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Abstract

Consider a set P of n points picked uniformly and independently from [0, 1]d, where d is a
constant. Such a point set is well behaved in many aspects and has several structural properties.
For example, for a fixed r ∈ [0, 1], we prove that the number of pairs of

(
P
2

)
at a distance at

most r is concentrated within an interval of length O(n log n) around the expected number of
such pairs for the torus distance. We also provide a new proof that the expected complexity
of the Delaunay triangulation of P is linear – the new proof is simpler and more direct than
previous proofs.

In addition, we present simple linear time algorithms to construct the Delaunay triangulation,
Euclidean MST, and the convex hull of the points of P . The MST algorithm uses an interesting
divide-and-conquer approach. Finally, we present a simple Õ(n4/3) time algorithm for the
distance selection problem, for d = 2, providing a new natural justification for the mysterious
appearance of n4/3 in algorithms for this problem.

1. Introduction

Input model. Fix a constant dimension d ≥ 2. For i ∈ JnK = {1, . . . , n}, uniformly and in-
dependently sample a point pi from [0, 1]d. Let P = {pi | i ∈ JnK}. The euclidean graph on P

is G(P ) =
(
P,

(
P
2

))
, with the edge pipj having weight ω(pipj) = ∥pipj∥, for pi, pj ∈ P , where(

P
2

)
= {pq | p, q ∈ P}. This graph has quadratic number of edges, but is defined by only O(n)

input numbers. Natural questions to ask about P and G(P ) include:

(A) What is the combinatorial complexity of the convex-hull/Delaunay triangulation of P?

(B) How quickly can one compute the convex-hull/Delaunay triangulation/MST/etc of P?

(C) What is the length of the median edge in G(P ), and how concentrated is this value?

All these questions have surprisingly good answers – linear complexity, linear running time algo-
rithms, and strong concentration, respectively. Here, we revisit these questions, presenting new
simpler proofs and algorithms for them.
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1.1. Background

There is a lot of work in stochastic and integral geometry on understanding the behavior of random
point sets, and the structures they induce [ San53 ,  WW93 ,  Cal10 ,  SW10 ]. As the name suggests,
for many of the questions one states, an integral is set up whose solution is the desired quantity,
and one remains with the (usually painful) task of solving the integral 

1
 . In this paper, we focus

mainly on direct combinatorial arguments of said results.

Closest pair and spread. The spread of a point set P ⊂ Rd is the ratio between the diameter
and the closest pair distance of P . Formally, it is the quantity Φ = Φ(P ) = diam(P )/cp(P ),
where diam(P ) = maxp,q∈P ∥pq∥ and cp(P ) = minp,q∈P :p ̸=q ∥pq∥ . For a set P of n points sampled
uniformly at random from [0, 1]d, It is not hard to verify [ HJ20 ] that E[cp(P )] = Ω(1/n2/d). This
intuitively suggests that E[Φ(P )] = O(n2/d) - (a formal proof of this requires a bit more effort).

Convex-hull. The Convex-hull of n points in Rd has combinatorial complexity Θ(n⌊d/2⌋) in the
worst case (here, combinatorial complexity refers to the number of vertices and faces). It can be
computed in O(n log n+n⌊d/2⌋) time [ Cha93 ]. Surprisingly, the expected complexity of the convex-
hull of random points picked from [0, 1]d is O(logd−1 n) [ BKST78 ]. The exact bound depends on the
underlying domain from which the points are sampled. For example, if the sample is taken from a
ball in Rd, the expected complexity is O(n(d−1)/(d+1)) [ Ray70 ]. See [ Har11b ] and references therein
for more details. Dwyer [ Dwy88 ] provides an expected linear time algorithm for computing the
convex hull of a set of points picked from [0, 1]d. As hinted to earlier, the analysis is not elementary
and uses heavy tools to show the result.

Delaunay triangulation. The Delaunay triangulation D of n points in Rd has combinatorial
complexity Θ(n⌈d/2⌉) in the worst case. It can be computed in O(n log n + n⌈d/2⌉) time [ Cha93 ].
Dwyer [ Dwy91 ] show that when the points are uniformly sampled from a d-dimensional unit ball
(instead of a d-cube), the complexity of the Voronoi diagram (and consequently its dual, D) is
also linear, and gave an O(n) time expected time algorithm for constructing it. However, Dwyer’s
algorithm is involved and its analysis is nontrivial with reliance on algebraic and integral tools.

Minimum spanning trees. There is a lot of work on MST and EMST (Euclidean minimum
spanning tree). Since EMST is a subgraph of the Gabriel graph of P – that is, the graph where
two points p, q ∈ P are connected by an edge, if their diametrical ball does not contain any point
of P in its interior. The Gabriel graph is a subgraph (of the 1-skeleton) of DT (P ), the Delaunay
Triangulation of P . Thus, one can calculate DT (P ) (in linear time), and then run Karger et al.
expected linear time MST algorithm [ KKT95 ] on DT (P ). The algorithm of Karger et al. uses
as a black box a procedure to identify all the edges in the graph that are too heavy to belong
to a minimum spanning tree, given a candidate spanning tree. Such spanning tree “verifiers” are
relatively complicated to implement in linear time [ Hag09 ]. Developing deterministic linear time
MST algorithm is still an open problem, although Chazelle presented [  Cha00 ] a O(n+mα(n,m))
time algorithm where n,m are the number of vertices and edges respectively (as α(n,m) is at

1Historically, the field was not named integral geometry because it involved integrals in the calculus sense. The
origin of the word, which derives from the German ”Integralgeometrie”, was coined and popularized by Blaschke in
their book. We thank an anonymous reviewer for mentioning this.
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most 4 for all practical purposes, this is essentially a linear time algorithm). More bizarrely, a
deterministic optimal algorithm is known [ PR02 ], but its running time complexity is not known.
None of these algorithms can be described as simple.

For minor-closed graphs, Mareš [ Mar04 ] gave two linear time algorithms to construct the MST
in O(n + m) time. In the plane, the Delaunay Triangulation is a planar graph, and thus given
the Delaunay triangulation the MST can be computed in linear time (this is no longer applicable,
already in 3d).

Distance selection. Given a set P of n points in the plane, and a number k, the distance selection
problem asks for the kth small distance in the

(
n
2

)
pairwise distances induced by the points of P .

In the plane, this can be computed in O(n log n+ k) time [ Cha01 ], or alternatively in O(n4/3) time
[ CZ21 ] for general sets of points. An (1±ε)-approximation can be computed in linear time [  HR15 ].

1.2. Our results

We provide simple and elementary proofs for several of the results mentioned above, and we also
provide (conceptually) simple algorithms for several of the problems mentioned above:

(A) kth distance concentration. Fix a value of r ∈ [0, 1]. Let fr = fr(P ) denote the num-
ber of pairs pipj with ∥pipj∥T ≤ r, where ∥pipj∥T is the torus topology distance between pi
and pj (defined in  Eq. (3.1) ). Note that fr(P ) ∈ {0, ...,

(
n
2

)
}. It is not hard to show that

P
[
|fr − E[fr]| > Ω̃(n3/2)

]
≤ 1/nO(1) using Chernoff’s inequality and the union bound, where

Ω̃ and Õ hide polylogarithmic terms in n. However, in  Section 3 , we show a significantly
stronger concentration, namely that the interval has length Õ(n) with high probability  

2
 :

P
[
|fr − E[fr]| > Ω̃(n)

]
≤ 1/nO(1). The new concentration proof uses martingales together

with bounded differences concentration inequality that can handle low probability failure. To
the best of our knowledge this result is new, and is an interesting property of random points.
(We conjectured this claim after observing this behavior, of strong concentration, in computer
simulations we performed.). The proof is an interesting application of a McDiarmid’s inequal-
ity variant that allows a (small) probability of large variation, when applying the standard
McDiarmid’s inequality would otherwise fail.

(B) Convex hull. In  Section 4  , as a warm-up exercise, we provide an O(n) expected time
algorithm to construct C(P ), the convex hull of P . Dwyer [ Dwy88 ] presented a divide and
conquer algorithm. Our algorithm is somewhat different as it uses a quadtree for the partition
scheme, and is the building block for the later algorithms.

(C) Linear complexity of Delaunay triangulation. We provide a new proof that the
expected complexity of the Delaunay triangulation of P is linear, where P is a set of n points
picked uniformly and independently from [0, 1]d. The new proof, presented in  Section 5 , is
simpler and more direct than existing proofs. The linear bound is quite easy to derive for
points in the inner part of the cube (we refer to this part of the cube as the fortress), but the
outer part (i.e., the moat) requires more work because of boundary issues.

