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A NEW SOBOLEV GRADIENT METHOD FOR DIRECT

MINIMIZATION OF THE GROSS–PITAEVSKII ENERGY WITH

ROTATION

IONUT DANAILA AND PARIMAH KAZEMI∗

Abstract. In this paper we improve traditional steepest descent methods for the direct min-
imization of the Gross-Pitaevskii (GP) energy with rotation at two levels. We first define a new
inner product to equip the Sobolev space H1 and derive the corresponding gradient. Secondly, for
the treatment of the mass conservation constraint, we use a projection method that avoids more
complicated approaches based on modified energy functionals or traditional normalization methods.
The descent method with these two new ingredients is studied theoretically in a Hilbert space setting
and we give a proof of the global existence and convergence in the asymptotic limit to a minimizer
of the GP energy. The new method is implemented in both finite difference and finite element two-
dimensional settings and used to compute various complex configurations with vortices of rotating
Bose-Einstein condensates. The new Sobolev gradient method shows better numerical performances
compared to classical L2 or H1 gradient methods, especially when high rotation rates are considered.

Key words. Sobolev gradient, descent method, finite difference method, finite element method,
Bose-Einstein condensate, vortices.

1. Introduction. First experimental realizations of Bose-Einstein condensates
(BECs) in dilute alkali-metal gases [8, 12, 14] led to an explosion of mathematical
and theoretical studies aimed at better understanding such systems. Recent efforts
were devoted to documenting the superfluid nature of the condensate by providing
evidence for the existence of quantized vortices when rotating the condensate. It was
indeed experimentally observed [25, 26, 1, 19] that instead of solid body rotation, the
condensate rotates by forming vortices with quantized circulation. Initially, a few
vortices are formed, and, as the rotation frequency increases, the vortices form an
array similar to the Abrikosov lattice observed in type II superconductors. Since the
rotating BEC is a highly controllable system with a simple theoretical description,
it provides a perfect set-up for the theoretical study of macroscopic systems with
quantized vortices.

In the zero-temperature limit, a dilute gaseous BEC is mathematically described
by a macroscopic wave function derived in the framework of the Gross–Pitaevskii
(GP) mean field theory. The spatial configuration of the wave function ψ(x), with
x = (x, y, z)t, is obtained by minimizing the GP energy in the rotating frame,

E(ψ) =

∫

R3

~
2

2m
|∇ψ|2 + Ṽtrap|ψ|2 +

g̃

2
|ψ|4 + i~ψ∗Ω̃ · (x ×∇)ψ, (1.1)

subject to the normalization condition,
∫

R3 |ψ|2 = N , with N the number of particles
(atoms). In the previous expression, ~ is Planck’s constant, m the atomic mass of
the gas, Ω̃ the angular velocity vector, and Ṽtrap the magnetic trapping potential
with trap frequencies (ωx, ωy, ωz). We denote by ψ∗ the complex conjugate of ψ.

The interactions between atoms are described by g̃ = 4π~2as

m , with as the s-wave
scattering length. As in most of experimental settings, we consider in the following
that Ω̃ = (0, 0, Ω̃)t and that Ṽtrap has a lower bound and Ṽtrap(x) → ∞, as x → ∞.
Since from the previous assumption we can infer that ψ(x) → 0, as x → ∞, it
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2 I. DANAILA AND P. KAZEMI

suffices to work in a bounded domain D ⊂ R3 with homogeneous Dirichlet boundary
conditions ψ = 0 on ∂D.

In practice it is common to scale the energy so that the units become dimension-

less. Using the scaling r = x/d, u(r) = ψ(x)d3/2/
√
N , Ω = Ω̃/ω⊥, with d =

√

~

mω⊥

the harmonic-oscillator length and ω⊥ = min(ωx, ωy) the transverse trap frequency,
we obtain the non-dimensional energy (per particle) functional:

E(u) =

∫

D

|∇u|2
2

+ Vtrap|u|2 +
g

2
|u|4 − Ωiu∗(At∇)u, (1.2)

where Vtrap = 1
~ω⊥

Ṽtrap, g = 4πNas

d , and A = (y,−x, 0). The mass conservation
constraint becomes:

∫

D

|u|2 = ‖u‖2 = 1, (1.3)

where we denote by ‖.‖ = ‖.‖L2(D,C).
For given constants Ω, g, and trapping potential function Vtrap, the minimizer

ug of the functional (1.2) under the constraint (1.3) is called the ground state of the
condensate. Local minima of the energy functional with energies larger that E(ug) are
called excited (or metastable) states of the condensate. For a detailed discussion of
the derivation of the Gross-Pitaevskii energy and the physics of rotating Bose-Einstein
condensates see, for example, [15] and [24].

The two key issues in numerically computing ground or excited states of BEC
are (i) how to derive a numerical algorithm that starts from a chosen initial state
and iteratively diminishes the energy of the solution to rapidly converge to a local
minimum of the functional (1.2), and (ii) how to take into account the mass constraint
(1.3). These two issues are obviously connected and have to be considered together
in deriving efficient numerical algorithms. We present in this paper new approaches
to address both issues and prove their superior numerical performance in the case of
the energy minimization of the Gross-Pitaevskii energy with rotation.

Most of the numerical algorithms proposed in the literature use the so-called
normalized gradient flow [9], that consists in two steps: the steepest descent method
is applied to the unconstrained problem,

∂u

∂t
= −1

2

∂E(u)

∂u
=

∇2u

2
− Vtrapu− g|u|2u+ iΩAt∇u, (1.4)

to advance the solution from the discrete time level tn to tn+1; the obtained predictor
ũ(r, tn+1) is then normalized in order to satisfy the unitary norm constraint and set
the solution at tn+1:

u(r, tn+1) ,
ũ(r, tn+1)

‖ũ(r, tn+1)‖
. (1.5)

The gradient flow equation (1.4) (or the related continuous gradient flow equation,
see [9]) can be viewed as a complex heat equation and, consequently, solved by different
classical time integration schemes (Runge-Kutta-Fehlberg [17], backward Euler [9, 5,
10], second-order Strang time-splitting [9, 5], combined Runge-Kutta-Crank-Nicolson
scheme [3, 4, 13], etc.), and different spatial discretization methods (Fourier spectral
[17], finite elements [5], finite differences [9, 3, 4, 13], sine-spectral [9], Laguerre–
Hermite pseudo-spectral [10], etc.).
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It is interesting to note that in the descent method (1.4), the right-hand side
represents the L2-gradient (or ordinary gradient) of the energy functional. An impor-
tant improvement of the convergence rate of the descent method was obtained in [17]
by replacing the ordinary gradient with the gradient defined on the Sobolev space
H1(D,C). The same Sobolev gradient method (see [27] for various applications of
this method) was recently used to minimize simpler Schrödinger type functionals in
[29]. Similar increase of the convergence rate over the ordinary gradient method was
reported. A first new contribution of the present paper is to introduce a new definition
of the inner product to equip the Sobolev space H1 in the case of the GP energy with
rotation. A proof of the existence of the asymptotic limit for the evolution equations
associated with the Sobolev gradients in a Hilbert space setting is also given. When
implemented in a finite difference or finite element settings, the new Sobolev gradient
method shows better numerical performances compared to classical L2 or H1 gradient
methods, especially when high rotation rates (Ω) are considered.

