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Abstract
Given a function f from the set [N ] to a d-dimensional integer grid, we consider data structures
that allow efficient orthogonal range searching queries in the image of f , without explicitly storing
it. We show that, if f is of the form [N ] → [2w]d for some w = polylog(N) and is computable in
constant time, then, for any 0 < α < 1, we can obtain a data structure using Õ(N1−α/3) words of
space such that, for a given d-dimensional axis-aligned box B, we can search for some x ∈ [N ] such
that f(x) ∈ B in time Õ(Nα). This result is obtained simply by combining integer range searching
with the Fiat-Naor function inversion scheme, which was already used in data-structure problems
previously. We further obtain

data structures for range counting and reporting, predecessor, selection, ranking queries, and
combinations thereof, on the set f([N ]),
data structures for preimage size and preimage selection queries for a given value of f , and
data structures for selection and ranking queries on geometric quantities computed from tuples
of points in d-space.

These results unify and generalize previously known results on 3SUM-indexing and string searching,
and are widely applicable as a black box to a variety of problems. In particular, we give a data
structure for a generalized version of gapped string indexing, and show how to preprocess a set of
points on an integer grid in order to efficiently compute (in sublinear time), for points contained in
a given axis-aligned box, their Theil-Sen estimator, the kth largest area triangle, or the induced
hyperplane that is the kth furthest from the origin.
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1 Introduction

The computational problem of inverting a function f can be cast as follows: Given a value y

in the codomain of f , decide if there exists an x such that f(x) = y, and return such an x if
one exists. The function inversion problem is naturally a fundamental issue in cryptography,
and the best known result for general function inversion is due to Fiat and Naor [10]:

▶ Theorem 1 (Fiat-Naor [10]). For any function f : [N ]→ [N ], and any choice of a constant
0 < α < 1, there exists a data structure using Õ(N1−α/3) words of space which can invert f

at any given point in Õ(Nα) time. Moreover, this data structure can be built in Õ(N) time
with high probability.

(Note that we use [N ] to denote {0, . . . , N − 1}, and use the asymptotic Õ notation, that
omits polylogarithmic factors.)

As was noticed previously by different sets of authors [8, 13, 17], Theorem 1 can be
generalized to the case where the codomain of f might be larger than the domain of f , by
using O(log N) hash functions from a family of pairwise independent functions.

▶ Corollary 2 ([8, 13, 17]). Theorem 1 holds for any function f : [N ] → [2w], with w =
polylog(N).

Recently, the above data structures for function inversion have been applied to tackle
fundamental problems that do not directly stem from cryptography:

3SUM-indexing [17, 13]. Preprocess two sets S1 and S2 of n integers each, so that for any
integer y, one can decide whether there exist x1 ∈ S1 and x2 ∈ S2 such that y = x1 + x2.

Collinearity indexing with queries on a line [1]. Preprocess two sets S1 and S2 of n points
in the plane, together with a line ℓ, so that for any point y ∈ ℓ, one can decide whether
there exist p1 ∈ S1 and p2 ∈ S2 such that y, p1, and p2 are collinear.

Gapped string searching [4]. Preprocess a string of length n so that given two patterns P1
and P2 and an integer interval [δ, β], one can report all joint occurrences of P1 and P2
separated by a distance in the interval [δ, β].

It is a striking fact that, for each of these problems, the best known space-time trade-offs
are achieved using such a general tool as the Fiat-Naor inversion scheme. The purpose of this
contribution is to extend the applicability of this tool. We show that function inversion, used
as a black box, allows to not only decide whether there exists some x such that f(x) = y,
but to actually search, select, and rank values in the image of f , as well as to restrict those
values to lie in (axis-aligned) boxes1 given as query arguments. The space-time tradeoffs are
essentially the same as those achieved for function inversion: k-ary queries on n items can be
answered in strongly sublinear time from a data structure using O(nk−α) space, for some
α > 0. Our contribution can therefore be seen as an efficient reduction of various problems
to the function inversion problem. This provides a simple and powerful method to design
data structures for implicit set representations, as defined by Chazelle [7].

