
Detecting Points in Integer Cones of Polytopes is
Double-Exponentially Hard∗

Łukasz Kowalik† Alexandra Lassota‡ Konrad Majewski§

Michał Pilipczuk¶ Marek Sokołowski‖

July 4, 2023

Abstract

Let d be a positive integer. For a finite set X ⊆ Rd, we define its integer cone as the set
IntCone(X) := {

∑
x∈X λx · x | λx ∈ Z⩾0} ⊆ Rd. Goemans and Rothvoss showed that, given

two polytopes P,Q ⊆ Rd with P being bounded, one can decide whether IntCone(P ∩ Zd)

intersects Q in time enc(P)2
O(d)

· enc(Q)O(1) [J. ACM 2020], where enc(·) denotes the number
of bits required to encode a polytope through a system of linear inequalities. This result is the
cornerstone of their XP algorithm for Bin Packing parameterized by the number of different
item sizes.

We complement their result by providing a conditional lower bound. In particular, we
prove that, unless the ETH fails, there is no algorithm which, given a bounded polytope
P ⊆ Rd and a point q ∈ Zd, decides whether q ∈ IntCone(P ∩ Zd) in time enc(P, q)2

o(d)

.
Note that this does not rule out the existence of a fixed-parameter tractable algorithm for the
problem, but shows that dependence of the running time on the parameter d must be at least
doubly-exponential.

1 Introduction
Consider the following high-multiplicity variant of the Bin Packing problem: given a vector s =
(s1, . . . , sd) ∈ [0, 1]d of item sizes and a vector of multiplicities a = (a1, . . . , ad) ∈ Zd

⩾0, find the
smallest integer B so that the collection of items containing ai items of size si, for each i ∈
{1, . . . , d}, can be entirely packed into B unit-size bins. In their celebrated work [5], Goemans and
Rothvoss gave an algorithm for this problem with time complexity enc(s, a)2

O(d)

, where enc(s, a)
denotes the total bitsize of the encoding of s and a in binary. In the terminology of parameterized
complexity, this puts high-multiplicity Bin Packing parameterized by the number of different
item sizes in the complexity class XP.

In fact, Goemans and Rothvoss studied the more general Cone and Polytope Intersection
problem, defined as follows: given two polytopes P,Q ⊆ Rd, where P is bounded, is there a point
in Q that can be expressed as a nonnegative integer combination of integer points in P? Goemans
and Rothvoss gave an algorithm for this problem with running time enc(P)2

O(d) · enc(Q)O(1),
where enc(R) denotes the total bitsize of the encoding of a polytope R through a system of linear

∗This work is a part of project BOBR (ŁK, KM, MP, MS) that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 948057). A. Lassota was supported by the Swiss National Science Foundation within the project Complexity
of Integer Programming (207365).

†Institute of Informatics, University of Warsaw, Poland (kowalik@mimuw.edu.pl)
‡Institute of Mathematics, EPFL, Lausanne, Switzerland (alexandra.lassota@epfl.ch)
§Institute of Informatics, University of Warsaw, Poland (k.majewski@mimuw.edu.pl)
¶Institute of Informatics, University of Warsaw, Poland (michal.pilipczuk@mimuw.edu.pl)
‖Institute of Informatics, University of Warsaw, Poland (marek.sokolowski@mimuw.edu.pl)

1

ar
X

iv
:2

30
7.

00
40

6v
1

 [
cs

.D
S]

 1
 J

ul
 2

02
3

inequalities. They showed that high-multiplicity Bin Packing admits a simple reduction to Cone
and Polytope Intersection, where in essence, integer points in P correspond to possible
configurations of items that fit into a single bin and Q is the point corresponding to all items
(more precisely, P = {(x1) ∈ Rd+1

⩾0 | sTx ⩽ 1} and Q = {(a
B)}). In fact, Cone and Polytope

Intersection is a much more versatile problem: in [5, Section 6], Goemans and Rothvoss present
a number of applications of their result to other problems in the area of scheduling.

