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Smoothed Analysis of Moore-Penrose Inversion

Peter Bürgisser∗ and Felipe Cucker†

Abstract. We perform a smoothed analysis of the condition number of rect-

angular matrices. We prove that, asymptotically, the expected value of this

condition number depends only of the elongation of the matrix, and not on the

center and variance of the underlying probability distribution.

1 Introduction

The most widely used extension to rectangular matrices of the notion of inverse
of square matrices is the so called Moore-Penrose inverse. For a full rank matrix
A ∈ R

m×n this is defined as A† := (ATA)−1AT if m ≥ n, and as A† := AT(AAT)−1,
otherwise. Immediate applications of A† include the solution of least square prob-
lems

min
x∈Rn

‖Ax− b‖2, (1)

with b ∈ R
m and m > n, or of smallest solutions of underdetermined systems

min
x|Ax=b

‖x‖2 (2)

when n > m. In both cases, the solution is given by x = A†b. Well known re-
sults in error analysis show that the accuracy in the computation of A†, or in the
computation of the solution x for the problems above, crucially depends on the
condition number κ(A) := ‖A‖ ‖A†‖ of A, where ‖A‖ denotes the spectral norm
(see [14, Ch. 19]). Accuracy analysis is not the only source of interest in κ(A). Al-
gorithms such as the conjugate gradient method produce approximate solutions of
linear systems Px = c —here P ∈ R

m×m is a positive definite matrix and c ∈ R
m—

with a number of iterations proportional to
√

κ(P ) and, in many cases, the matrix
P has been obtained as P = AAT for some matrix A ∈ R

m×n. In those cases,
√

κ(P ) = κ(A) and one is again interested in the latter, this time by complexity
considerations.
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The condition number κ(A) is not directly readable from A, and its computation
seems to require that of A†. This is a common situation in numerical analysis. A
way out of it, proposed as early as 1951 by von Neumann and Goldstine [17] and
more recently pioneered by Demmel [6] and Smale [20], consists of randomizing
the matrix A —say, by endowing Rm×n with a multivariate standard Gaussian
distribution N(0, I)— and considering its condition number as a derived random
variable.

In Chen and Dongarra [4] the following tail estimates on κ(A) were shown for
A ∈ R

m×n with n ≥ m: for x ≥ n−m+ 1 we have

1√
2π

( 1

5x

)n−m+1
≤ Prob

A∼N(0,I)

{

κ(A) ≥ x

1− λ

}

≤ 1√
2π

( 7

x

)n−m+1
. (3)

Moreover, the expectation E(κ(A)) can be bounded as a function of the elongation
m−1
n only, independently of n. (We remark that this is not true for Demmel’s scaled

condition number ‖A‖F ‖A†‖, compare [9].) More precisely, for a sequence (mn) of
integers such that limn→∞mn/n = λ ∈ (0, 1) and a sequence of standard Gaussian
random matrices An ∈ R

mn×n, we have in almost sure convergence

κ(An)
a.s.−→ 1 +

√
λ

1−
√
λ
. (4)

This follows from Geman [10] and Silverstein [19] (see Edelman [8] for more precise
results).

The above results provide theoretical reasons of why least squares problems
such as (1) or underdetermined systems such as (2) are solved to great accuracy
or why the conjugate gradient method is so efficient in practice. In fact, it follows
from (4) that the expected number of iterations of the conjugate gradient method
on the random input P = AAT remains bounded in terms of the elongation m/n as
n→ ∞ and A ∈ R

m×n is standard Gaussian. Our main result stated below implies
that this phenomenon is still true for any matrix that is only slightly perturbed.

The choice of N(0, I) as underlying data distribution is pervasive in the average-
case analysis of condition numbers (and other quantities occurring in numerical
analysis). It has the virtue of simplicity as a first approach to understanding which
condition numbers one may expect. But it has been criticized due to the loose
relationship of the Gaussian N(0, I) to the measures that may be governing data
drawing in practice. In particular, it has been observed that the use of Gaussians
may be ‘optimistic’ in the sense that they may put more probability mass on the
instances where the values of the function ψ under consideration are small. Such an
optimism would produce yield an expectation E(ψ) smaller than the true one.

An alternate, more conservative, form of analysis has been proposed by Spielman
and Teng under the name of smoothed analysis. It replaces the Gaussian measure
N(0, I) by the measures N(A, σ2I) where A is arbitrary. The idea is then to re-
place the unlikely ‘average data’ by a (usually small) perturbation of any possible
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occurring data. The rationale for this form of analysis is offered in a number of
papers [21, 18, 22, 23] and we won’t repeat it here in full. We note, nonetheless,
that the local nature of randomization in smoothed analysis, coupled with its worst-
case dependence on the input data, removes from smoothed analysis the possible
optimism we mentioned above for average-case analysis. In recent years, different
aspects of algorithm behavior for a variety of problems have been analyzed this
way. These include condition numbers of square matrices with real [27] or {−1, 1}
coefficients [24], complexity of interior-point methods [7], and machine learning [1].
The typical satisfying result is polynomial smoothed complexity (see [23, Def. 2]),
consisting of a bound of the form

sup
A

E
A∼N(A,σ2I)

ψ(A) ≤ cσ−k1size(A)k2 (5)

where ψ is the function whose behavior we are analyzing and c, k1, k2 are positive
constants.

