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Abstract. We derive two types of saddlepoint approximations for expectations in the form of E[(X — K)™],
where X is the sum of n independent random variables and K is a known constant. We establish error
convergence rates for both types of approximations in the independently and identically distributed
case. The approximations are further extended to cover the case of lattice variables. An application
of the saddlepoint approximations to CDO pricing is presented.
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1. Introduction. We consider the saddlepoint approximations of E[(X — K)"], where X is
the sum of n independent random variables X;,7 =1,...,n, and K is a known constant. This
expectation is frequently encountered in finance and insurance. It plays an integral role in the
pricing of collateralized debt obligations (CDOs) [16], [1]. In option pricing, E[(X — K)*] is
the payoff of a call option [14]. In insurance, E[(X — K)*] is known as the stop-loss premium.
The expectation is also closely connected to E[X|X > K], which corresponds to the expected
shortfall, also known as the tail conditional expectation, of a credit or insurance portfolio. It
plays an increasingly important role in risk management in financial and insurance institutions.

In this article we derive two types of saddlepoint expansions for the quantity E[(X — K)™T].
The first type of approximation is based on Esscher tilting and the Edgeworth expansion.
The resulting approximations confirm the results in [1], which are obtained by a different
approach. Our contributions are as follows. (1) We have provided the rates of convergence
for the approximation formulas in the i.i.d. (independently and identically distributed) case.
(2) We present explicit saddlepoint approximations for the log-return model considered in [14]
and [15]. With our formulas, only one saddlepoint needs to be computed, whereas the measure
change approach employed in [14] and [15] requires the calculation of two saddlepoints. (3)
We have also provided the corresponding saddlepoint approximations for lattice variables.
The lattice case is largely ignored in the literature so far, even in applications where lattice
variables are highly relevant, for example, the pricing of CDOs.

Our main contribution is the second type of saddlepoint approximations. They are derived
following the approach in [11] and [5] where the Lugannani—Rice formula for tail probabilities
was derived. The higher order version of the approximations distinguishes itself from all
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SADDLEPOINT APPROXIMATIONS FOR EXPECTATIONS 693

existing saddlepoint approximations by its remarkable simplicity, high accuracy, and fast
convergence. The application of the approximations for lattice variables to the valuation of
CDOs leads to almost exact results.

The two expectations we have discussed are related as follows:

E[(X — K)"]

(1.1) EIXIX 2 K] = o

+ K.
Also closely related functions are E[(K — X)*] and E[X|X < K]|. The connections are well
known, and we include them here only for completeness:

E[(K — X)) =E[(X - K)"] - E[X] + K,
EX|X < K] = (E[X] - E[X1{x>3]) /P(X < K).

For simplicity of notation, we define
(1.2) C:=E[(X - K)*".

The article is organized as follows. In section 2 we recall the saddlepoint approximations
for densities and tail probabilities. Section 3 reviews the existing literature for calculating C
and related quantities by the formulas in section 2. In sections 4 and 5 we derive two types of
formulas for the saddlepoint approximations to C'. Section 6 gives the corresponding formulas
for the lattice variables. Numerical results are presented in section 7, including in particular
an application to CDO pricing.

2. Densities and tail probabilities. Dating back to [6], the saddlepoint approximation has
been recognized as a valuable tool in asymptotic analysis and statistical computing. It has
found a wide range of applications in finance and insurance, reliability theory, physics, and
biology. The saddlepoint approximation literature so far mainly focuses on the approximation
of densities [4] and tail probabilities [11], [5]. For a comprehensive exposition of saddlepoint
approximations, see [9].

We start with some probability space (2, F,P). Let X;,i=1,...,n, be n i.i.d. continuous
random variables all defined on the given probability space and X = > | X;. Suppose that
the moment generating function (MGF) of X is analytic and given by M;(t) for ¢ in some
open neighborhood of zero. The MGF of the sum X is then simply the product of the MGF
of X, i.e.,

M(t) = (M ()"

Let k(t) = log M(t) be the cumulant generating function (CGF) of X. The density and tail
probability of X can be represented by the following inversion formulas:

T+ioco
(21) feli) = s [ eplut) — K
(2.2) MX233:§% Tﬁ”%ﬂﬂ%;ﬁﬁﬁ (r > 0).

Throughout this paper we adopt the following notation:
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e f(n)=g(n)+0O(h(n)) means that (f(n)—g(n))/h(n) is bounded as n approaches some
limiting value. When appropriate, we delete the O(h(n)) term and write f(n) ~ g(n),
denoting g(n) as an approximation to f(n).

e ¢(-) and ®(-) denote, respectively, the probability density function (pdf) and cumula-

tive distribution function (cdf) of a standard normal random variable.

k1(t) = log M (t) is the CGF of X.

w:=E[X] and py = E[X;] are the expectation of X and X; under P.

T represents the saddlepoint that gives k1 (T) = K/n or #'(T) = K.

A\ = k)T /&"(T)"/? is the standardized cumulant of order r evaluated at T', and

A= 6 (T) /R (T)2.

o Z:=T\/k"(T) and Z; := T/ (T).
o W = sgn(T)\/2[KT — x(T)] and Wy := sgn(T)\/2[KT/n — r1(T)], with sgn(T)
being the sign of 7.

It is obvious that p = nuy, Z = /nZy, W = /nWi, A3 = A1 3/y/n, and Ay = A\ 4/n.

In what follows we will write formulas in terms of X (i.e., formulas with subscript 1 such as

Zy1, Wi, ete.) when deriving the approximations and studying the order of the approximation

errors. In fact the i.i.d. assumption is necessary only for the study of the error convergence

rates. The approximations are, however, readily applicable when the random variables X; are
not identically distributed. For this reason, we should delete the error terms once the order

of the approximation errors has been established, and write the formulas in terms of X (i.e.,

Z, W, etc.) for both generality and notational simplicity.

