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Abstract

We provide a simple online ∆(1 + o(1))-edge-coloring algorithm for bipartite graphs of maximum

degree ∆ = ω(logn) under adversarial vertex arrivals on one side of the graph. Our algorithm slightly

improves the result of (Cohen, Peng and Wajc, FOCS19), which was the first, and currently only, to obtain

an asymptotically optimal∆(1 + o(1)) guarantee for an adversarial arrival model. More importantly, our

algorithm provides a new, simpler approach for tackling online edge coloring.

1 Introduction

Edge coloring is a classic problem in graph theory and algorithm design: Given a graph, assign colors to

the edges, with no two adjacent edges sharing a color. Pioneering work by König [Kön16] and later Vizing

[Viz64] showed that ∆ and ∆ + 1 colors suffice for bipartite and general graphs of maximum degree ∆,

respectively. (At least∆ colors are clearly needed.) Algorithms a�aining or approximating these bounds were

designed in numerous models of computation, including distributed [PS97, Chr23], parallel [KS87], dynamic

[DHZ19, Chr23], and streaming algorithms [CL21, ASZZ22, CMZ23, GS23, BS23]. �e la�er includes several

simple (asymptotically optimal) ∆(1 + o(1))-edge-coloring streaming algorithms for random-order streams

[CL21, ASZZ22].

In contrast, online edge-coloring algorithms (especially for adversarial order) and their analyses are some-

what more involved [AMSZ03, BMM12, CPW19, BGW21, SW21, KLS+22, NSW23]. �e only truly simple

online edge coloring algorithm known is the trivial 2-approximate greedy algorithm, which is optimal only

for the low-degree regime ∆ = O(log n) [BNMN92]. More involved algorithms were developed for the

high-degree se�ing. For example, all known algorithms for (α + o(1))-approximate adversarial-order on-

line edge coloring with α < 2 for ∆ = ω(log n) [CPW19, SW21, KLS+22, NSW23] rely on interleaved

invocations of online matching subroutines that compute a matching that matches each edge e with proba-

bility at least 1/(α∆).1 �e outer loop using such online matching algorithms, introduced by [CPW19], is

not particularly complicated, and can be described and analyzed in about one page (see e.g., [SW21, Section

6]). However, the matching algorithms used within this framework and their analyses are quite non-trivial

[CW18, CPW19, SW21, KLS+22, NSW23].

We break from the above template, avoiding this outer loop and subsequent complicated online matching

subroutines. Instead, we obtain our results by a sequence of offline bipartite matching computations (more

precisely, random sampling of matchings). �is yields a simple asymptotically-optimal online edge coloring

algorithm for the first (and so far only) adversarial arrival model for which positive results are known: one-

sided vertex arrivals in bipartite graphs [CPW19]. Specifically, we prove the following.

Theorem 1.1 (See �eorem 2.4). �ere exists an online edge-coloring algorithm for the one-sided vertex arrival

model with the following guarantee. On any n-node, maximum degree∆ bipartite graph, it computes a (∆+ q)-
edge-coloring with high probability,2 where q = O(∆2/3 log1/3 n).

∗Work done while visiting EPFL.
†Work done while at Google Research.
1Such matchings can be obtained by sampling a color in an α∆ coloring, so these problems are basically equivalent.
2By with high probability, we mean probability of at least 1− n−c for some constant c > 0.
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�e above theorem only gives non-trivial guarantees if ∆ > q (i.e., when ∆ = Ω(log n) is sufficiently

large). Indeed, when∆ < q, greedy already provides an edge coloring with 2∆− 1 6 ∆+ q colors.
Our simple online ∆(1 + o(1))-edge-coloring algorithm improves on the o(1) term of the algorithm of

[CPW19], which uses∆+O(∆3/4 log1/4 n) colors if∆ = ω(log n). Moreover, our simpler algorithm nearly

matches a lower bound of∆+Ω(
√
∆) colors established in that prior paper. We leave the question of whether

an algorithm (simple or otherwise) matching this lower bound’s o(1) terms exists as an open problem.