(D) Linear time algorithm for Delaunay triangulation. In  Section 6 , we present an
expected linear time algorithm for computing the Delaunay triangulation. The algorithm

2Here, an event An happens with high probability if P[An] ≥ 1− 1/nO(1).
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computes, for each point, the points it might interact with, and the local Delaunay triangu-
lation of these points. The algorithm then stitch these local structures together to get the
global triangulation.

(E) Euclidean MST. Since the MST of P is a subgraph of (the 1-skeleton) of DT (P ), the
(general but more complicated) expected linear time MST algorithm from [ KKT95 ] could be
applied to DT (P ) to calculate the EMST of P in linear time. For d = 2, it is known that
Bor̊uvka’s algorithm implemented efficiently 

3
 takes linear time, since planarity is preserved

between rounds. In particular, we conjecture that Bor̊uvka’s algorithm takes linear time when
run on DT (P ), in higher dimensions, but we were unable to prove it.

Instead, in  Section 7 , we present an algorithm for constructing the EMST of P , in expected
linear time, using a simple algorithm that is the adaption of Bor̊uvka’s algorithm to use di-
vide and conquer over a quadtree storing the points. The correct propagation of subtrees of
the MST that can be computed when restricted to a subproblem, together with a “minimal”
set of edges that might participate in the MST, is the main new idea of our new algorithm.
We believe the new algorithm should be of interest when trying to compute MSTs, or sim-
ilar structures, for huge graphs where one has to distribute the computation across several
computers/nodes.

(F) Distance selection. We show a simple algorithm for distance selection for P that works in
expected O(n4/3 log2/3 n) time. The new algorithm achieves this running time by partition-
ing the problem into (roughly) O(n2/3) special instances involving (roughly) O(n1/3) points
concentrated in “tiny” disks, and a set of points that lies in a ring, of radius r, containing
(roughly) O(n2/3) points. Each of these instances can be solved by a direct point-location al-
gorithm in (roughly) O(n2/3) time. In the general case, one has to rely on a more complicated
divide and conquer strategy (implemented using cuttings3), together with duality, to reach
such unbalanced instances that can be solved using brute force (see [ CZ21 ] and references
therein). Thus, the new algorithm provides a new elegant and intuitive explanation where
the mysterious n4/3 term rises from, in addition for providing a simple algorithm that might
work better in practice than previous algorithms.

A comment on the paper organization. Since this paper has many results, and is long, we
ordered our results in such a way, that (hopefully) the first ten pages convey our basic approach
and ideas. We did move some (more minor) proofs to an appendix.

2. Preliminaries

Notations. The O notation hides constants that depend (usually exponentially) on d.

2.1. VC dimension and the ε-net and ε-sample theorems

The main ingredient in almost all our results is the ε-net/sample theorems. In this subsection,
we give a quick introduction, see [  AS00 ] or [ Har11a ] for more details. We do not assume prior
knowledge of this topic.

3Some textbook implementations would run in O(n logn) time, even if the graph is planar.
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Definition 2.1. A range space S = (C,F) is a pair, where C is a set, and F is a family of subsets
of C. The elements of C are points and the elements of F are ranges.

A subset B ⊆ C, is shattered by F if the |{r ∩B | r ∈ F}| = 2|C|. TheVapnik-Chervonenkis
dimension (or VC-dimension) of the range space S = (C,F) is the maximum cardinality of a
shattered subset of C.

Example 2.2. Suppose C = R2 and F is the set of disks in R2. For any set of three (not colinear)
points T = {p1, p2, p3} ⊆ C, and any subset T ′ ⊆ T , one can find a disk containing T ′, and avoiding
the points of T \ T ′. Thus, the VC dimension of disks in the plane is 3. It is easy to verify that no
four points can be shattered, and thus the VC dimension of this range space is 3.

Example 2.3. In general, for points in Rd and balls or halfspace ranges, the VC dimension is d+ 1.
Another noteworthy range is axis-parallel rectangles which have VC dimension 2d.

For simplicity of exposition, assume C to be a finite set of points. An ε-net captures all “heavy”
ranges. That is, if we sample a “sufficiently” large subset N ⊆ C, then any range r ∈ F containing
“enough points” from C must also contain a point from N with high probability. The ε-sample
is similar, asserting that for any range r ∈ F , the fractions |N∩r|

|N | and |C∩r|
|C| are ε-close, with high

probability. The formal definition is stated below.

Definition 2.4. Let (C,F) be a range space, and let C ⊂ C be a finite subset. For 0 < ε < 1, a
subset N ⊆ C, is an ε-net for C if for any range r ∈ F , we have |r ∩ C| ≥ ε |C| =⇒ r ∩N ̸= ∅.

Definition 2.5. Let (C,F) be a range space, and let C be a finite subset of C. For ε ∈ (0, 1), a subset
N ⊆ C, is an ε-sample for C if for any range r ∈ F , we have∣∣∣∣ |N ∩ r|

|N |
− |C ∩ r|

|C|

∣∣∣∣ ≤ ε.

Finally, the ε-net and ε-sample theorems characterizes quantitatively the size of the sample needed
to have the desired property.

Theorem 2.6 (ε-net theorem, [ HW87 ]). Let (C,F) be a range space of VC-dimension d, let
C ⊆ C be a finite subset, and suppose ε > 0, δ < 1. Let N be a random sample from C with m

independent draws, where m ≥ max
(4
ε
log

2

δ
,
8d

ε
log

8d

ε

)
. Then N is an ε-net for C with probability

at least 1− δ.

Theorem 2.7 (ε-sample theorem, [ VC71 ,  VC13 ]). Let (C,F) be a range space, where its VC-
dimension is d. Let C ⊆ C be a finite subset, and suppose ε > 0, δ < 1 are parameters. Let N

be a random sample of size m from C, where m ≥ min
(
|C| , 32

ε2

(
d log d

ε + log 1
δ

))
. Then, N is an

ε-sample for C, with probability at least 1− δ.

2.2. Bounding the moments

In the following, n is fixed, and let P be a set of n points picked randomly, uniformly and indepen-
dently from [0, 1]d. Throughout, we use the following fixed quantities:

φ =
cd lnn

n
and δ = φ1/d, (2.1)
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p

vic(p)

Figure 2.1: The green region is [0, 1]2 ∩ vic(p). The light blue region is [0, 1]2 \ vic(p).

where cd > 0 a sufficiently large constant that depend only on d.
Throughout the paper, we often need to bound the moments of the number of points of P that

lie in some measurable set Ξ. The following technical lemma bounds the expected number of such
points.

Lemma 2.8. Let Ξ ⊆ [0, 1]d be a measurable set. If α = vol(Ξ) ≥ 1/n, then for t > 2e, we have

P[|P ∩ Ξ| > t · αn] ≤ 1/2tαn.

Furthermore, for any constant κ ≥ 1, we have that E
[
|P ∩ Ξ|κ

]
= O

(
(αn)κ) (the O hides here a

constant that depend on κ).

Proof: The number of points of P falling into Ξ, is a binomial distribution, and we have

P
[
|P ∩ Ξ| > t · αn

]
=

n∑
i=tαn+1

(
n

i

)
αi(1− α)n−i ≤

n∑
i=tαn+1

(nαe
i

)i
≤

n∑
i=tαn+1

( nαe

2eαn

)i
≤ 1

2tαn
,

since
(
n
i

)
≤

(
ne
i

)i
. Thus, we have

E
[
|P ∩ Ξ|κ

]
≤

∞∑
t=0

(
(t+ 1)αn

)κ P[|P ∩ Ξ| > t · αn
]
≤ (2αn)κ

∞∑
t=0

tκ/2tαn = O
(
(αn)κ),

since
∑∞

t=0 t
κ/2tαn ≤

∑∞
t=0 t

κ/2t = O(1).

2.3. Vicinities

For two points p, q ∈ Rd, let R(p, q) denote the axis parallel bounding box of p and q. The vicinity
of a point p ∈ [0, 1]d is vic(p) =

{
q ∈ [0, 1]d

∣∣ vol(R(p, q)) ≤ φ
}
, where φ is specified in  Eq. (2.1) 

(see  Figure 2.1 ). For a number x > 0, let ⌈x⌉2 = 2⌈log2 x⌉, and observe that x ≤ ⌈x⌉2 ≤ 2x, and
⌈x⌉2 is a power of two. This definition is used in the proof of the following claim.

The following claim can be proved using integration – we provide an alternative combinatorial
proof for the sake of completeness.

Lemma 2.9 ([ CHR16 ]). For any p ∈ [0, 1]d, we have vol(vic(p)) = O( log
d n
n ).

