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Abstract

We present a simplified exposition of some pieces of [GSLW19], which introduced a quantum
singular value transformation (QSVT) framework for applying polynomial functions to block-
encoded matrices. The QSVT framework has garnered substantial recent interest from the
quantum algorithms community, as it was demonstrated by [GSLW19] to encapsulate many
existing algorithms naturally phrased as an application of a matrix function. First, we posit
that the lifting of quantum singular processing (QSP) to QSVT is better viewed not through
Jordan’s lemma [Jor75; Reg06] (as was suggested by [GSLW19]) but as an application of the
cosine-sine decomposition, which can be thought of as a more explicit and stronger version
of Jordan’s lemma. Second, we demonstrate that the constructions of bounded polynomial
approximations given in [GSLW19], which use a variety of ad hoc approaches drawing from
Fourier analysis, Chebyshev series, and Taylor series, can be unified under the framework of
truncation of Chebyshev series, and indeed, can in large part be matched via a bounded variant
of a standard meta-theorem from [Tre19]. We hope this work finds use to the community as a
companion guide for understanding and applying the powerful framework of [GSLW19].
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1 Introduction
We present a “user-friendly guide” to understanding technical aspects of the quantum singular
value transformation (QSVT), an elegant framework for designing quantum algorithms, particularly
those that can be phrased as a linear algebraic task on a quantum state |ψ⟩, viewed as a vector
of amplitudes

∑d
k=1 ψk |k⟩. This includes Hamiltonian simulation [LC17], i.e. preparing eıtH |ψ⟩

for a Hamiltonian H; quantum linear system solving [HHL09], i.e. preparing A−1 |ψ⟩ for a sparse
matrix A; and quantum random walks [Sze04], i.e. approximating large powers of a Markov chain
transition matrix or discriminating its singular values. QSVT was introduced by [LC19] in the
Hermitian case and then generalized and subsequently popularized by a paper of Gilyén, Su, Low,
and Wiebe [GSLW19] which demonstrates that these important, seemingly disparate quantum
algorithms can be seen as consequences of a single unifying primitive.

Our aim is to expose the beauty of [GSLW19] and make it more accessible to an audience with a
background in computer science, by simplifying or providing alternatives to its more mathematically
dense proofs. This goal may be viewed as complementary to prior expositions of [GSLW19] such as
[MRTC21], which focused on describing applications of QSVT to the design of quantum algorithms.
In contrast, the aim of our work is to directly provide streamlined proofs or alternatives to the
main technical results in [GSLW19].

1.1 Our contributions
QSVT via the CS decomposition. In Section 2, we give an alternate exposition of the qubiti-
zation technique given in [GSLW19, Section 3.2]. This technique lifts quantum signal processing, a
product decomposition for computing bounded scalar polynomials, to QSVT, its matrix counterpart.
In particular, QSVT implements quantum signal processing separately on each of the singular values
of a “block encoded matrix” by mapping them through a polynomial transformation, while preserving
the block encoding structure. Our exposition of QSVT is by way of the Cosine-Sine decomposition,
a strengthening of Jordan’s lemma [Jor75] that is more amenable to the computations in the proof
of QSVT’s correctness. We believe our proof strategy simplifies the exposition of QSVT in Section
3.2 of [GSLW19] (and other related expositions, e.g. Chapters 7 and 8 of [Lin22]). Specifically, the
viewpoint we adopt elucidates the action of QSVT on the block structure of encoded matrices,
removing much of the casework and eigenspace-by-eigenspace reasoning of prior expositions.

Bounded approximations via truncated Chebyshev series. In Section 3, we apply the
technique of truncating Chebyshev Series to match or nearly-match all of the polynomial approxi-
mation results needed throughout [GSLW19, Section 5] through an arguably simpler framework.
Our starting point is a classical theorem of Trefethen (Theorem 20) which bounds the error incurred
by Chebyshev truncation for smooth functions. We derive, as a consequence of Trefethen’s result,
a new “bounded Chebyshev truncation” analog (Theorem 21) which applies to piecewise-smooth
functions, and is compatible with the QSVT framework. Unlike its analog in the original work
[GSLW19, Corollary 66], our Theorem 21 does not use Taylor series or Fourier series in its proof:
the only approximation theory tools used are standard properties of Chebyshev polynomials. Our
result is comparable to [GSLW19, Corollary 66]; as discussed in Remark 22, it loses a logarithmic
factor in some regimes, but uses a weaker assumption on the function to be approximated. We
further provide a user’s guide on how to apply Theorem 21 to derive bounded approximations to
functions of interest in applications.

In Section 3.4, we give a new separation result lower bounding the degree of polynomials approxi-
mating the exponential function exp, under a boundedness requirement. Boundedness is crucial
in QSVT applications (see Remark 11) due to the spectra of quantum gates. Notably, bounded
approximations to exp have found use in designing Gibbs sampling techniques for quantum opti-
mization [AG19; BGJST23]. We show that in parameter regimes of interest for these applications,
a quadratically larger degree is required to achieve a bounded approximating polynomial. While
lower bounds on QSVT have previously been demonstrated [GSLW19, Section 6]), our separation
result is purely an approximation theory statement (independent of its use in QSVT), and its
(simple) proof uses different techniques than [GSLW19]. We hope this result sheds light on when
one can hope to obtain low-degree approximations for QSVT.
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1.2 Notation
Matrices have bolded variable names, and I is the identity matrix with dimension specified by
context. For a matrix U, U† denotes its conjugate transpose. A square matrix U is unitary if
U†U = UU† = I, and we call it “partitioned” if it has a block matrix structure with two row blocks
and two column blocks (which is clear from context). When writing a matrix as blocks, an empty
block denotes a zero block, and · denotes that the block contains arbitrary entries. For brevity, we
omit the dimensions of blocks when these sizes are not important to the computation: all block
matrices occurring in products are compatible in the standard way.

The “computational basis” is the standard basis in Cd. We denote [d] := {1, 2, . . . , d}, ı :=
√
−1, and

σz is the Pauli matrix ( 1 0
0 −1 ). The maximum absolute value of a real function f on [a, b] is denoted

∥f∥[a,b]. We write a ≂ b to mean there are universal constants 0 < C1 ≤ C2 with C1a ≤ b ≤ C2a.

2 QSVT and the Cosine-Sine decomposition
Briefly, whenever some aspect of a problem can be usefully formulated in terms of

two-block by two-block partitions of unitary matrices, the CS decomposition will probably
add insights and simplify the analysis. —Paige and Wei, [PW94]

2.1 Existence of the CS decomposition
We begin by proving the existence of the CS decomposition (CSD), a decomposition of a partitioned
unitary matrix, following Paige and Wei [PW94]. We describe its application to the quantum
singular value transformation (QSVT) in the following Sections 2.2, 2.3, and 2.4, wherein we give
an alternate proof of the main QSVT result in [GSLW19] stated as Theorem 10.

The main idea of the CSD is that when a unitary matrix U is split into two-by-two blocks Uij for
i, j ∈ {1, 2}, one can produce “simultaneous singular value decompositions (SVDs)” of the blocks,
of the form Uij = ViDijW

†
j .

1 If the reader cares just about the application to QSVT, they can
read Theorem 1 and skip to Section 2.2.

For additional intuition on the CSD, we refer the reader to Appendix B, in which we derive principal
angles and Jordan’s lemma as consequences.

Theorem 1. Let U ∈ Cd×d be a unitary matrix, partitioned into blocks of size {r1, r2} × {c1, c2}:

U =

(
U11 U12

U21 U22

)
, where Uij ∈ Cri×cj for i, j ∈ {1, 2}.

Then, there exists unitary Vi ∈ Cri×ri and Wj ∈ Ccj×cj for i, j ∈ {1, 2} such that(
U11 U12

U21 U22

)
=

(
V1

V2

)(
D11 D12

D21 D22

)(
W1

W2

)†

,

where blanks represent zero matrices and Dij ∈ Rri×cj are diagonal matrices, possibly padded with
zero rows or columns. Specifically, we can write

D :=

(
D11 D12

D21 D22

)
=


0

C
I

I
S

0
I

S
0

0
−C

−I

 (1)

where I, C, and S blocks are square diagonal matrices where C and S have entries in (0, 1) on the
diagonal, and 0 blocks may be rectangular.2 Because D is unitary, we also have C2 + S2 = I.

1In fact, there is some sense in which the SVD and the CSD are special cases of the same object, a generalized Cartan
decomposition. We recommend the survey by Edelman and Jeong for readers curious about this connection [EJ23].

2Blocks may be non-existent. The I blocks may not necessarily be the same size, but C and S are the same size.
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Remark 2. The form of D naturally induces decompositions Cd = X0 ⊕ XC ⊕ X1 and Cd =
Y0 ⊕ YC ⊕ Y1 into direct sums of three spaces. Hence, D : Cd → Cd can be seen as a map
D : X0 ⊕ XC ⊕ X1 → Y0 ⊕ YC ⊕ Y1, such that D is a direct sum of three linear maps.

0
C

I

I
S

0
I

S
0

0
−C

−I

 =

(
0 I
I 0

)
︸ ︷︷ ︸
X0→Y0

⊕
(
C S
S −C

)
︸ ︷︷ ︸

XC→YC

⊕
(
I 0
0 −I

)
︸ ︷︷ ︸

X1→Y1

.

The key resulting intuition for QSVT is that, supposing everything is square, these blocks can be
further decomposed into 2× 2 blocks of the following rotation matrix form(

λi
√
1− λ2i√

1− λ2i −λi

)
from this representation, where {λi} are the singular values of U11 (see Lemma 14).

For completeness we now recall how to derive the CS decomposition from other common decompo-
sitions (namely, the SVD and QR decompositions), following the proof of [PW94].3

Proof of Theorem 1. We begin by considering U11 ∈ Cr1×c1 . Let V1D11W
†
1 be a SVD of U11,

where D11 ∈ Rr1×c1 and V1 and W1 are square unitaries. Since ∥U11∥op ≤ ∥U∥op = 1, all its
singular values are between zero and one, so we can specify that D11 takes the form

D11 =

0
C

I


for a diagonal matrix C with 0 < Cii < 1 for all i. Now, take QR decompositions of U21W1 ∈ Cr2×c1

and U†
12V1 ∈ Cc2×r1 . These decompositions give unitaries V2 and W2 such that D21 := V†

2U21W1

and D†
12 := W†

2U
†
12V1 are upper triangular with non-negative entries on the diagonal. By design,

the Vi and Wj we have defined give us the decomposition(
V1

V2

)†(
U11 U12

U21 U22

)(
W1

W2

)
=

(
D11 D12

D21 V†
2U22W2

)
︸ ︷︷ ︸

D

.

We claim that the blocks D21 and D12 satisfy the desired form from (1). This will (almost) be
our final decomposition. We will only give the argument for D21; the one for D12 is similar. The
columns of D are orthonormal and D21 is upper triangular with non-negative entries on its diagonal.
So, all of the rightmost blocks of D21 (under the I from D11) must be zero because of orthonormality,
and further, the top-left block of D21 must be I, using upper triangularity and non-negativity of
the diagonal (inducting by row, the top-left entry is 1, forcing its row to be zeroes, and so on down
the diagonal). Since the rows of D are orthonormal, the I block in D21 forces the block to its right
to be the zero matrix. Finally, upper triangularity and column orthonormality forces the middle
block to be non-negative diagonal with S2 +C2 = I. The logic is displayed below:

D21 =

? ? ?
? ?

?

→
? ?

?
0

→
I ?

?
0

→
I

?
0

→
I

S
0

.
What we have argued so far suffices to show that (recalling D is unitary)

D =


0

C
I

I
S

0
I

S
0

0
?11 ?12
?21 ?22

.
3Our exposition will be slightly different, since Paige and Wei use a QR decomposition with a lower triangular

matrix, where we use the more standard one with an upper triangular matrix.
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For brevity we will only sketch the rest of the argument about the bottom-right block D22. First,
?11 = −C follows from unitarity of the following block of D, which shows CS+ S?11 = 0:(

C S
S ?11

)
.

The blocks ?21 and ?12 must then be zero using unitarity, considering the fifth (block) row and
column in D. Finally, ?22 is unitary and can be rotated to the (negative) identity by changing W2:

W2 ←

I
I

−?†22

W2.

In Appendix B, we demonstrate that for specific choices of U, the form of the CS decomposition
reveals interesting properties about the interactions between subspaces. In particular, the diagonals
of C and S can naturally be seen as the cosines and sines of “principal angles” between subspaces.
For those interested in applications to physics, these cosines and sines correspond to reflection and
transmission probabilities in scattering theory, where this decomposition is known as the polar
decomposition [MPK88; ML92; Bee97].

2.2 QSVT and quantum signal processing
We now apply the machinery of Section 2.1 to prove correctness of the QSVT framework of
[GSLW19]. We first recall the situation treated by QSVT, requiring the notion of a block encoding.

Definition 3 (Variant of [GSLW19, Definition 43]). Given A ∈ Cr×c, we say unitary U ∈ Cd×d is
a block encoding of A if there are BL,1 ∈ Cd×r,BR,1 ∈ Cd×c with orthonormal columns such that
B†

L,1UBR,1 = A. We denote ΠL = BL,1B
†
L,1, ΠR = BR,1B

†
R,1 to be the corresponding projections

onto the spans of BL,1 and BR,1, respectively.

In other words, if U is a block encoding of A, then in the right basis, it has A as a submatrix.4
That is, if BL =

(
BL,1 BL,2

)
and BR =

(
BR,1 BR,2

)
are unitary completions of BL,1 and BR,2,

B†
LUBR =

(
A ·
· ·

)
and B†

L(ΠLUΠR)BR =

(
A 0
0 0

)
.

