Testing Fourier dimensionality and sparsity

Parikshit Gopalan, Ryan O’Donnell, Rocco A. Servedio,
Amir Shpilka, and Karl Wimmer

parik@microsoft.com, {odonnell,wimmer}@cs.cmu.edu,
rocco@cs.columbia.edu, shpilka@cs.technion.ac.il

Abstract. We present a range of new results for testing properties of Boolean
functions that are defined in terms of the Fourier spectrum. Broadly speaking,
our results show that the property of a Boolean function having a concise Fourier
representation is locally testable.

We first give an efficient algorithm for testing whether the Fourier spectrum of a
Boolean function is supported in a low-dimensional subspace of F5 (equivalently,
for testing whether f is a junta over a small number of parities). We next give an
efficient algorithm for testing whether a Boolean function has a sparse Fourier
spectrum (small number of nonzero coefficients). In both cases we also prove
lower bounds showing that any testing algorithm — even an adaptive one —
must have query complexity within a polynomial factor of our algorithms, which
are nonadaptive. Finally, we give an “implicit learning” algorithm that lets us test
any sub-property of Fourier concision.

Our technical contributions include new structural results about sparse Boolean
functions and new analysis of the pairwise independent hashing of Fourier coef-
ficients from [13].

1 Introduction

Recent years have witnessed broad research interest in the local testability of mathemat-
ical objects such as graphs, error-correcting codes, and Boolean functions. One of the
goals of this study is to understand the minimal conditions required to make a property
locally testable. For graphs and codes, works such as [1, 5, 3,4] and [18, 19] have given
fairly general characterizations of when a property is testable. For Boolean functions,
however, testability is less well understood. On one hand, there are a fair number of
testing algorithms for specific classes of functions such as Fs-linear functions [10, 6],
dictators [7, 23], low-degree Fo-polynomials [2, 24], juntas [15, 9], and halfspaces [22].
But there is not much by way of general characterizations of what makes a property of
Boolean functions testable. Perhaps the only example is the work of [12], showing that
any class of functions sufficiently well-approximated by juntas is locally testable.

It is natural to think that general characterizations of testability for Boolean func-
tions might come from analyzing the Fourier spectrum (see e.g. [14, Section 9.1]). For
one thing, many of the known tests — for linearity, dictators, juntas, and halfspaces —
involve a careful analysis of the Fourier spectrum. Further intuition comes from learn-
ing theory, where the class of functions that are learnable using many of the well-known
algorithms [21, 20, 17] can be characterized in terms of the Fourier spectrum.

In this paper we make some progress toward this goal, by giving efficient algorithms
for testing Boolean functions that have low-dimensional or sparse Fourier representa-
tions. These are two natural ways to formalize what it means for a Boolean function to

have a “concise” Fourier representation; thus, roughly speaking our results show that
the property of having a concise Fourier representation is efficiently testable. Further, as
we explain below, Boolean functions with low-dimensional or sparse Fourier represen-
tations are closely related to the linear functions, juntas, and low-degree polynomials
whose testability has been intensively studied, and thus the testability of these classes
is a natural question in its own right. Building on our testing algorithms, we are able
to give an “implicit learner” (in the sense of [12]), which determines the “truth table”
of a sparse Fourier spectrum without actually knowing the identities of the underlying
Fourier characters. This lets us test any sub-property of having a concise Fourier repre-
sentation. We view this as a step toward the goal of a more unified understanding of the
testability of Boolean functions.

Our algorithms rely on new structural results on Boolean functions with sparse and
close-to-sparse Fourier spectrums, which may find applications elsewhere. As one such
application, we show that the well-known Kushilevitz-Mansour algorithm is in fact an
exact proper learning algorithm for Boolean functions with sparse Fourier representa-
tions. As another application, we give polynomial-time unique-decoding algorithms for
sparse functions and k-dimensional functions; see Appendix 6 for these applications.

1.1 The Fourier spectrum, dimensionality, and sparsity

We are concerned with testing various properties defined in terms of the Fourier rep-
resentation of Boolean functions f : Fy — {—1,1}. Input bits will be treated as
0,1 € o, the field with two elements; output bits will be treated as —1,1 € R. Every
Boolean function f : F§ — R has a unique representation as

f) =37 F(@)xalz) where xo(x) & (~1)@) = (1))

ackFy

The coefficients f(«) are the Fourier coefficients of f, and the functions y,(-) are
sometimes referred to as linear functions or characters. In addition to treating input
strings = as lying in F%, we also index the characters by vectors a € 5. This is to
emphasize the fact that we are concerned with the linear-algebraic structure. We write
Spec(f) for the Fourier spectrum of f, i.e. the set {ov € F% : f(a) # 0}.

Dimensionality and sparsity (and degree). A function f : F} — {—1,1} is said
to be k-dimensional if Spec(f) lies in a k-dimensional subspace of F7. An equivalent
definition is that f is k-dimensional if it is a function of k characters X, , ..., Xa,. i-€.
f is a junta over k parity functions. We write dim(f) to denote the smallest k for which
f is k-dimensional. A function f is said to be s-sparse if |Spec(f)| < s. We write
sp(f) to denote |Spec(f)|, i.e. the smallest s for which f is s-sparse.

We recall the notion of the Fa-degree of a Boolean function, deg,(f), which is the
degree of the unique multilinear Fy-polynomial representation for f when viewed as a
function 'y — Fy. (This should not be confused with the real-degree/Fourier-degree.
For example, deg,(x) = 1 forall & # 0.) Let us note some relations between dim(f),
sp(f). For any Boolean function f, we have

deg,(f) < logsp(f) < dim(f), (2)

except that the first inequality fails when deg,(f) = 1. (Throughout this paper, log
always means log,.) The first inequality above is not difficult (see e.g. [8, Lemma 3])
and the second one is essentially immediate. Either of the above inequalities can be quite
loose; for the first inequality, the inner product function on n variables has deg,(f) =
2 but logsp(f) = n. For the second inequality, the addressing function with %logs
addressing variables and s'/2 addressee variables can be shown to be s-sparse but has
dim(f) > s'/2. (It is trivially true that dim(f) < s for any s-sparse function.)

We may rephrase these bounds as containments between classes of functions:
{k-dimensional} C {2"-sparse} C {Fy — degree-k}} 3)

where the right containment is proper for £ > 1 and the left is proper for k larger than
some small constant such as 6. Alon et al. [2] gave essentially matching upper and lower
bounds for testing the class of Fo-degree-k functions, showing that 2€(*) nonadaptive
queries are necessary and sufficient. We show that 2€(*) queries are also necessary and
sufficient for testing each of the first two classes as well; in fact, by our implicit learning
result, we can test any sub-class of k-dimensional functions using 2°*) queries.'

1.2 QOur results and techniques

Testing Low-Dimensionality. We give nearly matching upper and lower bounds for
testing whether a function is k-dimensional:

Theorem 1. [Testing k-dimensionality — informal] There is a nonadaptive O (k2% /¢)-
query algorithm for e-testing whether f is k-dimensional. Moreover, any algorithm
(adaptive, even) for 0.49-testing this property must make 9(2’“/ 2) queries.

We outline the basic idea behind our dimensionality test. Given h € F5, we say that
[+ Fy — R is h-invariant if it satisfies f(z + h) = f(z) for all x € F. We define
the subspace Inv(f) = {h : f is h-invariant}. If f is truly k-dimensional, then Inv(f)
has codimension k; we use this as the characterization of k£-dimensional functions. We
estimate the size of Inv(f) by randomly sampling vectors h and testing if they belong
to Inv(f). We reject if the fraction of such % is much smaller than 2~%. The crux of our
soundness analysis is to show that if a function passes the test with good probability,
most of its Fourier spectrum is concentrated on a k-dimensional subspace. From this
we conclude that it must in fact be close to a k-dimensional function. Because of space
constraints, this algorithm is given in Appendix 5.

Testing Sparsity. We next give an algorithm for testing whether a function is s-sparse.
Its query complexity is poly(s), which is optimal up to the degree of the polynomial:

Theorem 2. [Testing s-sparsity — informal] There is a nonadaptive poly(s,1/e)-
query algorithm for e-testing whether f is s-sparse. Moreover, any algorithm (adaptive,
even) for 0.49-testing this property must make §2(./s) queries.

! We remind the reader that efficient testability does not translate downward: if C, is a class of
functions that is efficiently testable and C> C C'1, the class C> need not be efficiently testable.

The high-level idea behind our tester is that of “hashing” the Fourier coefficients,
following [13]. We choose a random subspace H of F% with codimension O(s?). This
partitions all the Fourier coefficients into the cosets (affine subspaces) defined by H.
If f is s-sparse, then each vector in Spec(f) is likely to land in a distinct coset. We
define the “projection” of f to a coset r + H to be the real-valued function given by
zeroing out all Fourier coefficients not in 7 + H. Given query access to f, one can
obtain approximate query access to a projection of f by a certain averaging. Now if
each vector in Spec(f) is hashed to a different coset, then each projection function will
have sparsity either 1 or 0, so we can try to test that at most s of the projection functions
have sparsity 1, and the rest have sparsity 0.