In this paper we provide a smoothed analysis for Moore-Penrose inversion, ex-
tending (3) from the average-case analysis to smoothed analysis. To state the results
we need to introduce some notations. We assume 1 ≤ m ≤ n throughout the paper.
For a standard Gaussian X ∈ R

m×n we put

Q(m,n) :=
1√
n

E(‖X‖). (6)

(Lemma 2.4 shows that Q(m,n) ≤ 6 .) We define for λ ∈ (0, 1) the quantity

c(λ) :=

√

1 + λ

2(1− λ)
. (7)

Note that c(λ) is monotonically increasing, limλ→0 c(λ) =
1√
2
and limλ→1 c(λ) = ∞.

Further, for 1 ≤ m ≤ n and 0 < σ ≤ 1, we define the elongation λ := m−1
n and

introduce the quantity

ζσ(m,n) :=
(

Q(m,n) +
1

σ
√
n

)

c(λ)
1

n−m+1 . (8)

Our main result is the following tail bound on the condition number of rectan-
gular matrices under local Gaussian perturbations.

Theorem 1.1 Suppose that A ∈ R
m×n satisfies ‖A‖ ≤ 1 and let 0 < σ ≤ 1. Put

λ := m−1
n . Then, for z ≥ ζσ(m,n), we have

Prob
A∼N(A,σ2I)

{

κ(A) ≥ ez

1− λ

}

≤ 2c(λ)

[

(

Q(m,n) +
√

2 ln(2z) +
1

σ
√
n

) 1

z

]n−m+1

.
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Remark 1.2 1. The decay in z in this tail bound is the same as in (3) up to the
logarithmic factor

√
ln z. We believe that the latter is an artefact of our proof that

could be omitted. In fact, the exponent n −m + 1 is just the codimension of the
set Σ := {A ∈ R

m×n | rkA < m} of rank deficient matrices, cf. [12]. Moreover,
it is known [14] that ‖A†‖ = 1/dist(A,Σ) where the distance is measured in the
Euclidean norm. From the interpretation of Prob{κ(A) ≥ t} as the volume of a
tube around Σ, as discussed in [2], one would therefore expect a decay of order
1/zn−m+1.

2. When σ = 1 and A = 0, Theorem 1.1 yields tail bounds for the usual average
case. One may therefore compare these bounds with (3). In doing so, we see that
the bound in Theorem 1.1 has the additional factor c(λ) (going to ∞ for λ → 1).
However, we note that the bound (3) holds only for x = ez ≥ n−m+ 1, while our
bound holds for any z ≥ ζσ(m,n). Furthermore, if we fix λ ∈ (0, 1) and let (mn) be
a sequence of positive integers such that limmn/n = λ, it follows from [10] that

lim
n→∞

Q(mn, n) = 1 +
√
λ.

This implies that limn→∞ ζσ(mn, n) = 1+
√
λ for fixed σ ∈ (0, 1] and, in particular,

that ζσ(mn, n) ≤ 2 for sufficiently large n . That is, for large n, the tail bound in
Theorem 1.1 is valid for any z ≥ 2.

Theorem 1.1 easily implies the following bound on expectations.

Corollary 1.3 For all λ0 ∈ (0, 1) there exists n0 such that for all 1 ≤ m ≤ n such

that λ = m−1
n ≤ λ0 and n ≥ n0 we have for all σ with 1√

m
≤ σ ≤ 1, and all

A ∈ R
m×n with ‖A‖ ≤ 1, that

E
A∼N(A,σ2I)

(κ(A)) ≤ 20.1

1− λ
.

As for the average-case analysis, this bound is independent of n and depends only
on the bound λ0 on the elongation. Thus we have a bound of type (5) with k2 = 0.
Surprisingly, the smoothed complexity bound in Corollary 1.3 is also independent
of σ. We thus add reasons —and we will become more specific in Section 4— to the
current understanding of the accuracy in least squares or underdetermined system
solving or the complexity of the conjugate gradient method.

A first approach to the smoothed analysis of Moore-Penrose inversion appears
in [5]. The bounds obtained in that paper are worse by an order of magnitude than
those we obtain here. In Section 5 we compare these bounds with ours as well as with
actual averages obtained, for specific values of n,m and σ, in numerical simulations.

Our proof techniques are an extension of methods employed by Sankar et al. [18].

Acknowledgements. This work was carried out during the special semester on
Foundations of Computational Mathematics in the fall of 2009. We thank the Fields
Institute in Toronto for hospitality and financial support.
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2 Preliminaries

2.1 Some definitions and notation

The spectral norm of a matrix A ∈ R
m×n is defined as ‖A‖ := sup‖x‖=1 ‖Ax‖,

where ‖x‖ denotes the Euclidean norm. The Frobenius norm of A is defined as the
Euclidean norm of A when interpreted as a vector.