In Section 2.3, we consider the special case when BL,1 and BR,1 are the first r and c columns of
the identity, respectively. Under this restriction, the following statements about submatrices are
true in the computational basis:

U =

(
A ·
· ·

)
and ΠLUΠR =

(
A 0
0 0

)
. (2)

This simplification is for the purposes of exposition, since then U is clearly a block matrix which
we can apply the CS decomposition to. Indeed, it is without loss of generality: in Section 2.4, we
recover general statements by unitary transformations which reduce to the special case above.

We now describe the QSVT framework, a lifting of a 2× 2 matrix polynomial construction defined
via “phase factors” (Definition 4), to higher dimensions. The construction in the 2 × 2 case is
referred to in the literature as quantum signal processing (QSP). We recall the basics of QSP here.

Definition 4 (Quantum signal processing). A sequence of phase factors Φ = {ϕj}0≤j≤n ∈ Rn+1

defines a quantum signal processing circuit5

QSP(Φ, x) :=

(
eıϕ0 0
0 e−ıϕ0

) n∏
j=1

(
x

√
1− x2√

1− x2 −x

)
︸ ︷︷ ︸

=:R(x)

(
eıϕj 0
0 e−ıϕj

)
︸ ︷︷ ︸

eıϕjσz

. (3)

4Methods for preparing block encodings often produce block encodings of 1
α
A for some scaling factor α. This

factor α appears in gate complexities of applications. Some authors parametrize this notion, e.g. by saying U is a
(α, ε)-block encoding if U is a block encoding of some Ã such that ∥Ã− 1

α
A∥ ≤ ε

α
in operator norm.

5We define QSP with the reflection operation R(x); a different convention is to use the rotation eı arccos(x)σx =

(
x ı

√
1−x2

ı
√

1−x2 x
), denoted W (x) in [GSLW19]. These two types of circuits are equivalent up to a shift in phase

factors [MRTC21, Appendix A.2]. Using W (x) is perhaps more natural, since then this corresponds to alternating
rotations in the σX and σZ basis.
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Here and elsewhere, the product goes from 1 on the left-hand side to n on the right-hand side (by
this convention, rotations are applied from ϕn to ϕ0).

The idea of QSP is that we can perform a known polynomial, satisfying an achievability condition
defined below, on an unknown (parameterized) operator via interleaved rotations.

Definition 5 (QSP-achievable polynomial). We say that a polynomial p(x) ∈ C[x] is QSP-achievable
if there is a sequence of phase factors Φ = {ϕj}0≤j≤n ∈ Rn+1 such that

QSP(Φ, x) =

(
p(x) ·
· ·

)
. (4)

Through elementary calculations, [GSLW19] gives a characterization of QSP-achievability; in
particular, they show that every bounded, real polynomial pℜ is achievable in the sense that there is
a QSP-achievable polynomial whose real part is pℜ, which we summarize here. For self-containedness,
we give a proof in Appendix A, with a formal statement in Theorem 38.

Theorem 6 ([GSLW19, Corollary 10]). Let pℜ(x) ∈ R[x] be a real polynomial of degree n. Then there
exists a p ∈ C[x] such that pℜ = ℜ(p) and p is QSP-achievable with some Φ = {ϕj}0≤j≤n ∈ Rn+1

if and only if the following conditions hold:

(a) pℜ is even or odd;

(b) |pℜ(x)| ≤ 1 for x ∈ [−1, 1].

If p is QSP-achievable, then we can achieve ℜ(p) via a linear combination of unitary circuits on top
of QSP; see Remark 11. We next introduce a generalization of Definition 4 to higher dimensions.

Definition 7 ([GSLW19, Definition 15]). The phased alternating sequence associated with a
partitioned unitary U (following notation of Definition 12) and Φ = {ϕj}0≤j≤n ∈ Rn+1 is

UΦ :=


eıϕ0(2ΠL−I)Ueıϕ1(2ΠR−I)

n−1
2∏

j=1

U†eıϕ2j(2ΠL−I)Ueıϕ2j+1(2ΠR−I) if n is odd, and

eıϕ0(2ΠL−I)

n
2∏

j=1

U†eıϕ2j−1(2ΠL−I)Ueıϕ2j(2ΠR−I) if n is even.

Remark 8. The phased alternating sequence UΦ can be seen as a generalization of the quantum
signal processing circuit QSP(Φ, x). When d = 2 and r = c = 1, 2ΠL − I = 2ΠR − I = σz, so

QSP(Φ, x) = [R(x)]Φ where R(x) =

(
x

√
1− x2√

1− x2 −x

)
.

Finally, we define the matrix polynomial we wish to target via the QSVT framework as follows.

Definition 9 ([GSLW19, Definition 16]). Let f : R→ C be even or odd, and let A ∈ Cr×c have
SVD A =

∑
i∈[min(r,c)] σiuiv

†
i . Then we define

f (SV)(A) =

{∑
i∈[min(r,c)] f(σi)uiv

†
i f is odd∑

i∈[c] f(σi)viv
†
i f is even

where σi is defined to be zero for i > min(r, c).

When f(x) = p(x) is an even or odd polynomial, p(SV)(A) can be written as a polynomial in the
expected way, e.g. if p(x) = x2+1, p(SV)(A) = A†A+I and if p(x) = x3+x, p(SV)(A) = AA†A+A.

With this definition in hand, we are now ready to state the main result of the QSVT framework.

Theorem 10 ([GSLW19, Theorem 17]). Let partitioned unitary U ∈ Cd×d be a block encoding of
A. Let Φ = {ϕj}0≤j≤n ∈ Rn+1 be the sequence of phase factors such that QSP(Φ, x) computes the

6



degree-n polynomial p(x) ∈ C[x], as in Definition 5. Then UΦ is a block encoding of p(SV)(A):

if p is odd, ΠLUΦΠR =

(
p(SV)(A) 0

0 0

)
= p(SV)(ΠLUΠR),

and if p is even, ΠRUΦΠR =

(
p(SV)(A) 0

0 0

)
= ΠRp

(SV)(ΠLUΠR)ΠR.

As we will see, when BL,1 and BR,1 are in the computational basis, the CS decomposition (Theorem 1)
readily reduces the proof of Theorem 10 to substantially simpler subproblems (see Lemma 14).

Remark 11 (QSVT to quantum algorithms). Theorem 10 typically admits quantum algorithms in
the following way. Suppose our goal is to apply A−1 to a quantum state |ψ⟩, where A is a matrix
with singular values in [ 1κ , 1] that we have in the block encoding U. First, we take an odd, bounded
polynomial p(x) ∈ R[x] such that |p(x) − κ

x | ≤ ε for x ∈ [ 1κ , 1]. Then by Theorem 6, there is a
phase sequence Φ which implements a q ∈ C[x] such that ℜ(q) = p. By Theorem 10, UΦ is a block
encoding of q(SV)(A) and a calculation shows that U−Φ is a block encoding of the same polynomial
but with coefficients conjugated, [q∗](SV)(A).

The circuit (H ⊗ I)(|0⟩⟨0| ⊗ UΦ + |1⟩⟨1| ⊗ U−Φ)(H ⊗ I) is a block encoding of 1
2 (q

(SV)(A) +

[q∗](SV)(A)) = p(SV)(A), and Corollary 19 of [GSLW19] shows that one can implement this circuit
with controlled U and U†’s, along with other gates based on ΠL and ΠR.

Equipped with a block encoding of p(SV)(A), we can accomplish our desired algorithmic task. To apply
p(SV)(A) to an input state |ψ⟩ ∈ Cc, we rotate |ψ⟩ in d-dimensional state space to be aligned with
the block in the block encoding. After applying U and post-selecting, the output state is p(SV)(A) |ψ⟩
normalized to have unit norm, and ∥p(SV)(A)−A−1∥ ≤ ε due to our choice of polynomial.6

2.3 Simplified QSVT in the computational basis
In this section, we provide a proof of Theorem 10 in the computational basis. We begin with some
helpful notation in this special case, following the partitioning given by Theorem 1.

Definition 12 (Variant of [GSLW19, Definition 12]). Let U ∈ Cd×d be a block encoding of
A ∈ Cr×c where BL,1 and BR,1 are the first r and c columns of the identity, respectively (see (2)).
By Theorem 1, there is a CS decomposition compatible with the partitioning of U:

U =

(
A U12

U21 U22

)
=

(
V1

V2

)
︸ ︷︷ ︸

V

(
D11 D12

D21 D22

)
︸ ︷︷ ︸

D

(
W1

W2

)†

︸ ︷︷ ︸
W†

.

In Definition 12, we applied Theorem 1 to obtain an SVD of A = V1D11W1 that we have extended
to the d-dimensional U. Throughout the remainder of this section, BL,BR,ΠL, and ΠR are defined
consistently with the choice of BL,1 and BR,1 in Definition 12: BL = BR = I, and ΠL and ΠR are
the identity but with all but the first r and c 1’s set to 0, respectively. We next observe that this
SVD commutes appropriately with exponentiated projections respecting the partition.

Lemma 13 (Variant of [GSLW19, Lemma 14]). Let ϕ ∈ R. Following notation of Definition 12,

eıϕ(2ΠL−I) =

(
eıϕI

e−ıϕI

)
, eıϕ(2ΠR−I) =

(
eıϕI

e−ıϕI

)
,

with appropriate block sizes,7 and(
eıϕI

e−ıϕI

)(
V1

V2

)
=

(
V1

V2

)(
eıϕI

e−ıϕI

)
,(

W1

W2

)(
eıϕI

e−ıϕI

)
=

(
eıϕI

e−ıϕI

)(
W1

W2

)
.

6A warning: when applying QSVT on an approximate block encoding of Ã with ∥Ã−A∥ ≤ ε, the error may not
propagate as expected. This is because, if f satisfies |f ′| ≤ L, ∥f (SV)(A)− f (SV)(Ã)∥ ≤ L∥A− Ã∥ is not true in
general, even up to constants. As Section 3.3 of [GSLW19] discusses, sometimes one must lose logarithmic factors
here.

7These block sizes are such that the blocks of the product eıϕ(2ΠL−I)Ueıφ(2ΠR−I) match. For example, if the
top-left block of U is r× c, then the top-left block of eıϕ(2ΠL−I) is r× r and the top-left block of eıϕ(2ΠL−I) is c× c.
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We next state our main technical claim, whose proof is deferred to the end of the section.

Lemma 14. Let Φ ∈ Rn+1 be the sequence of phase factors implementing the degree-n polynomial
p(x) ∈ C[x] via quantum signal processing (Definition 5). Then we can compute the corresponding
QSVT circuit (Definition 7) applied to the following partitioned unitaries. First, the unitary
associated with zero singular values.[(

0r×c Ir
Ic 0c×r

)]
Φ
=

(
p(0)Ic ·
· ·

)
for n even and

(
0r×c ·
· ·

)
for n odd. (5)

Next, the unitary associated with one singular values.[(
Ir 0r×c

0c×r −Ic

)]
Φ
=

(
p(1)Ir ·
· ·

)
. (6)

Finally, the unitary for intermediate singular vaues: let C,S ∈ Cr×r be diagonal with C2 + S2 = I.[(C S
S −C

)]
Φ
=

(
p(SV)(C) ·
· ·

)
. (7)

Using this lemma, our main QSVT result (Theorem 10) in the setting of Definition 12 follows.

Proof of Theorem 10, special case. We recall the definition of UΦ:

UΦ =

{
eıϕ0(2ΠL−I)Ueıϕ1(2ΠR−I)

∏n−1
2

j=1 U†eıϕ2j(2ΠL−I)Ueıϕ2j+1(2ΠR−I) if n is odd, and
eıϕ0(2ΠL−I)

∏n
2
j=1 U

†eıϕ2j−1(2ΠL−I)Ueıϕ2j(2ΠR−I) if n is even.

Using that V and W† from the CS decomposition U = VDW† commute with their adjacent
exponentiated reflections (Lemma 13), we continue:

=

Veıϕ0(2ΠL−I)Deıϕ1(2ΠR−I)
(∏n−1

2
j=1 D†eıϕ2j(2ΠL−I)Deıϕ2j+1(2ΠR−I)

)
W† if n is odd, and

Weıϕ0(2ΠL−I)
(∏n

2
j=1 D

†eıϕ2j−1(2ΠL−I)Deıϕ2j(2ΠR−I)
)
W† if n is even.

=

{
VDΦW

† if n is odd, and
WDΦW

† if n is even.
(8)

This reduces the problem to computing DΦ. Recall from Remark 2 that the structure of D is

(
D11 D12

D21 D22

)
=


0

C
I

I
S

0
I

S
0

0
−C

−I

 =

(
0 I
I 0

)
︸ ︷︷ ︸
X0→Y0

⊕
(
C S
S −C

)
︸ ︷︷ ︸

XC→YC

⊕
(
I 0
0 −I

)
︸ ︷︷ ︸

X1→Y1

.

Similarly, for ϕ ∈ R,

eıϕ(2ΠL−I) =

(
eıϕI

e−ıϕI

)
=

(
eıϕI

e−ıϕI

)
︸ ︷︷ ︸

Y0→Y0

⊕
(
eıϕI

e−ıϕI

)
︸ ︷︷ ︸

YC→YC

⊕
(
eıϕI

e−ıϕI

)
︸ ︷︷ ︸

Y1→Y1

,

eıϕ(2ΠR−I) =

(
eıϕI

e−ıϕI

)
=

(
eıϕI

e−ıϕI

)
︸ ︷︷ ︸

X0→X0

⊕
(
eıϕI

e−ıϕI

)
︸ ︷︷ ︸

XC→XC

⊕
(
eıϕI

e−ıϕI

)
︸ ︷︷ ︸

X1→X1

.