A similar argument to the one used for k-dimensionality shows that if f passes this
test, most of its Fourier mass lies on a few coefficients. However, unlike in the low-
dimensionality test, this is not a priori enough to conclude that f is close to a sparse
Boolean function. The obvious way to get a Boolean function close to f would be to
truncate the Fourier spectrum to its s largest coefficients and then take the sign, but
taking the sign could destroy the sparsity and give a function which is not at all sparse.

We circumvent this obstacle by using some new structural theorems about sparse
Boolean functions. We show that if most of the Fourier mass of a function f lies on its
largest s coefficients, then these coefficients are close to being “[log s|—granular,” i.e.
close to integer multiples of 1/2/1°% 51, We then prove that truncating the Fourier expan-
sion to these coefficients and rounding them to nearby granular values gives a sparse
Boolean-valued function (Theorem 6). Thus our sparsity test and its analysis depart
significantly from the tests for juntas [15] and from our test for low-dimensionality.

Testing subclasses of k-dimensional functions. Finally, we show that a broad range
of subclasses of k-dimensional functions are also testable with 2°(*) queries. Recall
that k-dimensional functions are all functions f(z) = ¢(Xa, (%), .., Xa, (z)) where
g is any k-variable Boolean function. We say that a class C is an induced subclass of
k-dimensional functions if there is some collection C’ of k-variable Boolean functions
such that C is the class of all functions f = g(Xay,- - - Xy) Where g is any function in
C'and xq,,- - -, Xa, are any linear functions from F} to Fy as before. For example, let
C be the class of all k-sparse polynomial threshold functions over {—1,1}"; i.e., each
function in C is the sign of a real polynomial with at most k£ nonzero terms. This is an
induced subclass of k-dimensional functions, corresponding to the collection C’ = { all
linear threshold functions over k& Boolean variables}.
We show that any induced subclass of k-dimensional functions can be tested:

Theorem 3. [Testing induced subclasses of k-dimensional functions — informal]
Let C be any induced subclass of k-dimensional functions. There is a nonadaptive
poly(2¥, 1/¢)-query algorithm for e-testing C.

We note that the upper bound of Theorem 3 is essentially best possible in general,
by the 22(*) Jower bound for testing the whole class of k-dimensional functions.

Our algorithm for Theorem 3 extends the approach of Theorem 2 with ideas from
the “testing by implicit learning” work of [12]. Briefly, by hashing the Fourier coeffi-
cients we are able to construct a matrix of size 2¥ x 2¥ whose entries are the values
taken by the characters Y, in the spectrum of f. This matrix, together with a vector of

the corresponding values of f, serves as a data set for “implicit learning” (we say the
learning is “implicit” since we do not actually know the names of the relevant charac-
ters). Our test inspects sub-matrices of this matrix and tries to find one which, together
with the vector of f-values, matches the truth table of some k-variable function g € C'.
We give a more detailed overview at the start of Section 7.

Organization of the paper. We give standard preliminaries and an explanation of our
techniques for hashing the Fourier spectrum in Section 2. Section 3 gives our new struc-
tural theorems about sparse Boolean functions, and Section 4 uses these theorems to
give our test for s-sparse functions. Because of space constraints, our results for test-
ing k-dimensional functions, for unique-decoding, for testing induced subclasses of k-
dimensional functions, and our lower bounds are given in Appendices 5-8 respectively.

2 Preliminaries

Throughout the paper we view Boolean functions as mappings from F3 to {—1,1}. We
will also consider functions which map from F3 to R. Such functions have a unique
Fourier expansion as in (1). For A a collection of vectors o € F%, we write wt(A)
to denote the “Fourier weight” wt(A) = > .4 f(@)? on the elements of A. This

notation suppresses the dependence on f, but it will always be clear from context. We

frequently use Parseval’s identity: wt(F3) = 3, cpy fla)?=|f2 Y E.cry [f(2)?].

Here and elsewhere, an expectation or probability over “x € X refers to the uniform
distribution on X.

As defined in the previous section, the sparsity of f is sp(f) = |Spec(f)|. We may
concisely restate the definition of dimension as dim(f) = dim(span(Spec(f))).

Given two Boolean functions f and g, we say that f and g are e-close if Pr,cry [f(2) #
g(x)] < € and say they are e-far if Pryepy[f(2) # g(2)] > . We use the standard
definition of property testing:

Definition 1. Let C be a class of functions mapping Fy to {—1,1}. A property tester
for C is an oracle algorithm A which is given a distance parameter ¢ > 0 and oracle
access to a function [: FY — {—1,1} and satisfies the following conditions:

1. if f € C then A outputs “accept” with probability at least 2/3;

2. if f is e-far from every g € C then A outputs “accept” with probability at most 1/3.
We also say that A e-tests C. The main interest is in the number of queries the testing
algorithm makes.

All of our testing upper and lower bounds allow “two-sided error” as described
above. Our lower bounds are for adaptive query algorithms and our upper bounds are
via nonadaptive query algorithms.

2.1 Projections of the Fourier spectrum

The idea of “isolating” or “hashing” Fourier coefficients by projection, as done in [13]
in a learning-theoretic context, plays an important role in our tests.

Definition 2. Given a subspace H < F% and a coset r + H, define the projection
operator P, i on functions f : Fy — R as follows:

o otherwise.

def fa) ifa€r+ H,
B (@) { (
In other words, we have P, g f = Arim x f, where A,y g & Z(x€7'+H Xa-

Clearly A,y = Xr - D pey XH» and it is a simple and well-known fact that
> nher XH = [H| - 151 Thus we conclude the following (see also Lemma 1 of [13]):

Fact 4 Priuf(z) =Eycurx-(y)f(z+y)l.

We now show that for any coset r + H, we can approximately determine both
Pris f(x) and [Py s 3

Proposition 1. For any © € F%, the value P, f(x) can be estimated to within £7
with confidence 1 — § using O(log(1/8)/7?) queries to f.

Proof. Empirically estimate the right-hand side in Fact 4. Since the quantity inside the
expectation is bounded in [—1, 1], the result follows from a Chernoff bound. O

Recall that wt(r + H) = 3, .. f(@)? = |Pryp f]|3. We have:
Fact 5 wi(r + H) = B, ey ocrrs e (2) (@) f(+)]

Proof. Using Parseval and Fact 4, we have

wi(r+H) = E_[(Pryaf(w))?] = E D (y1) f () X (y2) f (wty2)],
weFy weFy y1,y2€H
which reduces to the desired equality upon writing x = w + y1, 2 = y1 + Yo. ad

Proposition 2. The value wt(r + H) can be estimated to within £7 with confidence
1 — 6 using O(log(1/8)/72) queries to f.

Proof. Empirically estimate the right-hand side in Fact 5. Since the quantity inside the
expectation is bounded in [—1, 1], the result follows from a Chernoff bound. O

2.2 Hashing to a random coset structure
In this section we present our technique for pairwise independently hashing the Fourier
characters.

Definition 3. For t € N, we define a random t-dimensional coset structure (H,C) as
follows: We choose vectors (31, ..., 03: € Fy independently and uniformly at random
and set H = span{f31, ..., 3;}*. For each b € F% we define the “bucket”

C(b) d:ef{oz eFy: (o, 8;) = b; forall i}.

We take C to be the multiset of C(b)’s, which has cardinality 2¢.

Remark 1. Given such a random coset structure, if the (3;’s are linearly independent
then the buckets C'(b) are precisely the cosets in F} /H, and the coset-projection func-
tion Py f is defined according to Definition 2. In the (usually unlikely) case that the
B;’s are linearly dependent, some of the C(b)’s will be cosets in F5/H and some of
them will be empty. For the empty buckets C'(b) we define P f to be identically 0.
It is algorithmically easy to distinguish empty buckets from genuine coset buckets.

We now derive some simple but important facts about this random hashing process:

Proposition 3. Ler (H,C) be a random t-dimensional coset structure. Define the indi-
cator random variable I,_.;, for the event that o € C(b).

1. For each oo € F5 \ {0} and each b we have Pr[a € C(b)] = E[I,_] = 274

2. Let a,a/ € FY be distinct. Then Pr|a, o/ belong to the same bucket] = 27,

3. Fix any set S C Fy with |S| < s+ 1. Ift > 2log s + log(1/0) then except with
probability at most 0, all vectors in S fall into different buckets.

