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Abstract

A seller is pricing identical copies of a good to a stream of unit-demand buyers. Each buyer
has a value on the good as his private information. The seller only knows the empirical value
distribution of the buyer population and chooses the revenue-optimal price. We consider a widely
studied third-degree price discrimination model where an information intermediary with perfect
knowledge of the arriving buyer’s value sends a signal to the seller, hence changing the seller’s
posterior and inducing the seller to set a personalized posted price. Prior work of Bergemann,
Brooks, and Morris (American Economic Review, 2015) has shown the existence of a signaling
scheme that preserves seller revenue, while always selling the item, hence maximizing consumer
surplus. In a departure from prior work, we ask whether the consumer surplus generated is
fairly distributed among buyers with different values. To this end, we aim to maximize welfare
functions that reward more balanced surplus allocations.

Our main result is the surprising existence of a novel signaling scheme that simultaneously 8-
approximates all welfare functions that are non-negative, monotonically increasing, symmetric,
and concave, compared with any other signaling scheme. Classical examples of such welfare
functions include the utilitarian social welfare, the Nash welfare, and the max-min welfare.
Such a guarantee cannot be given by any consumer-surplus-maximizing scheme – which are the
ones typically studied in the literature. In addition, our scheme is socially efficient, and has
the fairness property that buyers with higher values enjoy higher expected surplus, which is not
always the case for existing schemes.

1 Introduction

Imagine a seller with infinite supply of a good. They wish to sell to a population of unit-demand
buyers with standard quasi-linear utilities. The seller knows the empirical distribution D of the
buyer valuations and chooses a revenue-maximizing price to sell the good. In this paper, we
consider this simple setting, but with a twist: there is an additional information intermediary
who can segment the market and help the seller price-discriminate. Information intermediaries for
price discrimination were first considered by Bergemann, Brooks, and Morris [2015] and our work
proposes and studies new desiderata for them.

Such intermediaries are becoming ubiquitous in modern two-sided e-commerce platforms. Con-
sider for example ad exchanges [dou, ver, msa, pub], where the platform acts as an intermediary
between buyers (in this case advertisers) and sellers (in this case, publishers controlling the ad
slot). The intermediary wants the best for both sides; however, as in classical auctions, the seller
– not the intermediary – controls the price at which trade happens. Other examples include retail
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platforms such as Amazon marketplace, who also effectively serve as intermediaries – they merely
facilitate the trade, but do not control the prices.

In such settings, the platform can use machine learning and its vast trove of data on buyer
behavior to accurately predict the value of buyers. It can then choose to reveal information about
the current buyer to the seller in order to influence the trade. This information (or signal) leads
to the seller updating its prior D over buyer values to a posterior distribution over values given
the signal. The seller now posts the optimal (revenue-maximizing) price for this posterior. Such
information revelation is termed signaling or third-degree price discrimination1 and is a special case
of Bayesian persuasion [Kamenica and Gentzkow, 2011]. Note that in practice, the seller and the
intermediary could be the same entity, such as a retail or ride-share platform that wants to use
buyer information to segment the market and perform price discrimination.

To understand this setting better, consider two extremes: At one extreme, the intermediary
can choose to reveal no information to the seller, in which case the seller’s posterior remains D.
Therefore, the seller posts the Myerson price [Myerson, 1981] pMy = arg maxp p · Prv∼D[v ≥ p] on

D and raises revenue RMy = pMy · Prv∼D[v ≥ pMy]. Since trade does not happen if the buyer’s
private value v is below pMy, this scheme is generally inefficient – the consumer (buyer) surplus
Ev∼D[(v−pMy)+] plus seller revenue RMy is less than the maximum possible total surplus, Ev∼D[v].

At another extreme is full information revelation or first-degree price discrimination, where
the intermediary reveals the actual buyer value v to the seller. In this case, the seller’s posterior
collapses to the deterministic value v. The seller can now post price slightly below v, so that
trade always happens. However, this efficiency comes at a cost – the buyer now obtains zero
surplus (their value minus price paid), while the seller’s revenue becomes equal to the total surplus,
Ev∼D[v]. Note that in the no-signaling case discussed above, the consumer surplus Ev∼D[(v−pMy)+]
could be positive – thus between these two schemes, from a utilitarian point of view, no-signaling
is better for the buyers, while full-revelation is better overall.

1.1 Optimal Signaling and Fairness

Signaling clearly helps the seller since they can always obtain at least as much revenue RMy as
in no-signaling (e.g. by ignoring the signal). What is less clear is whether signaling can improve
consumer surplus at all. In a remarkable result, Bergemann, Brooks, and Morris [2015] showed
the existence of “buyer-optimal” signaling schemes in the following sense: The seller’s expected
revenue remains the same as in no-signaling (i.e., RMy, which is the minimum possible under any
signaling scheme), while trade is always efficient (i.e., the item always sells), which means that the
sum of the consumer surplus and the seller revenue is the maximum possible total surplus, Ev∼D[v].
Hence, the consumer surplus must be as large as it could possibly be.

This is a beautiful result, but is unsatisfying upon closer inspection. Note that while the
proposed scheme maximizes consumer surplus, it is not the unique such scheme [Bergemann et al.,
2015, Cummings et al., 2020, Ko and Munagala, 2022]. Are all ways of splitting this aggregate
surplus among buyers equal, even if this gain in surplus is “subsidized” more by a particular group
of buyers? We think not – maximizing the utilitarian total consumer surplus should not be the sole
consideration; it is natural to also desire that price discrimination is fair at the level of individual
buyers – but how should we formalize this?

1It is termed “third-degree” price discrimination because the seller or intermediary divides the market into seg-
ments, each with its own price. In contrast, in first-degree price discrimination, the seller has perfect information and
charges buyers exactly their value, while in second-degree price discrimination, the seller sells similar yet ‘different’
goods (differing in quality/quantity) at different prices.
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A first idea is to require some form of monotonicity in the surplus split. Let CSv be the
expected consumer surplus that a signaling scheme provides to a buyer of value v; we could now
require that CSv ≤ CSv′ whenever v < v′. This is true in the absence of signaling (as fixed pricing is
monotone), and so should perhaps be expected to hold in the presence of signaling. It also captures
some sense of envy in price discrimination – a buyer with larger value should not envy the surplus
seen by a buyer with smaller value. We show via examples in Section 2.2 that even this very natural
constraint rules out some existing buyer-optimal schemes.2

An alternative and more wide-reaching fairness requirement is given by the following paradigm:

Universal Welfare Maximization (and Majorization). Consider the surplus vector where
its jth dimension is the expected surplus of the jth buyer. A general welfare function takes the
surplus vector as input, and outputs a non-negative real number (higher is better). We restrict
to welfare functions that are symmetric, non-decreasing, and concave: Symmetry ensures equal
treatment to all buyers; non-decreasing ensures that Pareto improvements are desirable; and con-
cavity is a common fairness consideration favoring balanced allocations. Common examples of such
welfare functions include the utilitarian social welfare function, the Nash welfare function, and the
max-min welfare function. A fair signaling scheme could be defined as one which maximizes such
a welfare function; however, it is unclear how to unambiguously pick one welfare function among
the numerous possibilities.

What would be ideal is if there is a universal scheme that is optimal (or at least, approximately
optimal) for all such welfare functions. This universal maximization of concave functions is closely
related to majorization [Karamata, 1932, Hardy, Littlewood, and Pólya, 1952] and its approximate
form: α-majorization (see e.g. [Goel, Meyerson, and Plotkin, 2005, Goel and Meyerson, 2006]).

1.2 Our Results

The main question we ask is:

In third-degree price discrimination, how close can we get to a universally-fair signaling
scheme, i.e., one which is (monotone and) near-optimal for any welfare function?

At the outset, one might be pessimistic: For resource allocation and stochastic optimization prob-
lems [Goel, Meyerson, and Plotkin, 2005, Kumar and Kleinberg, 2006, Chakrabarty and Swamy,
2019], typically α = ω(1), where α is the approximation factor for majorization (and hence for
universal welfare maximization). Indeed, as we show in Section 4, any buyer-optimal signaling
scheme in the sense of Bergemann, Brooks, and Morris [2015] cannot be α-majorized for any given
constant α. Given this, one may wonder if universal welfare maximization is too strong a condition
to expect.

Our main result is a surprising new signaling scheme that shows the following theorem:

Theorem 1.1 (formally stated as Theorem 3.3). For any prior D, there is a signaling scheme that
is 8-majorized, and hence it simultaneously 8-approximates all non-negative, increasing, symmetric
and concave welfare functions, compared with any other signaling scheme. Further, this scheme is
monotone and efficient, and can be computed in time polynomial in the size of the support of D.

Our main theorem therefore shows that we can be (near)-universally-fair (i.e., near-optimal
for any welfare function). This signaling scheme sacrifices some consumer surplus to achieve this
guarantee; however, as mentioned above, this sacrifice is necessary – as we show in Section 4, any

2We note that the scheme for continuous priors in [Bergemann et al., 2015] is both monotone and buyer-optimal.
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exactly buyer-optimal scheme is not α-majorized for any constant α. Further note that by definition,
our scheme is also 8-approximately buyer-optimal. We complement our 8-approximation with a
lower bound of 1.5 in Section 4: There is no signaling scheme that is α-majorized by every other
signaling scheme for α < 1.5.

At a technical level, the proof of Theorem 1.1 constructs a very different signaling scheme from
prior work on price discrimination. The scheme is composed of signals such that each of them
induces a posterior as a distribution over at most two values. We first decompose the prior D into
a collection of such signals, and show that this collection 4-approximates prefix sums of consumer
surplus when sorted on buyer value. We then apply a novel ironing procedure to modify the signals
so that the resulting scheme is approximately majorized, while losing an additional factor of 2.
Both steps are non-trivial, and together yields an 8-majorized scheme that is also monotone (and
socially efficient).