The saddlepoint approximation for densities is given by the Daniels [4] formula:

T 1 (A 5T _
e (R S R
2
(2.3) ~ ¢(W)% <1 + % - %) — fp.

For tail probabilities, two types of distinct saddlepoint expansions exist. The first type of
expansion is given by

PX 2 K) = 2D - a(vaz)] [140 (n7)]

2 2
(2.4) ~e T TE[1-9(Z) = P,

nALg Z%) + oV (a2 - 1)] 140 ()]

(2.5) ~ P <1 - %Z‘"’) + (b(W)% (22-1) =P,

P(X > K) = [Pl <1—

in the case T' > 0. For T" < 0 similar formulas are available; see [5]. The second type of
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expansion is obtained by [11], with

(2.6)

e YRR
zZ W

i (M . 5)‘%,3> A3 1 1

~1—0(W)+o(IW) L 1]=IP37

Nl

Zi\8 2 ) a2 W

B 1 (A 5A3 A3 1 1]

P(X > K) = Ps + ¢(vnW1) {n_

+o<n—%)}

Widely known as the Lugannani—Rice formula, P3 is most popular among the four tail proba-
bility approximations for both simplicity and accuracy. A good review of saddlepoint approx-
imations for the tail probability is given in [5].

3. Measure change approaches. Before we derive the formulas for E[(X — K)*], we
would like to briefly review an existing approach to approximating the quantity. Usually the
saddlepoint expansions for densities or tail probabilities are employed after a suitable change
of measure.

An inversion formula similar to those for densities and tail probabilities also exists for
E[(X — K)"], which is given by

(3.1) E[(X - K)*] = — T exp(elt) — 1K) 4, (r > 0).

C2mi f i 12

The authors of [16] rewrite the inversion formula to be

1 T+ioco
E[(X -K)"| = 5 exp(k(t) —logt? — tK)dt
Tl Jr—ioco
1 T+ioco ~
(3.2) =g L exp(k(t) — tK)dt,

where %(t) = k(t) — logt?. The right-hand side of (3.2) is then in the form of (2.1), and the
Daniels formula (2.3) can be used for approximation. It should be pointed out, however, that
in this case two saddlepoints always exist.

This approach is selected as a competitor to our approximation formulas later in our
numerical experiments.

Bounded random variables. [15] considers the approximation of the expected shortfall,
in two models of the associated random variable. The first model deals with bounded random
variables. Without loss of generality, we consider only the case in which X has a nonnegative
lower bound. Define the probability measure Q on (€2, F) by Q(A) = [, X/udP for A € F;
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then
1 I X
EXXEKZ*/ Xdpzi/ —dP
Xl | P(X > K) Jix>ry P(X > K) Jix>k} 1
U
. = > .
(3.3) IP(XZK)Q(X_K)

Hence the expected shortfall is transformed to be a multiple of the ratio of two tail probabil-
ities. The MGF of X under probability Q is given by

Mol = [ X qp - M0 _ MWK

as K'(t) = [log M (t)] = M'(t)/M(t). It follows that

(3.4) ro(t) = log Mg(t) = k(t) + log (+'(t)) — log(u).

For more general cases, see [15, section 2.6.2].

The saddlepoint approximation for tail probabilities can be applied for both probabilities
P and Q in (3.3). A disadvantage of this approach is that two saddlepoints need to be
determined, as the saddlepoints under the two probability measures are generally different.

Log-return model. The second case in [15] deals with E[eX|X > K] rather than with
E[X|X > K]. The expected shortfall E[e*X|X > K] can also be written as a multiple of
the ratio of two tail probabilities. Define the probability measure Q on (2, F) by Q(A) =
[, €% /M(1)dP for A € F; then

o M) X
E[e™|X > K] = P(X > K) /{X>K} e P(X > K) /{X>K} mdp
(55 - RX s U 2 K

The MGF and CGF of X under probability Q are given by

e M(t+1)
Mg(t) = eXM(l)d]P’: O

ko(t) = k(t+1) — k(1).

This also forms the basis for the approach used in [14] for option pricing where the log-
price process follows a Lévy process. Just like the case of bounded random variables, two
saddlepoints need to be determined for the expectation.

4. Classical saddlepoint approximations. In the sections to follow we give, in the spirit
of [5], two types of explicit saddlepoint approximations for E[(X — K)*]|. For each type of
approximation, we give a lower order and a higher order version. The approximations to
E[X|X > K] then simply follow from (1.1). In contrast to [15] and [14], no measure change
is required, and only one saddlepoint needs to be computed.
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Following [9], we call this first type of approximation the classical saddlepoint approrima-
tion. Approximation formulas for E[(X — K)™] of this type already appeared in [1], however
without any discussion of the error terms. The formulas are obtained by means of applica-
tion of the saddlepoint approximation to (3.1), i.e., on the basis of the Taylor expansion of
k(t) — tK around t = T. Here we provide a statistically oriented derivation that employs
Esscher tilting and the Edgeworth expansion. Rates of convergence for the approximations
are readily available with our approach in the i.i.d. case. Another advantage of our approach
is that it leads to explicit saddlepoint approximations in the log-return model from [15], which
is not possible with the approach in [1].

For now we assume that the saddlepoint ¢ = T" which solves £'(t) = K is positive. The
expectation E[(X — K)™] is reformulated under an exponentially tilted probability measure,

41 E[(X-K)]= / Pl K f)de = o / T2 — K)e~TE ) () da,

K K

where #/(T) = K and f(z) = f(z)exp(Tx — x(T)). The same exponential tilting is also
applied in [13], [5] for the approximation of tail probabilities.

