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Abstract
Optimal control (motion planning) of the free interface in classical two-phase Stefan
problems is considered. The evolution of the free interface is modeled by a level set
function. The first-order optimality system is derived on a formal basis. It provides

gradient information based on the adjoint temperature and adjoint level set function.
Suitable discretization schemes for the forward and adjoint systems are described.
Numerical examples verify the correctness and flexibility of the proposed scheme.
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1 Introduction

Many industrial applications lead to multiphysics models involving phase change
phenomena. Important examples are the continuous casting of steel or crystal
growth. Besides their practical importance, such phase change problems offer a
broad spectrum of mathematical challenges, ranging from theoretical considera-
tions concerning the well-posedness of such problems to the numerical simulation
of phase change phenomena. In this work, we study a motion planning optimal
control problem for the two-phase Stefan problem in level set formulation. We
derive first-order necessary optimality conditions on a formal basis using tools
from shape calculus, and discuss the discretization of the forward and adjoint
problems. Numerical examples are also provided.

The two-phase Stefan problem is a classical model for phase change phenom-
ena. It is based on the heat conduction equation in the solid and in the liquid
phases. The motion of the interface (the freezing front) between these two
phases is caused by a jump of the temperature gradient across the interface.
The coupling of the interface motion to the heat equation is formulated as the
Stefan condition.

We represent the moving boundary in terms of a level set function. One of the
advantages of the level set formulation is its flexibility. It naturally handles
closed interfaces and topological changes, in contrast to other models in which
the interface is represented as the graph of a function or by a parametrization.

In the so called classical Stefan problem, an isotherm condition is used to pre-
scribe the temperature on the moving interface. In this setup, the Stefan prob-
lem can be transformed into the enthalpy formulation, for which a solution
theory based on weak solutions exists. The interface at any desired point in
time can then be obtained in an a-posteriori step as the zero-level surface of the
temperature. However, for the purpose of controlling the interface, we prefer
the level set formulation in which the interface location appears as an extra
state variable. This allows a natural formulation of motion planning problems,
for example. Moreover, the level set function provides access to other geometric
information such as the volume of the enclosed region and the curvature of the
interface, for instance. The latter is essential when the isothermal condition at
the interface is replaced by the Gibbs-Thomson correction, which relates the
temperature at the interface to its curvature.

Before we review some existing approaches to the optimal control of the Stefan
problem, let us explain our approach in more detail. As mentioned above, the
model is based on the heat conduction equation in two phases. The motion
of the interface between these two phases is captured by the level set method.
The goal of the optimal control problem is to track a desired interface motion,
which is provided in the form of a time-dependent signed distance function.
This control goal is formulated in terms of a cost functional that measures
the deviation of the actual from the desired interface and includes a control cost
term. We use the associated Lagrange functional of the resulting optimal control
problem to formally derive first-order optimality conditions. Shape calculus
tools are used to handle the geometric variations. The resulting adjoint equation
system has a similar structure as the forward two-phase Stefan problem. For the
discretization of the forward and adjoint heat equations, we use the extended
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finite element method of Chessa et al. [4]. The forward level set equation is
discretized using a discontinuous Galerkin scheme [3]. The adjoint level set
equation has a different structure than its counterpart in the forward system and
it is treated with the discontinuous Galerkin scheme of Kuzmin [19]. Finally,
a projected gradient algorithm is used to solve the optimal control problem
subject to control constraints. We provide numerical examples which feature
closed interfaces and topological changes in order to demonstrate the flexibility
of this approach.

Let us now put our work into perspective. Hoffmann and Sprekels [15] consider
a one-dimensional inverse two-phase Stefan problem. Their goal is to approx-
imate an ideal interface motion by using a non-optimal feedback control law.
The authors show the existence of a solution and provide numerical experiments.
Niezgódka and Pawlow [21] discuss results on weak solutions of multidimensional
Stefan problems in enthalpy formulation. In the companion paper [20], they use
these results to show existence of optimal controls. Moreover, they discuss
approximations of the optimal control problems under consideration. These ap-
proximation results are used to compute numerical solutions in [24]. Hoffmann
et al. [14] treat the problem of a feedback control via thermostats for a multi-
dimensional Stefan problem in enthalpy formulation. They do not present any
numerical calculations. Knabner [18] uses a linearization technique for the con-
trol of one-dimensional Stefan problems. He carries out the minimization over
a finite-dimensional subspace only, but is able to derive estimates of the order
of convergence. After a discretization, the problem boils down to solving a least
squares problem. The author presents several numerical examples. Zabaras and
coworkers [29] discuss a design problem for two-dimensional Stefan problems.
Their approach is based on a deforming finite element formulation. The authors
assume that the desired interface location is known in the form of coordinates of
nodes on the interface at distinct instances of time only. The boundary heat flux
serves as the design variable. Kang and Zabaras [16] consider a similar design
problem. Their goal is to find a boundary heat flux that realizes the desired
interface motion by minimizing the defect between the reference temperature
at the interface and the temperature at the actual interface. Their analysis
consists of the derivation of a sensitivity problem and the corresponding adjoint
problem. They use a deforming finite element method and a conjugate gradient
algorithm for the numerical solution of the optimization problem. In their ex-
amples section, the authors present a unidirectional solidification problem and
the problem of solidification in a corner. Yang [27] examines the inverse design
of solidification problems with natural convection by minimizing a similar cost
functional as Kang and Zabaras. However, his approach is tailored to unidirec-
tional solidification and he assumes that the heat flux into the free boundary is
known. He also uses a deforming finite element approach and an adjoint cal-
culus for the solution of the optimization problem. Hinze and Ziegenbalg [12]
represent the interface in a two-phase Stefan problem as the graph of a function
over a rectangular domain, which allows for the direct control of the interface
motion. They use the temperature at the boundary of the container as the
control variable and aim to track the desired interface motion by minimizing
an appropriate cost functional including an observation at terminal time. An
adjoint equation system is derived in a formal way. This adjoint system is the
basis for a gradient method with line search to solve the optimization problem.
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The discretization of the infinite dimensional problems is carried out by a finite
difference approach. The authors present a numerical example to verify their
theoretical results. Later, the same authors extend this approach and include
convection-driven flows in the liquid phase [13]. Protas and Liao [25] consider a
one-dimensional optimization problem for a PDE system in a moving domain.
The authors map the moving domain into a fixed domain and then derive an ad-
joint equation system. Alternatively, they show how to derive an adjoint system
directly in the moving domain using methods of non-cylindrical calculus. These
two approaches do not commute. The numerical examples given in this paper
are based on a spectral discretization. The authors also discuss the consistency
of their gradient approximation.

Our approach is similar to [12] in several aspects:

• We also treat the classical Stefan problem with a sharp representation of
the interface. Convection in the fluid phase is neglected.

• A formal Lagrange approach is used to derive an adjoint equation system.

• The optimization problem is solved by a gradient algorithm.

The main differences of our work to [12] are:

• We use a level set formulation to represent the moving interface, and thus
closed interfaces and topological changes can be handled naturally.