The main idea underlying all our results is that the elementary operations used in range
searching, essentially navigating a hierarchy of dyadic boxes, can themselves be implemented
by inverting another function, with a slightly larger domain and codomain but within
essentially the same space and time bounds. The algorithms are elementary, provided that

1 Throughout the paper, we use the term “box” as short for “axis-aligned box”, i.e. a hyperrectangle
whose sides are parallel to the coordinate axes.
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the function inversion data structure is available as a black box. It can be implemented using
any such data structure, including some that would be suboptimal but easier to implement.
Conversely, any improvement on the function inversion data structure translates mechanically
to an improved algorithm.

In the next section, we consider range searching and range counting queries in the image
of an integer function. In Section 3, we use these two basic results to provide a collection of
data structures that allow to answer complex queries involving predecessor, ranking, and
selection queries in boxes, both in the image and domain of an integer function. In Section 4,
we illustrate the versatility of the framework on a number of elementary problems. These
include generalizations of k-SUM indexing data structures and string searching, but also new
geometric data structures.

2 Range queries

We state our two main technical results, involving data structures for range searching and
range counting queries in the image of a d-dimensional function f .

▶ Theorem 3 (Range searching). Let f : [N ]→ [2w]d be a function computable in Õ(1) time,
where w = polylog(N) and d = O(1). For any choice of a constant 0 < α < 1, we can
construct in Õ(N) time with high probability a data structure using Õ(N1−α/3) words of
space which supports the following query: Given a d-dimensional box B, test if there exists
x ∈ [N ] with f(x) ∈ B, and report such a value if it exists, in Õ(Nα) time.

Proof. Let g : [N ]× [w + 1]d → [2w+1]d × [w + 1]d be the function defined as follows:

g(x, i1, i2, . . . , id) :=
(⌊

f1(x)
2i1

⌋
,

⌊
f2(x)
2i2

⌋
, . . . ,

⌊
fd(x)
2id

⌋
, i1, i2, . . . , id

)
.

The domain of this function has size O(N(w + 1)d) = Õ(N) and its codomain has size
O(2d(w+1)(w + 1)d) = Õ(2polylog(N)), so we can apply Corollary 2 to obtain a data structure
using Õ(N1−α/3) words of space which can invert g at any given point in Õ(Nα) time.

We call a d-dimensional box dyadic if the coordinates defining the limits of the box in
each dimension are successive multiples of a power of two. We can specify such a box using
the multiples and powers of two in each dimension:

DB(y, i) = DB(y1, y2 . . . , yd, i1, i2, . . . id) :=
[2i1y1, 2i1(y1 + 1)− 1]× [2i2y2, 2i2(y2 + 1)− 1]× . . .× [2idyd, 2id(yd + 1)− 1].

Our function g has been defined so that

f(x) ∈ DB(y, i)←→ g(x, i) = (y, i).

Thus, given any dyadic box DB(y, i), we can determine if there is an x such that f(x) ∈
DB(y, i) by asking if (y, i) is in the image of g.

Given a dyadic box DB(y, i) that contains f(x) for some x that we wish to compute, each
dyadic box with d′ ≤ d non-zero elements of i can be partitioned into 2d′ dyadic boxes where
the non-zero elements of i are decremented by one; call these the child boxes of DB(y, i).
These child boxes can equivalently be viewed as the result of cutting DB(y, i) in half in each
dimension where its size is at least 2. If some f(x) ∈ DB(y, i), then f(x) ∈ B′ for some child
box B′ of DB(y, i); continue this process until some f(x) ∈ DB(z, 0) is found, which means
f(x) = z ∈ DB(y, i). This will involve w + 1 steps, each consisting of at most 2d inversion
queries.
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Let B be a d-dimensional box, not necessarily dyadic. To determine if there is an
f(x) ∈ B, we use the fact that any d-dimensional box defined by integers at most 2polylog(N)

can be partitioned into O(logd(2polylog(N))) = Õ(1) dyadic boxes, and query each of these
separately. ◀