4. Foreachb, the collection of random variables (1, a_)b)ae]yg is pairwise independent.

Proof. Part 1 is because for any o # 0, each («, ;) is an independent uniformly ran-
dom bit. Part 2 is because each (o — ¢/, 3;) is an independent uniformly random bit,
and hence the probability that (a, 5;) = (o, 3;) for all i is 2. Part 3 follows from
Part 2 and taking a union bound over the at most (5;’1) < s? distinct pairs in S. For
Part 4, assume first that & # o’ are both nonzero. Then from the fact that « and " are
linearly independent, it follows that Pr[a, o’ € C(b)] = 272! as required. On the other
hand, if one of « # &' is zero, then Pr[a, o/ € C(b)] = Pr[a € C(b)]Pr[a’ € C(b)]
follows immediately by checking the two cases b = 0, b # 0. a

With Proposition 3 in mind, we give the following simple deviation bound for the
sum of pairwise independent random variables:

Proposition 4. Let X = """ | X;, where the X;’s are pairwise independent random
variables satisfying 0 < X; < 7. Assume p = E[X] > 0. Then for any € > 0, we have
Pr(X < (1-ou] < 4.
Proof. By pairwise independence, we have Var[X]| = " Var[X;] < Y E[X?] <
> 7E[X;] = Tu. The result now follows from Chebyshev’s inequality. a
Finally, it is slightly annoying that Part 1 of Proposition 3 fails for « = 0 (because
0 is always hashed to C'(0)). However we can easily handle this issue by renaming the
buckets with a simple random permutation.

Definition 4. In a random permuted t-dimensional coset structure, we additionally
choose a random z € F% and rename C(b) by C(b + z).

Proposition 5. For a random permuted t-dimensional coset structure, Proposition 3
continues to hold, with Part I even holding for o = 0.

Proof. Use Proposition 3 and the fact that adding a random z permutes the buckets. 0O

3 Structural theorems about s-sparse functions

In this section we prove structural theorems about close-to-sparse Boolean functions.
These theorems are crucial to the analysis of our test for s-sparsity; we also present a
learning application in Section 6.

Definition 5. Let B = {ay,---,as} denote the (subsets of [n] with the) s-largest
Fourier coefficients of f, and let S = B be its complement. We say that f is p-close to

s-sparse in Lo if 3 o fla)? < p.

Definition 6. We say a rational number has granularity k € N, or is k-granular, if it
is of the form (integer)/2*. We say a function f : F§ — R is k-granular sz(oz) is k-
granular for every o.. We say that a number v is p-close to k-granular if [v — 5 /2F| < p
for some integer j.

The following structural result is the key theorem for the completeness of our spar-
sity test; it says that in any function that is close to being sparse in /o, all the large
Fourier coefficients are close to being granular.

Theorem 1 [Completeness Theorem.] If f is p-close to s-sparse in o, then each f (@)
fora € Bis \‘/‘g-close to [log s|-granular.

Proof. Pick asetof k = [log s]+1 equations A = b at random. Let A+ C {0,1}" be
the set of solutions to A« = 0. Define H to be the coset of AL of solutions to Aa = b.
We have

Prf(z) = fla)xa(2).

acH

Fix a; € B. We will show that with non-zero probability the following two events
happen together: the set «; is the unique coefficient in B N H, and the ¢5 Fourier mass
of the set S N H is bounded by “72 Clearly, Pr 4 y[Ac; = b] = 27F. Let us condition
on this event. By pairwise independence, for any j # i, Pra [Aa; = blAa; = b] =
27k < L Thus Eap [|{j # i such that Aa; = b}| |Acy; = b] = (52}1) < 1. Hence
by Markov’s inequality

1
PI'A)b[Hj = i such that AOéj =b ‘AOQ = b] < 5 (€))
Now consider the coefficients from S. We have

2

a2 _ _ 122 —k 2 -

Eap | Y. f(B)?|Aci =b| =D Pr[Be H|Aa; =b]f(8)” <27"u® < oo

BeSNH BES
Hence by Markov’s inequality,
b2 o M 1

Pray | >, f(8)° > |da;i=b| <.)

BESNH

Thus by applying the union bound to Equations 4 and 5, we have both the desired
events (o being the unique solution from B, and small {5 mass from .S) happening
with non-zero probability over the choice of A, b. Fixing this choice, we have

Puf@) = Fladxe @) + S F@xs(e) where S F@)? <

S
BESNH BESNH

But by Fact 4 we also have Py f(z) = Eyecalxs(y)f(x + y)]. Thus the function
Py f(z) is the average of a Boolean function over 2" points, hence it is (k— 1)-granular.
We now consider the function

> f(B)xs()

BESNH

Since E,[g(7)?] < %2, for some x € {£1}" we have g(z)? < ";, hence g(z) < L.
Fixing this 2, we have Py f(z) = f()Xa, (2)+g(z), and hence | f ()| = |Pu f(z)—
g(z)|. Since Py f(x) is (k — 1)-granular and |g(x)| < 7 the claim follows.

Thus, if f has its Fourier mass concentrated on s coefficients, then it is close in ¢
to an s-sparse, [log s| granular real-valued function. We next show that this real-valued
function must in fact be Boolean.

Theorem 6. [Soundness Theorem.] Let f : Fy — {—1,1} be p < 535 close to s-
sparse in l3. Then there is an s-sparse Boolean function F : ¥y — {—1,1} within

w2

Hamming distance 5.

Proof. Let B = {on, -+ ,a;} be the s largest Fourier coefficients of f and let k¥ =
Mog s]. By Lemma 1, each f(ay) is f close to k-granular. So we can write

flai) = o) + G(ai)

where F'(a;) is k-granular and |G(a;)| < % Set F'(3) = 0 and G(8) = f(B) for
B € S. Thus we have f(z) = F(x)+ G(z), further F is s-sparse and k-granular, while
12
E[G(2)%] < s— +p? <242,
s

It suffices to show that F’s range is {—1,1}. In this case, G’s range must be
{—2,0,2}, the value G(z)? is exactly 4 whenever f and F differ, and therefore f and
F satisfy

2
Pr.[f(@) # Fla)] = Pr{G() = 2] = [B.[G()] < &
As functions on Fy we have

1=f2=F>4+2FG+G*=F?*+G(2f - Q). (6)

10
Writing H = G(2f — G), from Fact 7 below we have that for all a,

~ 1
[H(@)| < |Gll2ll2f = Gll2 < G212/ ll2 + 1Gll2) < 2v2p + 24 < dpp < .

On the other hand, since F' has granularity k it is easy to see that F'? has granularity
2k; in particular, | F2(«)| is either an integer or at least 272 > —L;-far from being an
integer. But for (6) to hold as a functional identity, we must have F2(0) + H(0) = 1

I~

and Z/T\Q(a) + H() = 0 forall a # 0. It follows then that we must have F2(0) = 1 and
F2(a) = 0forall a # 0;i.e., F? = 1 and hence F has range {—1,1}, as claimed. O

Fact7 Let f,g: F} — R. Then \E(aﬂ < I l2llgll2 for every a.

Proof. Using Cauchy-Schwartz and Parseval,

IJ‘Ag(a)\Z\§f(ﬁ)§(a+ﬁ)|§ Xﬁ)f(ﬁ)Q /%:?(Oé+ﬁ)2:||f“2||g||2- o

4 Testing s-sparsity

The following is our algorithm for testing whether f : F§ — {—1,1} is s-sparse:

TESTING s-SPARSITY
Inputs: s, ¢
2

Parameters: ;= min(v2¢, 50z), t=[2logs+1og100], 7= 1.

1. Choose a random permuted t-dimensional coset
structure (H,C).

2. For each bucket C € C(, estimate wt(C) = Zaecf(a)z
to accuracy +7 with confidence 1 — (1/100)27%, using
Proposition 2.

3. Let L be the set of buckets where the estimate is at
least 27. If |£|>s+1, reject.

Roughly speaking, Step 1 pairwise independently hashes the Fourier coefficients
of f into ©(s?) buckets. If f is s-sparse then at most s buckets have nonzero weight
and the test accepts. On the other hand, if f passes the test with high probability then
we show that almost all the Fourier mass of f is concentrated on at most s nonzero
coefficients (one for each bucket in £). Theorem 6 now shows that f is close to a sparse
function. Our theorem about the test is the following:

Theorem 8. Algorithm 4 e-tests whether f : Fy — {—1,1} is s-sparse (with confi-
dence 3/4), making O (Soi# + st log s) nonadaptive queries.

The query complexity of Theorem 8 follows immediately from Proposition 2 and
the fact that there are 2 = O(s?) buckets. In the remainder of this section we present

the completeness (Lemma 1) and the soundness (Lemma 4) of the test. We begin with
the completeness, which is straightforward.

Lemma 1. If f is s-sparse then the test accepts with probability at least 0.9.