The second important contribution of this work concerns the issue of the mass
conservation constraint (1.3). Instead of the classical (and very popular) normaliza-
tion approach (1.5), we suggest a projection method that preserves the norm of the
initial state through the minimization procedure. The idea to project the (Sobolev)
gradient into the tangent space associated to the constraint was already used to de-
rive numerical algorithms for minimizing harmonic maps [6, 28], and, recently, to
numerically find the smallest eigenvalue and corresponding eigenvectors of a Hermi-
tian operator [7]. Different algorithms based on the projected gradient were developed
in these studies and successfully applied to different energy functionals: the Oseen-
Frank energy for liquid crystals [6], the Dirichlet energy of harmonic maps [28] and the
Hartree-Fock energy for quantum chemical molecular systems [7]. We derive here a
projected Sobolev gradient method adapted to the Gross-Pitaevskii energy functional
and provide an explicit expression of the projected gradient that allows to minimize
trajectories when Hilbert spaces other than L2 are considered. The new projection
method proved very helpful in numerical implementations and allowed to avoid al-
ternative methods to treat the mass constraint by adding to the energy functional a
penalty term with a Lagrange multiplier (e. g. [17, 11]).

The organization of the paper is as follows. In section 2 we introduce an alternate
inner product on the Sobolev space H1 and show that this inner product is equivalent
to the traditional inner product on H1. The corresponding new Sobolev gradient
is also derived. We discuss in section 3 a constructive projection method for the
mass constraint and give our existence and convergence result for the asymptotic
limit of the evolution equation defined by the Sobolev gradients. In section 4 we
give a discussion of the finite difference and finite element implementations in two-
dimensions. The last section is devoted to numerical tests designed as benchmarks
to compare performances of different Sobolev gradient methods. The effectiveness
of the newly proposed Sobolev gradient method is proved by computing stationary
states of rotating BEC that are physically relevant (high rotation and large interaction
constants).

2. Gradient descent methods using several gradients. In optimization
problems that use a gradient descent or ascent technique, one usually has a choice of
norms to use in the argument. If the norm has an associated inner product, then one
can obtain a gradient with respect to this inner product (see [27] for an explanation).
In the example of the minimization problem of Schrödinger type functionals, the
gradient represents the direction of change per unit time. Therefore, one wants to
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choose the gradient in the descent method (1.4) so that the change in energy is
maximal at each step. For the case of the Gross-Pitaevskii energy with rotation, we
notice that the energy (1.2) can be written as

E(u) =

∫

D

|∇u+ iΩAtu|2
2

+ Veff |u|2 +
g

2
|u|4 (2.1)

where, the effective trapping potential is defined as:

Veff (r) = Vtrap(r)−
Ω2r2

2
. (2.2)

This form of the energy suggests the definition of a new norm to equip the domain
of the functional such that the functional is coercive with respect to this norm. This
implies that if the size of the argument is large, then naturally the value of the
functional will be large as well, making it suitable for rotating cases.

2.1. Inner products and norms. We define three inner products on C1(D,C)
and study the completion of this space with respect to the norm arising from each of
these inner products. Consider the inner products:

〈u, v〉L2 =

∫

D

〈u, v〉, (2.3)

〈u, v〉H =

∫

D

〈u, v〉+ 〈∇u,∇v〉, (2.4)

and

〈u, v〉HA
=

∫

D

〈u, v〉+ 〈∇Au,∇Av〉, (2.5)

where ∇A = ∇+ iΩAt, Ω is a fixed positive number. Here 〈·, ·〉 denotes the complex
inner product. Each of these inner products leads to a norm which we will denote
by ‖ · ‖L2, ‖ · ‖H , and ‖ · ‖HA

. For X = L2, H,HA, consider the completion of {u ∈
C1(D,C) : ‖u‖X <∞} with respect to each of the respective norms. In the first case,
one obtains the Hilbert space L2 = L2(D,C), in the second case H1 = H1,2(D,C),
and in the third case we call the resulting Hilbert space HA = HA(D,C) (see [2]
for details on Sobolev spaces). Furthermore, the following calculation shows how the
three norms are related. We first note that:

〈∇Au,∇Av〉 = 〈∇u,∇v〉+Ω2r2〈u, v〉+ iΩ(〈Atu,∇v〉 − 〈∇u,Atv〉). (2.6)

If rD denotes the radius of D, one has

〈∇Au,∇Au〉 = |∇u+ iΩAtu|2 ≤ 2(|∇u|2 + r2DΩ
2|u|2), (2.7)

and, consequently,

‖u‖HA
≤

∫

D

(1 + 2r2
D
Ω2)|u|2 + 2|∇u|2 ≤ c‖u‖2H (2.8)

where c = max(1 + 2r2
D
Ω2, 2). Hence one has that the H1 norm dominates the HA

norm.
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In the same time, using the identity
∫

D

〈Atu,∇v〉 = −
∫

D

〈∇u,Atv〉, (2.9)

we infer from (2.6) that
∫

D

〈∇Au,∇Av〉 =
∫

D

〈∇u,∇v〉+
∫

D

Ω2r2〈u, v〉 − 2iΩ

∫

D

〈∇u,Atv〉. (2.10)

and, consequently,
∫

D

|∇u+ iΩAtu|2 =
∫

D

|∇u|2 +Ω2r2|u|2 − 2Ω〈i∇u,Atu〉. (2.11)

Also, for ǫ > 0, one has the inequality

ab =
a

ǫ
bǫ ≤ 1

2

(

(a

ǫ

)2

+ (bǫ)2
)

. (2.12)

Now, using the above inequality and Cauchy-Schwartz one has that

2|〈i∇u,Atu〉| ≤ 2|∇u||Atu| ≤ (ǫ|∇u|)2 + |Atu|2
ǫ2

. (2.13)

Thus

− 2Ω〈i∇u,Atu〉 ≥ −Ω((ǫ|∇u|)2 + |Atu|2
ǫ2

) ≥ −Ω((ǫ|∇u|)2 + r2
D

ǫ2
|u|2). (2.14)