2 Simple yet optimal online bipartite edge coloring

Problem statement. A bipartite graph of maximum degree∆ = ω(log n) is revealed.3 Initially, only n,∆
and the nodes on the offline side are known. At time t, the node wt on the online side is revealed, together

with its edges, which must be assigned colors immediately and irrevocably. �e objective is to compute a

valid edge coloring using as few colors as possible.

Our algorithm. We a�empt to provide a valid (∆ + q)-edge-coloring, for q = o(∆) to be chosen later. In

particular, we will color edges of each offline node u with distinct colors, chosen uniformly at random from

C := [∆+ q]. To also color edges of each online nodewt with distinct colors, we correlate the random choices

at different offline nodes as follows.

At each time twe consider a bipartite graphHt with one side given by the set of neighborsNG(wt) of the
arriving online nodewt inG, and the other side being the set of colors C. �e neighbor v ∈ NG(wt) and color
c ∈ C are connected by an edge cv ∈ Ht if and only if v has no edge colored c.4 To color the edges incident

to the arriving node wt in a valid manner, these edges must be given distinct colors and the color chosen for

the edge {u,wt} must not already be used at the offline node u. �ese requirements correspond exactly to

matchings in Ht. We thus a�empt to sample a matching Mt in Ht where each edge {u,wt} is assigned a

uniformly random available color of neighbor u. �is can be achieved by a number of randomized rounding

algorithms for the bipartitematching polytope, provided the desiredmarginalmatching probabilities lie in this

polytope. Fi�ingly, the crux of our analysis is show that the la�er holds w.h.p. for q = o(∆) sufficiently large.

For simplicity of analysis, we allow for a low-probability “failure mode” if this condition fails, in which case

we still insist on coloring offline nodes with colors uniformly at random, but without necessarily providing a

valid edge coloring. Our pseudocode is given in Algorithm 1.

Algorithm 1.

At the arrival of online node wt:

• LetHt be a bipartite graph with node setsNG(wt) and C, with cv ∈ Ht iff v has no edge colored
c (yet).

• For each c ∈ C and v ∈ V , let xtcv ← 1[cv∈Ht]
∆−dt(v)+q , for dt(v) the degree of v by time t.

• If
∑

v x
t
cv 6 1 for each color c ∈ C: sample matchingMt in Ht with marginals Pr[cv ∈Mt] =

xtcv, and color each edge {v,wt} using the color c that is matched to v in Mt.

• Else (FAILURE MODE): color each edge {v,wt} with u.a.r. color c ∈ NHt(v).

Observation 2.1. By definition, we always have
∑

c x
t
cv = 1 for a vertex v ∈ NG(wt). And so, if

∑

v x
t
cv 6 1

for all colors c ∈ C, then the vector ~xt is in the bipartite matching polytope (ofHt), and a matching Mt as above

can be sampled efficiently (and simply, [GKPS06]). In this case, all edges {v,wt} incident towt get colored at time

t (since
∑

c x
t
cv = 1) and they all receive distinct colors from their endpoints’ prior and other current edges (due

to the definition ofHt and
∑

v x
t
cv 6 1).

3As noted above, if ∆ is smaller, the problem is solved optimally by the greedy algorithm.
4We use the notation cv ∈ Ht instead of the more standard but notationally cumbersome {c, v} ∈ E(Ht).
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Analysis overview. We wish to show that the condition
∑

v x
t
cv 6 1 for all times t and colors c, necessary

to avoid the failuremode and output a valid edge coloring, occurs with high probability. For this, we prove two

invariants in Lemma 2.2: we prove (1) a closed form for E[xtcv], implying E[
∑

v x
t
cv] 6 1−Ω(q/∆). If for all t

and c these xtcv were independent, standard Chernoff bounds would suffice to show that w.h.p.,
∑

v x
t
cv does

not deviate much from its expectation, and in particular is at most one. As these variables may be dependent,

we also prove (2) negative correlation of the random variables xtcv, allowing us to apply Chernoff-like bounds
to these dependent variables and prove that the desired condition holds w.h.p., in Lemma 2.3.