• The derivation of the adjoint equation system makes use of shape calculus
tools.

• Our numerical approach is based on the extended finite element method
(which operates on a fixed mesh) and discontinuous Galerkin schemes.

The material in this paper is organized as follows. In Section 2, we discuss the
model equations and the geometric setup. An optimal control problem that
aims to track a desired interface motion is formulated in Section 3. We also
include a brief discussion of the adjoint equation system there. The derivation
of this system is contained in Appendix A. We start Section 4 with a brief review
of the discretization of the Stefan problem, but refer to [2] for the details. The
remainder of this section is devoted to the discretization of the adjoint equation
system. We include a detailed algorithm that describes the solver. Finally,
we present two numerical examples in Section 5. The first example includes
control constraints while in the second example we demonstrate the ability of
our approach to handle topological changes. In Appendix B, we collect several
results from shape calculus that we need in Appendix A to derive the adjoint
system.

2 Model Equations

The solidification of a material in a fixed domain D ⊂ R2 (the hold-all) is
modeled by the two-phase Stefan problem. It can be formulated in the following
way [11, p. 23ff]:
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Find a function y : D × [0, T ] → R (the temperature) and a function φ :
D × [0, T ]→ R such that (see Figure 2.1)

ρ cS yt − kS ∆y = f in ΩS(t) (2.1a)
ρ cF yt − kF ∆y = f in ΩF (t) (2.1b)

y(x, 0) = y0(x) in D (2.1c)

kS
∂y
∂n = u on ΓC (2.1d)

kS
∂y
∂n = g on ΓN (2.1e)

y(x, t) = yM on ΓI(t) (2.1f)

−ρLφt =
[
k∇y

]S
F
· ∇φ on ΓI(t) (2.1g)

φ(x, 0) = φ0(x) in D (2.1h)

on a certain time horizon [0, T ].

The interface ΓI(t) is defined as the zero level set of φ:

ΓI(t) = {x | φ(x, t) = 0} = {φ(·, t) = 0} .

It divides D into ΩS(t) = {φ(·, t) < 0}, occupied by the solid phase, and
ΩF (t) = {φ(·, t) > 0}, occupied by the fluid phase. This choice of sign implies
that

n = ∇φ
|∇φ| (2.2)

is the outward unit normal to ΩS(t). The boundary of the hold-all D is de-
composed into two parts

∂D = ΓC ∪ ΓN , ΓC ∩ ΓN = ∅.

The part ΓC , which we require to be non-empty, refers to the part of the bound-
ary on which the control u is applied, while a prescribed heat flux g acts on ΓN
which might be empty.

We require that the density of the material, ρ, is constant and equal in both
phases so that we can ignore mass transport effects. cP ∈ R (P ∈ {S, F}) is
the specific heat at constant pressure, kP ∈ R (P ∈ {S, F}) is the coefficient of
heat conduction and yM ∈ R is the reference temperature at which solidification
takes place. L denotes the latent heat that is released upon solidification.

The Stefan condition (2.1g) can be equivalently expressed as [11, Section 1.4]

ρLV · n =
[
k∇y

]S
F
· n on ΓI(t). (2.3)

It states that the normal velocity V · n of ΓI(t) is proportional to the jump of
the normal derivative of the temperature:[

k∇y
]S
F

= kS∇y
∣∣
ΩS(t)

− kF∇y
∣∣
ΩF (t)

.
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ΩF (t)
φ(·, t) > 0

ΓI(t)
φ(·, t) = 0

ΩS(t)
φ(·, t) < 0

ΓNΓC

D

Figure 2.1: Setup of geometry for the two-phase Stefan problem.

3 The Optimal Control Problem and Optimality
Conditions

The objective functional

J(y, φ, u) =
γ1

2

∫ T

0

∫
ΓI(t)

|φd|2 ds dt+
γ2

2

∫
ΓI(T )

|φT |2 ds+
γ3

2

∫ T

0

∫
ΓC

|u|2 ds dt

is of tracking type. It aims to control the motion of the interface over the control
horizon [0, T ] and to monitor the final position at terminal time T . The last
term represents control costs that are added for regularization purposes.

Remark 3.1 1. If φd is chosen as the signed distance function to a desired
interface position then the terms∫

ΓI(t)

|φd|2 ds and
∫

ΓI(T )

|φT |2 ds

express the accumulated squared distance of the current interface from the
desired interface at time t ∈ [0, T ]. Note that this is independent of the
choice of φ away from ΓI(t).

2. This objective functional can be extended by terms such as∫ T

0

∫
D

|y − yd|2 dx dt and
∫
D

|y(T )− yT |2 dx

for the tracking of a desired temperature profile yd and yT but we omit
them for the sake of brevity.

Finally, we formulate our motion planning problem as

min
y,φ,u

J(y, φ, u) subject to (2.1). (MPP)

We comment on the inclusion of control constraints below.

Remark 3.2 Note that the level set function φ carrying the geometric infor-
mation is a state variable. Thus, (MPP) is an optimal control problem for a
free boundary problem, rather than a shape optimization problem.
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We assume that each choice of the control u induces unique states y(u) and
φ(u). Thus we introduce the reduced cost functional Ĵ(u) := J(y(u), φ(u), u)
and consider the unconstrained problem

min
u
Ĵ(u).

To compute the gradient of Ĵ(u), we introduce the Lagrange functional to
(MPP) (We omit the ds, dx and dt for the sake of brevity.)

L(y, φ, u, p, pC , pN , pI , ψ) = J(y, φ, u)−
∫ T

0

∫
D

(−f) p

−
∫ T

0

∫
ΩS(t)

(
ρ cS yt − kS4y

)
p−

∫ T

0

∫
ΩF (t)

(
ρ cF yt − kF 4y

)
p

−
∫ T

0

∫
ΓN

(
kS

∂y
∂nS
− g
)
pN −

∫ T

0

∫
ΓC

(
kS

∂y
∂nS
− u
)
pC

−
∫ T

0

∫
ΓI(t)

(y − yM ) pI −
∫ T

0

∫
ΓI(t)

(
ρLφt +

[
k∇y

]S
F
· ∇φ

)
ψ.

The following adjoint equation system results from setting Ly(·) = Lφ(·) = 0.
For a detailed derivation we refer to Appendix A.