1.3 Related Work

Our model of third-degree price discrimination is a special case of information design (see [Berge-
mann and Morris, 2019]) where an information mediator provides information to impact the behav-
ior of agents. This has also been termed signaling or persuasion in literature. (See [Dughmi, 2017].)
In Bayesian persuasion first proposed by Kamenica and Gentzkow [2011], there is one agent called
the receiver who receives additional information from a better-informed sender. Given the signal,
the receiver computes their posterior over the state of nature and chooses an action to maximize
their own utility. The sender can design the signals so that the receiver, acting in her own interest,
maximizes some utility function the sender cares about. This problem has been widely studied in
various contexts [Dughmi et al., 2016, Dughmi and Xu, 2021, Babichenko et al., 2021, Bergemann
et al., 2015, Chakraborty and Harbaugh, 2014, Xu et al., 2015, Haghpanah and Siegel, 2020].

In the setting we consider, the sender is the intermediary, while the receiver is the seller that
maximizes their revenue given the signal. This was first considered by Bergemann, Brooks, and
Morris [2015], who showed buyer-optimal signaling schemes that preserve seller revenue while trans-
ferring the rest of the surplus to the buyers. Subsequently, it was shown by Cummings, Devanur,
Huang, and Wang [2020] that the set of all buyer-optimal signaling schemes can be specified by a
linear program. Several works [Shen et al., 2018, Cai et al., 2020, Mao et al., 2022, Bergemann et al.,
2022, Alijani et al., 2022, Ko and Munagala, 2022] consider various extensions to the basic single
seller/buyer setting, and show exact/approximate buyer-optimality under various assumptions.

The concept of majorized vectors has existed for a long time [Karamata, 1932, Hardy, Little-
wood, and Pólya, 1952], and is equivalent to solutions that simultaneously maximize symmetric
concave functions of the coordinates. In the context of resource allocation and routing problems,
an approximate version of this concept was defined by Goel, Meyerson, and Plotkin [2005], and
subsequently shown by Goel and Meyerson [2006] to be equivalent to solutions that simultaneously
approximately maximize every symmetric concave function of the coordinates; see also [Kumar and
Kleinberg, 2006, Chakrabarty and Swamy, 2019]. It was shown by Goel, Meyerson, and Plotkin
[2005] that the best approximation factor is the solution of a linear program. However, the approx-
imation factor is problem-dependent and typically logarithmic in the number of coordinates for
general routing problems. The surprising aspect of our paper is that this factor is only a constant
for the price discrimination problem, and is achieved by a very simple signaling scheme. This is
similar in spirit to recent results in metric distortion of voting rules [Goel, Krishnaswamy, and
Munagala, 2017], where it is shown that the Copeland rule is 5-majorized by any other rule.

Xu et al. [2022] consider fairness in price discrimination by imposing a bound on the ratio or
difference in prices that the seller is allowed to charge to different buyers (akin to monotonicity).
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They assume a perfectly informed seller (first-degree price discrimimation) and derive a unique
optimal pricing strategy as well as characterize the tradeoffs for different buyer value distributions.
Our work in contrast focuses on the more involved objective of majorization, and furthermore, we
do not assume the seller is perfectly informed (third-degree price discrimination).

Our work connects to the larger body of work on fairness in machine learning, where again,
optimality in the sense of overall risk minimization (ERM) can lead to systematic unfairness [Kearns
et al., 2018, 2019, Hebert-Johnson et al., 2018, Dwork et al., 2012, Krishnaswamy et al., 2021]. Much
of this work focuses on the tradeoffs between efficiency and fairness. As machine learning systems
become more pervasive, it becomes important to consider not just their direct impact, but also
their impact to downstream applications when they are embedded in a larger system. In our case,
the larger system is a marketplace platform that uses machine learning to predict buyer values and
help sellers price-discriminate. Our results show that näıvely maximizing surplus can be unfair,
while different mechanisms can achieve good tradeoffs between efficiency and fairness.

2 Preliminaries

2.1 Basic Setting

Seller and Buyers. A monopolistic seller of a good has infinite supply, and wants to price them
so as to maximize her revenue. There are a finite number of buyers in the market. Each buyer is
interested in buying at most one copy of the good, and has a value for the good given by a positive
real number. A buyer chooses to buy if and only if the price is at most his value. We henceforth focus
on discrete empirical distributions over buyer valuations; in particular, we consider distributions
with support size n over values v1 < v2 < · · · < vn. (We write v0 := 0 to simplify notations.) For
any distribution P, we use fP(v) to denote the probability mass function: fP(v) := Prv′∼P [v′ = v],
and define the cumulative distribution function (CDF) FP(v) := Prv′∼P [v′ ≤ v] and complementary
CDF GP(v) := Prv′∼P [v′ ≥ v].

Let D denote the empirical distribution of buyer valuations. The seller knows the distribution
D, but not the actual value of each buyer. Consequently, without additional information, the seller
chooses a common price pMy (sometimes called the Myerson price [Myerson, 1981]) for all buyers
such that p = pMy maximizes p ·GD(p).

Price Discrimination via an Information Intermediary. The main idea in the work of
Bergemann, Brooks, and Morris [2015] is that in this setting, one can model the effects of price
discrimination by considering an exogenous intermediary who provides some additional signal to
the seller about each buyer, enabling the seller to modify the price offered to that buyer. We now
formalize this as a game among the intermediary, the seller and the buyers.

We assume the information intermediary knows D as well as the exact value of each buyer.
Independently, for each buyer, the intermediary sends a signal about the buyer’s value to the
seller via some chosen signaling scheme: a (potentially randomized) mapping from a value in
{v1, v2, . . . , vn} to some set of signals [Q]. Crucially, the intermediary commits to a scheme upfront,
and the scheme is known to the seller.

From the perspective of the seller, since all agents are a priori indistinguishable, the effect
of receiving a signal is to update the seller’s belief over the buyer’s value from D to some new
distribution Sq (q ∈ [Q]) over possible values. Consequently, with a slight abuse of notation,
instead of defining a signaling scheme in terms of the mapping from value to signal, we directly
define it in terms of the resulting posterior distributions Sq corresponding to each q, as well as the
resulting distribution over these signals. Formally:
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Definition 2.1 (Signal; Signaling Scheme). A signal S updates the seller’s belief over a buyer’s
value from D to some new distribution S. A signaling scheme Z = {(Sq, γq)}q∈[Q] is a collection of
Q signals {Sq}q∈[Q] with weights {γq}q∈[Q] that satisfy: (1) γq ≥ 0 and

∑
q∈[Q] γq = 1; and moreover

(2)
∑

q∈[Q] γqSq = D.

We note again that Sq denotes both the qth signal in the signaling scheme, and the posterior of
the seller after receiving the qth signal. The constraints in Definition 2.1 ensure that the signaling
scheme Z is Bayes plausible [Kamenica and Gentzkow, 2011], i.e., that the expected posterior is
equal to the prior. Given a signaling scheme as defined above, it is easy to construct the random
mapping from values to signals: each v is mapped to Sq with probability γqfSq(v)/fD(v).

Outcomes under Signaling. After receiving signal Sq from the intermediary, the seller offers
the buyer a new price p∗Sq based on the new posterior Sq satisfying

p∗Sq = arg max
v

v ·GSq(v).

The resulting expected gains from trade are split between the buyer and the seller as:

• Producer surplus (or revenue) of the seller: R(Sq) = maxv v ·GSq(v) = p∗Sq ·GSq(p
∗
Sq).

• Consumer surplus of the buyer with value v: CSv(Sq) = 1[v ≥ p∗Sq ] · (v − p
∗
Sq).

In the event that v ·GSq(v) are maximized at multiple points, we assume the seller breaks ties
by choosing the lowest tied price.3 Moreover, we can now define the expected outcomes under a
given signaling scheme: The expected consumer surplus of a buyer with value v is the expectation
of that buyer’s surplus on all signals that the seller might receive from the intermediary. Similarly
we can define the expected seller revenue.

Definition 2.2 (Expected Outcomes under Signaling). Given a signaling scheme Z = {(Sq, γq)}q∈[Q],
the expected consumer surplus of a buyer with value v under Z is:

CSv(Z) =
∑
q∈[Q]

CSv(Sq) ·
γq · fSq(v)

fD(v)
. (1)

Moreover, the overall expected consumer surplus under Z is CS(Z) =
∑

q∈[Q] γq · fSq(v) · CSv(Sq).
Similarly, the seller’s expected revenue is given by:

R(Z) =
∑
q

R(Sq) · γq. (2)

We illustrate our setting, signaling schemes, and the above metrics with the following running
example; Figs. 1 and 2 show different signaling schemes for this setting.

Example 2.3 (Running example). The buyer values are given by 〈1, 2, 5, 6〉 with distribution on
this support being D = 〈0.25, 0.25, 0.25, 0.25〉. The revenue under each of the posted prices is
〈1, 1.5, 2.5, 1.5〉, and thus 5 is the Myerson price under D, resulting in revenue RMy = 2.5.

Fig. 1 illustrates one particular signaling scheme ZEx
1 for this setting (based on the construction

of Bergemann, Brooks, and Morris [2015]). Here, it is easy to check that 5 is an optimal price in all
the signals, resulting in (seller-optimal) revenue of R(ZEx

1 ) = 5 ·(fD(5) + fD(6)) = 2.5. To compute
the consumer surplus, take v3 = 5 as an example: the expected consumer surplus of a buyer with
value 5 is

CS5(ZEx
1 ) =

(
1

60
· (5− 1) +

1

90
· (5− 2)

)/(1

4

)
= 0.4.

3Note that we can avoid ties by slightly perturbing each signal, without changing the message of our results.
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Figure 1: Signaling scheme in Example 2.3: The distribution ZEx
1 is drawn as rectangles in the first row.

Each subsequent row corresponds to a signal under Z. The rectangles under each vi’s column indicate the
mass γqfSq

(vi) placed on vi in each signal. We can recover each signal and its weight by normalizing; for
example, signal S1 satisfies fS1

(1) = 1
2 , fS1

(2) = 3
10 , fS1

(5) = 1
30 , fS1

(6) = 1
6 and has weight γ1 = 1

2 .

2.2 Global and Per-Agent Performance Metrics of Signaling Schemes
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S3
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1
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1
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1
4

1
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1
28

1
28
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1
14

3
14

1
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Figure 2: A completely different signaling scheme ZEx
2 for the instance given in Example 2.3: The notations

are the same as those in Fig. 1. Note that while the two schemes are very different, they both are efficient
(i.e., the item is always sold), and have the same revenue and same overall consumer surplus (although the
distribution of the overall surplus between different values is different; see Example 2.6).