6



Proof: Let o denote the origin. The area of a single quadrant of the vicinity is maximized when
p = o. There are 2d quadrants so we have that vol(vic(p)) ≤ 2dvol(vic(o)). To bound the later
quantity, let τ > 0 be an integer such that 2dφ ≤ 2−τ ≤ 2d+1φ. As such, we have τ ≤ lg(1/φ)−d =
O(log n).

A canonical box , is a box of the form B =
∏d

i=1[0, αi] such that vol(B) =
∏

i αi = 2−τ , where

αi is a power of two, for all i. For any point q = (q1, . . . , qd) ∈ [0, 1]d, let pv(q) =
∏d

i=1 qi be
the point volume . Consider all the points of q = (q1, . . . , qd) ∈ vic(o) (i.e., these are points with
pv(q) ≤ φ), and let ⌈q⌉2 = (⌈q1⌉2 , . . . , ⌈qd⌉2). Observe that pv(⌈q⌉2) ≤ 2dφ. In particular, there
exists a canonical box that contains q.

Consider a side [0, αi] of a canonical box. The number αi is a power of 2, and 1 ≥ αi ≥ 2−τ .
That is, αi ∈ {1, 1/2, 1/4, . . . , 2−τ}. Namely, there are at most 1 + τ choices for the value of each
coordinate of a canonical box. As such, the number of canonical boxes is (1+ τ)d−1, as fixing d− 1
coordinates forces the value of the last coordinate. The volume of a canonical box is ≤ 2d+1φ. We
conclude vic(o) is covered by the union of these boxes, and as such, vol(vic(o)) ≤ τd−1φ, which
implies the claim.

The intuition for vicinities is that for a lot of the problems discussed in the introduction, any point
p ∈ P only needs to locally consider other points in its vicinity when making decisions of building
the desired structures (i.e. points outside the vicinity of p are not relevant for p)

3. Sharp concentration of the kth pairwise distance

Let P = {p1, . . . , pn} be a random sequence of points, where pi is picked uniformly and in-
dependently from [0, 1]d. For two numbers x, y ∈ [0, 1] their toroidal distance is |x− y|T =
min

(
|x− y| , 1−|x− y|

)
. Let r be a fixed value in [0, 1]. Let fr(P ) denote the number of pairs pipj

in P with ∥pipj∥T ≤ r. Formally, we have

∥pipj∥T =

√∑d

ℓ=1

∣∣pi[ℓ]− pj [ℓ]
∣∣2
T

and fr(P ) =
∣∣{pipj ∣∣ i < j and ∥pipj∥T ≤ r

}∣∣ . (3.1)

is the toroidal distance between pi and pj , and p[ℓ] denotes the ℓth coordinate of a point p ∈ Rd.
We denote the space [0, 1]d under this toroidal topology by [0, 1]dT . Intuitively, this is the space
where we allow “wrap-around” in [0, 1]d, and the shortest distance between two points can be the
wrap-around distance. Using this distance allows us to ignore artifacts that are generated by the
boundary of the hypercube [0, 1]d.

The claim is that the value of fr, which is a number in {0, . . . ,
(
n
2

)
}, is strongly concentrated.

Namely, the interval of integers containing fr, with high probability, is “short”. Showing a bound
of Õ(n3/2) on the number of values in this interval is doable via Chernoff’s inequality and using the
union bound. The resulting guarantee is of the form P

[
|fr − E[fr]| > Ω̃(n3/2)

]
≤ 1/nO(1). Here, we

show a significantly stronger concentration with the interval containing Õ(n).
We conjecture this result is true for the Euclidean distance, but handling the boundary cases

proved to be quite challenging. Hence the simplifying Toroidal topology assumption. We observed
this strong concentration, for both the Toroidal and Euclidean case, in computer simulations.

Consider the closed ball bT (p, r) =
{
x ∈ [0, 1]d

∣∣ ∥px∥T ≤ r
}

in [0, 1]dT . We next bound the
VC dimension of such balls (as a side, Gillibert et al. [ GLM22 ] bounded the VC-dimension of
axis-parallel boxes in this space by O(d log d)).

7



Lemma 3.1. For A =
{
bT (p, r)

∣∣ p ∈ Rd
}
, the VC dimension of the range space ([0, 1]d,A) is

O(1).

Proof: A toroidal ball consists of at most O(22d) regions Ri, each region being the intersection of a
ball and at most 2d half spaces (corresponding to the boundaries of [0, 1]d). The VC dimension of
balls and halfspaces is d + 1, so the VC dimension of their intersection (and hence each region) is
O(1). Taking the union of the at most O(22d) regions, implies the VC dimension is at most O(1),
via standard argumentation [ Har11a ].

Next, we would like to apply Chernoff-like style inequalities to bound the probability of deviation
from the expectation. The most relevant inequality here is McDiarmid’s inequality for bounded
differences of martingales. Unfortunately, one cannot use McDiarmid’s inequality directly because
by “sliding” a ball b in [0, 1]d, the number of points inside b might change by O(n). Of course
for random point set P , this is highly unlikely (the change is more likely to be O(

√
n)) and so

we will have to use a variation of McDiarmid’s inequality that allows a “bad” event, where the
difference might be large but happening with a small probability, and a “good” typical event where
the difference is bounded.

Consider the following extension of McDiarmid’s inequality (for bounded differences of martin-
gales) where the differences are only bounded with high probability [ Kut02 ]. It will be useful to
view P from two different views 

4
 , one as a set of individual points, and the second as a product

Ω =
∏

1≤i≤dnΩi of dn probability spaces for each coordinate.

Definition 3.2 ([ Kut02 ]). Let Ω1, ...,Ωm be probability spaces. Let Ω =
∏

iΩi, and let X be a
random variable on Ω. The variable X is strongly difference-bounded by (b, c, ς) if the following
holds. There is a “bad” subset B ⊆ Ω, where ς = P[w ∈ B]. In addition, we require that

(i) If ω, ω′ ∈ Ω differ only in the kth coordinate, and ω ̸∈ B then |X(ω)−X(ω′)| ≤ c.

(ii) Furthermore, for any ω, ω′ ∈ Ω differing only in the kth coordinate, |X(ω)−X(ω′)| ≤ b.

To decipher this definition consider the case that c < b: the difference between “bad” pairs can
be large, but the difference between “good” (or mixed) pairs is small. The quantity b behaves like
the “worst” case difference, c is the “typical” difference, and ς is the probability of the bad event
happening.

Lemma 3.3 ([ Kut02 ], Corollary 3.4). Let Ω1, ...,Ωm be probability spaces. Let Ω =
∏

1≤i≤mΩi

and let X be a random variable on Ω which is strongly difference-bounded by (b, c, ς). Let µ = E[X].

Then, for any τ > 0, and any α > 0, we have P
[
|X − µ| ≥ τ

]
≤ 2

[
exp

(
− τ2

2m(c+bα)2

)
+ m

α ς
]
.

In the following, let P + p = P ∪ {p} and P − p = P \ {p}.

Lemma 3.4. The random variable fr is strongly difference-bounded by

(b, c, ς) := (n− 1, O(
√
n log n), 1/nO(1)).

Proof: If one moves only one point of P , at most n− 1 pairwise distances involved with this point
can change, implying that b ≤ n− 1.

4As with most things in life.

8



By the  ε-sample theorem , and  Lemma 3.1 , a sample of size O
(
ε−2 log n

)
is an ε-sample for

Toroidal balls, with high probability. Interpreting P as an ε-sample for [0, 1]d, implies that this

holds for P with ε =
√
φ =

√
cd lnn

n for sufficiently small constant cd > 0. Let vd = vol
(
bT (q, r)

)
,

for any point q ∈ [0, 1]d. The number of points in distance ≤ r from a point p ∈ [0, 1]d, is
Xp = |P ∩ bT (p, r)|. Hence, for any Toroidal ball we have

|Xp − E[Xp]| =
∣∣|P ∩ bT (p, r)| − vdn

∣∣ ≤ εn =
√
cdn log n = Õ(

√
n) (3.2)

assuming P is indeed an ε-sample. Note that the bound above crucially uses the Toroidal distance
properties. Furthermore, the set P − p, formed by removing any point p ∈ P , is an ε-sample, and
this holds with high probability for all such subsets.

This readily implies that for any two points p, p′ ∈ [0, 1]d, we have∣∣Xp −Xp′
∣∣ ≤ |Xp − vdn|+

∣∣vdn−Xp′
∣∣ = O(

√
n log n).

Picking a point p ∈ P , and a point p′ ∈ [0, 1]d, and setting P ′ = P − p + p′, we are interested
in bounding the “typical” difference between fr(P ) and fr(P

′) (this would be the value of c). We
have ∣∣fr(P )− fr(P

′)
∣∣ ≤ ∣∣Xp −Xp′

∣∣+O(1) = O(
√
n log n).