Whether the result of Goemans and Rothvoss for high-multiplicity Bin Packing can be im-
proved to fixed-parameter tractability is considered a major problem in the area. It was asked
already by Goemans and Rothvoss in [5], addressed again by Jansen and Klein in [7], and also
discussed in the survey of Mnich and van Bevern [12].

In this work, we take a step into solving the complexity of this problem. We prove the following
result that shows that the doubly-exponential dependence on d in the running times of algorithms
for Cone and Polytope Intersection is necessary, assuming the Exponential-Time Hypothesis
(ETH). The lower bound holds even for the simpler Point in Cone problem, where the polytope
Q consists of a single integer point q ∈ Zd.

Theorem 1. Unless the ETH fails, there is no algorithm solving Point in Cone in time enc(P, q)2
o(d)

,
where enc(P, q) is the total number of bits required to encode both P and q.

Notice that theorem 1 does not rule out the possibility that there exists a fixed-parameter
algorithm with running time f(d) · enc(P, q)O(1) for some function f . However, it shows that for
this to hold, function f would need to be at least doubly exponential, assuming the ETH.

Let us briefly elaborate on our proof of theorem 1 and its relation to previous work. The
cornerstone of the result of Goemans and Rothvoss is a statement called Structure Theorem,
which essentially says the following: if an instance of Cone and Polytope Intersection has
a solution, then it has a solution whose support — the set of integer points in P participating in
the nonnegative integer combination yielding a point in Q — has size at most 22d+1. Moreover,
except for a few outliers, this support is contained within a carefully crafted set X consisting of
roughly enc(P)O(d) integer points within P. In subsequent work [7], Jansen and Klein showed a
more refined variant of the Structure Theorem where X is just the set of vertices of the convex hull
of the integer points lying in P; but the exponential-in-d bound on the size of the support persists.
The appearance of this bound in both works [5, 7] originates in the following elegant observation of
Eisenbrand and Shmonin [3]: whenever some point v can be represented as a nonnegative integer
combination of integer points in P, one can always choose such a representation of v with support
of size bounded by 2d (see [5, Lemma 3.4] for a streamlined proof). In [5, Section 8], Goemans
and Rothvoss gave an example showing that the 2d bound is tight up to a multiplicative factor
of 2, thereby arguing that within their framework, one cannot hope for any substantially better
bound on the support size. The main conceptual contribution of this work can be expressed as
follows: the construction showing the tightness of the observation of Eisenbrand and Shmonin not
only exposes a bottleneck within the support-based approach of [5, 7], but in fact can be used
as a gadget in a hardness reduction proving that the doubly-exponential dependence on d in the
running time is necessary for the whole problem, assuming the ETH.

Finally, we remark that tight doubly-exponential lower bounds under the ETH appear scarcely
in the literature, as in reductions proving such lower bounds, the parameter of the output instance
has to depend logarithmically on the size of the input instance of 3-SAT. A few examples of such
lower bounds can be found here: [2, 4, 8, 9, 10, 11]; our work adds Point in Cone to this rather
exclusive list.

2 Preliminaries
For a positive integer n, we denote [n] := {1, 2, . . . , n} and [n]0 := {0, 1, . . . , n− 1}.

Euclidean spaces. Fix a positive integer d. We call the elements of Rd vectors (or points).
Given a vector x ∈ Rd, we denote its i-th coordinate (for i ∈ [d]) by x(i). By 1d, we denote the

2

d-dimensional vector of all ones, that is, 1d = (1, . . . , 1) ∈ Zd. When the dimension d is clear from
the context, we omit it from the subscript and simply write 1 instead.

We allow vectors to be added to each other, and to be multiplied by a scalar λ ∈ R. Both
operations come from treating the space Rd as a linear space over R. Given a finite set X ⊆ Rd,
we define its integer cone as the set

IntCone(X) :=

{∑
x∈X

λx · x | λx ∈ Zd
⩾0 for every x ∈ X

}
.