From this one has that
∫

D

|∇u+ iΩAtu|2 ≥
∫

D

|∇u|2 +Ω2r2|u|2 − Ω((ǫ|∇u|)2 + r2
D

ǫ2
|u|2) = (2.15)

∫

D

(1− Ωǫ2)|∇u|2 + (Ω2r2 − Ω
r2
D

ǫ2
)|u|2 ≥ (2.16)

∫

D

(1− Ωǫ2)|∇u|2 − Ω
r2
D

ǫ2
|u|2 (2.17)

Now we choose ǫ so that 0 < 1− Ωǫ2 < 1 and let k = 1 + Ω
ǫ2 r

2
D
. Since k > 1, we can

write

k

∫

D

|u|2 + |∇Au|2 >
∫

D

k|u|2 + |∇Au|2 ≥
∫

D

|u|2 + (1− Ωǫ2)|∇u|2 > (1 − Ωǫ2)

∫

D

|u|2 + |∇u|2. (2.18)

and infer that the HA norm dominates the H1 norm. Hence the two norms are
equivalent. Furthermore, we have the following relationship between the three Hilbert
spaces,

H1,2(D,C) = HA(D,C) ⊂ L2(D,C). (2.19)

As sets H1 and HA are equal. However, by using the equivalent norm induced on
HA, we will see that the numerical performance of the descent method is improved
for the minimization of the GP energy with rotation.



6 I. DANAILA AND P. KAZEMI

2.2. Gradients. The next step in writing a descent method to directly minimize
the energy, as given in equation (1.2) or (2.1), is to obtain a gradient corresponding
to each inner product. Taking the Fréchet derivative of (1.2), one gets that

E′(u)h =

∫

D

ℜ (〈∇u,∇h〉+ 〈2Vtrap u+ 2g|u|2u− 2iΩA∇u, h〉) (2.20)

or equivalently

E′(u)h =

∫

D

ℜ (〈∇Au,∇Ah〉+ 〈2Veff u+ 2g|u|2u, h〉). (2.21)

Since E′(u) is a continuous linear functional from H1 to R then for each u ∈ H1,
there exists a unique member of H1 which we denote by ∇HE(u) so that

E′(u)h = ℜ〈∇HE(u), h〉H , (2.22)

for all h ∈ H1. We say that ∇HE : H1 → H1 is a gradient for E taken with respect
to the H1 inner product. Likewise E′(u) is a continuous linear functional from HA to
R, thus it has a representation like the one given above. We denote this gradient by
∇HA

E : HA → HA (see [27] for a background on gradients obtained in this manner).
Furthermore, we note from (2.20) that for all h ∈ C∞

c (D,C) one has that

E′(u)h = ℜ〈∇XE, h〉X =

∫

D

ℜ〈−∇2u+ 2Vtrapu+ 2g|u|2u− 2iΩAt∇u, h〉. (2.23)

When X = L2, we directly obtain the expression of ∇L2E, the L2 (or ordinary)
gradient of E, already recalled in (1.4). From a practical point of view, it is interesting
to note that H1 and HA gradients will be computed using different forms of (2.23):
the corresponding strong formulation for the finite difference implementation (see also
[17]) and the weak formulation for the finite element implementation (see also [29]).

3. Constrained energy minimization.

3.1. Projection method for the mass constraint. Before discussing the
gradient descent method, we give a brief description of the projection used to deal
with the mass constraint. In approximating stationary states, one could in principle
use a normalized gradient flow in conjunction with a traditional Lagrange multiplier
for the constraint [17, 11]. We adopt here a different approach and develop a projection
method that will, in the continuous case, enforce the constraint for all time.

The method for enforcing the constraint is presented in [27] for any general con-
straint and hence does not provide the needed expression for our case. For the unitary
norm constraint, several projected gradient methods are developed in [28, 7], based
on the idea to directly compute the gradient in the tangent space to the unit sphere.
In this work, in order to facilitate the numerical implementation, we first compute the
gradient and then project it into the tangent space. For this purpose, it is very helpful
to derive an explicit expression of the projected gradient that allows to preserve the
unitary norm of the solution through the minimization procedure. It should be noted
that explicit expressions of the projected gradient are given in [7] for the R

n gradi-
ent flow of the linear eigenvalue problem on the unit sphere and for the L2 gradient
flow of the Hartree-Fock nonlinear eigenvalue problem. We derive below an explicit
expression of the projected gradient that allows to minimize trajectories when other
Hilbert spaces than L2 are considered.
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Let X = L2, H1, or HA. As previously stated, for each u ∈ X , one can find a
member of X , denoted by ∇XE(u), so that E′(u)h = 〈h,∇XE(u)〉X . We called such
an element of X a gradient of E at u. Consider β : X → R,

β(u) =

∫

D

|u|2. (3.1)

Since we want to minimize the energy E(u) subject to the constraint β(u) = 1, we
obtain the tangent space for our problem:

Tu,X = null(β′(u)) = {w ∈ X : 〈u,w〉L2 = 0}. (3.2)

Note that Tu,X is a closed linear subspace of X , and for each u ∈ X , there exists a
unique orthogonal projection from X onto Tu,X . We denote this projection by Pu,X .
Note also that Pu,X is a linear transformation with domain X and range Tu,X . Thus,
this transformation depends on the Hilbert space and u ∈ X .

Let u0 ∈ X so that β(u0) = 1 and write the descent method with the projected
gradient:

z(0) = u0 and z′(t) = −Pz(t),X∇XE(z(t)). (3.3)

We can easily see that β(z) is constant since

(β(z))′(t) = β′(z(t))z′(t) = −β′(z(t))(Pz(t),X∇XE(z(t))) = 0, (3.4)

for all t, as Pz(t),X is the projection of X onto the null space of β′(z(t)). Thus β(z) is
constant and if u = limt→∞ z(t), then β(u) = β(u0), and the norm of the initial state
is preserved. In conclusion, by projecting the Sobolev gradient of E at z(t) into the
null space of β′(z(t)) for each t, we get that z(t) satisfies the mass constraint for all t
(see [27] for a more detailed development on this topic).