Utilitarian Metrics (Efficiency and Consumer Surplus). For a signaling scheme Z to be
efficient (i.e., to maximize the gains from trade), it needs to ensure the item is always sold. This
corresponds to requiring that for each signal q ∈ [Q], the optimal price posted by the seller under
Sq is the smallest value with non-zero probability in the support of Sq. If this holds, then any buyer
will always accept the posted price and the item is always sold.

Given any discrete distribution P, the lowest value in the support of P is defined as vP :=
min{v | fP(v) > 0}. Note that since we focus on distributions over a finite support, the minimum
exists. Now we can formally define the condition for a signaling scheme to be efficient:

Definition 2.4 (Efficient Signaling Scheme). A signaling scheme Z = {(Sq, γq)}q∈[Q] is efficient if

vSq = arg max
v

v ·GSq(v) ∀ q ∈ [Q].

While efficiency ensures that a signaling scheme maximizes the overall gains-from-trade, it does
not specify how the surplus is divided. In particular, revealing the buyer’s true value to the seller is
an efficient scheme, but results in the seller getting the full surplus. An alternative is to maximize
the overall consumer surplus CS(Z). From the above definitions, it is easy to see that given D
one can write the problem of constructing a signaling scheme Z that maximizes CS(Z) via a linear
program; it is not clear however what guarantees such a scheme has, or even, if it is efficient. The
surprising result of Bergemann, Brooks, and Morris [2015] is that this is indeed the case:
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Proposition 2.5 (From [Bergemann, Brooks, and Morris, 2015]). For any given D, let RMy =
maxv v ·GD(v) denote the optimal revenue without signaling (i.e., the “Myerson revenue”). Then
there exist efficient signaling schemes Z under which R(Z) = RMy.

Note that since the seller can always get RMy under any signaling scheme (by ignoring the
signal and posting pMy), and since the signaling scheme is efficient, it must have maximized CS(Z).
We also note that Bergemann, Brooks, and Morris [2015] in fact construct an explicit signaling
scheme that achieves this result; since then, alternative constructions have been found [Cummings
et al., 2020, Ko and Munagala, 2022] which also maximize CS(Z), with other additional desirable
properties; moreover, any convex mixture of such schemes leads to new signaling schemes which all
maximize CS(Z).

Example 2.6. Continuing our running example from Example 2.3, note that under the signaling
scheme ZEx

1 , the item is always sold, meaning that ZEx
1 is efficient. Moreover, since R(ZEx

1 ) = RMy,
we have that ZEx

1 maximizes CS(Z), and the maximum surplus consumer is 1.
Fig. 2 illustrates an alternative efficient signaling scheme ZEx

2 (based on the construction of Ko
and Munagala [2022]), which we call “remove from bottom”. Again, we can check that CS(ZEx

2 ) = 1
and the item always sells, so that this scheme is buyer-optimal.

Fairness Metrics (Monotonicity and Equitable Welfare Functions). The main problem
with focusing on utilitarian metrics alone is that they do not give good guarantees for each individual
agent’s surplus. To understand how fair a given signaling scheme is, we need to consider additional
performance metrics. The simplest of these is monotonicity: we say a signaling scheme Z is
monotone if buyers with larger values gain larger expected surplus from Z:

Definition 2.7 (Monotonicity). A signaling scheme Z is monotone if for any ordered pair of values
vi < vj , we have CSvi(Z) ≤ CSvj (Z).

Our running example shows that not all schemes satisfying Proposition 2.5 (i.e., efficient and
consumer surplus maximizing) are monotone.

Example 2.8. In Example 2.6 under ZEx
2 , the expected consumer surplus of buyers with values

〈1, 2, 5, 6〉 are respectively 〈0, 17 ,
10
7 ,

17
7 〉. This vector is monotone; however, ZEx

1 in Example 2.3 has
surplus vector 〈0, 0.6, 0.4, 3〉, which is not monotone since CS2(ZEx

1 ) = 0.6 > 0.4 = CS5(ZEx
1 ).

What can we say about what a fair signaling scheme is, beyond the above metrics (efficiency,
maximizing consumer surplus, monotonicity)? One option that is often used is to maximize an
alternative equitable welfare function – one which promotes a more balanced solution. Such a
welfare function W takes as input the surplus vector ~u containing the expected surplus under each
value, and outputs a real number; moreover, W satisfies the following natural properties:

• (Symmetry) For any ~u and any permutation σ, W(σ(~u)) = W(~u). In other words, it treats
the buyers equally.

• (Non-decreasing) For any ~u1 ≤ ~u2, W( ~u1) ≤ W( ~u2). In other words, it weakly prefers Pareto
improvements.

• (Concavity)W is concave. In other words, it weakly prefers a balanced allocation to a convex
combination of extremes with the same expected allocation.

• (Normalization)W(~0) = 0. (It also suffices to alternatively require non-negativity: W(~u) ≥ 0
for any ~u ≥ 0.)

8



This definition captures many common welfare functions, such as the utilitarian social welfare
function that outputs the sum, the Nash welfare function that outputs the geometric mean, and
the max-min (a.k.a. egalitarian) welfare function that outputs the minimum. It will be clear that
we cannot hope for similar results if we drop any of these four conditions.

We will show the surprising existence of a universal scheme – we do not need to knowW in order
to approximately optimize it. Our technical tool to deal with the unknown W is majorization.4

Below we define it with the related notions which we will need later.

Majorization. Given a signaling scheme Z, we define its surplus-mass function to be a step
function over (0, 1] taking value CSvi(Z) on the interval (FD(vi−1), FD(vi)]. Formally, we have:

Definition 2.9 (Surplus-Mass Function). Given a signaling scheme Z, the surplus-mass function
induced from Z is a step function sZ : (0, 1]→ R≥0 that satisfies ∀x ∈ (0, 1] and i ∈ [n]:

sZ(x) = CSvi(Z), ∀x ∈ (FD(vi−1), FD(vi)] .

That is, the surplus-mass function maps a quantile in the value distribution to the expected
surplus of the buyer with that value.

Definition 2.10 (Integration Prefix Sum). Given a function f : (0, 1]→ R≥0 and m ∈ (0, 1]. The
m-integration prefix sum of f is

IPrefix(f,m) =

∫ m

0
f(x) dx.

Next, we define the sorted m-prefix sum of any step function f as the area under the curve over
the leftmost m-length interval of the “sorted function” obtained by sorting the segments of f .

Definition 2.11 (Sorted Prefix Sum). Given a step function f : (0, 1]→ R≥0 with finite steps and
a real number m ∈ (0, 1], define a new sorted function fsorted(x) by rearranging the segments in f
in the ascending order of f(x) (while keeping the domain (0, 1] unchanged). The sorted m-prefix
sum of f is

SPrefix(f,m) =

∫ m

0
fsorted(x) dx.

In other words, the sorted m-prefix sum outputs the minimum possible (over S) integral of f(x)
on x ∈ S, where S ⊆ [0, 1] is a finite union of disjoint intervals with total length of m.

We now define the majorization relation between two signaling schemes as follows:

Definition 2.12 (Majorization Relation). A signaling scheme Z1 is majorized by another signaling
scheme Z2 if

∀m ∈ (0, 1] , SPrefix(sZ1 ,m) ≥ SPrefix(sZ2 ,m),

where sZ1 , sZ2 are the surplus-mass functions induced under schemes Z1 and Z2 respectively. A
signaling scheme is said to be majorized if it is majorized by every other signaling scheme.

4More accurately, we use the notion of majorization from above, a.k.a. supermajorization. For simplicity, we use
the term majorization throughout this paper.
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Example 2.13. In our running example, the expected consumer surplus under ZEx
1 (resp. ZEx

2 ) is
〈0, 0.6, 0.4, 3〉 (resp. 〈0, 17 ,

10
7 ,

17
7 〉). Each of these surplus values occupies mass of 1/4. Thus,

SPrefix
(
ZEx
2 ,

1

2

)
=

∑
v∈{1,2} CSv(ZEx

2 )

4
=

1

28
<

1

10
=

∑
v∈{1,3} CSv(ZEx

1 )

4
= SPrefix

(
ZEx
1 ,

1

2

)
;

SPrefix
(
ZEx
1 ,

3

4

)
=

∑
v∈{1,2,3} CSv(ZEx

1 )

4
=

1

4
<

11

28
=

∑
v∈{1,2,3} CSv(ZEx

2 )

4
= SPrefix

(
ZEx
2 ,

3

4

)
.

Thus ZEx
2 is not majorized by ZEx

1 and ZEx
1 is not majorized by ZEx

2 , and hence neither ZEx
1 nor

ZEx
2 can be majorized by every other signaling scheme.

Indeed, in Section 4, we show that (exact) majorization is unattainable – there are instances
where no signaling scheme is majorized by every other signaling scheme. Given this, we define the
following approximation version of majorization.

Definition 2.14 (α-Majorization). A signaling scheme Z1 is α-majorized by another signaling
scheme Z2 if ∀m ∈ (0, 1], we have:

α · SPrefix(sZ1 ,m) ≥ SPrefix(sZ2 ,m).

Further, we say a signaling scheme Z is α-majorized if it is α-majorized by every other signaling
scheme Z ′.

The following established fact [Hardy et al., 1952, Goel and Meyerson, 2006] is crucial in our
universal maximization of well-behaved welfare functions. We include a proof for completeness.

Proposition 2.15 (Proved in Appendix A). Any α-majorized signaling scheme Z gives an α-
approximation to the welfare under any signaling scheme, as long as the welfare function is sym-
metric, weakly increasing, concave, and normalized (or non-negative). Conversely, if a signaling
scheme Z gives an α-approximation to all such welfare functions, it must be α-majorized.

