n3

k + n4

k3
).

By setting k = ⌈
√
n⌉, we get the desired bound Õ(n

5
2 ).

Detecting a negative cycle. As the final step, we explain how to get rid of the assumption
that G has no negative cycle. Instead of analyzing what could happen inside our algorithm if G
contained a negative cycle and trying to detect that at each stage, let us treat the problem in a black
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box way. If we consider any algorithm that works only under the assumption that its input satisfies
some constraint and we run the algorithm on an input that does not satisfy the constraint anyway,
then the algorithm could either crash, run for too long, or terminate and return some output (that
is likely of no use). Any runtime errors can be caught externally. As we have a specific bound
on the time complexity, we could also easily detect the case when it runs longer than it should.
Hence, the only behavior of the algorithm run on a faulty input that is not directly distinguishable
from its behavior on a valid input is when it terminates correctly and returns an erroneous output.
Therefore, it suffices to find a way of validating whether the output returned by the algorithm is
correct. We achieve that via the following lemma:

Lemma 7.11. Let T be an out-branching from s and d : V (G) → Q(n) be some function. With
high probability, one can whether T is a shortest paths tree from s and whether d represents exact
distances from s in G in Õ(n2) time.

Proof. First, we check if d(s) = 0. Then, for each uv ∈ E(T ) we check whether d(u)+w(uv) = d(v).
If any of these equalities does not hold, then we return false. Checking that takes Õ(n2) time as T
has n− 1 edges and checking each equality takes Õ(n) time.
If the initial check has been passed successfully, we construct the data structure from Lemma 3.6

for c = 1 and the out-branching T as input. At this point we know that for each v ∈ V (G),
d(v) = δT (s, v). For such a d to be the correct distance function from s in G, it is enough that
for each uv ∈ E(G), the inequality d(u) + w(uv) ≥ d(v) holds. Recall that all such checks can be
processed by the data structure of Lemma 3.6 in Õ(n2) total time.
If all the performed checks have been passed, it means that T is a correct shortest paths tree

and that d is the correct distance function from s. The total verification time is Õ(n2) and the
returned answer is correct with high probability.

Adding such an external check allows transforming an algorithm working only on digraphs with
no negative cycles into an algorithm that works on all directed graphs and detects the existence of
a negative cycle. Specifically, the algorithm declares the existence of a negative cycle if the external
check fails.
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A Reporting path weights in an incremental tree

For each vertex v ∈ V (T ) of the tree, let dv be the depth of v in the tree. The values dv and parent
pointers can be maintained easily in O(1) time per leaf insertion.
Given a query about the weight of a descending k-hop path from u to v in T , we first enumerate

the individual edge weights on the path T [u→ v] by following k parent pointers starting at v.
Finally, observe that a sum of k short rational numbers a1, . . . , ak can be evaluated in Õ(k) time,

as follows. Assume wlog. that k is a power of two. Build a full binary tree with leaves corresponding
to a1, . . . , ak. By proceeding bottom-up, for each internal node y in the tree, compute a partial
sum of all the leaves in its subtree of y by adding the partial sums stored in the children of y.
At the end of the process, the desired sum is stored in the root. At the j-th level of the tree

(counting from the bottom), the cost of computing each of the O(k/2i) sums can be seen to be
Õ(2i). As a result, the total cost per level is Õ(k). Since there are O(log k) levels, the total
summation time is Õ(k).

B Proof of Lemma 3.4

In this section, we refer to the exposition of best rational approximations in [Kop14, Lov86]. Every
k-bit rational number α can be expressed uniquely as a finite continued fraction

α = a0 +
1

a1 +
1

. . .+
...

aN−1+
1

aN

,

denoted also [a0; a1; . . . ; aN ], where a1, . . . , aN are positive integers and a0 is an arbitrary integer.
In fact, the numbers a0, . . . , aN are the successive quotients obtained when applying the Euclidean
algorithm to the numerator and denominator of α. Furthermore, since there exists a near-linear
time implementation of Euclid’s algorithm [Sch71] (the naive implementation runs in quadratic
time in the bit-length; see also [Möl08] for discussion) computing all the quotients explicitly, a
continued fraction of a Õ(k)-bit rational number can be computed in Õ(k) time. Needless to say,
the quotients produced when running Euclid’s algorithm have near-linear total bit-length which
also means that the total bit-length of a0, . . . , aN is Õ(k) [Sch71].
Given a continued fraction, denote by ci, i = 0, . . . , N , the i-th convergent

ci = a0 +
1

a1 +
1

. . .+
...

ai−1+
1
ai

.
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Each convergent ci is an irreducible fraction
pi
qi
, where p0, . . . , pN and q0, . . . , qN are given by

p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1 and for i ≥ 2:

pi = pi−1 · ai + pi−2,

qi = qi−1 · ai + qi−2.