This implies that c = O(
√
n log n). This calculation fails, only if P fails to be an ε-sample, which

happens with probability ς ≤ 1/nO(1).

Theorem 3.5. For constant c′ sufficiently large, we have P[|fr − E[fr]| > c′n log n] ≤ 1/nO(1).

Proof: This follows readily by plugging the parameters of  Lemma 3.4 into  Lemma 3.3 . Note that
in our case, m = n, b = n− 1, and c =

√
cdn log n. Choosing α = 1/n and ς ≤ 1/dn3 (which can be

ensured by making cd sufficiently large), and τ = Ω(n log n), the result follows by straightforward
calculations from  Lemma 3.3 . For example, plugging τ = 100

√
cdn log n into  Lemma 3.3 yields

(for sufficiently large cd): P
[
|fr(P )− E[fr(P )]| > 100

√
cddn log n

]
≤ 2

[
exp

(
− 10000cddn

2 log(n)2

2dn(2
√
cdn logn+1)2

)
+

dn2

dn3

]
≤ 4

n .

4. Warm-up: Computing the convex hull in linear time

We present here an algorithm for computing the convex hull of P in O(n) time. This will serve as
a warm-up as the tools here will be used later on.

Algorithm. Given P , we build T , a quadtree of height h = ⌈(log2 n)/d⌉ and insert the points P
in O(n) time to its leaves – this can readily be done by storing the points in the grid formed by
the leafs using hashing (or just direct array indexing).

The algorithm computes the convex hull via a bottom-up traversal of the tree. It starts by
computing the convex hull (potentially empty) for each leaf of the quadtree using any brute force
algorithm. For a node v at level k, the algorithm takes the computed convex-hulls of its children,
extracts all their vertices and stores it in a set S, and computes the combined convex-hull of S,
using off-the-shelf algorithm [ Cha93 ] in O(|S| log |S|+ |S|⌊d/2⌋) time.
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Analysis. The algorithm correctness is immediate. We next prove an inferior upper bound on
the expected complexity of the random convex-hull that holds with higher moments.

Lemma 4.1. Let |C(P )| denote the number of vertices in the convex hull of P . For any integer
κ > 0, we have E[|C(P )|κ] = O(logO(κd) n) (the constant hidden by the O depends on both κ and d).

Proof: Let p be a vertex of the convex-hull C(P ), and consider a tangent (hyper)plane h to C(P )
that passes through p. The plane h separates C(P ) from one of the vertices of the [0, 1]d, say q.
Let R be the axis parallel box with p and q as antipodal vertices.

The VC dimension of axis aligned boxes is 2d; see [ Har11a ]. By the ε-net theorem, a sample
of size O(dε−1 log n) is an ε-net for axis aligned boxes, with probability ≥ 1 − 1/nO(d). Setting
ε = φ = cd(log n)/n, it follows that R contains a point of P with high probability. It follows that all
the vertices of C(P ) are in the vicinity of some vertex of [0, 1]d. Let Ξ be the union of the vicinities
of the vertices of [0, 1]d. By  Lemma 2.9 , we have that α = vol(Ξ) = O((log n)d/n). Applying

 Lemma 2.8  to |Ξ ∩ P |κ now implies the claim.

Lemma 4.2. The above algorithm computes C(P ) is O(n) expected time.

Proof: Consider the root of the quadtree – it has 2d children, and let Pi be the set of points of
P stored in the ith child. Let ni = |Pi| and mi = |V (C(Pi))|. We have that

∑
i ni = n, and

E[ni] = n/2d. In particular, using Chernoff’s inequality we have that ni ≤ (7/8)n with high
probability. Similarly, we have that E[mκ

i ] = O(logO(κd) n) by  Lemma 4.1 . Let m =
∑

imi, and
observe that computing the convex-hull at the top most level takes O(m logm+m⌊d/2⌋) = O(md) =
O(2d

∑
im

d
i ). Thus, ignoring the construction time of the quadtree itself, we have the recurrence

T (n) = O
(
E
[∑

im
d
i

])
+
∑
i

T (ni) = logO(d2) n+
∑
i

T (ni),

and the solution to this recurrence is O(n).

5. Complexity of the Delaunay triangulation of random points

Here we show that the Delaunay triangulation of P has linear complexity in expectation.

Background on Delaunay triangulations. A simplicial complex D over a set P is a set system
with the (hyper) edges being subsets of P , such that for any σ, σ′ ∈ D, we have that σ ∩ σ′ ∈ D.
An edge of D is a simplex . A simplex is k dimensional if the affine space its points span is k
dimensional. Simplices of dimension 0, 1 and 2 are vertices, edges and (two dimensional) faces,
respectively.

For a point p ∈ Rd, and a radius r > 0, let b(p, r) denote the open ball of radius r centered
at p. For any points p1, . . . , pk ∈ Rd, let pen(p1, . . . , pk) denote the pencil of p1, . . . , pk: the set
of all open balls b in Rd, such that their boundary sphere passes through p1, . . . , pk. If k = d+ 1,
and the points are in general position, the pencil is a single ball circum(p1, . . . , pk) bounded by the
circumscribed sphere of these points.

The Delaunay triangulation D = D(P ) of P is a simplicial complex, where ∇ ∈ D ⇐⇒
there is a ball b ∈ pen(∇) such that b∩ P = ∅. The Delaunay triangulation has the property that
if the set of points P is a random set then the points are in general position with probability 1 (i.e.,
almost surely), and it is then uniquely defined.
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Figure 5.1: The inner fortress F in
red. The moat M in light blue. Here

δ = d

√
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n .
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ℓ(p)

p

Figure 5.2: Definitions of ni = nci(p)
and ℓ(p).

5.1. A linear bound in the interior of the hypercube

Let F = [δ, 1− δ]d be the fortress of [0, 1]d, and M = [0, 1]d \ F be its moat , where δ = d

√
cd lnn

n .

See  Eq. (2.1) and  Figure 5.1 .

Definition 5.1. Consider a ray emanating from a point q in a direction v in Rd. A cone of angle α
is the set of all points p ∈ Rd, such that the angle between p− q and v is at most α. The point q
is the apex of the cone.

One can cover space around a point with Od(1) cones, with angle π/12, to cover all of Rd

Lemma 5.2 ([ DGL96 ]). For any point p ∈ Rd, one can construct a set Cp of 2O(d) cones with
apex p and angle π/12, such that ∪Cp = Rd.

The following shows that all these cones are not empty, if the apex p is in the fortress.

Lemma 5.3. For any p ∈ F , and any cone c ∈ Cp, we have P[c∩ (P − p) = ∅] < 1/nO(1).

Proof: Since p ∈ F , it is at a distance of at least δ from the boundary of [0, 1]d. Thus, α =
vol

(
c∩ [0, 1]d

)
= Ω(δd) = Ω(φ) = Ω

(
(log n)/n

)
, by  Eq. (2.1)  . This implies that the probability

that c does not contain any of the points of P − p is at most

(1− α)n−1 ≤ exp
(
−α(n− 1)

)
≤ exp(−c lnn) = 1

nO(1)
,

where c is a constant that can be made to be arbitrarily large by increasing the value of cd. The
result now follows by applying the union bound to all the cones in Cp.

Definition 5.4. For a point p ∈ P ∩F and a cone c ∈ Cp, let nc(p) denote the nearest neighbor to
p in c∩ (P − p). The reach of p is ℓ(p) = maxc∈Cp ∥pnc(p)∥ , see  Figure 5.2 .

The following bounds (in expectation) ℓ(p) and the distance between p and nc(p) for c ∈ Cp.

Lemma 5.5. For any point p ∈ P ∩ F , a cone c ∈ C(p) and t ≤ δ, we have:

11



(I) P[∥pnc(p)∥ > t] ≤ exp(−c tdn), where c is constant that depends only on the dimension.
(II) P[ℓ(p) > t] ≤ f(t, n) = exp

(
O(d)− c tdn

)
,

(III) E[ℓ(p)] = Θ(1/ d
√
n), and

(IV) the reach of all the points of P ∩ F is bounded by δ, with probability 1/nO(d).

Proof: (I) If ∥pnc(p)∥ > t then the set R = c∩ b(p, t) contains no points of P . The volume of
c∩ b(p, t), for t ≤ δ, is α = Ω(td). In this case, all the points of P − p must avoid R. This happens
with probability at most (1− α)n−1 ≤ exp

(
−α(n− 1)

)
≤ exp

(
−ctdn

)
.

(II) By the union bound, and  Lemma 5.2 , we have P[ℓ(p) > t] ≤
∑

c∈C(p) P[nc(p) > t] ≤ f(t, n).

(III) Observe that b(p, 1/2 d
√
n) contains no other points of P − p with constant probability.

