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Abstract. Inspired by current challenges in data-intensive and energy-limited sensor networks,
we formulate a coverage optimization problem for mobile sensors as a (constrained) repeated multi-
player game. Each sensor tries to optimize its own coverage while minimizing the processing/energy
cost. The sensors are subject to the informational restriction that the environmental distribution
function is unknown a priori. We present two distributed learning algorithms where each sensor only
remembers its own utility values and actions played during the last plays. These algorithms are
proven to be convergent in probability to the set of (constrained) Nash equilibria and global optima
of a certain coverage performance metric, respectively. Numerical examples are provided to verify
the performance of our proposed algorithms.
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1. Introduction. There is a widespread belief that continuous and pervasive
monitoring will be possible in the near future with large numbers of networked, mo-
bile, and wireless sensors. Thus, we are witnessing intense research activity that
focuses on the design of efficient control mechanisms for these systems. In partic-
ular, distributed algorithms would allow sensor networks to react autonomously to
unanticipated changes with minimal human supervision.

A substantial body of research on sensor networks has concentrated on simple
sensors that can collect scalar data, e.g., temperature, humidity, or pressure data.
A main objective is the design of algorithms that can lead to optimal collective sens-
ing through efficient motion control and communication schemes. However, scalar
measurements can be insufficient in many situations, e.g., automated surveillance or
traffic monitoring. In contrast, data-intensive sensors such as cameras can collect
visual data that are rich in information, thus having tremendous potential for moni-
toring applications, but at the cost of a higher processing overhead or energy cost.

Precisely, this paper aims to solve a coverage optimization problem taking into
account part of the sensing/processing trade-off. Coverage optimization problems
have mainly been formulated as cooperative problems where each sensor benefits
from sensing the environment as a member of a group. However, sensing may also
require expenditure, e.g., the energy consumed or the time spent by data processing
algorithms in sensor networks. Because of this, we endow each sensor with a utility
function that quantifies this trade-off, formulating a coverage problem as a variation
of the congestion games in [29].
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2 MINGHUI ZHU AND SONIA MARTÍNEZ

Literature review. In broad terms, the problem studied here is related to a bevy
of sensor location and planning problems in the computational geometry, geometric
optimization, and robotics literature. Regarding camera networks (a class of sensors
that motivated this work), we refer the reader to different variations on the art gallery
problem, such as those included in references [27], [31], [35]. The objective here is to
find the optimum number of guards in a nonconvex environment so that each point is
visible from at least one guard. A related set of references for the deployment of mobile
robots with omnidirectional cameras includes [13], [12]. Unlike the art gallery classic
algorithms, the latter papers assume that robots have local knowledge of the environ-
ment and no recollection of the past. Other related references on robot deployment
in convex environments include [8], [18] for anisotropic and circular footprints.

The paper [1] is an excellent survey on multimedia sensor networks where the
state of the art in algorithms, protocols, and hardware is shown, and open research
issues are discussed in detail. As observed in [9], multimedia sensor networks enhance
traditional surveillance systems by enlarging, enhancing, and enabling multiresolution
views. The investigation of coverage problems for static visual sensor networks is
conducted in [7], [15], [36].

Another set of references relevant to this paper comprise those on the use of
game-theoretic tools to (i) solve static target assignment problems, and (ii) devise
efficient and secure algorithms for communication networks. In [19], the authors
present a game-theoretic analysis of a coverage optimization problem for static sensor
networks. This problem is equivalent to the weapon-target assignment problem in
[26] which is NP complete. In general, the solution to assignment problems is hard
from a combinatorial optimization viewpoint.

Game theory and learning in games are used to analyze a variety of fundamental
problems in, e.g., wireless communication networks and the Internet. An incomplete
list of references includes [2] on power control, [30] on routing, and [33] on flow
control. However, there has been limited research on how to employ learning in games
to develop distributed algorithms for mobile sensor networks. One exception is the
paper [20], where the authors establish a link between cooperative control problems
(in particular, consensus problems) and games (in particular, potential games and
weakly acyclic games).

Statement of contributions. The contributions of this paper pertain to both cov-
erage optimization problems and learning in games. Compared with [17] and [18], this
paper employs a more accurate sensing model, and the results can be easily extended
to include nonconvex environments. Contrary to [17], we do not consider energy ex-
penditure from sensor motions. Furthermore, the algorithms developed allow mobile
sensors to self-deploy in the environments where informational distribution functions
are unknown a priori.

Regarding learning in games, we extend the use of the payoff-based learning dy-
namics first novelly proposed in [21], [22]. The coverage game we consider here is
shown to be a (constrained) exact potential game. A number of learning rules, e.g.,
better (or best) reply dynamics and adaptive play, have been proposed to reach Nash
equilibria in potential games. In these algorithms, each player must have access to
the utility values induced by alternative actions. In our problem setup, however, this
information is inaccessible because of the information constraints caused by unknown
rewards, motion, and sensing limitations. To tackle this challenge, we develop two
distributed payoff-based learning algorithms where each sensor remembers only its
own utility values and actions played during the last two plays.
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DISTRIBUTED COVERAGE GAMES 3

In the first algorithm, at each time step, each sensor repeatedly updates its action
synchronously, either trying some new action in the state-dependent feasible action set
or selecting the action which corresponds to a higher utility value in the most recent
two time steps. Like the algorithm for the special identical interest games in [22], the
first algorithm employs a diminishing exploration rate. The dynamically changing
exploration rate renders the algorithm a time-inhomogeneous Markov chain and allows
for the convergence in probability to the set of (constrained) Nash equilibria, from
which no agent is willing to unilaterally deviate.

The second algorithm is asynchronous. At each time step, only one sensor is
active and updates its state by either trying some new action in the state-dependent
feasible action set or selecting an action according to a Gibbs-like distribution from
those played in the last two time steps when it was active. The algorithm is shown to
be convergent in probability to the set of global maxima of a coverage performance
metric. Rather than maximizing the associated potential function in [21], the second
algorithm optimizes the sum of local utility functions, which better capture a global
trade-off between the overall network benefit from sensing and the total energy the
network consumes. By employing a diminishing exploration rate, our algorithm is
guaranteed to have stronger convergence properties than the ones in [21]. A more
detailed comparison with [21], [22] is provided in Remarks 3.2 and 3.4. The results
in the current paper were presented in [39], [40], where the analysis of numerical
examples and the technical details were omitted or summarized.

2. Problem formulation. Here, we first review some basic game-theoretic con-
cepts; see, for example, [11]. This will allow us to formulate subsequently an optimal
coverage problem for mobile sensor networks as a repeated multiplayer game. We
then introduce notation used throughout the paper.

2.1. Background in game theory. A strategic game Γ := 〈V,A, U〉 has three
components:

1. A set V enumerating players i ∈ V := {1, . . . , N}.
2. An action set A :=

∏N
i=1 Ai, the space of all actions vectors, where si ∈ Ai

is the action of player i and a (multiplayer) action s ∈ A has components
s1, . . . , sN .

3. The collection of utility functions U , where the utility function ui : A → R

models player i’s preferences over action profiles.
Denote by s−i the action profile of all players other than i, and by A−i =

∏
j �=i Aj

the set of action profiles for all players except i. The concept of (pure) Nash equilib-
rium (NE, for short) is the most important one in noncooperative game theory [11]
and is defined as follows.

Definition 2.1 (Nash equilibrium [11]). Consider the strategic game Γ. An
action profile s∗ := (s∗i , s

∗
−i) is a (pure) NE of the game Γ if for all i ∈ V and for all

si ∈ Ai it holds that ui(s
∗) ≥ ui(si, s

∗
−i).

An action profile corresponding to an NE represents a scenario where no player
has incentive to unilaterally deviate. Exact potential games form an important class of
strategic games where the change in a player’s utility caused by a unilateral deviation
can be exactly measured by a potential function.

Definition 2.2 (exact potential game [25]). The strategic game Γ is an exact
potential game with potential function φ : A → R if, for every i ∈ V , for every
s−i ∈ A−i, and for every si, s

′
i ∈ Ai, it holds that

φ(si, s−i)− φ(s′i, s−i) = ui(si, s−i)− ui(s
′
i, s−i).(2.1)
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4 MINGHUI ZHU AND SONIA MARTÍNEZ

In conventional noncooperative game theory, all the actions in Ai can always be
selected by player i in response to other players’ actions. However, in the context of
motion coordination, the actions available to player i will often be constrained to a
state-dependent subset of Ai. In particular, we denote by Fi(si, s−i) ⊆ Ai the set of
feasible actions of player i when the action profile is s := (si, s−i). We assume that
si ∈ Fi(si, s−i) for any s ∈ A throughout this paper. Denote F (s) :=

∏
i∈V Fi(s) ⊆ A

for all s ∈ A and F := ∪{F (s) | s ∈ A}. The introduction of F naturally leads to the
notion of constrained strategic game Γres := 〈V,A, U, F 〉 and the following associated
concepts.

Definition 2.3 (constrained Nash equilibrium). Consider the constrained strate-
gic game Γres. An action profile s∗ is a constrained (pure) NE of the game Γres if for
all i ∈ V and for all si ∈ Fi(s

∗
i , s

∗
−i) it holds that ui(s

∗) ≥ ui(si, s
∗
−i).