Lemma 2.2. Let Zt
cv be the indicator variable for color c not being used by edges of v when wt arrives. At any

time t, the following invariants hold:

• (Marginals) For any color c ∈ C and offline node v, we have:

Pr[Zt
cv = 1] =

∆− dt(v) + q

∆+ q
. (1)

• (Negative dependence) For any color c ∈ C and offline nodes v1, . . . , vk , we have:

Pr





∧

i∈[k]

(Zt
cvi = 1)



 6
∏

i∈[k]

Pr[Zt
cvi = 1]. (2)

Proof. We prove both invariants by induction on t > 1. �e base case t = 1 trivially holds for both. To prove
both inductive steps, we first note that 1[cv ∈ Ht] = Zt

cv · 1[v ∈ NG(w
t)]. So, the value of the random

variable xtcv conditioned on any history up to time t implying Zt
cv = 1 is precisely xtcv := 1[v∈NG(wt)]

∆−dt(v)+q . In

particular, conditioning on any such history, the color c is used for edge {v,wt} with probability precisely

xtcv (also in the failure mode, and also if v 6∈ NG(wt)).
�e first invariant’s inductive step then follows from the above observation and the inductive hypothe-

sis,by a routine calculation, as follows:

Pr[Zt+1
cv = 1] = (1− xtcv) · Pr[Zt

cv = 1] (3)

=

(

1− 1[v ∈ NG(w
t)]

∆− dt(v) + q

)

· ∆− dt(v) + q

∆+ q

=
∆− dt+1(v) + q

∆+ q
.

For the second invariant’s inductive step, we claim that for any history H up to time t that implies
∧

i∈[k](Z
t
cvi = 1), we have that Pr

[

∧

i∈[k](Z
t+1
cvi = 1)

∣

∣

∣
H
]

6
∏

i∈[k](1 − xtcv). �is inequality is clearly

an equality for the failure mode, where colors are assigned independently; otherwise, the LHS equals 1 −
∑

i∈[k] x
t
cvi , which is upper bounded by the RHS, where this standard inequality follows from the union bound.

�erefore, by total probability over histories H as above and the inductive hypothesis and Equation (3), we

obtain the claimed statement:

Pr





∧

i∈[k]

(Zt+1
cvi = 1)



 = Pr





∧

i∈[k]

(Zt+1
cvi = 1)

∣

∣

∣

∣

∣

∣

∧

i∈[k]

(Zt
cvi = 1)



 · Pr





∧

i∈[k]

(Zt
cvi = 1)





6
∏

i∈[k]

(1− xtcv) ·
∏

i∈[k]

Pr[Zt
cvi = 1]

=
∏

i∈[k]

Pr[Zt+1
cvi = 1].

Using these invariants, we now show that Algorithm 1 is unlikely to enter the failure mode.

Lemma 2.3. If q = 3∆2/3 log1/3 n 6 ∆, then with high probability, for each time t and color c ∈ C
∑

v

xtcv 6 1.
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Proof. Fix a time t and color c. Notice that 1[cv ∈ Ht] = Zt
cv · 1[v ∈ NG(w

t)], and hence xtcv = Zt
cv

∆−dt(v)+q

for all v ∈ NG(wt) (and xtcv = 0 for all v /∈ NG(wt)). For all v ∈ NG(wt), define the random variables

Yv := q · xtcv = q
∆−dt(v)+q · Zt

cv . It suffices to prove that
∑

v Yv 6 q with high probability. �is follows from

a variant of Chernoff bounds, as follows.