The MGF associated with f(x) is given by M (t) = M(T+t)/M(T). It immediately follows
that the mean and variance of a random Varlable X with density f () are given by EX = K

and Var(X) = &"(T) = nk(T). By writing £ = K)/\/nk!(T) and f(z)dz = g(&)dE, we
find that (4.1) reads

(4.2) E[X-K)" ,/m'{ / ge VAL g(¢)de.

For ¢ with a density function, g(£) can be approximated uniformly by a normal distribution
such that g(&) = ¢(&)[1 + O(n_%)] The integral in (4.2) then becomes

| emgga = [ se—ﬁ%(s) [1+0(n4)] a

_ exp(Z5L / co (£+\le)2d£ [14—0 (n é)]
(4.3) - {\/—Z_w Az [1- <1>(\/ﬁzl)]} [1 +0 <n—%>] .

Inserting (4.3) into (4.2) leads to the following approximation:
E[(X - K)"]

@y = { % TaR(T)e T [1— B(yaz)] } [1+0(n74)].

By deleting the error term in (4.4) and representing the remaining terms in quantities related
to X, we obtain the following approximation:

//(T)

(4.5) E[(X - K] ~e s { F)

- TR'(T)e% [1 — @(Z)]} _. 0.
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Higher order terms enter if g(£) is approximated by its Edgeworth expansion, e.g., g(§) =
A _
B[ + 212(& — 3¢) + O(n~))]. Then

E[(X — K)"]
= G [1+ 0] + e M e oo — a0

2

s 2 .
— O 14+ 0] + e T S B T [T e 3e) e

6 Var
= ) [L+0(n™Y)] + e @-WD), /KQ(T)%
(4.6) x {11 - @(vnZ)|(n? 2t +3n23) — o(VaZ) (05 2} + 2/ Z1) }

Deleting the error term in (4.6), we get the higher order version of the approximation as
2 2 )\
(4.7) Cy = Cy + eZT_WT\/H”(T)Fg {1 —®(2)|(2* +32%) — (2)(Z% +22)} .

The approximations Cy and Cs are in agreement with the formulas given by [1].

Negative saddlepoint. We have assumed that the saddlepoint is positive when deriving
Cy and Cy in (4.5) and (4.7), or, in other words, u < K. If the saddlepoint 7" equals 0, or
equivalently p = K, it is straightforward to see that C; and Cy both reduce to the following
formula:

(48) E[(X -t =/ 2 = g,

In the case that u > K, we should work with Y = —X and E[Y'1;y>_ k)] instead since

EX1ix>m)] =+ E[-X1_x>_r}] = p + E[Y 1iy>_ gyl

The CGF of Y is given by ky(t) = kx(—t). The saddlepoint that solves ky (t) = —K is
—T > 0, so that C'; and Cs can be applied to Y. Note that

where the superscript (r) denotes the rth derivative. Transforming back to X, we find the
following saddlepoint approximation to E[(X — K)*] in the case of a negative saddlepoint:

(4.9) Cl=p—K+ e_WT2 {\/K//(T)/(Qﬂ') + T/-i”(T)eZ22<I>(Z)} ,
(4.10) Cy = Cr — 6%2_%2\/5”(17)% (0(2)(Z* +32%) + 6(2)(2° + 22)) .
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Log-return model revisited. We now show how to deal with the log-return model in [15]
without dealing with two probability measures simultaneously. We work with E [eX 1ix> K}]
which equals E [e¥|X > K| P(X > K). Replace z in (4.1) by ¢* and make the same change

of variables,
2 [e.e]
E [ 1(x> k)] :e_WT/ RV e 2 g )de.
0

After approximating g(§) by the standard normal density, we obtain

2 2 2
X ~ —W7+K+Z (§+Z)
E[e 1{X2K}] ~ 2 2

wh

(4.11) — R R 1 - (7)),

where Z = (T — 1)/£"(T'). Equation (4.11) is basically e Py, where Py is given by (2.4),
with Z replaced by Z. It is easy to verify that this approximation is exact when X is normally
distributed. A higher order approximation would be

w2 22 .
B[ 1] = T 1m0 (1- 252 ) + Sa2)22 - v}

5. The Lugannani—Rice-type formulas. The second type of saddlepoint approximations
o E[(X — K)*] can be obtained with the same change of variable as was employed in section
4 of [5], where the Lugannani-Rice formula for tail probability was derived. As a result
we shall call the obtained formulas Lugannani—Rice-type formulas. In this section we derive
the approximation formulas by means of the Laurent expansion, without the analysis of the
rates of error convergence in the i.i.d. case. An alternative (lengthy) derivation, including the
analysis of the convergence, is presented in an appendix.

We look at K = nz for fixed z and let &} (T") = z, so that &'(T) = nk|(T) = nz = K.
We follow the Bleistein approach employed in [5] to approximate k1(t) — tz over an interval
containing both ¢ = 0 and t = T by a quadratic function. Here, T" need not be positive any
more. Since nx = K we have —%Wf = k1(T) — Tz, with WW; taking the same sign as T". Let
w be defined between 0 and W7 such that

1
(5.1) §(w —W1)? = ki(t) =tz — k (T) + T
Then we have
1
(5.2) §w2 — Wiw = k1 (t) — ts)(T),

andt =0< w=0,t=T < w= W;. Differentiate both sides of (5.2) once and twice to

obtain 9
dw dw dw d”w
W Wla = ry(t) — r1(T), (E) + (0w —Wi)—= a2 - = #1(1).