Leveraging this direct sum decomposition of D, applying Lemma 14 to each block yields

DΦ =
[(

0 I
I 0

)]
Φ
⊕
[(

C S
S −C

)]
Φ
⊕
[(

I 0
0 −I

)]
Φ

=



(
0 ·
· ·

)
⊕

(
p(SV)(C) ·
· ·

)
⊕

(
p(1)I ·
· ·

)
if n is odd, and(

p(0)I ·
· ·

)
⊕

(
p(SV)(C) ·
· ·

)
⊕

(
p(1)I ·
· ·

)
if n is even.
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So, for n odd, recalling (8) and p(0) = 0, we have

ΠLUΦΠR = ΠLVDΦW
†ΠR

=

(
I

0

)(
V1

V2

)
DΦ

(
W†

1

W†
2

)(
I

0

)
=

(
V1

0

)
DΦ

(
W†

1

0

)

=

V1

(
0

p(SV)(C)
p(1)I

)
W†

1

 =

(
p(SV)(A) 0

0 0

)
.

Similarly, for n even, we have

ΠRUΦΠR = ΠRWDΦW
†ΠR

=

(
W1

0

)
DΦ

(
W†

1

0

)

=

W1

(
p(0)I

p(SV)(C)
p(1)I

)
W†

1

 =

(
p(SV)(A) 0

0 0

)
.

We conclude the section by proving Lemma 14.

Proof of Lemma 14. The basic intuition behind this argument is that, by assumption and (3),(
eıϕ0 0
0 e−ıϕ0

) n∏
j=1

(
x

√
1− x2√

1− x2 −x

)(
eıϕj 0
0 e−ıϕj

)
=

(
p(x) ·
· ·

)
.

So, supposing we could evaluate the polynomial at a matrix x← C, we get that

“

(
eıϕ0I

e−ıϕ0I

) n∏
j=1

(
C

√
I−C2

√
I−C2 −C

)(
eıϕjI

e−ıϕjI

)
=

(
p(C) ·
· ·

)
.”

This should hold because block matrix multiplication operates by the same rules as scalar matrix
multiplication, but requires care to handle the non-square case. We formalize this argument in an
elementary manner. First, we consider (5). Let U =

(
0 Ir
Ic 0

)
. When n is even,

UΦ =

(
eıϕ0I

e−ıϕ0I

) n
2∏

j=1

(
0 I
I 0

)†(
eıϕ2j−1I

e−ıϕ2j−1I

)(
0 I
I 0

)(
eıϕ2jI

e−ıϕ2jI

)

=

(
eıϕ0I

e−ıϕ0I

) n
2∏

j=1

(
eı(ϕ2j−ϕ2j−1)I 0

0 e−ı(ϕ2j−ϕ2j−1)I

)

=

(
eı

∑n
k=0(−1)kϕkI 0

0 e−ı
∑n

k=0(−1)kϕkI

)
.

Taking I and 0 to be 1-dimensional scalars 1 and 0, this computation and Definition 4 also show
that p(0) = eı

∑n
k=0(−1)kϕk yielding the desired conclusion. Similarly, when n is odd,

UΦ =

(
eıϕ0I

e−ıϕ0I

)(
0 I
I 0

)(
eıϕ1I

e−ıϕ1I

)
n−1
2∏

j=1

(
0 I
I 0

)†(
eıϕ2jI

e−ıϕ2jI

)(
0 I
I 0

)(
eıϕ2j+1I

e−ıϕ2j+1I

)

=

(
0 eı

∑n
k=0(−1)kϕkI

e−ı
∑n

k=0(−1)kϕkI 0

)
.
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Next, we prove (6). Let U =
(
Ir 0
0 −Ic

)
. Notice that U commutes with the other matrices in the

expression UΦ. As an immediate consequence,

UΦ =

(
I 0
0 (−1)nI

) n∏
k=0

(
eıϕkI 0
0 e−ıϕkI

)
=

(
eı

∑n
k=0 ϕkI 0
0 (−1)ne−ı

∑n
k=0 ϕkI

)
.

As before, the same computation specialized to a 2-dimensional U = σz shows that p(1) = eı
∑n

k=0 ϕk ,
giving the desired claim. Finally to prove (7), let the diagonal entries of C be {ci}i∈[r]. Then U
is the direct sum of r matrices of the form R(ci), where we recall we defined R in Definition 4.
Applying Definition 4 to each 2× 2 block, and comparing to Definition 9, yields the conclusion.

2.4 Simplified QSVT in general bases
We now finish the proof of Theorem 10 in the case of general bases BL, BR. For disambiguation we
let BL, BR, BL,1, BR,1, ΠL, ΠR refer to an arbitrary basis and associated subspace in Definition 3,
and (for this section only) we let BL, BR, BL,1, BR,1, ΠL, ΠR refer to the computational basis
where BL,1 and BR,1 have the same number of columns as BL,1 and BR,1. These are related via

BL,1 = BLBL,1, ΠL = BLΠLB
†
L, BR,1 = BRBR,1, ΠR = BRΠRB

†
R. (9)

Finally, we define
U := B†

LUBR ⇐⇒ U = BLUB†
R. (10)

We prove the general case by reducing to the special case of Theorem 10 we proved in the prior
Section 2.3, as suggested earlier. The following observation will be useful:

ΠLUΠR = B†
LΠLUΠRBR. (11)

Proof of Theorem 10, general case. For simplicity we will only prove the odd case, as the reduction
in the even case is essentially identical. Recall that when n is odd,

UΦ = eıϕ1(2ΠL−I)U
∏

j∈[n−1
2 ]

eıϕ2j(2ΠR−I)U†eıϕ2j+1(2ΠL−I)U

= BL

eıϕ1(2ΠL−I)U
∏

j∈[n−1
2 ]

eıϕ2j(2ΠR−I)U
†
eıϕ2j+1(2ΠL−I)U

B†
R

= BL

(
p(SV)(A) 0

0 0

)
B†

R, where A := ΠLUΠR.

In the second line, we used the definitions (9), (10) and the fact that BL, BR are unitary. Finally,
in the third line we used the special case of Theorem 10 we proved earlier, applied to U. The
conclusion follows by the claim

BL

(
p(SV)(A) 0

0 0

)
B†

R = p(SV)(A), where A = ΠLUΠR. (12)

Indeed, as a consequence of (11), A and A have the same singular values, their left singular vectors
are related via rotation by BL, and their right singular vectors are related via rotation by BR.
Comparing with the definition of p(SV) from Definition 9 yields the claim (12).

3 QSVT and Chebyshev Series
So it becomes tempting to look at approximation methods that go beyond interpolation,

and to warn people that interpolation is dangerous... the trouble with this is that
for almost all the functions encountered in practice, Chebyshev interpolation works
beautifully! —Trefethen, [Tre19]
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3.1 Chebyshev polynomials
The QSVT framework gives a generic way of applying bounded polynomials to matrices. In
applications of interest, the main goal is actually to apply a non-polynomial function; to capture
these applications, it is important to develop tools for approximating the relevant functions with
bounded polynomials. In this section, we introduce Chebyshev polynomials, our main tool for
constructing approximations. We present only properties which are needed to achieve our results.

Definition 15 (Chebyshev polynomial). The degree-n Chebyshev polynomial (of the first kind),
denoted Tn(x), is the function that satisfies, for all z ∈ C,

Tn(
1
2 (z + z−1)) = 1

2 (z
n + z−n).

For z = exp(ıθ) for θ ∈ [−π, π] we may identify x := 1
2 (z + z−1) for x = cos θ. This identification

yields another familiar definition of the Chebyshev polynomials,

Tn(cos(θ)) = cos(kθ).

From these definitions we have that ∥Tn(x)∥[−1,1] ≤ 1, and that Tn has the same parity as n, i.e.
Tn(−x) = (−1)nTn(x). We can invert x = 1

2 (z + z−1) to obtain z = x±
√
x2 − 1. Consequently,

Tn(x) =
1

2

((
x+

√
x2 − 1

)n
+
(
x−

√
x2 − 1

)n)
.

Definition 16 (Chebyshev coefficients). Let f : [−1, 1]→ C be Lipschitz (i.e. |f(x)−f(y)| ≤ C|x−y|
for finite C). Then f has a unique decomposition into Chebyshev polynomials

f(x) =

∞∑
k=0

akTk(x),

where the Chebyshev coefficients ak absolutely converge, and can be computed via the following
integral (counterclockwise) around the complex unit circle, where πı is replaced by 2πı when k = 0:

ak =
1

πı

∫
|z|=1

zk−1f( 12 (z + z−1))dz. (13)

This comes from the Cauchy integral formula: f( 12 (z + z−1)) maps [−1, 1] (twice) onto the unit
circle, so that when we write f as a Laurent series

∑
k∈Z bk(z

k + z−k), the coefficients bk match up
with the coefficients ak (up to a factor of two). For more details, see Theorem 3.1 of [Tre19]. We
will typically construct polynomial approximations via Chebyshev truncation, defined as follows.

Definition 17 (Chebyshev truncation). For a function f : [−1, 1] → C written as a Chebyshev
series f(x) =

∑∞
k=0 akTk(x), we denote the degree-n Chebyshev truncation of f as

fn(x) =

n∑
k=0

akTk(x).

To construct polynomial approximations time-efficiently, we should avoid computing the integral
(13). So, instead of the Chebyshev truncation, we would actually compute the Chebyshev inter-
polant [Tre19, Chapter 3], the degree-n polynomial that agrees with f at the n + 1 Chebyshev
points cos( jπn ) for 0 ≤ j ≤ n. Computing this interpolant only requires n+ 1 evaluations of f to
specify, and O(n log(n)) additional time to compute its Chebyshev coefficients, via a fast cosine
transform. Chebyshev truncation and Chebyshev interpolation are closely related through standard
bounds (see Eq. 4.9, [Tre19]); we focus on the latter as it is conceptually cleaner, but all bounds we
prove extend to interpolation up to a factor of two.8

8This justifies our use of the quote from [Tre19] at the beginning of Section 3: though it is about Chebyshev
interpolation rather than truncation, the spirit is the same.
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3.2 Chebyshev series for standard functions
If the function f one wishes to approximate is standard, closed forms of the Chebyshev coefficients
may be known, so one can take a Chebyshev truncation and explicitly bound the error:

∥f − fn∥[−1,1] =
∥∥∥ ∞∑
k=n+1

akTk(x)
∥∥∥
[−1,1]

≤
∞∑

k=n+1

|ak|∥Tk(x)∥[−1,1] =

∞∑
k=n+1

|ak|.

In other words, by choosing n such that the coefficient tail sum is bounded by ε, we obtain an
ε-uniform approximation on [−1, 1]. We list some standard Chebyshev coefficient series here, which
can help for converting a Taylor or Fourier series to a Chebyshev series. The notation

∑′ means
that if a term exists for T0 in the summation, it is halved:

xm = 21−m

⌊m/2⌋∑
n=0

′
(
m

n

)
Tm−2n(x). [MH02, Eq. 2.14]

etx = 2

∞∑
n=0

′In(t)Tn(x). [MH02, Eq. 5.18]

sinh(tx) = 2

∞∑
n=0

I2n+1(t)T2n+1(x). [MH02, Eq. 5.19]

cosh(tx) = 2

∞∑
n=0

′I2n(t)T2n(x). [MH02, Eq. 5.20]

In the above display, In denotes the modified Bessel function of the first kind. This function is
typically defined as the solution to a differential equation, but for us it suffices to define In(t) as
“the nth Chebyshev coefficient of etx,” so by (13) (and pairing Laurent coefficients),

In(t) :=
1

2πı

∮
|z|=1

zn−1e
t
2 (z+z−1)dz =

1

2πı

∮
|z|=1

z−n−1e
t
2 (z+z−1)dz.

In the remainder of the section, to demonstrate the “direct coefficient bound” style of approximation
error analysis, we analyze the use of Chebyshev truncation to give a uniform approximation to
f(x) = etx for t ∈ R on the interval [−1, 1]. The main result of this section is the following.

Theorem 18 ([SV14, Theorem 4.1], [GSLW19, Lemmas 57, 59]). Let ε > 0 and let p(x) be the
degree-n Chebyshev truncation of etx for t ∈ R. Then ∥p(x)− etx∥[−1,1] ≤ ε for

n ≂

{
|t|+ log(1/ε)

log(e+log(1/ε)/|t|) ε ≤ 1√
|t| log(e|t|/ε) ε > 1

.

To elaborate on what this bound states, there are four regimes of ε.

1. When ε ≥ e|t|, the zero polynomial p(x) ≡ 0 suffices.

2. When 1 ≤ ε < e|t|, we have n ≂
√
|t| log(e|t|/ε), or n ≂

√
|t| log(1/δ), rewriting ε = δe|t| to

scale with the maximum value of e|t|x on [−1, 1]. This is the bound shown in [SV14].

3. When e−C|t| ≤ ε < 1 for some universal constant C, the scaling is n ≂ |t|.

4. When ε < e−C|t|, the scaling is log(1/ε)
log(e+log(1/ε)/|t|) . This is the bound shown in [GSLW19].

Theorem 18 was first proven by combining results from [SV14] and [GSLW19]. A recent work [AA22]
obtained the same upper bound, as well as a lower bound showing Theorem 18 is tight. The bounds
from [SV14; GSLW19] are each loose in certain regimes ([SV14]’s bound,

√
|t| log(e|t|/ε)+log(e|t|/ε),

is loose in regime 4, whereas [GSLW19] assumes ε < 1), potentially due to the different proof
techniques employed. Specifically, while [GSLW19] proceeds by a standard Bessel function inequality
to bound the tail terms of the Chebyshev truncation, [SV14] proceeds by approximating monomials
in the Taylor expansion of etx with Chebyshev truncation. As noted by [LC17], this strategy bounds
the tail terms of the Chebyshev truncation by an easier-to-understand series that dominates it.
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We give another (arguably more straightforward) proof of Theorem 18, by bounding the error of
Chebyshev truncation (a strategy also employed by [AA22]). To achieve the right bound in the
ε > 1 regime, we require a sharper bound on In, the Chebyshev coefficients of etx.

Lemma 19 (Carlini’s formula). For t ∈ R,

|In(t)| <
exp(
√
t2 + n2)(

√
(n/t)2 + 1− n/|t|)n

2(n2 + t2)1/4
.