−ρ cS pt − kS4p = 0 in ΩS(t) (3.1a)
−ρ cF pt − kF 4p = 0 in ΩF (t) (3.1b)

ρ cS p(T ) = 0 in ΩS(T ) (3.1c)
ρ cF p(T ) = 0 in ΩF (T ) (3.1d)

pC = p, kS
∂p
∂n = 0 on ΓC (3.1e)

pN = p, kS
∂p
∂n = 0 on ΓN (3.1f)

ρ
[
c
]S
F
p V · n−

[
k∇p

]S
F
· nS = pI on ΓI(t) (3.1g)

p = ψ |∇φ| on ΓI(t) (3.1h)

−L̂
(
ψt + div(ψ V )

)
− ∂y

∂n pI = −γ12
(
∂
∂n |φd|

2 + κ |φd|2
)

on ΓI(t) (3.1i)

L̂ ψ(T ) = −γ22
(
∂
∂n |φT |

2 + κ |φT |2
)

on ΓI(T ) (3.1j)

L̂ := ρL |∇φ|. (3.1k)

We refer to p and ψ as the adjoint temperature and adjoint level set function, re-
spectively. Equations (3.1a)–(3.1f) have a similar structure as the corresponding
equations (2.1a)–(2.1e) in the forward system. As expected, the time direction
is reversed in the adjoint equations. The boundary conditions for p are homo-
geneous and of Neumann type on ∂D. Equation (3.1g) is of Stefan type and
states that the multiplier pI can be expressed in terms of p. V is the velocity
field with which the interface moves as defined in (2.3). The coupling between
the two adjoint states p and ψ is enforced by the interface condition (3.1h) that
completes the adjoint heat equation. Note that this equation plays the same
role as (2.1f) in the forward system. Finally, equations (3.1i)–(3.1j) constitute
the adjoint Stefan condition. The forcing terms on the right hand sides of both
equations are contributions from the cost functional J .
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Remark 3.3 1. If tracking terms for a desired temperature profile yd are
included in the cost functional as suggested in Remark 3.1–(2), additional
forcing terms appear on the right hand sides of (3.1a)–(3.1d).

2. Note that we do not require φ to be a signed distance function to the
interface ΓI(t). If it is, then |∇φ| = 1 holds in (3.1).

The gradient equation

0 = γ3 u+ p on ΓC (3.2)

is obtained by taking the derivative Lu δu.

Remark 3.4 Frequently, the control u is restricted to belong to a convex set Uad

of admissible controls. In this case, the gradient equation (3.2) has the form

Lu(v − u) =
∫ T

0

∫
ΓC

(γ3 u+ p) (v − u) ds dt ≥ 0 ∀v ∈ Uad.

The adjoint equation system (3.1) remains unchanged.

An algorithm for the solution of (MPP) based on this gradient equation and
the adjoint system (3.1) is stated in Algorithm 1. Note that pointwise control
constraints Uad = {ua ≤ u ≤ ub} are present.

Algorithm 1 Adjoint-Based Projected Gradient Method
Input: u0

Output: û, ŷ, φ̂, p̂, ψ̂

1: j = 0
2: while the convergence condition is not fulfilled do
3: Solve the forward problem (2.1) for yj and φj .
4: Solve the adjoint problem (3.1) for pj and ψj .
5: Construct the descent direction from (3.2)

vj = −(γ3 u
j + pj).

6: Determine σj from

σj := arg min
σ

Ĵ
(
P[ua,ub](u

j + σ vj)
)
.

7: Set uj+1 = P[ua,ub](u
j + σj vj), j → j + 1.

8: end while

Remark 3.5 1. Steps 3 and 4 require the discretization of the coupled equa-
tion systems (2.1) and (3.1). This is discussed in Section 4.

2. The choice of vj in Step 5 corresponds to the negative gradient, i.e., the
direction of steepest descent.
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3. The projection P[ua,ub] in steps 6 and 7 ensures that the computed controls
are admissible. It is defined as

P[ua,ub](u) = min{ub,max{ua, u}}.

4. Step 6 can not be implemented exactly. Instead, a line search procedure,
e.g. the Armijo rule with backtracking is used to determine an approxima-
tion to σj, see, e.g., [22, Chapter 3].

4 Discretization of the Forward and Adjoint Sys-
tems

4.1 Discretization of the Forward Problem

The discretization of the coupled PDE system (2.1) bears several difficulties.

4.1.1 Tracking/Capturing the Moving Interface

We use the level set method [23] to represent the moving interface ΓI(t), which
handles closed curves and topological changes naturally. The idea of this ap-
proach is to extend (2.1g) to all of D or at least to a neighborhood of ΓI(t) by
the techniques explained in Section 4.1.2 below. This results in the first oder
PDE (the so called level set equation)

φt + V · ∇φ = 0 in D (4.1a)
φ(x, 0) = φ0 in D (4.1b)

that we discretize in space by adopting the discontinuous Galerkin scheme from
[3]. The time discretization is realized by an explicit Runge-Kutta method.

4.1.2 Reinitialization of the Level Set Function/Extension of Inter-
facial Quantities

As indicated above, the level set technique requires the extension of quantities
given on an interface to a neighborhood of that interface. The standard ap-
proach is to compute a constant extension in normal direction. Owing to the
relation (2.2), this amounts to solving the PDE [1]

sign(φ)∇Ψ · ∇φ = 0 in D (4.2a)
Ψ = Ψ̄ on ΓI(t) (4.2b)

for Ψ, where Ψ̄ are the given data on the interface. On a triangular grid, (4.2) can
be solved efficiently by the fast marching method of Kimmel and Sethian [17].
Theoretically, this extension fails, e.g., in the presence of corners in the interface
as the normal to ΓI(t) is not well-defined in a whole region in this situation.
However, this effect can be ignored in practical computations, and the resulting
extended quantity is always continuous. The signed distance function to the
current interface comes as a side-product of this extension process. This allows
for a cheap reinitialization of the level set function in order to maintain its signed
distance property.
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4.1.3 Discretizing the Heat Equation with Discontinuous Coefficients

The approximation of the temperature y has to take the moving interface into
account, as the coefficients cS , cF , kS and kF are usually different in the two
phases. Rather than employing a moving mesh approach, we use the extended
finite element method of Chessa et al. [4]. To account for the phase change
across ΓI(t), the standard finite element spaces on a fixed mesh are enriched
with additional basis functions. These are continuous but their first derivative
has a jump in normal direction to the interface. This spatial discretization is
combined with the implicit Euler method in time.

For a detailed description of the forward solver, we refer to [2].

4.2 Discretization of the Adjoint Problem

Equations (3.1a)–(3.1f) with the interface condition (3.1h) have the same struc-
ture as (2.1a)–(2.1f) except that the condition that prescribes p on ΓI(t) is now
dependent on both time and space. Therefore, it is straightforward to adapt
the extended finite element approach from [2] to the spatial discretization of p.
Note that the geometry for this adjoint equation is fixed by the solution φ of
(2.1).

Remark 4.1 Each step of the implicit Euler scheme for the solution of (2.1)
requires the solution of a linear system involving the stiffness matrix Kj, the
mass matrix Mj, the pseudo mass matrix Mj

j−1 and a matrix Pj that rep-
resents the interface condition (2.1f). The solution of the adjoint equations
requires the solution of the same linear systems backwards in time, except that
the interface condition (3.1h) is more complicated. Thus, the matrices Kj ,Mj

and Mj
j−1 (j = 1, . . . , n) are stored during the solution of (2.1) and are then

invoked for the solution of (3.1), avoiding reassembly.

One way of discretizing the adjoint Stefan condition (3.1i)–(3.1j) is to go back
one step in the derivation of the optimality conditions and to rewrite the adjoint
level set equation (A.3) as a PDE on the moving surface ΓI(t). Unfortunately
this PDE lacks diffusive terms and thus the available discretization strategies,
see [6, 7, 26] to name but a few references, all exhibit stability problems.