In the neighborhood of ¢t = T (or, equivalently, w = W7), we have d—w = /K{(T). Note that
w1 = E[X;1] = £(0). In the neighborhood of t = 0 (or, equivalently, w =0), we have

dw _ Jeno) i T =0,

(5.3) 7 — VA
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dw  k®Y(T)—k(0) z—p1 .
= = f T #0.
dt Wy Wy it T#

Hence, in the neighborhood of ¢ = 0 we have w o t. Moreover,

a1 M0a
tdw w’ t dw w’

(5.4)

The inversion formula for E[(X — K)"] can then be formulated as

1 T+ioco en(%wz_wlw) 1 dt

5.5 E[(X -K)"] =-— ——d 0).
53 -8 = [ hypan (>0
Taking the first three terms of the Laurent expansion of {lgél—fu at w = 0 gives
1 dt ) -1
(56) t—2% ~ Ajw  + Ayw + A3,
where
1 1 dt dw 1 w

. A= gt 1 fwy,

(57) YTori L 2dww ! 27 j{ 27

t2 dw omi J. t2

/
69 o fri, L0,
v Y

The path of integration, v, traces out a circle around 0 in a counterclockwise manner. Since

7 and %2 have poles of order 1 and 2 at ¢t = 0, respectively, we obtain

T E_ / _x_ﬂl
(5.9) Al—%l_%tﬂ —11)(())—71 ,
. d 21

As can now be chosen such that the approximation (5.6) is exact at T, where we have % =

/K| (T). This leads to

(511) As 1 (l‘ - MI)W1—2 _ 1 (l‘ - lu’l)'

EN IR T4 WP
We substitute (5.6) into (5.5) to get
E[(X — K)"]
(5.12) o AL T Gerowin Q0 As [T e g
271 )0 w? o 2mi S i

After yet another change of variables, y = /nw, the first term becomes

T4+1ioc0 T4+1ioc0
Ay en(%uﬂ—WlU))d_w =A/n 1 e%f-ﬁ‘”w%
w2 : 2°

T—1io0 2mi Y

(5.13)

27l T—1ioco
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The integral in (5.13) is precisely the inversion formula of E(Y — )T, where Y is a standard
Gaussian distributed variable. By basic calculus we find

(5.14) E(Y —W)T =¢(W) - W1 - &(W)].

The second term in (5.12) is given by
Ay 70O n(Gw—Wiw) g — As /T+ioo e%(y—\/ﬁwﬂzdye_%"wf
27i i Vn2mi

Vo NG

Adding up (5.13) and (5.15), we obtain the higher order version of the Lugannani—Rice-type
saddlepoint approximation to the expectation E [(X - K )+],

510 Co= (a1 1= o) - S om0 .

T—1io0o

(5.15) p(W).

This is a very compact approximation formula that involves only «”(7T") and no cumulants of
higher order. In this sense the complexity of the calculation of Cy is comparable to that of C.
In the appendix we will show, however, that the order of error convergence of Cjy is
0] (n_i). A lower order version of the approximation, which we will denote by Cj, is given by
(5.17) Cs:=(p— K) [1 - (W) — M} .
w
(3 is an extremely neat formula requiring only the knowledge of W. More precisely, we don’t
need to compute x”(T). The order of error convergence of C3 is shown to be O (n_%)
Remark 1. Interestingly, [12] gives an approximation formula for E[(X — K)*], decompos-
ing the expectation to one term involving the tail probability and another term involving the
probability density,

E (X~ K)*] ~ (0~ K)P(X > ) + 2 ().
Martin [12] suggests approximating P(X > K) by the Lugannani-Rice formula Ps in (2.6),
and fx (K) by the Daniels formula fp in (2.3). In the i.i.d. case, this leads to an approximation
Cy = n(p1 —z)P3+n(z— 1) fp/T with a rate of convergence n~1/2, as the first term has an
error of order n=/2 and the second term has an error of order n=3/2. We propose replacing
P5 by its higher order version, Py, in (2.7). This gives the following formula:

(5.18) E[(X — K)*] ~ Cs + (u — K)o(W) (i s i) .

Equation (5.18) is simpler than Cjs as A4 is not included. It has a rate of convergence of
order n=3/2. However, compared to Cl, (5.18) contains a term of A3 and is certainly more
complicated to evaluate. Note further that if we neglect in Cj; the terms of the higher order
standard cumulants A3 and A4 in fp, we get precisely C5 as given in (5.17). For these reasons,
Cy is to be preferred.
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Zero saddlepoint. Daniels [5] noted that if the saddlepoint equals T' = 0, or, in other

words, p = K, the approximations to tail probability P, to Py all reduce to
1
PX>K)=-— A3(0)

2 6V2rm
We would like to show that, under the same circumstances, C3 and Cj also reduce to the
formula Cp in (4.8). To show that Cs = Cy when T' = 0, we point out that
k'(0) — & (T) T

%131)003 = %1{11)0 T T(1—-®(W))— (b(W)W

Note that when T — 0, w — —k"(0), T(1 — ®(W)) — 0, and % — [/{”(0)]_% (see
(5.3)). This implies that limp_,o C5 = Cy. Similarly we also have limp_,g Cy = Cj.

6. Lattice variables. So far we have considered approximations to continuous variables.
Let us now turn to the lattice case. This case is largely ignored in the literature, even in
applications in which lattice variables are highly relevant. For example, in the pricing of
CDOs, the random variable concerned is essentially the number of defaults in the pool of
companies and is thus discrete.