Definition 2.4 (constrained exact potential game). The game Γres is a con-
strained exact potential game with potential function φ(s) if, for every i ∈ V , every
s−i ∈ A−i, and every si ∈ Ai, the equality (2.1) holds for every s′i ∈ Fi(si, s−i).

With the assumption of si ∈ Fi(si, s−i) for any s ∈ A, we observe that if s∗ is
an NE of the strategic game Γ, then it is also a constrained NE of the constrained
strategic game Γres. For any given strategic game, NE may not exist. However, the
existence of NE in exact potential games is guaranteed [25]. Hence, any constrained
exact potential game with the assumption of si ∈ Fi(si, s−i) for any s ∈ A has at
least one constrained NE.

2.2. Coverage problem formulation.

2.2.1. Mission space. We consider a convex two-dimensional mission space
that is discretized into a (squared) lattice. We assume that each square of the lattice
has unit dimensions. Each square will be labeled with the coordinate of its center q =
(qx, qy), where qx ∈ [qxmin , qxmax ] and qy ∈ [qymin, qymax ], for some integers qxmin , qymin,
qxmax , qymax . Denote by Q the collection of all squares of the lattice.

We now define an associated location graph Gloc := (Q, Eloc) where ((qx, qy),
(qx′ , qy′)) ∈ Eloc if and only if |qx − qx′ | + |qy − qy′ | = 1 for (qx, qy), (qx′ , qy′) ∈ Q.
Note that the graph Gloc is undirected; i.e., (q, q′) ∈ Eloc if and only if (q′, q) ∈ Eloc.
The set of neighbors of q in Eloc is given by N loc

q := {q′ ∈ Q \ {q} | (q, q′) ∈ Eloc}.
We assume that Gloc is fixed and connected, and we denote its diameter by D.

Agents are deployed in Q to detect certain events of interest. As agents move
in Q and process measurements, they will assign a numerical value Wq ≥ 0 to the
events in each square with center q ∈ Q. If Wq = 0, then there is no significant event
at the square with center q. The larger the value of Wq is, the more pertinent the
set of events at the square with center q is. Later, the amount Wq will be identified
with a benefit of observing the point q. In this setup, we assume the values Wq to be
constant in time. Furthermore, Wq is not a prior knowledge to the agents, but the
agents can measure this value through sensing the point q.

2.2.2. Modeling of the energy-limited sensor nodes. Each mobile agent i
is modeled as a point mass in Q, with location ai := (xi, yi) ∈ Q. Each agent has
mounted a sensor on board, whose operation has an energy/processing cost roughly
proportional to the limited area that it scans. Examples include line-of-sight sensors
such as radar and sonar-like sensors where energy spent is proportional to the moni-
tored area that is scanned with the beam. Another example that motivated this work
was that of cameras, with a limited visual footprint and processing cost proportional
to the camera footprint.
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Fig. 2.1. Sensor footprint and a configuration of the mobile sensor network.

We assume that the footprint of the sensor is directional, has limited range, and
has a finite “angle of view” centered at the sensor position. Following a geometric
simplification, we model the sensing region of agent i as an annulus sector in the
two-dimensional plane; see Figure 2.1.

The sensor footprint is completely characterized by the following parameters: the
position of agent i, ai ∈ Q; the sensor orientation, given by an angle θi ∈ [0, 2π); the
angle of view, ζi ∈ [ζmin, ζmax]; and the shortest range (resp., longest range) between
agent i and the nearest (resp., farthest) object that can be identified by scanning

the sensor footprint, rshrti ∈ [rmin, rmax] (resp., r
lng
i ∈ [rmin, rmax]). We assume the

parameters rshrti , rlngi , ζi are sensor parameters that can be chosen. In this way,
ci := (FLi, θi) ∈ [0,FLmax] × [0, 2π) is the sensor control vector of agent i. In what
follows, we will assume that ci takes values in a finite subset C ⊂ [0,FLmax]× [0, 2π).
An agent action is thus a vector si := (ai, ci) ∈ Ai := Q× C, and a multiagent action
is denoted by s = (s1, . . . , sN ) ∈ A := ΠN

i=1Ai.
Let D(ai, ci) be the sensor footprint of agent i. Now we can define a proximity

sensing graph1 Gsen(s) := (V,Esen(s)) as follows: the set of neighbors of agent i,
N sen

i (s), is given as N sen
i (s) := {j ∈ V \{i} | D(ai, ci) ∩ D(aj , cj) ∩ Q �= ∅}.

Each agent is able to communicate with others to exchange information. We
assume that the communication range of agents is 2rmax. This induces a 2rmax-disk
communication graph Gcomm(s) := (V,Ecomm(s)) as follows: the set of neighbors of
agent i is given by N comm

i (s) := {j ∈ V \{i} | (xi − xj)
2 + (yi − yj)

2 ≤ (2rmax)
2}.

Note that Gcomm(s) is undirected and that Gsen(s) ⊆ Gcomm(s).
The motion of agents will be limited to a neighboring point in Gloc at each time

step. Thus, an agent feasible action set will be given by Fi(ai) := ({ai} ∪ N loc
ai

)× C.
2.2.3. Coverage game. We now proceed to formulate a coverage optimization

problem as a constrained strategic game. For each q ∈ Q, we denote nq(s) as the
cardinality of the set {k ∈ V | q ∈ D(ak, ck) ∩ Q}, i.e., the number of agents which
can observe the point q. The “profit” given by Wq will be equally shared by agents
that can observe the point q. The benefit that agent i obtains through sensing is
thus defined by

∑
q∈D(ai,ci)∩Q

Wq

nq(s)
.

1See [5] for a definition of proximity graph.
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6 MINGHUI ZHU AND SONIA MARTÍNEZ

In the following, we associate an energy/processing cost with the use of the sensor:

fi(ci) :=
1
2ζi((r

lng
i )2 − (rshrti )2).

As mentioned earlier, this can be representative of radar, sonar-like sensors, laser-
range finders, and camera-like sensors. For example, while recent efforts have been
dedicated to designing radar with an adjustable field of view or beam [37], typical
search radar systems (similarly, sonars) are swept over the areas to be scanned with
rotating antennas [6]. Energy spent is proportional to the scanned sectors which
are controlled through the rotation of the antenna. Camera sensors which, on the
other hand, are passive sensors require a processing cost that is also proportional to
the area to be scanned [23]. Motivated by this, [34] proposes to save energy in video-
based sensor networks by partitioning the sensing task among sensors with overlapping
fields of view. This effectively translates into a “reduction” of the area to be scanned
by cameras or reduction in their field of view. In the paper [28] another coverage
algorithm is proposed to turn off some sensors with overlapping fields of view. We
also remark that the algorithms and analysis that follow later are not affected by
whether or not the energy cost function is removed. In fact, several papers in the
visual sensor network literature are devoted to maximizing the coverage provided by
the sum of the areas of the sensor footprints; see [15], [36] and the references therein.
Our algorithms provide solutions to those coverage problems when sensors are mobile
and the informational distribution function is unknown a priori.

We will endow each agent with a utility function that aims to capture the above
sensing/processing trade-off. In this way, we define a utility function for agent i by

ui(s) =
∑

q∈D(ai,ci)∩Q

Wq

nq(s)
− fi(ci).

Note that the utility function ui is local over the sensing graph Gsen(s); i.e., ui is
only dependent on the actions of {i} ∪ N sen

i (s). With the set of utility functions
Ucov = {ui}i∈V and feasible action set Fcov = ΠN

i=1

⋃
ai∈Ai

Fi(ai), we now have all
the ingredients to introduce the coverage game Γcov := 〈V,A, Ucov,Fcov〉. This game
is a variation of the congestion games introduced in [29].

Lemma 2.5. The coverage game Γcov is a constrained exact potential game with
potential function

φ(s) =
∑
q∈Q

nq(s)∑
�=1

Wq

�
−

N∑
i=1

fi(ci).

Proof. The proof is a slight variation of that in [29]. Consider any s := (si, s−i) ∈
A, where si := (ai, ci). We fix i ∈ V and pick any s′i = (a′i, c

′
i) from Fi(ai). Denote

s′ := (s′i, s−i), Ω1 := (D(ai, ci)\D(a′i, c
′
i)) ∩ Q, and Ω2 := (D(a′i, c

′
i)\D(ai, ci)) ∩ Q.

Observe that

φ(si, s−i)− φ(s′i, s−i)

=
∑
q∈Ω1

⎛
⎝nq(s)∑

�=1

Wq

�
−

nq(s
′)∑

�=1

Wq

�

⎞
⎠+

∑
q∈Ω2

⎛
⎝−

nq(s)∑
�=1

Wq

�
+

nq(s
′)∑

�=1

Wq

�

⎞
⎠− fi(ci) + fi(c

′
i)

=
∑
q∈Ω1

Wq

nq(s)
−
∑
q∈Ω2

Wq

nq(s′)
− fi(ci) + fi(c

′
i)

= ui(si, s−i)− ui(s
′
i, s−i),
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DISTRIBUTED COVERAGE GAMES 7

where in the second equality we utilize the fact that for each q ∈ Ω1, nq(s) = nq(s
′)+1,

and for each q ∈ Ω2, nq(s
′) = nq(s) + 1.