As an alternative, we note that all derivatives in the first order conservation
law (3.1i) on ΓI(t) are globally defined. Thus, this equation can be directly
extended to all of D, or at least to a neighborhood of ΓI(t), by using a constant
extension of the terminal condition (3.1j) and the forcing term on the right hand
side of (3.1i). We mention that the same idea is used in the context of PDEs
on moving surfaces and a finite difference framework in [26].

The resulting conservation law is

−ψt − div(ψ V ) = r in D, (4.3a)
ψ(T ) = rT in D, (4.3b)

where r and rT denote constant extensions in normal direction to ΓI(t) of the
right hand side of (3.1i) and of the terminal condition (3.1j). To obtain these
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constant extensions, we evaluate the forcing terms in (3.1i) and (3.1j) at the
interface and feed the resulting data as the boundary data into (4.2), which is
then solved by the fast marching method as explained in Section 4.1.2.

We then apply the discontinuous Galerkin scheme of Kuzmin [19] using the space
Pkpw :=

{
w | w ∈ P k(K) for all K ∈ Th

}
of piecewise polynomials of maximum

degree k:

Find ψh(x, t) ∈ Pkpw such that

0 = − ∂

∂t

∫
K

ψh wh dx−
∫
∂K

wh ψ̂h V · nds+
∫
K

ψhV · ∇wh dx (4.4)

for all wh ∈ Pkpw and for all K ∈ Th,

where Th is a triangulation of D,

ψ̂h(x, t) =


ψ+
h (x, t) V · n < 0, x ∈ D̄ \ ∂D,
ψ̄(x, t) V · n < 0, x ∈ ∂D,
ψ−h (x, t) V · n ≥ 0, x ∈ D̄,

and ψ̄ are Dirichlet boundary data. We apply the same explicit Runge-Kutta
scheme as for the forward level set equation to discretize (4.4) in time. The
complete algorithm for the adjoint system is given in Algorithm 2.

Remark 4.2 In Algorithm 2, NBj denotes the narrow band at time tj. This
quantity is known a-priori from the solution of the forward equation system
(2.1). Note that φj and V j are given only locally in NBj and not globally in
all of D. This explains the necessity of steps 6 and 11. To map a quantity Ψ
from NBj−1 to NBj, we copy the values of Ψ in the vicinity of the interface in
NBj−1 to the corresponding nodes in NBj. The fast marching method is then
used to extend Ψ to all of NBj. Simultaneously, the signed distance function to
the current interface in NBj is constructed, see Section 4.1.2.

Boundary Conditions

The Dirichlet boundary data ψ̄ are not given naturally. Rather, artificial bound-
ary conditions have to be specified. To minimize the influence of these condi-
tions, we use a reinitialization procedure in each time step. The adjoint state ψ
is evaluated at the interface and then extended to the current narrow band.

Curvature

For the discretization of the curvature κ that arises in the right hand side of
(3.1i) and in (3.1j), we make use of the finite element scheme that was proposed
by Fried [10]. This approach goes along nicely with our choice of quadratic
polynomials for all ansatz and test spaces.
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Efficient Implementation

As for the level set equation (4.1) in the solution of the system (2.1), it suffices
to solve (4.4) in a narrow band around the current position of ΓI(t). In ac-
cordance with the proposal of Kuzmin [19], we use a Taylor basis for the finite
element spaces Pkpw. In this basis, setting all off-diagonal entries to zero yields
a conservative mass lumping strategy. If we use the same basis for solving the
level set equation, the mass matrix that is induced by the bilinear form

M(ψ,w) :=
∫
K

ψw dx

is the same as in the discontinuous Galerkin scheme that we use to solve the
level set equation (4.1) in the solution of (2.1). In addition, the system matrix
that is induced by the bilinear form

K(ψ,w) :=
∫
K

ψ V · ∇w dx

is the transpose of the matrix that is induced by the corresponding bilinear form
in the level set equation. Thus, as for the adjoint temperature equations, the
matrices from solving (4.1) in the forward system are stored and then invoked
again during the solution of the adjoint Stefan condition.

Algorithm 2 Solver for the Adjoint Two-Phase Stefan Problem
Input: D, ρ, cS , cF , kS , kF , L, γ1, γ2 and for j = 1, . . . , NT :
tj , yj = y(tj), φj = φ(tj), ΓjI = ΓI(tj), NBj = NB(tj), φjd = φd(tj), φT

Output: pj = p(tj), ψj = ψ(tj), j = 1, . . . , NT

1: j → NT .
2: Initialize pj and ψj in the narrow band NBj , see (3.1c)–(3.1d) and (3.1j).
3: Evaluate the source term in (3.1i) in NBj .
4: while j ≥ 1 do
5: if NBj 6= NBj−1 then
6: Map φj−1 and V j−1 from NBj−1 to NBj .
7: end if
8: Compute ψj−1 in NBj .
9: Apply the slope limiter to ψj−1 in NBj .

10: if NBj 6= NBj−1 then
11: Map ψj−1 from NBj to NBj−1.
12: end if
13: Reinitialize ψj−1 by a constant extension in normal direction in NBj−1.
14: Implement the interface condition (3.1h) by a penalty approach.
15: Solve the adjoint temperature equations to obtain pj−1.
16: Update the source terms in (3.1i).
17: j → j − 1.
18: end while

11
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Figure 5.1: The interface position corresponding to the computed control (black,
thin line) and the desired motion (cyan, thick line) for the constrained control
problem of Section 5.1 at different time steps.
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Figure 5.2: The relative cost functional Ĵ(uj)/Ĵ(u0) for the constrained control
problem of Section 5.1.

5 Numerical Results

In this section we discuss two examples to highlight the potential of our ap-
proach. In the second example, the desired interface motion undergoes a change
in topology, which is reproduced by the optimally controled interface. Through-
out all computations, we use quadratic finite element spaces on a common tri-
angular mesh for the spatial discretization of the temperature variable y, its
adjoint p, the level set function φ and its adjoint ψ. In both examples, the
constants appearing in (2.1) are chosen as

ρ = 1, L = 1, yM = 0, kF =
1
2
, kS = 1, cF = cS = 1.

5.1 An Example with Control Constraints

The hold-all we consider in this example is the annulus

D = {(x, y) ∈ R2 | 0.22 ≤ x2 + y2 ≤ 0.72}.

The control u acts on both parts of the boundary of this domain. The initial
configuration is such that the solid phase is adjacent to the outer part of ∂D, i.e.,
to the circle with radius 0.7 (denoted by Γ0.7

C ), and the fluid phase is adjacent
to the inner part of ∂D, i.e., the circle with radius 0.2 (denoted by Γ0.2

C ). The
control goal is to track a prescribed interface that shrinks from a flower-like
shape at t = 0 to a circle at T = 0.3, i.e, we consider a solidification problem
in which the freezing front should march inwards. The functions φd and φT
representing the desired interface motion in the cost functional are computed
by the fast marching scheme introduced in Section 4.1.2 as the signed distance
functions to the zero level sets of the function

z(r, ϕ, t) = r − 1− t
2

+
0.3− t

3
sin(4ϕ),

13



where (r, ϕ) are the polar coordinates of x ∈ D. We impose the control con-
straints

u ≥ 0 on Γ0.2
C and u ≤ 0 on Γ0.7

C .