This implies that E[ℓ(p)] = Ω(1/ d
√
n). The upper bound E[ℓ(p)] = O(1/ d

√
n) follows by the above

exponential decay, as a straightforward calculation shows.
(IV) Setting t = δ, and using the union bound implies this part.

Definition 5.6. For p ∈ P ∩ F , the influence of p is �p = {q ∈ P | ∥pq∥ ≤ 2ℓ(p)}

ℓ(p)
c u

p′
z p

ℓ(p)
c u

p′
p

Figure 5.3: Sketch of proof of  Lemma 5.7  

Importantly, all the Delaunay edges adjacent to a point p ∈ F are contained in p’s region of
influence. Hence, locally, it is sufficient to only consider points in the influence when computing
the Delaunay triangulation.

Lemma 5.7. For any point p ∈ P ∩ F , If pq ∈ D, then q ∈ �p.

Proof: Consider the largest (open) ball b with p on its boundary, that does not contain any point
of P in its interior, and let r be its radius and z be its center, see  Figure 5.3  . We claim that
r ≤ ℓ(p), which would imply that ∥pq∥ ≤ 2r ≤ 2ℓ(p). Assume that r > ℓ(P ), and consider any cone
c ∈ Cp, such that z ∈ c. Let p′ be the diametrical point on ∂b to p. Consider any point u ∈ c\ b.
The distance pu is minimized if u ∈ ∂b, but then ∠pup′ forms the right angle of a right triangle.
Observe that ∠upp′ < 30◦ since the cone angle is at most 30◦. But then

∥pu∥ =
∥∥pp′∥∥ cos∠p′pu = 2r cos∠p′pu > 2ℓ(p) cos 30◦ = (2

√
3/2)ℓ(p) > ℓ(p).

However, b∩ (P − p) = ∅ implies that the closest point in (P − p)∩ c to p has distance larger than
ℓ(p), which contradicts the definition of ℓ(p).

We next bound the moments of the size of the set of points inside the influence of a point.

Lemma 5.8. For p ∈ P∩F , and any constant κ ≥ 1, we have E
[
| �p |κ

]
= Oκ(1), see  Definition 5.6 .
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Proof: Let L = |�p|. We break P into two roughly equal sets P1 and P2 (this is done before
sampling the locations of the points). Let ℓi = ℓ(p, Pi) be the reach of p in Pi for i ∈ {1, 2}.
Arguing as above, as p ∈ F , this quantity is well defined. Let Ui be the number of points of P3−i

in the ball bi = b(p, ℓi). Clearly, E[L] ≤ E[U1] +E[U2], as bi contains more points of P3−i than the
ball defined by the reach of the whole set.

So, let ψ be the minimum value such that f(ψ, n/2) ≤ 1/2, where f is the function defined
in  Lemma 5.5 . It is easy to verify that ψ = O(1/n1/d). Let b0 = b(p, ψ), and, for i > 0,
let ri = b(p, iψ) \ b(p, (i− 1)ψ). Observe that vol(b0) = O(1/n), and vol(ri) = O(id/n). By

 Lemma 2.8  , we have that N0 = E
[
|P2 ∩ b0|κ

]
= O(1), and Ni = E[|P2 ∩ ri|κ] = O(idκ). We have

that E
[
Lκ

]
= O(T ), where

T =
∞∑
i=0

Ni P[ℓ > iψ] ≤
∑
i=0

Oκ(i
κdf(iψ, n/2)) =

∑
i=0

Oκ(i
κd/2i) = Oκ(1),

since f(iψ, n/2) = exp
(
O(d)− c idψdn

)
≤

(
exp

[
O(d)− c ψdn

])id ≤ 1/2i
d
.

Combining everything, we get the main result for points in the fortress.

Lemma 5.9. Let D be the Delaunay triangulation of P . The expected number of simplices that
include any point of P ∩ F is O(n).

Proof: Let τ = |�p |. All the vertices of a simplex of the Delaunay triangulation containing p must
have all its vertices in �p by  Lemma 5.7 . Thus, the number of such simplices, of all dimensions, is

bounded by
∑d+1

i=0

(
τ
i

)
= O(τd). By  Lemma 5.8  , we have E

[
O(τd)

]
= O(1).

5.2. The complexity of the Delaunay triangulation near the boundary

We are now left with the tedious technicality of handling points that are too “close” to the bound-
ary 

5
 . The idea is to use a similar argumentation to the above, but to replace the influence ball

induced by the reach by a different region. This inflated region contains significantly more points,
but since the number of points in the moat is small, this would still be linear overall. We remind
the reader that the moat is the area M = [0, 1]d \ [δ, 1− δ]d, see  Figure 5.1 and  Eq. (2.1) .

The following is an immediate consequence of  Lemma 2.8  and  Lemma 2.9  .

Lemma 5.10. For any point p ∈ P , we have X = |vic(p) ∩ P | = O(logd n) with probability ≥
1− 1/nO(1).

Lemma 5.11. Consider an axis parallel box B =
∏d

i=1[pi, qi], and assume that there is a ball b
that contains the points p = (p1, . . . , pd) and q = (q1, . . . , qd). Then b contains a d-dimensional
simplex ∇ defined by d+1 vertices of B, such that the volume of this simplex is ≥ vol(B)/d!. More
generally, this holds for any ball that contains two diametrical vertices of B.

Proof: The proof is by induction on d. The claim is immediate if d = 1.
For d > 1, the idea it to provide a path along the edges of the box B between the two vertices

that is contained in b – the convex-hull of this path would provide the desired simplex. So,

5Ha, the boundary! A source of unmitigated delight to the authors, and hopefully also to the readers.
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consider the two hyperplanes hp ≡ xd = pd and hq ≡ xd = qd, see  Figure 5.4 . Consider the two
balls bp = b∩hp and bq = b∩hq. Both balls have the same center if we ignore the dth coordinate,
and one of them must have a bigger (or equal) radius to the other. Assume that bp has the bigger
radius, and observe that it as such must contain the point q′ = (q1, . . . , qd−1, pd). This implies that
the segment qq′ ⊆ b. By induction there is a path on the edges of B ∩ hp between p and q′, which
implies that there is a path on the edges of B between p and q that lies inside b.

For points p ∈ M, as the following testifies, one needs to consider only simplices and points
that are in vic(p). This is indeed a larger region than the influence region used before, but is small
enough for our purposes.

Lemma 5.12. Let p be any point in P . With high probability, there are at most O(logd
2
n) simplices

in D = DT (P ) that contains p as a vertex. Furthermore, all the points neighboring p in D must be
in vic(p), with probability ≥ 1− 1/nO(d).

Proof: The VC dimension of simplices in Rd is O(d2 log d) as it is the intersection of d + 1 half-
spaces, each of VC dimension d + 1, see [ Har11a ]. By the ε-net theorem, a sample of size
O
(
(d2 log d)ε−1 log n

)
is an ε-net for simplices, with high probability. Interpreting P as an ε-

sample for [0, 1]d, implies that this holds for P with ε = φ/d!, where φ = (cd lnn)/n, see  Eq. (2.1) 

(by making cd sufficiently large).
Consider a point q ∈ P , such that q /∈ vic(p), and assume that pq ∈ DT (P ). This implies that

there is a close ball b that has p and q on its boundary, and no other points of P in its interior.
By  Lemma 5.11  , there is an (open) simplex ∇ of volume ≥ vol(R(p, q))/d! ≥ ε that contains p and
q on its boundary, and it is contained inside [0, 1]d ∩ b. But since P is an ε-net for simplices, it
follows that there is a point of P in ∇, which is a contradiction.

We conclude that all the edges adjacent to p in D must be to points in vic(p). But there are at
most t = O(logd n) such points, by  Lemma 5.10 . Since any simplex involving p in D must use only
points that are in the vicinity, it follows that the number of simplices (of all dimensions) adjacent
to p in D is bounded by

∑d
i=0

(
t
i

)
= O(td).

Finally, we show that the complexity of the Delaunay triangulation in the moat is sublinear.

Lemma 5.13. Let D be the Delaunay triangulation of P . The expected number of simplices in D
that include any point of P ∩M is o(n).

Proof: We have α = vol(M) ≤ 2dδ = O( d
√

(log n)/n), see  Eq. (2.1) . Thus, the expected number
of points of P in M is αn = O(n1−1/d log n). (As usual, this bound holds with high probability.)
By  Lemma 5.12 , the total number of simplices in the Delaunay triangulation of P involving points
in the moat is bounded by O(αn logO(d2) n) = o(n), with high probability.
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The result. Combining  Lemma 5.9  and  Lemma 5.13  implies the following.