Suppose that X takes only integer values k with nonzero probabilities p(k). The inversion
formula of E[(X — K)T] can then be formulated as

N s e 1 THim
_ - _ — _ - _
BI(X - K) )= Y (k- Kplhy = > (k= K)p / | expl(t) — )
SR R (t)—tK)f: —tm gy
= exp(k 2. me
1 [T exp(k(t) —tK) t%e!
omi ) 2 a—cppd (>0

For K > u we proceed by expanding the two terms in the integrand separately. According
to a truncated version of Watson’s lemma [10, see Lemmas 4.5.1 and 4.5.2], for an integrand
in the form of exp(%(¢t — T)?) Z;‘;O(t — T)7 the change in the contour of integration for t
from 7 4+ ioco to 7 £ iw leads to a negligible difference which is exponentially small in n. The
authors of [2] declare further that the integral over the range 7+ iy, where |y| > logn/\/n, is
negligible. This means that we are able to incorporate the formulas for continuous variables
C4 and (s into the approximations for the lattice variables. We find, for lattice variables, the
following approximations corresponding to C and Cs in (4.5) and (4.7), respectively:

. T2 T
61 C=Cg— o
. T2 T
C2= C2ﬁ
2,2 =T o . -T -T
(6.2) F e (o(2) -zl — oz L 2oL o2 —TeT)

V(L =Ty
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For the approximations to E[X \X > K], we also need the lattice version for the tail probability

T .
1T 0

Q

(6.3) P(X > K) e—WTZ+ZT2[1 —®(2)]

or its higher order version

N 2,2
PR > K)~weo+s 1 x{[1—<1>(2)]<2—%z3— T>

1—e T el — 1
>\3 2 1 T ~
4 )| =Z"-1)+ = ——+——| p =: Ps.
(6.4) + o )[6< )+ Z(eT—l)H !
Recall that the Lugannani—Rice formula for lattice variables reads
(6.5) P(X > K)~1—®W)+¢(W) I 115

where Z = (1 — e~ T)/s"(T). Similar lattice formulas can also be obtained for C and Cj,
which will be denoted by Cs and Cy, respectively.
We first write down the inversion formula of the tail probability of a lattice variable,

(66) Q(X > K) = i Q(X — k‘) _ L /7'-i-i7r exp(ﬁ;(@(t) — tK)dt.

2mi 1—et
k=K

—im
Combining (6.6) with Lemma 1 (from the appendix), we obtain

1 /”’i7r /{,(t)exp(/{(t) - tK)dt.

E|X1is) = ey 1 ot

By the same change of variables as in section 5, we have
A 1 THim / lw2—Ww 1 dt
B (X o] = gg [ #OP T
1 T e%wQ—Ww |:ﬁ ’%/(t) dt :u':| dw.

27i T—im

w 1l—etdw w
As in the appendix, since lim;_,o1 — e~! = ¢, this leads to

(6.7) C3 = (u—K) [1 — (W) — %} = (.

Including higher order terms, we obtain

(6.8) Cy=Cs+ ¢(W)
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A higher order version of P; can be derived similarly,

2
P(X > K) ~ 1= B(W) + 9(17) E <1+%_%)

T T14e T 1 1 .
(6.9) S O O )__+_3 —. P,
272 273 W W

This can be used to estimate E[X|X > K].
The rates of convergence of Cy to Cy in the i.i.d. case are identical to their nonlattice
counterparts and shall not be elaborated further.

7. Numerical results.

7.1. Exponential and Bernoulli variables. Using two numerical experiments, we evalu-
ate the quality of the various approximations derived in the earlier sections. The approach
proposed by [16] is used as a competitor to our approximation formulas. Since their approach
employs the saddlepoint approximation to densities, the approximations for continuous vari-
ables need not be modified for lattice variables. Their first order approximation to C' will be
denoted by Cy1, and the second order approximation will be denoted by Cys. The calculation
of Cy1 (resp., Cyz) requires the second (resp., third and fourth) derivatives of the function
k(t) —logt2. As a result, the complexity of the calculation of Cy1 and Cy is comparable to
that of Cy and Cs, respectively.

In our first example X = > | X;, where X; are exponentially i.i.d. with density p(z) =
e~". The CGF of X reads k(t) = —nlog(1 —t). The saddlepoint to x'(t) = K is given by
T =1—n/K. Moreover, we have

s PO S VR S W
o 8 Nk 4=
The exact distribution is available as X ~ Gamma(n,1). The tail probability is then given
by

P(X>K)=1— ’y(;z(nf)f)
and y(n+1,K)
E[X]-{XZK}] =N |:1 - W} 5

where I' and v are the gamma function and the incomplete gamma function, respectively.

We first fix n = 100. For different levels K, from 107 to 145, we calculate E[(X — K)*].
The expectation decreases from 4.50 to 9.53 x 107° as K increases. The tail probability
E(X > 145) is 3.26 x 107°, indicating that we have entered the tail of the distribution. The
relative errors of the various approximations are illustrated in Figure 1.

Then we fix the ratio K/n = 1.15 and set n = 10 x 2% for i = 1,...,8. The expectation
decreases from 0.70 to 1.05 x 107% as n increases. The tail probability E(X > 1472) is
1.46 x 10~7. The relative errors of the various approximations are shown in Figure 2.

In the second example we consider the sum of Bernoulli random variables. This is par-
ticularly relevant for CDO pricing because the number of defaults in an underlying portfolio

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/12/14 to 131.180.130.11. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SADDLEPOINT APPROXIMATIONS FOR EXPECTATIONS 705
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Figure 1. Relative errors of various saddlepoint approzimations for E[(31_, X; — K)T] for fived n and
different K. X; is exponentially distributed with density f(z) = e *(x > 0). n = 100, K ranges from 107 to

145.