We denote by E(Γcov) the set of constrained NEs of Γcov. It is worth mentioning
that E(Γcov) �= ∅ due to the fact that Γcov is a constrained exact potential game.

Remark 2.1. The assumptions of our problem formulation admit several exten-
sions. For example, it is straightforward to extend our results to nonconvex three-
dimensional spaces. This is because the results that follow can also handle other
shapes of the sensor footprint, e.g., a complete disk, a subset of the annulus sector.
On the other hand, note that the coverage problem can be interpreted as a target
assignment problem—here, the value Wq ≥ 0 would be associated with the value of a
target located at the point q.

2.3. Notations. In the following, we will use the Landau symbol, O, as in

O(εk) for some k ≥ 0. This implies that 0 < limε→0+
O(εk)
εk

< +∞. We denote
diagA := {(s, s) ∈ A2 | s ∈ A} and diag E(Γcov) := {(s, s) ∈ A2 | s ∈ E(Γcov)}.

Consider a, a′ ∈ QN , where ai �= a′i and a−i = a′−i for some i ∈ V . The transition
a → a′ is feasible if and only if (ai, a

′
i) ∈ Eloc. A feasible path from a to a′ consisting

of multiple feasible transitions is denoted by a ⇒ a′. Let �a := {a′ ∈ Q | a ⇒ a′} be
the reachable set from a.

Let s = (a, c), s′ = (a′, c′) ∈ A, where ai �= a′i and a−i = a′−i for some i ∈ V .
The transition s → s′ is feasible if and only if s′i ∈ Fi(a). A feasible path from
s to s′ consisting of multiple feasible transitions is denoted by s ⇒ s′. Finally,
�s := {s′ ∈ A | s ⇒ s′} will be the reachable set from s.

3. Distributed coverage learning algorithms and convergence results.
In our coverage problem, we assume that Wq is unknown to all the sensors in advance.
Furthermore, due to the restrictions of motion and sensing, each agent is unable to
obtain the information of Wq if the point q is outside its sensing range. In addition,
the utility of each agent depends upon the group strategy. These information con-
straints render each agent unable to access the utility values induced by alternative
actions. Thus the action-based learning algorithms, e.g., better (or best) reply learn-
ing algorithm and adaptive play learning algorithm, cannot be employed to solve our
coverage games. It motivates us to design distributed learning algorithms which only
require the payoff received.

In this section, we come up with two distributed payoff-based learning algorithms,
the distributed inhomogeneous synchronous coverage learning algorithm (DISCL, for
short) and distributed inhomogeneous asynchronous coverage learning algorithm
(DIACL, for short). We then present their convergence properties. Relevant algo-
rithms include payoff-based learning algorithms proposed in [21], [22].

3.1. Distributed inhomogeneous synchronous coverage learning algo-
rithm. For each t ≥ 1 and i ∈ V , we define τi(t) as follows: τi(t) = t if ui(s(t)) ≥
ui(s(t − 1)); otherwise, τi(t) = t − 1. Here, si(τi(t)) is the more successful action of
agent i in the last two steps. The DISCL algorithm is formally stated in the following:

1: [Initialization:] At t = 0, all agents are uniformly placed in Q. Each agent i
uniformly chooses its camera control vector ci from the set C, communicates with
agents in N sen

i (s(0)), and computes ui(s(0)). At t = 1, all the agents keep their
actions.

2: [Update:] At each time t ≥ 2, each agent i updates its state according to the
following rules:
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8 MINGHUI ZHU AND SONIA MARTÍNEZ

• Agent i chooses the exploration rate ε(t) = t−
1

N(D+1) , with D being the
diameter of the location graph Gloc, and computes si(τi(t)).

• With probability ε(t), agent i experiments and chooses the temporary
action stpi := (atpi , ctpi ) uniformly from the set Fi(ai(t)) \ {si(τi(t))}.

• With probability 1 − ε(t), agent i does not experiment and sets stpi =
si(τi(t)).

• After stpi is chosen, agent i moves to the position atpi and sets the camera
control vector to ctpi .

3: [Communication and computation:] At position atpi , each agent i sends the in-

formation D(atpi , ctpi ) ∩ Q to agents in N sen
i (stpi , stp−i). After that, each agent i

identifies the quantity nq(s
tp) for each q ∈ D(atpi , ctpi ) ∩ Q and computes the

utility ui(s
tp
i , stp−i) and the feasible action set of Fi(a

tp
i ).

4: Repeat steps 2 and 3.

Remark 3.1. A variation of the DISCL algorithm corresponds to ε(t) = ε ∈ (0, 1
2 ]

constant for all t ≥ 2. If this is the case, we will refer to the algorithm as distributed
homogeneous synchronous coverage learning algorithm (DHSCL, for short). Later,
the convergence analysis of the DISCL algorithm will be based on the analysis of the
DHSCL algorithm.

Denote the space B := {(s, s′) ∈ A × A | s′i ∈ Fi(ai) ∀i ∈ V }. Observe that
z(t) := (s(t − 1), s(t)) in the DISCL algorithm constitutes a time-inhomogeneous
Markov chain {Pt} on the space B. The following theorem states that the DISCL
algorithm asymptotically converges to the set of E(Γcov) in probability.

Theorem 3.1. Consider the Markov chain {Pt} induced by the DISCL algorithm.
It holds that limt→+∞ P(z(t) ∈ diag E(Γcov)) = 1.

The proofs of Theorem 3.1 are provided in section 4.
Remark 3.2. An algorithm is proposed for the general class of weakly acyclic

games (including potential games as special cases) in [22] and is able to find an
NE with an arbitrarily high probability by choosing an arbitrarily small and fixed
exploration rate ε in advance. However, it is difficult to derive an analytic relation
between the convergent probability and the exploration rate. For the special case of
identical interest games (all players share an identical utility function), the authors in
[22] exploit a diminishing exploration rate and obtain a stronger result of convergence
in probability. This motivates us to utilize a diminishing exploration rate in the DISCL
algorithm which allows for the convergence to the set of NEs in probability. In the
algorithm for weakly acyclic games in [22], each player may execute the baseline action
which depends on all the past plays. As a result, the algorithm for weakly acyclic
games in [22] cannot be utilized to solve our problem because the baseline action
may not be feasible when the state-dependent constraints are present. It is worth
mentioning that [22] studies a case where the utilities are corrupted by noises.

3.2. Distributed inhomogeneous asynchronous coverage learning al-
gorithm. Lemma 2.5 shows that the coverage game Γcov is a constrained exact
potential game with potential function φ(s). However, this potential function is
not a straightforward measure of the network coverage performance. On the other
hand, the objective function Ug(s) :=

∑
i∈V ui(s) captures the trade-off between the

overall network benefit from sensing and the total energy the network consumes,
and thus can be perceived as a more natural coverage performance metric. Denote
S∗ := {s | argmaxs∈AUg(s)} as the set of global maximizers of Ug(s). In this part,
we present the DIACL algorithm, which is convergent in probability to the set S∗.
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Before doing this, we first introduce some notation for the DIACL algorithm.
Denote by B′ the space B′ := {(s, s′) ∈ A× A | s−i = s′−i, s

′
i ∈ Fi(ai) for some i ∈

V }. For any s0, s1 ∈ A with s0−i = s1−i for some i ∈ V , we denote

Δi(s
1, s0) :=

1

2

∑
q∈Ω1

Wq

nq(s1)
− 1

2

∑
q∈Ω2

Wq

nq(s0)
,

where Ω1 := D(a1i , c
1
i )\D(a0i , c

0
i ) ∩ Q and Ω2 := D(a0i , c

0
i )\D(a1i , c

1
i ) ∩ Q, and

ρi(s
0, s1) := ui(s

1)−Δi(s
1, s0)− ui(s

0) + Δi(s
0, s1),

Ψi(s
0, s1) := max{ui(s

0)−Δi(s
0, s1), ui(s

1)−Δi(s
1, s0)},

m∗ := max
(s0,s1)∈B,s0i �=s1i

{
Ψi(s

0, s1)− (ui(s
0)−Δi(s

0, s1)),
1

2

}
.

It is easy to check that Δi(s
1, s0) = −Δi(s

0, s1) and Ψi(s
0, s1) = Ψi(s

1, s0). Assume
that at each time instant, one of the agents becomes active with equal probability. This
can be realized by employing the asynchronous time model proposed in [4] where each
node has a clock which ticks according to a rate 1 Poisson process. For this reason, we
will refer to the following algorithm as being asynchronous. Denote by γi(t) the last

time instant before t when agent i was active. We then denote γ
(2)
i (t) := γi(γi(t)).

The main steps of the DIACL algorithm are described in the following:

1: [Initialization:] At t = 0, all agents are uniformly placed in Q. Each agent i
uniformly chooses the camera control vector ci from the set C and then communi-
cates with agents in N sen

i (s(0)) and computes ui(s(0)). Furthermore, each agent
i chooses mi ∈ (2m∗,Km∗] for some K ≥ 2. At t = 1, all the sensors keep their
actions.