Note that in one dimension the idea of searching in bounded universes via hashing is well
known, from, for example, the x- and y-fast tries of Willard [19]. The idea of extending this
to higher dimensions with dyadic boxes has been used in the past, for example in the point
location method of Iacono and Langerman [15].

We now show how to extend our result from searching to counting using a big/small
approach whereby counts of dyadic boxes intersecting large number of images of f have
their counts stored explicitly, and the remaining dyadic boxes have their counts computed
on demand using function inversion. This increases the space usage from Õ(N1−α/3) to
Õ(N1−α/4) while supporting Õ(Nα)-time queries.

▶ Theorem 4 (Range counting). Let f : [N ] → [2w]d and c : [2w]d → [2w] be functions
computable in Õ(1) time, where w = polylog(N) and d = O(1). For any choice of a constant
0 < α < 1, we can construct in Õ(N) time with high probability a data structure using
Õ(N1−α/4) words of space which supports the following query: Given a d-dimensional box B,
return

∑
y∈f([N ])∩B c(y), in Õ(Nα) time.

Proof. Consider again the function g defined in the proof of Theorem 3, with the same
inversion data structure using Õ(N1−α/3) words of space which can invert g at any given
point in Õ(Nα) time.

For every dyadic box DB(y, i) which contains at least Nα/3 elements of f([N ]), store that
box as a key with value

∑
y∈f(N)∩DB(y,i) c(y) in a dictionary (which can be implemented in

any number of ways, for instance using hash tables or binary search trees). As each element
of f([N ]) appears in at most O(logd(2polylog(N))) = Õ(1) dyadic boxes, the number of dyadic
boxes with at least Nα/3 elements is at most Õ(N1−α/3). Thus, this does not increase space
usage significantly.

Now, suppose we are given a dyadic box DB(y, i) and want to find the number of elements
of f([N ]) in that box. We start by checking if this box contains at least Nα/3 elements by a
lookup in the dictionary, and we can report the stored number if it is the case. Otherwise, the
box contains at most Nα/3 elements and we recurse on all non-empty children of DB(y, i).
We keep a global counter s to which we add c(z) each time we reach non-empty box of the
form DB(z, 0). Because each element of f([N ]) appears in at most Õ(1) dyadic boxes, this
requires Õ(Nα/3) inversion queries, for a total query time of Õ(Nα/3 ·Nα) = Õ(N4α/3).

Given a non-dyadic box, we can again partition it into O(logd(2polylog(N))) = Õ(1) dyadic
boxes and query each of these separately.

Finally, re-scaling α by a factor of 3/4 gives the result. ◀

The previous proof can easily be adapted to support other types of associative and
commutative operations instead of a sum, such as taking the maximum in a box.

3 Beyond range queries

We now give general results on the existence of data structures for distinct or more complex
types of queries. The proofs are elementary and only rely on Theorems 3 and 4. Note that
some of these results can be proved directly using similar ideas as for Theorems 3 and 4 and
with a slightly better running time if we take polylogarithmic factors into account.
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3.1 Predecessor, ranking, and selection queries
We first observe that the range searching data structures described above directly yield data
structures for predecessor, ranking, and selection queries.

In the following two lemmas, we let f : [N ]→ [2w] be a function computable in Õ(1) time,
where w = polylog(N).

▶ Theorem 5 (Predecessor search). For any choice of a constant 0 < α < 1, we can construct
in Õ(N) time with high probability a data structure using Õ(N1−α/3) words of space which
supports the following query: Given an integer y ∈ [2w], report x ∈ [N ] such that f(x) is the
largest value in f([N ]) that is smaller or equal to y, if it exists, in Õ(Nα) time.