3 Finding an 8-Majorized Signaling Scheme

In this section, we construct an 8-majorized signaling scheme. In more detail, in Section 3.1,
we present our Split-and-Match algorithm (Algorithm 1) that given any empirical distribution D
constructs a signaling scheme Z0 that approximates the m-integration prefix sum of any other
signaling scheme:

Lemma 3.1. Given D, let Z0 denote the signaling scheme returned by Split-and-Match Algorithm
(Algorithm 1). Then, for any signaling scheme Z ′ and any m ∈ (0, 1], we have

4 · IPrefix(sZ0 ,m) ≥ IPrefix(sZ′ ,m).

However, in order to achieve α-majorization, we need to approximate the optimal sorted prefix
sum (rather than the optimal integration prefix sum). In Section 3.3, we show an ironing process
that transforms the surplus-mass function sZ0(x) into a monotonically increasing step function
s̃(x), while preserving the integration prefix sum of sZ0 at any point of discontinuity. Based on Z0,
we then construct a monotone signaling scheme Z1 such that the surplus-mass function of Z1 is
exactly half of s̃:

Lemma 3.2. ∀x ∈ (0, 1], sZ1(x) = 1
2 · s̃(x).

Combining Lemmas 3.1 and 3.2 leads to our main result:

Theorem 3.3. Z1 is efficient, monotone, and 8-majorized by any other signaling scheme.
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3.1 Construction of Z0

In this section, we construct the signaling scheme Z0. The main idea is to decompose any given
D into only two types of posterior distributions, which we refer to as singleton and equal-revenue
binary signals.

Definition 3.4 (Singleton Signal). A signal S = S1vi is said to be a singleton signal on vi if it
satisfies fS(v) = 1[v = vi].

Definition 3.5 (Equal-Revenue Binary Signal). A signal S = SEvi,vj is said to be an equal-revenue
binary signal on vi < vj if it satisfies:

fS(v) =


1− vi

vj
v = vi;

vi
vj

v = vj ;

0 v /∈ {vi, vj}.

Note that if the seller receives SEvi,vj , then posting a price of either vi and vj leads to the same
revenue (hence “equal-revenue”). We assume that the equal-revenue binary signals are indexed
from 1 to Q1, where for each q ∈ [Q1], we have the signal Sq = SEv1q ,v2q . We call the higher value v2q

taker and the lower value v1q giver. The masses on them (i.e. γqfSq(v
2
q ) and γqfSq(v

1
q ) respectively)

are called taker mass and giver mass respectively. Using these definitions, we can describe our
Split-and-Match Algorithm in Algorithm 1.

Algorithm 1: Split-and-Match Algorithm

Input: Distribution D = {vi, fD(vi)}i∈[n].
Output: A signaling scheme Z0 = {Sq, γq}q∈[Q].

1 Initialize: Z0 ← ∅; q ← 0; (mG
i ,m

T
i )←

(
1
2 · fD(vi),

1
2 · fD(vi)

)
∀ i ∈ [n];

2 repeat
3 q ← q + 1;
4 Find the smallest s ∈ [n] such that mG

s > 0;
5 Find the smallest ` > s such that mT

` > 0;
6 Set Sq = SEvs,v` and γq = min{mG

s

/(
1− vs

v`

)
,mT

`

/(
vs
v`

)
};

7 Add signal (Sq, γq) to Z0;
8 Update mG

s ← mG
s − γq · (1− vs

v`
); mT

` ← mT
` − γq ·

vs
v`

;

9 until no such (s, l) exists;
10 Cover all remaining masses using singleton signals and add them to Z0.

To understand this construction, first note that by the Bayes plausibility of a signaling scheme,
we have the following set of linear constraints on any equal-revenue binary signal:

∀ i ∈ [n],
∑

q∈Q1:v1q=vi

(
1− vi

vj

)
· γq +

∑
q∈Q1:v2q=vi

( vi
vj

)
· γq ≤ fD(vi). (3)

In the construction of Z0, we strengthen these constraints into the following:

∀ i ∈ [n],
∑

q∈Q1:v1q=vi

(
1− vi

vj

)
· γq ≤

1

2
· fD(vi); (4)

∀ i ∈ [n],
∑

q∈Q1:v2q=vi

( vi
vj

)
· γq ≤

1

2
· fD(vi). (5)
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We conduct a greedy process to find a solution satisfying the strengthened constraints. We itera-
tively find the smallest index s such that Eq. (4) is slack for s and the smallest index ` (` > s) such
that Eq. (5) is slack for `. We add a maximal equal-revenue binary signal with supports vs and
v` so that one of the two constraints becomes tight. We iterate until no such pair of (is, i`) exists.
Fig. 3 illustrates the construction of our signaling scheme Z0 obtained by running Algorithm 1 on
some given D.

fD(1) = 0.1 fD(2) = 0.3 fD(3) = 0.3 fD(4) = 0.1 fD(6) = 0.2

S1

S2

S3

S4

S5

G

G

G

G

G

T

T

T

T

T

0.05

0.05

0.0125

0.1375

0.15

0.05

0.075

0.05

0.025

0.1375

Figure 3: Illustrating the construction of Z0 using Algorithm 1: The buyer values are 〈1, 2, 3, 4, 6〉 with
distribution D = 〈0.1, 0.3, 0.3, 0.1, 0.2〉, indicated using scaled rectangles in the first row. Each subsequent
row corresponds to an equal-revenue binary signal Sq = SEvi,vj

with weight γq. The letters G and T together
with the blue and red rectangles represent the giver and the taker corresponding to each signal, while the blue
and red numbers on the far right of each row are the giver and taker masses (γqfSq

(vi), γqfSq
(vj)); these

are also illustrated by the lengths of the rectangles in that row. (Again, we can recover each signal and its
weight by normalizing the numbers. For example, signal S1 satisfies fS1(1) = fS1(2) = 0.5 and has weight
γ1 = 0.1.)

3.2 Approximating IPrefix via Split-and-Match (Proof of Lemma 3.1)

Recall for any k, FD(vk) =
∑k

i=1 fD(vi) denotes the total population of buyers with value at most
vk. We now prove Lemma 3.1 in two steps: First, in Section 3.2.1, we show an upper bound on
IPrefix

(
sZ′ , FD(vk)

)
for any signal Z ′. This generalizes the corresponding bound of Bergemann,

Brooks, and Morris [2015] to a sub-population. Next, in Section 3.2.2, we show that the IPrefix
values of Z0 approximately achieve this upper bound.

3.2.1 Bounding IPrefix via the Surplus of Truncated Distributions

As a thought experiment, we restrict our attention to the subset of buyers with the smallest k values.
What is the maximum possible consumer surplus on this sub-population? In Lemma 3.8, we show
that it is upper bounded by the total values in the sub-population, minus the revenue extractable
from this sub-population without signaling. We need the following definitions to present the proof.

Definition 3.6 (Truncated Distribution). Given distribution D with finite support S ⊂ R≥0 and
any x ∈ S, the truncated distribution of D on x, denoted by D(x), satisfies:

fD(x)(v) =

{
fD(v)
FD(x)

v ∈ S and v ≤ x;

0 Otherwise.
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Definition 3.7 (Surplus Prefix Sum). Given any k ∈ [n], the k-surplus prefix sum of the buyers is

Vk =
k∑
i=1

vi · fD(vi).

Lemma 3.8. For any k ∈ [n] and any signaling scheme Z ′, we have

IPrefix
(
sZ′ , FD(vk)

)
≤ Vk −max

i∈[k]

vi ·
k∑
j=i

fD(vj)

 .

Proof. Suppose that Z ′ = {(Sq, γq)}q∈[Q]. We have

IPrefix
(
sZ′ , FD(vk)

)
=

k∑
i=1

fD(vi) ·

 Q∑
q=1

γq · fSq(vi)
fD(vi)

· 1[vi ≥ p∗Sq ] · (vi − p
∗
Sq)

 .

Let Ŝq = Sq(vk) be the truncated distribution on the buyers with value at most vk. Denote
the optimal price of Ŝq by p∗Ŝq

. We now claim that p∗Ŝq
≤ p∗Sq . First assume p∗Sq ≤ vk, otherwise

the statement is trivial. Next, to find the optimal price, we can ignore the scaling factor 1/FD(vk)
(since it scales up the revenue for each price by the same amount). Thus, when we truncate at vk,
we can view it as removing some probability mass µk beyond vk. Note that for any price p, the
decrease in revenue is p · µk. This means larger prices suffer larger drops in revenue, i.e., the new
optimal price p∗Ŝq

cannot be larger.

Moreover, since (vi − p) is monotonically decreasing as a function of p, substituting p∗Ŝq
for p∗Sq

in the above equality, we have:

IPrefix
(
sZ′ , FD(vk)

)
≤

Q∑
q=1

 ∑
i∈[k]:vi≥p∗Ŝq

γq · fSq(vi) · (vi − p∗Ŝq)


≤

Q∑
q=1

∑
i∈[k]

γq · fSq(vi) · vi

− Q∑
q=1

γq ·

 ∑
i∈[k]:vi≥p∗Ŝq

fSq(vi) · p∗Ŝq

 .

Let i∗k = arg maxi∈[k]

{
vi ·
∑k

i′=i fD(vi′)
}

. Since p∗Ŝq
is the optimal price on Ŝq, we have

pŜ∗q

∑
i∈[k]:vi≥p∗Ŝq

fSq(vi) ≥ vi∗k
∑

i∈[k]:vi≥vi∗
k

fSq(vi)
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for any q ∈ [Q]. Plugging this into the previous inequality, we finally have:

IPrefix
(
sZ′ , FD(vk)

)
≤

k∑
i=1

vi · Q∑
q=1

γq · fSq(vi)

− Q∑
q=1

γq ·

 ∑
i∈[k]:vi≥vi∗

k

fSq(vi) · vi∗k


=

k∑
i=1

vi · fD(vi)− vi∗k ·
k∑

i=i∗k

fD(vi)

= Vk −max
i∈[k]

{
vi ·

k∑
i′=i

fD(vi′)

}
.