2: [Update:] Assume that agent i is active at time t ≥ 2. Then agent i updates its
state according to the following rules:

• Agent i chooses the exploration rate ε(t) = t−
1

(D+1)(K+1)m∗ .
• With probability ε(t)mi , agent i experiments and uniformly chooses stpi :=

(atpi , ctpi ) from the action set Fi(ai(t)) \ {si(t), si(γ(2)
i (t) + 1)}.

• With probability 1− ε(t)mi , agent i does not experiment and chooses stpi
according to the following probability distribution:

P(stpi = si(t)) =
1

1 + ε(t)ρi(si(γ
(2)
i (t)+1),si(t))

,

P(stpi = si(γ
(2)
i (t) + 1)) =

ε(t)ρi(si(γ
(2)
i (t)+1),si(t))

1 + ε(t)ρi(si(γ
(2)
i (t)+1),si(t))

.

• After stpi is chosen, agent i moves to the position atpi and sets its camera
control vector to be ctpi .

3: [Communication and computation:] At position atpi , the active agent i initiates

a message to agents in N sen
i (stpi , s−i(t)). Then each agent j ∈ N sen

i (stpi , s−i(t))
sends the information of D(atpj , ctpj )∩Q to agent i. After receiving such informa-

tion, agent i identifies the quantity nq(s
tp
i , s−i(t)) for each q ∈ D(atpi , ctpi )∩Q and

computes the utility ui(s
tp
i , s−i(t)), Δi((s

tp
i , s−i(t)), s(γi(t)+ 1)), and the feasible

action set of Fi(a
tp
i ).

4: Repeat steps 2 and 3.
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10 MINGHUI ZHU AND SONIA MARTÍNEZ

Remark 3.3. A variation of the DIACL algorithm corresponds to ε(t) = ε ∈ (0, 1
2 ]

constant for all t ≥ 2. If this is the case, we will refer to the algorithm as the distributed
homogeneous asynchronous coverage learning algorithm (DHACL, for short). Later,
we will base the convergence analysis of the DIACL algorithm on that of the DHACL
algorithm.

Like the DISCL algorithm, z(t) := (s(t − 1), s(t)) in the DIACL algorithm con-
stitutes a time-inhomogeneous Markov chain {Pt} on the space B′. The following
theorem states the convergence property of the DIACL algorithm.

Theorem 3.2. Consider the Markov chain {Pt} induced by the DIACL algorithm
for the game Γcov. Then it holds that limt→+∞ P(z(t) ∈ diag S∗) = 1.

The proof of Theorem 3.2 is provided in section 4.
Remark 3.4. A synchronous payoff-based, log-linear learning algorithm is pro-

posed in [21] for potential games in which players aim to maximize the potential
function of the game. As we mentioned before, the potential function is not suitable
to act as a coverage performance metric. As opposed to [21], the DIACL algorithm
instead seeks to optimize a different function Ug(s) perceived as a natural network
performance metric. Furthermore, the DIACL algorithm exploits a diminishing step-
size, and this choice allows for convergence to the set of global optima in probability.
On the other hand, convergence in [21] is to the set of NE with arbitrarily high proba-
bility. Theoretically, our result is stronger than that of [21] by choosing an arbitrarily
small and fixed exploration rate in advance.

4. Convergence analysis. In this section, we prove Theorems 3.1 and 3.2 by
appealing to the theory of resistance trees in [38] and the results in strong ergodicity
in [16]. Relevant papers include [21], [22], where the theory of resistance trees in [38]
is novelly utilized to study the class of payoff-based learning algorithms, and [3], [14],
[24], where the strong ergodicity theory is employed to characterize the convergence
properties of time-inhomogeneous Markov chains.

4.1. Convergence analysis of the DISCL algorithm. We first utilize Theo-
rem 7.6 to characterize the convergence properties of the associated DHSCL algorithm.
This is essential for the analysis of the DISCL algorithm.

Observe that z(t) := (s(t− 1), s(t)) in the DHSCL algorithm constitutes a time-
homogeneous Markov chain {Pε

t } on the space B. Consider z, z′ ∈ B. A feasible path
from z to z′ consisting of multiple feasible transitions of {Pε

t } is denoted by z ⇒ z′.
The reachable set from z is denoted as �z := {z′ ∈ B | z ⇒ z′}.

Lemma 4.1. {Pε
t } is a regular perturbation of {P0

t }.
Proof. Consider a feasible transition z1 → z2 with z1 := (s0, s1) and z2 := (s1, s2).

Then we can define a partition of V as Λ1 := {i ∈ V | s2i = s
τi(0,1)
i } and Λ2 := {i ∈

V | s2i ∈ Fi(a
1
i ) \ {sτi(0,1)i }}. The corresponding probability is given by

P ε
z1z2 =

∏
i∈Λ1

(1− ε)×
∏
j∈Λ2

ε

|Fi(a1i )| − 1
.(4.1)

Hence, the resistance of the transition z1 → z2 is |Λ2| ∈ {0, 1, . . . , N} since

0 < lim
ε→0+

P ε
z1z2

ε|Λ2| =
∏
j∈Λ2

1

|Fi(a1i )| − 1
< +∞.

We have that (A3) in section 7.2 holds. It is not difficult to see that (A2) holds,
and we are now in a position to verify (A1). Since Gloc is undirected and connected,
and multiple sensors can stay in the same position, then �a0 = QN for any a0 ∈ Q.
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Since sensor i can choose any camera control vector from C at each time, then �s0 = A
for any s0 ∈ A. It implies that �z0 = B for any z0 ∈ B, and thus the Markov chain
{Pε

t } is irreducible on the space B.
It is easy to see that any state in diagA has period 1. Pick any (s0, s1) ∈ B\diagA.

Since Gloc is undirected, then s0i ∈ Fi(a
1
i ) if and only if s1i ∈ Fi(a

0
i ). Hence, the

following two paths are both feasible:

(s0, s1) → (s1, s0) → (s0, s1),

(s0, s1) → (s1, s1) → (s1, s0) → (s0, s1).

Hence, the period of the state (s0, s1) is 1. This proves aperiodicity of {Pε
t }. Since

{Pε
t } is irreducible and aperiodic, then (A1) holds.
Lemma 4.2. For any (s0, s0) ∈ diagA\ diag E(Γcov), there is a finite sequence of

transitions from (s0, s0) to some (s∗, s∗) ∈ diag E(Γcov) that satisfies

L := (s0, s0)
O(ε)→ (s0, s1)

O(1)→ (s1, s1)
O(ε)→ (s1, s2)

O(1)→ (s2, s2)
O(ε)→ · · · O(ε)→ (sk−1, sk)

O(1)→ (sk, sk),

where (sk, sk) = (s∗, s∗) for some k ≥ 1.
Proof. If s0 /∈ E(Γcov), there exists a sensor i with an action s1i ∈ Fi(a

0
i ) such that

ui(s
1) > ui(s

0), where s0−i = s1−i. The transition (s0, s0) → (s0, s1) happens when
only sensor i experiments, and its corresponding probability is (1− ε)N−1× ε

|Fi(a0
i )|−1

.

Since the function φ is the potential function of the game Γcov, then we have that
φ(s1)− φ(s0) = ui(s

1)− ui(s
0) and thus φ(s1) > φ(s0).

Since ui(s
1) > ui(s

0) and s0−i = s1−i, the transition (s0, s1) → (s1, s1) occurs
when all sensors do not experiment, and the associated probability is (1− ε)N .

We repeat the above process and construct the path L with length k ≥ 1. Since
φ(si) > φ(si−1) for i = {1, . . . , k}, then si �= sj for i �= j and thus the path L has no
loop. Since A is finite, then k is finite and thus sk = s∗ ∈ E(Γcov).

A direct result of Lemma 4.1 is that for each ε, there exists a unique stationary
distribution of {Pε

t }, say μ(ε). We now proceed to utilize Theorem 7.6 to characterize
limε→0+ μ(ε).

Proposition 4.3. Consider the regular perturbation {Pε
t } of {P0

t }. Then
limε→0+ μ(ε) exists and the limiting distribution μ(0) is a stationary distribution of
{P0

t }. Furthermore, the stochastically stable states (i.e., the support of μ(0)) are
contained in the set diag E(Γcov).

Proof. Notice that the stochastically stable states are contained in the recur-
rent communication classes of the unperturbed Markov chain that corresponds to the
DHSCL algorithm with ε = 0. Thus the stochastically stable states are included in
the set diagA ⊂ B. Denote by Tmin the minimum resistance tree and by hv the root of
Tmin. Each edge of Tmin has resistance 0, 1, 2, . . . corresponding to the transition prob-
ability O(1), O(ε), O(ε2), . . . . The state z′ is the successor of the state z if and only
if (z, z′) ∈ Tmin. Like Theorem 3.2 in [22], our analysis will be slightly different from
the presentation in section 7.2. We will construct Tmin over states in the set B (rather
than diagA) with the restriction that all the edges leaving the states in B\diagA have
resistance 0. The stochastically stable states are not changed under this difference.

Claim 1. For any (s0, s1) ∈ B \ diagA, there is a finite path

L′ := (s0, s1)
O(1)→ (s1, s2)

O(1)→ (s2, s2),

where s2i = s
τi(0,1)
i for all i ∈ V .
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12 MINGHUI ZHU AND SONIA MARTÍNEZ

Proof. These two transitions occur when all agents do not experiment. The
corresponding probability of each transition is (1− ε)N .