For numerical implementation purposes, we give below an heuristic derivation of
the explicit expression of the projection (see [23] for a more rigorous demonstration).
If, for the sake of simplicity, G = ∇XE(u) denotes the Sobolev gradient gradient of
E at u, the projected gradient is determined from the following two conditions:

Pu,XG ∈ Tu,X , (3.5)

〈Pu,XG, h〉X = E′(u)h, ∀h ∈ Tu,X . (3.6)

In order to satisfy (3.6), we choose the projected gradient of the form Pu,XG =
G −BvX , with B ∈ R a constant and vX ∈ X such as

〈vX , h〉X = 〈u, h〉L2 , ∀h ∈ X. (3.7)

The constant B is then obtained by imposing (3.5). The final expression that will be
used for numerical implementation is:

Pu,XG = G − ℜ〈u,G〉L2

ℜ〈u, vX〉L2

vX , (3.8)

with vX computed from (3.7). Note that ifX = L2, vX = u and we recover the explicit
expression of the projected gradient given in [6]. It is also important to note that, in
regard to numerical consideration as well as obtaining global existence, uniqueness,
and asymptotic convergence, we need that the map u → Pu,X∇XE(u) be C1 as a
map from X to X . Using the above expression for the projection, we present in the
next section some convergence results.
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3.2. Convergence results in an infinite dimensional Hilbert space. In
this subsection we define the evolution equation we use in the Hilbert space setting
and give our global existence and convergence result for the constrained minimization
problem. Here we extend the results obtained in [23] for the case of the Gross-
Pitaevskii energy without rotation. In this work, as well as in [23], we move away
from the general theory of Sobolev gradients as presented in [27], since the criteria
for asymptotic convergence of the evolution equation for constrained minimization
problems is not available in [27].

The idea below the following analysis is to show that the GP energy functional
with rotation has the same properties as the GP energy without rotation if the norm
‖ · ‖HA

is used. We thus can adapt the results obtained in [23] to our case. We start
by noting that, due to the mass conservation, one can add a multiple of

∫

D
|u|2 to the

Gross-Pitaevskii energy and the resulting functional will have the same minimizers as
the original functional. The idea is to obtain a functional that is uniformly and strictly
convex. We remind the reader that for X a Hilbert space, we say that E : X → R is
uniformly and strictly convex if there exists ǫ > 0 so that E′′(u)(h, h) ≥ ǫ|h|2X for all
h ∈ X .

Indeed, let us consider the form (2.1) of the energy functional, and suppose that
there exists 1 > δ > 0 so that Veff > δ. We observe that

E′′(u)(h, h) =

∫

D

|∇Ah|2 + 2Veff |h|2 + 2g(|u|2|h|2 + 2(ℜ〈u, h〉))2) ≥ (3.9)

∫

D

|∇Ah|2 + 2Veff |h|2 ≥ δ

∫

D

|∇Ah|2 + |h|2 = δ‖h‖2HA
, (3.10)

and infer that E : HA → R is uniformly and strictly convex with the assumption
that Veff is bounded away from zero. Due to the equivalence of norms, E : H1 → R

is also uniformly and strictly convex. Note that if Veff is not bounded away from
zero, then one can obtain this property by adding a multiple of the constraint to the
energy. This does not change the minimization problem as indicated by the following
theorem.

Theorem 3.1. Let E be a C2 function on a subspace X contained in L2(D). Let

Eǫ(u) = E(u) + ǫ

∫

D

|u|2. (3.11)

Then for β(u) =
∫

D
|u|2 and h ∈ null(β′(u)), E′(u)h = 0 iff E′

ǫ(u)h = 0.
Some other properties of the functional are required to obtain the asymptotic

convergence of the evolution equation. In particular, we need the functional to be
continuously twice Fréchet differentiable and bounded from below. The latter two
properties are standard and we therefore omit them. With these properties checked,
we can give our global existence and convergence in the asymptotic limit. Using the
space HA, the proof of the following two theorems are identical to the ones given in
[23]. Thus we omit the proofs and refer the reader to this work.

Theorem 3.2. Suppose X is a Hilbert space and that E : X → R is continuously
twice Fréchet differentiable. Suppose also that β : X → R is a given function such
that, if Pu,X denotes the orthogonal projection of X onto the nullspace of β′(u), then
the map u→ Pu,X is C1. Then z(t) given by (3.3) is uniquely defined for all t ≥ 0.

Theorem 3.3. Suppose the hypothesis of Theorem 3.2 and that z(t) is given by
equation (3.3), with ∇XE(u0) 6= 0. If E : X → R is uniformly and strictly convex,
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then

lim
t→∞

z(t) = u (3.12)

exists. Furthermore, there exist two constants m and c so that ‖u− z(t)‖X ≤ me−ct,
and E′(u)h = 0 for all h ∈ null(β′(u)).

From the above two theorems, if we have in mind that the functional E defined
in (1.2) is continuously twice Fréchet differentiable and uniformly and strictly convex
when the domain is considered to be HA or H , we obtain the result that E has a min-
imizer in HA and in H1 that satisfies the constraint β. Furthermore, this minimizer
is obtained as the limit of the trajectory we defined in (3.3). This convergence result
is not only important on its own, but, as we shall see, plays an important role in the
rate of convergence of our numerical simulations.

4. Numerical implementation. In this section we explain in detail the setup
for our simulations using the descent method with both finite differences and finite
elements discretization in two space dimensions. Both implementations follow the
general lines of the algorithm described below.

If Y = LG, HG, HAG
denotes the finite dimensional Hilbert spaces resulting after

the discretization of the domain D, the descent method (3.3) takes the following
discrete form:
starting from u0 ∈ Y , define a trajectory zn, n ≥ 1 as (forward Euler scheme):

z0 = u0, zn+1 = zn − δtn∇zn,YEG(zn), (4.1)

where ∇u,Y EG(u) denotes the gradient obtained with respect to each inner product
and projected following (3.8). The time-step value δtn could be optimized when
computed as the local minimum of the real valued function

r → EG(zn − r∇zn,YEG(zn)). (4.2)

As convergence criterion, the algorithm stops when the relative change in energy EG

is below of an imposed limit. We note that in the continuous steepest descent
algorithm, the constraint was satisfied for all time t and hence for the converged
solution. In the discrete case, due to the first order discretization in time, it is easy
to see from (4.1) that the norm is conserved at time level (n + 1) up to an error
of order (δtn)

2‖∇zn,YEG(zn)‖L2 . After each (or several) iteration(s), one could also
normalize the solution, as in [28] where a Sobolev descent method with step-size 1
is used. This results in an improvement in the accuracy to which the constraint is
preserved. The main observation that we made was that even though we used a first
order discretization in time, our projection method allowed to take larger time steps
when compared to the method using the normalization alone.
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4.1. Finite differences. We discretize D into an N by N equally spaced (δx =
δy = δ) grid and let DG be the set of allK = N2 grid points. Let X be the collection of
all complex valued functions on DG. For f ∈ X , (D1f)(x, y) is the approximation to
the partial derivative in the first independent variable at (x, y) and (D2f)(x, y) is the
approximation to the partial derivative in the second independent variable at (x, y).
We have used a fourth-order centered finite-difference scheme to approximate the first
partial derivatives. When compared to the classical second order scheme, this high-
order approximation proved very helpful in computing complex configurations (vortex
lattices within the condensate) with reasonably fine grids. Furthermore Df =

(

D1f
D2f

)

.