The domain is discretized using 3384 triangles and we make 200 time steps.
Moreover, we use the parameters γ1 = γ2 = 1, γ3 = 0.01 in the cost functional
and apply Algorithm 1 with the initial guess u0 = 0. The results after 12
gradient steps are reported in Figures 5.1–5.5.

Figure 5.1 shows the positions of the controled and the desired interfaces at
different instances of time. The controled interface is much closer to the desired
interface position than in the uncontroled case (not shown). Figure 5.2 shows
the evolution of the relative cost functional Ĵ(uj)/Ĵ(u0) in a semi-logarithmic
scale. We observe the characteristic behavior of gradient based optimization
methods: The convergence is fast in the beginning of the iteration, but after
a few steps the procedure slows down. The computed optimal control and the
corresponding temperature distribution are shown in Figure 5.3 and Figure 5.5
at the same instances of time as the interface positions in Figure 5.1. We observe
that, except for t = T = 0.3, the control constraint on Γ0.7

C is never active. The
constraint on Γ0.2

C is only active towards the end of the process, see Figure 5.4.
Due to the relations (3.1c), (3.1d) and (3.2), the control u must vanish at t = T .
This is indeed the case, as can be seen in Figure 5.3(d).

5.2 An Example with a Change of Topology

One of the distinguishing features of the level set method is its capability to
handle changes of topology. The example we discuss in this section demon-
strates that our optimal control approach inherits this property. We consider
the rectangular hold-all D = [−2, 2] × [−0.5, 0.5]. The initial configuration is
such that the solid phase, which is adjacent to ∂D, completely encloses the fluid
phase. As in Section 5.1, the desired interface motion corresponds to an inwards
solidification, starting from an ellipse-like shape at t = 0. A pinch-off should
occur at t ≈ 0.134. The level set functions φd and φT which encode the desired
interface evolution are taken as the signed distance functions to the evolving
interface obtained during a simulation run with given Neumann temperature
boundary data. Fast marching reinitialization as described in Section 4.1.2 is
used.

The boundary is decomposed into two parts Γ(t) = ΓN ∪ ΓC that are defined
by

ΓN = [−0.5, 0.5]× {−2} ∪ [−0.5, 0.5]× {2},
ΓC = [−2, 2]× {−0.5} ∪ [2, 2]× {0.5}.

As in Section 5.1, we impose the control constraint

u ≤ 0 on ΓC .

The Neumann data on ΓN are homogeneous. The domain is discretized using
4096 triangles and we make 220 time steps in the interval [0, 0.22]. We use the

14
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Figure 5.3: The computed control for the constrained control problem of Sec-
tion 5.1 at different time steps.
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Figure 5.4: Activity of the control constraint the control problem of Section 5.1
at time steps t ∈ {0.255, 0.285}.
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Figure 5.5: The temperature distribution and interface evolution corresponding
to the computed control for the constrained control problem of Section 5.1 at
different time steps.
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Figure 5.6: The interface position corresponding to the computed control (black,
thin line) and the desired motion (cyan, thick line) for the control problem of
Section 5.2 at different time steps.
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Figure 5.7: The relative cost functional Ĵ(uj)/Ĵ(u0) for the control problem of
Section 5.2.

parameters γ1 = 8, γ2 = 1, γ3 = 10−4 in the cost functional and apply Algo-
rithm 1 with an initial guess u0 which is given by a scaled down version of the
Neumann data used to generate the desired interface motion. The results after
53 gradient steps are reported in Figures 5.6–5.9. Figure 5.6 shows that the
controled interface follows the desired interface positions very closely. In partic-
ular, it demonstrates that our optimal control approach can handle changes of
topology. As in Section 5.1, the behavior of the relative cost functional (shown
in a semi-logarithmic scale in Figure 5.7) is again typcial for gradient methods:
After a good progress in the beginning the optimization slows down.

6 Discussion and Conclusion

The level set representation of the fluid-solid interface provides enough geometric
flexibility for handling closed curves and for capturing changes of topology in the
simulation of the forward problem. Our optimal control approach inherits this
beneficial property as demonstrated by the numerical examples. The proposed
methodology extends to cases in which the interface touches the boundary of the
given hold-all as it is the case in, e.g., VGF crystal growth. However, this case
requires some changes in the optimality conditions. The corresponding results
will be published elsewhere.

A mathematical motivation for utilizing the level set method is that during the
iterative numerical solution of the optimal control problem topological changes
may appear in the interface. Casting problems and crystal growth processes rep-
resent potential applications of the proposed optimal control approach. Chessa
et al. [4] consider the solidification of a two-dimensional casting model where the
interface evolution features closed parts and topological changes. The optimiza-
tion of such casting processes to ensure that the freezing front follows a desired
trajectory is desirable for various reasons. Among other goals, the quality of
the final product and the length of the production cycle might be significantly
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Figure 5.8: The computed control for the control problem of Section 5.2 at
different time steps.
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Figure 5.9: The temperature distribution and interface evolution corresponding
to the computed control for the control problem of Section 5.2 at different time
steps.
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improved by optimization. The predominance of the level set formulation over
other approaches is obvious in the solidification problem just mentioned.

The considerable numerical effort that is needed for evolving and for redistancing
the level set function, and for constructing the velocity field for the level set
update are a shortcoming of the proposed approach. Thus, if the geometric
flexibility that our method offers can be dispensed with, a more direct method
(as, for instance, the representation of the moving interface as the graph of a
function) might be preferable.

The first-order optimality system presented literally translates to the three-
dimensional case, except that the curvature κ has to be replaced by the mean
curvature. This also holds true for the numerical methods we use. The inclu-
sion of a convection-driven flow in the fluid phase (as, e.g., in [13]) is another
potential extension of our approach. Our techniques for the derivation of the op-
timality conditions are applicable also in this case. The extended finite element
approximation can be modified along the lines of [28]. For the optimal control
of dendritic solidification, the two-phase Stefan problem must be modified by
replacing the isothermal interface condition by the Gibbs-Thomson correction.
Consequently, the derivation of the optimality conditions must be adapted to
account for the variation of the interface curvature with respect to variations
in the level set function. Finally, state constraints, e.g., on the position of the
interface, are another challenging extension of the proposed methodology. Their
inclusion requires the application of suitable regularization techniques and will
be discussed elsewhere.
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A Formal Derivation of the Optimality Condi-
tions

Throughout this section, we omit the dx, ds and dt for the sake of brevity.

A.1 The Adjoint Temperature

The adjoint temperature equation is the result of taking the derivative Ly δy for
all directions δy that satisfy δy(x, 0) = 0.