Suppose that A ∈ R
m×n is of maximal rank and m ≤ n. The Moore-Penrose

inverse of A is defined as A† := AT(AAT)−1 ∈ R
n×m. It can also be characterized

as follows. For any v ∈ R
m the vector w = A†v is orthogonal to the kernel of A and

satisfies Aw = v. The condition number κ(A) is defined as κ(A) := ‖A‖ · ‖A†‖.
Let A ∈ R

m×n and σ > 0. The isotropic normal distribution N(A, σI) with
center A and covariance matrix σ2I is the probability distribution on R

m×n with
the density

ρA,σ(A) :=
1

(2π)
mn
2

e−
‖A−A‖2F

2σ2 .

Lemma 2.1 For λ ∈ (0, 1) we have λ−
λ

1−λ ≤ e.

Proof. Writing u = 1/λ the assertion is equivalent to u
1

u−1 ≤ e or u ≤ eu−1,
which is certainly true for u ≥ 1. ✷

2.2 Concentration on spheres

Let Sm−1 := {x ∈ R
m | ‖x‖ = 1} denote the unit sphere in R

m. We denote by Om−1

its volume, which is given by Om−1 = 2πm/2/Γ(m2 ).
The following estimate tells us how likely a random point on S

m−1 will lie in a
fixed spherical cap.

Lemma 2.2 Let u ∈ S
m−1 be fixed, m ≥ 2. Then, for all ξ ∈ [0, 1],

Prob
v∼U(Sm−1)

{
∣

∣uTv
∣

∣ ≥ ξ
}

≥
√

2

πm
(1− ξ2)

m−1
2 .

Proof. We put θ = arccos ξ and let cap(u, θ) denote the spherical cap in S
m−1

with center u and angular radius θ. Using the bounds in Lemmas 2.1 and 2.2 of [3]
we get

Prob
v∼U(Sm−1)

{
∣

∣uTv
∣

∣ ≥ ξ
}

=
2 vol cap(u, θ)

vol Sm−1
≥ 2Om−2

Om−1

(1− ξ2)
m−1

2

(m− 1)
.

Using the formula for Om−1 and the recursion Γ(x+ 1) = xΓ(x) we have

Om−2

Om−1
=

1√
π

Γ
(

m
2

)

Γ
(

m−1
2

) =
1√
π

Γ
(

m+1
2

)

Γ
(

m−1
2

)

Γ
(

m
2

)

Γ
(

m+1
2

) =
m− 1

2
√
π

Γ
(

m
2

)

Γ
(

m+1
2

) .
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The assertion follows now from the estimate

Γ
(

m
2

)

Γ
(

m+1
2

) ≥
√

2

m
. (9)

This estimate can be quickly seen as follows. Suppose that Z ∈ R
m is standard

normal distributed. Using polar coordinates and the variable transformation u =
ρ2/2 we get

E(‖Z‖) =
Om−1

(2π)
m
2

∫ ∞

0
ρme−

ρ2

2 dρ =
Om−1

(2π)
m
2

2
m−1

2

∫ ∞

0
u

m−1
2 e−udu

=
Om−1

(2π)
m
2

2
m−1

2 Γ(
m+ 1

2
) =

√
2
Γ(m+1

2 )

Γ(m2 )
, (10)

where we used the definition of the Gamma function for the second last equality.
To complete the proof of (9) we note that E(‖Z‖) ≤

√

E(‖Z‖2) =
√
m. ✷

For later use we note that (10) implies

Γ
(

m+1
2

)

Γ
(

m
2

) =
Γ
(

m+2
2

)

Γ
(

m
2

)

Γ
(

m+1
2

)

Γ
(

m+2
2

) =
m

2

Γ
(

m+1
2

)

Γ
(

m+2
2

) ≥ m

2

√

2

m+ 1
,

using (9) for the right-hand inequality. Therefore

E(‖Z‖) ≥ m√
m+ 1

. (11)

2.3 Large deviations

We will use a powerful large deviation result. Let F : RN → R be a Lipschitz
continous function with Lipschitz constant L, so that |F (x)−F (y)| ≤ L‖x− y‖ for
all x, y ∈ R

N , where ‖ ‖ denotes the Euclidean norm. Now suppose that x ∈ R
N is

a standard Gaussian random vector such that E(F (x)) exists. Then it is known [16,
(1.4)] that for all t > 0

Prob{F (x) ≥ E(F ) + t} ≤ e−
t2

2L2 . (12)

(We note that in [16, (1.4)] this is only stated for the median, but the inequality
holds as well for the expectation. See also [15].)

2.4 A bound on the expected spectral norm

The function R
m×n → R mapping a matrix X to its spectral norm ‖X‖ is Lipschitz

continuous with Lipschitz constant 1, as ‖X − Y ‖ ≤ ‖X − Y ‖F . The concentration
bound (12), together with (6), implies that for t > 0,

Prob
{

‖X‖ ≥ Q(m,n)
√
n+ t} ≤ e−

t2

2 . (13)

This tail bound easily implies the following large deviation result.
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Proposition 2.3 Let A ∈ R
m×n withm ≤ n, ‖A‖ ≤ 1, and σ ∈ (0, 1]. If A ∈ R

m×n

follows the law N(A, σ2I), then, for t > 0,

Prob
A∼N(A,σ2I)

{

‖A‖ ≥ Q(m,n)σ
√
n+ t+ 1

}

≤ e−
t2

2σ2 .