In other words, for i ≥ 2 we have[
pi pi−1

qi qi−1

]
=

[
pi−1 pi−2

qi−1 qi−2

]
·
[
ai 1
1 0

]
=

[
a0 1
1 0

]
·
[
a1 1
1 0

]
· . . . ·

[
ai 1
1 0

]
. (9)

Lemma B.1. e.g., [Lov86, Section 1.1], [Kop14, Theorem 8]. Let b be a non-negative integer. Let
ℓ ≤ N be the largest integer such that qℓ < 2b. Let t be the largest integer such that tqℓ + qℓ−1 < 2b.

Then the sorted pair
{

pℓ
qℓ
,
tpℓ+pℓ−1

tqℓ+qℓ−1

}
forms the best rational b-bit approximation of α.

By the above lemma, given the continued fraction [a0; . . . , aN ], to compute the best rational ap-
proximation, we first need to find the index ℓ. Since the denominators q1, . . . , qN are monotonically
increasing, ℓ can be found via binary search by testing O(log k) numbers qj (recall that N = Õ(k))
and comparing them with 2b. To implement a single step of binary search in Õ(k) time, it is enough
to argue that a single pair (pj , qj) can be computed in Õ(k) time. This in turn can be done using
the formula (9). One can evaluate the product[

a0 1
1 0

]
· . . . ·

[
aj 1
1 0

]
in Õ(|a0| + . . . + |aj |) = Õ(k) time, where |ai| denotes the bit-length of ai, as follows. Form a
binary tree with the j + 1 individual matrices in the leaves and partial products of leaves in the
corresponding subtrees of individual internal nodes. Similarly as in Section A, it is easy to see that
the cost of evaluating the internal nodes at a single level of this tree is Õ(|a0|+ . . .+ |aj |).
Finally, given qℓ and qℓ−1, the integer t can be obtained in Õ(1) arithmetic operations.

C Proof of Lemma 3.5

Suppose ra(α, b) =
(
x1
y1
, x2
y2

)
. Recall that α′ = p

q , where 0 < q < 2b
′
.

Let us define the following fractions:

• x′
1

y′1
: the largest fraction with y′1 < 2b−b′ such that x′

1
y′1
≤ x1

y1
+ α′;

• x′
2

y′2
: the smallest fraction with y′2 < 2b−b′ such that x′

2
y′2
≥ x2

y2
+ α′.

Since x1
y1
, x2
y2
are Õ(b + log(1 + |α|))-bit rational numbers, one can compute both fractions x′

1
y′1
and

x′
2

y′2
in Õ(b+ log(1+ |α|+ |α′|)) time by applying Lemma 3.4 to the respective fractions x1

y1
+α′ and

x2
y2

+ α′. We will prove that
(
x′
1

y′1
,
x′
2

y′2

)
= ra(α+ α′, b− b′).

To this end, consider an arbitrary fraction x
y with y < 2b−b′ . We will prove that x

y ≤
x′
1

y′1
if and

only if xy ≤ α+α′. An analogous property concerning the fraction x′
2

y′2
can be proved symmetrically.

The two properties imply that x
y can only exist if

x
y = α+ α′ =

x′
1

y′1
=

x′
2

y′2
.

41



The “ =⇒ ” implication follows immediately by the definition of x′
1

y′1
and x1

y1
≤ α. The “ ⇐= ”

side does not hold only when x′
1

y′1
< x

y ≤ α + α′. Since x
y >

x′
1

y′1
and y < 2b−b′ , we have x

y > x1
y1

+ α′

by the definition of x′
1

y′1
. Hence, xy −

p
q > x1

y1
. Equivalently, xq

′−yp
yq > x1

y1
. But we have yq < 2b, so by

the definition of x1
y1
we have x

y − α′ = xq−yp
yq > α. Equivalently, xy > α+ α′, a contradiction.

D Proofs for discrete Exponential Start Time Clustering

The proofs in this section mirror their continuous analogs in [MPVX15].

Proof of Lemma 5.3. For any v ∈ V , we have

Pr

[
bv ≥

k log n

α

]
= exp

{
−α · k log n

α

}
=

1

nk
.

Therefore, by the union bound:

Pr

[
max
v∈V

bv ≥
k log n

α

]
≤
∑
v∈V

Pr

[
bv ≥

k log n

α

]
=

1

nk−1
.

Proof of Lemma 5.4. Fix an edge uv ∈ E. Without loss of generality assume the graph is connected.
For every vertex x ∈ V , define ax = min(δH(u, x), δH(v, x)) and Yx = bx − ax.

Claim D.1. If there exists x ∈ V such that for all y ∈ V \ {x} we have Yy ≤ Yx − 2, then both u
and v are in the cluster centered at x.

Proof. Note that for all y ∈ V \ {x}, we have that δH(u, x) ≤ ax + 1 and δH(u, y) ≥ ay. Therefore
δH(u, y)− by > δH(u, x)− bx. So x is the unique vertex minimizing the value of δH(u, x)− bx and
u must have been assigned to the cluster centered at x. The same reasoning applies to v.