Claim 2. The root hv belongs to the set diagA.
Proof. Suppose that hv = (s0, s1) ∈ B \ diagA. By Claim 1, there is a finite path

L′ := (s0, s1)
O(1)→ (s1, s2)

O(1)→ (s2, s2). We now construct a new tree T ′ by adding
the edges of the path L′ into the tree Tmin and removing the redundant edges. The
total resistance of adding edges is 0. Observe that the resistance of the removed edge
exiting from (s2, s2) in the tree Tmin is at least 1. Hence, the resistance of T ′ is strictly
lower than that of Tmin, and we get a contradiction.

Claim 3. Pick any s∗ ∈ E(Γcov) and consider z := (s∗, s∗), z′ := (s∗, s̃), where
s̃ �= s∗. If (z, z′) ∈ Tmin, then the resistance of the edge (z, z′) is some k ≥ 2.

Proof. Suppose the deviator in the transition z → z′ is unique, say i. Then the
corresponding transition probability is O(ε). Since s∗ ∈ E(Γcov) and s̃i ∈ Fi(a

∗
i ), we

have that ui(s
∗
i , s

∗
−i) ≥ ui(s̃i, s̃−i), where s∗−i = s̃−i.

Since z′ ∈ B \ diagA, it follows from Claim 2 that the state z′ cannot be the
root of Tmin and thus has a successor z′′. Note that all the edges leaving the states
in B \ diagA have resistance 0. Then no experiments in the transition z′ → z′′ and
z′′ = (s̃, ŝ) for some ŝ. Since ui(s

∗
i , s

∗
−i) ≥ ui(s̃i, s̃−i) with s∗−i = s̃−i, we have ŝ = s∗

and thus z′′ = (s̃, s∗). Similarly, the state z′′ must have a successor z′′′ and z′′′ = z.
We then obtain a loop in Tmin which contradicts that Tmin is a tree.

It implies that at least two sensors experiment in the transition z → z′. Thus the
resistance of the edge (z, z′) is at least 2.

Claim 4. The root hv belongs to the set diag E(Γcov).
Proof. Suppose that hv = (s0, s0) /∈ diag E(Γcov). By Lemma 4.2, there is a finite

path L connecting (s0, s0) and some (s∗, s∗) ∈ diag E(Γcov). We now construct a new
tree T ′ by adding the edges of the path L into the tree Tmin and removing the edges
that leave the states in L in the tree Tmin. The total resistance of adding edges is k.
Observe that the resistance of the removed edge exiting from (si, si) in the tree Tmin

is at least 1 for i ∈ {1, . . . , k − 1}. By Claim 3, the resistance of the removed edge
leaving from (s∗, s∗) in the tree Tmin is at least 2. The total resistance of removing
edges is at least k + 1. Hence, the resistance of T ′ is strictly lower than that of Tmin,
and we get a contradiction.

It follows from Claim 4 that the states in diag E(Γcov) have minimum stochastic
potential. Since Lemma 4.1 shows that Markov chain {Pε

t } is a regularly perturbed
Markov process, Proposition 4.3 is a direct result of Theorem 7.6.

We are now ready to show the proof of Theorem 3.1.
Proof of Theorem 3.1.
Claim 5. Condition (B2) in Theorem 7.5 holds.
Proof. For each t ≥ 0 and each z ∈ X , we define the numbers

σz(ε(t)) :=
∑

T∈G(z)

∏
(x,y)∈T

P ε(t)
xy , σt

z = σz(ε(t)),

μz(ε(t)) :=
σz(ε(t))∑

x∈X σx(ε(t))
, μt

z = μz(ε(t)).

Since {Pε
t } is a regular perturbation of {P0

t }, then it is irreducible and thus
σt
z > 0. As Lemma 3.1 of Chapter 6 in [10], one can show that (μt)TP ε(t) = (μt)T .

Therefore, condition (B2) in Theorem 7.5 holds.
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Claim 6. Condition (B3) in Theorem 7.5 holds.
Proof. We now proceed to verify condition (B3) in Theorem 7.5. To do that, let

us first fix t, denote ε = ε(t), and study the monotonicity of μz(ε) with respect to ε.
We write σz(ε) in the form

σz(ε) =
∑

T∈G(z)

∏
(x,y)∈T

P ε
xy =

∑
T∈G(z)

∏
(x,y)∈T

αxy(ε)

βxy(ε)
=

αz(ε)

βz(ε)
(4.2)

for some polynomials αz(ε) and βz(ε) in ε. With (4.2) in hand, we have that
∑

x∈X

σx(ε) and thus μz(ε) are ratios of two polynomials in ε, i.e., μz(ε) = ϕz(ε)
β(ε) , where

ϕz(ε) and β(ε) are polynomials in ε. The derivative of μz(ε) is given by

∂μz(ε)

∂ε
=

1

β(ε)2

(
∂ϕz(ε)

∂ε
β(ε)− ϕz(ε)

∂β(ε)

∂ε

)
.

Note that the numerator ∂ϕz(ε)
∂ε β(ε)− ϕz(ε)

∂β(ε)
∂ε is a polynomial in ε. Denote by

ιz �= 0 the coefficient of the leading term of ∂ϕz(ε)
∂ε − ϕz(ε)

∂β(ε)
ε . The leading term

dominates ∂ϕz(ε)
∂ε − ϕz(ε)

∂β(ε)
ε when ε is sufficiently small. Thus there exists εz > 0

such that the sign of ∂μz(ε)
∂ε is the sign of ιz for all 0 < ε ≤ εz. Let ε

∗ = maxz∈X εz.
Since ε(t) strictly decreases to zero, there is a unique finite time instant t∗ such

that ε(t∗) = ε∗ (if ε(0) < ε∗, then t∗ = 0). Since ε(t) is strictly decreasing, we can
define a partition of X as follows:

Ξ1 := {z ∈ X | μz(ε(t)) > μz(ε(t+ 1)) ∀t ∈ [t∗,+∞)},
Ξ2 := {z ∈ X | μz(ε(t)) < μz(ε(t+ 1)) ∀t ∈ [t∗,+∞)}.

We are now ready to verify (B3) of Theorem 7.5. Since {Pε
t } is a regular perturbed

Markov chain of {P0
t }, it follows from Theorem 7.6 that limt→+∞ μz(ε(t)) = μz(0),

and thus it holds that

+∞∑
t=0

∑
z∈X

‖μt
z − μt+1

z ‖ =

+∞∑
t=0

∑
z∈X

|μz(ε(t))− μz(ε(t+ 1))|

=

t∗∑
t=0

∑
z∈X

|μz(ε(t)) − μz(ε(t+ 1))|+
+∞∑

t=t∗+1

(∑
z∈Ξ1

μz(ε(t))−
∑
z∈Ξ1

μz(ε(t+ 1))

)

+

+∞∑
t=t∗+1

(
1−

∑
z∈Ξ1

μz(ε(t+ 1))−
(
1−

∑
z∈Ξ1

μz(ε(t))

))

=

t∗∑
t=0

∑
z∈X

|μz(ε(t)) − μz(ε(t+ 1))|+ 2
∑
z∈Ξ1

μz(ε(t
∗ + 1))− 2

∑
z∈Ξ1

μz(0) < +∞.

Claim 7. Condition (B1) in Theorem 7.5 holds.
Proof. Denote by P ε(t) the transition matrix of {Pt}. As in (4.1), the probability

of the feasible transition z1 → z2 is given by

P
ε(t)
z1z2 =

∏
i∈Λ1

(1 − ε(t))×
∏
j∈Λ2

ε(t)

|Fi(a1i )| − 1
.
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14 MINGHUI ZHU AND SONIA MARTÍNEZ

Observe that |Fi(a
1
i )| ≤ 5|C|. Since ε(t) is strictly decreasing, there is t0 ≥ 1 such

that t0 is the first time when 1− ε(t) ≥ ε(t)
5|C|−1 . Then for all t ≥ t0 it holds that

P
ε(t)
z1z2 ≥

(
ε(t)

5|C| − 1

)N

.

Denote P (m,n) :=
∏n−1

t=m P ε(t), 0 ≤ m < n. Pick any z ∈ B and let uz ∈ B be
such that Puzz(t, t+D+1) = minx∈B Pxz(t, t+D+1). Consequently, it follows that
for all t ≥ t0

min
x∈B

Pxz(t, t+D + 1) =
∑
i1∈B

· · ·
∑

iD∈∈B
P

ε(t)
uzi1

· · ·P ε(t+D−1)
iD−1iD

P
ε(t+D)
iDz

≥ P
ε(t)
uzi1

· · ·P ε(t+D−1)
iD−1iD

P
ε(t+D)
iDz ≥

D∏
i=0

(
ε(t+ i)

5|C| − 1

)N

≥
(

ε(t)

5|C| − 1

)(D+1)N

,

where in the last inequality we use that ε(t) is strictly decreasing. Then we have

1− λ(P (t, t+D + 1)) = min
x,y∈B

∑
z∈B

min{Pxz(t, t+D + 1), Pyz(t, t+D + 1)}

≥
∑
z∈B

Puzz(t, t+D + 1) ≥ |B|
(

ε(t)

5|C| − 1

)(D+1)N

.