Proof. We bisect on the integers z ∈ [y]. For such an integer z, we define B := [z, y−1] and use
the data structure of Theorem 3 with d = 1 to decide whether there exists x such that f(x) ∈ B

in time Õ(Nα). The number of such queries is at most log(2w) = w = O(polylog(N)), hence
the overall cost remains Õ(Nα). ◀

▶ Theorem 6 (Ranking and Selection). For any choice of a constant 0 < α < 1, we can
construct in Õ(N) time with high probability a data structure using Õ(N1−α/4) words of
space which supports the following queries in Õ(Nα) time:
Ranking. Given an integer y ∈ [2w], return

∣∣{x ∈ [N ] : f(x) < y}
∣∣.

Selection. Given an integer k ∈ [N ], report x ∈ [N ] such that f(x) is the kth largest value
in f([N ]), if it exists.

Proof. For ranking, we let the function c be such that c(x) = 1 for all x ∈ [2w], and use the
data structure of Theorem 4 with d = 1. Querying the interval B := [y] in this structure
yields the answer in time Õ(Nα).

For selection, we bisect over the values y ∈ [2w] and repeatedly query the data structure
on the interval B := [y]. This requires O(polylog(N)) steps, hence time Õ(Nα) overall as
well. ◀

3.2 Ranking and selection with range constraints
By applying Theorems 3 and 4 with d > 1, we can also perform predecessor, ranking, and
selection queries within a given box.

▶ Theorem 7. Let f : [N ] → [2w]d and µ : [2w]d → [2w] be functions computable in Õ(1)
time, where w = polylog(N) and d = O(1). For any choice of a constant 0 < α < 1, we
can construct in Õ(N) time with high probability a data structure using Õ(N1−α/4) words of
space which supports the following queries in Õ(Nα) time:
Ranking in a box. Given a d-dimensional box B and an integer y ∈ [2w], return∣∣{f(x) : x ∈ [N ], f(x) ∈ B, µ(f(x)) < y}

∣∣ .

Selection in a box. Given a d-dimensional box B and an integer k ∈ [N ], report x ∈ [N ]
such that µ(f(x)) is the kth largest value in {µ(f(x)) : x ∈ [N ], f(x) ∈ B}, if it exists.

Median in a box. Given a d-dimensional axis aligned box B, report x ∈ [N ] such that µ(f(x))
is the median of {µ(f(x)) : x ∈ [N ], f(x) ∈ B}.

Proof. To perform ranking of y in a box B, we can construct the data structure of Theorem 4
on the function g : [N ]→ [2w]d+1 defined by

g(x) := (f(x), µ(f(x))),



6 A General Technique for Searching in Implicit Sets via Function Inversion

let the count function c for the data structure be equal to 1 everywhere, and query the data
structure with the (d + 1)-dimensional box B × [y] in time Õ(Nα).

Selection in a box can be done as for ranking, except we now bisect on the values y, which
only increases the running time by a O(polylog(N)) factor.

Finally, we can select the median by first counting the number m of values in the preimage
of B, then performing selection with k = m/2. ◀

Note that this result can be used to select a value among preimages, as follows.

▶ Theorem 8 (Preimage queries). Let f : [N ]→ [2w] be a function computable in Õ(1) time,
where w = polylog(N). For any choice of a constant 0 < α < 1, we can construct in Õ(N)
time with high probability a data structure using Õ(N1−α/4) words of space which supports
the following queries in Õ(Nα) time:
Preimage ranking. Given two integers y, z ∈ [2w], return

∣∣{x ∈ [N ] : f(x) = y, x < z}
∣∣.

Preimage selection. Given an integer k ∈ [N ] and an integer y ∈ [2w], report the kth largest
value x ∈ [N ] such that f(x) = y, if it exists.