Proof. Write f = Zflzl f(i)Xa,» where each f(a;) # 0 and s’ < s. Since there are
2¢ buckets, all of the estimates in Step 2 are indeed T-accurate, except with probability
at most 1/100. If the estimates are indeed accurate, the only buckets with weight at least
T are those that contain a nonzero Fourier coefficient, which are at most s in number.
So f passes the test with probability at least 0.9. a

We now analyze the soundness. Similar to Section 5 we partition the Fourier co-
efficients of f into two sets: B of big coefficients and .S of small coefficients. (The
O-character does not play a special role as it does in Section 5.) Formally, let

BY {a: f(a)? > 37}, 5 {a: fla)? < 37}
We observe that if there are too many big coefficients the test will probably reject:

Lemma 2. [f|B| > s + 1 then the test rejects with probability at least 3/4.

Proof. Proposition 5(3) implies that after Step 1, except with probability at most 1/100
there are at least s + 1 buckets C' containing an element of B. In Step 2, except with
probability at most 1/100, we get an estimate of at least 37 — 7 > 27 for each such
bucket. Then |£| will be at least s + 1 in Step 3. Hence the overall rejection probability
is at least 1 — 2/100. O

Next we show that if the weight on small coefficients, wt(S) = > ¢ fl@)?, is
too large then the test will probably reject:

Lemma 3. [fwt(S) > p? then the test rejects with probability at least 3 /4.

Proof. Suppose that indeed wt(S) > 2. Fix a bucket index b and define the random
variable M, := wt(C(0) N S) = X copyns f(@)? = Xoes [(@)? - Io—p. Here
the randomness is from the choice of (H,C), and we have used the pairwise indepen-
dent indicator random variables defined in Proposition 5. Let us say that the bucket
C(b) is good if My, > 1E[M,]. We have E[M,] = 27" wt(S) > 1007 > 0, and by
Proposition 4 we deduce Pr[M, < E[M]] < mppms < 3/25. Thus the ex-
pected fraction of bad buckets is at most 3/25, so by Markov’s inequality there are
at most (3/5)2¢ bad buckets except with probability at most 1/5. But if there are at
least (2/5)2¢ good buckets, we have at least (2/5)(100s?) > s + 1 buckets b with
wt(C(b) N S) > LE[M,] > 507. Assuming all estimates in Step 2 of the test are ac-
curate to within +7 (which fails with probability at most 1/100), Step 3 of the test will

reject. Thus we reject except with probability at most 1/5 + 1/100 < 1/4. O
Now we put together the pieces to establish soundness of the test:

Lemma 4. Suppose the test accepts f with probability exceeding 1/4. Then f is e-close
to an s-sparse Boolean function.

Proof. Assuming the test accepts f with probability exceeding 1/4, by Lemma 2 we
have |B| < s, by Lemma 3 we have wt(S) < p2. Thus fis pu < 20% close in 45 to
being s-sparse. We now apply the soundness theorem, Theorem 6 to conclude that f
must be “72 < e-close in Hamming distance to an s-sparse Boolean function. a

12

References

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. ALON, N., FISCHER, E., NEWMAN, I., AND SHAPIRA, A. A combinatorial characteriza-

tion of the testable graph properties: It’s all about regularity. In Proc. STOC (2006).

. ALON, N., KAUFMAN, T., KRIVELEVICH, M., LITSYN, S., AND RON, D. Testing low-

degree polynomials over GF(2). In Proc. RANDOM (2003), pp. 188-199.

. ALON, N., AND SHAPIRA, A. A characterization of the (natural) graph properties testable

with one-sided error. In Proc. FOCS’05 (2005), pp. 429-438.

. ALON, N., AND SHAPIRA, A. Every monotone graph property is testable. In Proc. STOC

2005 (2005), pp. 128-137.

. AUSTIN, T., AND TAO, T. On the testability and repair of hereditary hypergraph properties.

Submitted to Random Structures and Algorithms (2008).

. BELLARE, M., COPPERSMITH, D., HASTAD, J., KIWI, M., AND SUDAN, M. Linearity

testing in characteristic two. IEEE Trans. on Information Theory 42, 6 (1996), 1781-1795.

. BELLARE, M., GOLDREICH, O., AND SUDAN, M. Free bits, pcps and non-approximability-

towards tight results. SIAM J. Comput. 27(3) (1998), 804-915.

. BERNASCONI, A., AND CODENOTTI, B. Spectral analysis of boolean functions as a graph

eigenvalue problem. IEEFE Trans. Computers 48, 3 (1999), 345-351.

. BLAIS, E. Improved bounds for testing juntas. In To appear in RANDOM’08 (2008).
10.

BLuUM, M., LUBY, M., AND RUBINFELD, R. Self-testing/correcting with applications to
numerical problems. J. Comp. Sys. Sci. 47 (1993), 549-595. Earlier version in STOC’90.
BUHRMAN, H., FORTNOW, L., NEWMAN, 1., AND ROHRIG, H. Quantum property testing.
SIAM Journal on Computing 37, 5 (2008), 1387-1400.

DIAKONIKOLAS, 1., LEE, H., MATULEF, K., ONAK, K., RUBINFELD, R., SERVEDIO, R.,
AND WAN, A. Testing for concise representations. In Proc. FOCS) (2007), pp. 549-558.
FELDMAN, V., GOPALAN, P., KHOT, S., AND PONNUSWAMI, A. New results for learning
noisy parities and halfspaces. In Proc. FOCS (2006), pp. 563-576.

FISCHER, E. The art of uninformed decisions: A primer to property testing. Bulletin of the
European Association for Theoretical Computer Science 75 (2001), 97-126.

FISCHER, E., KINDLER, G., RON, D., SAFRA, S., AND SAMORODNITSKY, A. Testing
juntas. J. Computer & System Sciences 68, 4 (2004), 753-787.

GOPALAN, P., KHOT, S., AND SAKET, R. Hardness of reconstructing multivariate polyno-
mials over finite fields. In Proc. FOCS (2007), pp. 349-359.

JACKSON, J. An efficient membership-query algorithm for learning DNF with respect to the
uniform distribution. Journal of Computer and System Sciences 55 (1997), 414-440.
KAUFMAN, T., AND SUDAN, M. Sparse random linear codes are locally decodable and
testable. In Proc. FOCS (2007), pp. 590-600.

KAUFMAN, T., AND SUDAN, M. Algebraic property testing: the role of invariance. In Proc.
40th Annual ACM Symposium on Theory of Computing (STOC) (2008), pp. 403—412.
KUSHILEVITZ, E., AND MANSOUR, Y. Learning decision trees using the fourier spectrum.
SIAM Journal on Computing 22, 6 (Dec. 1993), 1331-1348.

LINIAL, N., MANSOUR, Y., AND NISAN, N. Constant depth circuits, Fourier transform
and learnability. Journal of the ACM 40, 3 (1993), 607-620.

MATULEF, K., O’ DONNELL, R., RUBINFELD, R., AND SERVEDIO, R. Testing Halfspaces.
Tech. Rep. 128, Electronic Colloquium in Computational Complexity, 2007.

PARNAS, M., RON, D., AND SAMORODNITSKY, A. Testing basic boolean formulae. SIAM
J. Disc. Math. 16 (2002), 20-46.

SAMORODNITSKY, A. Low-degree tests at large distances. In Proc. 39" ACM Symposium
on the Theory of Computing (STOC’07) (2007), pp. 506-515.

5 Testing k-dimensionality

In this section we give our algorithm for testing whether a Boolean function is k-
dimensional. The test is inspired by the following notion of invariance:

Definition 7. If f : F} — R satisfies f(x + h) = f(x) for all x € FY, we say that f is
h-invariant. We define

Inv(f) dzef{h : f is h-invariant},
which is clearly a subspace of F%y. We may view f as a function on FY /Tnv(f).

The following fact is easily verified (see e.g. [16]):

Fact9 Forany f : F} — R, we have span(Spec(f)) = Inv(f)*. Hence we also have
dim(f) = codim(Inv(f)).

Recalling that dim(f) = dim(span(Spec(f))), Fact 9 naturally suggests that we
test k-dimensionality by estimating the probability that a randomly chosen h € Fg
belongs to Inv(f). This probability is at least 27 % if f is k-dimensional, and is at most
2~ (k+1) if f is not k-dimensional. If we could perfectly determine whether a vector h
belongs to Inv(f) with g queries, we would get a nonadaptive test making O(2%) - ¢
queries. In lieu of a perfect decision on whether h € Inv(f), we instead check that
f(z 4+ h) = f(x) for O(2*) /e many randomly chosen z’s. A formal statement of our
test follows.

TESTING k-DIMENSIONALITY
Inputs: &k, e.
Additional parameter settings: ¢ = O(1) - 28, m = O(1) - k2¥ /¢

1. Pick hi,...,hyg € F? independently and uniformly at

random.

2. For each h;,

3. Pick z1,...,Zm € F5 independently and uniformly at
random.

4. If f(zj+h;) = f(z;) for all z;, add h; to the multiset
H

5. If |H|/¢>(9/10)27%, accept; otherwise, reject.

Our theorem about this test is the following:

Theorem 10. Algorithm 5 e-tests whether f : T3 — {—1,1} has dimension k, making
O(k22%F /¢) nonadaptive queries.