Choose ki := (D + 1)i and let i0 be the smallest integer such that (D + 1)i0 ≥ t0.
Then we have that

+∞∑
i=0

(1− λ(P (ki, ki+1))) ≥ |B|
+∞∑
i=i0

(
ε((D + 1)i)

5|C| − 1

)(D+1)N

=
|B|

(5|C| − 1)(D+1)N

+∞∑
i=i0

1

(D + 1)i
= +∞.(4.3)

Hence, the weak ergodicity property follows from Theorem 7.4.
All the conditions in Theorem 7.5 hold. Thus it follows from Theorem 7.5 that the

limiting distribution is μ∗ = limt→+∞ μt. Note that limt→+∞ μt = limt→+∞ μ(ε(t)) =
μ(0) and Proposition 4.3 shows that the support of μ(0) is contained in the set
diag E(Γcov). Hence, the support of μ∗ is contained in the set diag E(Γcov), imply-
ing that limt→+∞ P(z(t) ∈ diag E(Γcov)) = 1. This completes the proof.

4.2. Convergence analysis of the DIACL Algorithm. First of all, we em-
ploy Theorem 7.6 to study the convergence properties of the associated DHACL al-
gorithm. This is essential to analyzing the DIACL algorithm.

To simplify notation, we will use si(t − 1) := si(γ
(2)
i (t) + 1) in the remainder of

this section. Observe that z(t) := (s(t− 1), s(t)) in the DHACL algorithm constitutes
a Markov chain {Pε

t } on the space B′.
Lemma 4.4. The Markov chain {Pε

t } is a regular perturbation of {P0
t }.

Proof. Pick any two states z1 := (s0, s1) and z2 := (s1, s2) with z1 �= z2. We
have that P ε

z1z2 > 0 if and only if there is some i ∈ V such that s1−i = s2−i and one
of the following occurs: s2i ∈ Fi(a

1
i ) \ {s0i , s1i }, s2i = s1i or s2i = s0i . In particular, the
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following holds:

P ε
z1z2 =

⎧⎪⎨
⎪⎩
η1, s2i ∈ Fi(a

1
i ) \ {s0i , s1i },

η2, s2i = s1i ,

η3, s2i = s0i ,

where

η1 :=
εmi

N |Fi(a1i ) \ {s0i , s1i }|
, η2 :=

1− εmi

N(1 + ερi(s0,s1))
, η3 :=

(1− εmi)× ερi(s
0,s1)

N(1 + ερi(s0,s1))
.

Observe that 0 < limε→0+
η1

εmi
< +∞. Multiplying the numerator and denomina-

tor of η2 by εΨi(s
1,s0)−(ui(s

1)−Δi(s
1,s0)), we obtain

η2 =
1− εmi

N
× εΨi(s

0,s1)−(ui(s
1)−Δi(s

1,s0))

η′2
,

where η′2 := εΨi(s
0,s1)−(ui(s

1)−Δi(s
1,s0)) + εΨi(s

0,s1)−(ui(s
0)−Δi(s

0,s1)). Use

lim
ε→0+

εx =

{
1, x = 0,

0, x > 0,

and we have

lim
ε→0+

η2
εΨi(s0,s1)−(ui(s1)−Δi(s1,s0))

=

{
1
N , ui(s

0)−Δi(s
0, s1) �= ui(s

1)−Δi(s
1, s0),

1
2N otherwise.

Similarly, it holds that

lim
ε→0+

η3
εΨi(s0,s1)−(ui(s0)−Δi(s0,s1))

∈
{

1

2N
,
1

N

}
.

Hence, the resistance of the feasible transition z1 → z2, with z1 �= z2 and sensor i as
the unilateral deviator, can be described as follows:

χ(z1 → z2) =

⎧⎪⎨
⎪⎩
mi, s2i ∈ Fi(a

1) \ {s0i , s1i },
Ψi(s

0, s1)− (ui(s
1)−Δi(s

1, s0)), s2i = s1i ,

Ψi(s
0, s1)− (ui(s

0)−Δi(s
0, s1)), s2i = s0i .

Then (A3) in section 7.2 holds. It is straightforward to verify that (A2) in sec-
tion 7.2 holds. We are now in a position to verify (A1). Since Gloc is undirected and
connected, and multiple sensors can stay in the same position, then �a0 = QN for
any a0 ∈ Q. Since sensor i can choose any camera control vector from C at each time,
then �s0 = A for any s0 ∈ A. This implies that �z0 = B′ for any z0 ∈ B′, and thus
the Markov chain {Pε

t } is irreducible on the space B′.
It is easy to see that any state in diagA has period 1. Pick any (s0, s1) ∈

B′ \ diagA. Since Gloc is undirected, then s0i ∈ Fi(a
1
i ) if and only if s1i ∈ Fi(a

0
i ).

Hence, the following two paths are both feasible:

(s0, s1) → (s1, s0) → (s0, s1),

(s0, s1) → (s1, s1) → (s1, s0) → (s0, s1).
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16 MINGHUI ZHU AND SONIA MARTÍNEZ

Hence, the period of the state (s0, s1) is 1. This proves aperiodicity of {Pε
t }. Since

{Pε
t } is irreducible and aperiodic, then (A1) holds.
A direct result of Lemma 4.4 is that for each ε > 0, there exists a unique stationary

distribution of {Pε
t}, say μ(ε). From the proof of Lemma 4.4, we can see that the

resistance of an experiment is mi if sensor i is the unilateral deviator. We now proceed
to utilize Theorem 7.6 to characterize limε→0+ μ(ε).

Proposition 4.5. Consider the regular perturbed Markov process {Pε
t }. Then

limε→0+ μ(ε) exists and the limiting distribution μ(0) is a stationary distribution of
{P0

t }. Furthermore, the stochastically stable states (i.e., the support of μ(0)) are
contained in the set diag S∗.

Proof. The unperturbed Markov chain corresponds to the DHACL algorithm with
ε = 0. Hence, the recurrent communication classes of the unperturbed Markov chain
are contained in the set diagA. We will construct resistance trees over vertices in the
set diagA. Denote by Tmin the minimum resistance tree. The remainder of the proof
is divided into the following four claims.

Claim 8. χ((s0, s0) ⇒ (s1, s1)) = mi + Ψi(s
1, s0) − (ui(s

1) −Δi(s
1, s0)), where

s0 �= s1 and the transition s0 → s1 is feasible with sensor i as the unilateral deviator.
Proof. One feasible path for (s0, s0) ⇒ (s1, s1) is L := (s0, s0) → (s0, s1) →

(s1, s1), where sensor i experiments in the first transition and does not experiment
in the second one. The total resistance of the path L is mi + Ψi(s

1, s0) − (ui(s
1) −

Δi(s
1, s0)), which is at most mi +m∗.
Denote by L′ the path with minimum resistance among all the feasible paths for

(s0, s0) ⇒ (s1, s1). Assume that the first transition in L′ is (s0, s0) → (s0, s2), where
node j experiments and s2 �= s1. Observe that the resistance of (s0, s0) → (s0, s2)
is mj . No matter whether j is equal to i or not, the path L′ must include at least
one more experiment to introduce s1i . Hence the total resistance of the path L′ is
at least mi + mj . Since mi + mj > mi + 2m∗, the path L′ has a strictly larger
resistance than the path L. To avoid a contradiction, the path L′ must start from
the transition (s0, s0) → (s0, s1). Similarly, the sequent transition (which is also the
last one) in the path L′ must be (s0, s1) → (s1, s1) and thus L′ = L. Hence, the
resistance of the transition (s0, s0) ⇒ (s1, s1) is the total resistance of the path L,
i.e., mi +Ψi(s

1, s0)− (ui(s
1)−Δi(s

1, s0)).
Claim 9. All the edges ((s, s), (s′, s′)) in Tmin must consist of only one deviator,

i.e., si �= s′i and s−i = s′−i for some i ∈ V .
Proof. Assume that (s, s) ⇒ (s′, s′) has at least two deviators. Suppose the path

L̂ has the minimum resistance among all the paths from (s, s) to (s′, s′). Then � ≥ 2
experiments are carried out along L̂. Denote by ik the unilateral deviator in the kth
experiment sk−1 → sk, where 1 ≤ k ≤ �, s0 = s, and s� = s′. Then the resistance of
L̂ is at least

∑�
k=1 mik , i.e., χ((s

0, s0) ⇒ (s′, s′)) ≥∑�
k=1 mik .

Let us consider the following path on Tmin:

L̄ := (s0, s0) ⇒ (s1, s1) ⇒ · · · ⇒ (s�, s�).

From Claim 1, we know that the total resistance of the path L̄ is at most
∑�

k=1 mik +
�m∗.

A new tree T ′ can be obtained by adding the edges of L̄ into Tmin and removing
the redundant edges. The removed resistance is strictly greater than

∑�
k=1 mik +

2(� − 1)m∗, where
∑�

k=1 mik is the lower bound on the resistance on the edge from
(s0, s0) to (s�, s�), and 2(�− 1)m∗ is the strictly lower bound on the total resistances
of leaving (sk, sk) for k = 1, . . . , � − 1. The added resistance is the total resistance
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of L̄, which is at most
∑�

k=1 mik + �m∗. Since � ≥ 2, we have that 2(�− 1)m∗ ≥ �m∗,
and thus T ′ has a strictly lower resistance than Tmin. This contradicts the fact that
Tmin is a minimum resistance tree.