Preimage median. Given an integer y ∈ [2w], return the median of the values x ∈ [N ] such
that f(x) = y, if such a value exists.

Proof. Let g : [N ]→ [2w]× [N ] be the function defined by

g(x) := (f(x), x).

Preimage ranking, selection, and median then reduces directly to ranking, selection, and
median in a box respectively, on the function g. The result then follows from Theorem 7. ◀

3.3 Range reporting

One can also consider the problem of reporting distinct values x such that f(x) is contained
in a specific box. The following can be obtained from Theorem 3.

▶ Theorem 9 (Range reporting). Let f : [N ] → [2w]d be computable in Õ(1) time, where
w = polylog(N) and d = O(1). For any choice of 0 < α < 1, we can construct in Õ(N) time
with high probability a data structure using Õ(N1−α/3) words of space which supports the
following query in Õ((k + 1)Nα) time: Given a d-dimensional box B and and an integer
k ∈ [N ], return k distinct values x ∈ [N ] such that f(x) ∈ B, if they exist.

Proof. From the data structure of Theorem 3 constructed on the function g(x) := (f(x), x),
we can decide in time Õ(Nα) whether there exists any x ∈ [N ] such that f(x) ∈ B, and
x < y for a given box B and integer y. This allows to perform a bisection search on the
coordinates of B and y and isolate k distinct values x such that f(x) ∈ B, in O(polylog(N))
time for each. ◀

4 Applications

We can apply our general method not only to new variants of problems for which function
inversion was already known to be useful [12, 13, 17, 4, 1], but also to indexing variants of a
number of other previously studied problems in computational geometry [7, 3, 2, 6].
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4.1 Variants of 3SUM-indexing
The 3SUM-indexing problem consists of preprocessing two sets S1 and S2, each containing
n integers, so that for any integer y, one can quickly decide whether there exist x1 ∈ S1
and x2 ∈ S2 such that y = x1 + x2. It is therefore a data structure version of the classical
3SUM problem [11, 14, 16]. Achievable space-time tradeoffs for this question were the topic
of several recent results. It was conjectured by Goldstein, Kopelowitz, Lewenstein, and
Porat [12] that any data structure for 3SUM-indexing with O(nα) query time for some
α < 1 must use Ω(n2) space. This conjecture was disproved by Golovnev, Guo, Horel, Park,
and Vaikuntanathan [13], and Kopelowitz and Porat [17] using Corollary 2. In fact, the
3SUM-indexing problem is a prominent example of a problem that is currently best solved
by using this machinery. This is surprising, considering the fact that it does not rely on any
algebraic property of the problem.

As an example of a simple generalization that we can tackle using our results, we consider
the following generalization of the k-SUM-indexing problem to arbitrary constant-degree
polynomial functions, yielding a data structure version of the recently studied 3POL and
k-POL problems [2, 6].

▶ Problem 1 (k-POL-indexing problem). Let S1, S2, . . . , Sk be k sets of n numbers in [2w],
where k = O(1) and w = O(polylog(n)), and let p ∈ N[x1, x2, . . . , xk] be a constant-degree
k-variate polynomial with coefficients in [2w].

Preprocess these sets and p to answer queries of the following form: given k intervals
B1, B2, . . . , Bk ⊂ [2w] and an integer y, are there k values x1 ∈ B1∩S1, x2 ∈ B2∩S2, . . . , xk ∈
Bk ∩ Sk such that p(x1, x2, . . . , xk) = y?

▶ Theorem 10 (k-POL-indexing problem). For any choice of a constant 0 < α < 1, we
can construct in Õ(nk) time with high probability a data structure for the k-POL-indexing
problem using Õ(nk−α/3) words of space which supports queries in Õ(nα) time.