As Jy δy = 0, we have

Ly δy = −
∫ T

0

∫
ΩS(t)

(
ρ cS δyt − kS4δy

)
p−

∫ T

0

∫
ΩF (t)

(
ρ cF δyt − kF 4δy

)
p

−
∫ T

0

∫
ΓN

kS
∂δy
∂n pN −

∫ T

0

∫
ΓC

kS
∂δy
∂n pC

−
∫ T

0

∫
ΓI(t)

δy pI −
∫ T

0

∫
ΓI(t)

ψ
[
k∇δy

]S
F
· ∇φ.

We apply integration by parts in both phases with respect to both time (using
(B.3)) and space (using Green’s Theorem), to find

Ly δy = −
∫

ΩS(T )

ρ cS δy(T ) p(T ) +
∫

ΩS(0)

ρ cS δy(0) p(0) +
∫ T

0

∫
ΩS(t)

ρ cS pt δy

+
∫ T

0

∫
∂ΩS(t)

ρ cS δy p vS +
∫ T

0

∫
∂ΩS(t)

kS
∂δy
∂n p−

∫ T

0

∫
ΩS(t)

kS ∇δy∇p

−
∫

ΩF (T )

ρ cF δy(T ) p(T ) +
∫

ΩF (0)

ρ cF δy(0) p(0) +
∫ T

0

∫
ΩF (t)

ρ cF pt δy

+
∫ T

0

∫
∂ΩF (t)

ρ cF δy p vF +
∫ T

0

∫
∂ΩF (t)

kF
∂δy
∂n p−

∫ T

0

∫
ΩF (t)

kF ∇δy∇p

−
∫ T

0

∫
ΓN

kS
∂δy
∂n pN −

∫ T

0

∫
ΓC

kS
∂δy
∂n pC

−
∫ T

0

∫
ΓI(t)

δy pI −
∫ T

0

∫
ΓI(t)

ψ
[
k∇δy

]S
F
· ∇φ,

where vS and vF denote the velocity fields corresponding to ΩS(t) and ΩF (t):

vS = V · n, vF = −vs on ΓI(t),
vS = 0 on ∂ΩS(t) \ ΓI(t),
vF = 0 on ∂ΩF (t) \ ΓI(t).

Using these properties of the normal velocities, δy(x, 0) = 0 and applying
Green’s Theorem once more, we further compute

Ly δy = −
∫

ΩS(T )

ρ cS δy(T ) p(T ) +
∫ T

0

∫
ΩS(t)

ρ cS pt δy +
∫ T

0

∫
ΓI(t)

ρ cS δy p V · n
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+
∫ T

0

∫
∂ΩS(t)

kS
∂δy
∂n p−

∫ T

0

∫
∂ΩS(t)

kS
∂p
∂n δy +

∫ T

0

∫
ΩS(t)

kS4p δy

−
∫

ΩF (T )

ρ cF δy(T ) p(T ) +
∫ T

0

∫
ΩF (t)

ρ cF pt δy −
∫ T

0

∫
ΓI(t)

ρ cF δy p V · n

+
∫ T

0

∫
∂ΩF (t)

kF
∂δy
∂n p−

∫ T

0

∫
∂ΩF (t)

kF
∂p
∂n δy +

∫ T

0

∫
ΩF (t)

kF 4p δy

−
∫ T

0

∫
ΓN

kS
∂δy
∂n pN −

∫ T

0

∫
ΓC

kS
∂δy
∂n pC

−
∫ T

0

∫
ΓI(t)

δy pI −
∫ T

0

∫
ΓI(t)

ψ
[
k∇δy

]S
F
· ∇φ.

Sorting the terms corresponding to their domains of integration and using n =
∇φ
|∇φ| on ΓI(t), we get the following condition for the adjoint temperature p:

0 =
∫ T

0

∫
ΩS(t)

(
ρ cS pt + kS4p

)
δy +

∫ T

0

∫
ΩF (t)

(
ρ cF pt + kF 4p

)
δy

−
∫

ΩS(T )

ρ cS p(T ) δy(T )−
∫

ΩF (T )

ρ cF p(T ) δy(T )

+
∫ T

0

∫
ΓN

(
−kS ∂p∂n

)
δy + kS

∂δy
∂n (p− pN )

+
∫ T

0

∫
ΓC

(
−kS ∂p∂n

)
δy + kS

∂δy
∂n (p− pC)

+
∫ T

0

∫
ΓI(t)

(
ρ cS p V · n− ρ cF p V · n− kS ∂p∂n + kF

∂p
∂n − pI

)
δy

+
∫ T

0

∫
ΓI(t)

(
p− ψ |∇φ|

) [
k∇δy

]S
F
· n for all δy.

By choosing proper directions of variation δy, equations (3.1a)–(3.1h) follow.

A.2 The Adjoint Stefan Condition

We denote by D JH(φ); δφK the variation of H(·) in direction of δφ. Using this
notation, the derivative of the Lagrangian L in direction δφ is given by

Lφ δφ =
D JJ(y, φ, u); δφK− (A.1a)

D

t∫ T

0

∫
D

(−f) p; δφ

|

− (A.1b)

D

t∫ T

0

∫
ΩS(t)

(
ρ cS yt − kS4y

)
p; δφ

|

− (A.1c)

D

t∫ T

0

∫
ΩF (t)

(
ρ cF yt − kF 4y

)
p; δφ

|

− (A.1d)
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D

t∫ T

0

∫
ΓN

(
kS

∂y
∂n − g

)
p; δφ

|

− (A.1e)

D

t∫ T

0

∫
ΓC

(
kS

∂y
∂n − u

)
p; δφ

|

− (A.1f)

D

t∫ T

0

∫
ΓI(t)

(y − yM ) pI ; δφ

|

− (A.1g)

D

t∫ T

0

∫
ΓI(t)

(
ρLφt +

[
k∇y

]S
F
· ∇φ

)
ψ; δφ

|

. (A.1h)

(A.1a)

The contributions of the cost functional are (see (B.8))

D

t
γ1

2

∫ T

0

∫
ΓI(t)

|φd|2 +
γ2

2

∫
ΓI(T )

|φT |2 +
γ3

2

∫ T

0

∫
ΓC

|u|2; δφ

|

= −γ1

2

∫ T

0

∫
ΓI(t)

δφ

|∇φ|

(
∂

∂n

(
|φd|2

)
+ κ |φd|2

)
− γ2

2

∫
ΓI(T )

δφ(T )
|∇φ|

(
∂

∂n

(
|φT |2

)
+ κ |φT |2

)
. �

(A.1b)

This term does not contribute to the variation of the Lagrangian with φ as the
domain of integration in this term is fixed. �

(A.1c)

The variation of the heat balance in the solid phase is given by (see (B.6))

(A.1c) = −
∫ T

0

∫
∂ΩS(t)

δφ

|∇φ|
(
ρ cS yt − kS4y

)
p

= −
∫ T

0

∫
ΓI(t)

δφ

|∇φ|
(
ρ cS yt − kS4y

)
p = −

∫ T

0

∫
ΓI(t)

δφ

|∇φ|
f p,

where we have used that δφ = 0 on ∂D in the second equality and the last
equality holds in the sense of a trace because of (2.1a). �

(A.1d)

A similar formula holds for the variation of the heat balance in the fluid phase.
The sign changes because the variation is just in the opposite direction compared
to the solid phase.