Claim 10. Given any edge ((s, s), (s′, s′)) in Tmin, denote by i the unilateral
deviator between s and s′. Then the transition si → s′i is feasible.

Proof. Assume that the transition si → s′i is infeasible. Suppose the path Ľ has
the minimum resistance among all the paths from (s, s) to (s′, s′). Then there are
� ≥ 2 experiments in Ľ. The remainder of the proof is similar to that of Claim 9.

Claim 11. Let hv be the root of Tmin. Then hv ∈ diag S∗.
Proof. Assume that hv = (s0, s0) /∈ diagS∗. Pick any (s∗, s∗) ∈ diagS∗. By

Claims 9 and 10, we have that there is a path from (s∗, s∗) to (s0, s0) in the tree Tmin

as follows:

L̃ := (s�, s�) ⇒ (s�−1, s�−1) ⇒ · · · ⇒ (s1, s1) ⇒ (s0, s0)

for some � ≥ 1. Here, s∗ = s�, there is only one deviator, say ik, from sk to sk−1, and
the transition sk → sk−1 is feasible for k = �, . . . , 1.

Since the transition sk → sk+1 is also feasible for k = 0, . . . , �− 1, we obtain the
reverse path L̃′ of L̃ as follows:

L̃′ := (s0, s0) ⇒ (s1, s1) ⇒ · · · ⇒ (s�−1, s�−1) ⇒ (s�, s�).

By Claim 8, the total resistance of the path L̃ is

χ(L̃) =
�∑

k=1

mik +

�∑
k=1

{Ψik(s
k, sk−1)− (uik(s

k−1)−Δik(s
k−1, sk))},

and the total resistance of the path L̃′ is

χ(L̃′) =
�∑

k=1

mik +

�∑
k=1

Ψik(s
k−1, sk)− (uik(s

k)−Δik(s
k, sk−1)).

Denote Λ′
1 := (D(akik , r

k
ik
)\D(ak−1

ik−1
, rk−1

ik−1
)) ∩Q and Λ′

2 := (D(ak−1
ik−1

, rk−1
ik−1

)\D(akik ,

rkik)) ∩ Q. Observe that

Ug(s
k)− Ug(s

k−1)

= uik(s
k)− uik(s

k−1)−
∑
q∈Λ′

1

Wq

(
nq(s

k−1)

nq(sk−1)
− nq(s

k−1)

nq(sk)

)

+
∑
q∈Λ′

2

Wq

(
nq(s

k)

nq(sk)
− nq(s

k)

nq(sk−1)

)

= (uik(s
k)−Δik(s

k, sk−1))− (uik(s
k−1)−Δik(s

k−1, sk)).

We now construct a new tree T ′ with the root (s∗, s∗) by adding the edges of
L̃′ to the tree Tmin and removing the redundant edges L̃. Since Ψik(s

k−1, sk) =
Ψik(s

k, sk−1), the difference in the total resistances across χ(T ′) and χ(Tmin) is
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χ(T ′)− χ(Tmin) = χ(L̃′)− χ(L̃)

=

�∑
k=1

−(uik(s
k−1)−Δik(s

k−1, sk))−
�∑

k=1

−(uik(s
k)−Δik(s

k, sk−1))

=
�∑

k=1

(Ug(s
k)− Ug(s

k−1)) = Ug(s
0)− Ug(s

∗) < 0.

This contradicts that Tmin is a minimum resistance tree.
It follows from Claim 4 that the state hv ∈ diagS∗ has minimum stochastic

potential. Then Proposition 4.5 is a direct result of Theorem 7.6.
We are now ready to show the proof of Theorem 3.2.
Proof of Theorem 3.2.
Claim 12. Condition (B2) in Theorem 7.5 holds.
Proof. The proof is analogous to Claim 5.
Claim 13. Condition (B3) in Theorem 7.5 holds.
Proof. Denote by P ε(t) the transition matrix of {Pt}. Consider the feasible tran-

sition z1 → z2 with unilateral deviator i. The corresponding probability is given by

P
ε(t)
z1z2 =

⎧⎪⎨
⎪⎩
η1, s2i ∈ Fi(a

1
i ) \ {s0i , s1i },

η2, s2i = s1i ,

η3, s2i = s0i ,

where

η1 :=
ε(t)mi

N |Fi(a1i ) \ {s0i , s1i }|
, η2 :=

1− ε(t)mi

N(1 + ε(t)ρi(s0,s1))
,

η3 :=
(1− ε(t)mi)× ε(t)ρi(s

0,s1)

N(1 + ε(t)ρi(s0,s1))
.

The remainder is analogous to Claim 6.
Claim 14. Condition (B1) in Theorem 7.5 holds.
Proof. Observe that |Fi(a

1
i )| ≤ 5|C|. Since ε(t) is strictly decreasing, there is

t0 ≥ 1 such that t0 is the first time when 1− ε(t)mi ≥ ε(t)mi .
Observe that for all t ≥ 1, it holds that

η1 ≥ ε(t)mi

N(5|C| − 1)
≥ ε(t)mi+m∗

N(5|C| − 1)
.

Denote b := ui(s
1)−Δi(s

1, s0) and a := ui(s
0)−Δi(s

0, s1). Then ρi(s
0, s1) = b−a.

Since b− a ≤ m∗, then for t ≥ t0 it holds that

η2 =
1− ε(t)mi

N(1 + ε(t)b−a)
=

(1− ε(t)mi)ε(t)max{a,b}−b

N(ε(t)max{a,b}−b + ε(t)max{a,b}−a)

≥ ε(t)miε(t)max{a,b}−b

2N
≥ ε(t)mi+m∗

N(5|C| − 1)
.
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Similarly, for t ≥ t0, it holds that

η3 =
(1− ε(t)mi)ε(t)max{a,b}−a

N(ε(t)max{a,b}−b + ε(t)max{a,b}−a)
≥ ε(t)mi+m∗

N(5|C| − 1)
.

Since mi ∈ (2m∗,Km∗] for all i ∈ V and Km∗ > 1, then for any feasible transition
z1 → z2 with z1 �= z2, it holds that

P
ε(t)
z1z2 ≥ ε(t)(K+1)m∗

N(5|C| − 1)

for all t ≥ t0. Furthermore, for all t ≥ t0 and all z1 ∈ diagA, we have that

P
ε(t)
z1z1 = 1− 1

N

N∑
i=1

ε(t)mi =
1

N

N∑
i=1

(1− ε(t)mi) ≥ 1

N

N∑
i=1

ε(t)mi ≥ ε(t)(K+1)m∗

N(5|C| − 1)
.

Choose ki := (D+1)i and let i0 be the smallest integer such that (D+1)i0 ≥ t0.
Similar to (4.3), we can derive the following property:

+∞∑
�=0

(1 − λ(P (k�, k�+1))) ≥ |B|
(N(5|C| − 1))(D+1)(K+1)m∗

+∞∑
i=i0

1

(D + 1)i
= +∞.

Hence, the weak ergodicity of {Pt} follows from Theorem 7.4.
All the conditions in Theorem 7.5 hold. Thus it follows from Theorem 7.5 that the

limiting distribution is μ∗ = limt→+∞ μt. Note that limt→+∞ μt = limt→+∞ μ(ε(t)) =
μ(0) and Proposition 4.5 shows that the support of μ(0) is contained in the set
diagS∗. Hence, the support of μ∗ is contained in the set diagS∗, implying that
limt→+∞ P(z(t) ∈ diagS∗) = 1. This completes the proof.

5. Discussion and simulation. In this section, we present some remarks along
with two numerical examples to illustrate the performance of our algorithms.

Theorems 3.1 and 3.2 guarantee the asymptotic convergence in probability of the
proposed algorithms. However, our theoretical results do not provide any estimate of
the convergence rates, which could be very slow in practice. This is a consequence
of the well-known exploration-exploitation trade-off termed in reinforcement learning,
e.g., in [32]. Intuitively, each algorithm starts from a relatively large exploration rate,
and this allows the algorithm to explore the unknown environment quickly. As time
progresses, the exploration rate is decreased, allowing each algorithm to exploit the
information collected and converge to some desired configuration. In order to avoid
being locked into some undesired configuration, each algorithm requires a very slowly
decreasing exploration rate. In the numerical examples below, we have chosen suitable
exploration rates empirically.

5.1. A numerical example of the DISCL algorithm. Consider a 10 × 10
square in which each grid is 1 × 1, and a group of nine mobile sensors are deployed
in this area. Note that, given arbitrary sensing range and distribution, it would
be difficult to compute an NE. In order to avoid this computational challenge and
make our simulation results evident, we make the following assumptions: (1) All the
sensors are identical, and each has a fixed sensing range which is a circle of radius 1.5.
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Fig. 5.1. Initial configuration of the network.
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Fig. 5.2. Final configuration of the network at iteration 5000 of the DISCL algorithm.

(2) Each point in this region is associated with a uniform value of 1. With these two
assumptions, it is not difficult to see that any configuration where sensing ranges of
sensors do not overlap is an NE at which the global potential function is equal to 81.