For (x, y) a grid point, we also define D1,A and D2,A by

(D1,Af)(x, y) = (D1f)(x, y) + iΩyf(x, y) (4.3)

and

(D2,Af)(x, y) = (D2f)(x, y)− iΩxf(x, y). (4.4)

We denote by DA =
(

D1,A

D2,A

)

, the discretized form of the operator ∇A. The three inner

products that equip X are defined as: for f, g ∈ X ,

〈f, g〉L2 = 〈f, g〉, (4.5)

〈f, g〉H = 〈f, g〉+ 〈D1f,D1g〉+ 〈D2f,D2g〉, (4.6)

and

〈f, g〉HA
= 〈f, g〉+ 〈D1,Af,D1,Ag〉+ 〈D2,Af,D2,Ag〉, (4.7)

where 〈·, ·〉 denotes the complex CK inner product. Note that 〈·, ·〉L2 is analogous to
the L2(D,C) inner product, 〈·, ·〉H is analogous to the H1,2(D,C) inner product, and
〈·, ·〉HA

is analogous to the HA(D,C) inner product.
Since D1, D2, D1,A, D2,A can be viewed as a linear transformation acting on

CK , we think of each of these transformations as a K ×K matrix. Let D∗

M denote
the conjugate transpose of the corresponding matrix. We note that we can write the
H and HA inner products as

〈f, g〉H = 〈(I +D∗

1D1 +D∗

2D2)f, g〉L2 . (4.8)

and

〈f, g〉HA
= 〈(I +D∗

1,AD1,A +D∗

2,AD2,A)f, g〉L2 . (4.9)

The collection X makes a finite dimensional Hilbert space with each of the above
inner products. We denote the resulting Hilbert spaces by L2

G, HG, and HAG
. Now,

we discretize the energy functional as given in equations (1.2) and (2.1). Here the
subscript G denotes that we are in the finite difference setting.

EG(f) = δ2
∑

DG

1

2
(|D1f |2 + |D2f |2) + VtrapG

|f |2 + g

2
|f |4 − Ω rotGf, (4.10)

where for x ∈ DG,

rotGf(x) = ℜ (if(x)∗A(x)

(

(D1f)(x)

(D2f))(x)

)

, (4.11)
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and

A(x, y) = (y − x). (4.12)

Equivalently,

EG(f) = δ2
∑

DG

1

2

(

|D1,Af |2 + |D2,A|2
)

+ VeffG |f |2 +
g

2
|f |4. (4.13)

If we take a derivative of EG, we get that

E′

G(f)h = δ2ℜ
∑

DG

〈D1h,D1f〉+ 〈D2h,D2f〉

+ 2〈h, VtrapG
f + g|f |2f − ΩiAt(Df)〉. (4.14)

Observe that for each f ∈ X , E′

G(f) is a continuous linear transformation on X using
any of the three norms we specified. Thus it has a representation with respect to each
of the inner products we defined above. Using this representation, we will obtain a
gradient. Since the L2 inner product is proportional to the Euclidean inner product,
the ordinary or Euclidean gradient (i.e. the list of partial derivatives of EG taken with
respect to each of the K independent variables) is easily derived if the real valued
transformation E′

G(f) is rewritten as:

E′

G(f)h = ℜ〈h,∇L2E(f)〉L2 . (4.15)

We get that

∇L2E(f) = δ2(D∗

1D1f + D∗

2D2f + 2(VtrapG
f + g|f |2f − ΩiAt(Df))).(4.16)

We now derive the other two gradients, ∇HE(f) and ∇HA
E(f), with respect to

the H and HA inner products. From (4.8) and (4.9) we obtain that

E′

G(f)h = ℜ〈h,∇HEG(f)〉H = ℜ〈h, (I +D∗D)∇HEG(f)〉L2 , (4.17)

and

E′

G(f)h = ℜ〈h,∇HA
EG(f)〉HA

= ℜ〈h, (I +D∗

ADA)∇HA
EG(f)〉L. (4.18)

By comparing these equations to (4.15), we finally get that

∇HEG(f) = (I +D∗D)−1∇L2E(f), (4.19)

and

∇HA
EG(f) = (I +D∗

ADA)
−1∇L2E(f). (4.20)

The discrete descent method (4.1) using the above finite difference dscretization
was implemented in Matlab. The Sobolev gradients are computed from (4.19) and
(4.20) by solving linear systems at each time step using a preconditioned conjugate
gradient method. Since this part is time consuming on fine grids, we used a linesearch
algorithm to locally compute the time step from (4.2). This resulted in a significant
reduction of the number of iterations needed to achieve convergence.
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4.2. Finite elements. The finite-elements implementation uses the free soft-
ware FreeFem++ [20], which proposes a large variety of triangular finite elements
(linear and quadratic Lagrangian elements, discontinuous P1, Raviart-Thomas ele-
ments, etc.) to solve partial differential equations (PDE) in two dimensions (2D).
FreeFem++ is an integrated product with its own high level programming language
with a syntax close to mathematical formulations.

It is therefore very easy to implement the variational formulations associated to
the calculation of the three gradients, since the definitions of scalar products (2.3)–
(2.5) use an integral form. Following the developments in section (2.2), and using
as definition of the complex inner product 〈u, v〉 = uv∗, the ordinary gradient is
derived from (2.20) and computed as the solution G = ∇L2E of the problem with
homogeneous Dirichlet boundary conditions:

∫

D

G h = RHS, (4.21)

RHS =

∫

D

∇u∇h+ 2
[

Vtrap u+ (g|u|2)u− iΩAt∇u
]

h, (4.22)

where h stands now for the real valued basis function of the finite element space.
Following (2.23), the H1 gradient is directly computed by solving the equation:

∫

D

∇G ∇h+ Gh = RHS, where G = ∇HE. (4.23)

It is interesting to note that (4.23) is directly derived from the weak formulation of
(2.23), with the obvious advantage to obtain a simpler right-hand side (4.22), which is
derived by integrating by parts the weak form of the L2 gradient. Therefore, in order
to solve (4.23), it is not necessary to explicitly compute the L2 gradient (by solving
(4.21)), as required for the finite-difference implementation.