Hence, the probability of both u and v being in the same cluster is lower-bounded by the
probability that the maximum value Yx for x ∈ V is at least 2 larger than the second maximum
value Yy for y ∈ V .
Introduce an arbitrary linear order < on V and define a linear order < on N × V as follows:

(a1, v1) < (a2, v2) if either a1 < a2, or a1 = a2 and v1 < v2. Consider the following event Ex,y,Y :
among the set of pairs (Yv, v) for v ∈ V , the maximum pair is (Yx, x), the second maximum pair is
Yy, and Y = Yy. Note that the events Ex,y,Y partition the probability space, so by the law of total
probability it is enough to show that, for each event Ex,y,Y with non-zero probability,

Pr[Yx ≥ Y + 2 | Ex,y,Y ] ≥ e−2α.

Fix an event Ex,y,Y with non-zero probability. Conditional on this event, each variable Yv for
v ∈ V has its range restricted: we have (Yx, x) > (Y, y), i.e., Yx > Y if x < y and Yx ≥ Y otherwise;
and (Yv, v) < (Y, y) for v /∈ {x, y}, i.e., Yv ≤ Y if v < y and Yv < Y otherwise. Note, however, that
even with these restrictions, all variables Yv for v ∈ V are independent, so we have

Pr[Yx ≥ Y + 2 | Ex,y,Y ] = Pr[Yx ≥ Y + 2 | (Yx, x) > (Yy, y)].

Since Yx ≥ Yy + 2 implies (Yx, x) > (Yy, y), which in turn implies Yx ≥ Yy, we also get that

Pr[Yx ≥ Y + 2 | Ex,y,Y ] ≥ Pr[Yx ≥ Y + 2 | Yx ≥ Y ].
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Then we have that

Pr[Yx ≥ Yy + 2 | Yx ≥ Yy] = Pr[bx ≥ Y + ax + 2 | bx ≥ Y + ax]

= Pr[bx ≥ Y + ax + 2 | bx ≥ max(0, Y + ax)]

(⋆)
= Pr[bx ≥ Y + ax + 2−max(0, Y + ax)]

(□)

≥ Pr[bx ≥ 2] = e−2α,

where in (⋆), we use the memoryless property of the geometric distribution, and in (□), we use the
fact that (Y + ax) + 2−max(0, Y + ax) ≤ 2.

E Exponentially small differences of sums of short rationals

In this Appendix, we are going to show the following lemma and discuss its consequences.

Lemma E.1. Let n be a positive integer. Then, there exist rational numbers p1, . . . , pn, q1, . . . , qn ∈
Q[n] such that the difference (p1 + . . . pn)− (q1 + . . .+ qn) is positive, but belongs to 2

O(− n
logn

).

Proof. Let P be the set of prime numbers that are smaller than n. For every S ⊆ P let us define
rS =

∑
s∈S

1
s .

We would like to prove that all values rS are different. In order to do this, it suffices to prove
the following claim:

Claim E.2. Let S ⊆ P and S = {s1, . . . , sc}. Then, if we express rS in the irreducible form, its
denominator is equal to s1 · . . . · sc.

Proof. We recall a simple fact that in an irreducible form of a sum of rational numbers, the de-
nominator divides the product of denominators of numbers in the sum.
Let us denote the irreducible form of 1

s2
+ . . .+ 1

sc
as a

b . Note that s1 does not divide b. Then,

rS = 1
s1

+ a
b = as1+b

s1b
. Since s1 does not divide v, it does not divide as1 + b. Hence, it divides the

denominator of rS in the irreducible form (recall that s1 is prime). Similarly, any other si divides
it as well. As all s1, . . . , sc are different prime numbers, the denominator of rS has to be divisible
by their product. This finishes the proof.

We conclude the all the numbers of form rS are different and contained in the interval [0, n].
Hence, some two of them have to differ by at most n

2|P |−1
. However, as the prime number theorem

states, |P | = Θ( n
logn). Recall that each rS is a sum of at most n rational numbers from Q[n] (note

that we are allowed to set some numbers pi, qi to zeros).

For a positive integer n, let us now create two vertices, call them s and t, and two paths of n
edges from s to t. Edges on the first path should have weights p1, . . . , pn and on the second path
q1, . . . , qn. Their weights will differ by 2−Ω̃(n), as claimed in the overview.
Let us point out that a priori, one can expect that a difference of such sums can be as low

as 2−Θ(n logn) (as it can be expressed as a rational with the denominator at most n2n), while we
have shown the construction for a weaker bound of 2−Θ( n

logn
) only. However, this is optimal up to

polylogarithmic factors in the exponent, so we cannot improve the naive bound on the lengths of
bit representations of sums of short rationals by more than a polylogarithmic factor, emphasizing
the difficulty of dealing with rational arithmetic.
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