The query complexity in Theorem 10 is immediate. It remains to present the com-
pleteness (Lemma 5) and the soundness (Lemma 8) of the test. We begin with the com-
pleteness, which is straightforward:

Lemma 5. If f is k-dimensional then the test accepts with probability at least 2 /3.

14

Proof. Clearly any h; € Inv(f) will be added to H. Thus the expected fraction of h;’s
added to H is at least 2~ <cdim(Inv(f) which is at least 27% if f is k-dimensional. A
Chernoff bound then shows that the actual fraction will be at least (9/10)27* except
with probability at most 1/3, assuming the O(1) in the definition of ¢ is suitably large.

O

The idea behind the soundness proof is to look at the “essential spectrum” of f,
i.e., all of the (nonzero) characters «v such that | f(c)] is relatively big. We will show
that if the test passes with reasonable probability then these characters span a space of
dimension at most k£ (Lemma 6), and also have most of the Fourier weight (Lemma 7).
Formally, let

BE{a#0: f(a)? > (1/100)27%}, SE={a#0: f(a)? < (1/100)e27"}.

To prove the two lemmas mentioned, we make use of the following notation and
fact:

Definition 8. For h € F%, we abbreviate by h™- the subspace {0, h}=. (This space has
codimension 1 unless h = 0.)

Fact 11
Pr [f(z+h) = f(2)] = > f()*
z€FY achL
Proof. This follows easily from Fact 5, taking » = 0 and H = ht. a

First we show that if span(B) has dimension exceeding k, the test probably rejects:

Lemma 6. [f dim(span(B)) > k+ 1 then the test rejects with probability at least 2/3.

Proof. Our goal will be to show that the probability a single random h is added to H
is at most (3/4)2~*. Having shown this, a Chernoff bound will show that we reject in
Step 5 with probability at least 2/3, provided we take the O(1) in the definition of ¢
large enough.

To this end, define WeakInv(f) = span(B)*, a subspace of F} with codimension
at least k+1 by assumption. The probability that a random h lies in WeakInv(f) is thus
at most (1/2)2~%. We will complete the proof by showing that if b ¢ WeakInv(f), the
probability it is added to H in Steps 3—4 is at most (1/4)27F.

So suppose h ¢ WeakInv(f). By definition, this means that o* ¢ h* for at least
one a* € B. Then Fact 11 implies that

Pr[f(z+h) # f(@)] = Y f(a)® = f(a")* = (1/100)e27".

zeFy
agh+

Hence the probability % is added to H in Steps 3—4 is at most (1 — (1/100)e2~%)™ <
exp(—k - O(1)/100). Taking the O(1) in the definition of m sufficiently large, this is
indeed at most (1/4)27F, as required. O

15

Next we show that if the weight on small coefficients, wt(S) = > .o f(a)?,istoo
large then the test will probably reject. The intuition is that we expect half of the weight
in S to fall outside a given h*, making it unlikely that / is added to H if this weight is
big. We convert the expectation result to a high-probability result using Proposition 4.

Lemma 7. If wt(S) > € then the test rejects with probability at least 2 /3.

Proof. As in Lemma 6, it suffices to show that the probability a single random #h is
added to H is at most (3/4)27%. So let h be uniformly random and define D = {a :
(o, h) = 1}, the complement of h. Define the random variable

M=wt(DNS)=>" f(a)’ I
a€csS

Here I, is the indicator random variable for « falling into D. Thinking of h as
forming a random 1-dimensional coset structure, we have D = C'(1) and the notation is
consistent with Proposition 3. Recalling that 0 & S, it follows from that proposition that
E[M] = (1/2) wt(S) > €/2 and that the random variables (I,—1)aecs are pairwise
independent. Thus Proposition 4 implies that

Pr[M < $E[M]] < (1/100)e2=*

< W < (8/100)2_k.

On the other hand, if M > $E[M] then by Fact 11 we have

Pr [[(o+h) £ f(2)] = wi(D) = M > SE[M] > ¢/4.

In this case, m is more than large enough to imply that & will be added to H in Steps
3—4 with probability at most (1/4)27* (as in Lemma 6). Overall, the probability that
a single random h is added to H is at most (8/100)27% + (1/4)27% < (3/4)27F, as
desired. O

We can now establish the soundness of the test:

Lemma 8. Suppose the test accepts f with probability exceeding 1/3. Then f is e-close
to a k-dimensional function.

Proof. Assuming the test accepts f with probability exceeding 1/3, Lemmas 6 and 7
imply that both dim(span(B)) < k and wt(S) < e. Define F' : F} — R by

F(z) = f(0) + Y f(@)xa(@).

a€B

Clearly F is k-dimensional, and ||f — F[|3 = wt(S) < e If we now define g :
Fy — {=1,1} by ¢ = sgn(F), then g is k-dimensional (since it is a function of
the k characters F' is a function of) and g is e-close to f (a well-known consequence of
If = FlI3 <o O

16
6 Applications to Unique Decoding.

The soundness of both our tests is proved by (implicitly) giving an algorithm that re-
constructs a nearby sparse/low-dimensional function. In this section, we make these
algorithms explicit, and show that they are in fact tolerant to rather high levels of noise.
We show that they work up to the unique decoding radius for these classes, which is
the best one could hope for.

Note that the bound deg, (f) < logsp(f) implies that one could use known unique-
decoding algorithms for Fy polynomials of degree log s to unique decode sparse func-
tions. However, the running time of such an approach is O(n'°2*) whereas we will
achieve running time of poly(n, s). Similarly, in the low-dimensional case, we achieve
a running time of poly(n, 2¥) as opposed to O(n*).

6.1 A unique-decoder for sparse functions

We proved the completeness of our Sparsity tester by showing that rounding the Fourier
coefficients of the function f somewhat surprisingly gives a Boolean function. In this
section, we examine this rounding algorithm in detail and show that it gives a unique-
decoder for the class of s-sparse Boolean functions which works up to half the mini-
mum distance.

We study the granularity of s-sparse functions. Note that plugging 1+ = 0 in Lemma
1 shows that every s-sparse function is [log s| granular, while a closer inspection of the
proof reveals that one can improve this to [log s] — 1 granular. We present a different
proof which gives the optimal bound of |log s| — 1.

Theorem 12. Suppose f : Fy — {—1,1} is s-sparse, s > 1. Then f has granularity
llog s| — 1. (Of course, if f is 1-sparse then it is 0-granular.)

Proof. By induction on n. If n = 0 then s must be 1 and there is nothing to prove. For
general n > 0 we consider two cases. The first is that s = 2". In this case, since every
Fourier coefficient is an average of 2" many £1’s, it is of the form (even integer) /2"
and hence has granularity n — 1 = [log s] — 1, as required by the theorem.

~

0. Now for an arbitrary 5 # « we will show that f(3) has granularity |log 1
completing the proof. Since 5 # « we can pick ¢ € [n] such that a;; + 5; + 1 = 0.
Consider now the function g : Fi"\' — {—1,1} defined by

The second case is that s < 2". In this case we can choose an « such that f
S

g(x) = f(x1,...,zim1, (T, + B4 €), Tig1, ..., Tn).

It is easy to check that for each v € FyV', we have §(v) = F(7) + f(v + o + 3).
and in particular g(«) = f(a) + f(8) = f(B). Since f is s-sparse, the definition of g
implies that g is also s-sparse. But now the induction hypothesis applied to g (a function

on n — 1 variables) implies that g(«) has granularity |log s| — 1, and hence so does

7). 0

17

Easy examples such as the AND function show that the granularity bound above
is the best possible. By using Theorem 12 and Parseval’s identity, one can show the
interesting fact that any function f : F} — {—1, 1} has sparsity either 1, 4, or at least
8.

Application to learning theory. Theorem 12 implies that a variant of the member-
ship query learning algorithm of [20] can be used to exactly reconstruct the Fourier
representation of any s-sparse function f in poly(n, s) time. Specifically, using [20]
one can find and approximate to within +1/(3s) all Fourier coefficients of f with
|f(c)] > 1/s. By Theorem 12, by rounding each coefficient to the nearest number
of granularity |log s| — 1, we exactly determine all nonzero Fourier coefficients. Prior
to this, the analysis of [20] implied that an exactly correct hypothesis could be obtained
in poly(n, s) time; however the hypothesis was the sign of some approximation of the
Fourier spectrum of f. Using our result, we establish for the first time that sparse func-
tions are efficiently exactly properly learnable.

Indeed, one can show that this version of KM gives a unique-decoder for sparse
polynomials at low error rates. Recall that every s-sparse polynomial has Fo degree
bounded by d = |log s|. Thus any two sparse polynomials must differ at 2~¢ fraction
of points in the Boolean hypercube, and it is easy to see that this bound is tight. Thus,
sparse functions give a code of distance 27%, so given any function f : F§ — {&1},
there can be at most one sparse function g so that d(f, g) < 2~ (d+1)

Theorem 13. Ler f : F} — {£1} be such that there exists a sparse function g so that
d(f,g) < 279D The function g can be recovered from f by rounding each f(c) to
the nearest (d — 1) granular number.