We contribute an independent proof of Lemma 19 in Appendix C, which was proven without using
Bessel-style techniques in [AA22]. While we would guess that this bound is well-known, we could
not find this statement in the literature.9 The equivalent bound on the (unmodified) Bessel function
of the first kind Jk is due to Carlini [Wat95, Chapter 1.4], and can be viewed as a “real-valued”
analog of Lemma 19 following the equivalence Ik(t) = ı−kJk(ıt).10 Our proof follows [Wat17] (who
handled the real-valued version), and begins with a representation of a Bessel function as a contour
integral. We bound this integral via the method of steepest descent, where the contour is changed to
a real-valued one, using that the integrand is analytic. Using Lemma 19, we now prove Theorem 18.

Proof of Theorem 18. By symmetry it suffices to take t ≥ 0. We split into cases based on ε.

Case 1: ε ≤ 1. Define r(t, ε) to be the value r such that ε = (t/r)r. We choose

n = ⌈r(3t, ε)⌉.

Note that the function (t/r)r is decreasing for r ≥ t and hence in the regime ε ≤ 1, we have n ≥ 3t.
Then, recalling that p is the degree-n Chebyshev truncation, we have by Lemma 19 that

∥p(x)− etx∥[−1,1] ≤ 2

∞∑
k=n+1

|Ik(t)| ≤ 2

∞∑
k=n

|Ik(t)|

≤ 2

∞∑
k=n

exp(
√
t2 + k2)(

√
(k/t)2 + 1− k/t)k

2(k2 + t2)1/4

≤
∞∑

k=n

exp(
√
t2 + k2)(

√
(k/t)2 + 1− k/t)k

≤
∞∑

k=n

exp(k
√
(t/n)2 + 1)(

√
(n/t)2 + 1− n/t)k

by k ≥ n and since
√
x2 + 1− x decreases in x

≤
∞∑

k=n

(
exp(

√
(t/n)2 + 1) · t

2n

)k
by
√
1− x2 − x ≤ 1

2x

≤
∞∑

k=n

(
exp(

√
10/9) · t

2n

)k
by n ≥ 3t

≤
∞∑

k=n

( 3t

2n

)k
≤
(3t
n

)n ∞∑
k=1

1

2k
≤ ε by n ≥ r(3t, ε).

The desired bound on n in this regime then follows from [GSLW19, Lemma 59] which shows that,
for ε ∈ (0, 1) and t > 0, r(t, ε) = Θ(t+ log(1/ε)

log(e+log(1/ε)/t) ).

Case 2: ε > 1. For ε ∈ (1, 2] the conclusion follows from our proof when ε = 1, so assume ε > 2;11

9Off-the-shelf bounds like Kapteyn’s inequality [DLMF, Eq. 10.14.8] are not quite tight enough for our purposes,
since a very fine degree of control is necessary in the challenging regime where none of n, t, or t/n remain constant.

10Note that the real version of this statement is perhaps more non-trivial, since then the terms in the power series
for the Bessel function are no longer nonnegative. Qualitatively similar statements may have also been made by
Laplace, but for this claim Watson cites a book of the Mécanique Céleste without an English translation [Wat95,
page 7]. This felt like a good place to stop our investigation of Bessel function bounds.

11If t is a sufficiently small constant, then applying the ε = 1 case gives a constant-degree polynomial. Otherwise,
t is sufficiently large to outweigh constant-factor changes in ε (and hence additive changes in log 1

ε
).
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for ε ≥ et the zero polynomial suffices so assume ε < et. Let δ = ε−1
5 and m = ⌈3t⌉. We choose

n =

⌈√
100t

(
t+ log

1

δ

)⌉
≥ 10

√
t,

where we use t+ log 1
δ ≥ 1 for our range of ε. The claim then follows from δ = Θ(ε) and combining:

2

m−1∑
k=n+1

|Ik(t)| ≤ 5δ, 2

∞∑
k=m

|Ik(t)| ≤ 1. (14)

The second claim in (14) was already shown by our earlier derivation setting ε = 1, since m ≥
r(3t, 1) = 3t. For bounding the first sum, the following estimate will be helpful: for k ≤ 3t,

exp
(√

t2 + k2
)(√(

k
t

)2
+ 1− k

t

)k

≤ exp

(√
t2 + k2 + k

(√(
k
t

)2
+ 1− k

t − 1

))
= exp

(
t
(
1 + k

t

)(√(
k
t

)2
+ 1− k

t

))
≤ exp

(
t
(
1− 0.01

(
k
t

)2))
.

(15)

The last equation used (1 + x)(
√
1 + x2 − x) ≤ 1− 0.01x2 for 0 ≤ x ≤ 3. Since m− 1 ≤ 3t,

m−1∑
k=n+1

|Ik(t)| ≤
1

2(n2 + t2)1/4

m−1∑
k=n+1

exp

(
t

(
1− 0.01

(
k

t

)2
))

=
et

2(n2 + t2)1/4

m−1∑
k=n+1

exp

(
− k2

100t

)

≤ et

2(n2 + t2)1/4

∫ ∞

n

exp

(
− x2

100t

)
dx

=
et
√
25t

(n2 + t2)1/4

∫ ∞

n√
100t

exp
(
−x2

)
dx

≤ et
√
25t

(n2 + t2)1/4
·
(
1

2
exp

(
− n2

100t

))
≤ 5

2
exp

(
t− n2

100t

)
≤ 5

2
δ.

The first line used Lemma 19 and (15), and the second-to-last used the Gaussian tail bound (20):∫ ∞

n√
100t

exp
(
−x2

)
dx < exp

(
− n2

100t

)
· 1

1 + n√
100t

≤ 1

2
exp

(
− n2

100t

)
,

where we used n ≥ 10
√
t and exp(t− n2

100t ) ≤ δ by construction.

3.3 Bounded approximations via Chebyshev series: a user’s guide
Two issues often arise when using polynomial approximations for QSVT. First, we may not know
explicitly what the Chebyshev coefficients of our desired function are. Second, even when we do,
Chebyshev truncation may be bad for our purposes, since our criteria is different from uniform
approximation on [−1, 1]. For example, quantum linear systems requires a polynomial approximation
close to x−1 on [−1,− 1

κ ] ∪ [ 1κ , 1], but it merely needs to be bounded on [− 1
κ ,

1
κ ]. This bounded

requirement is necessary to use the machinery of Section 2.2 (see Remark 11).

Since quantum computing researchers are resourceful, we often see good polynomial approximations
derived through ad hoc techniques to tame the function at poorly-behaved points. For example,
[CKS17] performs Chebyshev truncation on the polynomial (1− (1− x2)b) · 1x instead of 1

x , and
this has the desired properties. However, as [GSLW19] points out, there are generic ways to find
approximations to piecewise smooth functions which satisfy the “ε-close on smooth pieces, but
bounded near points of discontinuity” requirement of QSVT, with log 1

ε scaling in the degree. Their
proof of this claim assumes that the Taylor series coefficients of the smooth functions are bounded.
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We give a variant of this result that only assumes that the smooth functions are bounded on
ellipses in complex space, and has a self-contained proof based on Chebyshev series. This alternate
version matches [GSLW19] for sufficiently small ε, and otherwise loses a logarithmic factor (though
under a weaker assumption on the function to be approximated, see Remark 22). To do so, we
combine a powerful meta-technique for bounding the Chebyshev coefficients of analytic functions with
applications of explicit thresholding functions. This meta-technique is stated as Theorem 20; in many
prominent settings, a direct application already yields near-optimal polynomial approximations.

Theorem 20 ([Tre19, Theorems 8.1 and 8.2]). Let f be an analytic function in [−1, 1] and
analytically continuable to the interior of the Bernstein ellipse Eρ = { 12 (z+ z−1) : |z| = ρ}, where it
satisfies |f(x)| ≤M . Then its Chebyshev coefficients satisfy |a0| ≤M and |ak| ≤ 2Mρ−k for k ≥ 1.
Consequently, for each n ≥ 0, its Chebyshev projections satisfy

∥f − fn∥[−1,1] ≤
2Mρ−n

ρ− 1
,

and choosing n = ⌈ 1
log(ρ) log

2M
(ρ−1)ε⌉, we have ∥f − fn∥[−1,1] ≤ ε.

Proof. Recall from (13) (and since inverting z does not change the contour integral) that for k ≥ 1,

ak =
1

πı

∫
|z|=1

z−(k+1)f( 12 (z + z−1))dz.

The boundary of Eρ is given by 1
2 (z + z−1) for |z| = ρ, and f is analytic in Eρ, so we may choose a

different contour without affecting the value of the integral:

ak =
1

πı

∫
|z|=ρ

z−(k+1)f( 12 (z + z−1))dz.

The conclusion follows from the facts that the circumference of |z| = ρ is 2πρ and the function is
bounded by M . A similar argument gives the case k = 0, where (13) has 2πı in the denominator.

Theorem 20 shows that if one can analytically continue f to a Bernstein ellipse with ρ = 1 + α for
small α, then a degree ≈ 1

α polynomial obtains good approximation error on [−1, 1]. Unfortunately,
since the approximation in Theorem 20 is based on Chebyshev truncation, the approximation
rapidly blows up outside the range [−1, 1] (in Lemma 32, we give estimates on the growth of
Chebyshev polynomials, i.e. that the nth polynomial grows as O(|x|n) for x sufficiently outside
[−1, 1]). In interesting applications of the QSVT framework, this is an obstacle. For example, to use
QSVT for matrix inversion, we need a polynomial approximation to x−1 on [δ, 1] that is bounded
on [−1, 1]. Upon linearly remapping [δ, 1] to [−1, 1], this corresponds to a bounded approximation
on [−b, 1] for some b > 1, so Chebyshev truncations give us a very poor degree of control.

To this end, we provide the following “bounded approximation” variant of Theorem 20, as a
user-friendly way of extending it to applications of the QSVT framework.

Theorem 21. Let f be an analytic function in [−1, 1] and analytically continuable to the interior
of Eρ where ρ = 1+α, where it is bounded by M . For δ ∈ (0, 1

C min(1, α2)) where C is a sufficiently
large constant, ε ∈ (0, 1), and b > 1, there is a polynomial q of degree O( bδ log

b
δε ) such that

∥f − q∥[−1,1] ≤Mε,

∥q∥[−(1+δ),1+δ] ≤M,

∥q∥[−b,−(1+δ)]∪[1+δ,b] ≤Mε.

Proof sketch. We give a formal proof in Section 3.5, but briefly summarize our proof strategy here.

1. Applying Theorem 20 gives fn of degree n ≈ 1
α approximating f in the interval [−1, 1], but

fn does not satisfy the other required conclusions due to its growth outside [−1, 1].

2. We multiply fn by a “threshold” r based on the Gaussian error function erf, whose tails decay
much faster than the Chebyshev polynomials grow outside [−1, 1]. Our function r has the
property that inside [−1, 1], it is close to 1, and outside [−(1 + δ), 1 + δ], it is close to 0.
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3. Using bounds on the growth of erf, we show r · fn is bounded on a Bernstein ellipse of radius
1 + δ

b appropriately rescaled, and applying Theorem 20 once more gives the conclusion.

The final proof requires some care to obtain the claimed scalings on the windows of approximation,
but we include this tedium to make the theorem statement as simple to use as possible.

Remark 22. Theorem 21 is an alternative to Corollary 66 of [GSLW19]. Translating the statement
there to our setting, the polynomial approximation it would achieve has degree O( bδ log

M
ε ). Our

approximation of degree O( bδ log
b
δε ) is comparable, matching when ε and δ

b are polynomially related.

We note that our Theorem 21 has a log b
δε dependence (instead of log 1

ε ) because we use a slightly
weaker type of assumption: not only does [GSLW19, Corollary 66] assume that its function
f(x) =

∑∞
k=0 akx

k is analytic and bounded by M on a disk of radius 1 + δ, it also assumes that
the Taylor series coefficients |ak| satisfy

∑∞
k=0|ak|(1 + δ)k ≤ M . Without this final condition,

boundedness merely implies that |ak| = O((1+δ)−k), and this slight weakening leads to an additional
logarithmic factor when ε is large. In most applications, the difference is negligible; both strategies
have an additional polynomial overhead on b

δ , which typically dominates a log b
δ dependence.

Finally, the precondition of Theorem 21 is weaker than the requirement of Corollary 66 of [GSLW19]
in another sense. Specifically, [GSLW19] assumes a locally bounded Taylor series in a scaled unit
circle in the complex plane, whereas we only require a bound on a (potentially much smaller)
Bernstein ellipse, which could enable more applications.

We use the rest of the section to provide a user’s guide on applying Theorem 21 to boundedly
approximate various piecewise smooth functions. All of our applications proceed as follows.

1. We linearly rescale the “region of interest,” i.e. the part of R where we wish to approximate a
function via bounded polynomials, to the interval [−1, 1].

2. We apply Theorem 21 to the rescaled function for appropriate choices of b and δ, so the region
where the approximation must be bounded is captured upon undoing the rescaling.

3. If additional properties of the bounded approximation are desired, e.g. a parity requirement,
we use the additional implications of Theorem 21 to obtain these properties.

A simple application of Theorem 21 is obtaining degree-O( 1δ log
1
δε ) polynomial approximations

to the sign and rectangle functions (where our guarantee is ε-closeness outside of a δ interval
around the points of discontinuity, as described in [GSLW19, Lemmas 25 and 29]).12 We leave this
as an exercise. We begin with a bounded approximation to the rescaled exponential function in
Corollary 23. Such bounds have previously seen use in quantum applications of the multiplicative
weights framework via QSVT, to design faster approximate solvers for linear programs [AG19;
BGJST23].

Corollary 23. Let ε ∈ (0, 1), and let f(x) = exp(βx) for β ≥ 1. There exists a polynomial p of
degree O(β log β

ε ) such that ∥p∥[−1,1] = O(1) and ∥p− f∥[−1,0] ≤ ε.