Polytopes. In this work a d-dimensional polytope is a subset of points in Rd satisfying a
system of linear inequalities with integer coefficients, that is, a set of the form P := {x ∈ Rd |
Ax ⩽ b}, where A ∈ Zd×m and b ∈ Zm for some positive integer m. Then, the encoding size of P,
denoted enc(P), is the total number of bits required to encode the matrix A and the vector b. We
say that the polytope P is bounded if there exists a number M ∈ Z such that for all x ∈ P and
i ∈ [d], we have |x(i)| ⩽ M .

We can now define the main problem studied in this paper, namely Point in Cone.

Point in Cone

Input: A positive integer d, a bounded polytope P ⊆ Rd (given by a matrix A ∈ Zm×d

and a vector b ∈ Zm for some integer m), and a point q ∈ Zd.
Question: Is q ∈ IntCone(P ∩ Zd)?

As mentioned in section 1, in [5] Goemans and Rothvoss gave an algorithm for Point in
Cone that runs in time enc(P)2

O(d) · enc(q)O(1). In fact, they solved the more general Cone
and Polytope Intersection, where instead of a single point q, we are given a polytope Q,
and the question is whether IntCone(P ∩ Zd) ∩ Q is nonempty. In this case, the running time is
enc(P)2

O(d) · enc(Q)O(1).

ETH. The Exponential-Time Hypothesis (ETH), proposed by Impagliazzo et al. [6], plays a
fundamental role in providing conditional lower bounds for parameterized problems. It postulates
that there exists a constant c > 0 such that the 3-SAT problem cannot be solved in time O(2cn),
where n is the number of variables of the input formula. As proved in [6], this entails that there is
no algorithm for 3-SAT with running time 2o(n+m), where m denotes the number of clauses of the
input formula; see also [1, Theorem 14.4]. We refer the reader to [1, Chapter 14] for a thorough
introduction to ETH-based lower bounds within parameterized complexity.

Subset Sum. The classic Subset Sum problem asks, for a given set S of positive integers
and a target integer t, whether there is a subset S′ ⊆ S such that

∑
x∈S′ = t. The standard

NP-hardness reduction from 3-SAT to Subset Sum takes an instance of 3-SAT with n variables
and m clauses and outputs an equivalent instance of Subset Sum where |S| = O(n + m) and
t ⩽ 2O(n+m). By combining this with the 2o(n+m)-hardness for 3-SAT following from ETH, we
obtain the following.

Theorem 2. Unless the ETH fails, there is no algorithm solving Subset Sum in time 2o(n), even
under the assumption that t ⩽ 2O(n). Here, n denotes the cardinality of the set S given on input.

In this work, we rely on a variant of the Subset Sum problem called Subset Sum with
Multiplicities. The difference between those two problems is that in the latter one, we allow
the elements from the input set to be taken with any nonnegative multiplicities.

3

Subset Sum with Multiplicities

Input: A set of positive integers {a1, a2, . . . , an} and a positive integer t.
Question: Does there exist a sequence of n nonnegative integers (λ1, λ2, . . . , λn) such that∑n

i=1 λi · ai = t?

The same lower bound as in Theorem 2 holds for Subset Sum with Multiplicities. This
can be shown via a simple reduction from Subset Sum. As this is standard, we present the proof
of the following Theorem 3 in Appendix A.

Theorem 3. Unless the ETH fails, there is no algorithm solving Subset Sum with Multiplic-
ities in time 2o(n), even under the assumption that t ⩽ 2O(n). Here, n denotes the cardinality of
the set given on input.

3 Reduction
The entirety of this section is devoted to the proof of our double-exponential hardness result:
theorem 1.

The proof is by reduction from Subset Sum with Multiplicities. Let I = ({a1, . . . , an}, t)
be the given instance of Subset Sum with Multiplicities. That is, we ask whether there are
nonnegative integers λ1, . . . , λn such that

∑n
i=1 λi · ai = t, where a1, . . . , an, t are given positive

integers. We may assume that ai ⩽ t for all i ∈ [n] and, following on the hardness postulated by
theorem 3, that t ⩽ 2O(n).