Proof. We can assume without loss of generality that the values of the polynomial p lie
in [2w′ ] for some w′ ≥ w such that w′ = O(polylog(n)). We define the function f : [nk] →
[2w′ ]k+1 that maps a k-tuple (i1, i2, . . . , ik) to the corresponding (k + 1)-tuple of integers
(x1, x2, . . . , xk, p(x1, x2, . . . , xk)), where xj is the ijth largest value in Sj . We then construct
the data structure of Theorem 3 with d = k + 1 and N = nk, and use it to answer queries
with the (k + 1)-dimensional boxes B := B1 ×B2 × . . .×Bk × {y}. ◀

Note that from Theorem 7, with a slight penalty in space, we can also answer ranking
and selection queries in the preimage p−1(y) ∩B in sublinear time.

4.2 Substring search
Function inversion has been applied to string searching problems before [8, 4]. Let us first
consider the following problem:

▶ Problem 2 (Birange proximity). Given an array A of size n containing elements of [n].
Preprocess it to answer queries of the form: given intervals [i, j], [k, l], and [δ, β] all with
endpoints in [n], report all pairs (x, y), x ∈ [i, j] and y ∈ [k, l], such that |A[x]−A[y]| ∈ [δ, β].

We can define f : [n]2 → [n]3 by f(x, y) := (x, y, |A[x]−A[y]|). Answering a birange proximity
query is thus equivalent to determining the pairs (x, y) with f(x, y) = (x, y, γ), x ∈ [i, j],
y ∈ [k, ℓ], and γ ∈ [δ, β]. Thus, by applying Theorem 9 we immediately obtain:
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▶ Lemma 11 (Birange proximity). For any choice of a constant 0 < α < 1, we can construct
in Õ(n2) time with high probability a data structure for the birange proximity problem using
Õ(n2−α/3) words of space which supports queries that return k pairs in time Õ((k + 1)nα).

Bille et al. [4] consider the following problem:

▶ Problem 3 (Gapped string indexing). Given a string S of length n, prepossess it to support
queries of the form: Given two strings P1 and P2, and an interval [δ, β], report all (x, y) such
that P1 is a substring starting at location x in S, P2 is a substring starting at location y in
S, and |x− y| ∈ [δ, β].

The suffix array A of a string S is a fundamental data structure in stringology due to
Manber and Meyers [18]. It has A[j] = i if S[i . . . n] is the jth lexicographically largest suffix
of S, and it can be computed in linear time using the algorithm of Farach-Colton [9]. Bille et
al. [4] observe that given the suffix array A of S, which is a permutation of [n], the locations
of of occurrences of a substring P are the values in a consecutive interval of A, and this
interval can be computed in time O(|P |) using a suffix tree (which can also be computed in
linear time). Using a birange proximity structure, initialized with the suffix array of S, a
gapped string indexing query in S can be converted into a birange proximity query at cost
O(|P1|+ |P2|). We therefore immediately recover the headline result of [4]:

▶ Theorem 12 (Gapped string indexing). For any choice of a constant 0 < α < 1, we can
construct in Õ(n2) time with high probability a data structure for the gapped string indexing
problem using Õ(n2−α/3) words of space which supports queries that return k pairs in time
Õ(|P1|+ |P2|+ (k + 1)nα).

While the problem we call birange proximity is implicit in the presentation of Bille
et al. [4], their reductions make use of other problems; here the use of birange proximity
along with the framework we have developed makes the proof immediate and amenable to
many possible variations. We state one possible generalization, where instead of two strings,
k substrings are to be matched, with k ≥ 2 a constant. We impose pairwise restrictions on
the allowable distances between the matches, and additionally we restrict the occurrence of
each substring to an interval in the base string.

▶ Problem 4 (Generalized gapped string indexing). Given a string S of length n and a
constant nonnegative integer d, preprocess to support queries of the form: Given strings
P0, P1, . . . Pd−1, intervals [δi, βj ] for all i, j ∈ [d], i < j, intervals [γi, ξi], for all i ∈ [d] report
all (x0, x1, . . . xd−1) such that Pi is a substring starting at location xi in S, xi ∈ [γi, ξi] and
|xi − xj | ∈ [δi, βj ] for all i, j ∈ [d], i < j. The counting variant returns the number of
(x0, x1, . . . , xd−1) meeting this condition.