3.2.2 Approximating Prefix Sums via the Split-and-Match Algorithm

By Definition 2.9, for any signaling scheme Z and any k ∈ [n], sZ is constant on the interval
(FD(vk−1), FD(vk)]. Therefore, IPrefix(Z,m) is a linear function ofm on the interval (FD(vk−1), FD(vk)].
Therefore, to prove Lemma 3.1, it suffices to show it when m = FD(vk) for k ∈ [n]. Moreover, we
can further replace IPrefix(sZ′ , FD(vk)) with the upper bound we obtained Lemma 3.8 (i.e, with
the maximum consumer surplus of truncated distributions). Thus we can obtain Lemma 3.1 as an
immediate consequence of the following lemma.

Lemma 3.9. Let Z0 be the signaling scheme returned by Algorithm 1 for a given D. Then for any
signaling scheme Z ′ and any k ∈ [n], we have

4 · IPrefix(sZ0 , FD(vk)) ≥ Vk −max
i∈[k]

{
vi ·

k∑
i′=i

fD(vi′)

}
.

Consider the first point in time in Algorithm 1 when ` = k + 1; if k = n, this is the stopping
time of the algorithm. Let i∗ be the smallest index such that Eq. (4) is still slack at this point in
time. This means Eq. (4) is tight for all i ∈ [i∗ − 1] and Eq. (5) is tight for all i ∈ [i∗ + 1, k] at this
point in time. Note that i∗ = min{i | mG

i > 0}.
We now prove two lower bounds on IPrefix(sZ0 , FD(vk)). Recall the definition of Vk from

Definition 3.7. We have:

Proposition 3.10. We have the following inequalities:

• 2 · IPrefix(sZ0 , FD(vk)) ≥ Vi∗−1.

• 2 · IPrefix(sZ0 , FD(vk)) ≥ Vk − Vi∗−1 −maxi∈[k]

{
vi ·
∑k

i′=i fD(vi′)
}

.

Proof. Assume that the jth equal-revenue binary signal added to Z0 during Algorithm 1 is Sj =
SE
vGj ,v

T
j

with weight γj . Let tGj = fSj (v
G
j ) · γj and tTj = fSj (v

T
j ) · γj . By Definition 3.5, we have

tTj · vTj = (tGj + tTj ) · vGj . (6)
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Therefore,

2 · IPrefix(sZ0 , FD(vk)) = 2 ·
k∑
i=1

 ∑
j: vTj =vi

(vTj − vGj ) · tTj

 (By definition of buyers’ surplus)

= 2 ·
k∑
i=1

 ∑
j: vTj =vi

vGj · tGj

 . (By Eq. (6))

Since Eq. (4) is tight for any i < i∗, we have

∀ i ∈ [i∗ − 1],
∑

j: vGj =vi,vTj ≤vk

tGj =
1

2
· fD(vi).

Since
∑k

i=1

(∑
j: vTj =vi

vGj · tGj
)
≥
∑i∗−1

i=1

(
vi ·
∑

j: vGj =vi,vTj ≤vk
tGj

)
, we further have

2 · IPrefix(sZ0 , FD(vk)) ≥
i∗−1∑
i=1

vi · fD(vi) = Vi∗−1. (7)

This completes the proof of the first inequality. To show the second inequality, we have

2 · IPrefix(sZ0 , FD(vk)) ≥ 2 ·
k∑

i=i∗+1

( ∑
j: vTj =vi

(vTj − vGj ) · tTj

)

≥ 2 ·
k∑

i=i∗+1

( ∑
j: vTj =vi

(vTj − vi∗) · tTj

)
(Since all the giver values are at most vi∗)

= 2 ·
k∑

i=i∗+1

( ∑
j: vTj =vi

vTj · tTj

)
− 2 · vi∗ ·

k∑
i=i∗+1

( ∑
j: vTj =vi

tTj

)
.

Since Eq. (5) is tight for any i ∈ [i∗ + 1, k], this means

∀i ∈ [i∗ + 1, k],
∑

j: vTj =vi

tTj =
1

2
· fD(vi).

Using this in the above derivation, we have:

2 · IPrefix(sZ0 , FD(vk)) ≥
k∑

i=i∗+1

fD(vi) · vi − vi∗ ·
k∑

i=i∗+1

fD(vi)

=
k∑

i=i∗

fD(vi) · vi − vi∗ ·
k∑

i=i∗

fD(vi)

≥ Vk − Vi∗−1 −max
i∈[k]

{
vi ·

k∑
i′=i

fD(vi′)

}
.

This completes the proof of the second inequality.
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Proof of Lemma 3.9. Adding the inequalities in the proposition above, we have

4 · IPrefix(sZ0 , FD(vk)) ≥ Vi∗−1 + Vk − Vi∗−1 − vi∗ ·
k∑

i=i∗

fD(vi)

≥ Vk −max
i∈[k]

vi ·
k∑
i′=i

fD(vi′)

≥ IPrefix(sZ′ , FD(vk)), (By Lemma 3.8)

completing the proof of Lemma 3.9 and hence that of Lemma 3.1.

3.3 Extending to Sorted Prefix Sums via Ironing and Smoothing

We will now prove Lemma 3.2. In Section 3.3.1, we introduce the (classical) ironing process that
transforms the surplus-mass function sZ0(x) into s̃(x). After that, in Section 3.3.2, we conduct a
smoothing process to obtain a signaling scheme Z ′0 whose induced surplus-mass function is at least
half of s̃(x) (see Lemma 3.13). The ironing process can be intuitively viewed as moving surplus
from some high-surplus but lower-value buyers to some high-value but low-surplus buyers, so that
the ironed function is monotone. It makes the surplus-mass function more “even”. The smoothing
process describes what specific modification we should operate on the signaling scheme (or signals)
to achieve the ironing purpose on the surplus-mass function. This will show Lemma 3.2. Denote the
final signaling scheme after decomposition by Z1. In Section 3.3.4, we show that Z1 simultaneously
guarantees 8-majorization and monotonicity, thus completing the proof of Theorem 3.3.

3.3.1 Ironing

So far, we have approximated the optimal integration prefix sum of consumer surplus. We need to
transform the approximation on integration prefix sum into the approximation on sorted prefix sum,
which will yield the bound on approximate majorization. Our first step is to process the surplus-
mass function via ironing. Ironing is a standard process on functions to achieve monotonicity. It is
first applied in the auction scenario by Myerson [1981]. For the completeness of our paper, we also
include a description of the ironing process in this section.

Consider the surplus-mass function sZ0(x). We operate the ironing process as follows:

1. Compute the integral of sZ0(x) as F (x).

2. Compute the lower convex envelope of F (x), denoted as F̃ (x).

3. Compute the derivative of F̃ (x) as the ironed function s̃(x). Define the value at any point of
discontinuity as its left limit.

We have the following properties of s̃(x).

Lemma 3.11. The ironed function s̃(x) satisfies:

1. s̃(x) is weakly increasing;

2. For any m ∈ (0, 1], we have IPrefix(s̃,m) ≤ IPrefix(sZ0 ,m).

Proof. Since F̃ is convex, we have its derivative s̃ is weakly increasing. Moreover, since the convex
envelope has property that F̃ (x) ≤ F (x) and the IPrefix is defined by the integration from 0, we
have ∀m ∈ (0, 1], IPrefix(s̃,m) ≤ IPrefix(sZ0 ,m).
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Since both s̃(x) and sZ0(x) are step functions, the range of x where F (x) and F̃ (x) are different
consists of a collection of open intervals. On the graph depicting F (x) and F̃ (x), each interval
represents a region of x such that F̃ (x) falls below F (x).

We call these open intervals “ironing intervals” and denote them by I1, I2, . . . , IT . Within each
interval It, F̃ (x) is a linear function, and thus s̃(x) is a constant. We denote this constant by s̃t.

x(mass)

y(surplus)

I1

I2

sZ0(x)

s̃(x)

a+1 a+2 a+3

a−1

a+4

a−2 a−3 a−4

Figure 4: The solid line denotes the function sZ0(x). After ironing, the dashed line denotes the
function s̃(x). The masses are sorted in ascending order of the values. The four pairs of rectangles
with the same colour share the same area respectively. The first two ironing intervals are shown as
I1 and I2.

Fix an ironing interval It = (`t, rt). By the definition of ironing intervals, we have that for
any x0 ∈ {`t, rt}, F (x0) =

∫ x0
0 sZ0(x) dx =

∫ x0
0 s̃(x) dx = F̃ (x0), thus

∫ rt
`t
sZ0(x) dx =

∫ rt
`t
s̃(x) dx.

Equivalently, we have∫
x∈It:s̃(x)>sZ0 (x)

(s̃(x)− sZ0(x)) dx =

∫
x∈It:s̃(x)≤sZ0 (x)

(sZ0(x)− s̃(x)) dx.

This means
∫
x∈It [sZ0(x) − s̃t]+ dx =

∫
x∈It [s̃t − sZ0(x)]+ dx. Moreover, by the second property in

Lemma 3.11, we have

∀x0 ∈ (`t, rt],

∫ x0

`t

[sZ0(x)− s̃t]+ dx ≥
∫ x0

`t

[s̃t − sZ0(x)]+ dx.

Based on these two observations, we can split the area above y = s̃t while below sZ0(x) into
Yt rectangles {a+1 , a

+
2 , . . . , a

+
Yt
}, as well as the area below y = s̃t while above sZ0(x) into the same

number of rectangles {a−1 , a
−
2 , . . . , a

−
Yt
}. Algorithm 2 describes the process of constructing such pairs

of rectangles. For any y ∈ [Yt], the pair of rectangles (a+y , a
−
y ) satisfies the following conditions:

1. They have the same area;

2. a+y is on the left of a−y ;
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3. Each rectangle a+y (resp. a−y ) corresponds to a single buyer value v+y (resp. v−y ).

Figure 4 shows an example of ironing and pairing of rectangles within the interval I1. The four
rectangles above y = s̃t (i.e. {a+1 , a

+
2 , a

+
3 , a

+
4 }) have the same areas as the four rectangles below

y = s̃t (i.e. {a−1 , a
−
2 , a

−
3 , a

−
4 }) respectively.

Algorithm 2: Construct a rectangle pairing on It
Input: sZ0(x), It = (`t, rt], s̃t (ironed surplus on It).
Output: A set of rectangle pairs {(a+y , a−y )}y∈[Yt].