Let d := ⌈log2(n + 1)⌉ + 1, hence d satisfies the inequality 2d ⩾ 2n + 2 and d = O(log n).
Let χ0, χ1, . . . , χ2d−1 ∈ Zd be all {0, 1}-vectors in d-dimensional space, listed in lexicographic
order. Equivalently, χi is the bit encoding of the number i, for i ∈ [2d]0. Observe that we have
χi + χ2d−1−i = 1 for every i ∈ [2d]0.

We define the set P := {p0, p1, . . . , p2d−1} ⊆ Zd+1 of 2d points as follows.

pi(j) =

χi(j), for i ∈ [2d]0 and j ∈ [d];

ai, for i ∈ [n] and j = d+ 1;

0 for i ∈ [2d]0 − [n] and j = d+ 1.

We remark that the construction of the point set P is inspired by the example of Goemans and
Rothvoss provided in [5, Section 8]. First, we argue that P can be expressed as integer points in
a polytope of small encoding size.

Claim 1. There exists a bounded polytope P of encoding size O(n log n·log t) such that P∩Zd+1 =
P .

Proof of the claim. Let P be the polytope defined by the following inequalities.

0 ⩽ x(j) ⩽ 1 for j ∈ [d], (1)
0 ⩽ x(d+ 1) ⩽ t, (2)

x(d+ 1) +
∑

j : χi(j)=0

t · x(j) +
∑

j : χi(j)=1

t · (1− x(j)) ⩾ pi(d+ 1) for i ∈ [2d]0, (3)

t− x(d+ 1) +
∑

j : χi(j)=0

t · x(j) +
∑

j : χi(j)=1

t · (1− x(j)) ⩾ t− pi(d+ 1) for i ∈ [2d]0 (4)

By (1) and (2), P is bounded. Also, encoding the system of all linear inequalities defining P
takes

O(2d · d · log t) = O(n log n · log t)

4

bits, as desired. It remains to show that P ∩ Zd+1 = P . In what follows, when i ∈ [2d]0, (3.i)
denotes the single inequality of the form (3) for this particular i, similarly for inequalities of the
form (4).

First we show P ∩ Zd+1 ⊆ P . Pick x ∈ P ∩ Zd+1. Since x ∈ Zd+1 and x satisfies (1), the
first d coordinates of x form a binary encoding of a number i⋆ ∈ [2d]0. Then, x(j) = χi⋆(j) for
j ∈ [d], hence by (3.i⋆), x(d+ 1) ⩾ pi⋆(d+ 1) and by (4.i⋆), x(d+ 1) ⩽ pi⋆(d+ 1). It follows that
x(d+ 1) = pi⋆(d+ 1) and hence x = pi⋆ ∈ P , as required.

Finally we show P ⊆ P∩Zd+1. Pick x = pi⋆ ∈ P for some i⋆ ∈ [2d]0. We need to show that (1)–
(4) hold for x. This is clear for (1) and (2). The inequality (3.i⋆) for x is just x(d+1) ⩾ pi⋆(d+1),
and this holds since x(d + 1) = pi⋆(d + 1). We get (4.i⋆) analogously. Now assume i ̸= i⋆ and
let Li be the left hand side of (3.i). Since x(j) ∈ {0, 1} for j ∈ [d] and x(d + 1) ⩾ 0, all the
summands of Li are nonnegative. Moreover, since i ̸= i⋆, we have x(j) ̸= χi(j) for some j ∈ [d],
and then Li ⩾ t ⩾ pi(d+ 1), so the inequality (3.i) holds independently of the value of x(d+ 1).
Analogously, when Li is the left hand side of (4.i), we get Li ⩾ 2t− x(d+ 1) ⩾ t ⩾ t− pi(d+ 1),
as required. ◁