Relative Error
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Figure 2. Relative errors of various saddlepoint approrimations forE[(Z?:l X; — K)"] for different n. X;
is exponentially distributed with density f(x) =e (x> 0). n=10x 2" fori=1,...,8, K = 1.15n.
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Relative Error
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Figure 3. Relative errors of various saddlepoint approzimations for E[(31_, X; — K)T] for fived n and
different K. X; is Bernoulli distributed with p(X; = 1) = 0.15. n = 100, K ranges from 16 to 30.

can be modeled by a sum of Bernoulli random variables. Consequently, by the results in this
example we are able to estimate, at least partially, the performance of various approximations
for CDO pricing.

We set X = > | X;, where X; are i.i.d. Bernoulli variables with P(X; = 1) = 1 -P(X; =
0) = p = 0.15. The CGF of X is given by (t) = nlog (1 —p —I—pet). Here the saddlepoint to

K (t) = K equals T = log [(ffl(_ll—(l);))] and

K(n—K) n—2K n? —6nK + 6 K>
TG Pt () S VA (S S Y
(T) n 3 nK(n — K) 4 nK(n— K)

In this specific case, X is binomially distributed with

P(X = k) = (Z)p'“(l —p)" ",

which means that C as defined in (1.2) can also be calculated exactly.

Similar to the exponential case, we first fix n = 100. For different levels K from 16 to 30
we calculate E[(X — K)*]. The expectation decreases from 0.24 to 1.92 x 1075 as K increases.
The tail probability E(X > 30) is 1.05 x 107%.

Then we fix the ratio K/n = 0.2 and set n = 10 x 2¢ for i = 1,...,8. The expectation
decreases from 0.98 to 6.42 x 107° as n increases. The tail probability E(X > 256) is 8.68 x
10~7. The relative errors of the various approximations are presented in Figures 3 and 4. Note
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Figure 4. Relative errors of various saddlepoint approzimations for E[(>L, Xi— K)™] for different n. X;
is Bernoulli distributed with p(X; =1) =0.15. n=10x 2" fori=1,...,8, K =n/5.

that the saddlepoint approximations in the Bernoulli case are based on the formulas C;1—Cy
for lattice variables, derived in section 6.

In summary, all approximations work quite well in our experiments in the sense that they
all produce small relative errors, also in the case that the expectation is very small. The
error convergence rates of the approximations C1—Cj shown in Figures 2 and 4 confirm the
derived theoretical convergence rates. The higher order Lugannani—Rice-type formulas, Cy
and its lattice sister, are clearly the winners. They produce almost exact approximations and
have the highest error convergence rate. Moreover, the calculation of Cj4 requires the same
information as for C; and (. The performance of Cy; and Cy» is in general comparable to
that of C; and C5 but inferior to Cs.

7.2. CDO tranche pricing. In this section we show how the saddlepoint approximations
can be used for CDO tranche pricing.

The value and payments of a CDO are derived from a portfolio of fixed-income underlying
assets, for example bonds. CDO securities are split into different risk classes, or tranches, and
the pricing of the CDOs involves determining the fair spread of the tranches. Details of the
CDOs can be found in [3], [8].

Here we focus on the calculation of the fair spread of a CDO tranche. Let us denote by
tm = mAt, m = 1,2, ..., the payment dates, and let L;(t,,) be the loss due to obligor 7 up to
tm and L(t,,) = > Li(t,,) the portfolio loss. Then the fair spread of a CDO tranche with a
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lower attachment point K; and an upper attachment point Ks is given by

_ 2 40 tm) [ELix,, 165 (tm) — EL{x, ko) (tm—1)]
At Zm d(O, tm) [K2 - Kl - EL[Kl,Kg](tm)] 7

where d(0,t,,) denotes the discount factor from time ¢,, to 0 and
EL[KuKz](tm) = E[min(LtnwKQ)] - E[min(Ltmv Kl)]
represents the tranche loss at ¢,,. As E[min(X, K)| :=EX — E(X — K)*, we obtain

2 d(0, b)) [E(Ly,— K1) " —E(Ly,— K2) " —E(Ly,,_,— K1) T +E(Ly,,_,— K2) "]
a Aty d0,tm) [Ky — Ky — E(Ly,, — K1)t +E(Ly,, — K3)*]

So we see that the pricing of a CDO tranche can be reduced to the calculation of E(L; — K)™
for a number of payment dates and two attachment points, which is exactly what we have
been working on in the previous sections.

For simplicity of notation from now on we omit the subscript time index t. Let D; be the
default indicator of obligor 7. Assuming a constant recovery rate, 1 — A, the loss due to obligor
i is given by L; = AD;. With D = > D; the number of defaults in the portfolio, then we have

(7.1) E(L - K)* =E (Z Li— K)+ = \E (Z D; — K//\)+ = AE(D — K/\)*.

The quantity K /X is in general not an integer. Consequently we need to make an adjustment
before we can apply the saddlepoint approximations for lattice variables. We have, denoting
by [z] the nearest integer that is greater than or equal to z,

E(D-K/NY= Y (k—K/NP(D =k)

k>[K /X
= D (k= [K/ADP(D =k) + ([K/A] = K/A) Y P(D=k)
k>[K/A] k>[K/A]
(7.2) = E(X — [K/\)T + ([K/X\] = K/M)P(D > [K/X]).

For example, for the attachment point 3% of the iTraxx index (with a notional 125) and a
recovery A = (0.6, we have

E(L — 3% x 125)" = 0.6E(D — 3.75/0.6)* = 0.6 [E(D — 7)™ + 0.75P(D > 7)] .

Both the expectation and the tail probability in (7.2) can be approximated by the saddlepoint
approximations based on the same saddlepoint. Finally we substitute (7.2) into (7.1).