First, by Invariant (2), because Yv 6= 0 if and only if Zt
cv = 1, we have that:

Pr

[

∧

v

(Yv 6= 0)

]

6
∏

v

Pr [Yv 6= 0] .

For such weighted binary variables Yv ∈ {0, q
∆−dt(v)+q}, the above is equivalent to the definition of 1-

correlation in the sense of [PS97, Definition 3.1], namely E[
∏

v∈U Yv] 6
∏

v∈U E[Yv] for all U ⊆ NG(w
t). As

shown in [PS97], this suffices to upper bound the moment-generating function of
∑

v Yv and derive strong

tail bounds. In particular, by [PS97, Corollary 3.3], since we also have that Yv ∈ [0, 1] for all v, the following
Chernoff bound holds for any ε > 0:

Pr

[

∑

v

Yv > (1 + ε) · E
[

∑

v

Yv

]]

6 exp

(

−ε2 · E [
∑

v Yv]

2 + ε

)

. (4)

Next, by Invariant (1), E[Yv] = q
∆+q for each node v ∈ NG(wt). Hence, E[

∑

v Yv] = kq
∆+q , where

k := |NG(wt)| 6 ∆. By se�ing ε := ∆+q−k
k in the Chernoff bound (4) we obtain:

Pr





∑

v∈NG(wt)

Yv > q



 = Pr





∑

v∈NG(wt)

Yv >

(

1 +
∆+ q − k

k

)

· kq

∆+ q





6 exp

(

−(∆ + q − k)2

k2
· kq

∆+ q
· k

∆+ q + k

)

6 exp

(

− q3

2∆2 + 3∆q + q2

)

6 exp

(

− q3

6∆2

)

.

Above, the second-to-last inequality follows because
(

− (∆+q−k)2·q
(∆+q)(∆+q+k)

)

is decreasing in k 6 ∆, and the last

inequality relies on q 6 ∆ by the lemma’s hypothesis. �us, for our choice of q,

Pr

[

∑

v

xtcv > 1

]

= Pr

[

∑

v

Yv > q

]

6
1

n4.5
6

1

2n3
.

�e lemma then follows by union bounding over all n online nodes and at most 2n colors.

Combining Observation 2.1 and Lemma 2.3, we obtain our result.

Theorem 2.4. Algorithm 1 with q = 3∆2/3 log1/3 n 6 ∆ (i.e., if ∆ > 81 log n) computes a (∆ + q)-edge-
coloring of any n-node, maximum degree ∆ bipartite graph with high probability.

Proof. By Lemma 2.3, the condition
∑

v x
t
cv 6 1 holds for all time t and colors c with high probability, which

by Observation 2.1 results in a valid edge coloring using ∆+ q colors.

Remark 2.5. In Appendix A, using standard anti-concentration bounds, we also show that our analysis is tight,

i.e., that Algorithm 1 indeed requires ∆+Ω(∆2/3 log1/3 n) colors to work.
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APPENDIX

A Tight example for our algorithm

In the following we show that the bound of (∆+O(∆2/3 log1/3 n)) colors is tight for Algorithm 1, for a wide

range of ∆ superlogarithmic (and even polynomial) in n.

Lemma A.1. For any constant r > 3, there exists an infinite family of instances with n nodes and maximum

degree ∆ = Θ(n1/r), on which Algorithm 1 run with q = 1
6r1/3

· ∆2/3 log1/3 n fails to output a valid edge

coloring with constant probability.

Proof. For all (sufficiently large) integer k, we let ∆ := k − 1 and construct an instance graph with n :=
max{k, ⌊kr−2⌋} · (∆2 + 1) 6 kr−2 · (∆2 + 1) 6 kr many nodes. In the instance, ∆ = k − 1 = Θ(n1/r) is
the maximum degree of any node in the instance. We turn to describing this instance.