Let P be the polytope provided by Claim 1. Furthermore, let q ∈ Rd+1 be the point defined as
q := t · 1 = (t, t, . . . , t). We consider the instance I ′ = (d+ 1,P, q) of Point in Cone. Note that
d = O(log n) and enc(P, q) = O(n log n · log t), which in turn is bounded by O(n2 log n) due to
t ⩽ 2O(n). Also, one can easily verify that I ′ can be computed from I in polynomial time. Now,
we prove that the instance I ′ is equivalent to I.

Claim 2. I is a Yes-instance of Subset Sum with Multiplicities if and only if I ′ is a
Yes-instance of Point in Cone.

Proof of the claim. First, assume that I is a Yes-instance of Subset Sum with Multiplicities;
that is, there are nonnegative integers λ1, λ2, . . . , λn such that

∑n
i=1 λi · ai = t. Our goal is to

show that q ∈ IntCone(P ∩ Zd+1) = IntCone(P). That is, we need to construct a sequence of
nonnegative integers (λ′

0, λ
′
1, . . . , λ

′
2d−1) such that

2d−1∑
i=0

λ′
i · pi = q.

First, we set λ′
i := λi, for i ∈ [n]. Then, we get the required value at the (d+1)-st coordinate, i.e.,(

n∑
i=1

λ′
i · pi

)
(d+ 1) = t = q(d+ 1).

It remains to set the values of λ′
i for i ∈ [2d]0 − [n]. Note that pi(d + 1) = 0 for i ∈ [2d]0 − [n],

therefore setting those λ′
i does not affect the (d+ 1)-st coordinate of the result.

Consider an index i ∈ [n]. Recall that χi + χ2d−i−1 = 1, and since 2d ⩾ 2n + 2, we have
2d − i− 1 ⩾ 2d − n− 1 ⩾ n+ 1. Hence, by setting λ′

2d−i−1
:= λ′

i = λi, we obtain that

λ′
i · pi + λ′

2d−i−1 · p2d−i−1 = (λi, λi, . . . , λi, λiai).

By applying this procedure for every i ∈ [n], we get a point q′ ∈ Zd+1 of the form (Λ,Λ, . . . ,Λ, t),
where

Λ =

n∑
i=1

λi ⩽
n∑

i=1

λi · ai = t.

To obtain the number t on the first d coordinates of the result, it remains to observe that
p2d−1 = (1, 1, . . . , 1, 0), therefore setting λ′

2d−1
:= t −

∑n
i=1 λi produces the desired point q. (We

set λ′
i := 0 for all i not considered in the described procedure.)

5

For the other direction, suppose that I ′ is a Yes-instance of Point in Cone, that is, q ∈
IntCone(P). Then, there exist nonnegative integers λi (for i ∈ [2d]0) such that

2d−1∑
i=0

λi · pi = q.

Comparing the (d+1)-st coordinate of both sides yields the equality
∑n

i=1 λi · ai = t. This means
that I is indeed a Yes-instance of Subset Sum with Multiplicities. ◁

Finally, we are ready to prove Theorem 1. Suppose for contradiction that Point in Cone
admits an algorithm with running time enc(P, q)2

o(d)

. As argued, given an instance I of Subset
Sum with Multiplicities with n integers and the target integer t bounded by 2O(n), one can
in polynomial time compute an equivalent instance I ′ = (d,P, q) of Point in Cone with d ⩽
O(log n) and enc(P, q) ⩽ O(n2 log n). Now, running our hypothetical algorithm on I ′ yields an
algorithm for Subset Sum with Multiplicities with running time

enc(P, q)2
o(d)

= (n2 log n)2
o(d)

= (n2 log n)n
o(1)

⩽ 2n
o(1)·3 logn ⩽ 2o(n),

which contradicts theorem 3. This concludes the proof of theorem 1.