Proof. One can view f as being obtained from g by changing its values at n < 2~ (¢+1)
fraction of points on the hypercube. Thus we have f(z) = g(x) + n(x) where |n(z)| =
2 at n fraction of points z, and n(x) = 0 otherwise. It follows that 7(«) < 27 for all
a C [n].

But since each coefficient §(«) is (d — 1)-granular, and any two such numbers are
2-2-(4) apart, the only (d — 1)-granular number z satisfying |z — f ()| < 2~ %is §().
So rounding Fourier coefficients recovers the function g(x). O

This also shows by running the KM algorithm and rounding the Fourier coefficients,
we can efficiently recover s-sparse polynomials in time poly(n, s, e 1) from adversarial
error (mislabeled labels) of rate n = 2~ (1) — ¢, We identify the s largest coefficients
using KM and estimate them to accuracy <. We then round them to the nearest |log s | —
1-granular number. An argument similar to the one above shows that we recover the
sparse polynomial with good probability.

6.2 A unique-decoder for low-dimensional functions

Given f : F} — {£1}, let F : F} — F5 denote its representation as a polynomial over
IF5; which satisfies

18

For h € F we define the directional derivative Fj,(x) as
Fp(z) = F(z+ h) + F(x).

It is easy to see that degy(Fp) < degy(f) — 1 for every h. Inv(f) can be thought of
as the subspace of vectors & so that F;, = 0. Further, if f is k-dimensional so that
deg,(f) =k, and if h & Inv(f), then the Schwartz-Zippel lemma implies

Procrp [Fy(z) # 0] > 27FD,

This gives a test for membership in Inv(f) which is robust to noise.
Assume that we are given f : F§ — {£1} so that d(f,g) < 2~ * 1D — ¢ for some
€ > 0, and g is k-dimensional. Our goal is to recover g from f. The first step is a test
for membership in Inv(g).
TESTING MEMBERSHIP IN Inv(g)
Inputs: f, h,¢,6.
oy . 4k
Additional parameter settings: m = 2 log ;.

Pick x1,...,Tm S F3? independently and uniformly at
random.

If f(z;+h)=f(z;) add z; to the multiset §.
If |S|/m <27%, accept; else reject.

Lemma 9. Every h € Inv(g) passes the test with probability 1 — 0, whereas every
h & Inv(g) passes with probability at most 9.

Proof. Assume that h € Inv(g), so that g(x + h) = g(z) for every . If f(xz + h) #
f(z), then either f(x) # g(z) or f(x + h) # g(x + h). Thus

Pr,[f(z) # f(z + h)] < Pry[f(z) # g(x)]+ < Pry[f(z +) # g(z + h)]
< 2(2—(k+1) _ 6)
=27F _ 9.

The claim follows by the Chernoff bound.
Now assume that h ¢ Inv(g). Note that by the Schwartz-Zippel lemma,

Pr,[g(z) # g(z + h)] = Pr,[Gu(z) £ 0] > 27 *71,
Thus, we have

Pr,[f(x) # f(x + h)] = Pro[g(z) # g(z + h)] = (Pro[f(z) # g(2)] + Pra[f(x + h) # g(z + 1))
> 2—(k—1) _ 2(2—(k+1) _ E)

=27% 4 2

Again the claim follows by the Chernoff bound. O

UNIQUE-DECODING LOW-DIMENSIONAL FUNCTIONS
Inputs: f. ¢, 0.

Additional parameter settings: ¢ = 4n2*, m = glog%.

Phase 1: Learning Inv(g).

Pick hi,...,hy € F§ independently and uniformly from Fj.
Run Algorithm 6.2 with f, h;,€e,6 = %; if it accepts,

add h; to S.
Let H =span(9).

Phase 2: Learning ¢ (as a truth-table).

For each z€F}/H,
Pick hi,...,h, independently and uniformly from H.
set g(z) = Maj, f(z+h;).

Theorem 14. Given f : F} — {41} such that d(f,g) < 2=*+t) — ¢ and g is k-
dimensional, Algorithm 6.2 recovers g with probability 1 — 30.

We prove this claim by analyzing the two Phases separately. We prove the correct-
ness of Phase 1 using the following simple fact.

Fact 15 Let A be a subspace of F3. Sampling 2n vectors independently and uniformly
from A will span all of A with probability 1 — 27",

Lemma 10. We have H = Inv(g) with probability 1 — 20.

Proof. Of the £ = 4n2" vectors h;, at least 2n of them come from Inv(g) with proba-
bility 1 —exp(—n) > 1— (3 by the Chernoff bound. Since we pick § = %, Algorithm 6.2
correctly labels all the h;s as lying within or outside Inv(g), hence S C Inv(G). But
by Fact 15, this means that .S contains a basis for Inv(G), so the lemma follows. O

Lemma 11. Algorithm 6.2 returns the correct value of g for every x € F3 /Inv(g) with
probability 1 — 3.

Proof. Assume that H = Inv(g). Fix « € F} /Inv(g). We have g(x) = g(x + h) for
every h € H. The coset = + H contains 2"~ points, of which at most

27’7,(27(]@“1’1) _ 6) — 277,7]6 (]‘ _ €> .

2 2k

are corrupted by error. Thus, the Chernoff bound implies that the majority of m samples
will give the right answer with probability 2% To complete the proof, we apply the
union bound to all 2¥ possible choices for z € F} /Inv(g). O

20

7 Testing induced subclasses of k-dimensional functions

Let C be any fixed induced subclass of k-dimensional functions. In this section we
show that C'is e-testable using poly(2¥, 1/¢) queries.

Let us give a brief overview of the method. From Section 5 we know that, using
about 2% queries, we can test that a function f is close to some k-dimensional func-
tion F'. That test, however, does not give us much information about F'. On the other
hand, the s-sparsity test from Section 5 (with s set to 2%, yielding query complexity
20(k)) does give us quite a good handle on the nearby sparse (and k-dimensional) F.
Specifically, assuming the underlying F' is

F=>" f(B)xs

BeB

a successful run of the sparsity test actually obtains (approximate) query access to each
of the “pieces” f (8)x - Note that it does not determine the actual identity of any 3 in
Spec(F') (this would require a number of queries dependent on n); this is why we get
an “implicit learning” scenario.

We can now draw around O(k2*) random examples and obtain a complete “implicit
truth table” for I (since the sparsity test ensures the “e” parameter is < 274 anyway,
we are likely to have no mistakes in this table). By this we mean a table where the rows
correspond to strings z, the entries in the rows are the values of the “pieces” f(3)xs(z),
and we have a value F'(x) for each row. With this implicit truth table for F' in hand, we
can check — deterministically and without queries — whether F' has any particular
property C.

The organization of this section is as follows. We define “implicit truth tables” for-
mally in Section 7.1. The main work appears in Section 7.2, where we give an aug-
mentation to the sparsity test which returns partial implicit truth tables. In Section 7.3
we point out that this augmentation lets us test for k-dimensionality as well; there is
no need to additionally run the test from Section 5. In Section 7.4 we discuss how to
complete and correct a partial implicit truth table. Finally, in Section 7.5, we discuss
how to finish the test of any induced subclass of k-dimensionality via implicit learning.

We close this overview by mentioning that, given parameters k and e, our test will
always begin by running the sparsity test Algorithm 4 with s = 2. (Recall that k-
dimensional functions are 2¥-sparse.) Our subsequent analysis will therefore assume
that f is a function which Algorithm 4 accepts with probability exceeding 1/4. Then the
function F' from Lemma 4 is well-defined, and f is O(e;)-close to F. In particular, we
will use the fact that if f is itself s-sparse then F is identical to f. This is because both
f and F', being s-sparse, have [Fo-degree at most log s, and it is well known (Schwartz-
Zippel variant for Fs) that two such polynomials, at distance at most O(ey) < 1/s,
must in fact be identical.

7.1 Implicit truth tables

Definition 9. The partial implicit truth table for F' corresponding to a list M of strings
x € F% consists of a matrix W € {—1, 13I8l and a vector F € {—1,1}M. We call

21

| M| the size of the partial implicit truth table. The columns of the matrix VV are indexed
by B, and the (x, 3) entry is equal to sgn(f(3))xs(x) for all z € M and 3 € B. The
vector F has the property that F,, = F(z). Note that F, is uniquely determined by the

z-row of W (since F is determined by the values f(3)xs(z)).

Definition 10. A random implicit truth table of size m for F' is a partial implicit truth
table in which M is a list of m uniformly and independently drawn strings x € F3.