1 Let vi+1
< · · · < vi+g be the buyer values whose occupied interval in It satisfies sZ0(x) > s̃t;

2 Let vi−1
< · · · < vi−h

be the buyer values whose occupied interval in It satisfies sZ0(x) < s̃t;

3 x+ ← FD(vi+1 −1
); x− ← FD(vi−1 −1

);

4 y ← 0; R← ∅;
5 repeat
6 Find the smallest ` ∈ [g] such that FD(vi+`

) > x+; x+ = max{x+, FD(vi+` −1
)};

7 Find the smallest r ∈ [h] such that FD(vi−r ) > x−; x− = max{x−, FD(vi−r −1)};
8 A← min

{
(FD(vi+`

)− x+) · (sZ0(vi+`
)− s̃t), (FD(vi−r )− x−) · (s̃t − sZ0(vi−r ))

}
;

9 y ← y + 1;
10 Let a+y be the rectangle with bottom-left corner coordinate at (x+, s̃t) with width

w+
y = A

v
i+
`
−s̃t and height h+y = vi+`

− s̃t;

11 Let a−y be the rectangle with top-left corner coordinate at (x−, s̃t) with width

w−y = A
s̃t−vi−r

and height h−y = s̃t − vi−r ;

12 Add the rectangle pair (a+y , a
−
y ) to R;

13 x+ ← x+ + w+
y ; x− ← x− + w−y ;

14 until no such (`, r) exists;

3.3.2 Smoothing

We now present the smoothing process. Consider the ironed interval It. Our goal is to make all
buyers with expected consumer surplus less than s̃t/2 in Z0 (call them poor buyers) have expected
consumer surplus at least s̃t/2 after smoothing. We do so by collecting a portion of giver masses
from all the equal-revenue binary signals that contribute to the surplus of carefully chosen high-
surplus (or rich) buyers. We use the collected masses as giver masses of these signals to construct
new equal-revenue binary signals with the poor buyers’ values as the taker value, hence bringing
their expected surplus to at least s̃t/2.

We now describe the process in more detail. By applying Algorithm 2, we obtain a set of pairs
of rectangles {(a+y , a−y )}y∈[Yt]. Suppose that the x-coordinates of a+y and a−y correspond to buyer
values v+y and v−y respectively. Denote the widths of a+y and a−y by w+

y and w−y , and the heights by
h+y and h−y respectively. Note that for a−y , the expected consumer surplus is s̃t − h−y , while for a+y
it is s̃t + h+y .

For each pair of rectangles (a+y , a
−
y ), if h−y > s̃t/2 (i.e. a buyer with value v−y is poor), we apply

the following three steps on Z0:

1. Remove
w−y

fD(v
−
y )

fraction of the weight from all the singleton signals on v−y and all the equal-
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revenue binary signals where v−y is the taker. For this removed weight, collect their taker
masses, and discard their giver masses. (Intuitively, we collect the rectangle a−y .)

2. Remove
w+
y

fD(v
+
y )
· h+y
s̃t+h

+
y

fraction of weight from all equal-revenue binary signals where v+y is

the taker. For the removed weight, collect their giver masses and discard their taker masses.
(Intuitively, we collect the givers to the rectangle a+y .)

3. Build equal-revenue binary signals using the masses collected in Step 2 as giver masses and
the masses collected in Step 1 as taker masses.

Algorithm 3: Smoothing Algorithm

Input: Z0 = {(Sq, γq)}q∈[Q], ironed surplus-mass function s̃(x), ironing intervals {It}t∈[T ].
Output: Smoothed signaling scheme Z ′0 = {(S ′q′ , γ′q′)}q′∈[Q′].

1 Z ′0 ← Z0; q
′ ← Q; . Initialize Z ′0 to Z0.

2 Denote current Z ′0 by {S ′q, γ′q}q∈[Q];

3 for t = 1 to T do
4 Apply Algorithm 2 to find rectangle pairs Rt = {(a+y , a−y )}y∈[Yt] on ironing interval It;

5 Width and height of a+y (resp. a−y ) are w+
y and h+y (resp. w−y and h−y ); a+y (resp. a−y )

are occupied by buyers with value v+y (resp. v−y );

6 for each rectangle pair (a+y , a
−
y ) in Rt with h−y > s̃t/2 do

7 for each Sq in Z0 that is an equal-revenue binary signal with taker v−y , or is a

singleton signal on v−y do

8 γ′q ← γ′q − γq ·
w−y

fD(v
−
y )

;

. Step 1: Collect γq · w−y
fD(v

−
y )
· fSq(v−y ) taker mass from value v−y

9 end
10 for each Sq in Z0 that is an equal-revenue binary signal with taker v+y and some

giver v′ do

11 γ′q ← γ′q − γq ·
w+
y

fD(v
+
y )
· h+y
s̃t+h

+
y

;

. Step 2: Collect γq · w+
y

fD(v
+
y )
· h+y
s̃t+h

+
y
· fSq(v′) giver mass from value v′

12 q′ ← q′ + 1;

13 γ′q′ = γq · w+
y

fD(v
+
y )
· h+y
s̃t+h

+
y
·
(
1− v′

v+y

)/(
1− v′

v−y

)
;

14 Add equal-revenue binary signal S ′q′ = SE
v′,v−y

with weight γ′q′ to Z ′0;
. Step 3: Build equal-revenue binary signal on (v′, v−y ) with collected mass

15 end

16 end

17 end
18 Make all the remaining masses singleton signals and add them to Z ′0;

We formally present the smoothing process in Algorithm 3. Denote its output by Z ′0 =
{(S ′q′ , γ′q′)}q′∈[Q′].
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3.3.3 Analysis: Proof of Lemma 3.2

We show that Z ′0 is feasible in Lemma 3.12. In other words, we prove that the outcome of the
algorithm satisfies Bayes plausibility as in Eq. (3).

Lemma 3.12. ∀ i ∈ [n],
∑

q′∈[Q′] fS′q′
(vi) · γ′q′ = fD(vi).

Proof. Since Algorithm 3 makes all the remaining masses into singleton signals and adds them to
Z ′0 at the end, we simply need to show that the sum of masses in the equal-revenue binary signals
does not exceed the mass of the prior for each value. Since we only add new signals in Line 14,
it suffices to argue that there is always enough mass on v′ and v−y to build equal-revenue binary
signals.

We first argue that the total mass at v′ is preserved. Consider a single run of Line 11 to Line 14
with fixed (t, y, q). In Line 11, the mass on v′ is reduced by

fSq(v
′) · γq ·

w+
y

fD(v+y )
·

h+y

s̃t + h+y
=

(
1− v′

v+y

)
· γq ·

w+
y

fD(v+y )
·

h+y

s̃t + h+y
.

This is exactly the mass added to v′ on the newly constructed signal (i.e. γ′q′ ·
(
1− v′

v−y

)
), thus the

mass on v′ is preserved.
We next argue the mass collected from v−y is enough for the new equal-revenue binary signals.

Consider a single run of Line 7 to Line 15 with fixed (t, y). In Z0, at least 1
2 · fD(v−y ) mass from

value v−y is devoted to singletons signals on v−y or binary signals where v−y is a taker. Therefore,
the mass collected from v−y in Line 8 is at least

1

2
· fD(v−y ) ·

w−y

fD(v−y )
= w−y /2.

Let r(t, y) =
w+
y

fD(v
+
y )
· h+y
s̃t+h

+
y

. Consider the new equal-revenue signals added in Line 14 with v−y

as taker. We assume that the jth equal-revenue binary signal added to Z0 during Algorithm 1 is
Sj = SE

vGj ,v
T
j

with weight γj . Let tGj = fSj (v
G
j ) · γj and tTj = fSj (v

T
j ) · γj . Denote the sum of their

taker masses by m−y . We have:

m−y =
∑

j: vTj =v
+
y

γj · r(t, y) ·
vGj

v−y
·

(
1−

vGj

vTj

)/(
1−

vGj

v−y

)

=
∑

j: vTj =v
+
y

r(t, y) · tTj ·
vTj − vGj
v−y − vGj

. (Since Sj is an equal-revenue binary signal, fSj (v
T
j ) =

vGj
vTj

)

Since vTj = v+y < v−y and since at most 1
2 ·fD(v+y ) mass from v+y is used as taker mass in equal-revenue

binary signals in Z0, the above simplifies to:

m−y ≤
∑

j: vTj =v
+
y

r(t, y) · tTj ≤
fD(v+y )

2
·

w+
y

fD(v+y )
·

h+y

s̃t + h+y
≤
w+
y

2
·
h+y
s̃t
.

Since we have w+
y · h+y = w−y · h−y (paired rectangles have the same area) and since h−y > s̃t/2,

it follows that m−y is upper bounded by w−y /2. Therefore, the mass on v−y collected in Line 8 is
enough for constructing all the new binary signals. The outcome of Algorithm 3 is therefore a
feasible signaling scheme.

20



We now show the following lemma that lower bounds each buyer’s expected consumer surplus
in Z ′0 by half of the ironed expected consumer surplus:

Lemma 3.13. For any x ∈ (0, 1], sZ′0(x) ≥ s̃(x)/2.

Proof. Consider a single iteration of the loop Line 7 to Line 15, with fixed (t, y). For each equal-

revenue binary signal Sj in Z0 with v+y as taker, we have collected
w+
y

fD(v
+
y )
· h+y
s̃t+h

+
y

fraction of the

giver mass from it in Line 11. When we combine this giver mass (denoted by MG
j ) with taker mass

on value v−y to form an equal-revenue binary signal S ′q′ = SE
vGj ,v

−
y

, the taker mass in this binary

signal (denoted by MT
j ) is thus

MT
j = MG

j ·
vGj

v−y − vGj
=

w+
y

fD(v+y )
·

h+y

s̃t + h+y
· tTj ·

vTj − vGj
vGj

·
vGj

v−y − vGj

=
w+
y

fD(v+y )
·

h+y

s̃t + h+y
· tTj ·

vTj − vGj
v−y − vGj

.

Since buyers with value v−y gain surplus (v−y − vGj ) in this binary signal, the contribution from this
signal to the total surplus of the buyers with value v−y is

MT
j · (v−y − vGj ) =

w+
y

fD(v+y )
·

h+y

s̃t + h+y
· tTj · (vTj − vGj ).