References
[1] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin

Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

[2] Marek Cygan, Marcin Pilipczuk, and Michał Pilipczuk. Known algorithms for Edge Clique
Cover are probably optimal. SIAM J. Comput., 45(1):67–83, 2016. doi:10.1137/130947076.

[3] Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for integer cones. Oper.
Res. Lett., 34(5):564–568, 2006. doi:10.1016/j.orl.2005.09.008.

[4] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Clique-width III: Hamiltonian Cycle and the odd case of Graph Coloring. ACM Trans.
Algorithms, 15(1):9:1–9:27, 2019. doi:10.1145/3280824.

[5] Michel X. Goemans and Thomas Rothvoss. Polynomiality for bin packing with a constant
number of item types. J. ACM, 67(6):38:1–38:21, 2020. doi:10.1145/3421750.

[6] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

[7] Klaus Jansen and Kim-Manuel Klein. About the structure of the integer cone and its appli-
cation to bin packing. Math. Oper. Res., 45(4):1498–1511, 2020. doi:10.1287/moor.2019.
1040.

[8] Klaus Jansen, Kim-Manuel Klein, and Alexandra Lassota. The double exponential runtime
is tight for 2-stage stochastic ILPs. Math. Program., 197(2):1145–1172, 2023. doi:10.1007/
s10107-022-01837-0.

[9] Dušan Knop, Michał Pilipczuk, and Marcin Wrochna. Tight complexity lower bounds for
Integer Linear Programming with few constraints. ACM Trans. Comput. Theory, 12(3):19:1–
19:19, 2020. doi:10.1145/3397484.

6

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/130947076
https://doi.org/10.1016/j.orl.2005.09.008
https://doi.org/10.1145/3280824
https://doi.org/10.1145/3421750
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1287/moor.2019.1040
https://doi.org/10.1287/moor.2019.1040
https://doi.org/10.1007/s10107-022-01837-0
https://doi.org/10.1007/s10107-022-01837-0
https://doi.org/10.1145/3397484

[10] Marvin Künnemann, Filip Mazowiecki, Lia Schütze, Henry Sinclair-Banks, and Karol Wę-
grzycki. Coverability in VASS revisited: Improving Rackoff’s bound to obtain conditional
optimality. CoRR, abs/2305.01581, 2023. arXiv:2305.01581, doi:10.48550/arXiv.2305.
01581.

[11] Dániel Marx and Valia Mitsou. Double-exponential and triple-exponential bounds for choos-
ability problems parameterized by treewidth. In ICALP, volume 55 of LIPIcs, pages 28:1–
28:15. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
ICALP.2016.28.

[12] Matthias Mnich and René van Bevern. Parameterized complexity of machine scheduling: 15
open problems. Comput. Oper. Res., 100:254–261, 2018. doi:10.1016/j.cor.2018.07.020.

A Subset Sum with Multiplicities
In this appendix we give a proof of theorem 3, which we recall here for convenience.

Theorem 3. Unless the ETH fails, there is no algorithm solving Subset Sum with Multiplic-
ities in time 2o(n), even under the assumption that t ⩽ 2O(n). Here, n denotes the cardinality of
the set given on input.

Proof of Theorem 3. We provide a reduction from Subset Sum to Subset Sum with Multi-
plicities. Let I = ({a1, a2, . . . , an}, t) be the input instance of Subset Sum. We may assume
that ai ⩽ t for all i ∈ [n]. We construct an equivalent instance I ′ = ({a′1, . . . , a′n, b1, . . . , bn}, t′)
of Subset Sum with Multiplicities as follows. The bit encodings of integers a′i, bi and t′ are
partitioned into three blocks B1, B2, B3, where B3 contains the least significant bits, and B1 the
most significant ones. For an integer x and a block B, we denote by x|B the integer of bit-length
at most |B| consisting of the bits of x at the positions within the block B. The instance I ′ is
defined by the following conditions.

• Blocks B1 and B3 are of length n, while block B2 is of length ⌈log t⌉.