Lemma 12. Consider the matrix VW of a partial implicit truth table under the identi-
fication 1l € R «— 0 € Foand —1 € R «— 1 € Fy. Then the set of possible rows
Sforms a dim(F')-dimensional coset of IF‘QBl. In a random implicit truth table, each row
is uniformly distributed on this coset.

Proof. By adding the Fs-identified vector (sgn(f(5)))gep to each row, it suffices
to prove the following: If one chooses a uniform x € F7, the [Fo-identified vector
(xg(x))ger —i.e., (0,x)sep — is uniformly distributed on a subspace of dimension
dim(span(B)). Indeed, letting A € F‘QBl "™ be the matrix formed by stacking the 3 € B
as rows, the image of A is a subspace of dimension rank(A) = dim(span(B)). And
the set of x’s achieving a particular vector in the image forms a coset in Fj / ker(A);

the fact that all cosets have the same cardinality completes the proof. a
Definition 11. We call a partial implicit truth table exhaustive if all possible 24™(F)
rows occur in V.

Lemma 13. Suppose we draw a random implicit truth table for F of size 200k2F. If F
is k-dimensional then we get an exhaustive implicit truth table except with probability
at most 1/100. If F is not k-dimensional then we see more than 2" distinct rows except
with probability at most 1/100.

Proof. These facts follow from the Coupon Collector analysis and Lemma 12. a

7.2 Determining an implicit truth table

Consider the following augmentation to Algorithm 4:

TESTING s-SPARSITY WITH IMPLICIT LEARNING
Inputs: m < O(s?)

5. Let L' C L be the buckets whose Step 2 estimate is at
least 1/(8s?).

6. Define the length-m column vector F as follows:
Draw a list M of m uniformly random strings from
F%; query f on each z €M and set Fp = f(x).

7. Define the m X |£/| matrix W as follows: For each x €
M and C € [/, estimate Pof(z) to within #1/(4s) with
confidence 1—1/(100sm), using Proposition 1; set W, ¢
to be the sign of the estimate.

22

Remark 2. This augmentation to Algorithm 4 does not increase its query complexity
by more than a constant factor. To see this, note that although the above Algorithm 7.2
is described as being adaptive, we could do it nonadaptively by estimating P¢ f(z)
for every bucket C. Even this would require query complexity only m + O(s?) - m -
O(s?log s) < O(s%log s), which is less than the query complexity of Algorithm 4.

Lemma 14. After running Algorithms 4 and 7.2, the pair (W, F) is the partial implicit
truth table corresponding to M, except with probability at most 5/100.

Proof. Throughout this argument we freely assume that the O(1) in €;’s definition is
sufficiently large, including in comparison to the O(1) in the upper-bound on m. Ana-
lyzing F is easy; since f and F' are O(e;)-close as Boolean functions, the probability
that F, # F(x) for any z € M is at most m - O(e;) < O(s%e;) < 1/100. We
thus concentrate on analyzing V. Given that f passes Algorithm 4 with probability
exceeding 1/4, the proof of Lemma 4 implies that |B| < s, wt(S) < [|f — F||3 <
O(e1), and each f(3) is within O(e;/s) of a nonzero (-granular number f(3). The
last of these facts implies that each f() has magnitude at least 1/(2s) and has the
same sign as f (8). In running Algorithms 4 and 7.2, except with probability at most
1/100 + 1/100 4+ 1/100 < 3/100, the following all hold: after Step 1, all 5 € B
fall into different buckets (by Proposition 5(3)); after Step 2, all estimates are accurate
to within 47; and, after Step 7, all estimates are accurate to within £1/(4s). Assum-
ing all of these hold, we begin by identifying a 1-1 mapping ¢ : B — £’ (recall that
L’ indexes the columns of W). Define ¢(3) to be the bucket containing 3; so far we
know that this function is injective. To see that its range is contained in £’, note that
for each 3 € B we have |f(3)| > 1/(2s); hence the bucket containing 3 has weight
at least 1/(4s%) and therefore it will be put into £’ in Step 5 (using 7 < 1/(8s%)).
To show that c is an onto map we need to verify that any bucket in £’ contains a vec-
tor from B. Since wt(S) < O(e;) < 1/(16s%), even if all vectors @ ¢ B landed
in the same bucket, that bucket would still have weight less than 1/(8s%) — 7 (using
7 < 1/(16s?)) and thus would not be added into £’. Next, for each 3 € B, define the
function Gg = P (5 f — f(ﬂ)xg. Using the 1-1 correspondence between B and £’ and
the fact that coset-projection functions have disjoint Fourier support, we have

O(er) 2 If = Fll3 =Y IGsllz + D IIPcfllz = Y IGsll3. ©)

BeB cégLr’ peB

Say that a string « € F% is bad for 3 € B if |Gg(x)| > 1/(2s). Clearly the fraction of
strings bad for (3 is at most (25)?||G||3. Thus we conclude that the fraction of strings
& which are bad for any 8 € B is at most 45° "5 5 G5 < O(s%€1), using (7).

Since m < O(s?), the probability that M contains any string which is bad for any
B € B is at most O(s*e;) < 1/100. So we assume all strings in M are good for all
B € B, and overall we have accumulated failure probability at most 5/100. It remains

to show that assuming x is good for § € B, the sign W, .(g) equals sgn(f(5))xs ().

This is straightforward. Since f(f3) is a nonzero (-granular number, |f(3)xs(x)| >
1/s. Thus if z is good for 3 we must have both that [P f(x)| > 1/(2s) and that

sgn(P.g) f(x)) = sgn(f(B))xs(x). Now the fact that the estimate for P g f(x) is

23

accurate to within £1/(4s) means that W, () will have the same sign as P, f(x),
as required. a

7.3 An alternate k-dimensionality test

We can now give an alternate test for k-dimensionality. Its query complexity is essen-
tially that of the sparsity test (so worse than that of Section 5, though still polynomial in
2% /¢), but it has the crucial advantage of determining exhaustive implicit truth tables.

TESTING k-DIMENSIONALITY WITH EXHAUSTIVE IMPLICIT LEARNING
Inputs: k, ¢
Additional parameter settings: s = 2%, m = 200k2"

1. Run Algorithm 4.
2. Run Algorithm 7.2.
3. Reject if W has more than 2% distinct rows.

Our theorem about Algorithm 7.3 is the following:

Theorem 16. If f is k-dimensional then this test accepts and outputs an exhaustive
implicit truth table with probability at least 2/3. Further, if the test accepts with prob-
ability exceeding 1/4 then f is e-close to F, which is k-dimensional, and except with
probability at most 6/100 the test produces an exhaustive implicit truth table for F.

Proof. For the first statement, if f is k-dimensional it is s-sparse, so Algorithm 4 passes
with probability at least 3 /4. Except with probability at most 5/100, Algorithm 7.2 pro-
duces a partial implicit truth table for F of size 200k2*. Since F' = f is k-dimensional,
any implicit truth table for F has at most 2* distinct rows, by Lemma 12. Thus the
test accepts and produces an exhaustive implicit truth table with probability at least
3/4 — 6/100 > 2/3, as claimed. For the second statement, suppose f passes Algo-
rithm 7.3 with probability exceeding 1/4. Certainly, f passes Algorithm 4 with proba-
bility at least 1/4, so F is well-defined. Further, F' must be k-dimensional as claimed,
for otherwise the combination of Lemmas 14 and 13 would imply that f is accepted
with probability at most 6/100. Thus these same two lemmas imply that the test pro-
duces an exhaustive implicit truth table for F' except with probability at most 6/100.

O

7.4 Correcting the implicit truth table

Definition 12. A corrected implicit truth table is an implicit truth table with the follow-
ing additional properties:

1. W and F have exactly 29™F) distinct rows.
2. W has a column for all 8 € span(B), not just all 3 € B.
3. The W, 3 entry is equal to x3(z).

24

Notice that a corrected implicit truth table has potentially many more columns than an
exhaustive implicit truth table. Also, the V¥V matrix for the corrected version drops the
sgn(f(3)) term from the exhaustive version. This kind of truth table will be help us do
implicit learning. To obtain such a truth table, the main trick is to achieve property 3.
Assuming we can do this for all § € B, achieving properties 1 and 2 is easy. For 1, we
simply eliminate all duplicate rows. For 2, it suffices to widen the matrix YV so that it
contains all 24™(F) columns in its column space; it is easy to do this using Gaussian
elimination to find a basis.

To achieve property 3 we need to slightly modify Algorithm 7.2 and the proof in
Lemma 14, using the most basic form of linear self-correction. In Step 7, we first draw
another list M’ of m uniformly random strings. Then, instead of determining the matrix
W associated to the list M, we instead determine the matrix VW' associated to the list
M, and also the matrix YW associated to the list M” := M + M’. (By this we mean
that the ith string in M" is the sum of the ith strings in M and M’.) Finally, we set
W = W' o W, where o denotes the entrywise multiplication. (In the “Fo-identified”
versions of these matrices, we are simply doing W = W' + W) Note that M’ and
M are both uniformly random lists. By suitably adjusting constants (which ultimately
only increases the query complexity by a constant factor), we can ensure that both W’
and W' are completely correct tables except with probability at most 5/100. By this
we mean that W,) = sgn(f(3))xs(z") foreach 2’ € M’ and 3 € B, and similarly
for W". Now by setting W = W' o W" we get that W, .(3) = xp(x) for eachz € M
and § € B, as required.