Theorem 5.14. For fixed d, the complexity of the Delaunay triangulation of a set of n random
points picked uniformly and independently in [0, 1]d is O(n) in expectation.

6. Constructing the Delaunay triangulation in linear time

6.1. Algorithm

We established above that the (expected) complexity of the Delaunay triangulation is linear by
giving a (linear sized) superset of vertices/simplices that are a superset of the features of D. We
are now left with the task of extracting the features that do appear in D. Recall, that the input is
a set P of n random points from [0, 1]d.

I: Computing the Delaunay simplices attached to points in P ∩ F . Let N =
⌈
n1/d

⌉
.

The algorithm throws the points of P into a N × · · · × N uniform grid covering [0, 1]d. This
can be done in linear time using hashing, where one can retrieve a list of all the points stored
in a grid cell in constant time. Here a grid cell is uniquely represented by an integer tuple from
{0, 1 . . . , N − 1}d. Formally, we map a point p = (p1, . . . , pd) ∈ [0, 1)d, to the grid cell with id
id(p) = (⌊p1N⌋ , . . . , ⌊pdN⌋); see [ Har11a ].

For a point p ∈ P ∩F , the algorithm computes the reach ℓ(p) by performing a marching cubes
algorithm computing the intersection of the grid with the ball b(p, ri), where initially ri = 2i/N , for
i = 0, 1, . . .. The algorithm uses scanning to compute the point set Qi = b(p, ri) ∩ P by extracting
all the points stored in the intersecting grid cells. The algorithm stops in the ith iteration, if all
cones in Cp contains at least one point of P . At this point one can compute the reach of p by
computing for each cone c ∈ Cp the closest point in c∩Pi to p. The algorithm then computes the
point set Pp = P ∩ b(p, 2ri), and computes the Delaunay triangulation of Pp using any standard
algorithm for computing Delaunay triangulation. Finally, the algorithm extract the star of p from
the computed triangulation, and store it. As a reminder, the star of p, denoted by Ap, is the set
of all the simplices in the triangulation that contains p. The algorithm repeats this process for all
the points of P ∩ F , and returns the union of all the stars computed.

II: Computing the Delaunay simplices attached to points in P ∩M. The algorithm builds
an orthogonal range searching data structure on the points P ∩M (and not on all the whole point
set P ). Next, for each p ∈ P ∩M, the algorithm constructs the set of O(logd−1 n) canonical boxes
Bp (as defined in the proof of  Lemma 2.9 ) that their union covers vic(p). Then for each r ∈ Bp, it
queries the data structure for points set Pr = r∩M∩P . Next, it loops over q ∈ Pr and adds points
in Pr∩vic(p) to the computed set NM(p) = P ∩M∩vic(p). Next, using the above grid, it computes
the set NF (p) = P ∩ b(p, 2δ). Finally, the algorithm computes the Delaunay triangulation of
Pp = NM(p)∪NF (p) using a standard algorithm and extracts the star Ap of p, from the computed
triangulation, and stores it. The algorithm repeats this for each p ∈ P ∩M and returns the union
of all stars computed for all p.
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6.2. Analysis

In the following, we prove that the output of the algorithm is correct with probability ≥ 1−1/nO(d)

and the expected running time is O(n).

Part I: The fortress. The correctness of the algorithm is implied by the following claim.

Lemma 6.1. For p ∈ P ∩ F , we have that ∇ ∈ Ap if and only if ∇ ∈ DT (P ).

Proof: If ∇ ∈ DT (P ), then by  Lemma 5.7 , ∇ ⊆ �p. This implies that ∇ ∈ DT (�p), which implies
that ∇ is in the computed set Ap.

If ∇ ∈ Ap, then the circumball of ∇ does not contain any point of �p in its interior. If this ball
contained any point of P in its interior, then it must be further than 2ℓ(p), but this is not possible
by the argument used in the proof of  Lemma 5.7  .

Lemma 6.2. The above algorithm runs in expected O(n) time.

Proof: The Delaunay triangulation of n points in Rd, can be computed in O(n⌈d/2⌉ + n log n) =

O(nd) [  Mul94 ]. As such, we have that the expected running time is E
[∑

p∈P∩F O(| �p |d)
]
= O(n),

by  Lemma 5.8  .

II: The moat. Let DT (P )M denote the set of simplices in DT (P ) with some vertices in M.
The correctness of the algorithm is implied by the following.

Lemma 6.3. For all p ∈ P ∩ M, we have ∇ ∈ Ap if and only if ∇ ∈ DT (P )M with probability
≥ 1− 1/nO(d).

Proof: Consider a simple ∇ ∈ DT (P )M with p ∈ V (∇). If ∇ contains a point q ∈ V (∇) that is in
the fortress F , and is outside b(p, 2δ), then ℓ(q) > δ, and  Lemma 5.5 implies that this happens with
probability < 1/nO(d). Thus, we have that V (∇) ⊆ P ∩

(
(M∩ vic(p)) ∪ b(p, 2δ)

)
⊆ Pp. Thus, the

empty ball b in DT (P )M that circumscribes ∇ is still empty in Pp, V (∇) ⊆ Pp, and thus ∇ ∈ Ap.
If ∇ ∈ Ap, then there is an empty ball b that circumscribes ∇ and is a witness to this. Assume

for the sake of contradiction that b is not empty, and let q be the closest point to p in b∩ (P \Pp).
If q ∈ M, then q /∈ vic(p) (as P ∩ M ∩ vic(p) ⊆ Pp). The probability for that this happens is
< 1/nO(d) by  Lemma 5.12 . If q ∈ F , then the cone c ∈ Cq that contains p, can not contain any
closer point to q (than p) from P . Namely, the reach of q is bigger than 2δ, and probability for
that is ≤ 1/nO(d), by  Lemma 5.5  .

Lemma 6.4. The above algorithm runs in expected O(n) time.

Proof: We have nM = E[|P ∩M|] ≤ n · d · δ = O(n1−1/d log n). Building the orthogonal range
searching data-structure of P ∩M takes O(n+ nM logd n) = O(n).

For any p ∈ P ∩ M, computing b(p, 2δ) ∩ P (using the grid) takes O(log n) time (and this
bound holds with high probability). Computing the points in the vicinity of p in the moat takes
O(logO(d) n) time – indeed each orthogonal range query takesO(logd n) time, and there areO(logd n)

such queries. Finally, the time to compute the Delaunay triangulations Pp, is O(logO(d2) n).
Putting everything together, we have that the expected running time of the second part of the

algorithm is O(n+ nM logO(d2) n) = O(n).
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Theorem 6.5. For fixed d, and a uniformly and independently sampled point set P ⊆ [0, 1]d of size
n, the above algorithm computes the Delaunay triangulation DT (P ) of P in expected O(n) time.
The algorithm succeeds with high probability.

7. Constructing the MST in linear time

7.1. Preliminaries

Lemma 7.1. Let T be the MST of P . The longest edge in T has length ≤ δ = d
√
cd(log n)/n (see

 Eq. (2.1) ), with probability ≥ 1− 1/nO(d), where cd is a sufficiently large constant.

Proof: Let pq be the longest edge in T . Observe that diametrical ball b defined by p and q can
not contain any points of P in its interior, as such a point z, would induce a cycle pzq with
pq being the longest edge, which implies that it is not the MST. The volume of b is minimized
if its center lies in one the corners of [0, 1]d. We conclude that the region R = b ∩ [0, 1]d has
vol(R) = Ωd(∥pq∥d /2d) = Ωd(∥pq∥d). Furthermore, R is formed by the intersection of a hyperbox
with ball, and the VC dimension of such ranges is O(d) [ Har11a ]. The point set P can be interpreted
as an ε-net for such ranges, with ε = δd/2d = Ωd

(
(log n)/n), with high probability. We conclude

that if ∥pq∥ ≥ δ, then P fails as an ε-net, which implies the claim.

Definition 7.2. The Yao graph G∠ = G∠(P ) [ Yao82 ] of P formed by connecting two points p, q ∈ P
by an edge if q is the nearest point to p in one of the cones of C(p) (see  Lemma 5.2 ). Let G∠,δ(P )
be the graph G∠ after removing from it all the edges with length ≥ δ.

It is well known that this graph contains the MST of P [ Yao82 ].

Lemma 7.3. Let P be a set of n points picked uniformly at random from [0, 1]d. One can compute
the graph G∠,δ(P ) in O(n) expected time.

Proof: We store the points of P in a uniform grid with roughly Θ(n) cells in [0, 1]d. For every point
p ∈ P , and every cone c ∈ Cp, we perform a marching cube algorithm to compute the closest point
to p in c∩ P . If the search distance exceeds δ, we abort the search.