Proof. We note that ‖A‖ ≥ Q(m,n)σ
√
n + t + 1 implies that ‖A − A‖ ≥

‖A‖ − ‖A‖ ≥ Q(m,n)
√
n + t. Moreover, if A ∈ R

m×n follows the law N(A, σ2I),

then X := A−A
σ is standard Gaussian in R

m×n. The assertion follows from (13).
✷

We derive now an upper bound on Q(m,n). Such result should be well-known
but we could not locate in the literature.

Lemma 2.4 For n > 1 we have
√

n
n+1 ≤ Q(m,n) ≤ 2

(

1 +

√

2 ln(2m−1)
n + 1√

n

)

≤ 6.

The proof relies on the following lemma.

Lemma 2.5 Let r1, . . . , rn be independent random variables with nonnegative val-

ues such that r2i is χ2-distributed with fi degrees of freedom. Then,

E

(

max
1≤i≤n

ri

)

≤ max
1≤i≤n

√

fi +
√
2 ln n+ 1.

Proof. We start by a large deviation estimate for χ2-distributed random vari-
ables. Note that R

f → R, x 7→ ‖x‖, is Lipschitz continuous with Lipschitz con-
stant 1. From (12) we know that for standard Gaussian x ∈ R

n and all t > 0,

Prob{‖x‖ ≥ E(‖x‖) + t} ≤ e−
t2

2 .

Since E(‖x‖) ≤
√

E(‖x‖2) =
√
f , this implies for all t > 0,

Prob{‖x‖ ≥
√

f + t} ≤ e−
t2

2 . (14)

We suppose now that r1, . . . , rn are independent random variables with non-
negative values such that r2i is χ2-distributed with fi degrees of freedom. Put
f := maxi fi. Equation (14) tells us that for all i and all t > 0,

Prob{ri ≥
√

f + t} ≤ e−
t2

2

and hence, by the union bound,

Prob
{

max
1≤i≤n

ri ≥
√

f + t
}

≤ ne−
t2

2 .
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For a fixed parameter b ≥ 1 (to be determined later), this implies

E( max
1≤i≤n

ri) ≤
√

f + b+

∫ ∞

√
f+b

Prob{max
1≤i≤n

ri ≥ T} dT

=
√

f + b+

∫ ∞

b
Prob{max

1≤i≤n
ri ≥

√

f + t} dt

≤
√

f + b+ n

∫ ∞

b
e−

t2

2 dt.

Using the well-known estimate

1√
2π

∫ ∞

b
e−

t2

2 dt ≤ 1

b
√
2π

e−
b2

2 ≤ 1√
2π

e−
b2

2

we obtain

E( max
1≤i≤n

ri) ≤
√

f + b+ ne−
b2

2 .

Finally, choosing b :=
√
2 ln n we get

E( max
1≤i≤n

ri) ≤
√

f +
√
2 ln n+ 1,

as claimed. ✷

Proof of Lemma 2.4. A general matrix X ∈ R
m×n can be transformed into a

bidiagonal matrix of the form

Y :=













vn 0 · · · 0

wm−1 vn−1
...

...
. . .

. . .
...

...
w1 vn−m+1 0 · · · 0













with vi, wj ≥ 0 by performing Householder transformations from the left and right
hand side of X, cf. [11, §5.4.3]. In particular, ‖X‖ = ‖Y ‖. An analysis of this
transformation shows that if we start with a standard Gaussian matrix X, then the
vn, . . . , vn−m+1, wm−1, . . . , w1 are independent random variables such that v2i and
w2
i are χ2-distributed with i degrees of freedom, cf. [19].
The spectral norm of Y is bounded by maxi vi +maxj wj ≤ 2r, where r denotes

the maximum of the values vi and wj . Lemma 2.5 implies that, for n > 1,

E(r) ≤
√
n+

√

2 ln(2m− 1) + 1 ≤ 3
√
n.

This shows the claimed upper bound on Q(m,n). For the lower bound we note that
‖Y ‖ ≥ |vn| which gives E(‖Y ‖) ≥ E(|vn|). The claimed lower bound now follows

from (11), which states that E(|vn|) ≥
√

n
n+1 . ✷
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3 Proof of the main results

The main work consists of deriving tail bounds on ‖A†‖, which is done in the next
subsection.

3.1 Tail bounds for ‖A†‖
Proposition 3.1 Let A ∈ R

m×n, σ > 0, and put λ := m−1
n . For random A ∼

N(A, σ2I) we have, for any t > 0,

Prob
A∼N(A,σ2I)

{

‖A†‖ ≥ t

1− λ

}

≤ c(λ)

(

e

σ
√
n t

)(1−λ)n

.

We first show the following result.

Proposition 3.2 For all v ∈ S
m−1, A ∈ R

m×n, σ > 0, and ξ > 0 we have

Prob
A∼N(A,σ2I)

{

‖A†v‖ ≥ ξ
}

≤ 1

(
√
2π)n−m+1

On−m

n−m+ 1

( 1

σξ

)n−m+1
.