• For i ∈ [n],

a′i|Bj =

2n−i for j = 1,

ai for j = 2,

2i−1 for j = 3;

and bi|Bj =

2n−i for j = 1,

0 for j = 2,

2i−1 for j = 3.

• The target integer t′ is given by

t′|Bj =

2n − 1 for j = 1,

t for j = 2,

2n − 1 for j = 3.

Note that the instance I ′ consists of a set of n′ := 2n positive integers and a target integer
t′ ⩽ 2O(n) · t. In particular, if t ⩽ 2O(n) then also t′ ⩽ 2O(n). Clearly, I ′ can be computed from I
in polynomial time. Next, we prove that I ′ is indeed an instance equivalent to I.

Claim 3. I is a Yes-instance of Subset Sum if and only if I ′ is a Yes-instance of Subset Sum
with Multiplicities.

Proof of the claim. (=⇒). Assume I is a Yes-instance of Subset Sum. Let J ⊆ [n] be a set of
indices such that

∑
j∈J aj = t. We construct a sequence λ1, λ2, . . . , λ2n of 2n nonnegative integers

as follows. For i ∈ [n], we set

λi =

{
1 if i ∈ J,

0 if i ̸∈ J ;
and λn+i =

{
0 if i ∈ J,

1 if i ̸∈ J.

7

http://arxiv.org/abs/2305.01581
https://doi.org/10.48550/arXiv.2305.01581
https://doi.org/10.48550/arXiv.2305.01581
https://doi.org/10.4230/LIPIcs.ICALP.2016.28
https://doi.org/10.4230/LIPIcs.ICALP.2016.28
https://doi.org/10.1016/j.cor.2018.07.020

Then it is easy to verify that
n∑

i=1

λi · a′i +
n∑

i=1

λn+i · bi = t′,

and thus the sequence λ1, λ2, . . . , λ2n witnesses that I ′ is a Yes-instance of Subset Sum with
Multiplicities.

(⇐=). Assume that I ′ is a Yes-instance of Subset Sum with Multiplicities. Let
λ1, λ2, . . . , λ2n be nonnegative integers such that

n∑
i=1

λi · a′i +
n∑

i=1

λn+i · bi = t′.

Let L be the left-hand side of the equation above. Comparing the least significant bit of L and t′

yields λ1 + λn+1 ≡ 1 (mod 2). However, if λ1 + λn+1 ⩾ 2, then

L|B1 ⩾ 2 · 2n−1 = 2n > t′|B1 ,

and consequently L > t, which is a contradiction. Therefore, λ1 + λn+1 = 1. Repeating this
argument inductively for i = 2, 3, . . . , n leads us to the conclusion that the equality

λi + λn+i = 1 (5)

holds for every i ∈ [n]. Now, define a set of indices J ⊆ [n] as J := {i ∈ [n] | λi = 1}. Then, by
comparing L|B2

and t|B2
, we must have that∑

j∈J

aj = t,

since other terms of L do not contribute to L|B2
according to the equation (5). Hence I is a

Yes-instance of Subset Sum, as desired. ◁

We are ready to conclude the proof of theorem 3. Suppose for contradiction there is an
algorithm solving Subset Sum with Multiplicities in time 2o(n

′) on instances with n′ numbers
on input and the target integer t′ bounded by 2O(n′). Then, as explained above, given an instance I
of Subset Sum with n numbers and the target integer t bounded by 2O(n), one can in polynomial
time compute an equivalent instance I ′ of Subset Sum with Multiplicities with n′ = 2n
numbers and with target t′ ⩽ 2O(n) · t ⩽ 2O(n) = 2O(n′). Running the hypothetical algorithm on
I ′ solves the initial instance I of Subset Sum in time

2o(n
′) = 2o(n),

which contradicts theorem 2. This finishes the proof of theorem 3.

8

	Introduction
	Preliminaries
	Reduction
	Subset Sum with Multiplicities