Observing from (2.10) that the HA scalar product could be expanded to obtain
the equivalent definition:

< u, v >HA
=

∫

D

〈
[

1 + Ω2(y2 + x2)
]

u, v〉+ 〈∇u,∇v〉 − 2iΩ〈At∇u, v〉, (4.24)

the HA gradient is directly computed as the solution G = ∇HA
E of the problem:

∫

D

[

1 + Ω2(y2 + x2)
]

Gh+∇G∇h− 2iΩ(At∇G)h = RHS. (4.25)

It is interesting to emphasize the fact that previous equations are solved in complex
variables. The approach based on the separation of the real and imaginary part of the
gradient used in [29] is not possible when computing the HA gradient. The FreeFem
scripts are written in an optimized form using the pre-computation and factorization
of the complex matrices associated to linear systems given by (4.23) and (4.25). It is
interesting to note that the same matrices are involved in the computation of vX from
(3.7); the projected gradient (3.8) could be therefore optimized in the same way. The
implementation uses P1 (piecewise linear) finite-elements, with a P4 representation
of the nonlinear terms appearing in (4.22). A fifth order quadrature formula was
used to compute two-dimensional integrals. The FreeFem scripts allow to switch to
P2 (piecewise quadratic) finite elements by a simple change of the definition of the
generic finite-elements space. Adaptive mesh refinement was used for simulations of
rotating BEC with dense lattice of vortices.
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5. Numerical experiments. We first use a test case with analytical manufac-
tured solution to ascertain the convergence of the steepest descent method for each of
the three gradients. Then, we use the numerical set-up to compute simple metastable
states of rotating Bose-Einstein condensates with single or multiple vortices. The
performances of the three methods are comparatively evaluated. Finally, the new HA

gradient method is used to compute complex configurations relevant for real rotating
condensates (Abrikosov vortex lattice and giant vortex).

5.1. Test case with manufactured solutions. This test case is used as bench-
mark for the evaluation of the descent method for each of the three gradients (L2, H,HA).
We consider a non-linear problem close to the Gross-Pitaevskii equation:

− 1

2
∇2u+ Ctrap u+ g|u|2u− iΩ(At∇)u = f, (5.1)

corresponding to the minimization of the energy functional:

E(u, f) =

∫

D

1

2
|∇u|2 + Ctrap |u|2 + g

|u|4
2

− (f∗u+ fu∗)− Ωℜ(iu∗At∇u). (5.2)

For this energy functional, the L2 gradient is expressed as in (2.23), with Vtrap =
Ctrap = const. and a supplementary term −2〈f, h〉 to be added. It should be noted
that this is a test case of minimization without constraint.

In order to test the implemented methods, we manufacture solutions of (5.1):
we consider a given expression for u and calculate the corresponding right-hand side
f(x, y). A simple way to construct such manufactured solutions is to consider solutions
with azimuthal symmetry:

uf (x, y) = U(r) exp(imθ), (5.3)

where (r, θ) are cylindrical coordinates (r =
√

x2 + y2). Since the Laplacian in cylin-
drical coordinates reads

∇2 =
1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2
∂2

∂θ2
, (5.4)

and the new term corresponding to the rotation becomes

At∇u = y
∂u

∂x
− x

∂u

∂y
= −∂u

∂θ
. (5.5)

we obtain that

f = F (r) exp(imθ), (5.6)

with

F (r) = −1

2

1

r

∂

∂r

(

r
∂U

∂r

)

+
1

2

m2

r2
U + Ctrap U + gU3 −mΩU. (5.7)

We choose the domain D to be a circle of radius R and

U = r2(R− r), (5.8)
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which satisfies the homogeneous boundary condition u = 0 for r = R. For this choice,
we obtain useful analytical formulas for

F (r) = −1

2
(4R− 9r) +

1

2
m2(R− r) + Ctrap U + CNU

3 −mΩU, (5.9)

and energy

E(u, f) = 2π

(

−R
6

20
−m2 R

6

120
− Ctrap

R8

168
− CN

3R14

20020

)

+mΩπ
R8

84
. (5.10)

The contour patterns for such solutions are displayed in Fig. 5.1 form = 1 andm = 3.
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Fig. 5.1. Contour patterns of the manufactured solution corresponding to equations (5.3) and
(5.8). Azimuthal wave numbers m = 1 and m = 3.

The numerical application for manufactured solutions consider the following pa-
rameters:

Ctrap = 20, g = 100, R = 1, m = 3, Ω = 10.

For this case, the theoretical values for energy and angular momentum of the exact
solution are: E = −0.505553 and Lz = 0.1122, respectively. The computation is
considered as converged if the relative variation of the energy is less than ε = 10−8.

Tables 5.1 and 5.2 assess the convergence of the descent method by computing
different norms of the difference between the exact and computed solutions. Perfor-
mance of each gradient method are quantified by extracting the overall computing
(CPU) time and the number n of time steps necessary to achieve convergence.

All test cases considered u0 = 0 as the initial guess for the descent method.
Different initial conditions (e.g. u0 computed as the solution of the corresponding
linear problem) were tested with similar convergence results.
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N n CPU E(u) ‖u− uf‖∞ ‖u− uf‖L2 ‖u− uf‖H
L 26 1137 35.41 -.4828 .0010 2.25e-4 .0270
H 26 100 16.23 -.4828 2.81-4 1.66e-5 .0021
HA 26 38 6.39 -.4828 1.41e-4 3.85e-6 4.73e-4

L 27 1960 308.13 -.4941 4.11e-4 2.84e-4 .0185
H 27 40 36.34 -.4941 6.32e-5 4.81e-4 5.28e-4
HA 27 18 17.22 -.4941 2.05e-5 6.84e-7 6.26e-5

L 28 > 3000 > 2.04e3 -.4985
H 28 30 154.47 -.4997 4.59-5 9.77e-6 .0013
HA 28 14 73.21 -.4997 1.56e-6 1.36e-6 1.504e-4

Table 5.1

Test case with manufactured solutions. Algorithm efficiency and convergence test for the finite
difference implementation (variable time step computation).