Proof. We first claim that, because of unitary invariance, we may assume that
v = em := (0, . . . , 0, 1). To see this, take Φ ∈ U(m) such that v = Φem. Consider the
isometric map A 7→ B = Φ−1A which transforms the density ρA,σ(A) into a density
of the same form, namely ρΦ−1A,σ(B). Thus the assertion for em and random B

implies the assertion for v and A, noting that A†v = B†em. This proves the claim.
We are going to characterize the norm of w := A†em in a geometric way. Let ai

denote the ith row of A. Almost surely, the rows a1, . . . , am are linearly independent;
hence, we assume so in what follows. Let

R := span{a1, . . . , am}, S := span{a1, . . . , am−1}.

Let S⊥ denote the orthogonal complement of S in R
n. We decompose am = a⊥m+aSm,

where a⊥m denotes the orthogonal projection of am onto S⊥ and aSm ∈ S. Then
a⊥m ∈ R since both am and aSm are in R. It follows that a⊥m ∈ R ∩ S⊥.

We claim that w ∈ R ∩ S⊥ as well. Indeed, note that R equals the orthogonal
complement of the kernel of A in R

n. Therefore, by definition of the Moore-Penrose
inverse, w = A†em lies in R. Moreover, since AA† = I, we have 〈w, ai〉 = 0 for
i = 1, . . . ,m− 1 and hence w ∈ S⊥ as well.

It is immediate to see that dimR∩S⊥ = 1. It then follows that R∩S⊥ = Rw =
Ra⊥m. Since 〈w, am〉 = 1, we get 1 = 〈w, am〉 = 〈w, a⊥m〉 = ‖w‖ ‖a⊥m‖ and therefore

‖A†em‖ =
1

‖a⊥m‖ . (15)

Let Am ∈ R
(m−1)×n denote the matrix obtained from A by omitting am. The

density ρA,σ factors as ρA,σ(A) = ρ1(An)ρ2(an) where ρ1 and ρ2 denote the density

9



functions of N(Am, σ
2I) and N(ām, σ

2I), respectively (the meaning of Am and ām
being clear). Fubini’s Theorem combined with (15) yield, for ξ > 0,

Prob
N(A,σ2I)

{

‖A†em‖ ≥ ξ
}

=

∫

‖A†em‖≥ξ
ρA,σ2I(A) dA (16)

=

∫

Am∈R(m−1)×n

ρ1(Am) ·
(

∫

‖a⊥m‖≤1/ξ
ρ2(am) dam

)

dAm.

To complete the proof it is sufficient to show the bound
∫

‖a⊥m‖≤ 1
ξ

ρ2(am) dam ≤ 1

(
√
2π)n−m+1

On−m

n−m+ 1

( 1

σξ

)n−m+1
(17)

for fixed, linearly independent a1, . . . , am−1 and ξ > 0.
To show (17) note that a⊥m ∼ N(ā⊥m, σ

2I) in S⊥ ≃ R
n−m+1 where ā⊥m is the

orthogonal projection of ām onto S⊥. Let Br denote the ball of radius r in R
p

centered at the origin. It is easy to see that volBr = Op−1r
p/p. For any x̄ ∈ R

p and
any σ > 0 we have

Prob
x∼N(x̄,σ2I)

{

‖x‖ ≤ ε
}

≤ Prob
x∼N(0,σ2I)

{

‖x‖ ≤ ε
}

=
1

(σ
√
2π)p

∫

‖x‖≤ε
e−

‖x‖2

2σ2 dx

x=σz
=

1

(
√
2π)p

∫

‖z‖≤ ε
σ

e−
‖z‖2

2 dz

≤ 1

(
√
2π)p

volB ε
σ

=
1

(
√
2π)p

( ε

σ

)p
volB1

=
1

(
√
2π)p

( ε

σ

)p Op−1

p
.

Taking x̄ = ā⊥m, ε = 1
ξ , and p = n−m+ 1 the claim (17) follows. ✷

Proof of Proposition 3.1. The proof is based on an idea in [18]. For A ∈
R
m×n there exists uA ∈ S

m−1 such that ‖A†‖ = ‖A†uA‖. Moreover, for almost
all A, the vector uA is uniquely determined up to sign. Using the singular value
decomposition it is easy to show that, for all v ∈ S

m−1,

‖A†v‖ ≥ ‖A†‖ · |uTAv|. (18)

Now take A ∼ N(A, σ2I) and v ∼ U(Sm−1) independently. Then, for any
s ∈ (0, 1) and t > 0 we have

Prob
A,v

{

‖A†v‖ ≥ t
√

1− s2
}

≥ Prob
A,v

{

‖A†‖ ≥ t & |uTAv| ≥
√

1− s2
}

= Prob
A

{

‖A†‖ ≥ t
}

· Prob
A,v

{

|uTAv| ≥
√

1− s2
∣

∣

∣
‖A†‖ ≥ t

}

≥ Prob
A

{

‖A†‖ ≥ t
}

·
√

2

πm
sm−1,

10



the last line by Lemma 2.2 with ξ =
√
1− s2. Now we use Proposition 3.2 with

ξ = t
√
1− s2 to deduce that

Prob
A

{

‖A†‖ ≥ t
}

≤
√

πm

2

1

sm−1
Prob
A,v

{‖A†v‖ ≥ t
√

1− s2} (19)

≤
√
m

2sm−1

1

(
√
2π)n−m

On−m

n−m+ 1

( 1

σt
√
1− s2

)n−m+1
.