Again assume the jth equal-revenue binary signal added to Z0 during Algorithm 1 is Sj = SE
vGj ,v

T
j

with weight γj . Let tGj = fSj (v
G
j ) · γj and tTj = fSj (v

T
j ) · γj . Thus the total surplus of buyers with

value v−y in the newly constructed signals (S ′q′) is:

∑
j: vTj =v

+
y

w+
y

fD(v+y )
·

h+y

s̃t + h+y
· tTj · (vTj − vGj ) =

w+
y

fD(v+y )
·

h+y

s̃t + h+y
·
∑

j: vTj =v
+
y

tTj · (vTj − vGj )

=
w+
y

fD(v+y )
·

h+y

s̃t + h+y
· (s̃t + h+y ) · fD(v+y )

(By the definition of buyer surplus)

= w−y · h−y .
(Since paired rectangles have the same area)

We now argue that, after the smoothing process, the expected consumer surplus of buyers with
any value in the ironing interval It is at least s̃t/2. We consider three cases based on the expected
surplus value of the buyer in Z0:

1. Suppose that before the smoothing process, buyers with value vi have surplus strictly less
than s̃t/2. The corresponding area below s̃t (on the mass coordinates of these buyers) consists
of rectangles a−y1 to a−yψ . Since all these rectangles participate in the smoothing process, we
can sum up the surplus after smoothing from y = y1 to y = yψ as

yψ∑
y=y1

w−y · h−y = mi · h−y > mi · s̃t/2. (Since
∑yψ

y=y1
w−y = mi and h−y > s̃t/2)

Dividing by total mass mi, the expected surplus of these buyers is at least s̃t/2.
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2. On the buyers with value vi who originally have surplus less than s̃t but at least s̃t/2, we
have not changed any equal-revenue signal which contains vi as taker value in the process.
Their expected surplus does not change and is at least s̃t/2.

3. On the buyers with value vi who originally gain surplus more than s̃t. Suppose their cor-
responding area above s̃t is split into rectangles a+y1 to a+yξ . We have extracted at most∑yξ

y=y1

w+
y

fD(v
+
y )
· h+y
s̃t+h

+
y

=
h+y1

s̃t+h
+
y1

fraction of the weight of their original signals. After the

smoothing process, their expected surplus is still at least s̃t
s̃t+h

+
y1

· (s̃t + h+y1) = s̃t.

Combining the above three cases, on each ironing interval It, in all buyers have surplus at least
s̃t/2 in Z ′0. This completes the proof.

Finally, we make the scheme monotone. Suppose that sZ′0(x) > s̃(x)/2 for some x corresponding
to buyers of value v. For each equal-revenue binary signal in Z ′0 where v is the taker value, we

remove
2sZ′0

(x)−s̃(x)
2sZ′0

(x) fraction of the weight of the signal into two singleton signals. Denote the

signaling scheme after the decomposition by Z1. Since the singleton signals do not provide buyer
surplus, we have

CSv(Z1) = sZ′0(x) ·

(
1−

2sZ′0(x)− s̃(x)

2sZ′0(x)

)
= s̃(x)/2.

The surplus-mass function of buyers in Z1 is exactly s̃(x)/2, completing the proof of Lemma 3.2.

3.3.4 Proof of Theorem 3.3

Based on the construction of Z0,Z ′0, and Z1, we prove our main theorem: Z1 is efficient, monotone,
and 8-majorized.

Proof of Theorem 3.3. In the whole construction process of Z0 and Z1, we only include equal-
revenue binary signals (signals where the induced posterior only has two supports and they yield
the same revenue for the seller, see Definition 3.5 as a formal definition) or singleton signals (signals
where the induced posterior only has one support). The seller will always select the lowest support
in the posterior as the price in these two types of signals. Therefore, the item is always sold, and
Z1 is efficient. Further, the surplus-mass function of Z1 is s̃/2, which is monotonically increasing.

Finally, we show that Z is 8-majorized. Consider an arbitrary scheme Z ′ and any value m ∈
(0, 1]. Note that s̃ is a step function and it preserves the prefix sum of sZ0 at break-point coordinates
m0,m1, . . . ,mτ (i.e. ∀ i ∈ [τ ], IPrefix(s̃,mi) = IPrefix(sZ0 ,mi)) in ascending order. We have
m0 = 0 and mτ = 1. Since 0 < m ≤ 1, there exists a unique k ∈ [τ + 1] such that

mk−1 < m ≤ mk.

By setting λ =
m−mk−1

mk−mk−1
, we have

m = (1− λ) ·mk−1 + λ ·mk.

Consider the sorted m-prefix sum of sZ′ , we have
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SPrefix(sZ′ ,m) ≤ SPrefix(sZ′ ,mk−1) + λ · (SPrefix(sZ′ ,mk)− SPrefix(sZ′ ,mk−1))
(By convexity of SPrefix as a function of m)

= (1− λ) · SPrefix(sZ′ ,mk−1) + λ · SPrefix(sZ′ ,mk)

≤ (1− λ) · IPrefix(sZ′ ,mk−1) + λ · IPrefix(sZ′ ,mk)
(Prefix sum is at least sorted prefix sum)

≤ 4 · [(1− λ) · IPrefix(sZ0 ,mk−1) + λ · IPrefix(sZ0 ,mk)] (By Lemma 3.1)

= 4 · [(1− λ) · IPrefix(s̃,mk−1) + λ · IPrefix(s̃,mk)]
(Since s̃ preserves the prefix sum of sZ0 at mk−1 and mk)

= 4 · [(1− λ) · SPrefix(s̃,mk−1) + λ · SPrefix(s̃,mk)] (Since s̃ is monotone)

≤ 4 · SPrefix(s̃,m) (Since s̃ is constant on (mk−1,mk])

= 8 · SPrefix(sZ1 ,m). (By Lemma 3.2)

Therefore, by Definition 2.14, Z1 is 8-majorized.

4 Lower Bounds

Finally, we complement our 8-majorized signaling scheme with two lower bounds for finding α-
majorized signaling schemes. Our first bound shows the impossibility of α-majorization for any
constant α if we restrict to buyer-optimal signaling schemes, and the second shows the impossibility
of α-majorization for α < 1.5. Both our hard instances are, in a sense, the simplest possible – they
involve distributions D over only three different values. (For distributions over two values, there is
an exactly majorized scheme, since agents with the lower value always get surplus 0.)

4.1 Incompatibility of Approximate Majorization and Buyer Optimality

We now show that no buyer-optimal scheme (i.e., one that maximizes CS(Z)) can yield our guar-
antees; in particular, no buyer-optimal scheme can be α-majorized, for any constant α ∈ R+. This
also shows that exact majorization is impossible since exact majorization implies buyer optimal-
ity. This motivates the need for approximations and the need for looking beyond buyer-optimal
schemes.

Recall that a signaling scheme Z is buyer-optimal if
∑n

i=1 fD(vi) · CSvi(Z) =
∑n

i=1 fD(vi) · vi−
RMy(D), where RMy(D) = maxv v ·GD(v) is the optimal (Myerson) revenue under D (i.e. without
signaling). The following observation is immediate.

Lemma 4.1. If a scheme is buyer-optimal, any optimal price for the original distribution will
remain optimal in any signal of the scheme.

Proof. Since the scheme is buyer-optimal, the item is always sold. The buyers’ total surplus is thus
the expected value of the buyer minus the seller’s revenue. Suppose that pMy is an optimal price
in the original distribution D. The seller gets revenue RMy = pMy ·GD(pMy) without signaling.

Note that the seller can still gain RMy in the scheme if they nevertheless post pMy for all the
signals. Suppose for contradiction that in some signal, pMy is not an optimal price, the seller must
gain strictly more revenue from posting price p′ than that from posting pMy. Since in all other
signals, the seller gains revenue at least as much as by posting price pMy, the seller’s overall revenue
is strictly greater than RMy. Therefore, Z0 cannot be buyer-optimal, leading to a contradiction.
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To prove the lower bounds for any signaling scheme, we need the following lemma to narrow the
space of signaling schemes we are considering. The lemma says that, for any signaling scheme, we
can always transform it into an equivalent scheme (by which we mean that the expected consumer
surplus of any buyer remains unchanged) with a simple form. Cummings, Devanur, Huang, and
Wang [2020] have a similar observation, but we need the following lemma that provides finer
structural characterizations.

Lemma 4.2. For any signaling scheme Z, there exists an efficient signaling scheme ZE, such that:

1. ZE generates the same expected consumer surplus as Z for any buyer;

2. ZE includes at most n signals, all of which have different lowest-supports (i.e. smallest value
with non-zero mass).

Proof. We conduct two operations on Z to construct Z ′. First, for each signal in Z, we discard all
masses on values strictly less than the optimal price. Then we put all the discarded masses into at
most n singleton signals. Each singleton signal includes all the discarded masses on a different value
vi (i ∈ [n]). Consider any signal in Z before this operation. Since any buyer with the discarded
values does not gain surplus from this signal and after discarding the optimal price remains the
same, the expected consumer surplus of any buyer does not change.

Second, we combine all groups of signals with the same smallest value in support into one signal
by adding up the masses on each value. Let Z ′ be the signaling scheme with all the signals after
the combinations. After each combination operation, the optimal price remains the same at the
smallest support. Therefore, this combination process again does not change the expected consumer
surplus of any buyer. Since there are in total n different values, there are at most n signals in Z ′,
each corresponding to a different smallest support.

Since the optimal price for each signal remains the lowest support after combination, the item
is always sold. Therefore, Z ′ is efficient.

Theorem 4.3. For any given α ≥ 1, there exist instances under which no buyer-optimal scheme
is α-majorized.

Proof. Consider the instance where there are three buyer values: v1 = 1, v2 = N , v3 = N + 1, and
the probability masses of these values are

fD(v1) =
N2 − 1

N3 + 2N2 +N
, fD(v2) =

N2 + 1

N3 + 2N2 +N
, fD(v3) =

N3 +N

N3 + 2N2 +N
.

We will show that no buyer-optimal scheme can be α-majorized on this instance for α < N . Suppose
for the purpose of contradiction that Z is α-majorized where α < N .