Using this modified version of Algorithm 7.2 in Algorithm 7.3, our test is the fol-
lowing:

TESTING k-DIMENSIONALITY WITH CORRECTED IMPLICIT LEARNING
Inputs: Same as those for Algorithms 4 and 7.2.

1. Run Algorithm 4.

2. Run Algorithm 7.2 with self-correction as described
above.

3. Reject if W has more than 2% distinct rows.

Our arguments have established:

Theorem 17. In Theorem 16, we can replace “exhaustive” with “corrected” if we use
Algorithm 7.4 instead of Algorithm 7.3.
7.5 Testing subclasses of k-dimensionality with implicit learning

As described in Section 1.2, let C’ be a class of Boolean functions on up to & bits, and
let C be the induced subclass of k-dimensional functions on F7.

Definition 13. We define a k-restricted truth table of W and F to be the truth table
gotten by taking only k columns of VW while keeping the same F.

25

We note the identification of k-restricted truth tables with functions of k& characters,
since each column of W corresponds to x g for some § € span(B). We say that a k'-
restricted truth table (for &’ < k) is consistent with a function h € C’ if it is the (normal)
truth table of h. We now state our test for testing subclasses of k-dimensionality:

TESTING C
Inputs: &k, e.

1. Run Algorithm 7.4.

2. Accept if and only if there exists a function in
C’ that is consistent with some k’'-restricted truth
table of the corrected implicit truth table from
Step 1, where K <k.

Notice that Step 2 above uses no additional randomness and no additional queries.
Any method for performing Step 2 is acceptable, even brute force search.

Theorem 18. Ler C’ be a class of Boolean functions on up to k bits; assume each func-
tion in C' depends on each of its input bits. Let C the induced subclass of k-dimensional
functions on FY. Then Algorithm 7.5 makes poly(2¥,1/¢) nonadaptive queries and e-
tests the class C. The running time depends on the implementation of Step 2.

Proof. Both the completeness and soundness follow straightforwardly from Theorems 16

and 17. The main thing to note in the completeness is that if f = A(xays- -+ Xay)
then although the «;’s are not necessarily in B, each of them must be in span(B). (This
uses the fact that A depends nontrivially on each of its inputs.) a

Regarding the running time for Step 2, we can give some naive upper bounds. Using
brute force search for the right k' < k columns, we have a running time of O(2**)T,
where T is the time required to check if a given &’-bit truth table is in C’. Further, T
is certainly bounded by O(22k), so for every induced subclass of k-dimensionality we
have a running time with only linear dependence on n (but possibly doubly-exponential
dependence on k). In most natural cases, 1" is polynomial in 2*, leading to the improved
running time of 20(K) For example, since we can determine whether a truth table is
a linear threshold function in polynomial time (with linear programming), the class of
k-sparse polynomial threshold functions can be tested with poly(2¥,1/¢) queries and
poly(2¥° 1/€) - n time. Improvement even to time 2°) maybe possible for this or
other natural classes; we leave this as a question for further investigation.

8 Lower bounds

In this section we show that the query complexities of our k-dimensionality test and
s-sparsity test are tight up to polynomial factors. In fact, our lower bound Theorem 19
is somewhat stronger. First, though, let us review some known lower bounds.

Buhrman et al. [11] implicitly considered the testability of k-dimensionality. In their
Theorem 6, they showed that any adaptive 1/8-tester for k-dimensional functions (for

26

any k < n — 1) must make Q(2k/ 2) queries. In earlier work, Alon et al. [2] gave a
lower bound for testing whether a function has degree k. Their result shows that there
is some positive € such that any nonadaptive e-tester for having degree & must make
2(2%) queries.

Our lower bound combines, clarifies, and partially strengthens these two results:

Theorem 19. Fix 7 > 0 and let C = C(7) be sufficiently large (one can check that
O(log(1/7)) suffices). Define the following two probability distributions on functions
[FSF — {-1,1}:

— Dyes: Choose a random k-dimensional coset structure (H,C) on the strings in FS'*
and form f by making it a randomly chosen constant from {—1, 1} on each bucket.

— Duo: Choose a completely random function on FS'* conditioned on it being (1/2 —
T)-far from having Fo-degree k.

Then any adaptive query algorithm which distinguishes Dyes and Dy, with probability
exceeding 1/3 must make at least §2(2°/2) queries.

Note that Dy is supported on k-dimensional functions and Dy, is supported on
functions far from even having Fo-degree k. Using (3), this result immediately gives a
2(2%/?)-query lower bound for adaptively (1/2 — 7)-testing k-dimensionality and an
2(s'/?)-query lower bound for adaptively (1/2 — 7)-testing s-sparsity.

Note that it suffices to prove Theorem 19 for deterministic adaptive query algo-
rithms. This is the “easy direction” of Yao’s Principle: if A is a randomized distin-
guisher, we have

1/3 < A's COiIE;NDyCS [Acoins(f) = aCC] - A's coiE,IJ;NDnO [Acoins(f) = aCC]

= .A’slgloins fA]/?DI;es [Acoins(f) = aCC] - fN:P’l;‘m [-Acoins(f) = aCC])
and so by averaging there exists a setting for the coins giving a deterministic distin-
guisher which is at least as good.

A g-query deterministic adaptive query algorithm is nothing more than a decision
tree of depth at most g, where the internal nodes are labeled by query strings from F$*
and the leaves are labeled by “accept” and “reject”. In fact, we need not be concerned
with leaf labels. Given a decision tree 7 with unlabeled leaves, it is well known (indeed,
it is essentially by definition) that the best distinguisher one can get by labeling the
leaves is precisely || Lyes — Lnol|7v- Here Lyes (L£1o) denotes the distribution on leaves
of 7 induced by a draw from Dy.s (Dyo), and || - |7y denotes total variation distance.

Thus to prove Theorem 19, the following suffices: Fix a decision tree 7" with depth

q < (1/10)2%/2,

We may assume that no string appears twice on any root-to-leaf path and that the depth
of every path is precisely q. We prove that

||£yes - Eno”TV S 1/3; (8)

27

and this establishes Theorem 19.

We will prove (8) via two lemmas.

Lemma 15. Let D¢ denote the uniform distribution on functions FS* — {—1,1}.
Under Dyit, the probability that f is (1/2 — 7T)-close to having degree k is at most
1/100.

Proof. A statement along these lines was given in [2]; we fill in the details of the volume

argument here. Fix any function g : F$* — {—1,1}; when f ~ Dypit, the probability

that it is (1/2 — 7)-close to g is at most exp(—2722¢*), by a standard large-deviation
k

bound. Union-bounding over all degree-k functions g, of which there are 2%) gives

an overall probability of at most

Ck

2(%) . exp(—27229%) < exp(k In(Ck) — 27%2°F).
This is certainly at most 1/100 if we take C' = C(7) large enough. O

We can define Lyir by analogy with Lyes and Ly,; clearly, Luyir is the uniform
distribution on the 29 leaves of 7.

Lemma 16. ||Lycs — Lunit|lrv < 1/99

Proof. This proof is similar to the one in [11], although we believe we are correcting
a gap in that argument. Consider a draw f ~ Dy.; recall this defines a random k-
dimensional coset structure (H,C). For a particular leaf v in 7, consider the strings
appearing on the path to v. By ¢’s definition we have k£ > 2log ¢ + log(100); hence
Proposition 3(3) implies that, except with probability at most 1/100 over the choice
of (H,C), all strings on this path to v fall into different buckets. Conditioned on this
happening, the probability that f is consistent with the path to v is precisely 279. Thus
we have shown that for each leaf v,

Prc,..[v] > (1—1/100)27.
The lemma now follows from Proposition 6 below. O

Proposition 6. Let P be a probability distribution on a set of size m in which each
element has probability at least (1 — &) /m. Let U denote the uniform distribution. Then
1P =Ulrv <4/(1—=0).

Proof. The unaccounted-for probability mass in P is at most §. Hence ||P — (1 —
U1 < 4, and therefore |P/(1 —6) — U1 <46/(1 —46).But ||P/(1 -6)— Py =
(6/(1 =)|IP|lx = 6/(1 — §). Thus by the triangle inequality we have |[P — U||; <
2§/(1 — §), completing the proof.

O

Finally, to complete the proof of (8) and thus Theorem 19, simply note that Lemma 15
implies | Dno — Dunitl|7v < 1/100, hence ||Lno — Lunitl|l7v < 1/100; then use
Lemma 16 and the triangle inequality: 1/100 + 1/99 < 1/3.