We next choose s ∈ (0, 1) to minimize the bound above. To do so amounts to

maximize (1− x)
n−m+1

2 x
m−1

2 where x = s2 ∈ (0, 1), or yet, to maximize

g(x) =
(

(1− x)
n−m+1

2 x
m−1

2

)
2
n
= (1− x)

n−m+1
n x

m−1
n = (1− x)1−λxλ.

We have d
dx ln g(x) =

λ
x − 1−λ

1−x with the only zero attained at x∗ = λ.

Replacing s2 by λ in (19) we obtain the bound

Prob
A

{

‖A†‖ ≥ t
}

≤
√
λn+ 1

2λ
λn
2

1

(
√
2π)n−m

On−m

(1− λ)n

(

1

σt
√
1− λ

)(1−λ)n

.

Lemma 2.1 implies

λ−
λn
2 =

(

λ
− λ

2(1−λ)

)(1−λ)n
≤ e

(1−λ)n
2 .

So we get

Prob
A

{

‖A†‖ ≥ t
}

≤
√
λn+ 1

2

1

(
√
2π)n−m

On−m

(1− λ)n

( √
e

σt
√
1− λ

)(1−λ)n

=

√
λn+ 1

2

(

e

1− λ

)

(1−λ)n
2 1

(
√
2π)n−m

On−m

(1− λ)n

(

1

σt

)(1−λ)n

=
1

2(1 − λ)

√

λ+
1

n

1√
n

(

e

1− λ

)

(1−λ)n
2 On−m

(
√
2π)n−m

(

1

σt

)(1−λ)n

≤
√
λ+ 1

2(1 − λ)

1√
n

(

e

1− λ

)

(1−λ)n
2 2π

n−m+1
2

Γ
(

n−m+1
2

)

(
√
2π)n−m

(

1

σt

)(1−λ)n

=

√
1 + λ

1− λ

1√
n

(

e

1− λ

)

(1−λ)n
2

√
2π

Γ
(n(1−λ)

2

)

2
(1−λ)n

2

(

1

σt

)(1−λ)n

.

We next estimate Γ
( (1−λ)n

2

)

. To do so, recall Stirling’s bound

√
2πxx+

1
2 e−x < Γ(x+ 1) <

√
2πxx+

1
2 e−x+ 1

12x for all x > 0

11



which yields, using Γ(x+1) = xΓ(x), the bound Γ(x) >
√

2π/x (x/e)x. We use this

with x = (1−λ)n
2 to obtain

Γ
((1− λ)n

2

)

≥
√

4π

(1− λ)n

((1− λ)n

2e

)

(1−λ)n
2

.

Plugging this into the above we obtain (observe the crucial cancellation of
√
n)

Prob
A

{

‖A†‖ ≥ t
}

≤
√

1 + λ

(1− λ)2
1√
n

(

e

1− λ

)

(1−λ)n
2 √

2π

√

(1− λ)n

4π

( e

(1− λ)n

)

(1−λ)n
2

(

1

σt

)(1−λ)n

= c(λ)

(

e

1− λ

)(1−λ)n
( 1

n

)

(1−λ)n
2

(

1

σt

)(1−λ)n

= c(λ)

(

e

σ
√
n(1− λ)t

)(1−λ)n

,

which completes the proof of the proposition. ✷

3.2 Proof of Theorem 1.1

To simplify notation we write c := c(λ) and Q := Q(m,n). Proposition 3.1 implies
that for any ε > 0 we have

Prob
A∼N(A,σ2I)

{

‖A†‖ ≥ e

1− λ

1

σ
√
n

(c

ε

)
1

(1−λ)n
}

≤ ε. (20)

Similarly, letting ε = e−
t2

2σ2 in Proposition 2.3 and solving for t we deduce that, for
any ε ∈ (0, 1],

Prob
{

‖A‖ ≥ Qσ
√
n+ σ

√

2 ln
1

ε
+ 1
}

≤ ε. (21)

We conclude that

Prob
A∼N(A,σ2I)

{

κ(A) ≥ ez(ε)

1− λ

}

≤ 2ε, (22)

where we have have set, for ε ∈ (0, 1],

z(ε) :=

(

Q+

√

2

n
ln

1

ε
+

1

σ
√
n

)

(c

ε

)
1

(1−λ)n
. (23)

We note that z(1) = ζ := ζσ(m,n), cf. Equation (8). Moreover, limε→0 z(ε) = ∞ and
z is decreasing in the interval (0, 1]. Hence, for z ≥ ζ, there exists ε = ε(z) ∈ (0, 1]
such that z = z(ε).