Proof. First, we rescale so the region of interest is [−1, 1]: let g(y) = f(β( 12 (y − 1))). Note that
g(y) is analytic everywhere and bounded by a constant on Eρ for ρ = 1 + β− 1

2 . To see this, the
magnitude of 1

2 (z − 1) for z ∈ Eρ is maximized when z is furthest from 1, and Fact 30 shows this
magnitude is O( 1β ). Hence, applying Theorem 21 with b = 3 and δ = Θ( 1β ) for a sufficiently small
constant yields the claim upon shifting the region of interest back, since 1

2 (y− 1) = 1 for y = 3.

Next, in Corollary 24 we provide an analog of Lemma 70 in [GSLW19], regarding the bounded
approximation of arcsin, using the framework of Theorem 21.

Corollary 24. Let δ, ε ∈ (0, 1), and let f(x) = 2
π arcsin(x). There exists an odd polynomial p(x)

of degree O( 1√
δ
log 1

δε ) such that ∥p∥[−1,1] ≤ 1 and ∥p− f∥[−(1−δ),1−δ] ≤ ε.

12This result shows that direct Chebyshev truncation is sometimes not enough for these slightly different approx-

imation guarantees: the sign function has Chebyshev series
∑

k≥0
4
π

(−1)k

2k+1
T2k+1(x) [Tre19, Exercise 3.6], which

cannot be truncated without paying Ω(1) error.
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Proof. First, we rescale so the region of interest is [−1, 1]: let arcsin(x) = arcsin((1 − δ)x). The
arcsin function is analytic on C \ ((−∞, 1] ∪ [1,∞)), so we choose ρ = 1 +

√
2δ so that arcsin(x) is

analytic on the interior of Eρ by the first bound in Fact 30. By the maximum modulus principle,
the maximum of arcsin is achieved on the boundary of the ellipse. We can bound this using that,
for |z| ≤ 1 (so the Taylor series [DLMF, Eq. 4.24.1] converges),

|arcsin z| =

∣∣∣∣∣
∞∑

n=0

(2n)!

22n(n!)2
z2n+1

2n+ 1

∣∣∣∣∣ ≤
∞∑

n=0

(2n)!

22n(n!)2
|z|2n+1

2n+ 1
≤ arcsin|z| ≤ π

2
. (16)

We can further verify by Fact 30 that |z| ≤ 1 + δ for z ∈ Eρ, so the above display yields∣∣arcsin(z)∣∣ = |arcsin((1− δ)z)| ≤ π

2
.

So, by Theorem 21 with b← 1
1−δ and δ ← δ

C for a sufficiently large C, there is a polynomial q with
∥q − arcsin∥[−1,1] ≤ π

2 ε and ∥q∥[−(1−δ)−1,(1−δ)−1] ≤ π
2 . Letting p((1 − δ)x) = 2

π q(x), we have the
desired bounds. The degree of p is O( 1δ log

1
δε ), and it is odd by Corollary 35 as arcsin is odd.

In Corollary 25, we further apply Theorem 21 to the “fractional query” setting of Corollary 72 in
[GSLW19], which requires approximations to exp(ıt arcsin(x)) for small t. As in [GSLW19], we
provide bounded approximations to cos(t arcsin(x)) and sin(t arcsin(x)) through our framework.

Corollary 25. Let ε ∈ (0, 1) and t ∈ [−1, 1]. There exists an even polynomial p and an odd
polynomial q of degree O(log 1

ε ) such that ∥p∥[−1,1] ≤ 1, ∥q∥[−1,1] ≤ 1, and

∥p(x)− cos(t arcsin(x))∥[− 1
2 ,

1
2 ]
≤ ε, ∥q(x)− sin(t arcsin(x))∥[− 1

2 ,
1
2 ]
≤ ε.

Proof. First, we rescale so the region of interest is [−1, 1]: let f(x) = cos(t arcsin(x2 )) and g(x) =
sin(t arcsin(x2 )). These are analytic on C \ ((−∞,−2] ∪ [2,∞)), since that is where arcsin(x2 ) is
analytic. Let ρ = 2, so f and g are analytic on the interior of Eρ. We observe that for all z ∈ C,

| cos(z)| = 1

2

∣∣eız + e−ız
∣∣ ≤ 1

2
|eız|+ 1

2
|e−ız| ≤ cosh(|z|),

as cosh is increasing and the imaginary part of z is at most |z|. A similar argument shows
| sin(z)| ≤ cosh(|z|). By Fact 30 we observe that every point in the interior of 1

2Eρ has modulus ≤ 3
4 ,

and | arcsin | is bounded in this region by π
2 (see (16)), so for z ∈ Eρ, |f(z)| =

∣∣cos(t arcsin( z2))∣∣ ≤
cosh

(
π
2

)
, and we may analogously bound g on Eρ. Taking b = 2 and δ to be a sufficiently small

constant in Theorem 21, and rescaling the region of interest, gives the conclusion. The parities of p
and q follow from Corollary 35 and the parities of cos(t arcsin(x)) and sin(t arcsin(x)).

Finally, Corollary 26 gives a variant of Corollaries 67 and 69 in [GSLW19], regarding the bounded
approximation of negative power functions. Our bound has a slightly worse logarithmic factor in
some regimes (as discussed in Remark 22), but otherwise agrees with the bounds in [GSLW19] up
to a constant factor, using arguably a more standard approach.

Corollary 26. Let δ, ε ∈ (0, 1), and let f(x) = | δx |
c for c > 0. There exist both even and odd

polynomials p(x) of degree O(max(1,c)
δ log 1

δε ) such that ∥p∥[−1,1] ≤ 3 and ∥p− f∥[δ,1] ≤ ε.

Proof. Assume δ is sufficiently small, else taking a smaller δ only affects the bound by a constant.
We rescale the region of interest: x = 1−δ

2 y + 1+δ
2 is in [δ, 1] for y ∈ [−1, 1], so let

g(y) := δc
(1− δ

2
y +

1 + δ

2

)−c

.

We require a bound of g on Eρ for ρ = 1 +
√
δ/4max(1, c). Since f is largest closest to the origin,
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g is largest at the point closest to − 1+δ
1−δ , i.e. − 1

2 (ρ+ ρ−1) > −(1 + δ
8max(1,c) ) by Fact 30. Further,

g

(
−1

2
(ρ+ ρ−1)

)
≤ g
(
−
(
1 +

δ

8max(1, c)

))
≤ δc

(
− 1− δ

2

(
1 +

δ

8max(1, c)

)
+

1 + δ

2

)−c

=

(
1− 1− δ

16max(1, c)

)−c

≤ 3

2
.

Let δ̃ = δ
4C max(1,c) for sufficiently large C, and b = 4. Theorem 21 yields q(y) satisfying:

∥q(y)− g(y)∥[−1,1] ≤ ε, ∥q(y)∥[−(1+δ̃),1+δ̃] ≤ 2c, ∥q(y)∥[−4,−(1+δ̃)]∪[1+δ̃,4] ≤ ε.

Shifting back y = 2
1−δ (x−

1+δ
2 ), it is clear for sufficiently large C that y = − 1+3δ

1−δ (which corresponds
to x = −δ) has y < −(1 + δ̃), and y = − 3+δ

1−δ (which corresponds to x = −1) has y > −4. So,∥∥∥∥q( 2

1− δ

(
x− 1 + δ

2

))
− f(x)

∥∥∥∥
[δ,1]

≤ ε,∥∥∥∥q( 2

1− δ

(
x− 1 + δ

2

))∥∥∥∥
[−δ,δ]

≤ 2c,∥∥∥∥q( 2

1− δ

(
x− 1 + δ

2

))∥∥∥∥
[−1,−δ]

≤ ε.

(17)

Depending on whether we wish the final function to be even or odd, we take

p(x) = q

(
2

1− δ

(
x− 1 + δ

2

))
± q
(

2

1− δ

(
−x− 1 + δ

2

))
.

Then the guarantees of (17) give ∥p(x)− f(x)∥[δ,1] ≤ 2ε and ∥p(x)∥[−1,1] ≤ 3, and we rescale ε to
conclude. The final degree of the polynomial is the degree of q(y): O(max(1,c)

δ log 1
δε ).

3.4 Separating bounded and unbounded polynomial approximations
In this section, we show that QSVT’s requirement that the polynomials it implements be bounded
can worsen the quality of approximations. Specifically, we prove a simple separation result which
shows that polynomial approximations may necessarily require larger degree under an additional
boundedness constraint. This follows from the observation that bounded degree-d polynomials can
have derivative as large as d2 near the boundary of [−1, 1], yet are bounded by O(d) on the interior.
This is formalized by the following classical inequality due to Bernstein [Ber12].

Proposition 27 (Theorem 2, [Sch41]). Let p be a degree-d polynomial with rational coefficients
satisfying |p(x)| ≤ 1 for all x ∈ [−1, 1]. Then

d ≥ |p′(x)|
√
1− x2 for all x ∈ [−1, 1].

Proposition 27 is troublesome for obtaining the type of bound we want since it depends on derivatives
of p, the approximation, rather than f , the function to be approximated. We next give a simple
extension of Proposition 27, with degree lower bounds depending on a quantity supx,y

|f(x)−f(y)|−2ε
|x−y|

which can be viewed as a “robust” Lipschitz constant of f . For example, if f is a differentiable
function with derivative ≥ L on an interval of length at least 4ε

L , then this quantity is ≥ L
2 , and

taking ε→ 0 recovers the maximum derivative of f .

Proposition 28. For ∆ ∈ (0, 1] and S ⊂ [−∆,∆], let f(x) : S → [−1, 1] be a function with
polynomial approximation p(x) such that, for some approximation error ε > 0,

|p(x)− f(x)| ≤ ε for all x ∈ S, and (18)
|p(x)| ≤ 1 for all x ∈ [−1, 1]. (19)
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Then

deg(p) ≥
√
1−∆2 sup

x,y∈S
x ̸=y

|f(x)− f(y)| − 2ε

|x− y|
.

Proof. Consider some distinct x, y ∈ S, and let

L =
|f(x)− f(y)| − 2ε

|x− y|
.

Then by (18),

|p(x)− p(y)| ≥ |f(x)− f(y)| − 2ε = L|x− y|,

so by the intermediate value theorem, for some ξ between x and y, |p′(ξ)| ≥ L. Since p(x) is
bounded by 1 in [−1, 1], we can apply Proposition 27 to get that

deg(p) ≥ |p′(ξ)|
√

1− ξ2 ≥ L
√
1−∆2.

We take the supremum over all x, y to get the desired bound.

We now discuss some implications of Proposition 28 for quantum algorithm design. In recent works
on quantum optimization [AG19; BGJST23], approximations to exp(βy) on y ∈ [−1, δ] for constant
δ are used to speed up Gibbs sampler subroutines for solving zero-sum games via QSVT. It is a
well-known result that a degree O(

√
β) polynomial approximates exp(−βy) up to additive error

0.1 on [−1, 0] [SV14, Theorem 4.1]. However, only a ≈ β degree polynomial approximation was
known when the polynomial is further required to be bounded in [0, δ] (a small interval outside
the region of approximation). Because the boundedness requirement comes from the use of QSVT,
and is not needed in the classical setting, the state-of-the-art quantum runtime for zero-sum
games [BGJST23] incurs an overhead of

√
β =

√
1/ε compared to classical counterparts (while

saving on dimension-dependent factors).

Corollary 29 applies Proposition 28 to show that for δ = ω(β−1), adding the boundedness requirement
necessitates an approximation of larger degree, up to quadratically worse when δ = Ω(1). This
implies that the degree achieved by Corollary 23 is nearly-tight. This negatively resolves the open
question posed by [BGJST23], which was whether Corollary 29 could be modified to remove the
last remaining overhead in 1

ε (when δ = Ω(1)). We rule out this approach, suggesting it is necessary
to fundamentally change the application of QSVT to obtain this conjectured speedup.

Corollary 29. Let β ≥ 1, δ ∈ (0, 1], and let q(x) be a degree-d polynomial which satisfies

|q(x)− exp(βx)| ≤ 0.1 for x ∈ [−1, 0] and
|q(x)| ≤ 1 for x ∈ [0, δ].

Then d = Ω(β
√
δ).

Proof. Consider the change of variable x = 1+δ
2 t − 1−δ

2 which maps [−1, 1] to [−1, δ]. Then, for
f(t) = exp(βx(t)) and p(t) = q(x(t)), we know that |f(t) − p(t)| ≤ 0.1 for t ∈ [−1, 1−δ

1+δ ] and
|p(t)| ≤ 1 for t ∈ [−1, 1]. Further,

|f( 1−δ
1+δ )− f(

2
1+δ (−

1
β + 1−δ

2 ))| − 0.2

| 1−δ
1+δ −

2
1+δ (−

1
β + 1−δ

2 )|
=

1− 1/e− 0.2
2

β(1+δ)

= Ω(β).

So, applying Proposition 28 with S = { 2
1+δ (−

1
β + 1−δ

2 ), 1−δ
1+δ }, we get that

d = Ω
(
β

√
1−

(1− δ
1 + δ

)2)
= Ω(β

√
δ).
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A similar quadratic gap occurs for quantum algorithms for solving linear systems Ax = b when A
is positive definite [OD21]. Classical methods for this problem like conjugate gradient have a

√
κ

condition number dependence, which arises because 1
x has a good polynomial approximation on

[ 1κ , 1] with degree ≈
√
κ.13 However, QSVT requires approximations to be bounded on [−1, 1]; by

applying a similar argument as in Corollary 29, this implies that a degree of Ω(κ) is necessary to
achieve same approximation quality with the boundedness constraint. Orsucci and Dunjko work
around this issue by observing that if we have a block-encoding of I−A, then the function to be
approximated is now 1

1−x , which can be done with degree ≈
√
κ, since the ill-conditioned part of

the function is on the boundary of [−1, 1], rather than the interior.

3.5 Proof of Theorem 21
We conclude with a proof of Theorem 21. Our proof builds upon several elementary bounds on
Bernstein ellipses and the growth of Chebyshev polynomials, as well as the construction of explicit
thresholding functions. For ease of exposition, we state all the helper bounds we use in this section,
but defer their proofs to Appendix D. We begin with our bounds on the sizes of Bernstein ellipses.