Notice that v2 and v3 are both optimal prices for the seller. By Lemma 4.2, we can transform Z
into a signaling scheme Z ′ with at most three signals, each with a different smallest support. Since
the transformation preserves any buyer’s expected consumer surplus, Z ′ is still buyer-optimal.

By Lemma 4.1, in Z ′, we must include both v2 and v3 as the optimal prices. Therefore, there
is no signal with v3 as the smallest support. Since the signaling scheme is efficient (by buyer
optimality), the smallest support in any signal must also be the optimal price. Therefore, we
conclude that in Z ′, there are only two signals S1 and S2:

1. The first signal S1 includes all three values. Each value is an optimal price on the signal.
Since each value as price provides the same revenue to the seller, the probability masses of
S1 on the three values must be

fS1(v1) =
N2 − 1

N2 +N
; fS1(v2) =

1

N2 +N
; fS1(v3) =

N

N2 +N
.
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Since only S1 include v1, we have γ1 = fD(v1)
/(

N2−1
N2+N

)
= 1

N+1 .

2. The second signal includes only two values v2 and v3. Both of them are optimal prices. It is
also an equal-revenue signal. The probability masses of S2 on the three values are

fS1(v1) = 0; fS1(v2) =
1

N + 1
; fS1(v3) =

N

N + 1
.

Since γ2 + γ1 = 1, we have γ2 = N
N+1 .

The expected consumer surplus from Z ′ of any buyer with value v2 = N is

CSv2(Z ′) =
γ1 · fS1(v2) · (N − 1)

fD(v2)
=

N − 1

N2 + 1
.

The expected consumer surplus from Z ′ of any buyer with value v3 = N + 1 is

CSv3(Z ′) =
γ1 · fS1(v3) ·N + γ2 · fS2(v3) · 1

fD(v3)
=
N +N2

N2 + 1
.

We consider another scheme Z2 consisting of three signals S ′1, S ′2 and S ′3:

fS1(v1) =
N2 − 1

N2 +N
; fS1(v2) =

N + 1

N2 +N
; fS1(v3) = 0; γ1 =

1

N + 1
;

fS2(v1) = 0; fS2(v2) =
N2 −N
N3 −N

; fS2(v3) =
N3 −N2

N3 −N
; γ2 =

N − 1

N + 1
;

fS3(v1) = 0; fS3(v2) = 0; fS3(v3) = 1; γ3 =
1

N + 1
.

In Z2, the expected consumer surplus of any buyer with value v2 = N is

CSv2(Z2) =
(N + 1) · (N − 1)

N2 + 1
=
N2 − 1

N2 + 1
;

The expected consumer surplus of any buyer with value v3 = N + 1 is

CSv3(Z2) =
(N3 −N2) · 1
N3 +N

=
N2 −N
N2 + 1

;

Therefore, the smallest non-zero expected consumer surplus of a buyer in any buyer-optimal
scheme is N−1

N2+1
and the smallest non-zero expected consumer surplus of a buyer in Z2 is N2−N

N2+1
. Since

we have
(
N2−N
N2+1

)
/
(
N−1
N2+1

)
= N > α, Z is not α-majorized by Z2, leading to a contradiction.

4.2 Lower Bound for Approximate Majorization

Finally we provide a lower bound on approximate majorization under general signaling schemes.
The following theorem shows that no scheme can be better than 1.5-majorized. This complements
our upper bound of 8-majorization.

Theorem 4.4. For any α < 1.5, there exist instances where no signaling scheme is α-majorized.
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Proof. Suppose that there exists a signaling scheme Z that is α-majorized. Let α = 1.5− δ, where
δ > 0. Set ε such that 0 < ε � δ. There are three buyer values 〈v1, v2, v3〉 = 〈1, 1 + ε, 2 + ε〉.
The probability masses of D on these values are fD(v1) = ε2 + 2ε, fD(v2) = 1 + (1 + ε)2, fD(v3) =
(1 + ε) + (1 + ε)3. For simplicity, we omit the multiplicative factor of normalizing the whole
population to 1.

First, we compute the largest expected consumer surplus of the smallest-surplus buyer. By
Lemma 4.2, we can transform Z into Z ′ without changing any buyer’s expected consumer surplus.
Assume Z ′ consists of the following three signals, each represented by the mass vector γq · Sq:

γ1 · S1 = 〈x, y, z〉; γ2 · S2 = 〈0, y′, z′〉; γ3 · S3 = 〈0, 0, z′′〉.

The expected consumer surplus of a buyer with value v2 is y·ε
fD(v2)

. The expected consumer surplus

of a buyer with value v3 is z·(1+ε)+z′·1
fD(v3)

. The maximum of the smallest expected consumer surplus
of a buyer with value v2 or v3 can be solved by the following LP:

Maximize smin, s.t.
y · ε
fD(v2)

≥ smin; (8)

z · (1 + ε) + z′ · 1
fD(v3)

≥ smin; (9)

1 · (x+ y + z) ≥ (1 + ε) · (y + z); (10)

1 · (x+ y + z) ≥ (2 + ε) · z; (11)

(1 + ε) · (y′ + z′) ≥ (2 + ε) · z′; (12)

0 ≤ x ≤ fD(v1); (13)

y + y′ ≤ fD(v2); (14)

z + z′ + z′′ ≤ fD(v3); (15)

y, z, y′, z′, z′′ ≥ 0.

Eq. (8) and Eq. (9) mean that the minimum expected consumer surplus of any buyer with value
v2 or v3 is at least the objective function. Eq. (10) and Eq. (11) are constraints on the masses of
the first signal so that 1 is the optimal price. Similarly, Eq. (12) ensures that v2 = 1 + ε is the
optimal price in the second signal. Eqs. (13) to (15) ensures that for any i ∈ [3], the sum of the
masses on a value vi in all three signals does not exceed the total mass mi.

One feasible solution of the LP has value

s∗min =
4 + 3ε+ ε2

2 + ε
· ε

fD(v2)
>

2ε

fD(v2)
,

and is obtained when

x = fD(v1) = ε2 + 2ε;

y =
4 + 3ε+ ε2

2 + ε
;

z =
ε

2 + ε
;

y′ = fD(v2)− y =
ε3 + 3ε2 + 3ε

2 + ε
;

z′ = y′ · (1 + ε) =
(1 + ε) · (ε3 + 3ε2 + 3ε)

2 + ε
.
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If Z ′ is α-majorized (and recall that α = 1.5 − δ), the smallest positive expected consumer
surplus of any buyer is at least

s∗min

α
= s∗min ·

1

1.5− δ
>

2ε

fD(v2)
· 1

1.5− δ
≥ 2ε

fD(v2)
·
(

2

3
+

4

9
δ

)
.

Therefore, we have that the expected consumer surplus of any buyer with value v2 from Z ′ is at

least
s∗min
α :

CSv2(Z ′) =
y · ε
fD(v2)

≥ s∗min

α
≥ 2ε

fD(v2)
·
(

2

3
+

4

9
δ

)
,

and thus,

y ≥ 4

3
+

8

9
δ. (16)

By Eq. (14): y + y′ ≤ fD(v2) = 2 + 2ε+ ε2, and we have

y′ ≤ 2 + 2ε+ ε2 − 4

3
− 8

9
δ =

2

3
+ 2ε+ ε2 − 8

9
δ. (17)

By Eq. (10): x+ y + z ≥ (1 + ε) · (y + z), we have x ≥ ε · (y + z). Since x ≤ fD(v1) = ε2 + 2ε, we
have y + z ≤ 2 + ε and thus

z ≤ 2 + ε− y ≤ 2 + ε−
(

4

3
+

8

9
δ

)
=

2

3
+ ε− 8

9
δ.

By Eq. (17) and Eq. (12), we have

z′ ≤ (1 + ε) · y′ ≤ (1 + ε) ·
(

2

3
+ 2ε+ ε2 − 8

9
δ

)
.

Consider the overall surplus of all buyers from Z ′ (i.e. SPrefix(Z ′,
∑

i∈[3] fD(vi)). We have:

SPrefix
(
Z ′,
∑
i∈[3]

fD(vi)
)

= CSv2(Z ′) · fD(v2) + CSv3(Z ′) · fD(v3)

= y · ε+ z · (1 + ε) + z′ · 1

≤ (2 + 2ε+ ε2) · ε+

(
2

3
+ ε− 8

9
δ

)
· (1 + ε) + (1 + ε) ·

(
2

3
+ 2ε+ ε2 − 8

9
δ

)
=

4

3
− 16

9
δ + o(δ) (Since ε� δ)

<
4

3
.

Since v3 is the optimal price on the original distribution, the optimal overall consumer surplus is:

fD(v1) · v1 + fD(v2) · v2 + fD(v3) · v3 − fD(v3) · v3 = fD(v1) + (1 + ε) · fD(v2)

= (ε2 + 2ε) + (1 + ε)(2 + 2ε+ ε2)

> 2.

Since
(
4
3

) /
2 < 1

1.5−δ , Z ′ cannot achieve α-approximation on the optimal overall consumer surplus.
Therefore, Z is not α-majorized, leading to a contradiction.
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A Omitted Proofs

Proof of Proposition 2.15. Let ~u be the vector of expected utilities of Z. Let ~w be that vector of
any signaling scheme. We wish to show W(~u) ≥ 1

α · W(~w).
By normalization (or non-negativity) and concavity, W(~u) ≥ 1

α · W(α~u). There exists a ~u′ (by
starting from α~u and gradually decreasing its largest elements) such that ~u′ ≤ α~u, ‖~u′‖1 = ‖~w‖1,
and ~u′ is majorized by ~w. Therefore, W(~u) ≥ 1

α · W(α~u) ≥ 1
α · W(~u′) ≥ 1

α · W(~w), where the
penultimate inequality is because the welfare function is weakly increasing, and the last inequality
is from Schur-concavity (see e.g. [Roberts and Varberg, 1973]) of W, implied by symmetry and
concavity.

For the converse, notice that for any m ∈ [0, 1], the sorted m-prefix sum is welfare function that
is symmetric, non-decreasing, concave and normalized (or non-negative).
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