M/Triangles n CPU E(u) ‖u− uf‖∞ ‖u− uf‖L2 ‖u− uf‖H δt

L 100/1776 1176 85 -.4934 1.988e-3 1.001e-3 1.705e-2 8e-4
H 100/1776 47 3.4 -.4934 1.883e-3 9.220e-4 1.668e-3 1
HA 100/1776 14 1 -.4934 1.880e-3 9.140e-4 1.665e-2 3

L 200/7064 4292 1252 -.5025 7.492e-4 4.200e-4 7.401e-3 2e-4
H 200/7064 47 13.8 -.5025 5.530e-4 2.232e-4 6.548e-3 1
HA 200/7064 14 4.1 -.5025 5.390e-4 2.119e-4 6.474e-3 3

L 400/27604 > 8000 > 9193 -.5027 5e-5
H 400/27604 47 54.2 -.5047 1.687e-4 6.8535e-5 3.954e-3 1
HA 400/27604 14 16.2 -.5047 1.549e-4 5.730e-5 3.791e-3 3

Table 5.2

Test case with manufactured solutions. Algorithm efficiency and convergence test for the finite
element implementation (fixed time step computation). The triangular mesh is generated with M

points on the border of the domain.

The first obvious observation is that the descent method using the ordinary L2

gradient has very slow convergence rate because of very small time steps imposed by
the stability limit of the method. This was expected since this method is the equivalent
to the explicit Euler integration scheme for the imaginary-time propagation equation.
A similar result was reported in [29] for simpler Schrödinger type energy functionals.
Larger time steps are allowed in the H1 and HA methods, since the Sobolev gradients
represent a preconditioning of the ordinary gradient [17, 28, 6].

For the descent methods using a constant time step δt (finite element implemen-
tation), we compare the computations performed using the maximum value (δt)max

allowed by the stability of each method. These values, displayed in Tab. 5.2, were ob-
tained by successive tests: the value of δt was increased by 20% for each new run, until
the computation became unstable. It should be noted that we were not interested in a
refined numerical evaluation of the stability limit of each method, since computations
using a more precise estimation of (δt)max did not result in a significant variation of
the CPU time. The same approach to compare methods using their maximum time
step allowed by stability reasons will be applied to all subsequent computations in
this section.

Tables 5.1 and 5.2 also allows to relate the computing cost to the complexity of
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each method. As already stated, the descent method using the L2 gradient can be
regarded as an explicit backward Euler scheme. It therefore has little complexity and
the computing cost per iteration step (i.e. the ratio CPU/n) is very low. Sobolev
gradients are computing by solving linear systems, which adds extra computational
cost. For the finite-difference implementation, equations (4.19) or (4.20) are solved by
a preconditioned conjugate-gradient method; since this part of the algorithm is time
consuming, the CPU time per iteration step (CPU/n) is multiplied up to a factor
of 8, when compared to the L2 gradient method. The situation is different in the
finite-element implementation. Since the weak formulation of the equation (2.23) is
used, the computation of all gradients needs to solve a linear system. In order to have
an optimized numerical implementation that can switch between the three descent
methods, the matrix of this system is stored and factorized before the time loop. As a
consequence, even though the matrix of the system in (4.21) is simpler (mass matrix)
than in (4.23) or (4.25), the ratio (CPU/n) is identical for the computation off all
gradients.

In all numerical tests, the convergence of the L2 gradient method needs a large
number of time steps, and, consequently, much larger CPU times than the Sobolev
gradient methods. Since the performances of the L2 gradient method are very poor,
it will not be used in the following numerical experiments. We shall now focus on the
comparison between theH andHA method. For this test case considering a large value
of Ω, the HA gradient allows for larger time steps and therefore the computational
time is considerably reduced, by approximately a factor of 3. This suggests that
the preconditioning of the gradient introduced by the new HA inner product is very
effective for computing cases with high rotation frequencies Ω (it goes without saying
that the H and HA methods are equivalent for Ω → 0).

5.2. Simulations of rotating Bose-Einstein condensates. In computing
stationary states of rotating Bose-Einstein condensates, the initial state u0 in the
descent method (4.1) plays a crucial role. The algorithm usually starts from a wave
function distribution derived from the Thomas-Fermi approximation. In the strong
interaction regime (large values of g), it is reasonable to neglect the contribution of
the kinetic energy and work with the simplified energy functional:

ETF (ρ) =

∫

D

Vtrapρ+
g

2
|u|4. (5.11)

The minimizer of this energy corresponds to the Thomas-Fermi atomic density:

ρTF (r) = |u|2 =

(

µ− Vtrap
g

)

+

, (5.12)

where µ is the chemical potential. Since µ is a Lagrange multiplier, imposing the
mass constraint in (5.12) yields a relation for µ. After computing the value of µ, the
Thomas-Fermi radius of the condensate can be determined from (5.12) (ρTF (RTF ) =
0). When a rotation Ω is applied, the Thomas-Fermi approximation (5.12) stands
with Veff replacing Vtrap. The resulting radius RΩ

TF is used to estimate the size of
the domain D in simulations (rD > RΩ

TF ) .
We also mention that the converged final state is characterized by its energy E(u)

and angular momentum Lz(u) which gives a measure of the rotation:

Lz(u) =

∫

D

ℜ
(

iu∗(At∇)u
)

. (5.13)
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5.2.1. Off-center vortex case: harmonic trapping potential and small

Ω. The second numerical experiment considers the classical harmonic trapping po-
tential and an initial state computed from the Thomas-Fermi approximation plus a
singly quantized vortex of center located at (xv, yv). We use an ansatz for the vortex
described in [3]. The parameters of the simulation are the following:

g = 500, Vtrap = r2/2, Ω = 0.4, xv = 0.5, yv = 0. (5.14)

The Thomas-Fermi radius is for this case RΩ
TF = 5.246 and the computational domain

is circular of radius R = 1.25RΩ
TF = 6.56. The final converged state contains a single

vortex centered at the origin (see Fig. 5.2).

Fig. 5.2. Off-center vortex case. Initial state with an off-center vortex and final converged state
with a centered vortex. Contours of atomic density |u|2.

N n CPU E(u) Lz(u)

H 26 1313 169.51 8.3587 .9998
HA 26 1197 166.34 8.3587 .9998

H 27 1184 866.88 8.3605 .9999
HA 27 1127 890.06 8.3605 .9999

H 28 1274 4.9548e3 8.3606 .9999
HA 28 1244 4.7882e3 8.3606 .9999

Table 5.3

Off-center vortex case. Algorithm efficiency and characterization (E(u), Lz(u)) of the converged
state state for the finite difference implementation (variable time step computation).

The comparative results are presented in Tabs. 5.3 and 5.4. It is important to
note that the convergence test must be set to ε = 10−8 in order to obtain a final
state with a vortex centered at the origin and Lz = 1 (theoretical value reached for
the finest meshes). A relaxed convergence criterion will result in a vortex that is not
exactly centered since the convergence rate is very slow at the end of the simulation.
As expected, the H1 and HA perform similarly because of the low value of Ω.
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M/triangles n CPU E(u) Lz(u)

H 100/1762 701 56.97 8.3819 .994598
HA 100/1762 703 57.47 8.3795 .994575

H 200/7064 1667 537.85 8.3720 1.00042
HA 200/7064 1717 556.41 8.3694 1.00022

H 400/27604 1788 2.335e3 8.3699 1.00052
HA 400/27604 1831 2.407e3 8.3673 1.00032

Table 5.4

Off-center vortex case. Algorithm efficiency and characterization (E(u), Lz(u)) of the converged
state state for the finite element implementation. The time step is set to 0.1 for all computations.