Fact 30. The Bernstein ellipse Eρ for ρ ≥ 1 satisfies

interior(Eρ) ⊂
{
x+ ıy | x, y ∈ R, |x| ≤ 1

2 (ρ+ ρ−1) and |y| ≤ 1
2 (ρ− ρ

−1)
}
.

Further, for ρ = 1 + δ ≤ 2,

1 +
δ2

4
≤ 1

2
(ρ+ ρ−1) = 1 +

δ2

2(1 + δ)
≤ 1 +

δ2

2
,

3

4
δ ≤ 1

2
(ρ− ρ−1) = δ − δ2

2(1 + δ)
≤ δ.

This yields the following containment fact, whose proof is deferred to Appendix D.

Lemma 31. For δ ∈ (0, 1), (1+δ)E1+α is contained in the interior of Eσ, where σ = 1+3(α+
√
δ).

We also use the following bounds on Chebyshev polynomials, deferring a proof to Appendix D.

Lemma 32. There are universal constants C, c > 0 such that, for n ≥ 0 and x, y ∈ R, |y| ≤ c,

|Tn(x+ ıy)| ≤

{
(1 + C

√
|y|)n |x| ≤ 1

(x+
√
x2 − 1 + C

√
|xy|)n |x| > 1

.

To ameliorate the polynomial growth of Chebyshev polynomials from Lemma 32, we apply a
threshold function with tails which decay superexponentially. Our thresholding is based on the
Gaussian error function erf; we define erf and recall some standard bounds on it in the following.

Fact 33 (Eqs. 7.8.3, 7.8.7, [DLMF]). For z ∈ C, erf : C→ C by erf(z) := 2√
π

∫ z

0
e−t2dt. Then,

1− erf(x) =
2√
π

∫ ∞

x

e−t2dt <
2e−x2

√
π(1 + x)

< 2e−x2

, (20)

|erf(ıx)| = 2√
π

∫ x

0

et
2

dt <
2(ex

2 − 1)√
π|x|

< 2ex
2

(when x ≥ 1). (21)

For z ∈ R, we note that 1
2 + 1

2 erf(z) is the cumulative distribution function for a Gaussian with
mean 0 and variance 1

2 , which interpolates between 0 and 1; consequently, one may view erf
(appropriately rescaled as necessary) as a “smoothed” variant of the sign function

sgn(x) :=


−1 x < 0

0 x = 0

1 x > 0

.

13We can see this explicitly. Approximating x−1 on [κ−1, 1] is equivalent to approximating 1
x−a

on [−1, 1] for
a = 1 + Θ(κ−1). There is an explicit expression for the Chebyshev coefficients of 1

x−a
=

∑∞
k=0 akTk(x) [MH02, Eq.

(5.14)]: |ak| ∼ 1√
a2−1

(a−
√
a2 − 1)k. This is ε∥ 1

x−a
∥[−1,1] when taking k = Θ(

√
κ).
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Building upon erf, we state our family of thresholding functions, deferring proofs to Appendix D.

Lemma 34 (Thresholding function). For µ, s > 0, let r(z) := 1
2 (erf(s(µ+z))+erf(s(µ−z))). When

z ∈ R, 0 ≤ r(z) ≤ 1. When x, y ∈ R and z = x+ ıy, |r(z)− r(x)| ≤ exp(−s2(µ− |x|)2)| erf(ısy)|.

Evidently for z ∈ R, the function r behaves as a threshold: sufficiently inside [−µ, µ], it is close to
1, and sufficiently outside it is close to 0. The size of the “growth window” near µ is roughly 1

s , and
Lemma 34 shows r(x+ ıy) ≈ r(x) for small y. Leveraging these tools, we now prove Theorem 21.

Proof of Theorem 21. Without loss of generality, we rescale so that M = 1. To obtain the theorem
statement, it suffices to prove that there exists a polynomial q of degree O( bδ log

1
αε ) such that

∥f − q∥[−(1−δ),1−δ] ≤ ε,
∥q∥[−1,1] ≤ 1 + ε, (22)

∥q∥[−b,−1]∪[1,b] ≤ ε.

To see this, consider f as in the theorem statement. Let δ′ = δ
1+δ = Θ(δ), so that 1

1−δ′ = 1 + δ.
Then f( y

1−δ′ ) is analytic and bounded by M for y in the interior of (1− δ′)Eρ, which contains E1+α
4

by Lemma 31 and
√
δ′ <

√
δ < α

C . Applying (22), we get a function q(y) such that q((1 − δ′)x)
satisfies the guarantees described above, with the intervals scaled up by a factor of 1

1−δ′ :

|f(x)− q((1− δ′)x)| ≤ ε for x ∈ [−1, 1],
|q((1− δ′)x)| ≤ 1 + ε for x ∈ [− 1

1−δ′ ,
1

1−δ′ ] = [−(1 + δ), 1 + δ],

|q((1− δ′)x)| ≤ ε for x ∈ [− b
1−δ′ ,−(1 + δ)] ∪ [1 + δ, b

1−δ′ ]

To conclude, consider 1
1+εq((1− δ

′)x). We make q slightly smaller so that it is bounded by 1 in
[−(1 + δ), (1 + δ)]. This only affects the closeness to f by a constant factor: for x ∈ [−1, 1],

|f(x)− 1
1+εq((1− δ

′)x)| ≤ |f(x)− q((1− δ′)x)|+ (1− 1
1+ε )|q((1− δ

′)x)| ≤ 2ε.

The degree of 1
1+εq((1 − δ

′)x) is degree of q(x), as desired. We now proceed to prove (22). By
Theorem 20, there is a polynomial with degree n = ⌈ 1α log 6

αε⌉ with ∥f − fn∥[−1,1] ≤ ε
3 , and the

Chebyshev coefficients of fn =
∑n

k=0 akTk(x), satisfy |ak| ≤ 2ρ−k. Next, let p̃(z) := r(z)fn(z) be
the truncation fn multiplied by the function r(z) from Lemma 34 with

µ := 1− δ

2
, s :=

Cs

δ

√
log

1

αε
,

and Cs is a constant to be chosen later. Let ρ̃ := 1 + δ
b ; we will show p̃ is bounded on bEρ̃, and

then our final approximation q will be an application of Theorem 20 to approximate p̃ on [−b, b].
To this end, it suffices to bound p̃(z) for all z ∈ S, where the strip S is defined as

S := {z = x+ ıy | |y| ≤ δ},

because Fact 30 implies S ⊇ bEρ̃. We begin by bounding r(z) for z ∈ S:

|r(x+ ıy)| ≤ r(x) + e−s2(µ−|x|)2 |erf(ısy)|

≤ r(x) + e−s2(µ−|x|)2
∣∣∣erf(ıCs

√
log 1

αε

)∣∣∣
≤ r(x) + 2e−s2(µ−|x|)2(αε)−C2

s .

(23)

The inequalities above respectively used Lemma 34, the definition of S, and (21). We now combine
(23) with Lemma 32 to bound p̃ on S. First, consider when z = x+ ıy ∈ S and x ∈ [−1, 1]. This is
the bottleneck of the argument, where p̃ is largest. We bound

|p̃(z)| = |r(z)||fn(z)| ≤
(
1 + exp(−s2(µ− |x|)2) poly

( 1

αε

))∣∣∣∣∣
n∑

k=0

akTk(z)

∣∣∣∣∣
≤ poly

( 1

αε

)(
2

n∑
k=0

ρ−k|Tk(z)|

)

≤ poly
( 1

αε

)( n∑
k=0

(1 +K
√
δ

ρ

)k)
= poly

( 1

αε

)
.
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The first inequality was (23), the second used the guarantees of Theorem 20, the third used
Lemma 32, and the last used δ ≪ α2, n = poly( 1

αε ). Next, for z = x+ ıy ∈ S with |x| ≥ 1,

r(x) =
1

2
(erf(s(µ+ |x|))− erf(s(|x| − µ))) ≤ 1

2
(1− erf(s(|x| − µ))) < e−s2(|x|−µ)2 , (24)

where the first inequality was erf(z) ≤ 1 for z ∈ R, and the last was (20). Further, Lemma 32 yields

|fn(z)| ≤
n∑

k=0

2ρ−k
(
|x|+

√
x2 − 1 +K

√
|xy|

)k
≤ 2n

(
|x|+

√
x2 − 1 +K

√
|xy|

)n
≤ 2n exp

(
n
(
|x| − 1 +

√
x2 − 1 +K

√
|xy|

))
.

(25)

Continuing, we combine (23), (24), and (25) to conclude

|p̃(z)| ≤ exp
(
−s2(|x| − µ)2

)
poly

( 1

αε

)
|fn(z)|

≤ exp
(
−s2(|x| − µ)2 + n

(
|x| − 1 +

√
x2 − 1 +K

√
|xy|

))
poly

( 1

αε

)
≤ exp

((
−C

2
s

δ2
(|x| − µ)2 + 1√

δ

(
|x| − 1 +

√
x2 − 1 +K

√
|x|δ

))
log

1

αε

)
poly

(
1

αε

)
.

(26)

Here we used that n ≤ 1√
δ
log 1

αε under the assumed relationship between δ and α, and the definition
of s. For sufficiently large Cs, it is straightforward to see that for all |x| ≥ 1, since the left-hand
side asymptotically grows faster than each term in the right-hand side,

C2
s

2δ2

(
|x| −

(
1− δ

2

))2
≥ 1√

δ

(
|x| − 1 +

√
x2 − 1 +K

√
|x|δ

)
, (27)

and hence for this choice of Cs, plugging this into the previous bound gives that p̃(x+ ıy) ≤ poly( 1
αε )

for |x| ≥ 1.14 Later, we will need a tighter bound when y = 0 and |x| ≥ 1: in this setting, the
second additive term in (23) vanishes, and hence taking Cs such that (27) holds, repeating the
arguments in (26) without the poly( 1

αε ) overhead gives for sufficiently large Cs,

p̃(x) ≤ exp
(
− C

2
s

2δ2
(|x| − µ)2 log 1

αε

)
≤ exp

(
−C

2
s

8
log

1

αε

)
≤ ε

3
for all x ∈ R with |x| ≥ 1. (28)

Thus, we have shown that for all z ∈ S, |p̃(z)| ≤ poly( 1
αε ), and as the product of analytic functions,

p̃ is analytic. Next, for all z ∈ C let p̂(z) := p̃(bz). We have shown p̂ is bounded on Eρ̃, and hence
Theorem 20 gives a Chebyshev truncation p̂m such that ∥p̂− p̂m∥[−1,1] ≤ ε

3 , for

m = O

(
b

δ
log

b

δε

)
.

Our final approximation is q(z) := p̂m( zb ). By the definitions of q and p̂, the relationship between p̂
and p̃ implies ∥q − p̃∥[−b,b] ≤ ε

3 . Combined with (28), this implies the third bound in (22),

∥q∥[−b,−1]∪[1,b] ≤ ε.

The first bound ∥f − q∥[−(1−δ),1−δ] ≤ ε in (22) follows from ∥q − p̃∥[−(1−δ),1−δ] ≤ ε
3 , ∥fn −

f∥[−(1−δ),1−δ] ≤ ε
3 , and ∥fn− p̃∥[−(1−δ),1−δ] ≤ (1+ ε

3 )∥1−r∥[−(1−δ),1−δ] ≤ ε
3 choosing Cs sufficiently

large. Finally, the second bound in (22) follows from

∥q∥[1−δ,1] ≤ ∥q − p̃∥[1−δ,1] + ∥p̃∥[1−δ,1] ≤
ε

3
+ ∥p̃∥[1−δ,1]

≤ ε

3
+ ∥fn∥[1−δ,1] ≤ ε+ ∥f∥[1−δ,1] ≤ 1 + ε,

where we used the closeness bounds between (p̃, q) and (fn, f), as well as the assumed bound on f
over Eρ (which contains [1− δ, 1]). The bound ∥q∥[−1,−(1−δ)] ≤ 1 + ε follows symmetrically.

14We note that the poly in (26) hides a Cs-dependent exponent, which grows faster than (27).
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In some of our applications in Section 3.3, we used the following property of our approximations
constructed via Theorem 21, which we record here for convenience.

Corollary 35. In the setting of Theorem 21, if f is even or odd, so is q.

Proof. It is straightforward to check that all operations we perform on f (Chebyshev truncation,
multiplication by an even function r, and another Chebyshev truncation) preserve parity.
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A Proofs of quantum signal processing
Our goal in this section is to characterize which polynomials are QSP-achievable. Looking at the
form of QSP, we can express its entries via polynomials satisfying a recurrence.

Lemma 36 (QSP as a recurrence). For some phase factors Φ = {ϕj}0≤j≤n ∈ Rn+1,

QSP({ϕj}k≤j≤n, x) =

(
pk(x) q∗k(−x)

√
1− x2

qk(x)
√
1− x2 p∗k(−x)

)
, (29)

where pn(x) = eıϕn and qn(x) = 0, and pk(x) and qk(x) satisfy the following recurrence relation:

pk(x) = eıϕk(xpk+1(x) + (1− x2)qk+1(x)), (30)

qk(x) = e−ıϕk(pk+1(x)− xqk+1(x)). (31)

Proof. The base case is because

QSP({ϕn}, x) =
(
eıϕn 0
0 e−ıϕn

)
.

The inductive case is a computation:

QSP({ϕj}k≤j≤n, x)

= eıϕkσzR(x) ·QSP({ϕj}k+1≤j≤n, x)

=

(
eıϕkx eıϕk

√
1− x2

e−ıϕk
√
1− x2 −e−ıϕkx

)(
pk+1(x) q∗k+1(−x)

√
1− x2

qk+1(x)
√
1− x2 p∗k+1(−x)

)
=

(
eıϕk(xpk+1(x) + (1− x2)qk+1(x)) eıϕk(p∗k+1(−x) + xq∗k+1(−x))

√
1− x2

e−ıϕk(pk+1(x)− xqk+1(x))
√
1− x2 e−ıϕk(−xp∗k+1(−x) + (1− x2)q∗k+1(−x))

)
=

(
pk(x) q∗k(−x)

√
1− x2

qk(x)
√
1− x2 p∗k(−x)

)
.