Now we consider the approximation of (7.1) in the industrial standard Gaussian copula
model. In this model, A;, the standardized asset return of counterparty ¢ is normally dis-
tributed and can be decomposed as A; = /pY + /1 — pe;, where Y is a systematic factor
which affects all counterparties and ¢; is a specific risk which affects only obligor i; p is called
the asset correlation. The counterparty defaults at time ¢ if A; < ¢ with p = P(4; < ¢) being
the default probability. Note that both ¢ and p are time-dependent.
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Table 1
The saddlepoint approzimations to B(L — K)" for three payment dates and a variety of attachment points
(AP) and their relative errors.

AP p(t1) = 0.0005 p(t2) = 0.005 p(ts) = 0.05

3%  6.1962e-04 (4.44e-05)  4.3983e-02 (2.06e-05)  1.7946e+00 (4.44¢-06)

6%  8.5987e-05 (1.05e-05)  1.2159e-02 (4.68e-06)  9.6209e-01 (1.15e-06)

9%  1.6686e-05 (6.66e-06)  4.1627e-03 (2.72e-06)  5.3731e-01 (7.53e-07)

12%  3.1798¢-06 (9.80e-06)  1.5707e-03 (3.54e-06)  3.0515e-01 (1.13¢-06)

22%  2.5578e-10 (1.61e-05)  7.4415e-05 (8.74e-07)  4.5675e-02 (3.80e-07)
Table 2

The saddlepoint approzimations (SA) to the spreads (in basis points) of various tranches.

Tranche SA Benchmark
[3%,6%] 742.0349 742.0414

]
[6%,9%)] 363.9013 363.9019
[9%,12%)]  195.4237 195.4238
[12%, 22%)]  64.6433 64.6434
[22%, 100%) 1.4492 1.4492

We consider a homogeneous portfolio of 125 counterparties, although the saddlepoint
approximations can also handle inhomogeneous portfolios well. An application of saddlepoint
approximations to inhomogeneous credit portfolios can be found in [16] for CDO pricing and
in [7] for the calculation of the portfolio value at risk. We choose to work with a homogeneous
portfolio only because we can obtain the exact solution by binomial expansion in this case.

For simplicity we consider only three payment dates and take the following default prob-
abilities: p(t1) = 0.0005, p(t2) = 0.005, p(t3) = 0.05. Further we assume an asset correlation
p = 0.3 and a constant recovery rate 1 — A = 0.4. The homogeneity assumption allows us
to calculate the exact tranche losses and spreads by the binomial distribution, which can be
used as benchmarks to evaluate the performance of the saddlepoint approximations.

For all standard attachment points of the iTraxx index, i.e., 3%, 6%, 9%, 12%, and 22%,
we calculate

E(L - K)t = /E[L(Y) — KT dP(Y)

by approximating the integral by the Gauss-Legendre quadrature with 250 nodes in the in-
terval Y € [—5,5]. In Table 1 we present the estimates derived from the saddlepoint approxi-
mations Cy and Ps. In parentheses are the relative errors of the approximations with respect
to the exact results obtained with the binomial distribution.

Suppose that d(0,t1) = 1.05, d(0,t3) = 1.1, d(0,t3) = 1.2, and At = 1. The saddlepoint
approximations to the spreads of various tranches (in basis points) are shown in Table 2. The
results confirm the high accuracy of the saddlepoint approximations.

8. Conclusions. We have derived two types of saddlepoint approximations to E[(X —K)*],
where X is the sum of n independent random variables and K is a known constant. For each
type of approximation, we have given a lower order as well as a higher order version. We
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have also established the error convergence rates for the approximations in the i.i.d. case. The
approximations have been further extended to cover the case of lattice variables. Numerical
examples, including in particular an application of the saddlepoint approximations to CDO
pricing, show that all these approximations work very well. The higher order Lugannani—
Rice-type formulas for E[(X — K)T] are particularly attractive because of their remarkable
simplicity, extremely high accuracy, and fast convergence.

Appendix. Error convergence of the Lugannani—Rice-type formulas. In this section we
present an alternative derivation of the Lugannani—Rice-type saddlepoint approximations to
E[(X — K)T]. An analysis of the error convergence of the approximation formulas is also
provided here.

In this alternative derivation to (5.16), instead of working directly with E[(X — K)*| we
first work on the saddlepoint approximations to E [X1;y> k3], which is related to E[(X —K)*]
in the following way:

(A1) E[(X — K)"] =E [X1(y>x] — KP(X > K).

To start, we derive the following inversion formula for E [X 1ix> K}].
Lemma 1. Let k(t) = log M (t) be the cumulant generating function of a continuous random
variable X. Then

(A.2) EXLom] = o [ w(nSRED )

2mi J oo t

dt (t>0).

Proof. We start with the case that X has a nonnegative lower bound. Employing the
same change of measure as in (3.3), we have E [Xl{XzK}] = uQ(X > K), where

QX > K) = — T e(g(t) —tK) o, (r > 0).

2w i t

Substituting kg (t), which is given by (3.4), into (A.2), we find

1 [TT% exp [k(t) + log K/ (t) — log u — tK]

E|X1 =pu— dt
S =3 n
I t) —tK
L o (S0 1) )y
2mi )00 t

In the case that X has a negative lower bound, —a, with a > 0, we define Y = X + a so that
Y has a nonnegative lower bound. Then, the CGF of Y and its first derivative are given by
ry (t) = K(t) + ta and &% (t) = K'(t) + a, respectively. Since

E[X1pxory] =E[(Y —a)ly_o>ky] =E[Y1y o>k} —aP(Y —a > K)

and 4
1 Teo exp(k(t) —tK
E [Yl{Y—aZK}] - n'(t)M

27i T—1i00

dt + aP(Y — a > K),

we are again led to (A.2).
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For unbounded X, we take X = max(X, L), where L < —1/7 is a constant. Since X, is
bounded from below, we have