A gadget consists of an online nodewt connected to∆ offline neighbors of degree∆−1 (beforewt arrives),

each of these belonging to disjoint subgraphs. Hence, for any color c these offline nodes are neighbors of c in
Ht independently. Our instance consists of max{k, ⌊kr−2⌋} > k disjoint (hence independent) such gadgets,

each having∆2 + 1 nodes and therefore totaling n nodes.

We now fix the gadget corresponding to somewt. Since the∆ neighbors v ofwt neighbor c independently

in Ht, each with probability
∆−dt(v)+q

∆+q = q+1
∆+q (by Invariant (1)), the number of neighbors of c in Ht is

distributed asX =
∑

v∈NG(wt)
Zt
cv ∼ Bin(∆, q+1

∆+q ). Since all neighbors v of c inHt have dt(v) = ∆− 1 and

hence xcv = 1
q+1 · Zt

cv, Algorithm 1 does not enter failure mode if and only if |X| 6 q + 1. We thus wish to

lower bound

Pr[X > q + 1] = Pr[X > (1 + q/∆) · E[X]] > Pr[X > (1 + 2q/∆) · E[X]]. (5)

Let ǫ := 2q/∆. By [KY15, Lemma 4], for ε < 1/2 such that ε2 · E[X] > 3 (as we shortly verify is the case

here), we have the following asymptotic converse of Chernoff’s bound:

Pr [X > (1 + ε) · E[X]] > exp
(

−9ε2 · E[X]
)

. (6)

To see that the required conditions for applying this inequality hold, first notice that ε = 2q
∆ = O( 3

√

log n/∆),

and so ε < 1/2 for sufficiently large k (and hence for sufficietly large ∆ = Θ(n1/r) >> log n). On the other

hand, we have that for large enough k (and hence n):

ε2 · E[X] =
(2q)2

∆2
·∆ · q + 1

∆+ q
>

4q2

∆2
·∆ · q

2∆
=

2q3

∆2
=

1

108r
· log n > 3.
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Similarly, using that n 6 kr , we have:

ε2 · E[X] =
(2q)2

∆2
·∆ · q + 1

∆+ q
6

4q2

∆2
·∆ · 2q

∆
=

8q3

∆2
=

log n

27r
6

log k

9
. (7)

Combining the above, we obtain:

Pr[X > q + 1]
(5)

> Pr[X > (1 + ǫ) · E[X]]
(6)

> exp
(

−9ε2 · E[X]
)

(7)

> exp

(

−9 · log k
9

)

=
1

k
.

Hence, Algorithm 1 enters failure mode on any fixed gadget with probability at least 1
k . As the instance

consists of max{k, ⌊kr−2⌋} > k many independent gadgets, the probability that the algorithm does not

enter failure mode on any of them is upper bounded by a constant,
(

1− 1
k

)k
6 1/e, or put otherwise

Pr[enter failure mode] > 1− 1/e.
Now, condition on Algorithm 1 entering failure mode, and fix some time t and color c ∈ C for which

∑

v x
t
cv > 1 (i.e., this is a witness for the algorithm entering failure mode). �en, by the preceding discussion,

at least q+2 neighbors v ofwt inG are neighbors of c inHt, where they all have have degree∆−dt(v)+1 =
q + 1. �erefore, by the independent coloring in the failure mode, the probability that the algorithm fails in

outpu�ing a valid edge coloring since it assigns c to two or more edges of wt is at least

Pr[fail | enter failure mode] > Pr

[

Bin

(

q + 2,
1

q + 1

)

> 2

]

= 1−
(

1− 1

q + 1

)q+2

− q + 2

q + 1
·
(

1− 1

q + 1

)q+1

= 1−
(

q

q + 1
+

q + 2

q + 1

)

·
(

1− 1

q + 1

)q+1

> 1− 2/e.

Consequently, Algorithm 1 fails with constant probability, at least (1− 1/e)(1 − 2/e), as claimed.
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