Using Theorems 7 and 9 with N = Õ(nk), we directly obtain the following.

▶ Theorem 13 (Generalized gapped string indexing). For any choice of a constant 0 < α < 1,
we can construct in Õ(nd) time with high probability a data structure for the generalized
gapped string indexing problem using Õ(nd−α/3) words of space which supports queries that
return k pairs in time Õ(

∑d
i=1 |Pi|+ (k + 1)nα). For the counting variant, queries take time

Õ(
∑d

i=1 |Pi|+ nα) and the space usage is Õ(nd−α/4).

4.3 Geometric applications
The following result follows directly from Theorem 7 and will be useful in applying our
method to specific computational geometry problems.
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▶ Lemma 14 (Searching tuples of points in space). Let S be a set of n points on the d-
dimensional integer grid [2w]d, where w = polylog(n) and d = O(1). Let δ : [2w]td → [2w],
for some constant t > 1, be any integer function mapping a t-tuple of points in S to an
integer, and computable in Õ(1).

For any choice of a constant 0 < α < 1, we can construct in Õ(nt) time with high
probability a data structure using Õ(nt−α/4) words of space which supports the following
queries in Õ(nα) time:
Ranking in a box. Given t d-dimensional boxes B1, B2, . . . , Bt and an integer y, return the

number of t-tuples T of distinct points of S in B1 ×B2 × · · · ×Bt such that δ(T ) < y.
Selection in a box. Given t d-dimensional boxes B1, B2, . . . , Bt and an integer k, return the

kth largest value of δ(T ) among all t-tuples T of distinct points of S in B1×B2×· · ·×Bt.
Median in a box Given t d-dimensional boxes B1, B2, . . . , Bt, return the median of δ(T )

among all t-tuples T of distinct points of S in B1 ×B2 × · · · ×Bt.

Proof. We denote by pi,ℓ the ℓth coordinate of the ith point of S, for i ∈ [n]. Consider the
function g mapping an ordered t-tuple of pairwise distinct elements of [n] to [2w]td, defined
as

g((i1, i2, . . . , it)) := (pi1,1, pi1,2, . . . , pi1,d, pi2,1, pi2,2, . . . , pi2,d, . . . , pit,1, pit,2, . . . , pit,d).

The result follows by applying Theorem 7 to the functions g and δ, with N = n!/(n− t)! <

nt. ◀

One simple example of a function δ for t = 2 is the squared Euclidean distance between
two points, and we then get a data structure for interdistance selection and ranking. For
t = 3, we can also define the function δ as twice the area of the triangle defined by the three
points. Note that from Pick’s Theorem, the area is half-integer. Lemma 14 then directly
yields a data structure for the following problem.

▶ Problem 5 (Triangle selection in boxes). Given a set S of n points on the two-dimensional
integer grid [2w]2, where w = polylog(n), preprocess it to answer queries of the form: given
three two-dimensional boxes B1, B2, B3 and an integer k, return the triangle with the kth
largest area among all those formed by three points in (S ∩B1)× (S ∩B2)× (S ∩B3).

▶ Theorem 15 (Triangle selection in boxes). For any choice of a constant 0 < α < 1, we can
construct in Õ(n3) time with high probability a data structure for the triangle selection in
boxes problem using Õ(n3−α/4) words of space which supports queries in Õ(nα) time.

This problem, as well as the interdistance selection problem, have previously been considered
by Chazelle [7] in the “one-shot” setting where there are no query boxes, k is fixed, and the
points have real coordinates.