12



We need to upper bound ε(z) as a function of z. To do so, we start with a weak
lower bound on ε(z) and claim that

1

n
ln

1

ε
≤ ln(2z(ε)). (24)

To show this, recall that Q ≥
√

n
n+1 ≥ 1√

2
due to Lemma 2.4. Hence ζ ≥ Q ≥ 1/

√
2

and it follows that
√
2z ≤ 1 for z ≥ ζ. Thus, Equation (23) implies that

z(ε) ≥ 1√
2

(c

ε

)
1

(1−λ)n
.

Using c ≥ 1√
2
we get

(
√
2z)n ≥ (

√
2z)(1−λ)n ≥ c

ε
≥ 1√

2 ε
.

Hence (2z)n ≥ 1/ε, which shows the claimed inequality (24).
Using the bound (24) in Equation (23) we get, again writing z = z(ε), that

z ≤
(

Q+
√

2 ln(2z) +
1

σ
√
n

)(c

ε

)
1

(1−λ)n
,

which means

ε ≤ c

[

(

Q+
√

2 ln(2z) +
1

σ
√
n

) 1

z

](1−λ)n

.

By (22) this completes the proof. ✷

3.3 Proof of Corollary 1.3

Fix λ0 ∈ (0, 1) and put c := c(λ0). Suppose that m ≤ n satisfy λ = (m− 1)/n ≤ λ0.
Then n−m+1 = (1−λ)n ≥ (1−λ0)n and in order to have n−m sufficiently large it

suffices to require that n is sufficiently large. Thus, c
1

n−m+1 ≤ 1.1 if n is sufficiently
large. Similarly, because of Lemma 2.4, Q(m,n) ≤ 2.1 for large enough n. This
implies that, for 1√

m
≤ σ ≤ 1, we have

Q(m,n) +
1

σ
√
n

≤ 2.1 +
1

σ
√
n

≤ 2.1 +

√

m

n
≤ 2.1 +

√

λ0 +
1

n
≤ 3.1,

provided n is large enough. Then ζσ(m,n) ≤ 3.1 · 1.1 = 3.41.
By Theorem 1.1, the random variable Z := (1 − λ)κ(A)/e satisfies, for any A

with ‖A‖ ≤ 1 and any z ≥ 3.41,

Prob
A∼N(A,σ2I)

{

Z ≥ z
}

≤ 2c

[

(

Q(m,n) +
√

2 ln(2z) +
1

σ
√
n

) 1

z

]n−m+1

≤ 2c

[

(

3.1 +
√

2 ln(2z)
) 1

z

]n−m+1

.

13



Since 3.1 +
√

2 ln(2z) ≤ e
√
z for z ≥ 4 we deduce that, for all such z,

Prob
A∼N(A,σ2I)

{

Z ≥ z
}

≤ 2c
( e√

z

)n−m+1
.

Using this tail bound to compute E(Z) we get

E(Z) =

∫ ∞

0
Prob{Z ≥ z} dz ≤ e2 + 2c

∫ ∞

e2

(

e2

z

)

n−m+1
2

dz

z=e2y
= e2 + 2c

∫ ∞

1

(

1

y

)
n−m+1

2

e2dy = e2 +
4ce2

n−m− 1
.

We can now conclude since

E((1− λ)κ(A)) = E(eZ) = eE(Z) ≤ e3 +
4ce3

n−m− 1
≤ 20.1

the inequality, again, by taking n large enough. ✷

4 Applications

We next briefly discuss the two applications of our main result mentioned in the
introduction.

4.1 Accuracy of Linear Least Squares

Recall the problem (1) described in the introduction, namely, to compute the mini-
mum of ‖Ax − b‖2 over x ∈ R

n for given A ∈ R
m×n and b ∈ R

m (with m > n). It
is well known that the loss of precision LoP(A†b) —that is, the number of correct
digits in the entries of the data (A, b) minus the same number for the computed
solution A†b— satisfies (cf. [26] and [14, Ch. 19])

LoP(A†b) ≤ logmn3/2 + 2 log κ(A) +O(1).

Corollary 1.3, combined with Jensen’s inequality, implies that E(log κ(A)) ≤ log(20.1/(1−
λ)) = O(1) under the assumptions stated in the corollary. Hence for sufficiently
elongated, large matrices A, the expected loss of precision in the computation of the
solution A†b over all small perturbations A of A is dominated by the term logmn3/2.

4.2 Complexity of the Conjugate Gradient Method

If P ∈ R
m×m is a symmetric positive definite matrix and c ∈ R

m, the system
Px = c can be solved by the Conjugate Gradient Method (CGM), cf. [13]. This is
an iterative algorithm which performs at most m iterations but may require less.

14



Indeed, it is known (see, e.g., [25, Lecture 38]) that an ε-approximation of the
solution x can be computed in at most 1

2

√

κ(P )| ln ε| iterations (ε measures the
relative error of the approximation with respect to the Euclidean norm).

In many cases the matrix P arises as P = AAT for some matrix A ∈ R
m×n with

n > m. If A is standard Gaussian distributed, then the resulting distribution of P ,
called Wishart distribution, has been extensively studied in multivariate statistics.
However, in our case of interest, A is noncentered and much less is known about the
resulting distribution of P (called noncentral Wishart). Fortunately, using the fact
that

√

κ(P ) = κ(A), we can directly apply our tail bounds for κ(A) for a noncentral,
isotropic Gaussian distribution of A, to derive bounds for the expected number of
iterations of CGM.