5.2.2. Vortex array case: harmonic-plus-quartic trapping potential and

large Ω. The harmonic trapping potential physically sets an upper bound for the
rotation frequency, since for Ω = 1 the centrifugal force balances the trapping force
and the confinement of the condensate vanishes. To overcome this limitation, different
forms of the trapping potential are currently experimentally and theoretically studied.
We use in the third numerical experiment a combined harmonic-plus-quartic potential
(see also [21, 4, 13, 15]) with the following parameters

g = 500, Vtrap = r2/2 + r4/4, Ω = 2. (5.15)

The Thomas-Fermi radius is for this case RΩ
TF = 3.40. The computational domain is

circular of radius Rmax = 1.25RΩ
TF . The initial state contains a central vortex plus

an array of 6 vortices equally distributed on the circle of radius 0.25Rmax. All the
vortices have a winding number m = 1, except the first vortex that has m = 2 (Fig.
5.3). Since vortices with winding number m > 1 are not physically stable, the m = 2
vortex will split into two singly quantized vortices. The final state contains therefore
a central vortex an array of 7 vortices (Fig. 5.3). The convergence test is relaxed to
ε = 10−6.

Fig. 5.3. Vortex array case. Initial state with 6 vortices and final converged state with an array
of 7 vortices. Contours of atomic density |u|2.

Tables 5.5 and 5.6 show that the converged state is the same for both finite
difference and finite element implementations. The HA method has better stability
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gradient N n CPU E(u) Lz

H 26 610 89.07 11.2679 6.4549
HA 26 459 79.76 11.2670 6.4576

H 27 530 466.34 11.2971 6.4603
HA 27 442 447.92 11.2959 6.4603

H 28 539 2.4760e3 11.2990 6.4605
HA 28 441 2.245e3 11.2977 6.4691

Table 5.5

Vortex array case. Algorithm efficiency and characterization (E(u), Lz(u)) of the converged
state state for the finite difference implementation (variable time step computation).

gradient M/triangles n CPU E(u) Lz

H 100/1762 507 42.28 12.0553 6.1297
HA 100/1762 330 27.70 12.1413 6.1654

H 200/7064 418 138.53 11.5341 6.3920
HA 200/7064 270 90.11 11.6171 6.4135

H 400/27604 420 550.10 11.4017 6.4641
HA 400/27604 262 346.87 11.4846 6.4840

Table 5.6

Vortex array case. Algorithm efficiency and characterization (E(u), Lz(u)) of the converged
state for the finite element implementation. The maximum allowed time step is 0.1 for the H

gradient and 0.2 for the HA gradient.

properties and allows a CPU time gain up to 36%. This gain was expected since Ω is
large for this case.

5.2.3. Giant vortex and Abrikosov vortex lattice. Finally, to show that
the new method has the capability to handle more complicated cases, we produce the
giant vortex using the HA gradient in conjunction with the new projection method
proposed to enforce the mass constraint. We use the parameters of the previous
numerical experiment (harmonic-plus-quartic trapping potential) and progressively
increase Ω from 2 to 4. Each computation starts from an initial field representing
the converged state previously obtained for a lower value of Ω. The transition from a
vortex lattice to the giant vortex is observed (Fig. 5.4). The giant vortex is a hole in
the condensate (the atomic density goes to zero inside) with multiple phase defects.
This particular vortex structure, theoretically analyzed in numerous studies [21, 4,
13, 15], was captured using both the finite elements and finite difference simulations.

A last complex computational case is illustrated in Fig. 5.5. For a harmonic
trapping potential and high rotation frequency (Ω = 0.95) an Abrikosov vortex lattice
forms in the condensate. The difficulty in computing this case in the strong-interaction
regime (large values of g) comes from the fact that the condensate becomes larger and
the vortex lattice denser when the value of g is increased. In order to increase conver-
gence, each computation starts from an initial field representing the converged state
obtained for a lower value of g. During the iterative process, new vortices nucleate at
the boundaries and slowly move towards their final equilibrium locations. In comput-
ing such configurations, containing several hundreds of vortices, the adaptive mesh
refinement capabilities of FreeFem proved very helpful in reducing the computational
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Fig. 5.4. Giant vortex case. Converged states for Ω = 2.5, 3, 4 showing the formation of a hole
in the condensate (giant vortex) for high rotation rates Contours of atomic density |u|2.

time and correctly capturing vortex positions.

Fig. 5.5. Abrikosov vortex lattice case. Converged states for Ω = 0.95 and increasing values
of the interactions constant g. Finite elements computations using mesh adaptivity. Contours of
atomic density |u|2.

6. Summary. The numerical study of a rotating Bose-Einstein condensate has
been the subject of many numerical studies, both in two dimensions (2D) and three
dimensions (3D). Since most of the studies [5, 21, 22, 3, 4, 13, 9, 11] use the imaginary
time propagation method (equivalent to the gradient flow model (1.4)), there are
few studies using direct minimization by Sobolev gradient methods. Nevertheless,
replacing the ordinary L2 gradient in a descent method with the Sobolev H1 gradient
proved effective in minimizing the 3D Gross-Pitaevskii energy [18, 17] or simpler
Schrödinger type functionals [29].

In this work we introduced a new inner product (HA) to equip the domain of
the GP energy functional with rotation and derived the corresponding gradient. We
demonstrated that numerical performance is enhanced by replacing in the descent
method the L2 orH1 gradients with the gradient obtained from the HA inner product.
The gain in computational time proved very important when configurations with high
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rotation rates are computed. We also introduced a new projection method to enforce
the mass constraint. This method avoids more complicated approaches using an
energy functional with a penalty term, or the traditional normalization method that
performs the descent over a path of functions with an imposed norm.

These two new tools allowed to implement robust descent methods using finite
difference and finite element spatial discretization. Both numerical settings proved
very efficient in computing various complex two-dimensional configurations of rotating
Bose-Einstein condensates.

We finally emphasize the fact that the new gradient and projection method for
the mass constraint have a more general interest and could be also used in conjunction
with existing numerical schemes (such as sophisticated time stepping procedures) to
study the energy minimization of Gross-Pitaevskii type functionals.
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