Other problems of interest involve functions with divisions or radicals, for which our
approach focusing on integer functions does not seem to apply at first glance. In many cases
we can circumvent this problem, due to the fact that a limited precision is enough to decide
which of two values is larger. One bound implied for example by the work of Burnikel et al.
[5] is the following.

▶ Lemma 16 ([5]). Let f : [2w]d → R be a function which has a constant-sized expression
consisting of the operators +,−,×, /,

√
·, O(w)-bit constants and the arguments of f . Then

computing f up to O(w) bits of precision is enough to decide if f(p) ≤ f(q) for any p, q ∈ [2w]d.
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In what follows, given a function f for which this lemma applies, we will use the notation
f• to denote the function computed to the required O(w) of bits of precision, scaled to
have an integer domain. Thus, f• is a function [2w]d → [2O(w)]. Note that f• is always
computable in O(poly(w)) = Õ(1) time.

An example here is the case t = 2, d = 2, and δ(p1, p2) = f•(p1, p2), where f(p1, p2) is
defined as the slope of the line through p1, p2. In robust statistics, the Theil-Sen estimator of
a set S of points in R2 is the median of the slopes of all the lines through two points of S. It
is considered as a more robust estimator for linear regression than the classical least-square
estimator, and commonly used in practice.
▶ Problem 6 (Linear regression in a box). Given a set S of n points on the two-dimensional
integer grid [2w]2, where w = polylog(n), preprocess it to answer queries of the form: given
a two-dimensional box B, return the Theil-Sen estimator of the points in S ∩B.
Applying Lemma 14, we directly obtain the following.
▶ Theorem 17 (Linear regression in a box). For any choice of a constant 0 < α < 1, we can
construct in Õ(n2) time with high probability a data structure for linear regression in a box
using Õ(n2−α/4) words of space which supports queries in Õ(nα) time.

Another example is the following problem, which is a data structure variant of a problem
previously considered by Bespamyatnikh and Segal [3].
▶ Problem 7 (Hyperplane distance selection). Given n points on the d-dimensional grid [2w]d,
preprocess them to answer queries of the following form: given k and d boxes B1, . . . , Bd,
return the hyperplane with the kth largest distance to the origin, among all hyperplanes
spanned by d points in B1 ×B2 × · · · ×Bd.
Let f be the function which maps d-tuples of points in [2w]d to the distance between the
origin and the hyperplane they span. Note that for any constant d, we can express this
function in a way to which Lemma 16 applies. Thus, applying Lemma 14 with δ = f• yields
the following.
▶ Theorem 18 (Hyperplane distance selection). For any choice of a constant 0 < α < 1, we
can construct in Õ(nd) time with high probability a data structure for hyperplane distance
selection using Õ(nd−α/4) words of space which supports queries in Õ(nα) time.

As a last example, let us consider the following problem, which is the main focus of
previous work by Aronov et al. [1].
▶ Problem 8 (Collinearity indexing with queries on a line). Given two sets S1 and S2 of n

points on the two-dimensional integer grid [2w]2, where w = polylog(n), and a vertical line ℓ,
preprocess them to answer queries of the form: given a point q on ℓ, are there two points
p1 ∈ S1 and p2 ∈ S2 such that q, p1, and p2 are collinear?

Aronov et al. showed the following result, which now also follows from a straightforward
application of Lemma 8 and Lemma 16.
▶ Theorem 19 (Theorem 1.1 of [1]). For any choice of a constant 0 < α < 1, we can
construct in Õ(n2) time with high probability a data structure for collinearity indexing with
queries on a line using Õ(n2−α/3) words of space which supports queries in Õ(nα) time.
Note that as with previous applications, our results also allow us to restrict to pairs of points
lying in two boxes given at query time. Using Lemma 14 instead of Lemma 8, we could
also answer queries asking for the closest line spanned by a pair of points in S1 × S2, above
or below the query point p, at the cost of increasing the space of our data structure to
Õ(n2−α/4).
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