To do so we use again Corollary 1.3. It shows that for all λ0 ∈ (0, 1) and all
0 < σ ≤ 1 there exists n0 such that for all 1 ≤ m < n we have

sup
‖A‖≤1

E
A∼N(A,σ2I)

(κ(A)) ≤ 20.1

1− λ
,

provided λ = m−1
n ≤ λ0 and n ≥ n0. It follows that if P is obtained as AAT for a

large, elongated, rectangular matrix A then, we should expect to compute a solution
with the desired accuracy with about 1

2
20.1
1−λ | ln ε| iterations. It is known that each

iteration of CGM takes 6n2 +O(n) arithmetic operations. Therefore, the expected
cost of running CGM on P is

3n2
20.1

1− λ
| ln ε|+O(n) =

60.3n2

1− λ
| ln ε|+O(n).

The leading term in this expression is smaller than the 2
3n

3 operations performed
by Gaussian elimination as long as

ε ≥ e−
n(1−λ)

91 .

For large n (and λ not too close to 1) this bound produces very small values of ε and
therefore, CGM yields, on the average (both for a Wishart distribution of data P
and for Wishart perturbations of arbitrary data), remarkably good approximations
of the solution x = P−1c.

5 Some Numerical Simulations

Section 6 in [5] describes the result of numerical computations producing experi-
mental values for E(lnκ(A)) (for certain choices of A and σ), which are denoted by
Avr(ln κ(A)) and compared with the upper bound for E(lnκ(A))

µ(m,n, σ) := ln
(

m+ σm
√
5n
)

+ ln
2.35

σ
+

1

r
+

√

eπ

5
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obtained there. The data in Tables 1 to 4 is taken from [5]. Each row in these tables
corresponds to a pair (m,n). For each row, 500 random matrices A ∈ R

m×n were
computed following the distribution N(

√
mA, I), where A was chosen as

A :=
ones(m, n)

‖ones(m, n)‖ ,

and ones(m,n) denotes the m × n matrix all of whose entries are 1. The column
with header Avr (lnκ(A)) shows the empirical average of lnκ(A) for the 500 chosen
random matrices A. Since κ(A) is scale invariant we note that this corresponds to
random matrices chosen from N(A, σI), where σ = 1/

√
m.

m n Avr (lnκ(A)) µ(m,n, σ) ln(20.1/(1 − λ))

10 15 1.88278226808667 7.73190477060415
20 30 2.04718612539162 8.74083698937094
40 60 2.13539482051851 9.75820027818245 4.0993321
80 120 2.19377719811291 10.78180469776403
160 240 2.23119383890675 11.80997066079053

Table 1: n = 1.5m.

m n Avr (lnκ(A)) µ(m,n, σ) ln(20.1/(1 − λ))

5 10 1.28204418194521 6.35902343647518
10 20 1.48669849397793 7.36178009761038
20 40 1.59394635398509 8.37451330180407
40 80 1.64896402420115 9.39470162365532 3.693866
80 160 1.69565973841311 10.42037692088400
160 320 1.72154032592663 11.45004561375610

Table 2: n = 2m.

m n Avr (lnκ(A)) µ(m,n, σ) ln(20.1/(1 − λ))

10 25 1.24167342192086 7.46370799208199
20 50 1.34213347902230 8.47908853717777
40 100 1.40120155287858 9.50123344342563 3.511545
80 200 1.44120596017225 10.52833707967242
160 400 1.45928497502137 11.55903912197539

Table 3: n = 2.5m.
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m n Avr (lnκ(A)) µ(m,n, σ) ln(20.1/(1 − λ))

5 15 0.98741849882614 6.37209092337754
10 30 1.10550395287499 7.38102314214432
20 60 1.18790345922560 8.39838643095583
40 120 1.23914387557043 9.42199085053742 3.406185
80 240 1.27096561714092 10.45015681356392
160 480 1.28600775609989 12.14829242876138

Table 4: n = 3m.

In [5] it is observed that “one sees that when one fixes m and lets n increase
the quantity Avr(lnκ(A)) decreases. This is in contrast with the behaviour of
µ(m,n, σ). It appears that our methods are not sharp enough to capture the be-
haviour of E(lnκ(A)).” Compare now with the results of the present paper. It
follows from Corollary 1.3, by Jensen’s inequality, that, for sufficiently large n,

E(lnκ(A)) ≤ ln 20.1
1−λ . But if m is held fixed then, when n increases, λ decreases and

so does ln 20.1
1−λ .

One still observes a difference between the bound ln 20.1
1−λ and the values of

Avr (lnκ(A)). Part of this difference comes from the asymptotic character of this
bound and the fact that our data is limited to m ≤ 160. One sees on the tables that
larger values of m would approach Avr (lnκ(A)) to ln 20.1

1−λ . We conjecture that, in
addition to the possible loss of sharpness coming from the use of Jensen’s inequality,
the difference above is due to the roughness of the constant 20.1.
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