(A.1d) =
∫ T

0

∫
∂ΩF (t)

δφ

|∇φ|
(
ρ cF yt − kF 4y

)
p
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=
∫ T

0

∫
ΓI(t)

δφ

|∇φ|
(
ρ cF yt − kF 4y

)
p =

∫ T

0

∫
ΓI(t)

δφ

|∇φ|
f p,

where the last equality holds again in the sense of a trace because of (2.1b). �

(A.1e) and (A.1f)

The boundary integrals in these terms are independent of φ and thus their
derivatives vanish. �

(A.1g)

To compute the contribution of this term we assume that pI is defined on all of
D, i.e., we interpret pI as the restriction of a globally defined quantity to ΓI(t).
This allows us to apply the shape calculus tools from Appendix B.

Using (B.8), we conclude

(A.1g) = −
∫ T

0

∫
ΓI(t)

δφ

|∇φ|

(
∂
(
(y − yM ) pI

)
∂n

+ κ (y − yM ) pI

)

= −
∫ T

0

∫
ΓI(t)

δφ

|∇φ|

(
∂(y − yM )

∂n
pI

)
by (2.1f)

= −
∫ T

0

∫
ΓI(t)

δφ

|∇φ|
∂y

∂n
pI . �

(A.1h)

To compute the variation of the Stefan condition we assume that ψ and the
jump of the temperature gradients

[
k∇y

]S
F

are defined on all of D for the
same reason as in the last paragraph.

As the integrand is of the form ψA(φ+ δφ) with a linear operator A, we are in
the position to apply (B.7) and infer

(A.1h) = −
∫ T

0

∫
ΓI(t)

δφ

|∇φ|

(
∂

∂n

(
(ρLφt +

[
k∇y

]S
F
· ∇φ)ψ

)
+ κ (ρLφt +

[
k∇y

]S
F
· ∇φ)ψ

)
+
∫ T

0

∫
ΓI(t)

(ρL δφt + kS∇y · ∇δφ− kF ∇y · ∇δφ)ψ

=−
∫ T

0

∫
ΓI(t)

δφ

|∇φ|
∂

∂n

(
ρLφt +

[
k∇y

]S
F
· ∇φ

)
ψ by (2.1g)

+
∫ T

0

∫
ΓI(t)

(ρL δφt + kS∇y · ∇δφ− kF ∇y · ∇δφ)ψ. (A.2)
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To further simplify the second part of this formula, we invoke the surface trans-
port theorem (B.5):∫ T

0

∫
ΓI(t)

ρL δφt ψ =
∫

ΓI(T )

ρL δφψ −
∫

ΓI(0)

ρL δφψ

−
∫ T

0

∫
ΓI(t)

ρL δφψt +∇(ρL δφψ) · V + ρL δφψ divΓI(t)(V )

=
∫

ΓI(T )

ρL δφψ −
∫

ΓI(0)

ρL δφψ −
∫ T

0

∫
ΓI(t)

ρL δφψt

−
∫ T

0

∫
ΓI(t)

δφ ρL
(
∇ψ · V + ψ divΓI(t) V

)
−
∫ T

0

∫
ΓI(t)

ρLψ∇δφ · V.

The last term cancels with some of the other contributions in (A.2):

−ρLψ∇δφ · V + (kS∇y · ∇δφ− kF ∇y · ∇δφ)ψ
= ψ (−(kS∇y − kF ∇y)∇δφ+ (kS∇y − kF ∇y)∇δφ) = 0. �

Using δφ(x, 0) = 0, we end up with the following derivative of L in direction δφ:

Lφ δφ = −γ1

2

∫ T

0

∫
ΓI(t)

δφ

|∇φ|

(
∂

∂n

(
|φd|2

)
+ κ |φd|2

)
− γ2

2

∫
ΓI(T )

δφ(T )
|∇φ|

(
∂

∂n

(
|φT |2

)
+ κ |φT |2

)
+
∫ T

0

∫
ΓI(t)

δφ

|∇φ|
f p−

∫ T

0

∫
ΓI(t)

δφ

|∇φ|
f p+

∫ T

0

∫
ΓI(t)

δφ

|∇φ|
∂y

∂n
pI

+
∫ T

0

∫
ΓI(t)

δφ

|∇φ|
∂

∂n
(ρLφt +

[
k∇y

]S
F
· ∇φ)ψ

−

{∫
ΓI(T )

ρL δφψ −
∫

ΓI(0)

ρL δφψ −
∫ T

0

∫
ΓI(t)

ρL δφψt

−
∫ T

0

∫
ΓI(t)

δφ ρL
(
∇ψ · V + ψ divΓI(t) V

)}

= −γ1

2

∫ T

0

∫
ΓI(t)

δφ

|∇φ|

(
∂

∂n

(
|φd|2

)
+ κ |φd|2

)
+
∫ T

0

∫
ΓI(t)

δφ

|∇φ|
∂y

∂n
pI

+
∫ T

0

∫
ΓI(t)

δφ

|∇φ|
∂

∂n
(ρLφt +

[
k∇y

]S
F
· ∇φ)ψ

+
∫ T

0

∫
ΓI(t)

ρL δφψt +
∫ T

0

∫
ΓI(t)

δφ ρL
(
∇ψ · V + ψ divΓI(t) V

)
− γ2

2

∫
ΓI(T )

δφ(T )
|∇φ|

(
∂

∂n

(
|φT |2

)
+ κ |φT |2

)
−
∫

ΓI(T )

ρL δφψ.
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Requiring Lφ δφ = 0 for all admissible directions δφ results in the equations:

−ρL |∇φ|ψt = −γ2

2

(
∂

∂n

(
|φd|2

)
+ κ |φd|2

)
+
∂y

∂n
pI + |∇φ| ρL∇ψ · V

(A.3a)

+ ψ

[
∂

∂n
(ρLφt +

[
k∇y

]S
F
· ∇φ) + |∇φ| ρL divΓI(t) V

]
,

ψ(T ) = − 1
ρL |∇φ|

γ4

2

(
∂

∂n

(
|φT |2

)
+ κ |φT |2

)
. (A.3b)

During all our computations, V is always constructed by a constant extension
of (2.3) in normal direction. As a consequence, we have

divΓI(t) V = div V,

and this allows us to write

∇ψ · V + ψ divΓI(t) V = ∇ψ · V + ψ div V = div
(
ψ V

)
.

In addition, the level set equation we use to evolve φ corresponds to the Ste-
fan condition (2.1g) with a proper extension of the jump of the temperature
gradients. This means that

∂

∂n
(ρLφt +

[
k∇y

]S
F
· ∇φ) = 0

holds on all of D or at least in the narrow band that we use for the level
set computations. Thus, we can omit this term from the derivative and the
final version of the adjoint Stefan condition (3.1i) with terminal condition (3.1j)
follows.

B Transport Theorems and Shape Calculus

In this section, we collect transport theorems and shape calculus tools that
are needed to derive the adjoint equation system (3.1). We state these results
without the precise regularity assumptions.