Theorem 37 (Variant of [GSLW19, Theorem 3]). A degree-n polynomial p(x) ∈ C[x] is QSP-
achievable if and only if there is a polynomial q(x) such that:

(a) q has degree ≤ n− 1;

(b) (p, q) are (even, odd) or (odd, even);

(c) |p(x)|2 + (1− x2)|q(x)|2 ≡ 1.

Proof. First, we consider the “only if” direction. Suppose p(x) is QSP-achievable with the phase
factors Φ ∈ Rn+1. Then, by Lemma 36, there is some q(x) such that

QSP(Φ, x) =

(
p(x) q∗(−x)

√
1− x2

q(x)
√
1− x2 p∗(−x)

)
,

derived from the recurrence described in that lemma. From this recurrence, we can verify that
at all times, conditions (a) and (b) are satisfied. Finally, condition (c) is always satisfied because
QSP(Φ, x) is a product of unitary matrices, and so is unitary: the first column having norm one is
equivalent to |p(x)|2+(1−x2)|q(x)|2 = p(x)p∗(x)+(1−x2)q(x)q∗(x) = 1, and this argument works
for every x ∈ [−1, 1]. Because it holds for infinitely many x, the equality holds as polynomials.

Second, we consider the “if” direction. Suppose we have some p(x) of degree n and q(x) satisfying
(a), (b), and (c). We want to construct phase factors that implement p(x). We proceed by induction:
when n = 0, this means that p(x) is scalar and q(x) has degree ≤ −1 (meaning it must be zero).
Thus, p(x) ≡ eıϕ for some ϕ; we can implement this with Φ = {ϕ}. For the inductive step, consider
p(x) of degree n+ 1. If we could show that there exists some φ such that

(eıφσzR(x))†
(

p(x) q∗(−x)
√
1− x2

q(x)
√
1− x2 p∗(−x)

)
=

(
p↓(x) q∗↓(−x)

√
1− x2

q↓(x)
√
1− x2 p∗↓(−x)

)
(32)
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for p↓, q↓ some even/odd polynomials of one degree lower than p and q, then we would be done. By
assumption, the matrices on the left-hand side of (32) are unitary, so the right-hand side matrix is
also unitary. Thus, p↓ and q↓ satisfy all the properties of the induction hypothesis, and there are
phase factors {ϕ0, . . . , ϕn} ∈ Rn+1 giving the equality

(eıφσzR(x))†
(

p(x) q∗(−x)
√
1− x2

q(x)
√
1− x2 p∗(−x)

)
= QSP({ϕ0, . . . , ϕn}, x). (33)(

p(x) q∗(−x)
√
1− x2

q(x)
√
1− x2 p∗(−x)

)
= QSP({φ, ϕ0, . . . , ϕn}, x) (34)

So it comes down to finding the right value of φ that could remove a degree from p and q in (32).
By properties (a) and (b), we can write

p(x) = an+1x
n+1 + an−1x

n−1 + . . . (35)

q(x) = bnx
n + an−2x

n−2 + . . . (36)

The condition (c) implies that |an+1| = |bn|. Now we perform the matrix calculation. Since R(x) is
its own inverse, (eıφσzR(x))† = R(x)e−ıφσz , so

(eıφσzR(x))†
(

p(x) q∗(−x)
√
1− x2

q(x)
√
1− x2 p∗(−x)

)
(37)

=

(
e−ıφx eıφ

√
1− x2

e−ıφ
√
1− x2 −eıφx

)(
p(x) q∗(−x)

√
1− x2

q(x)
√
1− x2 p∗(−x)

)
(38)

=

(
e−ıφp(x) + eıφ(1− x2)q(x) (eıφp∗(−x) + e−ıφxq∗(−x))

√
1− x2

(e−ıφp(x)− eıφxq(x))
√
1− x2 −eıφxp∗(−x) + e−ıφ(1− x2)q∗(−x)

)
(39)

So, we need the following polynomials to have lower degree:

p↓(x) = e−ıφp(x) + eıφ(1− x2)q(x) (40)

q↓(x) = e−ıφp(x)− eıφxq(x) (41)

The “leading” coefficient of xn+1 for p↓ and xn for q↓ are the same: e−ıφan+1 − eıφbn. If we choose
φ such that eıφ =

√
an+1/bn, then this coefficient is 0, and so the degrees of p↓ and q↓ are ≤ n− 1

and ≤ n− 2, as desired.

The characterization of when a polynomial p(x) is QSP-achievable is still somewhat difficult to
understand. With more work, we can give a clearer understanding of QSP-achievable polynomials,
if we give up the imaginary degree of freedom in our polynomials. Generalizing the notion of p
being QSP-achievable, we say that the pair of polynomials (p, q) is QSP-achievable if there are
phase factors such that p and q are the two polynomials in the characterization of Lemma 36.

Theorem 38 ([GSLW19, Theorem 5, Lemma 6]). Let pℜ(x), qℜ(x) ∈ R[x] be real-valued polynomials
with p of degree n. Then there exist p, q ∈ C[x] such that (p, q) is QSP-achievable and pℜ = ℜ(p),
qℜ = ℜ(q) if and only if

(a) qℜ has degree ≤ n− 1;

(b) (pℜ, qℜ) are (even, odd) or (odd, even);

(c’) (pℜ(x))
2 + (1− x2)(qℜ(x))2 ≤ 1 for x ∈ [−1, 1].

To interpret this claim, it implies that if we have real polynomials where the “unit norm” constraint
is merely an inequality (c’), then we can add imaginary components to make it an equality, so that
by Theorem 37 these supplemented polynomials are achievable. Theorem 6 follows as a corollary of
this theorem, taking q = 0.

Proof. The “only if” direction is more straightforward: if (p, q) is QSP-achievable, then the real
parts of p and q satisfy (a), (b), and (c’) by Theorem 37.

The “if” direction requires some work: given pℜ and qℜ, we need to find some pℑ ∈ R[x] and
qℑ ∈ R[x] of the right degree and parity such that p := pℜ + ıpℑ and q := qℜ + ıqℑ satisfy

|p(x)|2 + (1− x2)|q(x)|2 = p2ℜ + p2ℑ + (1− x2)(q2ℜ + q2ℑ) ≡ 1.
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This would imply the conclusion via Theorem 37. Consider P = 1− p2ℜ − (1− x2)q2ℜ, which is an
even polynomial with real coefficients. By assumption (c’), we know P is non-negative in x ∈ [−1, 1].
If we can write P = A2 + (1 − x2)B2 where deg(A) ≤ deg(P ), deg(B) ≤ deg(P ) − 1, and (A,B)
are (odd, even) or (even, odd), then we are done. If we have two polynomials P and Q that can be
expressed in the above way, then their product can:

PQ = (A2
P + (1− x2)B2

P )(A
2
Q + (1− x2)B2

Q)

= |AP + ı
√

1− x2BP |2|AQ + ı
√

1− x2BQ|2

= |(APAQ − (1− x2)BPBQ) + ı
√
1− x2(APBQ +AQBP )|2

= (APAQ − (1− x2)BPBQ)
2 + (1− x2)(APBQ +AQBP )

2.

So, it suffices to prove that this representation is possible for all “irreducible” polynomials, i.e. even
polynomials with real coefficents that are non-negative in [−1, 1], that cannot be decomposed into
the product of two polynomials satisfying the same criteria. Using the fundamental theorem of
algebra, we can give a complete list of such polynomials up to scaling by a positive number.

1. (Polynomials with roots (0, 0)) R(x) = x2; here, A = x and B = 0.

2. (Polynomials with roots (−s,−s, s, s) for s ∈ (0, 1)) R(x) = (x2 − s2)2; here, A = (x2 − s2)
and B = 0.

3. (Polynomials with roots (−s, s) for s ≥ 1) R(x) = s2 − x2; here, A =
√
s2 − 1x and B = s.

4. (Polynomials with roots (−ıs, ıs) for s > 0) R(x) = x2 + s2 for C > 0; here, A =
√
s2 + 1x

and B = s.

5. (Polynomials with roots (s+ıt, s−ıt,−s+ıt,−s−ıt) for s, t > 0) R(x) = x4+2x2(t2−s2)+(s2+
t2)2; here, A = cx2−(s2+t2) and B =

√
c2 − 1x for c = s2+t2+

√
2(s2 + 1)t2 + (s2 − 1)2 + t4.

Because all of these polynomials can be written in the desired representation, all polynomials
satisfying the criteria can.

B More applications of the CS decomposition
To shed light on the CS decomposition as capturing interactions between subspaces, in this section
we derive two further applications beyond QSVT. We note that we do not claim the intuition
provided in this section is very helpful for understanding the particular application of QSVT.
However, we hope the reader is sufficiently convinced of the virtue of the CS decomposition as a
technical tool, and this section serves to provide additional background on this tool.

B.1 Principal angles
In this section we consider two rank-a subspaces X = Image(Πx) ⊂ Cd and Y = Image(Πy) ⊂ Cd,
for some a ∈ [d]. For k ∈ [a], we define the kth principal angle between X and Y recursively via

cos(θk) := max
x∈X

∥x∥2=1

max
y∈Y

∥y∥2=1

⟨x, y⟩ subject to x ⊥ xi, y ⊥ yi for all i < k, (42)

where xk, yk are the principal vectors realizing the maximum above. In other words, the first
principal angle θ1 is the largest angle between a vector in X and a vector in Y; θ2 is the largest
angle between vectors in the subspaces of X and Y orthogonal to the vectors achieving θ1, and so on.
This definition only depends on the subspaces, and so is agnostic to the choice of basis for X and Y.

Lemma 39. Let X,Y ∈ Cd×a be such that their columns are orthonormal bases for X and Y,
respectively. Then, the values {cos(θk)}k∈[a] are the singular values of X†Y. Further, letting VCW†

be the SVD of X†Y, the principal vectors between X,Y are columns of XV, YW.

Proof. This result follows from the variational characterization of singular values and vectors. Let
C = diag(c). Fix k ∈ [a] and suppose inductively the conclusion holds for all i < k. Recall that
the SVD is recursively defined by

ck = max
∥v∥2=∥w∥2=1

v†X†Yw, subject to v ⊥ vi, w ⊥ wi for all i < k. (43)
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Inductively assume xi = Xvi for all i < k. Notice that every unit vector in X can be written as Xv
for some unit v ∈ Ca, and since X†X = I, we have Xv ⊥ Xvi iff v ⊥ vi. By reasoning similarly for
Y, we conclude the optimization problems (42) and (43) are the same under the transformation
x← Xv and y ← Yw. Hence setting xk ← Xvk and yk ← Ywk we may continue inducting.

Now we explain the connection between the above digression and the CS decomposition. Lemma 39
shows that we can find the principal angles between X and Y by taking orthogonal bases, X and
Y, and computing the SVD of X†Y. We could further ask: what are the principal angles of the
orthogonal subspaces, X⊥ = {u | ⟨u, x⟩ = 0 for all x ∈ X} and Y⊥ = {u | ⟨u, y⟩ = 0 for all y ∈ Y}?
We can apply the same lemma on bases for the subspaces, X⊥ and Y⊥, to compute them; however,
we can say more. First, let the following matrices be unitary completions of X, Y:(

X X⊥
)
,
(
Y Y⊥

)
. (44)

We next take the CS decomposition (Theorem 1) of the product (which is also unitary),

U =
(
X X⊥

)†(
Y Y⊥

)
=

(
X†Y X†Y⊥
X†

⊥Y X†
⊥Y⊥

)
.

This gives us V1,V2,W1,W2 such that(
V†

1X
†YW1 V†

1X
†Y⊥W2

V†
2X

†
⊥YW1 V†

2X
†
⊥Y⊥W2

)
=

(
D11 D12

D21 D22

)
,

of the form in Theorem 1. This gives simultaneous SVDs for each block, and thus gives the principal
angles and vectors for all combinations of X,X⊥,Y, and Y⊥. In particular, we can see that the
principal angles of (X,Y) and (X⊥,Y⊥) are related: up to padding by 0’s and 1’s, they are identical!

Further, we can take X← XV1, Y ← YW1, etc. without affecting the induced subspaces (since
e.g. XV1V

†
1X

† = XX†), but such that after this transformation we simply have(
X†Y X†Y⊥
X†

⊥Y X†
⊥Y⊥

)
=

(
D11 D12

D21 D22

)
. (45)

That is, we can choose canonical basis representations of X, Y, and their complement subspaces
consistently, such that every pairing directly induces the “principal angles and vectors” defined
above. We remark that this argument extends just fine to X, Y of different dimensions.

B.2 Jordan’s lemma
Next we derive Jordan’s lemma [Jor75], a useful way of decomposing Cd into subspaces (induced
by a unitary matrix) which are jointly compatible with two projection matrices in a certain sense.
We note that Jordan’s lemma has seen varied implicit or explicit uses in the quantum computing
literature (including a suggestion by [GSLW19]), and refer to [Reg06] for an account of this.

Lemma 40. Let Πx,Πy ∈ Cd×d be projection matrices. There exists a unitary matrix U ∈ Cd×d

with columns {ui}i∈[d], and a partition of [d] into S := {Sj}j∈[k] such that |Sj | ∈ {1, 2} for all
j ∈ [k], and U†ΠxU, U†ΠyU are block-diagonal with blocks indexed by {Sj}j∈[k]; each block is
trace-1. Moreover for each Sj = {i, i′} where |Sj | = 2, we have Πxui ∥ Πxui′ and Πyui ∥ Πyui′ .