L[ exp(rx, (1) — tK)

BXrlpnzml =57 [ ma®) ; dt
1 [T exp(—tK)
A. = — MY (t)————=dt
(A.3) =l X, () ———dt,

where My (1) = M'(1) + ffoo(LeTL — xe™)dP(x). For L < —1/7, M, () increases mono-
tonically as L decreases, and approaches M'(7) as L — —oco. Note also that E [X 1ix> K}] =
E [X11gx,>ky) for all L < K. Now take the limit of both sides of (A.3) as L — —oc. Due
to the monotone convergence theorem, we again obtain

1 T+i00 exp(—tK
E [Xl{XzK}] = — . M'(t)%

2ri
— L THieo H/(t) eXp(/{(t) - tK)
2mi )i t

dt
dt. u

We apply the same change of variables as in section 5.! Based on Lemma 1, the inversion
formula for E [X 1y inx}] can be formulated as

1 T4+ioco 1

211 J e t dw
_ [T e [ SO E ]
211 e w t dw w
T+i1
:Wl/ 1 ey W
oo 2mi w
T—100
_7LW12 Wi+ioco !
(A.4) +g/ ezn(w=W1)? m(t) dt duw.
2mi Wi —ico t dw w

The first integral takes the value 1 — ®(y/nW;) = 1 — ®(W). The second integral does not
have a singularity, because of (5.4). Hence there is no problem in changing the integration
contour from the imaginary axis along 7 > 0 to one along W7, as done in (A.4), even if W)
and T are both negative.

The major contribution to the second integral comes from the saddlepoint. The terms in
the brackets are expanded around T and integrated to give an expansion of the form

(A.5) n(b(\/ﬁwl)(bln‘% + bgn—g + bsn_% + 4.

By Watson’s lemma this is an asymptotic expansion in a neighborhood of W7. For more
details, see Lemma 4.5.2 in [10]. Coefficient b; in (A.5) can be obtained by only taking into

'Let w be defined between 0 and Wi such that & (w — W1)? = ki(t) — to — k1(T) + Tz. Then we have
Tw? — Wiw = ki (t) — tr) (T).
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account the leading terms of the Taylor expansion of

pR(t) At o Ri(E) dt 1 T
A S SN/ Y st A0 B A B = —
(A-6) t dw w t dwlr w ‘Wl + Z; Wi

Therefore we are led to

(A7) E[X1xongy] =nm [1 - @(VaW1)] + né(vniWr) [T <Zi1 - I/;/—ll> +0 (n_g)] :

Subtracting KP(X > K) from (A.7) with the tail probability approximated by the Lugannani—
Rice formula P3 from (2.6), we see immediately that

(A.8) E[(X —na)"] =n(p —z) |1 — &(v/nWy) — (\>/__VIV/[?) +0 <n—§’>] _

Rewriting (A.7) and (A.8) in quantities related to X and deleting the error terms, we obtain
the following approximation:

(A9 B [X1geai] ~ult - #(7)] +o07) | 5 - & .

(A.10) E[(X-K)"]~(u-K) [1 —d(W) — %} =: Cs.

Next, we consider the coefficient b3 in (A.5). Write U := k{(T)T — &} (T"). The Taylor
expansion of ) (t)/t around T gives

(A.11) = + (= T)g +

Furthermore, we expand exp(n[k1(t) — tz]) in the same way as in [4]:

exp(nlki(t) — tx])
= exp (n x] + ;nml(T)(t —T) + 6/-{'1"(T)(t —T)3 + %/{@(t —T)* +.. >
= exp (n x] + ;nml(T)(t - T)2>
(a12)  x [14 el —T>3+2ﬁm§4’<T>< ST - .
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We put (A.11) and (A.12) together and have, at the line t =T + iy,

2
nWy

Tiee () —ta K1) g e /T+i°° Lkl (T (t—T)?

— e
2mi Jr_ieo t 2mi

n

ez
T—ioco

X [1 + %n’{’(T)(t T3+ 2Tyt - 1) + n—2/£’1”(T)2(t —T)5 4. }

241 72
&, (T) U @t-17)?2[&"(T) 2U
x{ ot (=T + g T | T pdt
_nW12 too
e [1—%/41"(T)iy3+%/@§4)(T)y4
u —00
n? kY (T U ¢ [&"T) 2U
_EKY/(T)%MMH 1; )+iyﬁ_?[ 1; )_F]Jr”.}dy
_ RUT) s [RI(T) (Mg D o Uhz Mg U _5
_"gb(*/ﬁwl){\/ﬁz1 o 2[ 2 s "aas) Tz Tar T O(" 2)
(A.13)
— (W) | ppd (T Py T N E R o (n_5>
B VnZy 82y 24z, Tz, 27} 73} '

Notice that (A.13) is itself a saddlepoint approximation to E[X1{x> k3] for K > p. However,
it becomes inaccurate when T' approaches zero due to the presence of a pole at zero in the
integrand. Meanwhile expanding 1/w in the second integral in (A.4) around W gives

_7LW12 ico
ne '2 /W1+ pan(w=-w1)2 ML g
2mi Wi—ioco w
_ﬂ ico
_ e 2 /W1+ s (w=T1)2 1 (w=W) n (w —W7)? 4o | dw
2mi W1 —ioco Wl W12 W13
1 1 _5
(A14) = nmé(vnWh) [\/ﬁwl - T —|—O<n z)}

Adding (A.13) and (A.14) to 1 —®(y/nW7) and then subtracting nx times (2.7), we obtain

BIX — no)*] = g o) {1 - @y + N0
o e g B o ()
which can be rewritten as
(A.16) E[(X — K)*] ~ Cs + 6(W) [% (- K)%} _.c.
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