For a point p in the fortress F , computing the edges around p takes O(1) time in expectation,
by  Lemma 5.8 . For points in the moat, their number is O(n1−1/d log n), with high probability, and
the search for each point is truncated after the distance exceeds δ. Per point, such a search takes
O(log n) time. It follows that the overall expected running time is O(n+ n1−1/d log2 n) = O(n).

A refresher on Bor̊uvka’s algorithm. Let G = (V,E) be an undirected graph with n vertices
and m ≥ n edges, and weights on the edges. Bor̊uvka’s algorithm creates an empty forest F0 over
the vertices. Let Ci−1 be the set of connected components of Fi−1. For p ∈ P , let σi−1(v) ∈ Ci−1

denote the connected component of v in Fi−1. While |Ci−1| ≥ 2, for each connected component
C ∈ Ci−1, the algorithm adds the cheapest edge leaving V (C) to some other connected component
of Fi−1. Let Fi be the resulting forest from Fi after adding these edges. The final forest is the
desired MST.

Each rounds takes time O(m), and for any i we have |Ci| ≤ |Ci−1| /2. Thus, Bor̊uvka’s algorithm
takes O(m log n) time.
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7.2. An O(n log n) time algorithm

The underling graph in our case is G(P ) =
(
P, {uv | u, v,∈ P}

)
where the weight of each edge is

the distance between its endpoints. A naive implementation of Bor̊uvka on G(P ) would require
roughly quadratic time.

Lemma 7.4. For a set P of n random points in [0, 1]d, one can compute, in O(n log n) time, the
euclidean minimum spanning tree of G(P ).

Proof: One can compute the graph G∠,δ(P ), see  Definition 7.2 , in O(n) expected time, using
 Lemma 7.3 . By  Lemma 7.1 , this graph contains the MST, which can be computed in O(n log n)
time using Bor̊uvka’s algorithm.

We did some experiments on Bor̊uvka’s algorithm, depicted in  Figure 7.1 .

7.3. Adapting Bor̊uvka to divide and conquer

The algorithm precomputes the graph H = G∠,δ(P ). Next, we turn Bor̊uvka into a geometric
divide and conquer algorithm. To this end, let C ⊆ [0, 1]d be some axis-parallel cube, and consider
computing the MST of P ∩ C. Without any outside information, the output can only be a forest
that is part of the final MST, and a set of candidate edges that might participate in the final MST.
To this end, the algorithm splits C into ν = 2d identical subcells C1, . . . ,Cν .

The algorithm recursively computes the MST of Pi = P ∩Ci, for all i. Specifically, the edges of
the MST are edges of H, and as such, all the edges of the MST with exactly one endpoint in Pi are
in the cut Γ(Pi) = {uv ∈ E(H) | u ∈ Pi, v ∈ P \ Pi}. Intuitively, the size of this cut is quite small
(roughly) O(n1−1/d), and we can identify the vertices in Pi adjacent to such edges. These vertices
are portals, the set of all portals in Pi is denoted by ∂(Pi).

Bor̊uvka’s algorithm with portals. Imagine running Bor̊uvka only on the points of Pi. In
every round, each connected component (in the current spanning forest) chooses the shortest edge
in the cut it defines, and add it to the constructed forest. The catch is that if a connected component
contains a portal point, then it might be part of a larger tree (in the larger forest) that is outside
Pi. As such, this cut is no longer well defined (as it involves vertices and edges outside Pi). Thus,
a connected component that contains a portal is frozen – it can no longer choose edges to add to
the spanning tree. During a Bor̊uvka round, all the components that are active (i.e., not frozen),
each chooses the shortest edge in the cut they induce – note, that an active component might
choose an edge connected to a frozen component. Thus, a frozen component might grow by active
components attaching themselves to it. The algorithm continue doing rounds till all components
are frozen.

A natural implementation of Bor̊uvka is via collapsing each tree in the forest being constructed
into a single node, and among parallel edges with the same endpoints, preserving the cheapest edge
of the bunch. Thus, the execution on the modified Bor̊uvka on Pi results in an induced graph Gi

over ∂(Pi) – where the surviving edges are potential edges for use by the MST later on.

Pruning. The number of edges of Gi is potentially too large. The algorithm computes the MST
of Gi (treating it as its own graph, ignoring portals) running the standard Bor̊uvka algorithm on
Gi. The algorithm deletes from Gi all the edges that do not appear in the computed MST.
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Figure 7.1: We randomly sample 20 samples Pi, 1 ≤ i ≤ 20 where Pi ⊆ [0, 1]d and |Pi| = 5000.
We run Bor̊uvka algorithm with DT (Pi) as input for d ∈ {2, 3, 4, 5}. In each iteration of Bor̊uvka
algorithm, we record the current average degree of the components, and plot the average degree
progression for the 20 different samples.
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(a) (b) (c)

(d) (e) (f)

Figure 7.2: (a) shows the axis parallel cube (in blue) and the points inside that we restrict ourselves
to. (b) shows some of the edges of G∠,δ(P ) inside the cube. (c) shows the portal vertices in red,
and all other points in blue. (d) shows the connected components initially for Bor̊uvka algorithm.
(e) shows the edges in cyan that were added by restricted Bor̊uvka to EMST of P in the first round.
(f) Shows the new components after round one of Bor̊uvka algorithm (note the previous blue vertex
is now red because it joined a component with a portal). See  Figure 7.3 for the rest.

To recap – every vertex of Gi is a collapsed tree forming part of the final MST. All the edges of
Gi are candidate edges that might appear in the final MST– all these edges form a spanning tree
of Gi. See  Figure 7.2 and  Figure 7.3 for a toy dry run on the Bor̊uvka step and the pruning step.

The conquer stage. The algorithm recursively computes the (collapsed) graphs G1, . . . , Gν , for
i = 1, . . . , ν. Next, the algorithm computes the set of portals ∂ = ∂(C ∩ P ), which is contained
in ∪i∂(Pi). Let E1 =

⋃
i<j(Pi, Pj) be the set of all possible edges between the subproblems. Let

E2 = E1∩E(H). Next, the algorithm computes the graph GC = ∪iGi∪E2. The algorithm runs the
modified Bor̊uvka with portals, described above, on the graph GC, with ∂ being the set of portals
(thus, all the vertices comping from the children are portals in their own subproblem, but some of
them lose their portal status as they migrate to the parent subproblem).
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(g) (h) (i)

(j) (k)

Figure 7.3: (g) again shows the new edges added to EMST in the second round of Bor̊uvka. (i)
shows the final connected components since all components have a portal. (j) shows the edges of
the minimum spanning tree of the components which might be in the EMST of P . (k) shows the
final graph returned by the restricted Bor̊uvka algorithm.

The overall algorithm. We apply the above algorithm to [0, 1]d and P . Note that the root has
no portals, so the output is a single tree which is the MST.

Some low level implementation details. We throw the points into a uniform grid over [0, 1]d,
with each cell having volume Θ(1/n). We construct the quadtree over this grid in the natural way.
We register each edge of H with the lowest node of the quadtree that contains both endpoints.
This can be done in O(1) time per edge using a data-structure for LCA queries in O(1) time. Now,
scanning the edges, each vertex can compute the level in the quadtree where it stops being a portal.
The LCA operation can be replaced by computing the level of the grid that contains a segment –
using the floor operation and bit operations, this can be done in O(1) time, see [  Har11a ]. The rest
of the algorithm implementation is as described above.

7.4. Analysis of the new MST algorithm

Clearly, edges that are added to an active component are edges that are minimal in their respective
cuts, and thus must appear in the final MST. The more mysterious step in the pruning stage –
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let pq be an edge that was deleted by the pruning stage from Gi. Observe that there is a path π
between p and q in the graph of Gi using edges that are shorter than pq. Namely, pq is the longest
edge in a cycle, and can not appear in the final MST.

7.4.1. Running time analysis

Lemma 7.5. Let C be a quadtree cell of depth i. Then, the number of portals in C ∩ P is bounded
by O((n/2id)1−1/d log2 n), with high probability. This also bounds the total number of edges in H
adjacent to these vertices.

Proof: A point of p ∈ C that is in distance larger than δ from the boundary of C can not be a
portal, since H does not contain such long edges. The volume of the moat MC containing such
points is bounded by the surface area of C multiplied by δ. That is α = (2d · /2id)δ. Each such
moat point has with high probability O(log n) edges in H. It follows that the expected number of
portal edges is O(αn) = O((n/2id)1−1/d log2 n), as long as α > (log n)/n, by  Lemma 2.8  ,

Lemma 7.6. The above algorithm runs in O(n) expected time.