In this example, the diameter of the location graph is 20 and N = 9. According
to our theoretical result, we should choose an exploration rate of ε(t) = (1t )

1
189 . The

exploration rate decreases extremely slowly, and the algorithm requires an extremely
long time to converge. Instead, we choose ε(t) = ( 1

t+210 )
1
2 in our simulation. Figure 5.1

shows the initial configuration of the group where all of the sensors start at the same
position. Figure 5.2 presents the configuration at iteration 5000, and it is evident
that this configuration is an NE. Figure 5.3 is the evolution of the global potential
function which eventually oscillates between 78 and the maximal value of 81. This
verifies that the sensors approach the set of NEs.

As in [21], [22], we will use fixed exploration rates in the DISCL algorithm which
then reduces to the DHSCL algorithm. Figures 5.4, 5.5, and 5.6 present the evolution
of the global potential functions for ε = 0.1, 0.01, 0.001, respectively. When ε = 0.1,
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Fig. 5.3. The evolution of the global potential function with a diminishing exploration rate for
the DISCL algorithm.
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Fig. 5.4. The evolution of the global potential function under DHSCL when ε = 0.1.
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Fig. 5.5. The evolution of the global potential function under DHSCL when ε = 0.01.
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Fig. 5.6. The evolution of the global potential function under DHSCL when ε = 0.001.
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Fig. 5.7. Final configuration of the network at iteration 50000 of the DIACL algorithm.

the convergence to the neighborhood of the value 81 is the fastest, but its variation is
largest. When ε = 0.001, the convergence rate is slowest. The performance of ε = 0.01
is similar to the diminishing step-size ε(t) = ( 1

t+210 )
1
2 . This comparison shows that,

for both diminishing and fixed exploration rates, we have to empirically choose the
exploration rate to obtain a good performance.

5.2. A numerical example of the DIACL algorithm. We consider a lattice
of unit grids, and each point is associated with a uniform weight 0.1. There are four
identical sensors, and each of them has a fixed sensing range which is a circle of radius
1.5. The global optimal value of Ug is 3.6. All the sensors start from the center of
the region. We run the DIACL algorithm for 50000 iterations and sample the data
every 5 iterations (see Figure 5.7). Figures 5.8 to 5.11 show the evolution of the

global function Ug for the following four cases, respectively: ε(t) = 1
4 (

1
t+1 )

1
4 , ε = 0.1,

ε = 0.01, and ε = 0.001, where the diminishing exploration rate is chosen empirically.
Let us compare Figure 5.9 to 5.11. The fixed exploration rate ε = 0.1 renders a fast
convergence to the global optimal value 3.6. However, the fast convergence rate comes
at the expense of large oscillation. The fixed exploration rate ε = 0.01 induces the
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Fig. 5.8. The evolution of the global potential function under the DIACL algorithm with a
diminishing exploration rate.
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Fig. 5.9. The evolution of the global potential function under the DIACL algorithm when
ε = 0.1 is kept fixed.
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Fig. 5.10. The evolution of the global potential function under the DIACL algorithm when
ε = 0.01 is kept fixed.
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0 2000 4000 6000 8000 10000
0.5

1

1.5

2

2.5

3

3.5

4
The evolution of global potential function

samples

Fig. 5.11. The evolution of the global potential function under the DIACL algorithm when
ε = 0.001 is kept fixed.

slowest convergence but the smallest oscillation. The diminishing exploration rate
then balances these two performance metrics. Under the same exploration rate, the
DIACL algorithm needs a longer time than the DISCL algorithm to converge. This
is caused by the asynchronous nature of the DIACL algorithm.

6. Conclusions. We have formulated a coverage optimization problem as a con-
strained exact potential game. We have proposed two payoff-based distributed learn-
ing algorithms for this coverage game and shown that these algorithms converge in
probability to the set of constrained NEs and the set of global optima of certain
coverage performance metric, respectively.

7. Appendix. For the sake of a self-contained exposition, we include here some
background in Markov chains [16] and the theory of resistance trees [38].

7.1. Background in Markov chains. A discrete-time Markov chain is a dis-
crete-time stochastic process on a finite (or countable) state space and satisfies the
Markov property (i.e., the future state depends on its present state, but not the past
states). A discrete-time Markov chain is said to be time-homogeneous if the proba-
bility of going from one state to another is independent of the time when the step is
taken. Otherwise, the Markov chain is said to be time-inhomogeneous.

Since time-inhomogeneous Markov chains include time-homogeneous ones as spe-
cial cases, we will restrict our attention to the former in the remainder of this section.
The evolution of a time-inhomogeneous Markov chain {Pt} can be described by the
transition matrix P (t), which gives the probability of traversing from one state to
another at each time t.

Consider a Markov chain {Pt} with time-dependent transition matrix P (t) on a

finite state space X . Denote by P (m,n) :=
∏n−1

t=m P (t), 0 ≤ m < n.
Definition 7.1 (strong ergodicity [16]). The Markov chain {Pt} is strongly

ergodic if there exists a stochastic vector μ∗ such that for any distribution μ on X and
any m ∈ Z+, it holds that limk→+∞ μTP (m, k) = (μ∗)T .

Strong ergodicity of {Pt} is equivalent to {Pt} being convergent in distribution
and will be employed to characterize the long-run properties of our learning algorithm.
The investigation of conditions under which strong ergodicity holds is aided by the
introduction of the coefficient of ergodicity and weak ergodicity defined next.
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Definition 7.2 (coefficient of ergodicity [16]). For any n×n stochastic matrix P ,
its coefficient of ergodicity is defined as λ(P ) := 1−min1≤i,j≤n

∑n
k=1 min(Pik,Pjk).

Definition 7.3 (weak ergodicity [16]). The Markov chain {Pt} is weakly er-
godic if for all x, y, z ∈ X and for all m ∈ Z+, it holds that limk→+∞(Pxz(m, k) −
Pyz(m, k)) = 0.

Weak ergodicity merely implies that {Pt} asymptotically forgets its initial state,
but does not guarantee convergence. For a time-homogeneous Markov chain, there is
no distinction between weak ergodicity and strong ergodicity. The following theorem
provides the sufficient and necessary condition for {Pt} to be weakly ergodic.

Theorem 7.4 (see [16]). The Markov chain {Pt} is weakly ergodic if and only
if there is a strictly increasing sequence of positive numbers ki, i ∈ Z+, such that∑+∞

i=0 (1− λ(P (ki, ki+1)) = +∞.
We are now ready to present the sufficient conditions for strong ergodicity of the

Markov chain {Pt}.
Theorem 7.5 (see [16]). A Markov chain {Pt} is strongly ergodic if the following

conditions hold:
(B1) The Markov chain {Pt} is weakly ergodic.
(B2) For each t, there exists a stochastic vector μt on X such that μt is the left

eigenvector of the transition matrix P (t) with eigenvalue 1.
(B3) The eigenvectors μt in (B2) satisfy

∑+∞
t=0

∑
z∈X |μt

z − μt+1
z | < +∞.

Moreover, if μ∗ = limt→+∞ μt, then μ∗ is the vector in Definition 7.1.

7.2. Background in the theory of resistance trees. Let P 0 be the transi-
tion matrix of the time-homogeneous Markov chain {P0

t } on a finite state space X .
Furthermore, let P ε be the transition matrix of a perturbed Markov chain, say {Pε

t}.
With probability 1− ε, the process {Pε

t } evolves according to P 0, while with proba-
bility ε, the transitions do not follow P 0.

A family of stochastic processes {Pε
t } is called a regular perturbation of {P0

t } if
the following hold for all x, y ∈ X :

(A1) For some ς > 0, the Markov chain {Pε
t } is irreducible and aperiodic for all

ε ∈ (0, ς ].
(A2) limε→0+ P ε

xy = P 0
xy.

(A3) If P ε
xy > 0 for some ε, then there exists a real number χ(x → y) ≥ 0 such

that limε→0+ P ε
xy/ε

χ(x→y) ∈ (0,+∞).
In (A3), χ(x → y) is called the resistance of the transition from x to y.
Let H1, H2, . . . , HJ be the recurrent communication classes of the Markov chain

{P0
t }. Note that within each class H�, there is a path of zero resistance from every

state to every other. Given any two distinct recurrence classes H� and Hk, consider all
paths which start from H� and end at Hk. Denote by χ�k the least resistance among
all such paths. Now define a complete directed graph G where there is one vertex �
for each recurrent class H�, and the resistance on the edge (�, k) is χ�k. An �-tree on
G is a spanning tree such that from every vertex k �= �, there is a unique path from
k to �. Denote by G(�) the set of all �-trees on G. The resistance of an �-tree is the
sum of the resistances of its edges. The stochastic potential of the recurrent class H�

is the least resistance among all �-trees in G(�).
Theorem 7.6 (see [38]). Let {Pε

t} be a regular perturbation of {P0
t }, and for each

ε > 0, let μ(ε) be the unique stationary distribution of {Pε
t }. Then limε→0+ μ(ε) exists,

and the limiting distribution μ(0) is a stationary distribution of {P0
t }. The stochas-

tically stable states (i.e., the support of μ(0)) are precisely those states contained in
the recurrence classes with minimum stochastic potential.
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