B.1 Reynold’s Transport Theorem

Let w(x, t) be the velocity field with which the control volume Ω(t) moves and
let Γ(t) = ∂Ω(t). Then

d

dt

∫
Ω(t)

f(x, t) dx =
∫

Ω(t)

∂f

∂t
(x, t) + div

(
f(x, t) w(x, t)

)
dx (B.1)

=
∫

Ω(t)

∂f

∂t
(x, t) dx+

∫
Γ(t)

f(x, t) w(x, t) · n(x, t) ds. (B.2)

If we set f(x, t) = g(x, t)h(x, t) and integrate over the time interval [0, T ], a
formula for integration-by-parts in time-varying domains follows:∫ T

0

∫
Ω(t)

∂g

∂t
(x, t)h(x, t) dx dt =

∫
Ω(T )

g(x, T )h(x, T ) dx−
∫

Ω(0)

g(x, 0)h(x, 0) dx
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−
∫ T

0

∫
Ω(t)

g(x, t)
∂h

∂t
(x, t) dx dt (B.3)

−
∫ T

0

∫
Γ(t)

g(x, t)h(x, t) w(x, t) · n(x, t) ds dt.

For more details concerning Reynold’s Transport Theorem and a proof we refer
to [8, Section 5.4].

B.2 A Moving Surface Transport Theorem

Let f(·) : Γ(t) → R be a scalar quantity that is defined on the moving surface
Γ(t) and let w(x, t) be the velocity field with which Γ(t) moves. Then

d

dt

∫
Γ(t)

f(x, t) ds =
∫

Γ(t)

◦
f(x, t) + f(x, t) divΓ(t)

(
w(x, t)

)
ds. (B.4)

If f is the restriction of a globally defined quantity f̂ to Γ(t), the material
derivative can be equivalently expressed as

◦
f(x, t) =

∂f̂

∂t
(x, t) +∇f̂(x, t) ·w(x, t).

Just like above, we set f(x, t) = g(x, t)h(x, t) and obtain a formula for integration-
by-parts on time-varying surfaces:∫ T

0

∫
Γ(t)

ĝ(x, t) ĥt(x, t) ds dt =
∫

Γ(T )

g(x, T )h(x, T ) ds−
∫

Γ(0)

g(x, 0)h(x, 0) ds

−
∫ T

0

∫
Γ(t)

ĝt(x, t) ĥ(x, t) + w(x, t) · ∇
(
ĝ(x, t) ĥ(x, t)

)
(B.5)

+ g(x, t)h(x, t) divΓ(t) w(x, t) ds dt.

More details on this surface transport theorem can be found in [9].

B.3 Derivatives of Domain Integrals

Let Ω ⊂ D for a fixed hold-all D, denote Γ = ∂Ω and let J(Ω) =
∫

Ω
f(x) dx.

The perturbation of this functional with respect to a certain velocity field V is
given by [5, Theorem 4.2, p. 352]

dJ(Ω;V ) =
∫

Γ

f(x) 〈V (0), n〉 ds.

If Γ is given by the zero level set of a function φ and Ω = {x |φ(x) < 0}, the
velocity has to be chosen as

V (0) = − δφ

|∇φ|
∇φ
|∇φ|

,
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and the derivative of the functional

J(φ) =
∫
{φ<0}

f dx

in direction δφ is given by

D JJ(φ); δφK = −
∫

Γ

f
δφ

|∇φ|
ds.

The extension to the time-dependent case φ = φ(x, t) is straightforward. In this
case, the derivative of the functional

J(φ) =
∫ T

0

∫
{φ(·,t)<0}

f dx dt

in direction δφ is given by

D JJ(φ); δφK = −
∫ T

0

∫
Γ(t)

f
δφ

|∇φ|
ds dt. (B.6)

B.4 Derivatives of Boundary Integrals

We denote by Γλ the boundary of the perturbed set Ωλ that depends on the
parameter λ. Note that Ω0 = Ω and Γ0 = Γ = ∂Ω. We define the functional

J(λ) :=
∫

Γλ

ψ(λ, x) ds.

The derivative of J at λ = 0 is given by [5, Theorem 4.3, p. 355]

dJ(0) =
∫

Γ

ψ′(0) +
(
∂ψ

∂n
+ κψ

)
V (0) · ~n ds,

where ψ′(0)(x) = ∂ψ
∂λ (0, x).

This translates to the level set context by the settings

Γλ = {φ+ λ δφ = 0} , ψ(λ) = A(φ+ λ δφ)

for some linear operator A as follows. The derivative of the functional

J(φ) :=
∫
{φ=0}

Aφds

in direction δφ is given by

D JJ(φ); δφK =
∫

Γ

Aδφ−
(
∂

∂n
(Aφ) + κAφ

)
δφ

|∇φ|
ds.

If the integrand ψ is independent of λ (i.e., of φ), we have

D JJ(φ); δφK = −
∫

Γ

(
∂ψ

∂n
+ κψ

)
δφ

|∇φ|
ds.
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The extension to the time dependent case is again straightforward: The deriva-
tive of

J(φ) :=
∫ T

0

∫
{φ(·,t)=0}

Aφds dt

in direction δφ is

D JJ(φ); δφK =
∫ T

0

∫
Γ(t)

Aδφ−
(
∂

∂n
(Aφ) + κAφ

)
δφ

|∇φ|
ds dt. (B.7)

Again, if the integrand ψ is independent of λ (i.e., of φ), we have

D JJ(φ); δφK = −
∫ T

0

∫
Γ(t)

(
∂ψ

∂n
+ κψ

)
δφ

|∇φ|
ds dt. (B.8)
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[14] K.-H. Hoffmann, M. Niezgódka, and J. Sprekels. Feedback control via
thermostats of multidimensional two-phase Stefan problems. Nonlinear
Analysis, 15(10):955–976, 1990. doi:10.1016/0362-546X(90)90078-U.

[15] K.-H. Hoffmann and J. Sprekels. Real-time control of the free boundary
in a two-phase Stefan problem. Numerical Functional Analysis and Opti-
mization, 5(1):47–76, 1982. doi:10.1080/01630568208816131.

[16] S. Kang and N. Zabaras. Control of the freezing interface motion in two-
dimensional solidification processes using the adjoint method. International
Journal for Numerical Methods in Engineering, 38:63–80, 1995. doi:10.
1002/nme.1620380105.

[17] R. Kimmel and J. A. Sethian. Computing geodesic paths on manifolds.
Proceedings of the National Academy of Sciences of the United States of
America, 95(15):8431–8435, 1998.

[18] P. Knabner. Control of Stefan problems by means of linear-quadratic de-
fect minimization. Numerische Mathematik, 46(3):429–442, 1985. doi:
10.1007/BF01389495.

[19] D. Kuzmin. A vertex-based hierarchical slope limiter for p-adaptive discon-
tinuous Galerkin methods. Journal of Computational and Applied Mathe-
matics, 233(12):3077–3085, 2010. doi:10.1016/j.cam.2009.05.028.
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