Proof: Let ν = 2d, and P1, . . . , Pν be the points sent to the children of the root of the quadtree.
Let n′i = |∂(Pi)|, for all i. By  Lemma 7.5  , ni = O(n1−1/d log2 n) with high probability, and this also
bounds the number of edges these portals have. Note, that each Gi has exactly n

′
i− 1 edges. Thus,

the graph created in the root has
∑

i ni vertices, and O(2dn1−1/d log2 n) edges. Running Bor̊uvka
algorithm on this graph takes O(n1−1/d log3 n) time. We thus get the recurrence

T (n) = O(n1−1/d log3 n) +
∑
i

T (ni).

It is easy to verify that the solution to this recurrence is O(n), as
∑

i ni = n and ni < n/2 with
high probability. (To convince yourself of this, consider the over-simplified recurrence S(n) =
O(n1−1/d) + 2dS(n/2d).)

Remark 7.7. Note that the linear time MST algorithm can also be extended to a linear time MST
algorithm for graphs with small separators. In that case, the portals are the separator vertices in the
separator hierarchy, and we run the restricted Bor̊uvka bottom up on the separator decomposition
tree.

7.5. The result

The details of the following results are described in  Section 7  .

Theorem 7.8. For fixed constant d, the MST of n uniformly and independently sampled points
from [0, 1]d can be computed, by the above algorithm, in O(n) expected time.

8. Simple distance selection in O(n4/3 log2/3 n) time in d = 2

The task. The input is a set P of n points picked randomly in [0, 1]2. For two sets X,Y , let

X ∗ Y =
{{
x, y}

∣∣ x ∈ X, y ∈ Y, x ̸= y
}
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be the set of all unordered pairs in X × Y . Let Π = P ∗ P , and for a fixed radius λ, let Π≤r =
{{p, q} ∈ Π | ∥pq∥ ≤ r} be the number of all pairs in P that are in distance at most r from each
other. The task at hand is to compute |Π≤r|.

Basic idea and some tools. Let K be a uniform N× N grid K, where N =
⌈
(n/ log n)1/3

⌉
. Let

Pi,j denote the points of P that fall in the grid cell Ci,j = [i/N, (i + 1)/N] × [j/N, (j + 1)/N]. Let
∆ = diam(Ci,j) =

√
2/N be the diameter of a grid cells. We assume here that r > 8∆. The case

for r ≤ 8∆ can be handled simply by bruteforce search of a fine grid.
Let ξi,j = |{pq ∈ Π≤r | p ∈ Pi,j}|. Observe that |Π≤r| =

∑
i,j |ξi,j |/2. Thus, we restrict our

attention to computing the values of ξi,j , for all i, j. For a grid cell C ∈ K, consider the sets

bK(C) =
{
D ∈ K

∣∣ D ⊆ b(c(C), r − 2∆)
}

and BK(C) =
{
D ∈ K

∣∣ D ∩ b(c(C), r + 2∆) ̸= ∅
}
,

where c(C) is the center of C. All the grid cells of bK(C) are contained in any disk of radius r
centered at a point of C. Similarly, BK(C) is a super set of all the grid cells that cover any disk of
radius r centered at any point of C.

Let αi,j = |(bK(Ci,j) ∩ P ) ∗ Pi,j | and βi,j = |(BK(Ci,j) ∩ P ) ∗ Pi,j |. Observe that αi,j ≤ ξi,j ≤
βi,j . The set Oi,j = BK(Ci,j) \ bK(Ci,j) is formed by all the grid cells intersecting a ring with outer
radius r + 2∆ and inner radius r − 2∆. Let Qi,j = (∪Oi,j) ∩ Pi,j . Observe that Pi,j and Qi,j are
disjoint. Consider the set of pairs they induce Pi,j ∗ Qi,j , and let τi,j be the number of pairs in
Pi,j ∗Qi,j of length at most r. We have that ξi,j = αi,j + τi,j . Thus, the algorithm would compute
the quantities αi,j and τi,j for all i, j. The algorithm would then compute

∑
i,j ξi,j/2, which is the

desired quantity.

Low level procedures. In the following, we assume that ni,j = |Pi,j | = O(n/N2).

Lemma 8.1. After O(n+ N2) preprocessing, given a query of numbers i, j, one can compute αi,j

in O(N) time.

Proof: The algorithm computes the grid K, the subset of points in P in each grid cell, and their
number. The algorithm then preprocess the grid so that given an a contiguous range of cells in a
row (of the grid), the algorithm can report the number of points in this range in O(1) time. This
can be done using prefix sums for each row of the grid.

The desired quantity is αi,j = |(bK(Ci,j) ∩ P ) ∗ Pi,j | = ni,j
∑

Cu,v∈bK(Ci,j)
nu,v −n2i,j +

(ni,j

2

)
. The

set bK(C) in a row (of the grid) is just an contiguous box, and one can compute the number of
points of P inside this box in O(1) time. Thus, computing

∑
Cu,v∈bK(Ci,j)

nu,v can be done in O(N)
time.

Lemma 8.2. After O(n+ N2) preprocessing, given a query numbers i, j, one can compute the set
Qi,j = (∪Oi,j) ∩ Pi,j in O(n/N) time (this also bounds its size).

Proof: The set O is a “ring” of the grid of with 4, and thus |Oi,j | = O(N). In particular, the set Oi,j

can be computed in O(N) time. The set Qi,j is formed by collecting all the point sets Pi,j for cells
Ci,j ∈ Oi,j . By assumption, |Pi,j | = O(n/N2), which readily implies that |Qi,j | = O(N · n/N2) =
O(n/N)
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Lemma 8.3. Let Q and U be two disjoint point sets in the plane, with |Q| < |U |. Then one can
compute the number of pairs of points in Q ∗ U that are in distance at most r from each other in
O(|Q|2 + |U | log |Q|) time.

Proof: Let D be the set of disks of radius r centered at the points of Q. Compute the arrangement

A = A(Q), and compute for every face of A how many disks of D contain it. Furthermore,
preprocess this arrangement for point-location queries in logarithmic time. This is all standard,
and can be done in O(|Q|2) time [ BCKO08 ]. Now compute for each point of U how many points
of Q are in distance at most r from it, by performing a point-location query in A, and returning
the depth of the query point.

Algorithm restated. The algorithm computes αi,j , Pi,j , Qi,j for all i, j using the above proce-
dures. It then computes for all i, j, the quantity τi,j by using  Lemma 8.3  . The algorithm now
computes directly

∑
i,j(αi,j + τi,j)/2 and return it as the desired quantity.

Analysis.

Lemma 8.4. Assuming N = O(
√
n/ log n), with probability ≥ 1− 1/nO(1), each grid cell contains

O(n/N2) points of the random point set P .

Proof: Each grid cell in the grid, in expectation, has n/N2 = Ω(log2 n) points of P in it. Now
using Chernoff’s inequality it follows that this quantity is concentrated (say up to 1± 1/2 around
its expectation) with probability ≥ 1− 1/nO(1). Using the union bound on the N2 grid cells, imply
the claim.

Running time analysis. Computing the sets Qi,j , for all i, j ∈ JNK, takes O(nN) time, using
 Lemma 8.2  . Computing τi,j , using  Lemma 8.3  , takes

O(|Pi,j |2 + |Qi,j | log |Pi,j |) = O
(
(n/N2)2 + (n/N) log n

)
time. doing this for all i, j ∈ JNK takes O

(
n2/N2 + nN log n

)
time. Clearly, this dominates the

running time. Solving for n2/N2 = nN log n, we get N = (n/ log n)1/3. Clearly, the last step
dominates the overall running time, which is o(nN log n) = O(n4/3 log2/3 n).

Theorem 8.5. Let P be a set of n points picked uniformly and independently from [0, 1]2, and let
r be a parameter. One can compute, using the algorithm described above, the number of pairs of
points in P in distance ≤ r from each other, in O(n4/3 log2/3 n) time. The result returned by the
algorithm is always correct, and the bound on the running time holds with probability ≥ 1−1/nO(1).

9. Conclusions

To get Bor̊uvka’s algorithm to run in O(n) time for MST, we had to restrict its growth phase
in each recursive call. This feels unnatural in many ways since it is intentionally slowing down
the algorithm’s progress, but is necessary for a complete analysis. It remains open whether there
is a method of showing Bor̊uvka algorithm takes linear time in three or higher dimensions on
random points. One possible direction would be to show that the average degree of the connected
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components in G∠,δ(P ), see  Definition 7.2 , increases (for d ≥ 3) extremely slowly compared to
the halving of connected components. This is an observation the authors noted in numerical
simulations, yet were unable to prove. See  Figure 7.1 . If the average degree increase in every round
of Bor̊uvka’s algorithm can be bounded to a multiplicative constant ξ < 2 in each round then that
would imply that Bor̊uvka’s algorithm runs in linear time.
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