In other words, there is a choice of subspaces given by U (whose columns are partitioned by S)
such that if i, i′ ∈ [n] where i ∈ Sj and i′ ∈ Sj′ , u

†
iΠxui′ ̸= 0, u†iΠyui′ ̸= 0 iff j = j′. Moreover, the

second part states each of the 2× 2 blocks in U†ΠxU and U†ΠyU are in fact rank-1 and trace-1.

Proof of Lemma 40. We first prove this in the special case when Πx and Πy are dimension-d2
projectors with “no intersection,” and briefly discuss how to extend this to the general case.

Special case. Suppose Πx and Πy are dimension-d2 projectors, and let us further make one following
restriction. Let Πx = XX† and Πy = YY† where X, Y and their “completions” X⊥, Y⊥ (in
the sense that the matrices (44) are unitary) are chosen such that (45) holds, as guaranteed by
Theorem 1; we make the restriction that for C = X†Y, all of the diagonal entries of C are in (0, 1).
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The previous section shows this means Span(X) ∩ Span(Y) = ∅. We choose the basis inducing U
as follows. Let the columns of X be {xj}j∈[ d2 ]

⊂ Cd and the columns of Y be {yj}j∈[ d2 ]
⊂ Cd. For

j ∈ [d2 ], we let {u2j−1, u2j} ⊂ Cd be an arbitrary basis of Span{xj , yj}. We claim such U meets
the requirements, where each Sj = {2j − 1, 2j} in our partition. For all j ∈ [d2 ], since X†Y = C,

Πxyj = XX†yj = X(Cej) = cjxj .

So, Πx maps Span{xj , yj} to Span{xj}, and similarly Πy maps Span{xj , yj} to Span{yj}. This
proves the second part of the lemma, namely that Πx and Πy act as rank-1 projectors on each
block of the partition. For the first part (the block-diagonal structure), it suffices to show that for
all j ≠ j′ ∈ [d2 ], xj ⊥ Span{xj′ , yj′}, since we already argued Πx maps Span{xj , yj} to Span{xj}.
By orthonormality of X, xj ⊥ xj′ , and since we used the canonical choice where X†Y = C,
indeed xj ⊥ yj′ as well. To see that each block has trace 1, write xj = αju2j−1 + βju2j . We have
that XX†u2j−1 = αjxj and XX†u2j = βjxj ; to see this, we already argued that u2j−1, u2j are
orthogonal to all xi for i ̸= j, since xj ⊥ xi and yj ⊥ xi. Hence, the 2× 2 block of Πx indexed by
Sj is the outer product of

(
αj βj

)
which clearly has trace 1; a similar argument applies to Πy.

General case. More generally, we can “pull out” vectors corresponding to the I and 0 blocks of the
decomposition in Theorem 1, when the dimensions are unequal. Concretely, again let Πx = XX†

and Πy = YY†, such that X†Y = C and C has the form guaranteed by Theorem 1. Further, assume
d1 = dim(Span(X)) ≥ dim(Span(Y)) = d2. Whenever there is a 1 entry in C, this corresponds
to a subset of size 1 in the partition with the column of U set to the corresponding vector in
Span(X) ∩ Span(Y). Whenever there is a 0 entry we simply pull out the corresponding vector in
Span(X) \ Span(Y) into its own block in the partition. Finally, when Span(X)⊕ Span(Y) ̸= Cd

we find any orthonormal basis of (Span(X)⊕ Span(Y))c and add them it as columns of U. It is an
exercise to check the overall dimension of U after this process is d.

C Proof of Carlini’s formula
Proof of Lemma 19. Recall 2In(t) is the nth Chebyshev coefficient for exp(tx). It will be slightly
more convenient for us to reparameterize and bound In(nt). Without loss of generality t ≥ 0, since
exp(tx) and exp(−tx) have the same Chebyshev coefficients up to sign. By (13), for n ≥ 1,

In(nt) =
1

2πı

∮
|z|=1

z−n−1 exp(nt2 (z + z−1))dz

=
1

2πı

∮
|z|=1

exp
(
− n

(
log(z)− t

2
(z + 1

z )
))dz

z
.

We choose a contour circling around the origin once; by Cauchy’s theorem, this results in the same
integral as the contour does not cross the origin. We parameterize it via z = reıθ and construct r
as a function of θ. Consider the (rescaled) imaginary part of the expression in the exponential:

log(z)− t

2
(z + 1

z ) = log(r) + ıθ − t

2n
(reıθ + 1

r e
−ıθ)

=⇒ ℑ
(
log(z)− t

2
(z + 1

z )
)
= θ − t

2
(r sin(θ)− 1

r sin(θ)).

We wish to make the imaginary part constant; we set it equal to ψ, and solve for r:

ψ = θ − t

2
(r sin(θ)− 1

r sin(θ))

=⇒ 1
2 (r −

1
r ) =

θ − ψ
t sin(θ)

=⇒ r =
θ − ψ
t sin(θ)

+

√(
θ − ψ
t sin(θ)

)2

+ 1.
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Above, we use that r = x+
√
x2 + 1 and 1

r = −x+
√
x2 + 1 is a solution to 1

2 (r−
1
r ) = x. Now, we

choose to take our contour for θ from −π + ψ to π + ψ, and we take ψ = 0. So the contour is

z = reıθ =

 θ

t sin(θ)
+

√(
θ

t sin(θ)

)2

+ 1

eıθ for θ ∈ [−π, π], where
sin 0

0
:= 1.

Since r ≥ 1 always, the contour winds once counter-clockwise around zero and is valid for evaluating
the integral. By design, on this contour ℑ(log(z)− t

2 (z −
1
z )) vanishes, and the real part is

F (θ, t) := ℜ
(
log(z)− t

2
(z + 1

z )
)
= log(r)− t

2
(r + 1

r ) cos(θ)

= log

 θ

t sin(θ)
+

√(
θ

t sin(θ)

)2

+ 1

− t cos(θ)
√(

θ

t sin(θ)

)2

+ 1.

Now, we consider the original integral along this contour:

In(nt) =
1

2πı

∮
exp

(
− n

(
log(z)− t

2
(z + 1

z )
))dz

z

=
1

2πı

∫ π

−π

exp
(
− n · F (θ, t)

)(dr(θ)
dθ

· 1

r(θ)
+ ı
)
dθ

=
1

2π

∫ π

−π

exp
(
− n · F (θ, t)

)
dθ

=
1

π

∫ π

0

exp
(
− n · F (θ, t)

)
dθ.

The last two lines use that as F (θ, t) and r(θ) are even functions in θ, the piece of the integral
corresponding to dr(θ)

r(θ)dθ vanishes. From here, it becomes a matter of bounding F (θ, t). We compute

∂

∂θ
F (θ, t) =

√
(t sin(θ))2 + θ2 +

(1− θ cot(θ))2√
(t sin(θ))2 + θ2

.

First, we notice that ∂
∂θF ≥ 0, so F is increasing. Second, we notice that, for θ ∈ [0, π/2],

∂

∂θ
F (θ, t) ≥ θ

√
(t sin(θ)/θ)2 + 1 ≥ θ

√
t2(4/π2) + 1.

Integrating, we get that, for θ ∈ [0, π2 ], F (θ, t)−F (0, t) ≥ 1
2θ

2
√

1 + 4t/π2, and using that F (0, t) =

log(t−1 +
√
t−2 + 1)−

√
1 + t2, we have the desired

In(nt) =
1

π

∫ π

0

exp(−nF (θ, t))dθ

≤ 2

π

∫ π/2

0

exp(−nF (θ, t))dθ

≤ 2

π

∫ π/2

0

exp(−n
2 θ

2
√
1 + 4t2/π2) exp(−nF (0, t))dθ

=
exp(−nF (0, t))

π

∫ π

0

exp(− 1
2θ

2
√
n2 + 4n2t2/π2)dθ

<
exp(−nF (0, t))

π

∫ ∞

0

exp(− 1
2θ

2
√
n2 + 4n2t2/π2)dθ

=
exp(−nF (0, t))√
2π
√
n2 + 4n2t2/π2

=
exp(
√
n2 + n2t2)

(4π2n2 + 16n2t2)1/4(t−1 +
√
t−2 + 1)n

≤ exp(
√
n2 + n2t2)(

√
t−2 + 1− t−1)n

2(n2 + n2t2)1/4
.
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D Deferred proofs from Section 3.5

Lemma 31. For δ ∈ (0, 1), (1+δ)E1+α is contained in the interior of Eσ, where σ = 1+3(α+
√
δ).

Proof. Recall from Theorem 20 that we can parameterize the boundary of Eρ as 1
2 (ρ+ ρ−1) cos θ +

1
2 (ρ − ρ−1) sin θ, for θ ∈ [0, 2π]. Hence, to prove the stated inclusion it suffices to prove that
1
2 (σ + σ−1) ≥ (1 + δ) 12 (ρ+ ρ−1) and 1

2 (σ − σ
−1) ≥ (1 + δ) 12 (ρ− ρ

−1). By Fact 30,

1

2
(σ + σ−1)− (1 + δ)

1

2
(ρ+ ρ−1) = 1 +

9(α2 + 2α
√
δ + δ)

2(1 + 3α+ 3
√
δ)
− (1 + δ)

(
1 +

α2

2(1 + α)

)
≥ 1 +

2(α2 + 2α
√
δ + δ)

2(1 + α)
− (1 + δ)

(
1 +

α2

2(1 + α)

)
=

2(α2 + 2α
√
δ + δ)− (1 + δ)α2 − 2δ(1 + α)

2(1 + α)
≥ 0.

Further, since σ ≥ (1 + δ)(1 + α) and σ − σ−1 increases in σ,

1

2
(σ − σ−1)− (1 + δ)

1

2
(ρ− ρ−1) ≥ 1

2
((1 + δ)ρ− ((1 + δ)ρ)−1)− (1 + δ)

1

2
(ρ− ρ−1) ≥ 0.

Lemma 32. There are universal constants C, c > 0 such that, for n ≥ 0 and x, y ∈ R, |y| ≤ c,

|Tn(x+ ıy)| ≤

{
(1 + C

√
|y|)n |x| ≤ 1

(x+
√
x2 − 1 + C

√
|xy|)n |x| > 1

.

Proof. The only points not lying on the boundary of a Bernstein ellipse are the interval [−1, 1],
where the Chebyshev polynomials are at most 1. Otherwise, suppose z := x+ıy lies on the boundary
of the Bernstein ellipse Eρ, for some ρ > 1. This implies that for some θ ∈ [−π, π],

1

2
(ρ+ ρ−1) cos θ = x,

1

2
(ρ− ρ−1) sin θ = y,

which follows from the parameterization of the Bernstein ellipse in Theorem 20. Let s = cos θ and
t = 1

2 (ρ+ ρ−1). Noting that
√
t2 − 1 = 1

2 (ρ− ρ
−1), we then have the system of equations

ts = x,
√
1− s2

√
t2 − 1 = y =⇒ t4 − (1 + x2 + y2)t2 + x2 = 0.

Hence, solving a quadratic equation in t2 = 1
4 (ρ

2 + ρ−2) + 1
2 yields

1

2
(ρ2 + ρ−2) = x2 + y2 +

√
(1 + x2 + y2)2 − 4x2 =: D,

and then ρ = (D +
√
D2 − 1)

1
2 . By definition, the Chebyshev polynomial satisfies

Tn(z) ≤
1

2
(ρn + ρ−n) ≤ ρn, (46)

so it suffices to establish bounds on ρ. Next, assume without loss of generality that y ≥ 0, as
Chebyshev polynomials are either odd or even and the stated conclusions are unsigned. We bound

D = x2 + y2 +
√
1 + x4 + y4 − 2x2 + 2y2 + 2x2y2

= x2 + y2 +
√
(1− x2)2 + 2y2(1 + x2) + y4 ≤ x2 + |1− x2|+O(y

√
1 + x2).

When |x| ≤ 1, then D = 1 + O(y) and ρ = 1 + O(
√
y), establishing the conclusion via (46).

Otherwise, when |x| > 1, we have D = 2x2 − 1 +O(|x|y), and then

ρ =

√
2x2 − 1 +

√
4x4 − 4x2 +O(|x3|y)

=

√(
|x|+

√
x2 − 1

)2
+O

(√
|x3|y

)
= |x|+

√
x2 − 1 +O(

√
|xy|),

again proving the desired claim via (46).
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Lemma 34 (Thresholding function). For µ, s > 0, let r(z) := 1
2 (erf(s(µ+z))+erf(s(µ−z))). When

z ∈ R, 0 ≤ r(z) ≤ 1. When x, y ∈ R and z = x+ ıy, |r(z)− r(x)| ≤ exp(−s2(µ− |x|)2)| erf(ısy)|.

Proof. To see the first claim, let z ∈ R. As previously discussed we have erf(s(µ+z)), erf(s(µ−z)) ≤
1, giving the upper bound. For the lower bound, since erf is odd and increasing, z ≥ 0 implies

erf(s(µ+ z)) + erf(s(µ− z)) = erf(s(µ+ z))− erf(s(−µ+ z)) ≥ 0,

and a similar argument handles the case z ≤ 0. Next, for the second claim we first observe

| erf(z)− erf(x)| = 2√
π

∣∣∣∣∫ t=x+ıy

t=x

e−t2dt

∣∣∣∣
=

2e−x2

√
π

∣∣∣∣∫ y

0

e−2ıxt+t2dt

∣∣∣∣
≤ 2e−x2

√
π

∫ |y|

0

et
2

dt = e−x2

| erf(ıy)|.

(47)

The last line used the triangle inequality. Finally,

|erf(z)− erf(x)| ≤ 1

2
|erf(s(µ+ z))− erf(s(µ+ x))|+ 1

2
|erf(s(µ− z))− erf(s(µ− x))|

≤ 1

2

(
e−s2(µ+x)2 | erf(ısy)|+ e−s2(µ−x)2 | erf(−ısy)|

)
,

where we used (47), and we conclude by noting µ+ x, µ− x ≥ µ− |x|.
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